
1. Introduction

Since long, x-ray diffraction line broadening is used
for the investigation of dislocation distributions; due to
the stress fields induced by the dislocations atoms are
displaced from their ideal lattice positions, which caus-
es diffraction line broadening. Although theoretical
models [1-3] as well as experimental equipment neces-
sary to measure dislocation distribution parameters
from diffraction line shapes have been available for
several decades, the determination of dislocation distri-
bution parameters in practice can still be problematic.

In part this is due to the simple dislocation distribu-
tions that underlie the theoretical models describing the
diffraction line broadening in terms of dislocation dis-
tribution parameters. For example, in most cases dislo-
cations are supposed to be straight and infinitely long,

and to be distributed in a rather ideal way. The assumed
simple dislocation distributions limit the reliability of
the dislocation distribution parameters (as the disloca-
tion density) determined in practice. Still, very detailed
information can be obtained without precise quantita-
tive knowledge of these parameters. For example, the
type and orientation of the dislocations can be deter-
mined in practice (see, e.g., Refs. [4-6]). Such informa-
tion is not easily assessed with other experimental tech-
niques.

A second difficulty for the analysis of diffraction line
shapes in terms of dislocation distribution parameters is
of experimental nature. In general, next to the (strain)
broadening due to dislocations, diffraction line broad-
ening also occurs because of other lattice defects such
as stacking and twin faults, a non-ideal instrument
(instrumental broadening), and the limited size of the
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crystallites in the specimen (size broadening). For an
interpretation of the diffraction line broadening in
terms of dislocation distribution parameters, these addi-
tional broadenings should be taken into account in the
analysis.

The present paper concerns this last problem. The
paper focuses on the separation of size and strain
broadening. Different methods of analysis are proposed
and compared with each other and with methods of size
strain separation known from the literature. As a pre-
requisite it is supposed that the strain broadening is
well described according to the simple model due to
Wilkens [1]. It is shown that in that case, the Warren-
Averbach method [7] for the separation of size and
strain broadening should not be applied. On the other
hand, a method that is not often used [8] is particularly
useful.

The methods discussed use two orders of a reflection
measured at identical specimen orientations. In this
respect the methods differ from the recently developed
whole powder pattern fitting (WPPF) procedures
[9,10], in which more reflections in the powder pattern
are used for the analysis. In these methods either the
Fourier coefficients, or diffraction line profiles them-
selves are calculated using models for the strain and
size distributions in the specimens. This differs from
the approach in this paper, because in the presently dis-
cussed methods a model for the size broadening is not
used. A concern for the WPPF methods is that different
diffraction peaks stem from different crystallites.
Therefore, in the analysis, assumptions concerning the
uniformity of the crystallites, the size of the crystallites,
or the dislocation distributions therein, are made (see
Ref. [11]). Such assumptions are not made in the meth-
ods in this paper because the two orders of reflections
stem from the same crystallites. Therefore, the methods
are also insensitive to texture. However, as compared to
the information obtained from WPPF procedures, the
information obtained is limited since only a small frac-
tion of the crystallites is considered.

Strain broadening that cannot be written according to
the model of Wilkens is not treated in the paper.
Consequently, if, e.g., stacking and/or twin faults cause
significant diffraction line broadening (the expressions
due to Wilkens do not hold for broadening induced by
faulting [12]), the methods of analysis discussed in the
paper are not useful.

As an example of the analysis methods discussed,
the recrystallization in thin nickel layers was investigat-
ed. The development of the dislocation distribution and
grain size was assessed using x-ray diffraction meas-
urements on specimens that were annealed at different

temperatures. Such, a detailed picture of the recrystal-
lization in the thin layers was obtained.

