The National Institute of Standards and Technology was established in 1988 by Congress to “assist industry in the development of technology ... needed to improve product quality, to modernize manufacturing processes, to ensure product reliability ... and to facilitate rapid commercialization ... of products based on new scientific discoveries.”

NIST, originally founded as the National Bureau of Standards in 1901, works to strengthen U.S. industry’s competitiveness; advance science and engineering; and improve public health, safety, and the environment. One of the agency’s basic functions is to develop, maintain, and retain custody of the national standards of measurement, and provide the means and methods for comparing standards used in science, engineering, manufacturing, commerce, industry, and education with the standards adopted or recognized by the Federal Government.

As an agency of the U.S. Commerce Department’s Technology Administration, NIST conducts basic and applied research in the physical sciences and engineering, and develops measurement techniques, test methods, standards, and related services. The Institute does generic and precompetitive work on new and advanced technologies. NIST’s research facilities are located at Gaithersburg, MD 20899, and at Boulder, CO 80303. Major technical operating units and their principal activities are listed below. For more information visit the NIST Website at http://www.nist.gov, or contact the Publications and Program Inquiries Desk, 301-975-3058.

Office of the Director
• National Quality Program
• International and Academic Affairs

Technology Services
• Standards Services
• Technology Partnerships
• Measurement Services
• Information Services
• Weights and Measures

Advanced Technology Program
• Economic Assessment
• Information Technology and Applications
• Chemistry and Life Sciences
• Electronics and Photonics Technology

Manufacturing Extension Partnership Program
• Regional Programs
• National Programs
• Program Development

Electronics and Electrical Engineering Laboratory
• Microelectronics
• Law Enforcement Standards
• Electricity
• Semiconductor Electronics
• Radio-Frequency Technology
• Electromagnetic Technology
• Optoelectronics
• Magnetic Technology

Materials Science and Engineering Laboratory
• Intelligent Processing of Materials
• Ceramics
• Materials Reliability
• Polymers
• Metallurgy
• NIST Center for Neutron Research

Chemical Science and Technology Laboratory
• Biotechnology
• Process Measurements
• Surface and Microanalysis Science
• Physical and Chemical Properties
• Analytical Chemistry

Physics Laboratory
• Electron and Optical Physics
• Atomic Physics
• Optical Technology
• Ionizing Radiation
• Time and Frequency
• Quantum Physics

Manufacturing Engineering Laboratory
• Precision Engineering
• Manufacturing Metrology
• Intelligent Systems
• Fabrication Technology
• Manufacturing Systems Integration

Building and Fire Research Laboratory
• Applied Economics
• Materials and Construction Research
• Building Environment
• Fire Research

Information Technology Laboratory
• Mathematical and Computational Sciences
• Advanced Network Technologies
• Computer Security
• Information Access
• Convergent Information Systems
• Information Services and Computing
• Software Diagnostics and Conformance Testing
• Statistical Engineering

1At Boulder, CO 80303
2Some elements at Boulder, CO
Board of Editors

Theodore V. Vorburger
Chief Editor

Robert L. Watters, Jr., Technology Services
James K. Olthoff, Electronics and Electrical Engineering Laboratory
Craig M. Shakarji, Manufacturing Engineering Laboratory
Cynthia J. Zeissler, Chemical Science and Technology Laboratory
Joseph P. Rice, Physics Laboratory
Clare M. Allocca, Materials Science and Engineering Laboratory
Nicos S. Martys, Building and Fire Research Laboratory
Alan H. Goldfine, Information Technology Laboratory
Walter S. Liggett, Jr., Information Technology Laboratory
Clifton M. Carey, Paffenbarger Research Center
Barry N. Taylor, Chief Editor Emeritus

Julian M. Ives
Managing Editor, and Technical Production Editor

Ilse E. Putman, Karen J. Wick
Electronic Composition

U.S. Department of Commerce—Carlos M. Gutierrez, Secretary
Technology Administration—Michelle O’Neill, Acting Under Secretary of Commerce for Technology
National Institute of Standards and Technology—Hratch G. Semerjian, Acting Director
Cover: Photograph of the southern-most lake on the NIST campus. Illustration arranged by C. Carey.

