
1. Introduction

Elastic deformation is one of the most important con-
siderations in structural applications of solid materials.
Indeed, elastic properties are commonly required in
computer aided design and manufacturing techniques
to simulate a product’s behavior under variable condi-
tions of stress and temperature. Under such conditions,
it is desirable to have a means of estimating the value
of a property continuously at any temperature or stress
according to the local operating conditions. Tabulated
data sets, however, are discrete and may be relatively
sparse, particularly with respect to the dependence on
microstructure. While interpolation techniques can be
used with tabulated data if sufficiently extensive data
tables are available, such approaches are relatively
cumbersome. A more succinct and efficient approach is
to use semiempirical analytical models that incorporate
both material and environmental factors within the
model.

An opportunity to construct an analytical representa-
tion of the elastic moduli data evolved recently from an
extensive compilation (NISTIR 6853) of the elastic
property data for polycrystalline oxide ceramics [1]. In
that work, data were collected from the technical liter-
ature, either as reported in textual or tabular formats or

as digitized from graphical formats. Special attention
was given to the dependence of the moduli on both
porosity and temperature.

In the present work, we report the construction of
analytical representations of the elastic moduli data
using a single model in which the effects of porosity (φ)
and temperature (T) are treated simultaneously. Results
for this model, applied to the data in NISTIR 6853 to
the extent that sufficient data were available to evaluate
the parameters in the model, are presented for 24 mate-
rial specifications.

2. Model

To construct a suitable model, we proceed heuristi-
cally, beginning with the assumption that a separation
of variables may be applied to the dependence of elas-
tic moduli on temperature and porosity. For any modu-
lus, M(T,φ), of a given material composition, it is
assumed that φ and T may be taken as independent vari-
ables, and hence that we may consider
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such that our task is to find suitable representations for
MT(T) and Mφ (φ).

2.1 Temperature Dependence

Empirically, the temperature dependence of Young’s
elastic modulus for most ceramics is relatively simple,
generally decreasing monotonically with increasing
temperature. At very low temperature, the slope of the
modulus with respect to temperature must approach
zero. On the basis of lattice dynamics, Born and Huang
[2] estimated that the elastic constants should vary as T4

at low temperature. Above room temperature, the mod-
uli generally decrease linearly with increasing temper-
ature. To describe the behavior from low to high tem-
perature, Wachtman et al. [3] suggested the empirical
relation

(2)

in which E0 is Young’s modulus at absolute zero, and b
and T0 are parameters to be determined numerically
from the observed data. Anderson [4] later provided a
justification of an expression of this form for the bulk
modulus and noted that the elastic modulus would be
approximately of the same form if the temperature
dependence of Poisson’s ratio could be ignored.

Empirically, graphs of elastic moduli data vs temper-
ature exhibit very little curvature except at very low
temperature. This lack of curvature causes numerical
fitting routines to be rather insensitive to the exponen-
tial factor in Eq. (2). Consequently, the uncertainty in
the value of the parameter, T0, is unacceptably large for
most of the data used in the present work. For the pres-
ent purpose, therefore, it suffices to consider only the
simplified linear model

(3)

with the parameters rewritten as MT(0) and aM for each
modulus M.

2.2 Porosity Dependence

The porosity dependence of the elastic properties of
solids has been the subject of extensive investigation
for decades. Numerous studies have examined the role
of pores as the second component of two-phase solid
media [5-10]. Those works generally involve an analy-
sis of the strain field in the composite body under the
application of an external stress. Alternatively, several
studies [11-17] have observed that stress internally is

transmitted only over the areas of contact between the
constituent particles or grains. As the body is densified,
the contact area increases while the porosity decreases.
Consequently, the porosity dependence of the elastic
moduli should be governed by the contact area. More
recently, detailed analyses of the effects of pore size
and pore shape have begun to be performed in finite
element computer simulation calculations [18,19].

In addition to these microstructural modeling efforts,
many semiempirical analytical models have been pro-
posed [20-29] and applied [30-37] to represent the gen-
eral trend of elastic moduli with porosity. Analytical
models are of considerable interest because of their
potential use as smoothing and interpolation functions.
Since these models only relate bulk elastic properties to
the mean porosity, they generally do not represent
detailed microstructural effects arising from varying
pore shape, anisotropy, or nonuniformity. Their impor-
tance rests in their capacity to provide highly effective
descriptions of the trends of the mean properties and
characteristics of porous media.

