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Three improvements in reduction and com-
putation of elliptic integrals are made. 1.
Reduction formulas, used to express many
elliptic integrals in terms of a few stan-
dard integrals, are simplified by modifying
the definition of intermediate “basic inte-
grals.” 2. A faster than quadratically con-
vergent series is given for numerical
computation of the complete symmetric el-
liptic integral of the third kind. 3. A se-
ries expansion of an elliptic or hyperelliptic
integral in elementary symmetric func-
tions is given, illustrated with numerical co-
efficients for terms through degree seven

for the symmetric elliptic integral of the
first kind. Its usefulness for elliptic inte-
grals, in particular, is important.
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Foreword

Elliptic integrals have many applications, for example
in mathematics and physics:
• arclengths of plane curves (ellipse, hyperbola,

Bernoulli’s lemniscate)
• surface area of an ellipsoid in 3-dimensional space
• electric and magnetic fields associated with ellipsoids
• periodicity of anharmonic oscillators
• mutual inductance of coaxial circles
• age of the universe in a Friedmann model
These applications are mentioned in the chapter on el-
liptic integrals, written by B. C. Carlson, that will ap-
pear in the NIST Digital Library of Mathematical Func-
tions .

The DLMF is scheduled to begin service in 2003
from a NIST Web site. A hardcover book will be pub-
lished also. These resources will provide a complete
guide to the higher mathematical functions for use by
experienced scientific professionals. The book will
provide mathematical formulas, references to proofs,

references to extensions and generalizations, graphs,
brief descriptions of computational methods, a survey of
useful published tables, and sample applications. The
Web site will include, in addition, interactive visualiza-
tions of 3-dimensional surfaces, a mathematics-aware
search engine, a downloading capability for equations,
live links to Web sites that provide mathematical soft-
ware, and a limited facility for generating tables on
demand.

The DLMF is modeled after the Handbook of Mathe-
matical Functions , published in 1964 by the National
Bureau of Standards with M. Abramowitz and I. A.
Stegun as editors. This handbook has been enormously
successful: it has sold more than 500,000 copies, its
sales remain high, and it is very frequently cited in
journal articles in physics and many other fields. But
new properties of the higher functions have been devel-
oped, and new functions have risen in importance in
applications, since the publication of the Abramowitz
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and Stegun handbook. More than half of the old hand-
book was devoted to tables, now made obsolete by the
revolutionary improvements since 1964 in computers
and software. The need for a modern reference is being
filled by more than 30 expert authors who are working
under contract to NIST and supervised by four NIST
editors. The writing is being edited carefully to assure
consistent style and level of content.

Elliptic integrals have long been associated with the
name of Legendre. Legendre’s incomplete elliptic inte-
grals are

F (� , k ) = ��

0

d�

�1 � k 2 sin2 �
,

E (� , k ) = ��

0

�1 � k 2 sin2 � d� ,

and

� (� , � 2, k ) = ��

0

d�

�1 � k 2 sin2 � (1 � � 2 sin2 � )
.

The complete forms of these integrals are obtained by
setting � = �/2.

Over a period of more than 35 years, Carlson has
published a series of papers that provide valuable new
mathematical and computational foundations for the
subject in terms of the symmetric elliptic integrals

RF (x , y , z ) =
1
2 �

�

0

dt
s (t )

,

RD (x , y , z ) =
3
2 �

�

0

dt
s (t )(t + z )

,

RJ (x , y , z , p ) =
3
2 �

�

0

dt
s (t )(t + p )

where

s (t ) = �t + x �t + y �t + z .

The complete forms are obtained by setting x = 0. In
comparison with Legendre’s integrals, Carlson’s inte-
grals simplify the reduction of general elliptic integrals
to standard forms and open the way to efficient compu-
tations by application of a duplication theorem.

One of the purposes of the DLMF project is to stim-
ulate research into the theory, computation and applica-
tion of the higher mathematical functions. The paper

which follows is an example. It is a further development
of material that appears in Carlson’s DLMF chapter on
elliptic integrals.

