
1. Introduction

In [6], Mastronardi, Lemmerling, and Van Huffel
present an algorithm for solving fast structured total
least squares problems of the form

(1)

subject to the constraints

with A ∈ Cm × n a given Toeplitz matrix and y ∈ Cm × 1 a
given vector. They include one additional constraint: E
is a Toeplitz matrix. They produced a fast algorithm
for solving this structured total least squares problem
(STLS) and showed that the solution was a better

estimator than the solution to the total least squares
problem without the Toeplitz constraint.

In this paper, we work through the details of a small
generalization of this algorithm. We consider the same
problem (1), but under the constraint that A and E have
small displacement rank relative to some matrices Z1

and Z2. Choosing these two matrices to be shift-down
matrices and the rank to be two gives the Toeplitz
constraint considered by [6], but we will be interested
in other cases as well. See [3] for a discussion of dis-
placement structure.

We also consider fast solution of the problem under
the additional constraint that the norm of the solution
vector x is specified, a problem posed in Pruessner and
O’Leary [10]. This corresponds to a Tikhonov regular-
ization of our structured total least squares problem

Volume 111, Number 2, March-April 2006
Journal of Research of the National Institute of Standards and Technology

113

[J. Res. Natl. Inst. Stand. Technol. 111, 113-119 (2006)]

Fast Algorithms for Structured Least Squares
and Total Least Squares Problems

Volume 111 Number 2 March-April 2006

Anoop Kalsi

Applied Mathematics Program,
University of Maryland,
College Park, MD 20742
and

Dianne P. O’Leary

Dept. of Computer Science and
Institute for Advanced
Computer Studies,
University of Maryland,
College Park, MD 20742
and

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-8910

oleary@cs.umd.edu

We consider the problem of solving least
squares problems involving a matrix M
of small displacement rank with respect
to two matrices Z1 and Z2. We develop
formulas for the generators of the matrix
M HM in terms of the generators of M and
show that the Cholesky factorization of
the matrix M HM can be computed quickly
if Z1 is close to unitary and Z2 is triangular
and nilpotent. These conditions are
satisfied for several classes of matrices,
including Toeplitz, block Toeplitz, Hankel,
and block Hankel, and for matrices whose
blocks have such structure. Fast Cholesky
factorization enables fast solution of least
squares problems, total least squares
problems, and regularized total least
squares problems involving these classes
of matrices.

Key words: block Toeplitz matrix;
displacement rank; errors in variables
method; image deblurring; structured total
least squares; Tikhonov regularization;
total least squares.

Accepted: January 15, 2005

Available online: http://www.nist.gov/jres

[ ] 2

, ,
min

FE x
E

ββ
ββ

( )+ = +A E x y ββ



and results in a fast solution algorithm for the problem
considered in [8, 9, 10, 7].

The core of the algorithm in [6], based on a more
general algorithm of [11], relies on two results: the
representation of the generators for the matrix AHA that
appears in the normal equations when A is Toeplitz, and
then a fast factorization of a matrix derived from these
generators. So we begin in Sec. 2 with a construction of
the generators for M HM when M is any matrix of small
displacement rank and Z1 is close to unitary. In Sec. 3
we show that it is inexpensive to form a Cholesky
factorization of M HM whenever Z2 is triangular and
nilpotent. Section 4 concerns the application of this
algorithm, and we conclude in Sec. 5.

The results in this work are derived from [4, 5].

2. Generators of MHM

One way to solve a least squares problem

involving a matrix M of full column rank is to use the
normal equation formulation; we factor MHM = LLH

where L is a square lower triangular matrix and then
solve the linear system

LLHx = M Hb . (2)

Thus, we can solve this problem fast if we can
compute a Cholesky factorization of MHM fast. To do
this, we will first derive a generator for the matrix MHM
when M ∈ Cm × n (m ≥ n) has low displacement rank.

Suppose that M has low displacement rank relative
to the matrices Z1 ∈ Cm × m and Z2 ∈ Cn × n, which means
that if we define

then rank (N), which we denote by ρ1, is small relative
to n.

Suppose

is a unitary matrix
assumed to be small. For example, if E is Toeplitz, let
Z1 be the shift-down matrix with ones on its subdiago-
nal and zeros elsewhere, and then W is the matrix with
a one in the last position of row 1.