Empirically, a simple linear model [20] may be ade-
quate at very small porosity, but for most brittle mate-
rials, the elastic moduli vary approximately exponen-
tially [22] for porosity up to about 30 %. At higher
porosity, the elastic moduli may deviate significantly
from an exponential dependence [38]. Several models
treat porous media as a special case of a two-phase
medium in which the second phase consists of pores
[36]. Those models often express the moduli of porous
materials as ratios, P1(φ)/P2(φ), of polynomials (P1 and
P2) in the volume fraction of porosity (φ). Budiansky’s
self-consistent model [30] is of this type and results in
a pair of coupled equations for the bulk and shear mod-
uli. Those relations are explicitly linear in porosity and
implicitly nonlinear through the self-consistent depend-
ence on Poisson’s ratio, v, which is itself dependent on
porosity.

At very high porosity, other issues must be consid-
ered in determining the influence of porosity on elastic
moduli. It is self-evident that the volume fraction of
porosity of a solid material must be less than one
(φ < 1) because the condition φ = 1 corresponds to no
material at all. As the limit φ = 1 is approached, the
contiguity of the assemblage of components becomes
an important issue since the integrity of an elastic medi-
um is dependent on the transitivity of forces between
adjacent material components. Indeed, in studies apply-
ing percolation theory, analyses of minimum solid
areas of idealized stackings, and other models focused
on the stacking of geometric shapes, there arises the
possibility of a critical porosity, φc, at which the moduli
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must vanish [11]. Such studies pertain to the very
important issue of the validity of interpreting such an
assembly of material components as an elastic continu-
um. Phani and Niyogi [26] suggested that if we are to
allow for a vanishing modulus, then Young’s modulus,
E, should be proportional to a power of (1 – φ /φc).

In the present work, elasticity, as a bulk concept, is
taken to mean a priori that the spatial connectivity is
sufficient to allow the bulk material to sustain an
applied stress. For any such material, without excep-
tion, the elastic modulus does not vanish.

Assuming material contiguity, Wagh et al. [27] con-
sidered a model in which the material was assumed to
be composed of a network of material chains and inter-
posed with channels of open pores. For a one dimen-
sional system, they obtained the closed form expression

(4)

where E is Young’s modulus, and Eo and n are
adjustable parameters. They then used numerical solu-
tions to verify that the same expression should be valid
also for a three dimensional system. That conclusion
was consistent with the results of Gibson and Ashby
[37] who obtained Eq. (4) for the specific case of cellu-
lar ceramics, with n = 2 for open cell structures and
n = 3 for closed cells.

Among these various models, it may be noted that
the suitability of the various analytical forms is not
sharply distinguished over the observed range of poros-
ity for polycrystalline ceramics. No one model seems to
have a stronger theoretical justification than the others,
and the empirical fits to the data are not sharply differ-
ent. Additionally, the general trends of the elastic mod-
uli data vs porosity, for polycrystalline ceramics, do not
seem to depend greatly on the nature of the porosity
since results for specimens from multiple sources con-
form to a single trend line. Neglecting such details, it is
possible to derive [39] a simple effective medium theo-
ry for the porosity dependence of bulk moduli. In this
approach, the classical model of an ionic solid [40] was
taken as an idealized, pore free, reference system. That
choice had the particular virtue of providing a closed
form expression for the bulk modulus. It was noted that
the introduction of porosity into such a system must
increase the molar volume of the material, M/ρ, where
M is the molecular mass and ρ is the bulk density. As a
result, the mean interaction potential at a site must be
reduced because the mean interparticle distance is
increased. To account for this relaxation in the model
system, the length scale was formally renormalized.
The renormalized system was then related to the porous

physical system by imposing the consistency condition
that the equilibrium volume of the renormalized system
be equal to the sum of the volume at zero porosity and
the pore volume. The result was the closed form
expression

(5)

In this model, the exponent, m, was determined by the
effective attractive component of the interaction poten-
tial and can be different from the exponent, n, found in
the similar expression, Eq. (4), for Young’s modulus.

2.3 The General Model

The elastic properties of polycrystalline ceramics
usually are approximately isotropic because of the ran-
domness of the grain orientations, even when the indi-
vidual grains are anisotropic. An exception to this usual
circumstance occurs for textured materials in which the
microstructure has partially aligned grain orientations.
In the present work, we consider only polycrystalline
ceramics that may be treated as isotropic materials. For
this case, the elastic properties are fully described by
any two of the elastic moduli.

