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Mean values, traditionally used as a loca-
tion parameter in the analysis of inter-
comparisons, are known to lack stability
against the effect of “outliers”. It is
therefore proposed to replace (or comple-
ment) them by the use of medians,
which have better statistical “robustness”.
An estimate for the corresponding uncer-
tainty is derived and the procedure is illus-
trated by a numerical example. The sim-

plicity of the suggested robust approach
should favor its practical use in a number
of metrological applications.
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1. Some Generalities

The use of mean values as a location parameter has
long been a deeply entrenched habit which scarcely
requires justification. Also, by applying the principle of
“least squares,” one can even prove that this procedure,
in some specific sense, leads to the “best” choice that
can be made.

For most users of elementary statistics it comes as a
surprise, therefore, to learn that the very foundation of
using mean values may come under question. Indeed, a
rapidly developing branch of modern statistics, that
which studies “robust” methods of estimation, has con-
cluded (for quite some time already) that interpreting
measurement results in terms of mean values is actually
not a “safe” procedure because such values have poor
stability against the effect of “outliers” (for a general
review, see, for example, Ref. [1]).

Outliers have been known for long, of course, but they
were usually considered a nuisance in statistics—mainly
because nobody really knew what to do with them. Yet,
their incidental occurrence is a well-established fact.

They pose a problem which seems to have no satisfac-
tory solution. In principle, there are three ways to deal
with outliers:

• leave them stay as they are,
• correct them, or
• delete them.

Unfortunately, all these procedures have unwanted
features. Thus, if outliers are retained, they falsify both
the mean value and its uncertainty, possibly to the point

1 This text is based on a paper presented at a conference held at the
Bureau International des Poids et Mesures (BIPM) on 17 February
1995, entitled “Les valeurs moyennes - sont-elles fiables?”, and a
similar talk given at the International Atomic Energy Agency (IAEA)
in Vienna on 5 April 1995. It was previously available only as Report
BIPM-95/2. Because of the significance of the ideas presented and
because it is an important reference for the previous paper, the Chief
Editor believes that it would be useful to reprint it (with minor edit-
ing) in the Journal.
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at which the mean and its uncertainty become unaccept-
able. Correction or deletion, in practice often performed
by applying some more or less obvious weighting proce-
dure or rejection rule, would require a clear justification.
Hence, whatever procedure is followed, it is easily criti-
cized.

To this uncomfortable situation comes an unexpect-
edly simple solution. It is offered by the expanding field
of “robust statistics,” and comes as a most welcome
rescue.

Let us concentrate on a single way—certainly the
simplest and no doubt one of the more efficient ones—to
achieve protection against the unwanted effects of out-
liers. It is simply to replace the mean value by the
corresponding median (or central value). For a continu-
ous variate x , the median m~ is defined, using the (cumu-
lative) distribution function F (x ), by the condition

F (m~) = 1/2. (1)

This means that one half of the observations are below
and the other half above the median.

For a sample of n ordered variables x1, x2, ..., xn , the
sample median, denoted as m~ = med {xi }, is given by
(with integer k )

xk+1, k =
n � 1

2
for n odd

m~ = �1/2(xk + xk+1), k =
n
2

for n even (2)

As is well known, the median can also be obtained as
the solution from the condition that

�n

i=1

| xi � m~| = minimum. (3)

This equation then takes the place of the traditional
principle of the least mean squares (see Appendix A).

2. Uncertainty of the Median

While the replacement of the mean value by the cor-
responding median m~ is a simple and straightforward
procedure, the estimation of the uncertainty s(m~) to be
associated with m~ requires some more thought. In the
spirit of our robust approach we base this estimate also
on a quantity which involves medians. An obvious
choice is to use the “median of the absolute deviations”,
often abbreviated by MAD (a rather unfortunate choice),
and defined by

MAD = med {|xi � m~|}, for i = 1, 2, ..., n . (4)

The required estimate for the uncertainty of m~ is then
taken as

s (m~) = C�MAD , (5)

with a proportionality factor C which has to be evalu-
ated.

