
1. Introduction

The two basic functions of a Virtual Environment
(VE) development toolkit are managing different dis-
play devices (such as head-mounted displays, stereo-
scopic projection displays and haptic displays) and han-
dling input devices (such as motion trackers, dials and
buttons). In these toolkits, input and output devices are
usually generalized by their similarities. For example, a
magnetic position tracker and an optical position track-
er have a common function, which can be generalized
to a single class of position tracking devices. This
allows the application programmer to write code using

the generalized positional device without knowledge
on which tracking device will be used [1]. Also, by
defining the interfaces to these devices and always
accessing the devices through these interfaces, the
developed program becomes hardware independent. By
constructing a development environment that can sim-
ulate this interface, one can develop and test programs
on a host computer, and then run them on the actual
device upon completion [2]. In addition to the above,
VE toolkits provide many computer graphics and dis-
tributed computing techniques [3]. The latter is becom-
ing more important for the following reason.

Designing and implementing the software for VE is
becoming increasingly difficult as problem complexity
grows and the expectation for presence realism increas-
es. Fast computer processors are needed to achieve user

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

279

[J. Res. Natl. Inst. Stand. Technol. 109, 279-290 (2004)]

Software Architecture for a Virtual Environment
for Nano Scale Assembly (VENSA)

Volume 109 Number 2 March-April 2004

Yong-Gu Lee1

Gwangju Institute of Science and
Technology,
1 Oryong-dong, Buk-gu,
Gwangju, 500-712, Korea

Kevin W. Lyons and Shaw C.
Feng

National Institute of Standards
and Technology,
Gaithersburg, MD 20899-8263

lygu@gist.ac.kr
kevin.lyons@ nist.gov
shaw.feng@nist.gov

A Virtual Environment (VE) uses multiple
computer-generated media to let a user
experience situations that are temporally
and spatially prohibiting. The information
flow between the user and the VE is bi-
directional and the user can influence the
environment. The software development of
a VE requires orchestrating multiple
peripherals and computers in a synchro-
nized way in real time. Although a multi-
tude of useful software components for
VEs exists, many of these are packaged
within a complex framework and can not
be used separately. In this paper, an archi-
tecture is presented which is designed to
let multiple frameworks work together
while being shielded from the application
program. This architecture, which is called
the Virtual Environment for Nano Scale
Assembly (VENSA), has been constructed

for interfacing with an optical tweezers
instrument for nanotechnology develop-
ment. However, this approach can be gen-
eralized for most virtual environments.
Through the use of VENSA, the program-
mer can rely on existing solutions and
concentrate more on the application soft-
ware design.

Key words: nanoscale assembly; software
architecture; software reuse; VENSA; vir-
tual reality.

Accepted: March 17, 2004

Available online: http://www.nist.gov/jres

1 Present address: Gwangju Institute of Science and Technology, 1
Oryong-dong, Buk-gu, Gwangju, 500-712, Korea.



requirements. This is typically achieved through pro-
prietary parallel machines (high-end workstations) or
through computer clusters (i.e., coordinated set of com-
puters) interconnected by Fast Ethernet operating at
100 Mbit/s or Gigabit Ethernet operating at 1000
Mbit/s. Computer clusters are essential when the con-
trollers to the peripherals can not all reside in a single
computer. For example, some peripherals are based on
a specific operating system or use a new interface stan-
dard, thus requiring another application specific com-
puter to support it. Furthermore, computer clusters can
be a good choice because they allow for incremental
enhancement to the VE. New devices along with a new
computer can be added without interfering with an
existing computer cluster. With the rapid development
of new input and output devices, it is becoming more
certain that no one computer can meet the demands of
future VE systems.

To achieve an immersive visual experience, one
needs to provide from two to twelve visual displays.
Two displays are needed for head-mounted displays
and twelve displays are needed for six-walled
screens such as CAVE2 (CAVE Automatic Virtual
Environment) [4]. The graphics cards that generate
these displays can reside in one proprietary computer or
can be distributed within a computer cluster, and inter-
connected by a special network. Yet cluster program-
ming introduces new issues such as synchronized man-
agement of distributed data and processes [5].
Furthermore the data from various input devices need
to be propagated to other devices and systems and
video retraces for the different video outputs must be
synchronized [6].

