
1. Introduction

A system for calibration of angle artifacts (such as
optical polygons or angle blocks) requires two basic
components: (1) a mechanism (often an indexing table)
for generating an angle nominally equal to the angle
being measured and (2) a device such as an autocolli-
mator to measure small deviations of the measurement
face away from the perpendicular to the autocollimator
axis. Errors in the indexing table are relatively easy to
study, but uncertainties in small-angle measurement
may be more difficult to quantify in a satisfactory man-
ner.

The angle measurement system used at the National
Institute of Standards and Technology (NIST) is based
on an automated stack of three indexing tables—our
Advanced Automated Master Angle Calibration
System (AAMACS). The stack can generate essential-
ly any desired angle, moving in angle increments as
small as 0.0034" (17 nrad). In addition to the triple
stack of indexing tables, AAMACS includes an auto-
mated encoder-based air-bearing table that is not part of
the metrology system but which allows for fully auto-
mated positioning of an artifact and hence fully auto-
mated closure measurements. The AAMACS system
has been described in detail elsewhere [1,2].

Uncertainty in the angles generated by the indexing
tables is fairly straightforward to quantify and correct
using closure techniques. The expanded (k = 2) uncer-
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We have studied a number of effects that
can give rise to errors in small-angle
measurement systems when they are used
to calibrate artifacts such as optical poly-
gons. Of these sources of uncertainty, the
most difficult to quantify are errors associ-
ated with the measurement of imperfect,
non-flat faces of the artifact, causing the
instrument to misinterpret the average ori-
entation of the surface. In an attempt to
shed some light on these errors, we have
compared autocollimator measurements to
angle measurements made with a Fizeau
phase-shifting interferometer. These two
instruments have very different operating
principles and implement different defini-
tions of the orientation of a surface, but
(surprisingly) we have not yet seen any
clear differences between results obtained

with the autocollimator and with the inter-
ferometer. The interferometer is in some
respects an attractive alternative to an
autocollimator for small-angle measure-
ment; it implements an unambiguous and
robust definition of surface orientation in
terms of the tilt of a best-fit plane, and it is
easier to quantify likely errors of the inter-
ferometer measurements than to evaluate
autocollimator uncertainty.
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tainty of angle generation with AAMACS can be
reduced below 0.02" by error mapping the system, or
by using methods described later in this article. Errors
associated with the autocollimator could potentially be
more than an order of magnitude greater than uncer-
tainties of our indexing table, as has been seen in sev-
eral studies where measurements from different auto-
collimators have been compared to each other [2,3].
Although a comparison can demonstrate the presence
of errors, there may be no obvious way to determine
which autocollimator is in error and which (if either)
gives the correct answer. Disagreements between dif-
ferent autocollimators are often associated with aberra-
tions in the optical systems that affect the imaging of
non-flat surfaces, but it is not clear how to measure the
aberrations or how to quantify their effect on angle
measurement.

An additional complication is the possibility that two
instruments that give different measurement results are
both providing the correct answer, because in the field
of optical metrology there is no clearly accepted defini-
tion of the average angle between non-flat surfaces.
(Angular orientations are often specified in terms of the
Zernike tilt term, but this is not what is measured by a
typical autocollimator.) In most areas of dimensional
metrology the measurand is well enough defined that
artifact imperfections do not give an ambiguous result.
For example, the “diameter” of an imperfect artifact is
always specified more precisely, perhaps as the average
diameter, the diameter of a best-fit circle, or the diame-
ter of a circumscribed circle. It is widely recognized
that these definitions of diameter will give differing
values for an imperfect artifact, and that we must spec-
ify the type of diameter to be measured in order to get
an unambiguous result. Such distinctions are never (to
our knowledge) made in angle metrology, and conse-
quently ambiguities can occur.

A Fizeau phase shifting interferometer (hereafter
abbreviated as PSI) can be used to shed some light on
the questions raised above. This instrument can in prin-
ciple measure small angles according to one of several
different definitions. The most straightforward and
robust method of angle measurement, implemented in
software available with our instrument, is to compute
the tilt of a best-fit plane through a surface. The use of
a PSI in this manner was pioneered by Probst and
Kunzmann [4,5] and has also been studied by Kruger
[6]. An attractive reason for using a PSI for angle meas-
urement is that it should be possible to evaluate sources
of error in the instrument, including effects of aberra-
tions which are very difficult to quantify for an autocol-
limator. The PSI can provide a good foundation for

evaluating measurement uncertainty as a consequence
of two facts:
(1) Sources of error in PSI measurements have been
studied for more than twenty years, and there is an
extensive literature describing possible errors in these
instruments. (See Refs. [7-10] and many additional ref-
erences cited by these publications.) There should be no
surprises when using a PSI; the possible errors are well
catalogued and order-of-magnitude values for the range
of such errors are well known.
(2) Determining errors in an individual instrument is
made easier by the versatility of the PSI. The images
and software tools provided by the PSI make it practi-
cal to quantitatively or semi-quantitatively evaluate
most of the important sources of error.
Furthermore, PSI errors are expected to be small. It has
been demonstrated that PSIs can measure surface figure
of nominally flat surfaces at the nanometer level [11].
Note that a 1 nm error across the face of a 20 mm poly-
gon corresponds to a potential angular error of 0.01".
Angle measurement should be much easier than meas-
uring surface figure. Potentially troubling errors, such
as form errors of the reference flat or aberrations of the
reference wavefront, have important consequences for
form measurement, making a flat surface appear non-
flat; but in angle measurement these errors are essen-
tially common mode and consequently have a reduced
effect. (As discussed later, however, the errors are not
common mode if an artifact is mounted off center, or if
changing tilt angles shear the reflected wavefront.)
Therefore we might hope (with sufficient effort) to
reduce uncertainties of angle measurement to 0.01" or
less if we use a PSI in place of an autocollimator.

We have studied a number of error sources that
might degrade small-angle measurement using both our
PSI and our autocollimator. As with any measurement,
overall scale errors of the measuring instrument or
deviations from linearity are a concern. Some addition-
al errors that must be considered are unique to the
measurement of angle artifacts—eccentricity or pyra-
mid errors, arising as a result of imperfections of the
measuring instrument in combination with imperfect
mounting or poor geometry of the artifact. For the PSI,
we have also studied errors that occur when measuring
non-flat artifact faces; for the autocollimator these
errors cannot be evaluated directly but can be estimat-
ed through comparison to the PSI. Finally, we have
investigated some PSI errors—fringe interpolation
errors and bull’s-eye patterns (from coherent scatter-
ing)—that have no direct analogy in the autocollimator.
All of these sources of error are discussed in Sections
2-8 and summarized in Sec. 9. In Sec. 10, we discuss
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issues related to the definition of angle itself. In Sec.
11, we compare the results from the autocollimator and
the PSI, which employ different definitions of angle.
Some of this work has been reported in a previous pub-
lication [12].