The constant C is determined by requiring that, in the
limit of large samples, the estimate coincides with what
we would obtain for a sample taken from a normal
population. This is an arbitrary but reasonable normal-
ization.

The goal is achieved in two steps. First, we establish
a relation between MAD and the parameter � (standard
deviation) of a normal distribution, and then we use the
known ratio of the variances for the median and the
mean, both for a sample of size n taken from a normal
population.

For a normal distribution, the probability density
function is

� (x ) =
1

��2�
e�

1
2�x��

� �2

.

As for any symmetrical distribution, mean and me-
dian coincide, thus m~ = � . In addition, we can choose
� = 0 without loss of generality; thus MAD = med{| x |}.
According to Eq. (1) we then have to evaluate the limits,
�� and +� , for which

�
�

��

� (x ) dx = 1/2,

or

�
�

0

� (x ) dx = 1/4.

Tables give the numerical solution (for � = 1)

� = 0.6745. (6)

We thus find that MAD can be linked, for a normal
distribution, with the average standard deviation � (x ) of
a single observation x , by

MAD = � � (x ).

By increasing n , the precision of MAD is improved
but its value remains essentially unchanged. Only for the
special case of n = 1 do we always have MAD = 0. This
can be taken into account by writing

MAD = �n � 1
n

� � (x ). (7)
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However, we must not forget that the uncertainty to
be determined is that of a median, not of a mean value.
From the theory of order statistics it is known that, in the
case of a normal distribution, the (asymptotic) variance
of the median, based on a sample of n values, is given
by (see, for example, Refs. [2] or [3])

s 2(m~) ≈ �
2n

� 2(x ). (8)

Therefore, the uncertainty to be associated with the
sample median m~ is

s (m~) = ��
2n

� n
n � 1

MAD
�

≈ 1.858

�n � 1
MAD . (9)

In other words, the required proportionality factor in
Eq. (5) can be taken as

C =
1.9

�n � 1
.

Note that Eq. (9) disagrees with a corresponding re-
sult recently given in Ref. [4], where C is simply taken
as 1/� .

3. An Example

To illustrate with a numerical example, we choose the
six half-life measurements for 125I performed in the
framework of a recent international comparison of ac-
tivity measurements [5]. The results, obtained in differ-
ent laboratories, are (in units of days and ignoring the
stated uncertainties), when arranged in order of increas-
ing values,

59.26 59.29 59.38 59.39 59.40 59.90.

This leads to the sample median

m~ = 1/2(59.38 + 59.39) d ≈ 59.38 d.

To determine the uncertainty of m~, we list the abso-
lute deviations of the values from their median, again in
increasing order, i.e.

0.00 0.01 0.02 0.09 0.12 0.52.

This gives for their median, according to Eq. (4),

MAD = 1/2(0.02 + 0.09) d ≈ 0.06 d.

Thus we have from Eq. (9)

s (m~) ≈ 1.9

�5
MAD ≈ 0.05 d.

The resulting estimate for the half life of 125I is there-
fore

T1/2 = (59.38 � 0.05) d, (10a)

which compares favorably with the latest adjusted value
of Ref. [6]

T1/2 = (59.408 � 0.008) d. (10b)

A traditional analysis (without weights) of the six
values gives the mean value (59.44 � 0.10) d, whereas,
after deletion of the highest value as a possible outlier,
one finds (59.34 � 0.03) d.

It will be noted that the suggested robust estimation
method is extremely simple to apply and, in our exam-
ple, leads directly to a reasonable result. Obviously,
there exist more sophisticated approaches with a some-
what higher efficiency (see, for example, Refs. [1] or
[4]); their justification, however, is much less obvious
and is not always free of subjective decisions. As a start
in planned applications, the use of the simple method
based on the median should be adequate.