Although VE programming is difficult, fortunately
there are many software components, commercially
available or in the public domain, that greatly reduce
the development efforts. Some of the commercial
toolkits are CAVELib [7] (www.vrco.com),
WorldToolKit [8] (www.sense8.com) and DIVISION
Reality [9] (www.ptc.com). Some of the public domain
toolkits are VR Juggler [1], GNU/MAVERIK [3], MR
Toolkit [10] and DIVERSE [11]. The first three support
distributed programming3, with the first two offering

companion toolkits. All of the toolkits provide fairly
comprehensive functionality from low level device
handling to sophisticated distributed process and data
management.

Comprehensive VE toolkits are essential for rapid
program development. Yet if a user wants to use only
parts of several VE toolkits, implementing the VE
becomes very difficult. This difficulty arises because
most toolkits are frameworks that constrain the applica-
tion programming to follow predefined rules. This
makes it difficult to use a part without the whole.

VR Juggler, for example, completely manages the
application program control by strictly defining the
application functions that are called in predetermined
order. The application program must provide the neces-
sary functions that are executed through calls by the
kernel. Some example functions in VR Juggler are
preFrame(), intraFrame() and postFrame(). These func-
tions are each called before, during and after the frame
is refreshed.

MAVERIK, by contrast, is designed to have the data
describing the application exist outside the framework.
This is accomplished through its object manipulation
structure called Shape Modeling Structure (SMS) [3]
that uses callback functions to access the application
data. Callback functions are provided by the applica-
tion programmer. Although this approach separates the
application data from the kernel, the callback pointers
still put dependency of the application onto the
MAVERIK.

Similar dependency problems exist for the following
three VE toolkits. MR Toolkit uses Decoupled
Simulation Model (DSM) [10] for structuring the com-
ponents for the computation, presentation, interaction
and geometric model. The interactions between these
components are formally defined and the application
program must follow rules defined by the DSM.
DIVERSE heavily uses the scene graph functionality of
Performer, a UNIX based graphics library for high-end
visualization. DIVERSE uses DSO (Dynamic Shared
Objects) to dynamically load executables in the UNIX
[12] environment. This makes the toolkit limited to
UNIX-based platforms that have Performer installed.
VRPN [13] is attractive for users interested in solutions
to small specific problems as it does not aim to provide
an overall toolkit for VE. Rather, it focuses on the sub-
problems of providing a uniform interface to various
input and output devices.

This paper reports an effort at NIST (National
Institute of Standards and Technology) to develop a VE
for an optical tweezers system from concept to imple-
mentation. The main idea is to selectively use software

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

280

2 Certain commercial equipment, instruments, or materials are iden-
tified in this paper to foster understanding. Such identification does
not imply recommendation or endorsement by the National Institute
of Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the pur-
pose.
3 Cluster programming and distributed programming are terms used
interchangeably throughout this paper.



components from existing VE toolkits without includ-
ing their associated frameworks that can adversely
influence the structure of the application model. This
allows the application to be totally unaware of the VE
toolkit. Distributed computing is achieved by duplicat-
ing the application on each computer. The purpose of
distributed computing is to share the devices that are
spread among three computers. Although this approach
does not use the cluster resources optimally, it is well
suited for the application described in this paper that
does not require lengthy computations. For those that
do, pre-computed lookup tables can be used.

2. Architecture

In this section, the background is introduced first,
subsequently followed by the description of the hard-
ware involved and the list of user requirements. Next
the classes that fulfill the requirements are described
using UML (Unified Modeling Language) [14].
Finally, problems that can result through the use of
multiple VE toolkits are discussed.