Daniel W. Lozier
NIST Mathematical and Computational Sciences
Division

1. Simplified Formulas for Reducing
Elliptic Integrals

A large class of elliptic integrals can be written in the
form

I (m) = �x

y
�h

i=1

(ai + bi t )�1/2 �n

j=1

(aj + bj t )mj dt , (1.1)

where m = (m1, . . ., mn ) is an n -tuple of integers (posi-
tive, negative or zero), x > y , h = 3 or 4, n � h , and the
different linear factors are not proportional. The a ’s and
b ’s may be complex (with the b ’s not equal to zero), but
the integral is assumed to be well defined, possibly as a
Cauchy principal value. In particular the line segment
with endpoints ai + bi x and ai + bi y is assumed to lie in
the cut plane (C\(��, 0) for 1 	 i 	 h .

We write m = �n
j=1 mj ej , where ej is an n -tuple with 1

in the j th position and 0’s elsewhere, and we define
0 = (0, . . ., 0). Reference [1] gives a general method of
reducing I (m) to a linear combination of “basic inte-
grals,” defined as I (0), I (�ej ), 1 	 j 	 n , and (if h = 4)
I (ek ), 1 	 k 	 4. A simple example of such a reduction
is

bi I (ej � ei ) = dji I (�ei ) + bj I (0),

i , j � {1, . . ., n}, (1.2)

where dji = ajbi � aibj . This equation reduces all 36+72
integrals in Ref. [2], Eqs. (3.142) and (3.168) and also
the 18 integrals in Ref. [2], Eq. (3.159) after taking x 2

as a new variable of integration. The basic integrals are
expressed in terms of symmetric standard integrals RF ,
RD , and RJ in Ref. [1], Sec. 4.

The general method first reduces I (m) by Ref. [1],
Eq. (2.19) to integrals in which m has at most one
nonzero component and then uses two recurrence rela-
tions Ref. [1] Eqs. (3.5) and (3.11) for further reduction
to basic integrals. For example, the simplest recurrence
relation is Ref. [1], Eq. (3.11):

bq
i I (qej ) = �q

r=0
�q

r� br
j dq�r

ji I (rei ), q � �. (1.3)
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The b ’s appear also in the other two formulas and there-
fore in all reduction formulas, sometimes in great profu-
sion if m is considerably more complicated than in Eq.
(1.2).

It has been found that the b ’s disappear from all three
formulas, and therefore from all reduction formulas, if
we define

Î (m) = I (m)/B , Â (m) = A (m)/B ,

B = �n

j=1

bmj
j , rij =

dij

bibj
=

ai

bi
�

aj

bj
. (1.4)

Here A (m) is the algebraic function

A (m) = fm(x ) � fm(y ), (1.5)

where fm(t ) is the integrand of Eq. (1.1). Note that
Î (0) = I (0).

For example, Eq. (1.2) becomes

Î (ej � ei ) = rji Î (�ei ) + I (0), (1.6)

and Eq. (1.3) becomes

Î (qej ) = �q

r=0
�q

r� rq�r
ji Î (rei ), q � �. (1.7)

The other recurrence relation, Ref. [1], Eq. (3.5), be-
comes

�h

r=0

(2q + r )Eh�r (r1j , . . ., rhj ) Î ((q � 1 + r )ej )

= 2Â�qej + �h

i=1

ei�, q � �, 1 	 j 	 n (1.8)

where Eh�r is the elementary symmetric function de-
fined by

�h

i=1

(1 + trij ) = �h

k=0

t kEk (r1j , . . ., rhj ), (1.9)

whence Eh = 0 if 1 	 j 	 h because rjj = 0.
The remaining formula, Ref. [1], Eq. (2.19), becomes

Î (m) = �M
q=0

ĈM�q (k ) Î (qek ) + �n

i=1


i��mi

q=1

Ĉmi+q (i ) Î (�qei ),

(1.10)

where M = �n
j=1 mj and each sum is empty if its upper

limit is less than its lower limit. The first term on the
right is independent of k , which is usually best chosen
so that 1 	 k 	 h . The coefficients are defined by


i = �n

j=1

rmj
ji , Ĉ0(i ) = 1, Ĉ�s (i ) = � ��1

�1(i )


��s
�s (i )

�1!