2. Background

2.1 Representation of Diffraction Line Profile in
Fourier Coefficients

The intensity distribution P(S) of a structurally
broadened diffraction line profile can be expressed as a
Fourier series (e.g., Ref. [7]):

(1)

where K is approximately constant for a given diffrac-
tion profile and A(L) and B(L) denote the cosine and
sine Fourier coefficients, respectively, belonging to
correlation distance L. Theoretically L takes only dis-
crete values, but in practice L can be considered as a
continuous variable. S is the diffraction vector, which is
related to the diffraction angle 2θ and the wavelength λ
by S = 2sinθ /λ. Structural diffraction line broadening is
often subdivided into size broadening, and strain broad-
ening. The size coefficient AS(L) (the superscript S
denotes size broadening) equals NL/N, where N denotes
the number of unit cells in the specimen considered,
and NL is the number of unit cell pairs at mutual dis-
tance L, where the distance L is taken parallel to the dif-
fraction vector [1,8]. Size broadening is always sym-
metric (i.e., BS(L) = 0). The total structurally broadened
profile is the convolution of the size-broadened profile
and the strain-broadened profile. In terms of Fourier
coefficients (the superscript D denotes distortion
(strain) broadening):

(2)

(3)

2.2 Strain Broadening Due to Dislocations:
Wilkens Model

The Wilkens model for diffraction line strain broad-
ening due to dislocations presupposes that in the dif-
fracting crystallites so-called restrictedly random dislo-
cation distributions are present [1]. In a restrictedly ran-
dom distribution, all dislocations are infinitely long and
straight. All dislocations belong to the same set: i.e., all
dislocations are of the same character and belong to the
same slip system (the dislocations are parallel). A
cross-section of the crystal, normal to the dislocation
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lines, can be subdivided into sub-areas of equal size
and shape containing exactly the same number of dislo-
cations. Within each sub-area the dislocations are ran-
domly distributed. Equal numbers of dislocations with
positive and negative Burgers vectors are present in
each sub-area: the net Burgers vector equals zero. Thus,
the distribution is fully determined by the number of
dislocations in each sub-area, as characterised by the
dislocation density ρ, and the size of the sub-areas,
which will be represented by the so-called outer cut-off
radius Re (see Refs. [1,5,13]). For circular sub-areas it
can be shown: Re ≈ 0.78R [1], where R is the radius of
the circular sub-area.

The following has been derived for the strain cosine
Fourier coefficient of the diffraction line profile broad-
ened due to a restrictedly random distribution of dislo-
cations [1,5]:

(4)

(5)

(6)

where L is the correlation length, b is the length of the
Burgers vector b, σ equals |sinψ | where ψ is the angle
between the line vector l of the dislocation and the vec-
tor g, where g is the diffraction vector at which Bragg's
law holds exactly for the reflection considered (length
g; for cubic material it holds: g = (h2 + k2 + l2)1/2/a0,
where a0 is the lattice parameter of the specimen). The
scalar product of g and b is denoted by µ. C is the so-
called contrast factor for the particular dislocation type,
slip system and reflection (see, e.g., Ref. [12]). The
above expressions yield a proper description of the line
profile if and L ≤ 0.5Re/σ |µ | [1]. Further, the
Wilkens model assumes symmetric line profiles (cor-
rectly; see Ref. [14]) and therefore the sine coefficients
of the line profile are zero.

In practice, more than one set of dislocations will be
present in a crystal. It was proposed in Ref. [1] that the
diffraction line profile from a crystal with various sets
of dislocations is the convolution of the line profiles
from the single sets. Thereby, the elastic interaction of
the various sets is neglected. Then, if more than one set
i of dislocations is present Eq. (4) can still be used with
(see Ref. [5]):

(7)

(8)

It was shown in Ref. [14], that the elastic interaction
between various sets is small.

3. Application to Experimental Data

In practice, the determination of defect distribution
parameters from experimental data using the above
expressions can be troublesome. The parameters P and
Q must be extracted from a diffraction line profile con-
taining, apart from strain broadening, instrumental
broadening and size broadening. If the values of P and
Q have been determined, they must be interpreted in
terms of defect distribution parameters.