Then M HM also has low displacement rank relative
to Z2, as we can see from the identity

Theorem 1. If the rank of N ≡ M – Z1MZ 2
H is ρ1 and

if the unitary matrix Z∼ is equal to Z1 + W where W has
rank ρ2, then

has rank at most 2(ρ1 + ρ2).
Proof: The equation in the statement of the theorem

is a regrouping of the terms in the previous equation.
The rank of N – WMZ 2

H is at most the rank of N plus
the rank of W, so the rank of the sum in that equation is
at most 2(ρ1 + ρ2). []

An alternate proof of this theorem can be derived by
noting that displacement rank is preserved by taking a
Schur complement [3, Lemma 1.5.2], and M HM is the
Schur complement of

which has displacement rank at most 2(ρ1 + ρ2) relative
to the matrix

The bound 2(ρ1 + ρ2) can be an overestimate, since
the N and W terms may interact. For example, for a
Toeplitz matrix with rank computed relative to the
shift-down matrices, the bound yields 6 while the
actual rank is 4. If we use circular shifts, though, both
the bound and the actual rank are 4.

Using the identity
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Theorem 1 tells us how to determine ρ = 2 (ρ1 + ρ2)
vectors hi so that

we can easily symmetrize the generators.

3. Determining a Factorization of M HM
From the Generators

(3)
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where si equals plus or minus 1. When Z1 and Z2 are
shift-down matrices, it has been shown [6, 1, 2] that
this implies that

where S = diag(Si), Si = diag(si) (n × n), and L(hi) is the
lower triangular Toeplitz matrix with first column equal
to hi. We now generalize this result somewhat.

3.1 Triangular Factors of Structured Matrices

Theorem 2.
If Z1 is nilpotent, then

and only if

where

Proof: Suppose 

and

so, since Z n
1 = 0, we conclude that

To prove the converse, suppose A–Z1AZH
2 = ghH.

Then, since

we conclude that if E = A – L1(g) LH
2 (h), then

powers of Z1, we see that 

The following corollary can be proved by finite induction.
Corollary 1: If Z1 is nilpotent, then

if and only if

3.2 Triangular Factors of MHM

In order to solve our least squares problem, we wish
to determine a Cholesky factorization

M HM = LLH ,

so we need to reduce the matrix

to upper triangular form, where the vectors hi are
defined in (3).

If Z1 and Z2 are shift-down matrices, then [6] shows
how to do this reduction fast. Using Corollary 1, we will
see that this can be done fast whenever Z2 is triangular
and nilpotent. We present the algorithm for the case Z2

lower triangular; the upper triangular case is analogous
but works with the columns in reverse order.

The algorithm proceeds by columns, putting zeros
below the main diagonal. Note that

Suppose we determine a rotation between the first
row h 1

H and row n + 1, which contains h 2
H, to zero the

first element of h 2
H . The same rotation between

h 1
H(Z2

H) j and h 2
H(Z2

H) j ( j = 1, . . . , n – 1) also zeroes the
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first element of h 2
H (Z 2

H ) j since Z 2
H is upper triangular.

Therefore, by introducing one zero into our matrix, we
have implicitly introduced n – 1 more, so we can put
zeroes below the main diagonal in column 1 by using
only ρ – 1 rotations, independent of the size of n.

We then use the resulting second row, equal to the
first row postmultiplied by Z 2

H , to zero the second
element of row n + 1. Again this implicitly introduces
additional zeros, n – 2 of them, and we complete the
operations on column 2 by using ρ – 1 rotations.

If we repeat this for each column, we accomplish
our reduction. Let H be the ρ × n matrix whose rows are
h i

H . We can thus reduce L̂ to upper triangular form just
by operating on the matrix H.

We design our algorithm to use Givens rotations as
often as possible, minimizing the number of hyper-
bolic rotations in order to preserve stability. A Givens
rotation can be used between row i and row j when-
ever si and sj (see equation (3)) have the same sign; if
they have different signs, then we must use a hyper-
bolic rotation. We’ll assume that we have ordered
the generators so that the first ρ̂ rows of H have si = 1
and the remaining ones have si = – 1.

Algorithm Reduce (H)3

For j = 1, . . . , n,

For i = 2, . . . , ρ̂ ,

If hij is nonzero, then

zero it by a Givens rotation between
row 1 and row i;

end for
For i = ρ̂ + 2, . . . , ρ,

If hij is nonzero, then

zero it by a Givens rotation between
row ρ̂ + 1 and row i;

end for

zero it by a stabilized hyperbolic rotation
between row 1 and row ρ̂ + 1;

Then the jth row of LH is h 1
H, the first row

of the current H matrix.

Replace the first row of H by h 1
H Z 2

H to
form the pivot row for the next value of j.

end for

The cost of this reduction is at most O(ρn2), ignoring
sparsity, plus the cost of the multiplications by Z2.
Sometimes sparsity can reduce this cost significantly
[7]. Without exploiting the structure of L̂ the cost
would be O(ρn3). Once the factors LLH are computed,
they can then be used to solve (2).