2.1 Requirement Specification

This work is one part of a larger effort that has a goal
of identifying and addressing fundamental measure-
ment, control and standards issues related to manipula-
tion and assembly of micro/nanoscale objects using
optical methods. This developing system is called an
Optical Tweezers (OT) and it uses a focused laser beam
and a camera to move and track microscopic objects.
Since the scale is too small for direct human manipula-
tion, this effort defines a VE that will assist in manipu-
lating, measuring and assembling nanoscale compo-
nents.

The hardware side of NIST’s VE consists of an
Immersadesk [15] and a Cyberglove [16] controlled by
an SGI Onyx2 workstation. The Spacepad [17] is con-
trolled by a PC running Windows 98 operating system
and a PHANTOM [18] is controlled by a PC running
Windows NT operating system. Since all three comput-
ers use different operating systems we will refer to each
computer by its operating system name. A schematic
diagram is shown in Fig. 1. Onyx2 provides services
for the audio, graphics and the Cyberglove. The stereo-
scopic vision is realized through the use of the large

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

281

Fig. 1. Hardware configuration of the virtual environment.



projection screen called an Immersadesk that achieves
three-dimensional viewing through the use of special
glasses called Crystaleyes. The Immersadesk is shown
at the center and the Crystaleyes are shown left of the
Windows 98. The video signal sync between the
Immersadesk and Crystaleyes is achieved through an
infrared emitter connected to the Onyx2. The
Cyberglove, a device that tracks hand gestures, is
shown to the right of Immersadesk. The Cyberglove, at
the time of writing, was not incorporated into the archi-
tecture. Windows 98 administers the Spacepad, a
device composed of one magnetic field generator
(shown on top of the screen as a wide rectangle) and
three receivers (small boxes coming out from the
Windows 98). The Spacepad is used to track the move-
ment of the head and the two hands. The Spacepad also
provides a wand (small handle to the right of the
Windows 98) composed of one dial and three buttons
for issuing simple commands. Lastly, Windows NT is
linked to the PHANTOM haptic device. All three com-
puters communicate through the Ethernet.

Next we shift our focus to the software components.
Figure 2 illustrates the data flow between the comput-
ers and the VE toolkits that each use for controlling the
devices. The toolkits involved in the data transmission
are labeled above the arrows and they serve dual pur-
poses, first for interfacing with the devices and second
for the distributed computing. The detail is as follows.
The tracking information gathered by the Windows 98
is sent to the Onyx2 by CAVELib. Onyx2 then relays it
to Windows NT by VRPN. Similarly, Windows NT col-
lects PHANTOM stylus position and orientation and
sends it to Onyx2 by VRPN. Essentially, Onyx2 acts as
the central input data collector and all collected data are
propagated to the computer that requires it. In addition
to CAVELib and VRPN, GHOST SDK is used to con-
trol the haptic device. GHOST SDK [19] is a commer-

cial toolkit specialized for the PHANTOM haptic
device and it uses a framework with a scene graph sim-
ilar to OpenInventor. The use of multiple toolkits was
required to meet the demands of the new system as the
functionality that a single toolkit provided was not
comprehensive. For example, VRPN has a native han-
dling of the PHANTOM haptic device that the
CAVELib lacks. GHOST SDK was later introduced
because more control of the PHANTOM haptic device
was needed than what VRPN could provide.

The VE is called VENSA (Virtual Environment for
Nano Scale Assembly). The VENSA serves two pur-
poses for the OT. The first is a simulation environment
for nanoparticle interaction, and the second is an intu-
itive user interface for nanoassembly. Various meetings
and interviews with optics, control and computer engi-
neers led to the use case diagram illustrated in Fig. 3.
All use cases and class diagrams used in this paper fol-
low the convention of UML. Though not shown in this
article, all class attributes and messages are modeled
with UML and converted to C++ for implementation.
The use of the diagram proved to be an efficient way of
formalizing the processes that the engineers had in
mind. After several iterations of feedback from the
engineers and corresponding modification, the diagram
was completed. The diagram consists of the whole
process involved in the OT and some steps go beyond
the scope of this article. In Fig. 3 (a), steps labeled 1.x.x
are preliminary setup procedures. Step 3 is the shut-
down procedure. The main interests are on steps
labeled 2.x in Fig. 3 (b), which describe steering the
particle. This illustrates the process when the operator
is tele-operating the OT. In step 2.5, command is sent to
the OT and the result is received in step 2.6. When
VENSA is used in the simulation mode, a simulator
substitutes for the OT in steps 2.5 and 2.6. This paper is
primarily focused on the simulation mode.