�s !
,

j�i

��p (i ) =
�1
p �n

j=1

mjr�p
ij , p � 1, (1.11)

j�i

where upper (lower) signs go together and the first sum
extends over all nonnegative integers �1, . . ., �s such that
�1 + 2�2 + . . . + s�s = s . A recurrence relation for the
coefficients is

s Ĉ�s (i ) = �s

p=1

p��p (i ) Ĉ�(s�p)(i ), s � 1. (1.12)

2. Algorithms for Complete Elliptic
Integrals of the Third Kind

Complications formerly encountered in numerical
computation of Legendre’s complete elliptic integral of
the third kind were avoided by defining and tabulating
Heuman’s Lambda function (for circular cases) and a
modification of Jacobi’s Zeta function (for hyperbolic
cases). For example, the method of Ref. [3] was later
superseded by Bartky’s transformation and its applica-
tion by Bulirsch [4] to his complete integral
cel (kc , p , a , b ). Bartky’s transformation for the com-
plete case of the symmetric integral of the third kind,
obtained from Ref. [5], Eq. (4.14) with the help of

(3�/4)RL (y , z , p ) = 3RF (0, y , z ) � pRJ (0, y , z , p ),

(�/2)RK (y , z ) = RF (0, y , z ), (2.1)

can be written as

RJ (0, g 2
n , a 2

n , p 2
n ) = snRJ (0, g 2

n+1, a 2
n+1, p 2

n+1)

+ (3/2p 2
n )RF (0, g 2

n+1, a 2
n+1), (2.2)

where an , gn , pn are positive, sn = (p 4
n � a 2

n g 2
n )/8p 4

n , and

an+1 =
an + gn

2
, gn+1 = �angn , pn+1 =

p 2
n + angn

2pn
,

n � �. (2.3)

As n → �, an and gn converge quadratically to
Gauss’s arithmetic-geometric mean, M (a0, g0), and

RF (0, g 2
n , a 2

n ) = �/2M (a0, g0), n � �, (2.4)

by Ref. [6], Eqs. (6.10-8) and Eq. (2.1). It follows from
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(2.3) that

pn+1 � gn+1 = (pn � gn+1)2/2pn . (2.5)

Since gn+1 converges quadratically to M (a0, g0), so does
pn , and sn converges quadratically to 0. Iteration of Eq.
(2.2) gives

RJ (0, g 2
0 , a 2

0 , p 2
0 ) =

Qnp 2
n

p 2
0

RJ (0, g 2
n , a 2

n , p 2
n )

+
3�

4p 2
0M (a0, g0)

�n�1

m=0

Qm , (2.6)

where

Q0 = 1,
Qm

p 2
0

=
s0s1


sm�1

p 2
m

, m � 1, (2.7)

and therefore

Qn+1

Qn
=

snp 2
n

p 2
n+1

=
1
2

p 2
n � angn

p 2
n + angn

. (2.8)

Letting n → � in Eq. (2.6), we find, for positive
a0, g0, p0,

RJ (0, g 2
0 , a 2

0 , p 2
0 ) =

3�
4p 2

0M (a0, g0)
��
n=0

Qn ,

Q0 = 1, Qn+1 =
1
2

Qn�n , �n =
p 2

n � angn

p 2
n + angn

, (2.9)

where �n converges to 0 quadratically and Qn converges
to 0 faster than quadratically.

If p0 = a0, Eq. (2.9) becomes

RD (0, g 2
0 , a 2

0 ) =
3�

4a 2
0M (a0, g0)

��
n=0

Qn ,

Q0 = 1, Qn+1 =
1
2

Qn�n , �n =
an � gn

an + gn
, (2.10)

where RD is a complete integral of the second kind,
symmetric in only its first two arguments. If 0 < a0 	 g0

then �1 < �0 	 0, but �n � 0 and Qn 	 0 for n � 1.
If the last variable of RJ is negative, the Cauchy prin-

cipal value is given by

(q 2
0 + a 2

0 )RJ (0, g 2
0 , a 2

0 , �q 2
0 ) = (p 2

0 � a 2
0 )RJ (0, g 2

0 , a 2
0 , p 2

0 )

�
3�

2M (a0, g0)
, p 2

0 = a 2
0 (q 2

0 + g 2
0 )/(q 2

0 + a 2
0 ), (2.11)

where we have used Eq. (2.4) and chosen xi = a 2
0 in Ref.