Upon viewing the dependence on temperature and
porosity separately, we have seen that the temperature
dependence may be represented effectively by Eq. (3).
For the porosity dependence, there are several alterna-
tives, but only two of the models, Eq. (4) for the elastic
modulus and Eq. (5) for the bulk modulus, have been
derived in closed form from theoretical models.
Combining these models in the manner of Eq. (1), we
obtain the general model describing the simultaneous
dependence of E and B on the variables T and φ.

(6)

(7)

3. Discussion

The model represented by Eqs. (6) and (7) has been
applied to the data in NISTIR 6853, and the results are
given in Table 1. An illustration of the typical fit of the
model is given by the results for magnesium aluminate
spinel [41-46], Fig. 1 and Fig. 2.

It should be noted that reports of elastic property data
in the literature most commonly provide results for the
elastic modulus and the shear modulus, G. The shear
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modulus for isotropic polycrystalline materials may be
obtained from E and B as

(8)

From this relation, it can be seen that G generally will
not be of the same analytical form as E and B. For
ceramics, the magnitude of E is typically on the order

of twice that of B. Consequently, the relation in Eq. (8)
can be expanded as

(9)

yielding

(10)
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Table 1. Parameter values for the fit of the analytical model, Eqs. (6) and (7), for various oxide ceramics. The valid temperature and porosity
ranges are indicated. The relative expanded uncertainties (coverage factor k = 2, 95 % confidence limit) for the computed elastic and bulk moduli
were estimated as 5 %. Brackets, {}, indicate additional approximations were used, as indicated in the footnotes. Mr = molar mass. ρtheo = theo-
retical mass density of the unstressed single crystal at room temperature

Material Mr ρtheo T range Porosity E0 a n B0 b m
g mol–1 g cm–3 °C range GPa 10–4 °C–1 GPa 10–4 °C–1

Al2O3 101.961 3.984 0 to 1000 0 to 0.9 393 1.33 3.06 241 0.84 3.33
Al6Si2O13

a 426.052 3.17 0 to 900 0 to 0.13 229 1.17 3.33 166 {1.16} 3.15
BeO 25.012 3.01 0 to 1400 0 to 0.16 386 0.77 1.96 350 1.18 1.61
Dy2O3

a 372.998 8.161 0 to 900 0 to 0.2 186 1.37 3.81 144 {1.37} 3.52
Er2O3 382.516 8.651 0 to 1000 0 to 0.2 179 1.14 2.57 160 1.14 3.08
Gd2O3

d 362.498 8.348 0 to 1400 0 to 0.37 157 1.46 2.32 114 1.47 2.19
HfO2(c,Pr)a,e Seef n/a 0 to 1500 0 to 0.09 251 1.21 2.86 183 {1.21} 3.23
HfO2(c,Tb)a,g Seeh n/a 0 to 1650 0 to 0.18 229 1.41 1.78 186 {1.41} 2.78
HfO2(c,X)b,i Seej n/a 0 to 1500 0 to 0.38 {256} {1.52} {3.01} {200} {1.70} {4.09}
HfO2(PSH)a,k Seel n/a 0 to 1600 0 to 0.12 {263} {2.29} {3.47} {162} {2.29} {3.45}
Ho2O3 377.859 8.414 0 to 1000 0 to 0.18 175 1.08 2.60 155 0.98 3.43
Lu2O3 397.932 9.423 0 to 1000 0 to 0.34 204 1.03 3.12 161 0.24 4.27
MgAl2O4 142.266 3.572 0 to 1200 0 to 0.38 278 1.98 3.20 187 1.97 3.57
MgO 40.304 3.58 0 to 2500 0 to 0.26 310 1.63 3.81 164 1.23 2.64
Sc2O3 137.910 3.841 0 to 1400 0 to 0.3 229 1.22 2.97 148 0.98 2.45
Sm2O3 348.718 7.748 0 to 1300 0 to 0.38 150 2.00 2.85 125 1.73 3.45
ThO2

