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Random access schemes for packet net-
works featuring distributed control require
algorithms and protocols for resolving
packet collisions that occur as the uncoor-
dinated terminals contend for the channel.
A widely used collision resolution protocol
is the exponential backoff (EB). New ana-
lytical results for the stability of the (bina-
ry) EB are given. Previous studies on the
stability of the (binary) EB have produced
contradictory results instead of a consen-
sus: some proved instability, others
showed stability under certain conditions.
In these studies, simplified and/or modi-
fied models of the backoff algorithm were
used. In this paper, care is taken to use a
model that reflects the actual behavior of
backoff algorithms. We show that EB is
stable under a throughput definition of sta-
bility; the throughput of the network con-

verges to a non-zero constant as the
offered load NV goes to infinity. We also
obtain the analytical expressions for the
saturation throughput for a given number
of nodes, N. The analysis considers the
general case of EB with backoff factor 7,
where BEB is the special case with »=2.
We show that = 1/(1 — ¢ ) is the opti-
mum backoff factor that maximizes the
throughput. The accuracy of the analysis is
checked against simulation results.
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1. Introduction

In a data network environment, many nodes of the
network may share a communication medium for trans-
mitting data packets, and the scheme of organizing and
scheduling transmission of the data packets is called
medium access control (MAC). Whether to have a cen-
tralized medium access control or to let the nodes con-
tend for the medium access without central control is a
network design decision determined by many factors.
When the access control involves contention among
nodes, the collision of packets transmitted by different
nodes is possible; MAC schemes based on contention
access require a random access scheduling method,
such as a backoff algorithm, to schedule transmissions
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randomly in order to reduce the probability of colli-
sions.

If multiple nodes transmit at the same time, a packet
collision occurs and the nodes must reschedule the
transmission of the packets. If the rescheduling algo-
rithm is deterministic, the retransmissions also will col-
lide, and the nodes will never be able to successfully
transmit the packets. This situation can be avoided by a
collision resolution protocol such as a backoff algo-
rithm, where each node randomly selects a time slot
within a given time interval—the ‘“contention win-
dow”—in which to transmit its packet. This scheme
reduces, but does not eliminate the probability of colli-
sion altogether. For given contention window, as the
number of nodes with packets to transmit grows, the
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probability of collision also increases. If the contention
window size is too small, many packet transmissions
will experience collision and the retransmission of
those packets will increase the effective load, aggravat-
ing the channel conditions. The binary exponential
backoff (BEB), a widely used backoff algorithm,
adjusts the contention window size by indirectly esti-
mating the traffic in the communication medium at
individual nodes, in effect by counting consecutive col-
lisions involving the same packet. The node's con-
tention window size is doubled every time the packet
experiences a collision and the contention window size
is reset to its minimum value following a successful
transmission [1]. BEB has been specified as part of the
MAC protocol in several network standards, including
the MAC layer of Ethernet local area networks (LANs)
(IEEE 802.3) and the Distributed Coordination
Function (DCF) of the wireless LAN standard IEEE
802.11 [2], [3].

In this paper, we assess the stability of BEB and ana-
lyze its performance using a model that closely resem-
bles practical network transmission schemes and there-
fore is useful for system planning and analysis.

1.1 Stability of Backoff Algorithms

Many papers study the stability of backoff algo-
rithms, including BEB, in terms of their effect on net-
work performance as the offered load increases.
However, these studies have produced contradictory
results instead of a consensus: some prove instability,
others show stability under certain conditions. The
mixed results are due to differences in the analytical
models and the definitions of stability used in the
analysis.

Simplified and/or modified models of the backoff
algorithm are often used to make analysis more
tractable. However, simplification or modification can
lead to very different analytical results. For example,
Aldous [4] proved that BEB is unstable for an infinite-
node model (a simplified model) for any non-zero
arrival rate, while Goodman et al. [5] showed using a
modified finite-node model that BEB is stable for suf-
ficiently small arrival rates. Also, while modification of
the model can make the analysis much simpler, the ana-
lytical result may have limited relevance because it
cannot be guaranteed that the modified model exhibits
the same behavior as the actual algorithm.

The various definitions of stability used in the stud-
ies of backoff algorithms can be classified into two
groups. One group of studies uses a definition based on
throughput and the other uses delay to define stability.
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Under the throughput definition, the algorithm is stable
if the throughput does not collapse as the offered load
goes to infinity [4] or is an increasing function of the
offered load [6]. Under the delay definition, the proto-
col is stable if the waiting time is bounded. Systems
that are stable under the delay definition can be charac-
terized by bounded backlog of packets in the queue, or
recurrent property of Markov chain [7].