The Journal of Research of the National Institute of Standards and Technology, the flagship periodic publication of the national metrology institute of the United States, features advances in metrology and related fields of physical science, engineering, applied mathematics, statistics, biotechnology, and information technology that reflect the scientific and technical programs of the Institute. The Journal publishes papers on instrumentation for making accurate measurements, mathematical models of physical phenomena, including computational models, critical data, calibration techniques, well-characterized reference materials, and quality assurance programs that report the results of current NIST work in these areas. Occasionally, a Special Issue of the Journal is devoted to papers on a single topic. Also appearing on occasion are review articles and reports on conferences and workshops sponsored in whole or in part by NIST.
Papers and Posters Presented at the April 2004 International Conference on Precision Measurements with Slow Neutrons at the National Institute of Standards and Technology

Preface

This Special Issue of the Journal of Research of the National Institute of Standards and Technology (Parts 1 and 2) contains papers from the International Conference on Precision Measurements with Slow Neutrons held at the National Institute of Standards and Technology in Gaithersburg, MD, April 5–7, 2004. They highlight new results and developments in such topics as neutron electric dipole moment searches, neutron optics and interferometry, Standard Model tests using neutron beta decay, neutron facilities, neutron polarimetry, and nucleon-nucleon interactions.

The meeting was comprised of 3 full days of oral sessions and poster presentations. Approximately 125 people from 10 countries participated in the meeting, which solicited over 120 abstracts. Their numerous contributions can be seen in the following Program listing and in the papers included in this Special Issue. All of the papers that were submitted were found to be appropriate for these conference proceedings by the special issue editors, but we note that not all were given expert review.

A full session on neutron facilities around the world highlighted the increasing number of new sources that are under construction. These facilities demonstrate the growth in the field of fundamental neutron physics and present additional opportunities for experiments requiring large densities of ultracold neutrons, exploiting higher fluences of pulsed cold neutrons, or training future generations of neutron scientists. The general consensus among the participants was that although there has been substantial progress, new challenges and opportunities in fundamental neutron physics continue to present themselves.

Finally, we acknowledge the generous financial support of the NIST Physics Laboratory and Ionizing Radiation Division, North Carolina State University, the University of Tennessee/Oak Ridge National Laboratory Joint Institute for Neutron Science, Harvard University, the Institut Laue-Langevin, LENS: the Low Energy Neutron Source, Los Alamos National Laboratory, and the Institute of Physics Publishing, Inc.

Muhammad Arif
M. Scott Dewey
Tom Gentile
Paul Huffman
Jeff Nico
Special Issue Editors

Precision Measurements With Slow Neutrons
April 5–7, 2004

Program

Sunday, April 4, 2004 — Washingtonian Hotel

7:00 pm
Reception

Monday, April 5, 2004 — NIST, Green Auditorium

9:00 am
Opening Remarks — Dr. Lisa Karam, Acting Chief, Ionizing Radiation Division
Welcome — Dr. Richard Kayser, NIST Acting Deputy Director

Electric Dipole Moment — Chair: Jeff Nico, National Institute of Standards and Technology

9:20 – 9:40
Neutron EDM measurements with UCN at the ILL: present and future
P. Geltenbort, Institut Laue-Langevin, Grenoble, France

9:40 – 10:00
Search for a neutron EDM using ultracold neutrons
R. Golub, Hahn-Meitner-Institut, Berlin

10:00 – 10:20
Multi-chamber EDM spectrometer
A. Serebrov, Petersburg Nuclear Physics Institute–RAS/Paul Scherrer Institut

10:20 – 10:35
What can be learned from neutron to anti-neutron transition search
Y. Kamyskhov, University of Tennessee

Optics I — Chair: Sam Werner, University of Missouri

11:15 – 11:35
Coherence, quantum state engineering and phase space density enhancements
H. Rauch, Aminstitut der Österreichischen Universitäten

11:35 – 11:55
High-precision measurements of the n-p, n-d, and n-3He bound coherent scattering lengths
T. C. Black, University of North Carolina at Wilmington

11:55 – 12:15
Measurement of the coherent neutron scattering length of 3He
W. Ketter, Universität Mainz

12:15 – 12:30
Observation on the visibility decrease in a VCN spin resonator interferometry
M. Utsuro, Osaka University

12:30 – 12:45
Spatial non-cyclic geometric phase in neutron interferometry
S. Filipp, Atom Institut der Österreichischen Universitäten