a 264.037 10.0 0 to 1200 0 to 0.4 258 1.68 3.32 187 {1.66} 4.18
TiO2

c 79.866 4.25 0 to 1600 0 to 0.35 286 1.52 4.99 {200} {2.20} {6.57}
Tm2O3 385.867 8.889 0 to 1000 0 to 0.24 185 0.88 3.07 147 1.63 2.18
YBa2Cu3O6.9 664.594 6.37 –268 to 25 0 to 0.5 150 1.54 3.70 69 1.84 3.19
Y2O3 225.810 5.03 0 to 1600 0 to 0.37 176 1.37 2.47 147 1.93 3.27
Yb2O3 394.078 9.2932 0 to 1000 0 to 0.27 199 0.90 2.61 155 1.24 2.83
ZrO2(m)m 123.223 5.6 0 to 1000 0 to 0.2 244 2.86 3.79 170 3.19 3.49
ZrO2(c)b,n Seeo n/a 0 to 1600 0 to 0.2 {227} {1.50} {2.59} {183} {1.48} {4.31}

a Neither B(T) nor G(T) was known. Parameters were estimated using aG = aE.
b Parameters estimated using data from specimens with differing dopants.
c Optimization routine did not converge. Apparent midrange values were selected manually.
d Monoclinic structure.
e Cubic structure, HfO2·xPr2O3.
f Mr = 210.489 + 329.814x.
g Cubic structure, HfO2·xTb2O3.
h Mr = 210.489 + 365.849x.
i Cubic structure, HfO2·xX2O3, X = Er, Gd, Pr, Tb, and Y.
j Mr = 210.489 + xMr(X2O3).
k Partially stabilized hafnia, HfO2·xX2O3, X = Er, Eu, and Y.
l Mr = 210.489 + xMr(X2O3).
m Monoclinic structure.
n Cubic structure, ZrO2·xX2O3, X = Ca, Pr, Tb, and Y.
o Mr = 123.223 + xMr(X2O3).



from which it is seen that G may have a different func-
tional dependence on T and φ, depending on the ratio
(E/9B).

Similarly, we may note that Poisson’s ratio, v, is
given by

(11)

and depends directly on the ratio (E/6B). In the present
work, the magnitudes of the products aT and bT in Eqs.
(6) and (7) typically were found to have values of about
0.1 at 1000 °C. Hence, the ratio (E/B) is approximately

(12)

Consequently, Poisson’s ratio is not expected to be con-
stant and may increase or decrease with temperature
and porosity in a manner that reflects how the depend-
ence of E differs from that of B with respect to the vari-
ables T and φ.

4. Conclusion

The condensation of a large tabulation of discrete
data values into a representative analytical model is a
data evaluation technique that optimizes the utility of
the collected experiential data. The result is a succinct
representation that enables the results to be more read-
ily and consistently integrated into computerized
design programs and enhances the use of the results in
distributed data systems. The present work discusses
the application of that technique to a compilation of
elastic moduli data for a wide range of polycrystalline
oxide ceramics. The model used in this work provides
simultaneous, self-consistent representations of the
elastic and bulk moduli for polycrystalline ceramics as
functions of temperature and porosity.

5. References

[1] R. G. Munro, Elastic Moduli Data for Polycrystalline Oxide
Ceramics, NISTIR 6853, National Institute of Standards and
Technology, Gaithersburg, Maryland (2002).

[2] M. Born and K. Huang, Dynamical Theory of Crystal Lattices,
Oxford University, New York (1954).

[3] J. B. Wachtman, Jr., W. E. Tefft, D. G. Lam, Jr., and C. S.
Apstein, Phys. Rev. 122, (6), 1754-1759 (1961).

[4] O. L. Anderson, Derivation of Wachtman’s Equation for the
Temperature Dependence of Elastic Moduli of Oxide
Compounds, Phys. Rev. 144, (2), 553-557 (1966).

Volume 109, Number 5, September-October 2004
Journal of Research of the National Institute of Standards and Technology

501

Fig. 1. Elastic moduli (E, G, and B) and Poisson’s ratio (ν) of
MgAl2O4 vs. porosity, at room temperature. Numbers in square
brackets, [...], are references for the experimental data. The smooth
curves comprise the fit of the model, Eqs. (6) and (7). (N.B.: The E
value from [41] (square point at φ = 0.23) was treated as an outlier in
fitting the E data.)

Fig. 2. Elastic moduli of MgAl2O4 vs. temperature, for various val-
ues of the porosity. Numbers in square brackets, [...], are references
for the experimental data. The subscript, “bend,” indicates values
derived from stress-strain bending curves; all other values were
derived from ultrasonic measurement methods. The smooth curves
comprise the fit of the model, Eqs. (6) and (7).

1
2 6

Ev
B

= −

0

0

(1 [ ] )(1 ) n mEE a b T
B B

φ −≈ ⋅ − − −



[5] W. Kreher, J. Ranachowski, and F. Rejmund, Ultrasonic Waves
in Porous Ceramics With Non-Spherical Holes, Ultrasonics 15,
(2), 70-74 (1977).

