
1. Introduction

This translation was undertaken to make accessible
to readers of English a foundational paper on the theo-
ry of spectral line shapes, “Sullo spettro di assorbimen-
to dei gas nobili presso il limite dello spettro d’arco,”
U. Fano, Nuovo Cimento, N. S. 12, 154-161 (1935).

The results of this paper are widely known via a sub-
sequent publication by the same author in the Physical
Review in 1961. [1] The 1961 paper has been cited
more than 4500 times, and it was judged to be among
the most influential papers published in the history of
The Physical Review journal series, according to a
recent study that examines both numbers and time
series patterns of citations. [2] It is, by a considerable
margin, the most-cited paper that has been published
under the byline of the National Bureau of
Standards/National Institute of Standards and
Technology (NBS/NIST). [3]

The 1935 paper translated here lacks the generality
of the 1961 paper, but its results are identical for an

important limiting case, and it should be considered to
be the first paper which correctly elucidates the gener-
al form of line shapes encountered in the excitation of
many important atomic and condensed-matter systems.
In particular, it treats the case in which a discrete state
coexists in the same energy region as a continuum of
states, and accounts for the interaction between the dis-
crete and continuum states, and the interference
between their separate excitation amplitudes. The key
line-shape formula derived in the 1935 paper is identi-
cal in a practical sense to that of the 1961 paper, which
is now famous as the “Fano profile”: it does not include
a shift in the discrete-state energy due to its interaction
with the continuum (as does the 1961 paper), but this is
not a direct observable.

In addition to its historic interest, the 1935 paper
presents its subject in a remarkably clear way, no doubt
reflecting the influence of Enrico Fermi, who was Ugo
Fano’s supervisor at the time. It does not use the some-
what formidable mathematical apparatus of the 1961
paper, and it offers insights which may still seem fresh
even to those familiar with the subject matter (for
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example, Fano’s observation of how a discrete state
with zero excitation amplitude can cause the total exci-
tation probability to vanish at its own energy).

Note on the text: the original publication does not
identify equations by number. Equation numbers have
been added in the translation for readers’ convenience.

The editors are grateful to the Societa Italiana di
Fisica for permission to publish this translation, and to
Ms. Susan Makar, of the NIST Research Library of the
National Institute of Standards and Technology, for
much helpful assistance.

2. Text of the Translation
[Nuovo Cimento 12, 154-161 (1935)]

On the Absorption Spectrum of Noble
Gases at the Arc Spectrum Limit

Ugo Fano

Rydberg spectral lines of an atom are sometimes superimposed on
the continuous spectrum of a different configuration. Effects of
interaction among different configurations in one of these cases are
theoretically investigated, and a formula is obtained that describes
the behavior of absorption spectrum intensity. This offers qualitative
justification of some experimental results obtained by BEUTLER in
studies of absorption arc spectra of noble gases and I b spectra of
some metal vapors.

It is experimentally known that arc spectrum series
of noble gases do not converge toward a single limit,
but toward two distinct limits. The explanation is that
removal of the optical electron from a noble gas atom
yields an ion whose ground configuration does not con-
sist of a single level, but rather a doublet 2Po

3/2, 2Po
1/2. The

interval between the doublet’s levels is about 1500
wave numbers for A, 5000 for Kr, and 10000 for Xe.
Within this interval, two different kinds of arc spectrum
terms can occur: a) continuous spectrum terms repre-
sented by the formula (p5)3/2 + free electron; b) discrete
spectrum terms represented by the (jj coupling) formu-
la (p5)1/2nl; the latter belong to series that converge
toward the 2Po

1/2 limit. In a recent work ([1]) BEUTLER
investigated absorption spectra of noble gases, obtain-
ing the following results. At very low pressure of the
noble gas (0.002 mm), continuous absorption with a
regular behavior is observed for frequencies greater
than the 2Po

1/2 limit, and also continuous absorption with
characteristic intensity modulations is observed
between the 2Po

3/2 and 2Po
1/2 limits. Absorption between

the two limits shows maxima that can be classified into
two groups: a more peaked, and a much less peaked
one; positions belonging to each of these two groups

are Rydberg series that converge to the 2Po
1/2 limit. With

increasing noble gas pressure, absorption peaks grow in
intensity and width until they overlap. At the pressure
of 0.030 mm the absorption is already continuous and
homogeneous, starting from the 2Po

3/2 limit. In any case
absorption due to energy levels below the 2Po

3/2 limit is
smaller in magnitude than absorption above the same
limit. The intensity distribution in the absorption spec-
trum is shown by BEUTLER in a graph whose charac-
teristic appearance is reproduced in Figure 1. He inter-
prets single maxima as lines of the discrete spectrum,
much broadened due to the large probability of self-
ionization (AUGER effect) (p5)1/2nl → (p5)3/2 + free
electron. Wide maxima are assigned to the series
(p5)1/2nd, and narrow maxima to the series (p5)1/2ns. The
aim of the present work is to show how it is possible to
justify such an intensity distribution in a qualitative
way, by supposing that positions of discrete terms do
not correspond to absorption maxima, but to points
located along the steep parts of the curve, which are
therefore slightly shifted with respect to the former.