Most of the analytical and simulation studies on sta-
bility treat BEB in the context of a specific network
medium access control (MAC) protocol such as
Ethernet etc. [8], [9], [10], [11], [12]. However, the
characteristics of this protocol seem to have as much or
more effect on the network performance results than
the intrinsic behavior of BEB. Some of the analytical
works that focus on BEB itself are summarized as fol-
lows:

Kelly and MacPhee [13] prove that for an acknowl-
edgment based random access scheme there exists a
critical arrival rate v,, with the property that the number
of packets successfully transmitted is finite with proba-
bility 0 or 1 according as v<v, or v> v, It is also
shown that v,=0 for any scheme with slower than
exponential backoff, and v, =log 2 for BEB. They use
an infinite-node model with Poisson arrivals, assuming
that no node ever has more than one packet arrive at it.
This result proves that BEB is unstable for v> v,, but
leaves open the stability for v<v,.

In [4], Aldous shows that, with infinite-node and
Poisson arrival assumptions, BEB is unstable in the
sense that N(7)/t converges to zero as ¢ goes to infinity
for any non-zero arrival rate, where N(¢) is the number
of the successful transmissions made during the time
[0,£]. This result solves the open problem left in [13],
but the model Aldous uses is slightly different from
Kelly and MacPhee's model.

Goodman et al. prove in [5] that BEB is stable if the
arrival rate of the system is sufficiently small in the
sense that the backlog of packets awaiting transmission
remains bounded in time. More specifically, they show
that BEB is stable if the arrival rate is smaller than
A'(n), where A'(n) > 1/n®"¢" for some constant & and n
is the number of nodes. They assume that each of the
finite number of nodes n has a queue of infinite capac-
ity.

In [14], Al-Ammal et al. give a tighter (greater)
upper bound of the arrival rate than that given in [5] for
the stability of BEB under the delay definition of stabil-
ity. By using the same analytical model as in [5], they
show that there is positive constant ¢ such that, as long
as n is sufficiently large and the system arrival rate is
smaller than 1/an®’ then the system is stable for the
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n-user system. The upper bound in [14] is further
improved in [15], where it is proved that BEB is stable
for arrival rate smaller than 1/an'™, where 1 <0.25.
The main point of their work is that BEB is stable for
an arrival rate that is inverse of a sublinear polynomial
inn.

Finally, in [7], Hastad et al. show, using the same
analytical model as in [5], that BEB is unstable when-
ever , > A/nfor1 <i<nmand 1> 0.567 + 1/(4n —2), or
when A > 0.5 and n is sufficiently large under the delay
definition of stability, where A is the system arrival rate
and /, is the arrival rate at node i.

In summary, these representative analyses indicate
that BEB is unstable for an infinite-node model, and for
a finite-node model it is stable if the system arrival rate
is small enough but unstable if the arrival rate is too
large. We note that they all assume slotted transmis-
sions. While these analytical results are well estab-
lished, because they are contradictory and do not repre-
sent the actual system, there remains doubt about the
stability of BEB so that this question continues to be an
open problem. As noted in [7] and [16], the infinite
node model used in [13] and [4] is a mathematical
abstraction with limited practical application, and
except for [13], all of the studies cited actually analyze
a modified version of BEB. For example, in BEB, after
i consecutive packet transmission failures (collisions) a
node selects for the next transmission a single random
slot from the next 2’ slots with equal probability, while
in the modified versions after i collisions a node is
assumed to transmit in each slot with probability 2.
Clearly, it is easier to analyze such a modified version
of BEB because of its memoryless nature, but it is not
guaranteed that it has the same stability characteristics
as BEB.

1.2 Approach of This Paper

In this paper, we analyze the stability of the original
BEB algorithm by showing that the network throughput
continues to be non-zero even when the number of
nodes goes to infinity. The analysis considers the gen-
eral case of exponential backoff (EB) with factor r;
BEB is the special case with »=2. In the notation of
[4], we show that N(f)/t converges to a non-zero value
as ¢ goes to infinity, and we show that p_, the probabil-
ity that a transmitted packet will experience a collision,
is always smaller than 1/r.