[6] E. A. Dean, Elastic Moduli of Porous Sintered Materials as
Modeled by a Variable-Aspect-Ratio Self-Consistent Oblate-
Spheroidal-Inclusion Theory, J. Am. Ceram. Soc. 66, (12), 847-
854 (1983).

[7] N. Ramakrishnan and V. S. Arunachalam, Effective Elastic
Moduli of Porous Solids, J. Mater. Sci. 25, 3930-3937 (1990).

[8] D. N. Boccaccini and A. R. Boccaccini, Dependence of
Ultrasonic Velocity on Porosity and Pore Shape in Sintered
Materials, J. Nondestruc. Eval. 16, (4), 187-192 (1997).

[9] A. R. Boccaccini and Z. Fan, A New Approach for the Young’s
Modulus-Porosity Correlation of Ceramic Materials, Ceram.
Internat. 23, 239-245 (1997).

[10] F. Wang, W. Gou, X. Zheng, and M. Lu, Effective Elastic
Moduli of Ceramics with Pores, J. Mater. Sci. Technol. 14, 286-
288 (1998).

[11] R. W. Rice, Evaluation and Extension of Physical Property-
Porosity Models Based on Minimum Solid Area, J. Mater. Sci.
31, 102-118 (1996).

[12] R. W. Rice, Comparison of Stress Concentration versus
Minimum Solid Area Based on Mechanical Property-Porosity
Relations, J. Mater. Sci. 28, 2187-2190 (1993).

[13] R. W. Rice, Comparison of Physical Property-Porosity
Behaviour with Minimum Solid Area Models, J. Mater. Sci. 31,
1509-1528 (1996).

[14] A. K. Mukhopadhyay and K. K. Phani, Young’s Modulus-
Porosity Relations: An Analysis Based on a Minimum Contact
Area Model, J. Mater. Sci. 33, 69-72 (1998).

[15] A. K. Mukhopadhyay and K. K. Phani, Ultrasonic Velocity-
Porosity Relations: An Analysis Based on a Minimum Contact
Area Model, J. Mater. Sci. Lett. 18, 1759-1760 (1999).

[16] A. K. Mukhopadhyay and K. K. Phani, An Analysis of
Microstructural Parameters in the Minimum Contact Area
Model for Ultrasonic Velocity-Porosity Relations, J. European
Ceram. Soc. 20, 29-38 (2000).

[17] D. G. Bika, M. Gentzler, and J. N. Michaels, Mechanical
Properties of Agglomerates, Powder Technol. 117, 98-112
(2001).

[18] A. P. Roberts and E. J. Garboczi, Elastic Properties of Model
Porous Ceramics, J. Am. Ceram. Soc. 83, (12), 3041-3048
(2000).

[19] A. P. Roberts and E. J. Garboczi, Elastic Moduli of Model
Random Three-Dimensional Closed-Cell Cellular Solids, Acta
Mater. 49, 189-197 (2001).

[20] J. M. Dewey, The Elastic Constants of Materials Loaded with
Non-Rigid Fillers, J. Appl. Phys. 18, 578-581 (1947).

[21] J. K. Mackenzie, Elastic Constants of a Solid Containing
Spherical Holes, Proc. Phys. Soc., Section B, 63, 2-11 (1950).

[22] R. M. Spriggs and T. Vasilos, Effect of Grain Size and Porosity
on the Transverse Bend Strength and Elastic Modulus of Hot
Pressed Alumina and Magnesia, J. Am. Ceram. Soc. 40, (4), 187
(1961).

[23] D. P. H. Hasselman, On the Porosity Dependence of the Elastic
Moduli of Polycrystalline Refractory Materials, J. Am. Ceram.
Soc. 45, 452-453 (1962).

[24] O. Ishai and L. J. Cohen, Elastic Properties of Filled and Porous
Epoxy Composites, Internat. J. Mechan. Sci. 9, 539-546 (1967).

[25] J. C. Wang, Young’s Modulus of Porous Materials, Part 1,
Theoretical Derivation of Modulus-Porosity Correlation, J.
Mater. Sci. 19, 801-808 (1984).

[26] K. K. Phani and S. K. Niyogi, Young’s Modulus of Porous
Brittle Solids, J. Mater. Sci. 22, 257-263 (1987).