[7], Eq. (4.6). Substitution of Eq. (2.9) gives

RJ (0, g 2
0 , a 2

0 , �q 2
0 ) =

�3�
4M (a0, g0)(q 2

0 + a 2
0 )

�2 +
a 2

0 � g 2
0

q 2
0 + g 2

0
��
n=0

Qn�. (2.12)

Equation (2.3) and the second line of Eq. (2.9) still
apply, with p0 given by Eq. (2.11).

For the complete case of Legendre’s third integral,

�(� 2, k ) = (� 2/3)RJ (0, k' 2, 1, 1 � � 2) + RF (0, k' 2, 1),
(2.13)

where k' 2 = 1 � k 2, Eq. (2.9) implies

�(� 2, k ) =
�

4M (1, k' ) �2 +
� 2

1 � � 2 ��
n=0

Qn�,

�� < k 2 < 1, �� < � 2 < 1, (2.14)

where Eq. (2.3) applies with a0 = 1, g0 = k' , and
p 2

0 = 1 � � 2.
If � 2 > 1, Eq. (2.12) gives the Cauchy principal value,

�(� 2, k ) =
��k 2

4M (1, k' )(� 2 � k 2) �
�

n=0

Qn ,

�� < k 2 < 1, 1 < � 2 < �, (2.15)

where Eq. (2.3) and the second line of Eq. (2.9) apply
with a0 = 1, g0 = k' , and p 2

0 = 1 � k 2/� 2.

3. Expansion in Elementary Symmetric
Functions

The duplication method of computing the symmetric
elliptic integrals RF and RJ (including their degenerate
cases RC and RD ) consists in iterating their duplication
theorems until their variables are nearly equal and then
expanding in a series of elementary symmetric functions
of the small differences between the variables. In the
absence of a duplication theorem the method is useful
for a hyperelliptic integral only if the variables are
nearly equal. The series is truncated to a polynomial of
fixed degree; the higher the degree, the fewer duplica-
tions are needed for a desired accuracy of the result but
the larger the number of terms to be calculated. No tests
have been made to determine an optimal compromise,
which would depend in large part on the speed of
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extracting square roots in the duplication theorem and
therefore on the equipment used. In Ref. [8] polynomi-
als of degree five were chosen for simplicity, but later it
seemed worthwhile to increase the degree for the com-
paratively slow computation of RJ , and Ref. [9], Eq.
(A.11) gives the terms of degree six and seven for RJ .
The change in speed would be significant only if a very
large number of computations were performed, since
the result of a single computation is returned with no
delay apparent to the eye. We shall give here the corre-
sponding terms for RF and the general form of the in-
finite series of which the polynomials are truncations.

Any R -function R�a (b1, . . ., bk ; z1, . . ., zk ) (see Ref.
[6]) in which all the b -parameters are positive integral
multiples of a single number � can be rewritten with
repeated variables and all b ’s equal to � . An example is

RJ (x , y , z , p ) = R�3/2(1
2,

1
2,

1
2, 1; x , y , z , p )

= R�3/2(1
2,

1
2,

1
2,

1
2,

1
2; x , y , z , p , p ), (3.1)

and RD (x , y , z ) is the case with p = z . Therefore we
consider

R�a (� , . . ., � ; z1, . . ., zn )

=
1

B (a , n� � a ) �
�

0

t n��a�1�n

i=1

(t + zi )��dt

= A�aR�a (� , . . ., � ; z1/A , . . ., zn /A ), (3.2)

where B is the beta function and we have used the
homogeneity of R to divide the variables by their arith-
metic average,

A =
1
n �

n

i=1

zi . (3.3)