4. Remarks on Applications

An important task of the BIPM is to organize and
analyze international comparisons in the various fields
of its activity. Traditionally, an essential part of such an
exercise is the evaluation of a mean value (or reference
value) with its respective uncertainty. Experience shows
that the occurrence of discrepant results (outliers) is a
rather frequent nuisance for the analyzer. While it may
be necessary to neglect some data to protect the major-
ity of participants from a misinterpretation, it is an un-
pleasant task to inform a national laboratory that its
result must be eliminated. Obviously, the Consultative
Committees of the Comité International des Poids et
Mesures (CIPM), which organizes such comparisons,
would prefer to avoid such decisions which may cause
problems to laboratories.

As we have seen above, an analysis based on the
median is largely insensitive to the existence of outliers
(and their position). This is why we suggest that the new
technique be applied, perhaps simply as a complement
to the traditional analysis, in all international compari-
sons organized by the Consultative Committees. In situ-
ations without outliers, the additional result may serve as
a welcome check.
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Clearly, the analysis of an intercomparison largely
depends on its purpose. While the determination of a
consensus value is often the objective, in other cases the
main interest is on discrepant data. Thus, for example in
radiotherapy, all results within a given margin (for in-
stance �2 %) may be equally acceptable, whereas those
outside pose a serious problem, as such irradiations are
either useless or dangerous. For such results, the aim is
to find a reliable location with respect to a stable refer-
ence value, such as the median.

It will be obvious that the use of a robust analysis for
data of heterogeneous origin has a much wider field of
application than intercomparisons. Similar problems oc-
cur each time a compiler tries to determine a “best
value” for application in physics, chemistry, or technol-
ogy. In particular, the technique should also prove useful
in the analysis of data on fundamental constants.

If the data to be compared are not produced simulta-
neously (or “blindly,” as in an intercomparison), but are
assembled over a period of time, additional problems
occur since it is unrealistic to assume that they remain
independent. Strongly discrepant results are normally
not published. While the resulting distortion may have a
moderate effect on the adopted mean value, such
“psychological” correlations inevitably lead to an under-
estimation of the uncertainty of input values for an ad-
justment, possibly by a factor of two.

An extension of the discussed robust approach to data
with different statistical weights is possible, but not con-
sidered an urgent task since the process of selecting
such weights is usually subjective in nature.

The above remarks are clearly of a personal nature
and should not be taken as an official BIPM policy in
these matters.
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5. Appendix

The purpose of this appendix is to show in a simple
and explicit way that the sample median t = m~ is indeed
the solution for the condition.

Q = �n

i=1

|xi � t | = minimum (A1)

for a sample of n results xi .
It is practical to consider for this purpose the mea-

surements xi in their ordered form, say

y�k 	 y�k+1 	 ... 	 y0 	 ... 	 yk�1 	 yk ,

where k = (n � 1)/2 for n odd, but without y0 and with
k = n /2 for n even.

Let us consider the various possibilities.

← t →
For n = 2 | | |

y�1 y1

If t is located between y�1 and y1: Q = y�1 � y1 = Q0.
For t outside this region we have

Q = Q0 + 2|t � y1| or Q = Q0 + 2|t � y�1|. (A2)

The minimum Q0 is reached for any t in the first
configuration. One can choose t = (y1 + y�1)/2.

In the more general case of n even , an equal number
of measurements is added to the left (y�2, y�3, ...) and to
the right (y2, y3, ...) of the interval considered above.
Hence, the minimum

Q = Q0 + �k

j=2

(yj � y�j ) (A3)

still applies for t between y�1 and y1, as for n = 2.

← t →
For n = 3: | | | |

y�1 y0 y1

In this case we obviously have (for t between y�1 and
y1)

Q = y�1 � y1 + |t � y0|

= y�1 � y1 = Q0, if t = y0. (A4)

This feature remains if additional results of measure-
ments are added symmetrically (as above). The mini-
mum of Q thus corresponds to the choice t = x0 for any
odd value of n . The cases considered for n even or odd
confirm the rule stated in Eq. (2).
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