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A significant, practical challenge, which
arises in developing computationally effi-
cient physical models for use in computer
simulations of microelectronic and op-
toelectronic devices (for example, transis-
tors in digital cellular phones and lasers
in optical networks, respectively), is to rep-
resent vast amounts of numerical data for
transport properties in two or more dimen-
sions in terms of closed form analytic
expressions. In this paper, we present a
general methodology to achieve the above
goal for a class of numerical data in a
bounded two-dimensional space. We then
apply this methodology to obtain a closed-
form analytic expression for the minority
electron mobilities at 300 K in p-type

Ga1�x Alx As as functions of the acceptor
density NA between 1016 cm�3 and 1020

cm�3 and the mole fraction of AlAs x
between 0.0 and 0.3. This methodology and
its associated principles, strategies, re-
gression analyses, and graphics are ex-
pected to be applicable to other problems
beyond the specific case of minority mobil-
ities addressed in this paper.
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1. Introduction and Motivation

Researchers often first obtain theoretical and/or ex-
perimental results in the form of multi-dimensional,
numerical tables consisting of discrete data-points and
then use families of traces to represent graphically their
discrete data-points in a more easily understood manner.
Such simplified graphical representations are a common
recourse when several complex and competing physical
mechanisms occur and when multidimensional, closed-
form analytic expressions are not available. Incorporat-
ing such discrete data tableaux into physical models for
use in computer simulations is usually not satisfactory
due to excessive computer time associated with interpo-
lations between the discrete data points. Since such
computational inefficiencies associated with “look-up”
tables occur, industry is reluctant to incorporate them in

semiconductor device simulators that run on engineer-
ing workstations. This is particularly the case when nu-
merical differences must be used to compute first and
higher order derivatives.

In this paper, we present a general strategy based on
separable functions, melding functions, transformations,
admissible non-linear methods, and regression analyses
to obtain multi-dimensional, closed-form analytic ex-
pressions from tables containing discrete data points. As
an illustrative example, we apply this general strategy to
a class of numerical data in a bounded two-dimensional
space and show how to obtain a two-dimensional,
closed-form analytic expression for the minority elec-
tron mobilities in p-type Ga1�x Alx As. The acceptor
density NA varies between 1016 cm�3 and 1020 cm�3 and
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the mole fraction of AlAs x varies between 0.0 and 0.3.
By so doing, we respond to the need for predictive
computer simulations of devices that have fewer un-
known or variational parameters [1].

Many device simulators for bipolar and field-effect
transistors require a variety of physical models and asso-
ciated input parameters to describe fully how carrier
transport varies with carrier concentrations, ionized do-
pant densities, alloy mole fractions, and temperature.
This paper focuses on one such model, namely, the
model for how the minority electron mobility varies
with dopant density and mole fraction of AlAs at 300 K.
Self-consistent numerical solutions to the quantum me-
chanical, non-linear integral-differential equations for
carrier transport in semiconductors result in discrete
data-points that by themselves do not readily suggest
closed-form analytic expressions for transport proper-
ties, carrier densities of states, and band structure
changes. Interpolating among the discrete data-points in
“look-up” tables leads to discontinuities, particularly in
numerical derivatives, and, as mentioned above, is com-
putationally inefficient.

The motivation for our performing the following anal-
ysis is to derive a closed-form analytic expression that
will result in more efficient computer simulations and
improved physical insights on how the many scattering
mechanisms, which influence carrier transport in
ternary compound semiconductors and heterostructure
devices, affect their electronic and optical behavior. Our
data analysis, presented in the following sections, en-
ables us to reduce the number of unknown physical
parameters in numerical simulations that predict electri-
cal and optical performance of devices such as bipolar
transistors, solar cells, laser diodes, and light-emitting
diodes. The latter are used to read digital versatile disks
(DVD).