The relative difference between A and zi is

Zi =
A � zi

A
= 1 �

zi

A
, (3.4)

whence

R�a (� , . . ., � ; z1, . . ., zn )

= A�aR�a (� , . . ., � ; 1 � Z1, . . ., 1 � Zn ). (3.5)

Because the function is symmetric in the Z ’s, it can
be expanded in elementary symmetric functions
Em = Em (Z1, . . ., Zn ) defined by

�n

i=1

(1 + tZi ) = �n

r=0

t r Er . (3.6)

Applying Ref. [10], Eqs. (A.5) and (A.12) to the right
side of Eq. (3.5), we find

R�a (� , . . ., � ; z1, . . ., zn )

= A�a��
N=0

(a )N

(n� )N
TN (� , . . ., � ; Z1, . . ., Zn ), (3.7)

= A�a��
N=0

(a )N

(n� )N
�(�1)N+M(� )M

Em1
1 


Emn

n

m1!


mn !
, (3.8)

where (a )N is Pochhammer’s shifted factorial, M = �n
i=1

mi , and the inner sum (representing TN ) extends over all
nonnegative integers m1, . . ., mn such that m1 + 2m2

+ 


 + nmn = N . Reference [10], Eq. (A.6) provides the
recurrence relation

NTN + �n

r=2

(�1)r(r� + N � r )ErTN�r = 0, (3.9)

where T0 = 1 and TN�r = 0 if r > N , whence T1 = 0. The
term with r = 1 is missing because Eqs. (3.3) and (3.4)
imply E1 = 0, which greatly simplifies TN .

Let |Z | = maxi |Zi | and � = max{|a |, 1}. The series
[Eq. (3.7)] converges absolutely if � > 0 and |Z | < 1, and
the truncation error rK resulting from neglect of terms of
degree N � K can be shown to satisfy

| rK | 	
(|a |)K |Z |K

K !(1 � |Z |)� . (3.10)

Each application of a duplication theorem decreases by
a factor of four the differences between the variables,
therefore the difference A � zi , and ultimately |Z | as A
approaches a limit. It is easy to determine whether an-
other duplication is needed before using the truncated
series to achieve the desired accuracy.

If a = � = 1/2 and n = 3, the series [Eq. (3.8)] with
E1 = 0 can be rearranged as

RF (z1, z2, z3) = A�1/2��
r=0
��
s=0

(�1)r(1
2)r+s

4r + 6s + 1
Er

2Es
3

r ! s !
. (3.11)

This double series is convenient for obtaining numerical
coefficients but requires |E2| + |E3| < 1 for absolute con-
vergence. Keeping together all terms of the same degree
in the Z ’s, as in Eq. (3.8), we find

RF (z1, z2, z3) = A�1/2(1 �
1
10

E2 +
1
14

E3 +
1
24

E 2
2

�
3
44

E2E3 �
5

208
E 3

2 +
3

104
E 2

3 +
1
16

E 2
2E3 + r8), (3.12)
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where

| r8| <
0.2|Z |8

1 � |Z |
, |Z | = ma

i
x �A � zi

A � < 1,

A = (z1 + z2 + z3)/3. (3.13)

One more duplication would (ultimately) have de-
creased | r8| by a factor of 48 = 65 536.

For convenient reference we restate the corresponding
result for RJ and RD [see Eq. (3.1) and the discussions
preceding it]:

R�3/2(1
2, . . ., 1

2; z1, . . ., z5)

= A�3/2(1 � 3
14 E2 + 1

6 E3 + 9
88 E 2

2 � 3
22 E4

�
9
52

E2E3 +
3
26

E5 �
1

16
E 3

2 +
3

40
E 2

3 +
3

20
E2E4

+
45
272

E 2
2E3 �

9
68

E3E4 �
9

68
E2E5 + r8), (3.14)

where

| r8| <
3.4|Z |8

(1 � |Z |)3/2 , |Z | = ma
i

x �A � zi

A � < 1,

A = (z1 + . . . + z5)/5. (3.15)

The duplication theorems for these two functions are
more complicated than that for RF ; see Ref. [10] and
Ref. [9], Appendix.
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