The intensity distribution in the part of the spectrum
of interest is obtained by evaluating the squares of
dipole matrix elements referring to transitions from the
ground state to states whose energy lies between the
2Po

3/2 and 2Po
1/2 levels of the ion. If we performed this cal-

culation starting with zeroth-order eigenfunctions, cor-
responding to single electronic configurations, we
would find that absorption is due to superposition of a
continuum of almost constant intensity with lines
belonging to series that converge to the 2Po

1/2 limit.
In order to obtain a result in agreement with

BEUTLER’s experimental data we should start instead
with better approximate eigenfunctions, which take
into account interaction between different configura-
tions. Ordinarily, eigenfunctions of this type are
obtained via perturbation theory; this method is not
applicable to our case, as we deal with states belonging
to the continuum whose energies are infinitely close to,
and also coincident with, the energies of the discrete
states. We therefore have to abandon perturbation
theory and look directly for eigenfunctions of the
SCHRÖDINGER equation. We may assume as a first
approximation that states which are not close to each
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Figure 1:
(From “Zeitschift für Physik”, 93, 181, 1935)



other do not appreciably interact. Therefore, absorption
in proximity of the position of a particular discrete term
is obtained considering the interaction only between the
term itself and the continuum.

With the problem so outlined, it will be convenient to
treat the atom as imbedded in a sphere of very large
radius R, in order to simplify the treatment of the con-
tinuum. The continuous spectrum is then replaced by a
discrete one. The interval τ between two consecutive
eigenvalues is almost constant for small energy varia-
tions, and is inversely proportional to R. The correspon-
ding eigenfunctions contain a factor related to the free
electron, which far from the atom takes the form

(1)

so that the normalization coefficient in the R → ∞ limit
is proportional to 1/√R

—
. It follows that if we let R go to

∞ we have to express a factor of √τ
—

in the normaliza-
tion coefficient. By invoking the fact that states with
very different energies interact weakly, we can finally
consider the spectrum of the (p5)3/2 + free electron con-
figuration to be produced by the succession of eigen-
values

(2)

where the energy of the discrete state under considera-
tion is defined as the zero of energy.

Let φ be the zeroth-order eigenfunction correspon-
ding to the discrete term, and ψn the one corresponding
to the eigenvalue En. From the above hypothesis it fol-
lows that a perturbed eigenfunction whose energy is
close to the discrete term must have the form:

(3)

Let V be the interaction between electrons (which is
mainly electrostatic), and define the first-order approx-
imate energy as the energy associated with a given con-
figuration (the sum of the eigenvalue of the equation
for independent electrons, the exchange energy, and the
diagonal term of V). The SCHRÖDINGER equation for
ψ is thus decomposed into the infinite system of equa-
tions:

(4)

where Vn = (φ |V |ψn) is supposed to be real, for the sake
of simplicity.

Let us now introduce a new hypothesis, that is, ψn is
independent of n at distances from the origin of the
order of the atomic radius. It follows that Vn = q is con-
stant, and the last equation reads:

(5)

while the other equations give:

(6)

Substituting, we obtain:

(7)

which determines the eigenvalues. In order to find b,
we impose the following normalization condition
(where dv is the element of volume in configuration
space):

(8)

therefore

(9)

Let us consider Xn = (u|x|ψn) = Xc to be independent
of n, where u is the ground state eigenfunction, and
X0 = (u|x|φ); the square of the x-component of the
dipole matrix element is, taking (*) into account:

(10)

Having obtained this result, we have to take the limit
R → ∞. Matrix elements X, Xc and q contain a factor of
√τ

—
, because of their definition; it is therefore conven-

ient to set X = X− √τ
—

, Xc = X−c √τ
—

, q = q− √τ
—

. Actually
the quantity we are interested in is X− 2, since
(X− 2 + Y− 2 + Z− 2)dE determines the transition probability
from the ground state to a state of energy in the range
dE. Therefore, we have:
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(11)

and taking the limit τ → 0

(12)

The same formulae hold for Y− 2 and Z− 2. Setting
D = (X− , Y− , Z−), Dc = (X−c , Y−c , Z−c), D0 = (X0, Y0, Z0), we
obtain:

(13)

In a small enough range of frequencies, this quantity
can be regarded as proportional to the absorption inten-
sity.