Neutron Facilities — Chair: Paul Huffman, North Carolina State University

4:00 – 4:15
The Cold, Very Cold, and Ultracold Neutron Facilities PF1 (Physique Fondamentale I) and PF2 at the Institut Laue-Langevin (ILL) in Grenoble, France
P. Geltenbort, Institut Laue-Langevin Grenoble, France

4:15 – 4:30
The fundamental neutron physics facilities at NIST
J. S. Nico, National Institute of Standards and Technology

4:30 – 4:45
A Pulsed Cold Neutron Beamline Flight Path 12 at LANSCE for Fundamental Nuclear Physics
P.-N. Seo, Los Alamos National Laboratory

4:45 – 5:00
The Fundamental Neutron Physics Beamline at the Spallation Neutron Source
G. L. Greene, University of Tennessee

5:00 – 5:15
LENS: A New Pulsed Neutron Source for Research and Education
V. Varlamov, Petersburg Nuclear Physics Institute – RAS

Neutron Beta Decay I — Chair: Geoffrey Greene, University of Tennessee

1:45 – 2:00
Radiative Corrections for Neutron Decay and Search for New Physics
V. Gudkov, University of South Carolina

2:00 – 2:15
Standard Model Treatment of the Radiative Corrections to the Neutron β-decay
G. Bunatian, Joint Institute for Nuclear Research, Dubna

2:15 – 2:35
Measurement of the Neutron Lifetime Using a Proton Trap
F. E. Wietfeldt, Tulane University

2:35 – 2:50
A Cryogenic Radiometer for Absolute Neutron Rate Measurement
Z. Chowdhuri, National Institute of Standards and Technology/University of Maryland

2:50 – 3:10
Neutron lifetime experiment with gravitational trap and with lower temperature femlin (LTF) coating
V. Varlamov, Petersburg Nuclear Physics Institute – RAS

3:10 – 3:30
Measuring the neutron lifetime with magnetically trapped neutrons
S. N. Dzhosyuk, Harvard University

Journal of Research of the National Institute of Standards and Technology

Volume 110, Number 3, May-June 2005
Tuesday, April 6, 2004 — NIST, Green Auditorium

Neutron Beta Decay II – Chair: John Doyle, Harvard University

8:30 – 8:50 V_{us}, V_{ud}, and CKM unitarity
V. Cirigliano, California Institute of Technology

8:50 – 9:10 Neutron decay parameters and Instrument PERKEO
H. Abele, University of Heidelberg Physics Institute

9:10 – 9:30 Project of neutron beta-decay A-asymmetry measurement with accuracy on the level 10^{-3}
A. Serebrov, Petersburg Nuclear Physics Institute – RAS

9:45 – 10:00 Measurement of Neutron Decay Parameters — The abBA Experiment
J. D. Bowman, Los Alamos National Laboratory

Time Reversal Violation – Chair: Chris Gould, North Carolina State University

10:45 – 11:05 The T-odd R- and D- Correlations in Beta Decay
P. Herczeg, Los Alamos National Laboratory

11:05 – 11:25 A new measurement of the D coefficient with TRINE
C. Plonka, Technische Universität München, Germany

11:25 – 11:45 Time Reversal Violation in Neutron Beta Decay: The emiT Experiment
J. F. Wilkerson, University of Washington

11:45 – 12:05 Search for Time Reversal Violation Effects: R-Correlation Measurement in Neutron Decay
K. Bodek, JU-Kraków, Poland

12:05 – 12:25 Two coils resonant Ramsey’s method for the measurement of time reversal invariance violation in neutron transmission
A. Aldushchenkov, Petersburg Nuclear Physics Institute – RAS

12:25 – 12:45 On the Way to Experimental Test of the Time Reversal Invariance in the Nuclear Reactions
T. Ito, California Institute of Technology

Poster Session I

Miscellaneous Topics – Chair: Mike Snow, Indiana University

2:45 – 3:05 Constraints on new interactions from neutron scattering experiments
Y. Pokotilovski, Joint Institute for Nuclear Research, Dubna

3:05 – 3:25 Direct nn-scattering Measurement with the Pulsed Reactor YAGUAR
G. E. Mitchell, North Carolina State University and Triangle Universities Nuclear Laboratory