2. Scale Errors, Linearity, and
Measurement Noise

The scale error of our instruments—that is, an error
proportional to the measured angle—can be checked by
generating a known angle and comparing to the instru-
ment reading. We can in principle generate a known
angle by error mapping the AAMACS system [1], but
some difficulties in implementing the error map led us
to adopt a second method. We simply generate the
desired angle multiple times, each time beginning at a
randomly chosen position on the AAMACS triple
stack. As a consequence of closure, the average angle
generated must be an unbiased estimate of the desired
angle, regardless of almost all possible system errors.
(See Appendix A.) One error that might not average to
zero would be a constant drift with time, but this poten-
tial problem can be eliminated by pairing measure-
ments in the forward and reverse direction. Not only
does this procedure produce the desired angle without
bias, but also the standard deviation of the mean
(≈0.01" for 40 pairs of measurements) should be an
excellent estimate of uncertainty, independent of the
physical nature of the error sources in the triple stack.
Although this is a very inefficient method of generating
a known angle—and hence not recommendable in most
situations—the strength of the method is that the aver-
age angle is unbiased, with well-quantified uncertainty,
totally independent of any poorly understood behavior
of the system. The inefficiency is not such a great draw-
back when using AAMACS, because the entire set of
measurements is done under computer control without
the need for manual intervention.

We have carried out this procedure to check the auto-
collimator scale at 30", and we find that the scale is cor-
rect within the 0.02" expanded uncertainty of our meas-
urements. (Note: all expanded uncertainties in this arti-
cle are calculated with coverage factor k = 2.) This pos-
sible 0.07 % scale error is negligible (<0.002") for
angles less than 2.5", which encompasses most of our
measurement needs.

The PSI requires lateral scale calibration, where the
calibration factor depends on the zoom setting. A rough
calibration factor, good to about 0.5 %, is obtained by
measuring a known lateral distance with the instru-

ment, and the software uses this lateral calibration to
compute angles. The calibration can then be refined by
generating known angles and comparing to the comput-
ed values. The known angles can be generated directly
from AAMACS, as described above, or can be meas-
ured with the autocollimator once the autocollimator
has been calibrated. The primary uncertainty in the
scale factor then arises from nonlinearity as described
below.

For angles between –60" and +60" we have com-
pared autocollimator measurements to measurements
obtained with the PSI. We can thus determine the rela-
tive nonlinearity of the two instruments. This provides
a plausible bound on the nonlinearity of either instru-
ment, unless both instruments happen to share the same
nonlinearity. (Note: This measurement was done in a
manner that avoids diffraction errors, a potential source
of nonlinearity in the PSI readings as discussed later.)

We find that the relative reading of the two instru-
ments exhibits a noticeable nonlinearity which varies
smoothly throughout the ±60" range with amplitude of
about ±0.03". Based on the factory calibration of auto-
collimator nonlinearity, it appears that much of the
observed relative nonlinearity can be attributed to the
PSI. Typically we measure over a very restricted range,
less than ±2.5", and the slowly varying nonlinearity is
not noticeably nonlinear over this range. (Even over a
range of ±20" the nonlinearity is not obvious.)
However, when the PSI scale is calibrated using large
rotations to increase sensitivity (typically ±60"), then as
a consequence of the nonlinearity the scale factor may
be slightly incorrect over the restricted ±2.5" operating
range; our data indicates that an angle of ±2.5" might
consequently be measured in error by an amount not
exceeding ±0.004". Including an additional small
uncertainty in calibrating the large-angle scale factor,
we conclude that the uncertainty of PSI measurements
at ±2.5" is less than 0.005". We take this value as a
measure of the expanded uncertainty (standard uncer-
tainty = 0.0025"). This uncertainty could most likely be
reduced either by carefully measuring and correcting
for the nonlinearity, or by calibrating the PSI scale over
a more narrow range so as to avoid the nonlinear region
(but increasing sensitivity to noise and other small
errors). At present we do not feel that we can confident-
ly correct for the nonlinearities, which are difficult to
measure.

Over the restricted range of ±2.5" (with the overall
scale set by measurements at ±60"), our comparison
shows that any possible nonlinearities are too small to
distinguish from the noise of measurement. The root-
mean-square difference observed between the PSI and
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autocollimator over this range was 0.007". The com-
parison required significant averaging to eliminate
noise: each PSI point was measured with 20 phase
averages, and the measurement of each angular interval
from 0 to some angle θ was repeated 14 times. In the
presence of drift, the averaging might wash out the
effect of nonlinearities that vary rapidly with angle
(such as problems associated with pixel size in either
the PSI or autocollimator), but our normal measure-
ment procedures also employ significant averaging, so
the results obtained in this test reflect normal measure-
ment procedures reasonably well.

It is likely that the 0.007" deviations between the two
instruments arise primarily from measurement noise,
which is greater for the PSI than for the autocollimator.
(This is not necessarily a failing of the PSI, which had
to measure through a longer air path than the autocolli-
mator.) We can then assign a standard uncertainty of
0.007" to the PSI measurements, which includes com-
bined effects of the measurement noise and of possible
small-scale nonlinearity within the ±2.5" range.

3. Pyramid Error

Pyramid error occurs when the x-axis reading of an
angle measurement instrument changes in response to a
change in tilt of a surface along the y-axis, where the x-
axis angle is the desired measurand and where the y-
axis reading would not change for a perfect artifact that
is perfectly mounted. Figure 1 depicts a polygon meas-
urement and shows the coordinate system. In Fig. 1, the
axis of rotation of the indexing table is ideally parallel
to the y-axis of the autocollimator or PSI. Rotation
about the y-axis changes the tilt along x. If the face of a
polygon or other angle artifact is rotated about the x-

axis, so that there is a tilt along y, the angle of rotation
is the pyramid angle.