2.2 Class Diagram

Overall, the Class Diagram for VENSA is illustrated
in Figs. 4-8. When utilizing an Object-Oriented design
process, it is a common practice to draw a sequence
diagram for each use case. In doing so, objects and the
messages that are sent between objects are defined.
This is useful for process-intensive applications, yet for
the application described in this paper, this stage was
skipped going directly to the class diagram. Class dia-
gram-to-usecase conformance was checked throughout
the design process to verify that the classes were suffi-
cient to implement the use cases.

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

282

Fig. 2. External virtual environment toolkits employed.



Designed to be modular and extensible, the VENSA
can be described by two important concepts, function-
ality and generality. The architecture functionally
divides itself into Model, Input, Output and Manager.
In Fig. 4, the Model is time-dependent central data
that is modified by the InputManager as a result of
various Inputs. Similarly, OutputManager modifies the
Model and the various Outputs. The Model is modified
twice within one cycle of the control loop, once first
by the InputManager and subsequently by the
OutputManager. The InputManager sets the initial
condition of the model such as the initial position of

the object to be moved. After that the control is passed
to the OutputManager where the Model is aged accord-
ing to the cycle time. The Time class shown in Fig. 4
calculates the cycle time by measuring the time lapse
from the time when the program execution leaves
InputManager to the next iteration. The messages
involved in resetting the timer clock and obtaining the
elapsed time are shown in the figure. Since it is impos-
sible to know what the future cycle time will be, the
previous cycle time is used as an approximation. Each
InputManager and OutputManager can alter the Model
but it must guarantee its integrity upon completion.

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

283

Fig 3 (a). Use case diagram of VENSA. Initialization and shutdown.

Fig 3 (b). Use case diagram of VENSA. Particle manipulation.



Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

284

Fig. 4. Relation between the Manager and the Model.

Fig. 5. Model.

Fig. 6 (a). Particle of Model.

Fig. 6 (b). Trap of Model.



Manager is the central supervisor for InputManager and
OutputManager called Manager.

The architecture is also described in terms of its gen-
erality. Specific hardware devices are categorized
under outer Crust and generalized devices that gather
the commonalities among sets of similar devices are
categorized as the inner Core. The class diagrams in
Figs. 4 through Fig. 8 show this category in parenthe-
sis. Core also includes all Model and Managers.
Generality of the software functioning in Core enables
the software to be extensible since new devices can
reuse the Core through inheritance.

The Model is composed of Particle, Trap and Cursor
as illustrated in Fig. 5. The Particle is the micro-to-
nanometer scale object that is manipulated in VENSA.
The external force that moves the particle comes from
the Trap. The Cursor is a handle that is connected to the
input device. For the OT application, the stylus of the
PHANTOM haptic device is used as the input device.
Notice that Model is a descendent of LagrangeSolver,
the simulation engine of VENSA. Due to the computa-
tional overhead imposed by the LagrangeSolver, it is
very difficult to retain the real time response. This is
why a cached table called LaserPositionLookupTable is
pre-computed before the simulation and used instead.

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

285

Fig. 7 (a). Overall view of Input components.

Fig. 7 (e). InputPositional.

Fig. 7 (f). InputSpeech.

Fig. 7 (b). InputButton.

Fig. 7 (c). InputDial.

Fig. 7 (d). InputDirectional.



The Particle in Fig. 6 (a) is a Molecule or a
Continuum. The geometry of the Continuum is mod-
eled by the well known Constructive Solid Geometry
(CSG) [20] or Boundary Representation (Brep) [20]. It
has an attribute to represent its materialType (not
shown). Molecule is simply a collection of Atoms.