3:25 – 3:45 The Neutron Electric Polarizability from Neutron Total Cross Section of 208Pb Measurement
A. B. Laptev, Petersburg Nuclear Physics Institute – RAS

3:45 – 4:00 Investigation of solid D_2 for UCN sources
K. Kirch, Paul Scherrer Institut

Wednesday, April 7, 2004 — NIST, Green Auditorium

Nucleon-Nucleon Interactions – Chair: David Bowman, Los Alamos National Laboratory

8:30 – 8:50 Parity Violation in the NN Interaction Using Low Energy Neutrons
W. M. Snow, Indiana University/Indiana University Cyclotron Facility

8:50 – 9:05 Measurement of Parity Violation in n-p Capture
S. A. Page, University of Manitoba

9:05 – 9:20 Parity-violating neutron spin rotation in a superfluid helium target
T. R. Gentile, National Institute of Standards and Technology
Poster Session II

Neutron Beta Decay III – Chair: Peter Geltenbort, Institut Laue-Langevin

11:15 – 11:35 Charged Current Universality and the MSSM
 A. Kurylov, California Institute of Technology

11:35 – 11:55 Determination of the Electron-antineutrino Angular Correlation Coefficient \(a_0 \) in Unpolarized Neutron Decay
 J. Byrne, University of Sussex

11:55 – 12:15 The Neutron Decay Spectrometer aSPECT and the Unitarity of the CKM Matrix
 S. Baeßler, Universität Mainz

12:15 – 12:30 Proposed Measurement of the Beta-Neutrino Asymmetry in Neutron Decay
 G. L. Jones, Hamilton College

12:30 – 12:45 On the Measurement the Neutron Lifetime Using Ultra-Cold Neutrons in a Vacuum Quadrupole Trap
 J. D. Bowman, Los Alamos National Laboratory

Neutron Beta Decay IV – Chair: Scott Dewey, National Institute of Standards and Technology

4:00 – 4:20 First ever storage of ultracold neutrons in a magnetic trap made of permanent magnets
 V. Ezhev, Petersburg Nuclear Physics Institute-Gatchina

4:20 – 4:40 A Neutron Lifetime Experiment Based on an “Accordion-Like” Ultracold-Neutron Storage Volume Coated with “Low Temperature Fomblin”
 B. Yerofolimsky, Harvard University

4:40 – 5:00 Neutron radiative \(\beta \) Decay in effective field theory
 S. V. Gardner, University of Kentucky

5:00 – 5:15 Search for Radiative \(\beta \)-decay of the Free Neutron
 J. Byrne, University of Sussex

5:15 – 5:30 The NIST Neutron Radiative Beta-Decay Experiment
 B. M. Fisher, Tulane University

5:30 pm Conference Summary
 Dirk Dubbers, Universität Heidelberg

Poster Session

• Studies of Polarized \(^3\)He at Cryogenic Temperatures
 Q. Ye, Duke University

• Magnetometry and neutron EDM false effects
 W. Heil, Universität Mainz

• Magnetic field stabilization for neutron EDM experiments by external field coils
 R. Henneck, Paul Scherrer Institut

• Detector Development for the abBA Experiment
 P. -N. Seo, Los Alamos National Laboratory

• Electromagnetic design of the aSPECT neutron decay retardation spectrometer
 F. Glück, Universität Mainz

• A Backscatter-Suppressed Electron Detector for the Measurement of “a”
 A. Komives, DePauw University

• Electron Detectors for the UCNA experiment at LANSCE
 J. Yuan, W. K. Kellogg Radiation Laboratory, Caltech

• The UCNA-Si Upgrade
 J. W. Martin, California Institute of Technology
• Novel Proton Detectors for Angular Correlations of UCN Decay
 S. Hoedl, University of Washington

• Thin Foil UCN Monitors and Absorbers for the UCNA Project
 S. Hoedl, CENPA, University of Washington

• GEANT4-based Study of the abBA Experiment: Detector Response and Physics Analysis
 E. Frlez, University of Virginia

• Neutron interferometric observation of the virtual excitation and multiple scattering correction terms to the index of refraction
 K. P. Schoen, University of Missouri-Columbia

• New phenomena in neutron diffraction and optics of a noncentrosymmetric crystal. New feasibility for the neutron EDM search
 V. V. Fedorov, Petersburg Nuclear Physics Institute