We have studied the pyramid error more extensively
for our autocollimator than for the PSI. Pyramid error
can be determined by seeing how the apparent angle
between two surfaces changes when the artifact is
mounted in a tilted orientation, with the direction of tilt
as shown in Fig. 1 (“pyramid tilt”). In Fig. 2 the error
in measuring the angle is graphed as a function of the
pyramid tilt angle. (Note: These measurements were
taken using a 45° angle block rather than a polygon as
depicted in Fig. 1.) The “error” is the difference
between the measured angle in the tilted position and
the measured angle of the non-tilted artifact. The near-
ly linear error shown in Fig. 1 is most likely caused by
a misalignment of the autocollimator axes relative to
axis of rotation of the artifact, causing the y-axis tilt to
have a small component along the x-axis. This mis-
alignment presumably occurred because the original
mounting of the autocollimator was performed by
aligning the y-axis and assuming (incorrectly) that the
x-axis was orthogonal to y. Rather than re-mount the
instrument, which is difficult for our set-up, we simply
software-correct our x-axis results, based on y-tilt read-
ing from the autocollimator. The correction factor is
determined from a linear fit to the data of Fig. 2. As can
be seen in Fig. 3, once this correction is made, errors
are small even at rather large tilts. Furthermore, these
remaining errors are to be expected, even for a perfect
autocollimator, as a geometric consequence of the fact
that the artifact is mounted at an angle relative to the
measurement plane [13]. Thus it would seem that, after
software correction, the autocollimator shows no unex-
pected behavior when measuring tilted surfaces. It
appears that we understand pyramid errors at the level
of about 0.015" for 100" tilts, and thus measurement
uncertainties are probably less than 0.002" when the
pyramid tilt is less than 15".
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Fig. 1. Coordinate system and pyramid tilt.
Fig. 2. Pyramid error when the artifact is mounted at a tilt.



The PSI also exhibits a pyramid error which arises
because it is misaligned relative to the axis of rotation.
In this case the misalignment is not a result of the non-
orthogonality of the x- and y-axes, but simply occurs
because it is too difficult to mount the bulky instrument
in perfect alignment. Again we correct in software, and
following correction, the PSI measurements agree well
with the autocollimator even for tilted artifacts. Based
on these comparisons and on uncertainty in determin-
ing the software correction, we estimate a standard
uncertainty as 0.003" for tilt angles below 15".

4. Eccentricity and Related Errors

Eccentricity errors occur if an artifact is mounted off
center from the axis of rotation. As an off-center opti-
cal polygon is rotated from one face to the next, the
faces will appear at slightly different points within the
field of view of the autocollimator or PSI. Aberrations
of the optical system that would be common mode for
measurements between two faces located at the same
place within the field of view are no longer entirely
common mode when the artifact is mounted off center.
We have studied this effect briefly, and we find that for
our autocollimator the errors are 0.06" per millimeter
runout of a polygon mounted off-center. We normally
mount artifacts with less than 0.2 mm runout, and con-
sequently eccentricity errors are expected to be below
0.012". For the PSI, the eccentricity errors are about
three times smaller than for the autocollimator, indicat-
ing that optical aberrations are somewhat smaller for
the PSI than for the autocollimator. We estimate that the
PSI errors are on the order of 0.004" at 0.2 mm runout;
we take this value as an estimate of the standard uncer-

tainty. Another way to quantify PSI eccentricity errors
is to use software masks, as described later.

When measuring an angle block, errors of a similar
origin can occur because the hypotenuse is longer than
the sides and consequently optical aberrations are not
common mode. For our PSI, the primary issue is non-
flatness of the transmission flat. It is easy to put a max-
imum value on this error by measuring a test surface of
good quality, first evaluating the tilt angle with a 50
mm wide mask and then re-evaluating with a 70 mm
wide mask to simulate the hypotenuse of a 45° angle
block. (In principle a better result could be obtained by
measuring and correcting for form errors of the nomi-
nally flat test surface.) When the mask size is changed,
we see that the apparent tilt of the surface changes by
an amount ranging from near zero to as much as 0.02",
depending on exactly where the masks are located. This
data suggests that uncertainties on the order of 0.01"
can be expected when measuring a 45° angle block. For
angles ≤15° this source of uncertainty is negligible.

The autocollimator might potentially be subject to
similar errors but in practice it is irrelevant for our auto-
collimator when measuring angle blocks. The field of
view of our autocollimator is about 50 mm across,
small enough that it does not quite include the entire
side surface of an angle block, and it measures only the
central 70 % of the hypotenuse. Consequently it is not
at all clear how the measured angle relates to the real
angle between the surfaces, unless ancillary measure-
ments with a PSI are used to correct for portions of the
surfaces that are not seen by the autocollimator.
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from geometric effects.



5. Diffraction and Edge Effects in a PSI

It is not clear to us what effect diffraction has for the
reading of an autocollimator, but it surely affects the
measurement using a PSI. Diffraction effects or other
possible spurious edge effects are manifested as wavi-
ness or as an apparent bending upward or downward
near the edges of the artifact surface. A spurious appar-
ent rolloff of the edges must be distinguished from a
real, physical rolloff that might result from imperfect
lapping of the face. This can be done by using razor
blades to mask the edges of a good flat surface; the
unmasked portion is known to be flat but may appear to
bend downward or upward. Diffraction effects are min-
imized through careful focusing. However, even with
good focusing problems will remain if the surface is
tilted away from perpendicular to the PSI axis. As
shown in Fig. 4, one edge of a tilted surface appears to
bend upward and the other edge bends downward. The
distortion at the edges increases with increasing tilt
angle. This edge effect can be quantified by measuring
the change in angle when the tilt is evaluated first with
a software mask somewhat larger than the surface, and
then with a mask reduced slightly in size so as to
exclude the spurious patterns at the edges. For a 20 mm
wide surface tilted at angles up to ±30", edge effects
cause the measured angle to appear too small by about
0.6 %. Tilts of ±2.5" are in error by 0.015". For tilt
angles above 30" in magnitude, the error does not
increase linearly with angle. Therefore, the 0.015" error
is not completely absorbed into the calibration factor if

we calibrate the PSI scales with ±60" rotations, but the
calibration procedure does compensate about 50 % of
the error, reducing the error at 2.5" to 0.008". We have
tried measuring these errors several times; the measure-
ment is relatively easy to carry out and moderately
repeatable, depending in part on how much care is
taken with focusing. It should be possible to correct for
about half of the nonlinearity due to edge effects, leav-
ing an uncertainty of 0.004".

As with the scale nonlinearities discussed previous-
ly, this uncertainty could probably be reduced in a fair-
ly straightforward manner if the PSI scale were cali-
brated over a more narrow range of angles, in a region
where the error is linearly related to angle.