3.1 Removal of Instrumental Broadening

Instrumental broadening can be removed from an
experimental profile if a reference specimen, contain-
ing negligible size and strain broadening, is available.
For each reflection measured, a peak profile of the ref-
erence specimen, using identical diffractometer set-
tings, must be recorded. After subtraction of the back-
ground for both peaks, their Fourier coefficients are
determined. The Fourier coefficients of the peak with-
out instrumental broadening then follow by dividing
the Fourier coefficients of the broadened peak by the
Fourier coefficients of the peak of the standard speci-
men (see, e.g., Ref. [7]). In the present case, because
the structural broadening is symmetric, the moduli of
the Fourier coefficients can be used. After removal of
the instrumental broadening, Fourier coefficients are
scaled such that the first coefficient, i.e., the coefficient
for L = 0, equals 1.

For the deconvolution procedure discussed above the
quality of the reference specimen is of paramount
importance. Furthermore, peak overlap of other diffrac-
tion lines with the line profiles under investigation hin-
ders the description of peak shape in terms of Fourier
coefficients, because then the peak shape of the diffrac-
tion line under consideration must be extracted first.
Relatively long tails must be measured for accurate
background determination, because a small error in the
background determination leads to an error in the first
few Fourier coefficients (low L). At high L errors in the
Fourier coefficients occur due to limited counting sta-
tistics and the finite step size used in the data acquisi-
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tion. Therefore, relatively high counting time and a rel-
atively small step size are required.

3.2 Dealing With Size Broadening

Various methods exist that separate the contributions
of the size and the strain from diffraction line profiles.
Several methods require measurements of two orders of
a reflection at a given specimen orientation and assume
that in both measurements the same crystallites are dif-
fracting (defocusing of the diffractometer is thereby
neglected). Consequently the size broadening is identi-
cal for both diffraction peaks. However, the strain
broadenings are different for the different orders of
reflection. Obviously, information about the non-dif-
fracting crystallites is not obtained. Below, methods are
discussed that can be used to separate size and strain
broadening using two orders of reflection. Two impor-
tant relations for the first and the second order reflec-
tions follow from Eqs. (7) and (8);

(9)

(10)

(the order is indicated by a subscript). These expres-
sions are used throughout the derivations of the expres-
sions below.

If the Fourier coefficients of two line profiles con-
taining exactly the same size broadening are divided,
the size coefficients cancel. If Eqs. (4), (9), and (10)
hold for the strain broadening, it follows for the ratio of
the Fourier coefficients of the second order and first
order diffraction line profiles [using Eq. (2)]:1

(11)

Consequently, P1st and Q1st (and thereby P2nd and Q2nd)
can be readily obtained by fitting Eq. (11) to the ratio of
the Fourier coefficients obtained experimentally.
Thereby, the strain coefficients are known. Then, the
size coefficients are obtained, dividing the measured
Fourier coefficients by the strain coefficients obtained.

In practice, several problems may arise using this
method. First, the ratio is liable to experimental errors
if A1st is close to zero. Second, the expressions for the
line profiles are only reliable for relatively small corre-
lation distance. If Re is small, this may lead to problems
connected to a small fitting range, especially for the
second order Fourier coefficients (and consequently for
the ratio of the first and second order Fourier coeffi-
cients).

A better fitting range can be obtained using a method
for the separation of size and strain broadening pro-
posed in Ref. [8]. For strain Fourier coefficients for
which Eqs. (4), (9), and (10) hold, .
From this result it follows:

(12)

The term on the right-hand side of Eq. (12) can be
approximated using , which
holds for small L [8]. Consequently, the size Fourier
coefficients can be obtained from:

(13)

In the following, the determination of the size coef-
ficients using Eq. (13) will be referred to as the Van
Berkum-Vermeulen (VB-V) analysis. The strain coeffi-
cients of the first and second order reflection are deter-
mined, dividing the measured Fourier coefficients by
the size coefficients [cf. Eq. (2)]. Values of P1st, P2nd,
Q1st, and Q2nd can be obtained by fitting the strain coef-
ficients to Eq. (4). For the first order Fourier coeffi-
cients a two times larger fitting range (L < 0.5Re/σ |µ |;
µ = g·b) can be used than for the second order Fourier
coefficients.