The development of such improved closed-form mo-
bility models directly impacts the design of microwave
heterojunction bipolar transistors used in the linear
power amplifiers of digital cell phones. The design chal-
lenges and goals are low noise and very linear, efficient
power amplifiers. Such amplifiers enable longer talk
times and improved adjacent-channel rejection in the
dense channel packing that is necessary to maximize the
capacity of communications systems. Designers of these
amplifiers rely, in part, on device simulators to give
them physical insights for selecting the optimum tech-
nology and designing reliable, low cost devices. Using
device simulators also provides sources of expert
knowledge from others, shortens the time to market by
reducing the number of experiments needed for design
verification, and saves money. In order to increase the
likelihood that computer simulations of heterostructure
devices such as heterojunction bipolar transistors

(HBTs) will be predictive and thereby more useful for
the future development of HBTs, it is essential to have
accurate values for the minority mobilities of electrons
in Ga1�x Alx As. This is especially true when one designs
the bases of HBTs in mobile phones that use code divi-
sion multiple access (CDMA) protocols. Such protocols
require very linear power amplifiers for acceptable adja-
cent-channel rejection. These amplifiers also should
consume a minimum of energy. Device manufacturers
may then have greater confidence when using more
predictive simulators to design products.

The markets for HBTs in mobile and lightwave com-
munications systems are increasing [2-6]. For example,
the worldwide number of new, cellular subscribers ex-
ceeded the number of new subscribers for conventional
wired telephones or fixed networks for the first time in
1995 [7]. Market demands for telecommunications and
optical storage systems that contain laser diodes (LDs)
and light-emitting diodes (LEDs) offer many opportuni-
ties for ternary III-V compound semiconductor HBTs.
A common feature for most of these devices in such
systems is that they contain active regions with high
concentrations of dopants and carriers. Such high con-
centrations alter the densities of states for the carriers
and the band structure of the semiconductors. These in
turn greatly affect how carriers move in semiconductors
and modify substantially carrier transport parameters
such as carrier mobilities, lifetimes of carriers, and ef-
fective carrier concentrations. Accurate physical models
for these transport parameters are needed in device sim-
ulators so that they may be more predictive when man-
ufacturers use them to design products.

2. Data Table for Minority Electron
Mobilities in p-type Ga1�x Alx As

This section summarizes the background details by
which the data table for minority electron mobility val-
ues was obtained. This data table serves as our starting
point for deriving the closed-form analytic expression
for the mobility model.

The theoretical calculations in Ref. [8] include all the
important scattering mechanisms for the low-field mo-
bilities of electrons in heavily doped Ga1�x Alx As:
acoustic phonon, polar optic phonon, nonpolar optic
phonon (holes only), piezoelectric, ionized impurity,
carrier-carrier, plasmon scattering, and alloy scattering.
The Boltzmann transport equation is solved by the vari-
ational procedure outlined by Walukiewicz et al. [9].
This method avoids the use of the relaxation-time ap-
proximation that is invalid for mechanisms that involve
energy transfers comparable to or greater than kBT ,
where kB is the Boltzmann constant, and T is thermody-
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namic temperature. Also, Matthiesson’s rule is not used
because it is not valid for Ga1�x Alx As, as shown in Ref.
[9]. The scattering rates are summed prior to the varia-
tional solution. The results are highly accurate calcula-
tions of the minority mobilities for p-type Ga1�x Alx As
at 300 K as functions of the dopant density and the mole
fraction of AlAs. The calculated results agree well with
the rather limited experimental data for Ga1�x Alx As
mobilities [10-12].