A Trap such as shown in Fig. 6 (b) can have multiple
Potentials. A Potential is a spatial function representing
the potential energy of the particle placed in the poten-
tial field. Potentials can be created through dithering of
the laser beam (e.g., time sharing one laser) or through
splitting the single laser beam into multiple beams.

The Inputs shown in Fig 7 are designed through
the use of inheritance [21]. For example in Fig. 7 (b),
the common functions and attributes of InputButton-
Spacepad, InputButtonKeyboard, InputButtonGhost
and InputButtonMouse are moved up to InputButton.
Again, the common functions and attributes of Fig. 7
(b) through Fig. 7 (f) are moved up to Input shown in
Fig. 7 (a). The note boxes attached to the classes are
names of the computers where the classes are imple-
mented. Details will be discussed later. Notice the class
hierarchy is not driven by the physical appearance of
the hardware device. For example, a mouse device has
buttons and a track ball for sensing the planar motion.
This device is represented by two separate classes,
InputButtonMouse [Fig. 7 (b)] and InputPositional-
Mouse [Fig. 7 (e)]. The design of Outputs are similar
to Inputs as inheritance is also extensively used
for them. VENSA supports visualization through
OutputGraphical, haptic through OutputHaptic and
audio through OutputAudio. This is illustrated in Fig. 8
(a). In Fig. 7 and 8, the physical Inputs and Outputs are
those at the leaves. Notes are attached to the leaf Inputs
and Outputs indicating the physical computer to which
the device is attached. The computer names used in
Figs. 7 and 8 are IRIX, WIN98, NT and NTGLUT. NT
and NTGLUT can be thought of as the same computer.
They are differentiated to support two different win-
dowing libraries. One is through the GHOST SDK and
the other is through GLUT. GLUT [22] is the OpenGL
Utility Toolkit, a window system independent toolkit
for writing OpenGL programs. Some class names are
not self-explanatory and need to be clarified.
InputButtonGhost [Fig. 7 (b)] refers to the button
attached to the PHANTOM stylus. InputDialSpacepad
[Fig. 7 (c)] is a dial attached to the wand that is part of
the SPACEPAD. InputDirectional [Fig. 7 (d)] refers to
devices that output two-dimensional unit-sized direc-
tional vectors. The best example is a joystick.
InputPositionalGhost [Fig. 7 (e)] is the six-dimension-
al position and orientation information of the stylus of

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

286

Fig. 8 (a). Overall view of Output components.

Fig. 8 (b). OutputGraphical.

Fig. 8 (c). OutputHaptic.

Fig. 8 (d). OutputAudio.



the PHANTOM device. InputSpeechDragonNaturally-
Speaking [Fig. 7 (f)] is a text string converted from
speech input through microphone. The conversion is
done by a speech recognition software called Dragon
Naturally Speaking. This feature was not implemented
at the time of this writing. OutputGraphicalOpenGL
[Fig. 8 (b)] is the parent class of OpenGL based graph-
ical output devices. The three subclasses of
OutputGraphicalOpenGL implement windowing func-
tions that are missing in the parent class.
OutputGhostGraphical uses the GHOST SDK,
OutputGLUTGraphical uses the GLUT library and
lastly, OutputIRIXGraphical uses the X-Window
system. The haptic device is handled by
OutputGhostHaptic [Fig. 8 (c)], a descendent of
OutputHaptic. Lastly, the sound device is controlled by
the OutputIRIXAudioLibrary [Fig. 8 (d)], a descendent
of OutputAudio.

2.3 Existing Software Conflicts

Typical applications must interact with external
libraries. Unfortunately, some libraries have their own
architecture or class hierarchy that makes it very diffi-
cult to use them without abiding by the rules imposed
by its associated framework. Interoperability is the
most difficult problem in designing a new architecture.
Some parts of the GHOST SDK for the PHANTOM
haptic device shows this problem. Figure 9 illustrates
the instantiation diagram of a sample GHOST SDK.
The labels show instantiation names and class names
separated by a colon. All classes are those of GHOST

SDK. The circular ended arrows are the internal con-
nections the programmer needs to explicitly set. The
graph that connects the instances by triangular ended
arrows is called the scene graph, a concept derived
from OpenInventor. This also needs to be explicitly set.
Notice these connections follow the programming rules
of the GHOST SDK and the user must strictly follow
these rules. The scene graph is built from the applica-
tion data. When the application data changes, the scene
graph needs to change accordingly. This requires that
one maintain dual representations which can be prob-
lematic.