6. Periodic Fringe Interpolation Errors
and Bull’s-Eye Patterns

Fringe interpolation errors, which are periodic at
spatial harmonics of the fringe spacing across the sur-
face being measured, can be expected in the PSI, par-
ticularly if vibrations are present [14]. There is no
directly analogous error in the autocollimator. These
errors can be quantified by tilting a flat surface and
looking for apparent waviness of the surface correlated
with the fringe spacing across the surface and at a spa-
tial harmonic of the fringe spacing. To see this wavi-
ness clearly, it is necessary to remove both the surface
tilt and the shape of the non-tilted surface in software.
When we purposely introduce vibrations during a
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Fig. 4. A flat surface that has been tilted 15". The overall 15" tilt has been removed from
the data. Diffraction or other edge effects causes the apparent upward bending on the left
edge and downward bending on the right edge.



measurement, periodic waviness due to interpolation
errors can be clearly seen at a level of several nanome-
ters. Under normal conditions of low vibration, whose
effect is further reduced through phase-averaging of 20
images, there are certainly no interpolation errors pres-
ent at the level of 1 nm P-V (peak-to-valley), which
should be visible even without a careful Fourier analy-
sis. A 1 nm P-V error could potentially cause an error
as large as 0.01" in the angle measurement, but only if
a peak of the interpolation error aligns with one edge of
the polygon face and the following trough aligns with
the second edge. When measurements are averaged
over a reasonable period of time, drifts in the optical
distance between the polygon face and the PSI will
cause the periodic errors to average out. Similarly, a y-
axis tilt of the surface by a few fringes will greatly
reduce the effect of periodic errors. In light of these
considerations it would seem very unlikely that the
periodic error would ever exceed 0.01", an upper limit
which might be taken as a conservative estimate of the
expanded uncertainty (standard uncertainty = 0.005").

Very similar considerations apply to bull’s-eye pat-
terns, which are caused by coherent scattering from
dust particles or inhomogeneities in optical compo-
nents that disturb the interferometer wavefront.
Particularly bad bull’s-eye patterns can perturb the sur-
face shape by as much as 10 nm, and it is essential to
clean optics so as to avoid such large errors. As in the
case of fringe interpolation errors, bull’s eye patterns
do not cause serious difficulties unless the peaks and
troughs line up well with the edges of the polygon face,
and alignment is unlikely to be particularly good
because of the curvature of the bull’s-eye fringes. For
worst-case alignments, we can estimate the effect of
bull’s eye patterns by finding the angular changes when
a software mask is shifted across the bull’s-eye pattern,
where one edge is first aligned with a trough of the
bull’s-eye pattern and then with a crest. In spite of
cleaning, we do occasionally see some small bull’s-eye
patterns overlapping our measurement region, but it is
difficult to see any correlations between the analyzed
tilt angle and the placement of a mask relative to the
bull’s eye fringes. Certainly we see no evidence of
effects at the level of 0.004"; we estimate the standard
uncertainty as half of that value, 0.002".

7. Quantifying the Combined Effect of
Bull’s-Eye, Fringe Interpolation,
Eccentricity, and Similar Errors

Bull’s-eye patterns, fringe interpolation errors, or
other errors of high spatial frequency are likely to cause
trouble only if they fall at specific locations relative to
the edge of a surface being measured. The combined
effect of these errors can be estimated by viewing a per-
fectly flat surface, masked on its sides, and seeing how
the apparent surface angle changes when the mask
position is moved slightly so as to change the alignment
of spurious patterns relative to the edge. Shifting the
mask off-center also provides a measure of eccentricity
errors combined with these other sources of uncertain-
ty. The mask can be a software mask or, as described
previously, it can be a hardware mask so as to include
possible diffraction effects.

We use a 20 mm wide mask on a segment of a large
flat surface to simulate the measurement of a polygon
face. We repeatedly position different portions of the
surface in the center of the field of view, and then look
at changes in the measured angle when the mask is
shifted ±1 mm. The angle typically changes by about
0.005". These changes are smaller than what would be
expected based on our previous discussion of eccentric-
ity errors, periodic fringe interpolation errors, and
bull’s-eye patterns, where eccentricity errors alone can
account for the observed variations with this relatively
large runout. In any case the test provides some support
for the conclusion that all of these sources of uncertain-
ty are probably fairly small, not the dominant uncer-
tainty in our measurement.

8. Non-Flat Faces of the Artifacts

For some autocollimators, effects arising from non-
flat artifact faces may well be the greatest source of
uncertainty in the measurement, but it is not clear how
to quantify the error, other than by comparison to
another autocollimator which may itself be in error!
The situation is somewhat better for a PSI, although we
do not have a complete solution to the problem. We can
investigate certain imaging aberrations of non-flat sur-
faces by looking at distortions of a tilted flat surface.
Evans [9] similarly evaluated the effect of aberrations
by looking at a tilted surface. For the purposes of this
paper we can use a simpler, more straightforward
method of analysis than used by Evans. Neither method
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of analysis is rigorously complete, but we believe that
we can obtain a reasonable estimate of the magnitude
of likely aberration effects as described below.

A flat surface, when tilted, appears non-flat as a con-
sequence of optical aberrations. For our PSI, viewing a
40-mm long region of a flat surface and using a typical
zoom setting, the primary effect of distortions is to
make the surface appear convex or concave depending
on which direction the surface is tilted. Figure 5 shows
a cross-sectional view along the x-axis of a flat surface
that has been tilted along x at five different angles rang-
ing from –56" to +57". The data has been manipulated
in the following manner: (a) best-fit slopes have been
subtracted from the data so as to make the distortions
(which are small relative to the tilt) visible; (b) small
deviations from flatness at zero tilt have been subtract-
ed from the data; (c) the data has been averaged over y
so as to reduce noise along x.

The surface slope near the center of the data in Fig.
5 is zero, implying that the slope in the central region is
nearly the same as the best-fit slope which has been
subtracted. The distorted surface shape seen in Fig. 5
probably provides a good semi-quantitative indication
of errors due to optical aberrations, but it does not fully
characterize the effect of aberrations because all meas-
urements are made relative to the central region which
itself might be distorted. From a strict mathematical

standpoint, the on-axis aberrations (both piston and tilt
terms) cannot be determined by looking at the apparent
shape of a tilted surface. Additional measurements
(none of which are easy) would be required to evaluate
the on-axis aberrations. If it can be argued that on-axis
aberrations are smaller than off-axis aberrations, then
our method will provide a reasonable uncertainty esti-
mate. For the moment we will assume that this is the
case.