Network performance measures are usually given as
a function of the offered load. A commonly used defi-
nition of offered load is &V, the number of nodes waiting
to transmit; this concept underlies EB [8], which indi-
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rectly estimates the number of nodes contending by
counting consecutive collisions. A second definition of
offered load is the total packet arrival rate of the sys-
tem, relative to the channel capacity. Since the purpose
of EB is to alleviate the effects of contention among the
nodes and to adapt the system to the number of nodes,
the first definition of offered load is more appropriate
for analyzing EB and is used in this paper. For the same
reason, the performance of EB should be evaluated
based on its effect on the measures of network efficien-
cy, such as throughput.

In this paper, we assume a fixed number of nodes N
in saturation condition. Here saturation condition
means that each node always has a packet to transmit.
Thus, N represents the offered load of the network. We
also assume no errors on the channel. Under this
assumption, we analyze network throughput for a slot-
ted system with EB and compare the analytical results
with simulation. The saturation condition assumption is
also made by Bianchi in [17], where he used his own
approach to analyze the throughput of the distributed
coordination function (DCF) mode of the IEEE 802.11
wireless LAN standards.

This paper is organized as follows. In Sec. 2, we ana-
lyze EB to obtain the performance measures and estab-
lish stability. The analysis is carried out in several
steps, which consists of modeling of EB, analysis of
saturation throughput, and analysis of asymptotic
behavior. Section 3 discusses some aspects of the sim-
ulation used to validate the analytical results. Section 4
is the conclusion of the paper.

2. Analysis of EB

In our analysis, the time is divided into time slots of
equal length, and all packets are assumed to be of the
same duration, equal to the slot time. Furthermore, all
nodes are assumed to be synchronized so that every
transmission starts at the beginning of a slot and ends
before the next slot. At its first transmission, a packet is
transmitted after waiting the number of slots randomly
selected from {0, 1, -, W,—1}, where W,=1 is an
integer representing the minimum contention window
size. Every time a node's packet is involved in a colli-
sion, the contention window size for that node is multi-
plied by the backoff factor r and an integer random
number D, is generated within the contention window
for the next transmission attempt, where on a packet's
i-th retransmission
X, +1-7

Pr{Dl. :k,k:0,1,~--,[ViWoJ_1}: X (X +1)

(1)
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Y,
X, +1

Pr{D, =| W, |}=

@)

where X, = LriWOJ and Y, are the integer and fractional
part of #W,. i=0 represents the first transmission
attempt. For integer r, this operation is equivalent to
randomly selecting a number from (0, 1, =, #W,— 1)
with equal probability 1/#W,. With r = 2, this procedure
is called binary exponential backoff.

2.1 Analytical Model of EB

The characteristic behavior of a backoff algorithm is
critical when the channel is heavily loaded, and in fact,
the very idea of EB is to cope with the heavily loaded
channel condition. Thus, we analyze EB under satura-
tion conditions. The saturation condition represents the
largest possible load offered by the given number of
nodes, which is a reasonable assumption for investigat-
ing EB.

We model the operation at an individual node using
the state diagram in Fig. 1, in which each node is in one
of an infinite number of backoff states and p_. denotes
the probability that a transmission experiences a colli-
sion. In backoff state i, i=0, 1, 2, -, the contention
window size for a node is W, = rW,, where W, is the
minimum contention window size. As the diagram in
Fig. 1 indicates, after a successful transmission, which
occurs with probability 1 —p,, from any other state a
node enters backoff state i = 0 with contention window
size W,. While in backoff state i = k, after an unsuccess-
ful transmission, a node enters backoff state i=k+ 1
with probability p..

1—p.
TN ‘
{ 1 Pe Pe Pe Pe
i=0 = i=1] = i=2 - i=3 -
lTl 1 p
.. —Pe 1—p .
. ‘ 1 De 171)0

Fig. 1. State transition diagram in a node for exponential backoff
(EB).

Denote B, as the k-th state that a node enters. Then,
B, is a Markov chain with the transition probabilities
Dij»1,j=0,1,, given as follows.

Pio :Pr{BkH =0|B, = i}=l— Pe> 3)
Piin= Pr{Bk+1 =i+l| B, = i}: P 4)
pi; =0, j#0, j#i+l 5)
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Let P, be a probability defined as

P,:IEimPr{Bkzi}, i=0,1,-- (6)
then P; is the relative frequency that a node will enter
state 7 in the steady state. Since X P =1, from Fig. 1,
P, can be obtained as follows

P=(1-p)p., i=0,1,--- (7

2.2 Throughput

The main performance measure in evaluating a net-
work is its throughput. We analyze the saturation
throughput by calculating the probability that there is a
successful transmission in a time slot.