In order to discuss this formula, it is convenient to
examine the three-term expansion. The first two terms
have a well defined physical meaning, since |D|2
reduces to them if D0 or Dc goes to zero, respectively.
Therefore we observe that if the dipole matrix element
associated with the continuous spectrum is zero, we
obtain as the absorption spectrum a line which is broad-
ened due to the AUGER effect, and whose width is
given by ν = , as expected. If instead the matrix ele-
ment associated with the discrete spectrum term is zero,
the term itself affects absorption by the continuum, in
that the latter vanishes at the position of the former. The
third term is truly distinctive, as it results in net absorp-
tion being not simply obtained as a superposition of
absorptions due to discrete and continuum terms, albeit
mutually influencing each other; this term represents a
shift of absorption intensity, or, in other words, it
diminishes the intensity on one side of the discrete
term’s position, and increases it by the same amount on
the other side.

In Figure 2, |D|2 is depicted as a function of E for
some values of |D0|, |Dc|, D0 × Dc, q− (the parameters that
determine the curve); values have been chosen to show
that the curve itself can have a behavior that justifies
theoretically the results obtained by Beutler.
Characteristic features of the curve that readily result
from the discussion of its equation are: a) the curve
goes asymptotically to |Dc|2 for E → ±∞; b) the ordinate
of the intersection of the curve with the E = 0 axis

depends only on |D0| and q−, as it is equal to       ; c) the
curve has a maximum and a minimum on opposite
sides of the E = 0 axis; in particular, if Dc is parallel to
D0, the minimum is equal to zero; d) the difference
between the abscissa of the maximum and of the mini-
mum is of the order of q− 2 ≈ , where τ is the lifetime
of the discrete term with respect to the AUGER effect
(estimating τ as 10–14 sec, one gets q− 2/hc ∼ 500 wave
numbers).

Obviously, due to the simplifying assumptions that
we used, the result obtained has merely a qualitative
value, which is to show the behavior of the curve.

That the derived formula fails to fulfill the sum rule
is to be attributed to the hypothesis adopted, since it
indeed should yield:

(14)

In fact, we assumed the presence of a continuous
spectrum of infinite extent, with |Dc| constant, which is
physical nonsense as it would result in an infinite num-
ber of dispersion electrons. This incorrectness is partic-
ularly evident in the limiting case D0 = 0, where it
appears that the number of dispersion electrons of the
continuum is reduced by a factor of          in the vicin-
ity of the perturbing discrete term, without being corre-
spondingly increased in other parts of the spectrum, so
that the total sum of dispersion electrons does not
change.

A trial calculation has shown that the derived formu-
la is not even susceptible to a rough numerical evalua-
tion, due to the large number of electrons that must be
included for noble gases, and the poor approximation
achievable in evaluating individual integrals.

Application of the obtained formula to line broaden-
ing phenomena in I b absorption spectra. - I b spectra,
obtained by excitation of an electron belonging to the
outermost closed shell, have been studied by BEUT-
LER in a series of important works ([2]). Superposition
of discrete terms of I b spectra upon continuum terms of
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ordinary arc spectra gives rise to the same situation that
occurs in noble gases’ spectra between the two limits of
the arc spectrum. Nevertheless, the phenomena look
different, since, up to the present, in known cases
absorption due to the continuum: a) is much less
intense than absorption due to discrete terms of I b spec-
tra, and b) decreases very rapidly in intensity with
increasing frequency.

BEUTLER observed that some I b series have bright
and narrow lines superimposed upon the continuous
spectrum. He explains this phenomenon by showing
that interaction among terms belonging to these series
and to the continuum vanishes. On the other hand, other
series have diffuse lines, which he describes as asym-
metrically broadened. In every diffuse series, lines tend
to become symmetric again and to narrow as frequency
increases, as the intensity of the continuum on which
they are superimposed decreases.

In Figure 3 two different graphs of |D|2 as a function
of E are shown; curve 1 is obtained taking a value of
|Dc|2 small compared to        , curve 2 is obtained for the
same values of |D0| and q−, and with Dc = 0. Line shape
peculiarities in diffuse series of I b spectra can therefore
be explained, since the data relative to lower frequency
lines are those utilized to obtain Figure 1, while by
increasing frequency we get closer to conditions corre-
sponding to Figure 2. Narrowing of the lines with
increasing frequency is probably due to the fact that the
q− interaction tends in general to decrease with increas-
ing total quantum number of the corresponding discrete
term.

I want to deeply thank Prof. FERMI who guided and
helped me throughout this work. Rome, Istituto di
Fisica della R. Università, February 1935-XIII.
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Figure 3:
Curve 1: |Dc| = 1; |D0| = 4.2; q− = 0.6; Dc × D0 = 3;       =5

Curve 2: |Dc| = 0; |D0| = 4.2; q− = 0.6; Dc × D0 = 0;       =5
arbitrary units
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