[27] A. S. Wagh, R. B. Poeppel, and J. P. Singh, Open Pore
Description of Mechanical Properties of Ceramics, J. Mater.
Sci. 26, 3862-3868 (1991).

[28] M. Kupkova, Porosity Dependence of Material Elastic Moduli,
J. Mater. Sci. 28, 5265-5268 (1993).

[29] A. R. Boccaccini, G. Ondracek, P. Mazilu, and D. Windelberg,
On the Effective Young’s Modulus of Elasticity for Porous
Materials: Microstructure Modelling and Comparison Between
Calculated and Experimental Values, J. Mechan. Behavior
Mater. 4, 119-128 (1993).

[30] B. Budiansky, On the Elastic Moduli of Some Heterogeneous
Materials, J. Mechan. Phys. Solids 13, 223-227 (1965).

[31] E. A. Dean and J. A. Lopez, Empirical Dependence of Elastic
Moduli on Porosity for Ceramic Materials, J. Am. Ceram. Soc.
66, (5), 366-370 (1983).

[32] K. K. Phani, Young’s Modulus- Porosity Relation in Gypsum
Systems, Am. Ceram. Soc. Bull. 65, (12), 1584-1586 (1986).

[33] K. K. Phani, Elastic-Constant-Porosity Relations for
Polycrystalline Thoria, J. Mater. Sci. Lett. 5, 747-750 (1986).

[34] K. K. Phani and S. K. Niyogi, Porosity Dependence of
Ultrasonic Velocity and Elastic Modulus in Sintered Uranium
Dioxide, J. Mater. Sci. Lett. 5, 427-430 (1986).

[35] K. K. Phani and S. K. Niyogi, Elastic Modulus-Porosity
Relation in Polycrystalline Rare-Earth Oxides, J. Am. Ceram.
Soc. 70, (12), C362-C366 (1987).

[36] N. Ramakrishnan and V. S. Arunachalam, Effective Elastic
Moduli of Porous Ceramic Materials, J. Am. Ceram. Soc., 76,
2745-2752 (1993).

[37] L. J. Gibson and M. F. Ashby, The Mechanics of Three-
Dimensional Cellular Materials, Proc. Royal Soc. London
A382, 43-59 (1982).

[38] R. W. Rice, The Porosity Dependence of Physical Properties of
Materials: A Summary Review, Key Eng. Mater. 115, 1-20
(1995).

[39] R. G. Munro, Effective Medium Theory of the Porosity
Dependence of Bulk Moduli, J. Am. Ceram. Soc. 84, (5), 1190-
1192 (2001).

[40] O. L. Anderson, Determination and Some Uses of Isotropic
Elastic Constants of Polycrystalline Aggregates Using Single-
Crystal Data, Phys. Acoustics 3B, 43-95 (1965).

[41] N. N. Ault and H. F. G. Ueltz, Sonic Analysis for Solid Bodies,
J. Am. Ceram. Soc. 36, (6), 199-203 (1953).

[42] J. B. Wachtman, Jr. and D. G. Lam, Jr., Young’s Modulus of
Various Refractory Materials as a Function of Temperature, J.
Am. Ceram. Soc. 42, (5), 254-260 (1959).

[43] D. F. Porter, J. S. Reed, and D. Lewis, Elastic Moduli of
Refractory Spinels, J. Am. Ceram. Soc. 60, (7), 345-349 (1977).

[44] R. L. Stewart and R. C. Bradt, Fracture of Polycrystalline
MgAl2O4, J. Am. Ceram. Soc. 63, (11), 619-623 (1980).

[45] K. W. White and G. P. Kelkar, Fracture Mechanisms of a
Coarse-Grained, Transparent MgAl2O4 at Elevated
Temperatures, J. Am. Ceram. Soc. 75, (12), 3440-3444 (1992).

[46] C. Baudin, R. Martinez, and P. Pena, High Temperature
Mechanical Behavior of Stoichiometric Magnesium Spinel, J.
Am. Ceram. Soc. 78, (7), 1857-1862 (1995).

Volume 109, Number 5, September-October 2004
Journal of Research of the National Institute of Standards and Technology

502



About the author: Ronald G. Munro is a physicist in
the NIST Ceramics Division of the Materials Science
and Engineering Laboratory. The National Institute of
Standards and Technology is an agency of the
Technology Administration, U.S. Department of
Commerce.

Volume 109, Number 5, September-October 2004
Journal of Research of the National Institute of Standards and Technology

503