The probability P, given in Eq. (7) is the relative fre-
quency that a node enters state i. However, the average
time a node stays in a state is different for each state
and is a function of the contention window size of the
state. As illustrated in Fig. 2, if a node enters state 7, an
integer random variable D, is generated according to
Egs. (1) and (2), and after waiting for D, time slots, the
node will (re-)transmit the packet, after which the suc-
cess or failure of the transmission will determine the
next state of the node. Note that the node will stay in
state 7 for D; + 1 time slots until the node moves to the
next state. On average, a node will stay in state i for

= W +1
d, =E[D +1]=——— ®)
time slots. Let S; be the probability that a node is in
state 7 at a given time; then S; specifies the distribution
of nodes over the states. Since S, is proportional to Pd,,
it is given by

rd . A
( Enter state 1)

L)
Generate a RV D; ~ U[0, W; — 1]
t = Dy : set backoff timer

/J . . -\\
| Exit state ¢ )
— .

Fig. 2. Procedure taken by a node in state i. U[0,; — 1] represents a
uniform distribution of integer over the interval [0,W;— 1], Z~ ! means
time delay by one time slot, and #-- is a decrement operation on the
backoff timer.
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Pd.
S =t
27, bd,

_ (= p)pA=mp )W +1)
Wy(1-p,)+1-rp,

)

where the summation in the denominator does not exist
if rp, 2 1. In fact, rp, <1 is a necessary condition for
the system to reach steady state. Note that S, is given as
a function of p, and W,. Later, we show that the value
of p, is determined when the value of W, and the num-
ber of nodes N are given.

Define Pr{t = k|i} as the conditional probability that
a node's backoff timer 7 will have value k given that the
node is in state i. Since X", Pr{r =k |i} =1, it follows
that

W, ~1

NEDIE

; w1
k=

Prit=k|i=) s, (10)

o

where s, , is the probability that the node is in state i and

the backoff timer has value k. Since the backoff timer is
decreased by one every slot time, s, , satisfies

Six =Sy W, —k), k=0,1-- W —1. (11)

By substituting Eq. (11) into Eq. (10), it can be shown

that s, , =S, /(d,W,), and thus,

_2(-p)p.(L—rp) W —k

W, (- p,) +1—1p,

i 12

W (12)
When k=0, we have s, the probability that a node is
in state 7 and the backoff timer is expired, that is, a node
will transmit a packet in state 7.

Let p, be the probability that a given node will
transmit in an arbitrary time slot. Then, since s,
i=0,1,, are the probabilities of mutually exclu-
sive events, p =X s, ,. From Eq. (12), 5,0 =5: 0P,
i=1,2,. Thus,

SO,O

_ _ 2(1-mp,)
I-p, W,(d-p)+l-rp,

2 (13)

Note that p, is a function of p, and W, but also related
to N through the value of p, as will be shown later. As
we shall see in the following, since p, goes to 1/r as N
goes to infinity, p, converges to zero as the number of
nodes goes to infinity.

As noted in [17], the numerical value of p, is also
constrained by the fact that p, can be expressed in terms
of p,, that is

p. =1—Pr{none of the other N -1 nodes transmits}
=1-(1-p)"", (14)
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where (1 —p)"~" is the probability that none of the
other N — 1 nodes transmits. Solving Eq. (14) for p,, we
have

1/(N-1)

p=1=(1=p) (15)
Since Egs. (13) and (15) are two constraining equations
for p, as a function of p,, the unique intersection of these
two equations gives us the values of p, and p, for given
N and W,. Note that p, is always less than 1/r, which is
the requirement for the existence of the summation in
Eq. (9). Figure 3 shows plots of p, as a function of p,
given in Eq. (13) (dashed lines) for » =2 and various
values of W, and in Eq. (15) (solid lines) for various
values of N. The probability of collision p, and the
probability of transmission p, obtained numerically
from Egs. (13) and (15) by calculating the intersection
are plotted in Fig. 4. The plot shows p, and p, converg-
ing to 1/r (=0.5) and zero, respectively, as the number
of nodes increases. The circles and bullets drawn along
the curves are simulation results obtained for W, =16
and W,=32. Figure 4 shows that the analytical and
simulation results agree extremely well. (More discus-
sion on the simulation is given in Sec. 3.)