The PSI is incorrectly measuring surface height and
misinterpreting the local surface normal in a manner
that varies with the tilt angle and with the position of a
surface element within the field of view. Although we
normally strive to measure a surface in a non-tilted ori-
entation, an imperfect, non-flat surface will necessarily
have local surface elements oriented at an angle, typi-
cally spread out over a range on the order of several
arcseconds; hence the distortions we see when viewing
a tilted flat surface imply that a non-flat surface, nomi-
nally un-tilted, will appear distorted because local sur-
face elements are tilted.

We find empirically that the apparent shape of a flat
tilted surface is parabolic, at least for the spatial range
and typical set-up used to obtain the data of Fig. 1.
(Over a larger area the parabolic fit is not very good.)
The surface shape can be described approximately by
the equation

∆z = aθx2 (1)

where ∆z is the z-error due to distortion (the apparent
surface height after removing best-fit tilt) relative to the
center, x is the distance along the x-axis from the center
of the field of view, expressed in the same units as ∆z,
θ is the tilt of the surface along the x-direction (in radi-
ans), and a is a constant. Our data indicates a ≈ –8 ×
10–5 mm–1. We have no insight into why ∆z is propor-
tional to θ x2 and we would not particularly expect
other PSIs to exhibit similar errors; we simply state that
Eq. (1) appears to account for the bulk of the distortion
shown in Fig. 5 (although at +15" tilt the agreement is
not as good as might be hoped). The equation predicts
very small distortions for situations of practical inter-
est. For example, a nominally untilted surface that is
concave by 150 nm over a 20 mm length has local sur-
face normals inclined by ±6" at the edges. According to
(1), the extremities will be distorted by only a very
small amount, ∆z = ±0.24 nm, and hence we expect
slope errors would not exceed 0.48 nm over 20 mm, or
0.005". A possibly more precise way of determining the
slope error, as described below, gives a somewhat
smaller estimate of the error.
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Fig. 5. Distortion of the surface as a function of tilt angle, for tilts
(from top to bottom) of –56" (top), –14", +15", +28", and +57" (bot-
tom). The solid lines are calculated from Eq. (1). For clarity the five
sets of data have been offset relative to each other by adding arbitrary
constants



We assume that the error in measured z-height rela-
tive to the height at the center is a function of only two
variables—the local surface tilt along the x-direction
and the distance x—and does not depend on any other
properties of the surface being measured. (We are
ignoring distortions caused by y-tilt, for example.)
Equation (1) can then be used to compute the distor-
tions and determine what errors might be expected for
various non-flat surfaces. Consider, for example, a
curved surface independent of y and of parabolic shape
along x. If it is tilted at a small angle of b radians along
x, the surface is described in 1-dimension as

z = bx + cx2. (2)

The local slope of the surface is θ = b + 2cx and we can
find ∆z from Eq. (1). The apparent shape of the tilted,
distorted surface is then

z + ∆z = bx + (c + ab)x2 + 2acx3. (3)

Over an interval symmetric about the origin between
x = –x0 and x = +x0, the best-fit slope of this surface is
b + (6/5)acx2

0. Thus the error in the measured tilt angle
is (6/5)acx2

0. A non-tilted concave surface (b = 0, c pos-
itive) will be misinterpreted as tilting to one side, while
a convex surface (c negative) will be misinterpreted as
tilting the opposite direction. For a 20 mm long surface
that is 150 nm concave or convex, the expected error is
±0.003", relatively small but not negligible. This is the
order-of-magnitude error that we would expect in our
system when measuring polygon faces of typical geom-
etry.

Above we assumed a symmetric surface form for the
face of the artifact. It seems surprising that a symmet-
ric surface appears to slope to one side. This is a conse-
quence of the observed functional dependence of ∆z on
x and θ as given in Eq. (1), which is such that
∆z(x,θ) = –∆z(–x,–θ). To estimate errors for surfaces
with non-symmetric form errors, we could add terms to
Eq. (1) that are quadratic in θ and cubic in x. Such
terms may well be present; for example, tilted surfaces
sometimes appear distorted in a coma-like shape [9],
which implies the presence of terms cubic in x, and
errors modeled by Selberg [8] scale roughly as θ 2 in
contrast to the θ dependence seen here. These terms
might be present in our data at low levels, but the bulk
of the observed distortion is accounted for with the x2θ
term of Eq. (1). Therefore it is likely that errors associ-
ated with anti-symmetric surface form are significantly
smaller than the ±0.003" error calculated for symmetric
form errors. Note that, if we were to scale down the

errors observed at large tilt angles (56") assuming pro-
portionality to θ 2 rather than θ, the predicted distortion
at the edges of a 20 mm polygon will be very small; the
previous estimate of ±0.24 nm distortions, based on lin-
ear scaling, becomes ±0.03 nm for quadratic scaling.
The corresponding slope errors will be entirely negligi-
ble. Similarly, if we were to scale down errors seen at
large x values assuming scaling as x3 rather than x2, the
predicted distortions at the edges of a 20 mm polygon
face would be smaller than predicted above.

A potentially more important limitation of the above
method is that looking at a tilted flat surface cannot
quantify all possible aberrations, because certain aber-
rations do not make a tilted flat surface appear non-flat.
Of concern are aberrations that cause errors in the z-
height that depend on the tilt θ and are either independ-
ent of x or are linearly proportional to x:

∆z = c1θ + c2θ x + c3θ 2 + ... (4)

where we have neglected possible higher-order terms
such as terms proportional to θ 2x or to θ 3. The terms
independent of x are the greatest concern. These terms
represent non-zero aberration of the z-height on the
optical axis. Such an aberration will not cause tilt-
dependent changes in the apparent shape of a flat sur-
face and hence cannot be quantified easily. The aberra-
tions change the piston term as a function of θ, but it is
difficult to interpret piston measurements in a meaning-
ful manner. Unfortunately, the aberration will distort
the measured shape of a non-flat surface. For example,
the c1θ aberration will appear to shift the tilt angle of a
quadratic surface. The distortion is independent of the
tilt angle of the surface. This gives us a potential error
that can only be estimated by indirect arguments. In
general, off-axis imaging errors tend to be larger than
errors on-axis, and we might guess that the on-axis
errors do not exceed the 0.003" value that we have esti-
mated above. This is a weak argument that might be
strengthened by modeling of typical aberrations in a
PSI, but unfortunately we are not in a position to carry
out this modeling. For now, we guess that on-axis
errors produce an uncertainty comparable to our esti-
mate for off-axis errors; adding this in quadrature to the
off-axis errors gives a combined standard uncertainty
of 0.004" due to aberrations.