The scene graph is typically a part of most VE toolk-
its, thus making modularity difficult due to its a unique
data structure. For efficiency, most applications have
pointers to the scene graph from the data. Yet this caus-
es the application program to become dependent on the
scene graph. This work chose not to create any link
between the application data and the external toolkit
data. This provided support for modularity through
some sacrifice in performance.

To maintain a clear modular architecture, it is not
acceptable to have GHOST SDK objects or other
framework objects in VENSA. This is enabled by using
the Adapter that hides the complex GHOST SDK
objects from the rest of the program. Adapter works as
a wrapper to external libraries and relays the needed
data flow to and from the VENSA objects. Adapter is
also where the state of the Input and Output objects are
realized to the physical hardware device. In Fig. 10,
AdapterNT is the Adapter realized in the Windows NT.
Similarly, there are AdapterIRIX and Adapter98 for the
Onyx2 and Windows 98 platforms, respectively. Notice
AdapterNT is the only one that has access to
OutputGhostHaptic, since it is the only device that is
physically connected to it. Similar rules apply to
AdapterIRIX and Adapter98. Adapter98 does not have
any output devices associated to it because it only
serves as an input platform. Notice however all input
devices are associated to all three Adapters
(AdapterNT, AdapterIRIX, Adapter98). Physically,
they are connected to only one platform, but the states
of the devices are shared among all platforms. Note the
VENSA architecture does not explicitly define the
mechanism of sharing the device states among different
platforms. The implementation detail is left to the user.
This way all application programs located at each plat-
form can work identically with the same input devices,
making cluster programming simpler. In addition to
device states sharing, the application program is dupli-
cated among the platforms. This minimizes the amount
of data that must travel through the network, thus

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

287

Fig. 9. GHOST SDK scene graph.



requires little network bandwidth. A prior test imple-
mentation where the application program resided in one
machine and the results were sent to the rest of the
computers resulted in the failure of the haptic device,
which requires continuous feeding of force vectors at 1
KHz.

2.4 Process Communications

There are two important processes in VENSA. First
is the application process. This is where the time tran-
sient behavior of the model is computed. Second is the
Adapter process that delivers the inputs from various
input devices (sensors) to the application process and
also conveys the resulting outputs to various output
devices (such as visual, audio and haptic devices). This
is illustrated in Fig. 11 (a). To the left is the main appli-
cation cycle. The OutputManager and the
InputManager constitutes the engine of the program.
They compute the output device states from given input
device states. InputManager computes the necessary
state of the Model such that at the end of the cycle the
Model would change to the determined state with the
given Inputs and the cycle time. It then forwards the
changed Model to the OutputManager. OutputManager
then updates the Model and computes the output device
states that reflect the new Model. The output device
states are relayed to the necessary Output devices
through Adapters. At the center is the Adapter cycle
working as the bridge between application cycles and
the input and output device cycles. Note all processes
form a cycle and continuously run until program termi-

nation. The small looped cycles to the right and bottom
of the Adapter cycle are the input and output device
cycles. All adjacent cycles interchange Input and
Output device states. The method of information flow
is through polling. The receiver explicitly requests the
sender for new data. In this way the sender never has to
idly wait for sending out the new data and all process-
es actively run at all times. The example data flow is
shown in Fig. 11 (b). For clarity only one input and one
output cycle are shown. Steps 1 and 2 show how the
input is transferred to the InputManager. Steps 3 and 4
show how the resulting output is transferred to the out-
put device. In actual deployment, the Adapter cycles
execute in each computer as in Fig. 11 (c). The commu-
nication between computers is done by star topology
where a central computer (AdapterIRIX cycle) takes
the role of relaying the information between the other
two computers (Adapter98 and AdapterNT cycles).