The calculations were done for a full factorial design
consisting of 21 discrete values of acceptor density NA

between 1016 cm�3 and 1020 cm�3 and seven discrete
values of mole fraction x between 0.0 and 0.30, namely,
x = 0.0, 0.05, 0.10, 0.15, 0.20, 0.25, and 0.30 [denoted
also by x = 0.00 (0.05) 0.30, a general notation that we
use latter on in this paper], to yield a total of 147 data
points. We use the notation that x1 = 0.00, x2 = 0.05, ...
x7 = 0.30, respectively. The self-consistent, numerical
solutions to the quantum mechanical, non-linear inte-
gral-differential equations for carrier transport in semi-
conductors are given in Table 1 as a two-dimensional
array of discrete data-points. This data representation, as
opposed to a functional representation, was necessary
because the several competing scattering mechanisms,
listed above and considered all together, do not readily

yield any acceptable theoretical closed-form analytic ex-
pression. Over 90 h of NIST Cray YMP supercomputer1

time were used to obtain these 147 data points.
The 147 data points presented in Table 1 are repre-

sented graphically in Fig. 1 as a family of seven traces
corresponding to the seven mole fraction values x = 0.00
(0.05) 0.30, respectively. The fixed increment of
xi�1 � xi = 0.05 for all i and a subsequent fortuitous
response surface in the mole-fraction variable will be
advantageously employed later to simplify the fitting
process.

We thus have the task of finding a closed-form two-
dimensional analytic function g for the minority elec-
tron mobility �e in p-type Ga1�x Alx As such that
�e = g (NA, x ). For simplicity we may alternatively find
a function f for the dimensionless normalized mobility
Y = �e/�ref such that

Y = f (NA, x ) (1)

where g = �ref f and �ref = 1000 cm2/(V�s). To achieve
an acceptable analytic fit of Y to NA and x for use in
semiconductor device simulators that run on engineer-
ing workstations we require a relative residual standard
deviation for Y that is less than 2 %.

1 Certain commercial equipment instruments or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.

Table 1. Two-dimensional array of data points from theoretical calculations of the normalized minority electron mobilitya

NA x
1016 cm�3 0.00 0.05 0.10 0.15 0.20 0.25 0.30

1.00 5.742 5.136 4.552 4.003 3.500 3.051 2.658
2.00 5.106 4.584 4.081 3.606 3.171 2.779 2.434
3.00 4.718 4.244 3.788 3.357 2.961 2.604 2.288
5.00 4.225 3.810 3.411 3.034 2.686 2.371 2.092
7.00 3.903 3.524 3.161 2.818 2.501 2.214 1.959
1.00�101 3.565 3.224 2.897 2.588 2.303 2.045 1.814
2.00�101 2.926 2.654 2.394 2.148 1.921 1.715 1.530
3.00�101 2.569 2.334 2.110 1.899 1.703 1.525 1.366
5.00�101 2.145 1.953 1.771 1.599 1.441 1.296 1.165
7.00�101 1.889 1.721 1.564 1.416 1.279 1.154 1.041
1.00�102 1.643 1.499 1.364 1.239 1.123 1.016 0.9198
2.00�102 1.258 1.150 1.050 0.9575 0.8725 0.7948 0.7241
3.00�102 1.101 1 .006 0.9191 0.8397 0.7670 0.7007 0.6403
5.00�102 0.9936 0.9046 0.8249 0.7530 0.6880 0.6292 0.5760
7.00�102 0.9901 0.8971 0.8152 0.7420 0.6764 0.6175 0.5647
1.00�103 1.068 0.9601 0.8660 0.7832 0.7097 0.6449 0.5873
2.00�103 1.539 1.372 1.227 1.098 0.9863 0.8881 0.8013
3.00�103 1.964 1.746 1.556 1.390 1.243 1.115 1.002
5.00�103 2.489 2.212 1.968 1.753 1.563 1.397 1.250
7.00�103 2.692 2.392 2.125 1.892 1.687 1.506 1.347
1.00�104 2.720 2.418 2.152 1.918 1.711 1.528 1.368

a Y = �e(p-type; NA, x )/�ref for p-type Ga1�x Alx As, where the acceptor density is NA, the mole fraction of AlAs is x , and �ref = 1000 cm2/(V�s) [8].
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Fig. 1. Minority electron mobility in p-type Ga1�x Alx As for several values of mole fraction in
the range 0.0 � x � 0.3. These curves include the effects of the electrons scattering off hole
plasmons and of deducting the density of holes with energies below the Fermi energy from the
electron-hole scattering process [8]. The plasmon cut-off factor (PCF) q 2

c r 2
s is 1 where qc and rs

are the cut-off wave number and the screening radius, respectively. The mobilities have been
normalized to �ref = 1000 cm2/(V�s). The dimensionless acceptor density is Nn = NA cm3.