0.7 ——!

0.6 -

~=
g
-

~

0.5
0.4 —
ci" -
0.3 -
0.2

01 [

0 0.5 1
probability of collision o_

Fig. 3. Plots of p, as a function of p_; dashed lines: p; in Eq. (13),
solid lines: p, in Eq. (15). r=2.

20
number of nodes N

30 50

Fig. 4. Plots of the probability of collision p,, and the probability of
transmission p. r = 2.
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Since the channel is busy for a given time slot when
there is at least one transmitting node in the slot time,
the probability that the channel will be busy in a time
slot is

Pbusyzl_(l_pt)N :1_1i)dlc’ (16)

where Py, is the probability that a time slot is idle. On
the other hand, a successful transmission occurs when
there is only one transmitting node. Thus, the probabil-
ity that there will be a successful transmission in a time
slot is defined as

})succ :qut(l_pt)N_l :Npt(l_H)N_l’ (17)

where , C, is the number of ways of choosing 1 out of
N nodes. Note that a collision occurs if there are multi-
ple nodes transmitting in the same time slot. Thus, the
probability that a collision will occur in a time slot is
given by

P

col

=R, —P... (18)

If we normalize the slot time as the unit time, in any
given unit time duration, the average number of frames
that are successfully transmitted is Pg,. If we ignore
the packet overhead, the normalized throughput is sim-
ply Py In the notation of [4], P, =lim,, . N(?)/t.
Figure 5 shows plots of P, versus N for various val-
ues of W,. Note that P, converges to a non-zero con-
stant (3In2 to be precise when r=2; see Eq. (25) in
Corollary 2), which does not depend on W, as the num-
ber of nodes increases. Even when there are a lot of
nodes contending for the medium access, BEB man-
ages to control the transmission attempts in a slot to
guarantee sustained probability of successful transmis-
sion. In fact, it is shown below in Sec. 2.3 that the aver-
age number of nodes that transmit in a slot converges to
a constant less than 1 as the number of nodes goes to

PSUCC

asymptote + — W,=32

0 10 20 30 40 50
number of nades N

Fig. 5. The probability of successful transmission in a slot (normal-
ized saturation throughput). » = 2.

infinity. Note that, for a small number of nodes and
large W, P, increases as the number of nodes increas-
es. This behavior occurs because of the large number of
idle time slots on the channel, and increasing the num-
ber of nodes increases the efficiency of the channel
usage leading to a higher P

succ*

2.3 Stability and Asymptotic Behavior of EB

Now we investigate the asymptotic behavior of EB
observed when the number of nodes N goes to infinity.
As shown in Fig. 4, p, converges to zero as the number
of nodes increases, due to the increased contention win-
dow sizes which causes a smaller probability of trans-
mission in a given time slot. The following theorem
describes the asymptotic behavior of p..

Theorem I: Define n,= N - p, as the expected num-
ber of nodes that will transmit in an arbitrary time slot.
Then, n, converges to the non-zero value In[r/(r — 1)] as
the number of nodes N goes to infinity.

ProOOF We first show that p, converges to 1/r, and p,
converges to zero as N goes to infinity. From Egs. (13)
and (15), we have

L 2(1 —
1—(1-p)¥ ' = A=) (19)
W,(1-p)+1-1p,
Take an infinite limit of N on both sides, then
1
lim | 1=(1 = p)¥ |= tim —24=P)
N—o0 N—oo VVO (1 — pc) +1- p,
=0
which implies lim,._,., 2(1 — rp,) = 0. Thus,
) I ..
}}E}qpc _:9 Il\llgopt =0. (20)

Now, rewrite Eq. (13) to yield p, as a function of p, as
follows:

2—-(1+Ww,
pc — ( 0)pt (21)
2r—(r+w,)p,
By equating Egs. (14) and (21), we have
r—1 2-p N-l
—_— =1~ . 22
PR (I-p) (22)

Since lim,_,., p, = 0, by multiplying both sides by 1 — p,
and taking the limit as N—eo, we have
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"l fim(- . 23)

By taking natural logarithm of both sides, Eq. (23) can
be written as

in"=L = fim Nl = p)
7 N—o

In(1-p,)
2

= lim Np, lim ————=

N —eo N—eo

—lim Np,,

N —eo

which concludes the proof. O

This theorem tells us two very important facts. First,
n, converges to a finite positive constant. In fact, with
r=2, n, converges to In2 < 1. Thus, no matter how
many nodes the network contains, it can be expected
that, on average, less than one node will try to transmit
in any time slot, which in turn guarantees non-zero
throughput of the network regardless of the number of
the nodes in the network as shown in the following
corollary. Secondly, lim,_,., 7, is not a function of W,
Thus, the minimum contention window size does not
affect the asymptotic behavior of the network.