In simulation mode, VENSA uses a constant time
lapse. In future implementations where VENSA will be
used as a tele-operation platform, the time delay before
the computed output device setting will actually be
relayed to the corresponding device needs to be predict-
ed.

3. Discussion

One of the main objectives of VENSA is to keep the
application program isolated from the complexity of
the device handling. With VENSA much of the input
and output device handling is done through the Adapter

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

288

Fig. 10. Adapter.



and the architecture leaves it as the implementers’
responsibility. Existing VE toolkits are sufficient to
solve this implementation. Still the problem remains if
one looks into how multiple VE toolkits would work in
harmony within the Adapter. The practice chosen was
to partition the internal code of Adapter such that only
one VE toolkit resides in any one partition. And data
duplication between different partitions was generous-

ly allowed. Of course this strategy was not the most
efficient solution but it was thought that optimizing this
problem was not worth the effort.

Since all the platforms supported OpenGL, the
OutputManager generates all the graphics scenes opti-
mally suited to OpenGL with codes that depend on
OpenGL. This deviated from the philosophy of not
depending on external toolkits. But since all graphics
devices were based on OpenGL, it was not justifiable to
define a new neutral graphics scene descriptor and have
the output devices convert it to OpenGL primitives.
However neutral data was used for the audio and hap-
tics. Obviously they were much simpler to define than
graphics.

This paper does not discuss using toolkits that pro-
vide advanced algorithms needed for VE, such as colli-
sion detection. These advanced toolkits differentiate
themselves from the functions of the VE toolkits that
are utilized in VENSA that are mostly device interfaces
and device state propagation. These advanced toolkits
require direct links to the application objects and some-
times may require some change in the application data
structure. Certainly, combining the application program
with these toolkits can destroy the modularity. The
quick solution that we have implemented is to duplicate
the application objects. One is used internally and the
other is used for the specific advanced toolkits.

The application objects and input and output device
objects are all static in VENSA. Dynamic object cre-
ation and destruction are not provided. For VENSA to
be a dynamic environment, this functionality is essen-
tial. Note in cluster computers environment, all distrib-
uted applications must work coherently and must allo-
cate or free objects as necessary.

4. Conclusion

Software reuse is important as it saves time and
costs. By effectively reusing existing components,
more effort can be put into problem solving. There
exists a plethora of toolkits for VE today. However, no
single toolkit could satisfy the needs of the application
described in this paper. Multiple toolkits were needed
to satisfy the needs. It is desired and beneficial to selec-
tively choose certain features from a toolkit without the
constraints associated with its framework. This is gen-
erally not possible as most toolkits are provided as part
of a framework, which makes it very difficult, or
impossible, to isolate a feature. Another approach is to
use multiple toolkits together. However, using multiple
toolkits requires that application code contain multiple

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

289

Fig. 11 (a). Relations between cycles within a platform.

Fig. 11 (b). Information flow steps of Inputs and Outputs.

Fig. 11 (c). Relations between cycles across platforms.



interfacing codes to the toolkits, hence further compli-
cating the modularity. Some toolkits are more problem-
atic as they contain their own control loop and never
return to the caller. The architecture of VENSA is
designed such that it can incorporate existing VE toolk-
its without interfering with the application program
code. Although VENSA runs on three VE toolkits, the
VENSA classes show no dependence to on any of the
toolkits. Any existing toolkits can be substituted for
other toolkits without requiring the rewrite of the appli-
cation code.

5. References

[1] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker, and C.
Cruz-Neira, VR Juggler, A virtual platform for virtual reality
application development, in Proceedings of the IEEE Virtual
Reality (2001) pp. 89-96.

[2] D. Pape, Hardware independent virtual reality development sys-
tem, IEEE Computer Graphics Appl. 16 (4), 44-47 (1996).

[3] R. Hubbold, J. Cook, M. Keates, S. Gibson, T. Howard, A.
Murta, A. West, and S. Pettifer, GNU/MAVERIK: A microker-
nel for large-scale virtual environments, Presence 10 (1), 22-34
(2001).