• Constraints on non-Newtonian gravity in the nanometer range from the experiment on neutron quantum states in the Earth’s gravitational field
 K. Protasov, Laboratoire de Physique Subatomique et de Cosmologie

• Design and Simulation of a Solid Methane Moderator at the LENS Neutron Source
 Y. Shin, Indiana University/Indiana University Cyclotron Facility

• UCN production with a single crystal of ortho-deuterium
 M. Utsuro, Osaka University

• Solid Oxygen as an Ultracold Neutron Source
 C.-Y. Liu, Los Alamos National Laboratory

• A New Experiment to Measure The Depolarization and Loss Probability of UCN on Diamond Like Carbon (DLC)
 A. Pichlmaier, Paul Scherrer Institut

• Storage of fast ultracold neutrons
 L. Bondarenko, RRC Kurchatov Institute Moscow

• UCN anomalous losses, UCN depolarization and possible connection of the both phenomena
 A. Fomin, Petersburg Nuclear Physics Institute – RAS

• Tests of 6Li doped glass scintillators for the detection of UCN
 G. Ban, LPC-Caen, France

• The simulation of UCN experiments with Geant4
 P. Fierlinger, Paul Scherrer Institut

• Estimates of the Performance of a UCN Moderator at the LENS Neutron Source
 C.-Y. Liu, Los Alamos National Laboratory

• Development of a Long Wave Length Neutron Monochromator for Superthermal Production of Ultracold Neutrons
 L. Yang, Harvard University

• A low noise CsI detector array for the precision measurement of parity nonconservation in $n + p \rightarrow d + \gamma$
 M. Gericke, Los Alamos National Laboratory and Indiana University

• A New Approach to Accurate Polarimetry of Polychromatic Cold Neutron Beams with a 3He Spin Filter
 F. E. Wietfeldt, Tulane University

• Precision Neutron Polarimetry for Neutron Beta Decay
 S. Penttila, Los Alamos National Laboratory

• Very slow neutron transport at pulsed heating of cold moderator
 Y. Pokotilovski, Joint Institute for Nuclear Research, Dubna

• Design and performance of laser-pumped Cs-magnetometers for the planned UCN edm experiment at PSI
 S. Groeger, University of Fribourg

• Measurement of Absolute Neutron Flux in Liquid 3He
 G. L. Hansen, Indiana University

• Silicon UCN detector with large area and with analysis of UCN polarization
 M. Lasakov, Petersburg Nuclear Physics Institute – RAS

• Superconducting UCN polarizer for a new EDM spectrometer
 M. Lasakov, Petersburg Nuclear Physics Institute – RAS

• Gravi-magnetic trap for UCN as a quantum oscillator
 M. Lasakov, Petersburg Nuclear Physics Institute – RAS

• Neutron Quantum State Tailoring
 M. Baron, Atominstitut der Österreichischen Universitäten

• Cold neutron storage
 M. R. Jaekel, Atominstitut Wien

• Confinement induced neutron phase
 H. Lemmel, Atominstitut M. Baron, Atominstitut der Österreichischen Universitäten

• Simulation of Charged Particle Trajectories in the Neutron Decay Correlation Experiment abBA
 D. Desai, University of Tennessee
• Simulation of the Performance of Fundamental Neutron Physics
 Beamline at the High Flux Isotope Reactor
 R. Mahurin, University of Tennessee

• Preparation of short neutron pulses using the multi-MIEZE principle
 N. Arend, Technische Universität München

• Detection of Protons in Neutron Decay Experiments: A Low Energy Proton Source for Detector Development
 R. L. Cooper, University of Michigan

• UCN interaction with surface
 R. Golub, Hahn Meitner Institute, Berlin

• A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium
 M. Bowers, DePauw University

• Development of a position sensitive neutron detector with high efficiency and energy resolution for use at high-flux beam sources
 D. M. Markoff, North Carolina State University

• Bounds on P-odd T-odd interactions from polarized neutron capture with unpolarized targets
 C. R. Gould, North Carolina State University

• High-precision measurements of the n-^3^He bound coherent scattering length
 P. R. Huffman, North Carolina State University/NIST

• Environmental impact on the phase stability of a Neutron Interferometer
 S. Mayer, Atominstitut der Österreichischen Universitäten