Aberration terms proportional to x are somewhat
more amenable to analysis. Consider, for example, the
term c2θ x which gives a slope error at x = 0. Like the
c1θ term, this aberration will not make a flat surface
appear non-flat. Even a quadratic surface will still
appear quadratic in the presence of this aberration,
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although the apparent peak-to-valley height will be dis-
torted. A θ x error will cause the tilt of a flat or quadrat-
ic surface to be measured in error by a constant fraction
of the tilt. For our particular application any such error
is absorbed into the PSI calibration factor and hence
causes no errors in our angle measurements.
Distortions proportional to higher powers of θ would
affect the linearity when we compare the PSI to the
autocollimator. As mentioned previously, we have
measured nonlinearities of ±0.03" for angular ranges
±60", but if the error scales as θ n with n ≥ 2, then we do
not expect these distortions to be significant for typical
surfaces, where the local surface tilt θ can be expected
to be less than 6".

9. Summary of Uncertainties in Small-
Angle Measurement

PSI uncertainties are summarized in Table 1. Here
we assume that we are measuring a polygon with 20
mm wide faces and measurement conditions are as
summarized in the table.

Several of the values in the table are based on fairly
crude estimates, but nevertheless the table should pro-
vide a reasonably good picture of the sources of uncer-
tainty. Surprisingly, it appears that optical aberrations
from non-flat surfaces make only a small contribution
to the overall uncertainty. The largest source of uncer-
tainty listed is the combined effect of measurement
noise and possible small-scale nonlinearities. It is like-
ly that the bulk of this uncertainty is noise, which could
probably be reduced by mounting the PSI closer to the
artifact being measured, or by more extensive averag-

ing. The second largest source of uncertainty listed,
periodic interpolation errors, is an upper limit that
might well overestimate the actual interpolation errors
in our PSI (which are too small to see). This estimate
might be reduced with suitable Fourier analysis so as to
more carefully quantify interpolation errors. The entry
listed for diffraction and edge effects assumes that a
correction has been made based on measurements with
masks. Otherwise this source of uncertainty would be
greater, but the uncertainty could also be reduced by
requiring that the artifact faces be more precisely per-
pendicular to the PSI axis.

For the autocollimator, the largest known uncertain-
ty arises from eccentricity (0.006" standard uncertain-
ty), and there is probably comparable uncertainty due
to nonlinearities over a ±2.5" range. However, the
largest potential uncertainty of autocollimator measure-
ments arises from optical aberrations in imaging non-
flat artifacts. This uncertainty cannot be evaluated
directly, although errors might be estimated by compar-
ison to a PSI as described later. In doing this compari-
son, a complicating factor is that the autocollimator and
PSI do not use the same definition of “angle” for non-
flat surfaces. The 0.024" expanded uncertainty given in
the table for PSI measurements is only valid assuming
that angle is defined as the orientation of a best-fit
plane through a surface.

10. Definitions of Angle

The angular orientation of a flat surface is defined by
the angle of the surface normal relative to some coordi-
nate axes. For a non-flat surface, there are at least two
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Table 1. Sources of uncertainty in PSI angle measurements

Source of uncertainty Conditions Standard uncertainty
(arcsecond)

Scale error Range <±2.5" 0.0025
Small-scale nonlinearity Range <±2.5" 0.007
and measurement noise
Pyramid error Pyramid angle < 15" 0.003
Eccentricity Runout < 0.2 mm 0.004
Diffraction and edge effects x tilt <2.5", good focus 0.004
Periodic interpolation error 20 phase averages 0.005
Bull’s-eye patterns Moderately clean optics 0.002
Aberrations when viewing <150 nm P-V form error 0.004
non-flat faces of faces

Combined standard uncertainty 0.012

Expanded uncertainty 0.024 (k = 2)



logical approaches to defining an average angular ori-
entation.

The first approach is to determine the orientation of
local normal vectors defined at every point on the sur-
face. This is illustrated in Fig.6. The angles of these
vectors relative to the coordinate axes can be averaged
over the entire surface to define an average angular ori-
entation θavg. Consider a coordinate system as shown in
Fig. 6, where the axis of rotation is parallel to the auto-
collimator y-axis, the autocollimator beam is directed
along z, and the surface to be measured nominally lies
parallel to the x-y plane, nearly perpendicular to the
autocollimator beam. The autocollimator x-angle read-
ing then measures the slope of the surface along the x
direction (which increases with rotation about y). The
average surface normal projected into the x-z plane
makes an angle θavg with the z-axis given by

(5)

where A is the surface area and z(x, y) is the height of
the surface at point (x, y). Here we are assuming that the
local slope of the surface along the x-direction,
d/dx[z(x, y)], is very small so that slope is equal to the
angle in radians.

For a continuous surface, the integral of the deriva-
tive in the formula above depends only on the total
change in z-height across the surface in the x-direction,
and thus depends only on the surface height at the
boundaries with no explicit dependence on the interior
of the surface. For example, if the surface is rectangu-
lar in shape, the formula can be simplified as

(6)

where are average surface heights at the two
edges of the surface located at x = x2 and x = x1. (See

Appendix A.) This definition of angle has the advan-
tage that it is intuitive, and it can be expected to corre-
spond to what is measured by some commercial auto-
collimators such as the one we used in this study, which
ideally detect the centroid of the image formed in the
autocollimator focal plane by light reflected from a sur-
face. To be more precise, the instrument finds the aver-
age position of the light striking a 1-dimensional CCD
array, where the averaging is weighted by the intensity
at each pixel. When the reflecting surface is not perfect-
ly flat, the image will be spread out in the focal plane
in a manner dependent on the variations in angle over
the non-flat surface. Finding the centroid should be
functionally equivalent to the integral of Eq. (5),
assuming that the surface has uniform reflectivity so
that the power of the signal reflected from a small area
element dA of the surface is proportional to the size of
dA.

The definition has the disadvantage that it depends
explicitly only on the boundary of the artifact—not on
the interior of the surface—and consequently it is rather
sensitive to how the boundaries of the surface are oper-
ationally defined. There are no standards providing
guidance as to what this definition should be. An auto-
collimator with a larger angular range will detect more
of a rounded edge than an autocollimator with a small-
er range and hence might give a different (but equally
valid) answer for the average angle. Sensitivity to
rounded edges of an artifact could, at least in principle,
explain why different autocollimators measure the
angle between two surfaces differently. In addition,
rounded edge geometries can cause angular rotations of
certain artifacts to be measured incorrectly; the meas-
ured rotation will not be equal to the physical rotation
if parts of the edge rotate into or out of the range of the
autocollimator. This effect might possibly provide an
explanation of reported [15] cases where measured
angular rotations are artifact-dependent. In practice we
have not seen any direct evidence that edge geometry is
a significant concern, but there is a possibility that this
accounts for some problems with autocollimator meas-
urements. The potential problems associated with the
edges can always be avoided, if necessary, by masking
the edges in a well-defined manner, as is done with
some commercial polygons.