A third method can be used to obtain the value of P2nd

(and consequently P1st, cf. Eq. (9)). It follows from Eqs.
(2), (4), (9), and (10):

(14)

Equation (14) is similar to the well-known Warren-
Averbach equation: i.e.,

(15)

The Warren-Averbach analysis obviously does not
hold if Eqs. (4), (9), and (10) hold. Combining Eqs.
(13) and (14) yields:
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(16)

Consequently, P2nd can be obtained by plotting the
right-hand side of Eq. (16) versus L2 and fitting a
straight line.

In the above paragraphs, a fit to Eq. (4), or similarly,
to Eq. (11) was mentioned several times. For this pur-
pose the so-called Krivoglaz-Wilkens plot [15] might
be used. In that case ln[AD(L)]/L2 is plotted versus lnL.
From the slope of the straight line, the value of P1st (or
P2nd) is obtained and the value of Q1st (or Q2nd) follows
from the intercept. However, a small experimental scal-
ing error, induced by a small error in the first Fourier
coefficient (cf. Sec. 3.1) already yields a large deviation
from the expected straight line at low L values (see Fig.
1). The fit can therefore better be performed directly,
allowing a small scaling error; i.e., in order to obtain P
and Q, the data should be fitted to the function:

(17)

where n0 is a constant close to one.

4. Experimental Illustration

As an example for the above methodology, the evo-
lution of grain size, dislocation density and outer cut-
off radius were investigated for a set of Ni layers on Si.
The layers were simultaneously sputter deposited at

room temperature to a thickness of 500 nm on seven
oxidized <100> wafers. Transmission electron
microscopy (TEM) experiments revealed a microstruc-
ture with more or less spherical grains with a diameter
of about 20 nm. After deposition the specimens were
subjected to anneals (0.5 h) at 300 K, 330 K, 350 K,
400 K, or 450 K, in gas mixture of Ar (volume fraction
95 %) and H2 (volume fraction 5 %) at 105 Pa. A last
specimen was annealed 2 h at 500 K. After annealing,
the {111} and {222} diffraction line profiles were
recorded for each specimen on a Bruker AXS D5005
θ-θ type diffractometer equipped with a diffracted-
beam monochromator set to select Cu Kα radiation. In
all cases, Bragg-Brentano geometry was used. The
same reflections were recorded from a Ni reference
specimen containing negligible structural broadening,
using identical diffractometer settings. The reference
specimen was produced by annealing Ni powder (diam-
eter 2 µm). The broadness of the peaks obtained from
the Ni reference specimen compare well to the broad-
ness of the peaks obtained from our Al reference spec-
imen, which shows slightly less broadening than the
SRM660 LaB6 standard powder (see Ref. [16]). Figure
2 shows an example of the broadened 111 peak of the
specimen annealed at 350 K, and the 111 peak of the
reference specimen. For all peaks a linear background
was subtracted before the Fourier coefficients were cal-
culated. Instrumental broadening was removed by
dividing the moduli of the Fourier coefficients of the Ni
layer diffraction lines, by the moduli of the Fourier
coefficients of the corresponding diffraction lines of the
reference specimen (α2 correction was not applied).
The thus obtained Fourier coefficients of the structural-
ly broadened profiles were scaled such that the first
Fourier coefficient (correlation distance zero) was
equal to one.

Volume 109, Number 1, January-February 2004
Journal of Research of the National Institute of Standards and Technology

69

2 1
2nd 1st 2nd 2nd 2ln 2 2ln[ ( )] ln[ ( )] 6ln[ ( )].P L A L A L A L= + −

 

 
   

2D ( ln )
0( ) e ,PL Q LA L n − −=

Fig. 1. Krivoglaz-Wilkens plots of the ratio of {222} and {111}
Fourier coefficients (corrected for instrumental broadening) of the Ni
specimen annealed at 350 K. The different series are Krivoglaz-
Wilkens plots of the same data that were first multiplied with (from
top to bottom) n0 = 0.94, 0.96, 0.98, 1.0, 1.02, 1.04, and 1.06.

Fig. 2. The {111} diffraction lines of the Ni specimen annealed at
350 K, and the Ni reference specimen.