Fig. 6 shows the plots of n, vs N along with simula-
tion results. With a larger minimum contention window
size W,, the expected number of transmitting nodes in a
slot is smaller because of the longer average backoff by
each node. But as the number of nodes increases, all
curves converge to the asymptote lim,_,. 7 ,=In2 for
r =2, which is shown with a thin line in Fig. 6.

asymptote

0 10 20 30

number of nodes N

50

Fig. 6. The expected number of nodes 7, that will transmit in an arbi-
trary time slot. »=2.

Corollary 2: The probability P, that channel is
busy, and the probability P, that there will be a suc-

succ

cessful transmission in a time slot converge as the num-
ber of nodes N goes to infinity as follows:

1
}}E}o Pbusy = r i

24

295

r—1 r
=—In——-0u.
7 r—1

11m P

succ

(25)

The proof of Corollary 2 is straightforward from
Theorem 1. Note that the limits in Egs. (24) and (25) do
not depend on W, and are functions of only r, the back-
off factor. Equation (24) shows that, even with a large
number of nodes, the channel is idle about 50 % of the
time (for » =2), which guarantees sustained non-zero
probability of successful transmission. This is due to
the backoff mechanism controlling transmission
attempts by the nodes. As noted in Sec. 2.2, P, repre-
sents the normalized throughput. Thus, the asymptote
of P, in Eq. (25), drawn in Fig. 5 with thin solid line,
shows that EB is stable under the throughput definition.

As shown in Eq. (25), the throughput in the limit (the
asymptotic throughput) is a function of the backoff fac-
tor 7. The optimum backoff factor that maximizes the
asymptotic throughput is

1
-

(26)

ropt =

which yields the maximum asymptotic throughput

(\/Im F:ULL

Fig. 7 shows the plot of jlvim P,

=—=0.368. 7)

vs r. Note that the

binary exponential backoff (» = 2) produces the asymp-
totic throughput +1n 2 = 0.347 which is quite close to
the asymptotic throughput of the optimum EB.

3. Simulation

To support our analysis, simulation results are added
in Figs. 4-6, which are represented by circles and bul-
lets, along with the curves of analytical results. The
simulator is written in the C++ programming language,
and simulation results were obtained by running
500 000 time slots after 10 000 time slots of warming
up for W, =16, 32, and N=35, 10, ---, 50.

The simulation results in Figs. 4-6 agree with those
obtained from our analysis. However, when there are
relatively many nodes, slight differences between the
analytical and simulation results are observed which
can be attributed to a starvation effect. A starvation
effect is different from a capture effect. A capture effect
makes only a few nodes consume the whole transmis-
sion channel, but a starvation effect gives a few nodes
little chance to transmit their packets while most of
nodes have fairly good chances. For example, for
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o
%3
|

”mN—, nPsucc
o
(&)
|

o
i
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4 5 B

backoff factor r

Fig. 7. The optimum backoff factor r.

N =50 and W,= 16, while most nodes tried between
7000 and 8000 packet transmissions during 500 000
time slots, there was a node with only five transmission
tries. Also, there were several nodes with less than 3000
transmission attempts. For smaller 7, however, a cap-
ture effect [18] was observed instead of starvation,
whose result is not included in the figures. The reason
for these effects is the necessarily finite observation
time of the simulation.

4. Conclusion

We analyzed the performance of EB to obtain the
saturation throughput. The stability of EB was also
established by showing the asymptotic behavior of EB
when the number of nodes goes to infinity. From the
analysis results, we showed that EB guarantees a cer-
tain amount of throughput no matter how many nodes
are present in the network. We also showed that the
optimum backoff factor for EB which maximizes the
asymptotic throughput is » = 1/(1 —e™).

In this paper, a new and efficient analytical method
was used to analyze the characteristics of EB. This ana-
lytical method can also be applied to analyze network
protocols using EB, such as IEEE 802.11 DCF.
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