An alternate definition of the average surface angle
is much less sensitive to edge effects. A normal vector
to a best-fit plane through the surface specifies the
average surface angle in a plausible manner. This
would be a natural method of measuring the direction
of a surface if the measurement were carried out with a
coordinate measuring machine rather than an autocolli-
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Fig. 6. Angle of the local normal vector at a point on a non-flat sur-
face.
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mator. Furthermore, it is the most robust and conven-
ient way of specifying angle when the measurement is
carried out using a commercial Fizeau PSI.

This second definition of angle is clearly not the
same as the first. This is perhaps most easily seen by
considering a surface that bends down at one edge, as
might occur if imperfect lapping caused an edge to roll
off. Figure 7 shows the surface viewed side-on so that
it appears as a bent line. The solid line is the surface,
the dotted line and associated normal vector are for a
best-fit plane, and the dashed normal vector shows the
direction as defined by the average angle formulation
of Eq. (5). One can see from the picture that the slope
of the best-fit plane is much less affected by the down-
ward-bending edge than is the average angle. As a
quantitative example, suppose that the surface is 20
mm long and the beveled edge falls off at an angle of
100" over a 20 µm region at the edge. The beveled edge
will then shift the average angle by 0.1" while the angle
of the best-fit plane is shifted by only 0.0003".

As a second example, consider a surface with coma.
If the surface is circular, with a shape over the unit cir-
cle given by the Zernike polynomial for coma along the
x-axis [that is, (3ρ3-2ρ)sin(θ) in spherical coordinates,
as given by Malacara (10)], then the best-fit plane has
zero tilt whereas the average slope along the x-axis is 1.
Only Zernike polynomials with angular dependence
sin(θ) have non-zero average slope along the x-axis
(see Appendix A). For Zernike polynomials of order
less than 5, the average slope along x is non-zero for
two polynomials, the coma term (as just described) and
the tilt term ρsin(θ). The ρsin(θ) polynomial describes
a flat plane tilted by an angle θ along the x-direction
(that is, rotated about the y-axis); this is the only
Zernike for which the best-fit plane is tilted, and for this
surface the two definitions of angle are in agreement.

Thus we might expect that the two definitions of
angle will not agree for surfaces with large coma along
the axis of interest. If coma is measured with a PSI, an
unusually large value should alert us that the angle
measurements for this surface will be somewhat prob-
lematic because of the ambiguity in angle definition.

11. Comparison of Autocollimator and
PSI

We have used our two measurement systems to
measure angle intervals on two polygons and seven
angle blocks, and we find that the maximum disagree-
ment between the systems for these measurements is
±0.03". This is better agreement than we would have
expected based on the arguments presented above.
Peak-to-valley form errors of these surfaces range from
about 40 nm to 150 nm.

Similar comparisons by Probst and his co-workers
have usually shown greater differences between auto-
collimator and PSI measurements [3-5]. In one study
[5] Probst does see good agreement—at the level of
0.02"—for surfaces with flatness error under 6 nm
RMS (root-mean-square). (Note: all of Probst’s form
measurements are made relative to an average form
determined from all the faces.) However, he observes
that the disagreement increases to 0.07" for 12 nm
RMS flatness errors. Even larger disagreements were
observed in another Probst study [4], which concludes
that, even with relatively small form errors ≤ 5 nm
RMS, disagreements are guaranteed only to be less
than 0.2". In a third study [3] (a summary of an interna-
tional comparison), measurements were reported for a
seven-sided polygon with good geometry (form errors
of about 20 nm to 40 nm P-V, 4 nm to 7 nm RMS).
Differences between the autocollimator and a PSI were
as large as 0.07". A 24-sided polygon, with face flatness
errors as large as 260 nm P-V (33 nm RMS) shows dif-
ferences as large as 0.3".

The comparison of the PSI to the autocollimator in
which we have the greatest confidence was done by
measuring the angle between pairs of opposing faces of
a six-sided polygon. Both instruments simultaneously
measured opposite faces so as to minimize influences
of index table non-repeatability. These measurements
showed very good agreement of the two
instruments—to better than 0.02"—even though the
polygon faces are not particularly good, with form
errors of about 100 nm P-V (18 nm RMS). It should be
noted, however, that these form errors somewhat over-
state the potential problem for several reasons: (1) all
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Fig. 7. Two definitions of angle. The dotted line and its normal vec-
tor were obtained from a least-squares best fit. The “average angle”
is in the direction of the normal to the dashed line, which connects
the two edges of the surface.



faces are somewhat concave, so the form errors tend to
be “common mode”; (2) form errors of our polygon are
more pronounced in the y direction than in the x direc-
tion and it seems plausible that non-flatness along y has
less effect on the measurements; under such circum-
stances the peak-to-valley or RMS error might be mis-
leadingly large; (3) finally, coma along the x-direction
is small and tends to be similar for all the faces, so we
do not expect to see large effects due to definition of the
angle.

Nevertheless, based on Probst’s results we might still
expect to see differences somewhere in the range of
0.07" to 0.2". One possible explanation of the very
small errors that we observe is that we happen to have
a particularly good autocollimator (perhaps even better
than other autocollimators of the same model) with
small aberrations. A second possibility is that the total
number of artifacts we have looked at is fairly small
and may not be a statistically representative sample.
Although Probst’s work shows that there is some corre-
lation between surface form and the observed disagree-
ments, the correlation is not so strong as to preclude the
possibility that artifacts of modest quality might happen
to give very small errors.

Neither Probst’s work nor the work reported here
shows any direct evidence indicating problems associ-
ated with angle definition. The small differences we
have observed might be attributed to sources other than
angle definition. We would like to measure some arti-
facts with significant coma errors to see if the expected
difference between the two instruments is observed, but
thus far we have not been successful. Unfortunately,
our autocollimator is simply not capable of measuring
our only polygon which has large coma errors; it will
not return a reading when measuring this particularly
poor artifact.