The methods discussed in Sec. 3.2 are illustrated by
means of the specimen annealed at 350 K. Fig. 3 shows
the ratio of the Fourier coefficients of the {222} and
{111} reflections together with a fit of Eq. (11) to the
data. A good fit is obtained up to a correlation distance
of about 15 nm. Using the values obtained for P1st and
Q1st, the strain and size coefficients can be determined.
Figure 4 shows the first and second order strain coeffi-
cients constructed using Eqs (4), (9), and (10) (solid
lines). Figure 5 shows the size coefficients, obtained by
dividing the first and second order Fourier coefficients
by the constructed strain coefficients (solid lines).

The size and strain coefficients were also determined
with the VB-V analysis. In Fig. 5 the VB-V size coeffi-
cients, obtained using Eq. (13), are shown (open cir-
cles). The size coefficients determined with both meth-
ods agree well. Additionally the VB-V size coefficients
for the specimens annealed at 375 K and 500 K are
shown. Figure 4 shows the first and second order strain
coefficients obtained with the VB-V analysis (circles).
These strain coefficients were obtained by dividing the
measured Fourier coefficients (after elimination of
instrumental broadening) by the VB-V size coeffi-
cients. Again, good agreement exists between both
methods of data analysis. Figure 4 also shows fits of
Eq. (4) to the data (dotted lines).

Figure 6 shows the plot proposed below Eq. (16) for
the specimen annealed at 350 K, together with a fit to
the data. The data follow reasonably the expected
straight line. The value of P1st was obtained from the
slope of the fit, using Eq. (9).

Figures 7 and 8 show values for P1st and Q1st, respec-
tively, determined with the different methods of data
analysis for the specimens annealed at 300 K, 330 K,
350 K, 375 K, and 500 K. For all specimens, the results
of the different methods of data analysis correspond
well. From the good agreement of the different methods
of data analysis, we conclude that the assumption
underlying the VB-V analysis, i.e., ,

is valid in the present case.
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Fig. 3. Ratio of the {222} and {111} Fourier coefficients (corrected
for instrumental broadening) of the Ni layer annealed at 350 K. The
solid line is a fit of Eq. (11) to the data belonging to correlation dis-
tances L up to 15 nm.

Fig. 4. Strain Fourier coefficients of the {111} and {222} reflection
of the Ni layer annealed at 350 K. Solid lines are the strain coeffi-
cients constructed from the values of P1st and Q1st, acquired from the
fit in Fig. 3. Markers are the results of the VB-V analysis. Dotted
lines are fits of Eq. (4) to the VB-V data, using the data belonging to
correlation distances L up to 40 nm and 20 nm for the {111} and the
{222} reflection, respectively.

Fig. 5. Size Fourier coefficients of the specimens annealed at 350 K,
375 K, and 500 K. The solid lines are the size coefficients for the
specimen annealed at 350 K, obtained by dividing the Fourier coef-
ficients of the {111} and {222} reflections by the strain coefficients
that were constructed by fitting the ratio of the {111} and {222} pro-
files to Eq. (11), see Fig. 4. Markers (connected by dotted lines) are
the result of the VB-V analysis.
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Extrapolating the first few data of the size coeffi-
cients with a straight line to the correlation distance
axis yields the so-called apparent grain size [7]. For the
specimen annealed at 350 K, a value of about 15 nm is
obtained (see Fig. 5), this value corresponds reasonably
well with the grain size observed with transmission
electron microscopy. Figure 5 shows that during
annealing at 375 K some grain growth has occurred.
The size coefficients for the specimen annealed at 500
K are close to one; i.e., for this specimen size broaden-
ing is negligible.

The dislocation density, represented by the value of
P1st (see Fig. 7), remains more or less constant as long
as the anneal temperature does not exceed 375 K. In the
specimen annealed at 500 K, the dislocation density has
decreased considerably. The value of Q1st (see Fig. 8),
indicating the strain energy of a dislocation, decreases
somewhat with temperature if the anneal temperature
does not exceed 375 K. For the (recrystallized) speci-
men annealed at 500 K the value of Q1st is much larger.