• A superconducting magnetic UCN trap for precise neutron lifetime measurements
 R. Picker, Technische Universität München, Germany

• NIST Interferometer Facility for Precision Scattering Length Measurements
 D. L. Jacobson, National Institute of Standards and Technology
The study of particle physics with low energy neutrons has a long history starting in the middle of the past century. During most of the time only a rather small number of researchers worked in this field, at least as compared to any of the high energy particle physics collaborations. For instance, in the mid-eighties, when I joined Institut Laue-Langevin (ILL) for several years, I found there only one ILL scientist, the late Walter Mampe, serving the whole community both from Europe and from overseas which came to work at ILL. Today, we see a large number of powerful young groups who have entered the field on each side of the Atlantic and of the Pacific, and I am honoured to give the summary to this conference. So let me run through the topics of this conference to give, at the end, a tabular summary of the basic scientific questions pursued by our community.

The conference started with a session on what is considered by many particle physicists to be the flagship of the field, namely the search for an electric dipole moment (EDM) of the neutron. This topic is closely linked to the question of why so much matter has survived the Big Bang, and to the question of the origin of time reversal violation. Progress in neutron EDM will mainly come from increases in ultracold neutron (UCN) source strength. As we have heard, there are many projects on new powerful UCN sources, both on very small and very large installations, and it is not clear yet who will win this race. Anyway, when significant progress in statistics will be achieved, as we all expect to take place in the near future, then, as history shows, progress in systematics will follow shortly behind. The recent discovery of a new false-effect linked to Bloch-Siegert shifts in non-uniform fields is a good example for this rule.

We then learned about new ideas on neutron-antineutron oscillations. Recently I was asked what I think of having a new neutron oscillation project. This made me think of a dear colleague, who, many years ago, said in a summary talk to the first of this series of conferences: do not bother with free neutron decay any more, the best people have worked on it, and no one will do better. My advice to younger colleagues: Do not listen too much to what your forerunners think is feasible.

In neutron β-decay about one dozen parameters are accessible by experiment. So far, about half a dozen of these have been measured, some with high precision. As the Standard Model describes neutron decay with only two free parameters, there is ample space for tests beyond the Standard Model. In this conference this state of affairs is mirrored by having altogether four sessions devoted to neutron decay.

At present, one main issue in neutron decay work is the unitarity of Cabibbo-Kobayashi-Maskawa quark-mixing. One would need a 3 sigma shift in the measured neutron β-asymmetry to explain the observed deviation from unitarity, but as much as 10 sigma shifts should any of the other inputs to the analysis be responsible for the deviation. We now have the strange situation that several of the providers of the 10-sigma data claim to be the culprit: the providers of the “strange” matrix element (the most recent paper being arXiv:hep-ph/0307214, 7 May 2004), some of the neutron lifetime providers (this conference), and also the providers of radiative corrections are seen to ponder their heads. The problem, of course, is that many quoted errors are too optimistic. Therefore, when you write in your next funding application that errors will become ten times smaller than those of your competitors, be sure that your students do not feel too much compelled to keep your promises.

In the field of nucleon-nucleon weak interactions, heroic efforts are under way to get hold of parity-violating effects also from simple systems. There weak interaction is used as a tool to derive information orthogonal to the usual nucleon-nucleon strong couplings. In my view, the PNC neutron optics experiments are most beautiful manifestations of parity-violation properties of ordinary matter.

The rich field of neutron wave optics is, as ever, good for surprises. There are new experiments on Bell-inequalities, on non-cyclic and off-diagonal Berry phases, and on the observation of neutron quantum states in the Earth’s gravitational field. This last topic promises to open up a new and rich field, which is very timely as it may lead to new insight into deep current problems of particle physics and cosmology.

Traditionally, a very important point of a conference like this is new methods and instruments for neutron experimentation and, most important, the development of new sources. In past years, we have seen tremendous progress in neutron devices, from neutron guides and polarizers to sophisticated detector systems and
others. Physics both drives and is driven by progress in instrumentation. In the field of neutron sources, Japan and the United States will soon have impressive new sources delivering the highest peak fluxes in the world, while Europe will, for some time, continue to have the strongest continuous sources. I hope that the neutron communities will take this as an incentive to exchange projects and people both ways. The fact that several new large neutron source projects are nearing completion also explains the high number of progress reports, so we can expect that our next meeting will give us another explosion of new results.