The development of such a function f would represent
a significant increase in computational efficiency by
about a factor of 5 and gives mobility models for use in
commercial semiconductor device simulators that are in
closer agreement with measurements. The combination
of the existing NIST supercomputer-generated mobility
data and the derived two-dimensional analytic function
f will lead to computer simulators that are at once both
more parsimonious (have fewer unknown or tuning-vari-
ational parameters) and more accurate (offer improved
predictability).

3. Data Analysis for Minority Electron
Mobilities in p-type Ga1-x Alx As

In the following sections we show that using a combi-
nation of separable functions, melding functions, trans-
formations on the discrete data points in Fig. 1, and
non-linear regression analyses leads to a single two-di-
mensional, closed-form analytic expression for the mi-
nority electron mobilities at 300 K in p-type
Ga1�x Alx As as functions of the mole fraction of AlAs x
between 0.0 and 0.3 and the acceptor density NA be-
tween 1016 cm�3 and 1020 cm�3. Throughout our analyses
we rely substantially on graphics and keep the number of

fitting coefficients to a minimum, subject to the con-
straint that the residual standard deviation Sres (Y ) as
defined by Eq. (2) satisfies Sres(Y ) � 0.02. The residual
standard deviation is a measure of the “average” error in
a fitted model and thereby is a metric for assessing the
quality of the fit, with a smaller Sres(Y ) indicating a
better fit. The residual standard deviation for a model
Y = f (NA, x ) is

Sres(Y ) = �[�n

j=1

(Yj � Yj )2/(n � p )] (2)

where Yj are the observed data values, the Yj are the
predicted values from the fitted model, n is the total
number of data points (here n = 147) and p is the total
number of parameters to be fitted in the model (here
p = 18). The residual standard deviation for a model, Eq.
(2), with p parameters differs from the standard devia-
tion for a set of data points SD(Y ). The standard deviation
for a set of data points is given by

SD(Y ) = �[�n

j=1

(Yj � Y )2/(n � 1)]

where Y = �n

j=1

Yj /n is the arithmetic average.
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We use the NIST-developed DATAPLOT [13] soft-
ware for both the exploratory graphics and for the exten-
sive non-linear statistical analyses. Also, for those cases
in which the residual standard deviations from analyses
based on different functional forms are quantitatively
similar, we select the functional form that will minimize
the computer time when the closed-form analytical
function is used in commercial simulators and select
procedures that have a minimum of fitting parameters.

Our general strategy is based on separable and meld-
ing functions and on transformations of the response
function Y that give near-linear separable functions as
described below. We want to obtain the function
Y = f (X , x ) in the two-dimensional continuum space
spanned by X = log[NA/(1016 cm�3)] and x . This
bounded two-dimensional continuum is given in Fig. 1
with 0 � X � 4 and 0.00 � x � 0.30. As with fitted
functions, extreme caution must be exercised in extrapo-
lating beyond these X and x limits.

3.1 Separable Functions

Consider the discrete two-dimensional space given by
the 147 data points in Fig. 1. Let Yi denote the i th data
trace in Fig. 1 with i = 1(1)7 corresponding to mole
fraction x = 0.00(0.05)0.30. If the Yi are related to Y1 via
expressions of the form

Yi = Hi (Y1)

and if Y1 is related to X by

Y1 = B (X )

then Yi = Hi [B (X )].
In practice, Hi and B are least-squares, best-fit func-

tions relating Yi to Y1 and Y1 to X , respectively. We call
the functions Yi and B separable functions. In addition,
if the Yi were to be linearly related to Y1, that is, if

Yi = Hi (Y1) = Ii + SiY1,

where Ii and Si denote the i th intercept and the i th slope,
respectively, then

Yi = Hi [B (X )] = Ii + Si B (X ).