[4] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, Surround-screen
projection-based virtual reality, the design and implementation
of the CAVE, in Computer Graphics Proceedings (1993) pp.
135-142.

[5] H. Tramberend, Avocado, a distributed virtual reality frame-
work, in Proceedings of the IEEE Virtual Reality (1999) pp. 8-
13.

[6] J. Allard, V. Gouranton, L. Lecointre, and E. Melin, Net Juggler
and SoftGenLock: Running VR Juggler and active stereo and
multiple displays on a commodity component cluster, in
Proceedings of the IEEE Virtual Reality (2002) pp. 273-274.

[7] CAVELib user’s manual version 3.1.1, VRCO, Inc. (2004).
[8] WorldToolKit documentation - Release 10, Sense8, Inc. (2004).
[9] Visualization solutions white paper, Parametric Technology

Corporation (1999).
[10] C. Shaw, M. Green, J. Liang, and Y. Sun, Decoupled simulation

in virtual reality with the MR Toolkit, ACM Trans. Inform.
Syst. 11 (3), 287-317 (1993).

[11] J. Kelso, L. E. Arsenault, S. G. Satterfield, and R. D. Kriz,
DIVERSE: A framework for building extensible and reconfig-
urable device independent virtual environments, in Proceedings
of the IEEE Virtual Reality (2002) pp. 183-190.

[12] J. Peek, G. Todino-Gonguet, and J. Strang, Learning the Unix
Operating System, O’Reilly & Associates (2001).

[13] R. M. Taylor II, T. C. Hudson, A. Seeger, H. Weber, J. Juliano,
and A. T. Helser, VRPN: A device-indepndent, network-trans-
parent VR peripheral system, in ACM Symposium on Virtual
Reality Software and Technology (2001).

[14] M. Fowler and K. Scott, UML distilled: a brief guide to the stan-
dard object modeling language, Addison-Wesley (2000).

[15] M. Czernuszenko, D. Pape, D. J. Sandin, T. A. DeFanti, G.
Dawe, and M. Brown, The ImmersaDesk and Infinity Wall
Projection-Based Virtual Reality Displays, Computer Graphics
31 (2), 46-49 (1997).

[16] G. D. Kessler, L. F. Hodges, and N. Walker, Evaluation of the
cyberglove as a whole-hand input device, ACM Transactions on
Computer-Human Interface 2 (4), 263-283 (1995).

[17] SpacePad installation and operation guide, Ascension
Technology Corporation (1996).

[18] PHANTOM product brochure, Sensable Technologies, Inc.
(2003).

[19] GHOST SDK Programmer’s guide version 3.0, Sensable
Technologies, Inc. (1999).

[20] H. Toriya , H. Chiyokura, 3D CAD principles and applications,
Springer-Verlag (1993).

[21] I. Sommerville, Software engineering, Addison-Wesley (2001).
[22] M. J. Kilgard, Programming OpenGL for the X Window

System, Addison-Wesley (1996).

About the authors: Yong-Gu Lee is an Assistant
Professor at the Department of Mechatronics, Gwangju
Institute of Science and Technology. He was a Guest
Researcher at the National Institute of Standards and
Technology. His research interests include computer-
aided design and manufacturing. His current research
activity focuses on virtual reality and nanomanufactur-
ing. Kevin W. Lyons is a Program Manager with the
Manufacturing Engineering Laboratory at the National
Institute of Standards and Technology. His primary
responsibility is directing the Integrated Nano-to-
Millimeter Manufacturing (In2m) Program. Shaw C.
Feng is a mechanical engineer working in the
Manufacturing Systems Integration Division of the
Manufacturing Engineering Laboratory at the National
Institute of Standards and Technology. His work
includes developing integration specifications for
CAD, CAM, and automated inspection software for
computer integrated design and manufacturing. The
National Institute of Standards and Technology is an
agency of the Technology Administration, U.S.
Department of Commerce.

Volume 109, Number 2, March-April 2004
Journal of Research of the National Institute of Standards and Technology

290