In summary, the following can be concluded about
the evolution of microstructure of the nickel layers. Up
to an annealing temperature of 375 K, relatively small
changes in the microstructure of the specimens occur.
In the specimen annealed at 375 K, the grains have
grown out slightly (Fig. 5), and the strain energy of the
dislocations (of which the density is constant) decreas-
es somewhat with increasing temperature (i.e., decreas-
ing Q1st in Fig. 8). Consequently, the annealing temper-
atures not exceeding 375 K are high enough to allow
for some dislocation rearrangement within the grains,
but are too low to establish (large scale) recrystalliza-
tion. In the specimen annealed at 500 K on the other
hand, recrystallization has occurred. The specimen con-
sists of large grains with low dislocation density.
Because of the much lower dislocation density, the dis-
location interaction is small and there is less possibility
to minimize the strain energy by means of dislocation
rearrangement. Therefore, the outer cut-off radius for
this specimen, reflected by the value of Q1st, is relative-
ly large.

For a quantitative interpretation of the values of P1st

and Q1st, determined in the above analyses, in terms of
dislocation distribution parameters as dislocation den-
sity and outer cut-off radius, knowledge of the contrast
factor is necessary. The determination of the contrast
factor is in general a difficult task and is beyond the
scope of the present paper. In Refs. [5,11,17] sugges-
tions are given how contrast factors can be obtained
experimentally for heavily textured specimens and
specimens with a homogeneous dislocation distribu-
tion. For the present data, assuming that only screw dis-
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Fig. 6. Right-hand side of Eq. (16): 2 ln[A1st(L) + ln[A2nd(L)] –
versus L2 and linear fit to the data (dotted line).1

2nd 26 ln[ ( )]A L

Fig. 7. Values of P1st for the specimens annealed at 300 K, 330 K,
350 K, 375 K, and 500 K, obtained from the fit of the ratio of the
{222} and {111} Fourier coefficients to Eq. (11), the VB-V analysis
on the {111} and {222} reflections, and the analysis on the basis of
Eq. (16). For clarity, the error bars of the results using the method on
the basis of Eq. (16) are omitted. The errors in these values are typi-
cally equally large as those observed for the other methods of data
analysis.

Fig. 8. Values of Q1st for the specimens annealed at 300 K, 330 K,
350 K, 375 K, and 500 K, obtained from the fit of the ratio of the
{222} and {111} Fourier coefficients to Eq. (11), and the VB-V
analysis on the {111} and {222} reflections.

 

 

 

 

 

 
 



locations (Burgers vector  <110>) are present, it holds
that Ci, for the dislocations with Burgers vectors
inclined to the diffraction vector and for the dislocations
with Burgers vectors perpendicular to the diffraction
vector equal 0.1384 and 0, respectively [17]. Assuming
that dislocations are distributed homogeneously over
the different sets and that for the different sets the
outer cut-off radius is equal it holds:    ,

where ρtot is the total dislocation density,
and  It follows that
the dislocation densities and outer cut-off radii, before
recrystallization, are about 1016 m–2 and 18 nm, respec-
tively. After recrystallization these values are about
2 × 1014 m–2 and 150 nm. It is stressed here that these
values should be considered as rough estimates.
Further, it should be noted that dislocations might be
generated during cooling down. Due to the different
thermal expansion coefficients of silicon and nickel a
thermal (tensile) strain develops in the nickel layer dur-
ing cooling down. For the specimen annealed at 500 K,
this strain is approximately 0.2 %. X-ray diffraction
strain measurements revealed that the strain in the nick-
el layer annealed at 500 K, at room temperature is close
to this value, which suggests that the thermal strains are
hardly plastically relaxed, and consequently, not many
dislocations are formed during cooling down. Similar
experiments to thin Al layers in which plastic deforma-
tion was observed during cooling down revealed dislo-
cation densities up to 3 × 1014 m–2 [4,5]. Thus, in this
case, possible dislocations formed during cooling down
can be neglected for the layers annealed at temperatures
up to 375 K, that show much larger dislocation densi-
ties. However, for the specimen annealed at 500 K, it
cannot be excluded that the dislocations are (in part)
generated during cooling down.