I shall stop my discussion at this point to let the reader go through the roughly one hundred interesting articles preceding this summary to form his own judgement. Table 1 lists some of the topics covered in the field of neutron-particle physics.

Finally, I want to thank the organizers of this beautiful conference for their work done for our community.

Table 1. Sample of questions pursued in neutron-particle physics experiments

<table>
<thead>
<tr>
<th>Observable</th>
<th>Questions pursued</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutron electric dipole moment</td>
<td>Why did so much matter survive the Big Bang?</td>
</tr>
<tr>
<td>Neutron-antineutron oscillations</td>
<td>Is baryon number conserved?</td>
</tr>
<tr>
<td>Neutrino oscillations</td>
<td>Is lepton number conserved?</td>
</tr>
<tr>
<td>All of the above:</td>
<td>Are there new symmetries beyond the Standard Model?</td>
</tr>
<tr>
<td>Neutron lifetime</td>
<td>What is the number of light neutrino species in the universe?</td>
</tr>
<tr>
<td></td>
<td>What is the baryon density of the universe?</td>
</tr>
<tr>
<td></td>
<td>Efficiency of neutrino detectors</td>
</tr>
<tr>
<td>Neutron decay correlations</td>
<td>The role of axial coupling in particle physics.</td>
</tr>
<tr>
<td></td>
<td>Are weak interactions exclusively of the vector-axial vector type?</td>
</tr>
<tr>
<td></td>
<td>Is ordinary magnetism the z-component of electroweak-magnetism?</td>
</tr>
<tr>
<td></td>
<td>Why do some basic interactions violate time reversal invariance?</td>
</tr>
<tr>
<td>Both of the above:</td>
<td>How hot does the sun burn?</td>
</tr>
<tr>
<td></td>
<td>Is left-right asymmetry an “emergent property” of Nature?</td>
</tr>
<tr>
<td></td>
<td>Is quark-mixing a “zero-sum game”?</td>
</tr>
<tr>
<td>Rare neutron decay modes</td>
<td>How many photons does a neutron beam emit?</td>
</tr>
<tr>
<td></td>
<td>Is neutron-decay into a hydrogen atom a key to left-right symmetry?</td>
</tr>
<tr>
<td>Neutron charge</td>
<td>Why is neutron charge fine-tuned to zero in the Standard Model?</td>
</tr>
<tr>
<td>Neutron-neutron strong interactions</td>
<td>Does the $n-n$ strong interaction equal the $n-p$, $p-p$ strong interaction?</td>
</tr>
<tr>
<td>Neutron- nuclear weak interaction</td>
<td>What are the effective nucleon-nucleon couplings?</td>
</tr>
<tr>
<td>Neutron-electron scattering length</td>
<td>What is the sign of the neutron squared charge radius?</td>
</tr>
<tr>
<td>Neutron electric polarizibility</td>
<td>How steep is the quark-confinement potential?</td>
</tr>
<tr>
<td>\hbar/m_n, m_e/m_p</td>
<td>What is the strength of the electromagnetic interaction?</td>
</tr>
<tr>
<td>Neutron gravity</td>
<td>Does neutron’s inertial mass equal its gravitational mass?</td>
</tr>
<tr>
<td></td>
<td>Do neutrons fall in quantum steps?</td>
</tr>
<tr>
<td></td>
<td>Is Newton’s Law valid at small distances/in the quantum regime?</td>
</tr>
<tr>
<td></td>
<td>Are there compactified extra dimensions of space?</td>
</tr>
<tr>
<td>Neutron quantum physics</td>
<td>Spinor 4π rotation/Spin superposition/Squeezed states</td>
</tr>
<tr>
<td></td>
<td>Topological effects (Aharonov-Casher/Berry)</td>
</tr>
<tr>
<td></td>
<td>Bell inequality/Dressed neutrons</td>
</tr>
<tr>
<td></td>
<td>From classical to quantum vibrations/</td>
</tr>
<tr>
<td></td>
<td>Linearity of Schrödinger equation/time optics vs space optics, etc.</td>
</tr>
</tbody>
</table>

Dirk Dubbers
University of Heidelberg
Special Issue: Precision Measurements With Slow Neutrons–Part 1