4. Some Applications

Our fast algorithm enables us to solve least squares,
total least squares, and regularized total least squares
problems involving matrices for which Z1 is close to
unitary and Z2 is triangular and nilpotent. This includes
several important classes of structured matrices.

4.1 Solving Least Squares Problems

Consider first the least squares problem

where M ∈ C m × n has full column rank. We can use
our algorithm if

• M is Toeplitz. Then Z1 and Z2 are the shift-down 
matrices of appropriate size and the displacement
rank is 2.

• M is block Toeplitz:

where Mδ has dimension m / γ × n / δ. Then
choosing Z1 ∈ C m × m as
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where each block has dimension m / γ × m / γ, and
choosing Z2 ∈ C m × n similarly but with blocks of
dimension n / δ × n / δ gives a displacement rank
of m / γ + n / δ.

• M has Toeplitz blocks:

where each block Mij is Toeplitz. Then choosing
Z1 ∈ C m × m as a block-diagonal matrix consisting
of shift-down matrices of dimensions matching the
column dimension of the diagonal blocks of M and
choosing Z2 ∈ C n × n similarly but with blocks
matching the row dimension gives a displacement
rank of 2(γ + δ).

• M Hankel, block Hankel, or having Hankel
blocks. These cases are analogous to those con-
sidered above.

4.2 Solving Structured Total Least Squares Problems
In some cases the matrix of the problem can be

estimated only with error, and we need to determine not
just the parameters x of the least squares fit but also
the corrections to the operator. This problem can be
formulated as

(4)

subject to the constraints

with A and E having the same structure.
Suppose that the matrix E can be specified by p

parameters α1, . . . , αp. For example, if E is a Toeplitz
matrix, then

and p = m + n – 1. We rewrite our problem as

(5)

where

Following [6], we have replaced the term || E ||F2 by
αα Hαα, equivalent except for scaling of the entries αι

2 .
We define the matrix X ∈ C m × p by the equation

For example, if E is Toeplitz, then p = m + n – 1 and 

Following [11], we form a quadratic approximation
to (5) by using linear approximations αα + ∆∆αα and x + ∆∆x,
resulting in

so that

If we minimize this with respect to ∆∆αα and ∆∆x, then
we can form a new approximation

αα = αα + ∆∆αα
x = x + ∆∆ x

to the solution of (5) and then repeat the procedure until
convergence. As noted by [11], this is a Gauss-Newton
algorithm applied to (5). Therefore, the main computa-
tional task is to solve linear least squares problems of
the form

(6)

where

If A is in one of the classes considered in Sec. 4.1,
then the matrix M has low displacement rank and we
can solve the problem fast.
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4.3 Solving Regularized Total Least
Squares Problems

In many deblurring problems and other discretized
problems involving integral equations of the first kind,
the matrix A is so ill-conditioned that noise in the
observations y is magnified in solving the STLS prob-
lem and a meaningful solution cannot be obtained.

In this case it is necessary to add a regularization
constraint to the problem. One common regularization
constraint is to restrict the size of the solution, or some
linear transformation of the solution:

where u is a given scalar and C is commonly chosen to
be the identity matrix or a difference operator. If C has
low displacement rank relative to Z2 and an appropriate
Ẑ1, our algorithm can be easily modified to incorporate
regularization. In this case, our problem (5) can be
reformulated as

(7)

where ββ = (A + E)x – y and λ, the regularization para-
meter, is the Lagrange multiplier for the new constraint.
Using a derivation similar to that above, the lineariza-
tion of (7) results in the following problem to be solved
at each step of the iteration:

Thus, our new M matrix is the matrix M from the
previous section augmented by the extra rows [0, λC],
and the only change necessary in the algorithm is to
find the generators of this matrix rather than the old
one.

The displacement structure of this matrix is greatly
simplified if C is upper triangular and Z1 and Z2 are
shift-down matrices. As noted before, W is zero except
for a one in the last position of the first row, and
thus W M is zero except for a λ in the last position
of the first row. Therefore, W M Z 2

H = 0, so, applying
Theorem 1, we have the following result.

Theorem 3. If C is upper triangular and Z1 and Z2 are
shift-down matrices, then

and has rank 2ρ1, where ρ1 is the rank of N. More gen-
erally, (8) holds whenever W M Z 2

H = 0.

5. Conclusions

We have derived the generators for M HM when M is
any matrix of small displacement rank relative to Z1

and Z2. We have shown that it is inexpensive to form a
Cholesky factorization of M HM whenever Z1 is close to
unitary and Z2 is triangular and nilpotent, and we have
generalized this algorithm when a regularization
constraint is to be applied.
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