A last example concerns the limitations of the above
analyses. For the nickel layers treated above it has been
assumed that a (more or less) homogeneous grain size
and dislocation distribution was present in the speci-
mens. However, the specimens annealed at 400 K and
450 K have partly recrystallized. The microstructure of
these specimens therefore consists of a mixture of small
grains with large dislocation density (i.e., comparable
to the not yet recrystallized specimen annealed at 375
K) and large recrystallized grains (comparable to the
grains in the specimen annealed at 500 K) with low dis-
location density. For such inhomogeneous specimens,
the methods treated above are not useful.

In this case, an analysis of the diffraction line broad-
ening is still possible. The microstructures of the spec-
imens annealed at 400 K and 450 K are considered to
be a mixture of the microstructures of the specimens

annealed at 375 K and 500 K. Then, the diffraction
peaks of the specimens annealed at 400 K and 450 K
are simply the sums of the diffraction peaks of the dif-
fraction peaks of the specimens annealed at 375 K and
500 K, scaled with their respective (diffracting) volume
fractions. The same holds for the Fourier coefficients of
the diffraction peaks. Thus, the volume fractions of the
“375 K microstructure” and the “500 K microstructure”
can be obtained by fitting the volume fractions such,
that shape the (Fourier coefficients of the) measured
peak corresponds to the weighted sum obtained from
(Fourier coefficients of) the 375 K and 500 K peaks.
Applying this method to the Fourier coefficients, “375
K” volume fractions of 0.57(4) and 0.40(4) were
obtained for the specimens annealed at 400 K and
450 K, respectively. In Fig. 9 the Fourier coefficients of
the {111} and {222} reflection of the specimen
annealed at 400 K are shown, together with the weight-
ed sum of the Fourier coefficients of the specimens
annealed at 375 K and 500 K. The specimen can quite
well be characterized as a mixture of the microstruc-
tures before and after recrystallization. Note that for
this procedure, neither correction for instrumental
broadening, nor determination of the strain broadening
was necessary, in contrast to the methods above.
Therefore, possible errors made by the removal of the
instrumental broadening are avoided.

In the last example it was possible to perform a dif-
fraction line shape analysis despite the inhomogeneity
of the specimens under consideration. In general how-
ever, this may not be possible and investigations to dis-

Volume 109, Number 1, January-February 2004
Journal of Research of the National Institute of Standards and Technology

72

1
2

1
1st 2 0.1384P = ⋅ ⋅

2 2
tot2 ,g bπ ρ

1 1
e 1st 3 3exp[ 2ln 2 ln( 3)].R Q= − + +

Fig. 9. Fourier coefficients (not corrected for instrumental broaden-
ing) of the {111} and {222} reflections of a nickel layer annealed at
400 K. Solid lines are the sum of 0.54 times the Fourier coefficients
of the specimen annealed at 375 K and (1-0.54) times the Fourier
coefficients of the specimen annealed at 500 K.



location distributions using x-ray line profile analysis,
for inhomogeneous microstructures may become very
difficult.

5. Conclusions

Several methods can be used to determine disloca-
tion distribution parameters from diffraction line broad-
ening measurements in specimens for which both strain
broadening caused by dislocations and size broadening
occurs. If the strain broadening can be described with
the model due to Wilkens, dislocation distribution
parameters can be determined from the ratio of the
Fourier coefficient of diffraction line profiles from two
orders of reflection, as well as using the Van Berkum-
Vermeulen analysis. The use of the Warren-Averbach
method is in this case dissuaded.

For thin nickel layers on silicon, the analysis on the
basis of the ratio of the Fourier coefficients of two
orders of reflection and the Van Berkum-Vermeulen
analysis yield equal results within experimental preci-
sion.

Annealing thin nickel layers with large dislocation
density and small grain size, at temperatures up to 375
K does not lead to large scale grain growth and changes
in dislocation density. However, the outer cut-off radius
decreases somewhat, which suggests that strain energy
is minimized at these temperatures by means of move-
ment of the dislocations within the grains. Annealing at
400 K and 450 K leads to an inhomogeneous
microstructure that consists of large grains with low
dislocation density and small grains with high disloca-
tion density. Complete recrystallization occurs during
annealing at 500 K; after annealing the specimen con-
sists of large grains with low dislocation density.
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