Muhammad Arif, M. Scott Dewey, Tom Gentile, Paul Huffman, and Jeff Nico, Editors

Articles

The Fundamental Neutron Physics Facilities at NIST

New Pulsed Cold Neutron Beam Line for Fundamental Nuclear Physics at LANSCE

The Fundamental Neutron Physics Beamline at the Spallation Neutron Source

Geoffrey Greene, Vince Cianciolo, Paul Koehler, Richard Allen, William Michael Snow, Paul Huffman, Chris Gould, David Bowman, Martin Cooper, and John Doyle

LENS: A New Pulsed Neutron Source for Research and Education

Simulation of the Performance of a Fundamental Neutron Physics Beamline at the High Flux Isotope Reactor

Rob Mahurin, Geoffrey Greene, Paul Kohler, and Vince Cianciolo

Beamline Performance Simulations for the Fundamental Neutron Physics Beamline at the Spallation Neutron Source

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search for a Neutron Electric Dipole Moment</td>
<td>R. Golub and P. R. Huffman</td>
<td>169</td>
</tr>
<tr>
<td>Design and Performance of Laser-Pumped Cs-Magnetometers for the Planned UCN EDM Experiment at PSI</td>
<td>S. Groeger, G. Bison, and A. Weis</td>
<td>179</td>
</tr>
<tr>
<td>Neutron Measurements and the Weak Nucleon-Nucleon Interaction</td>
<td>W. M. Snow</td>
<td>189</td>
</tr>
<tr>
<td>Parity-Violating Neutron Spin Rotation in a Liquid Parahydrogen Target</td>
<td>Diane M. Markoff</td>
<td>209</td>
</tr>
</tbody>
</table>
Commissioning of the NPDGamma Detector Array: Counting Statistics in Current Mode Operation and Parity Violation in the Capture of Cold Neutrons on B_4C and ^{27}Al

A Gamma Polarimeter for Neutron Polarization Measurement in a Liquid Deuterium Target for Parity Violation in Polarized Neutron Capture on Deuterium

A. Komives, A. K. Sint, M. Bowers, and M. Snow

Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR

SUSANS With Polarized Neutrons

Apoorva G. Wagh, Veer Chand Rakhecha, Makus Strobl, and Wolfgang Treimer

High-Precision Determination of the Neutron Coherent Scattering Length

Apoorva G. Wagh and Sohrab Abbas

Measurement of the Coherent Neutron Scattering Length of ^3He

W. Ketter, W. Heil, G. Badurek, M. Baron, R. Loidl, and H. Rauch

Observation on the Visibility Decrease in a VCN Spin Resonator Interferometry

M. Utsuro, M. Hino, P. Geltenbort, and J. Butterworth

Spatial Non-Cyclic Geometric Phase in Neutron Interferometry

Stefan Filipp, Yuji Hasegawa, Rudolf Loidl, and Helmut Rauch

Virtual Excitation and Multiple Scattering Correction Terms to the Neutron Index of Refraction for Hydrogen

K. Schoen, W. M. Snow, H. Kaiser, and S. A. Werner
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constraints on Non-Newtonian Gravity From the Experiment on Neutron Quantum States in the Earth’s Gravitational Field</td>
<td>V. V. Nesvizhevsky and K. V. Protasov</td>
<td>269</td>
</tr>
<tr>
<td>Measurement of the Loss and Depolarization Probability of UCN on Beryllium and Diamond Like Carbon Films</td>
<td>Tomas Brys, Manfred Daum, Peter Fierlinger, Peter Geltenbort, Mukul Gupta, Reinhold Hennec, Stefan Heule, Klaus Kirch, Mikhail Lasakov, Russel Mammei, Mark Makela, Axel Pichlmaier, Anatoli Serebrov, Ulrich Straumann, Robert B. Vogelaar, Cedric Wermelinger, and Albert Young</td>
<td>279</td>
</tr>
<tr>
<td>A New Method for Precision Cold Neutron Polarimetry Using a 3He Spin Filter</td>
<td>F. E. Wietfeldt and T. R. Gentile</td>
<td>305</td>
</tr>
<tr>
<td>Precision Neutron Polarimetry for Neutron Beta Decay</td>
<td>S. I. Penttila and J. D. Bowman</td>
<td>309</td>
</tr>
</tbody>
</table>