12. Conclusion

We conclude that PSI errors are small and are quan-
tifiable, although more work is needed to better under-
stand aberrations that cannot be detected by viewing a
tilted surface. We estimate that our PSI, when adjusted
carefully and used only for measurements of angles less
than 2.5", has an expanded uncertainty of 0.024" when
measuring a polygon with 20 mm faces and typical
geometric errors. The corresponding uncertainty for
autocollimators is usually much larger, at least when
measuring artifacts of poor geometry. In reference [3],
summarizing an international comparison of angle
measurements, the authors conclude that it is difficult

or impossible to quantify these errors in autocollima-
tors, but the authors also give a formula suggesting that,
as a rule of thumb, the uncertainty due to flatness errors
increases as a linear function of the RMS form error,
reaching 0.32" for surfaces with 20 nm RMS error. If
PSI measurements can be verified even at the modest
level of 0.03", this represents an order of magnitude
improvement over autocollimator measurements of
artifacts with 20 nm RMS errors in surface form.

Surprisingly, our particular autocollimator seems to
have much smaller uncertainty, as evidenced by the
good agreement between results obtained with our two
instruments. We must emphasize that this result is
applicable only to our particular autocollimator and that
evidence from previous studies shows that much larger
errors might be expected with other autocollimators.

From a theoretical standpoint it would appear that
there is a real danger that significant uncertainty can
arise due to imprecise definition of angle. Seemingly
plausible surface geometry can lead to situations where
the two definitions of angle differ by as much as a few
tenths of an arcsecond. In spite of this concern, we see
no direct evidence that problems of definition are a
practical problem, leaving us in a quandary. There is no
experimental evidence supporting the idea that it is nec-
essary to carefully specify angle definition (i.e., a nor-
mal to the best-fit plane or average orientation derived
from a surface integral), but there is no guarantee that
problems will not arise when measuring arbitrary arti-
facts. If we do not carefully define “angle”, how can we
confidently state that uncertainties below 0.2" have
been achieved, even if we are using a perfect, ideal
instrument for angle measurement? A very modest P-V
error of 20 nm can in principle cause a 0.2" ambiguity
due to definition. A number of National Measurement
Institutes (including NIST) claim uncertainties less
than 0.2" for angle measurement, at least when measur-
ing artifacts of good geometry, but it would seem desir-
able to carefully specify the definition of angle in order
to support these claims with confidence. At a minimum,
issues of definition can be avoided only if it is checked
that the artifact faces do not have large coma. For the
present, until we gain more experience, we feel fully
confident of our lowest uncertainty claims only when
we measure an artifact using both of our instruments.
When the two instruments, operating under entirely dif-
ferent principles and using different definitions of
angle, agree to better than 0.03", we can confidently
claim a correspondingly low measurement uncertainty. 
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13. Appendix A. Some Mathematical
Details

13.1 Generating Arbitrary Angles

It may not be quite obvious that the average angle
generated with our random partial closure technique is
indeed known. The reasoning behind this statement is
based on closure.

Our AAMACS system can generate n = 379 080 000
possible angles. Closure guarantees that the sum of the
least-increment angular moves ∆φi in going around the
full circle is 2π rad:

(A1)

Consequently the average least increment , the sum
of all ∆φi divided by the total number of steps going
around the circle, is known exactly ( ). When
we generate some arbitrary angle θ, it can be thought of
as being made up of a known number m of least incre-
ments. Since the average value of the least increment is
known exactly, the expectation value of the sum of a
subset of the least increments is also known exactly;

. Given random starting positions for generat-
ing θ, the intervals ∆φi are sampled uniformly, and the
angle θ generated cannot on average be too large or too
small. When the angle is generated repeatedly at ran-
dom starting positions, the average angle generated
must approach the known expectation value .

13.2 Average Angle

In this paper we have defined average angle as

(A2)

where the surface is defined by its height z(x, y) above
the x-y plane. We assume that the surface is continuous,
which operationally means that all surface elements
have a small enough slope that they are within the field
of view of the instrument; this might not be true for a
scratched surface. Suppose that the surface is bounded
in the y-direction between y = ymax and y = ymin, with
height h = ymax-ymin. (See Fig. A1.) Consider only sur-
faces which are convex in the sense that any horizontal
line located between ymax and ymin intersects the bound-
ary of the surface at exactly two points, (x1, y) on the
left and (x2, y) on the right, where x1 and x2 are functions
of y. Then (A2) can be rewritten as

(A3)

where are the surface heights averaged along
the two edges connecting ymax and ymin:

(A4)

Equation (6) in Sec.10 is a special case of Eq. (A3).
Consider the real Zernike polynomials Un,m as

defined by Malacara on the unit circle [10]. These poly-
nomials are even or odd functions of x, and it should be
clear from Eq. (A3) that θavg is zero for the even func-
tions. In polar coordinates, with θ (as defined by
Malacara) the angle to the y-axis so that x = ρsin(θ), the
odd Zernike functions evaluated on the boundary are of
the form csin(mθ) with m > 0 and c a constant; c = 1 for
the usual normalization. Now (A3) and (A4) give

(A5)

where the first integral above is written with the
Zernike in polar coordinates but the y-integration in
Cartesian coordinates, and all is converted to polar
coordinates in the next step. Equation (A5) shows that
only those Zernike polynomials with angular depend-
ence sin(θ) have non-zero θavg. Strictly speaking, we
should say that θavg as used here is the average
slope—the average tangent of the angle—since it is not
true here that the the angle is small as was previously
assumed.

13.3 The Best-Fit Plane

If the shape of a surface is expanded in terms of
Zernike polynomials, the coefficient of the first-order
term U1,1 is the slope along x of the best-fit plane.
[Note: U1,1 = x = ρsin(θ).] All other Zernike polynomi-
als have zero slope along the x-axis. This is easily
demonstrated going back to first principles. The best-fit
plane can be described by a function

z(x, y) = ax + by + c

where we require that, for a set of measured points (xi,
yi, zi), the sum of the residuals squared is minimized, so
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that partial derivatives with respect to a, b, and c van-
ish. In particular,

(A6)

Writing the analogous integral for a continuous func-
tion,

(A7)

where dA is a differential area (dA = dxdy) and z is the
surface height as a function of x and y: z = z(x, y). The
cx term integrated over x gives 0 because it is an odd
function, and similarly the bxy term vanishes when
integrated over x or y. Thus, the best-fit slope along x is 

(A8)

The last step follows from the orthogonality of the
Zernike polynomials.
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Fig. A1. Boundary of an arbitrary convex surface.