In this case, Yi and B are called linearly separable func-
tions.

We now determine the extent to which the raw data in
Fig. 1 may be represented by separable and by linearly
separable functions. Without any additional information
besides that contained in Fig. 1, we could select any one
of the seven traces as a base trace and examine how the

other six traces relate to the base trace. However, since
we know that trace Y1 for GaAs (the x = 0.0 trace in Fig.
1) has been verified experimentally by three separate
groups [10-12], we can use with no loss in generality,
trace Y1 as the reference or base trace.

We now discuss the strategy for determining the na-
ture of the relationship Hi between the trace Yi and the
base trace Y1. We tentatively hypothesize that the trace
Yi is linearly related to Y1. We would thus have the 12
parameter representation for i = 2(1)7,

Yi = Hi (Y1) = Ii + SiY1, (3)

with six values of intercepts Ii and six values of slopes
Si . The graphical analog for Eq. (3) is a fan-shaped
collection of traces in the Yi vs Y1 plot.

The first simplification for Eq. (3) would be for all six
slopes Si to be identically equal to a constant slope S ;
thus, yielding the seven parameter representation

Yi = Ii + SY1. (4)

Graphically, Eq. (4) results in a Yi versus Y1 plot consist-
ing of seven parallel lines.

The second simplification would be for the six inter-
cepts to be a constant multiple of i as in
Ii = I + (i � 1)D , where I and D are constants, thus
yielding the three parameter representation

Yi = I + (i � 1)D + SY1. (5)

Graphically, Eq. (5) results in a Yi vs Y1 plot consisting
of seven parallel lines having constant spacing.

Examination of Fig. 2 shows that the seven traces of
Yi vs Y1 for the mobility data are not perfectly parallel
and do not exhibit fixed spacing. This indicates that the
simple three parameter representation is not adequate.
We note from Fig. 2 that the family of seven traces do
exhibit rough linearity with different intercepts Ii and
with markedly different slopes Si , thereby tenuously
justifying our 12 parameter linear representation. At this
point a series of six linear fits could be carried out from
Fig. 2, thus yielding estimates for the 12 parameters (six
intercepts and six slopes).

We did not do this for the following four reasons:
1. Non-linearity: From Fig. 2, we note that because the

traces exhibit subtle but progressively increasing cur-
vature for i = 2(1)7, the linearity assumption is vio-
lated.

2. Parsimony: Parsimony dictates that the number of
parameters be as small as possible and it is preferable
to reduce the 12 parameters to a smaller number.

3. Stability: Estimating fewer parameters is usually
computationally more stable.
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Fig 2. Plots of Yi (X ) vs Y1(X ) for i = 1(1)7.

4. It may be possible to find a representation for the
p-type minority electron mobilities that is more fun-
damental and hence may be applicable to other semi-
conductor modeling cases.
For the reasons cited above, we set aside the 12

parameter representation and focus on a modified (and
ideal) three parameter representation. Clearly, from Fig.
2, this cannot be achieved for the original normalized
values of Y , because

Yi � I + (i � 1)D + SY1. (6)

Our strategy is then to seek in Sec. 3.2 the transforma-
tion U of the mobility data such that

U (Yi ) = I + (i � 1)D + SU (Y1). (7)

We assign the notation Zi to the transformed mobility
data U (Yi ) and obtain

Zi = U (Yi ) = I + (i � 1)D + SZ1. (8)

3.2 Transformation of Mobility

To determine the appropriate transformation U we
consider the following extended power-transformation
family:

Zi = (Yi
� � 1)/� (9)

for � = � 1.0(0.5)1.0. When � = 0 the transformation is
the natural logarithm, namely

Zi = ln Yi = lim
�→0

[(Yi
� � 1)/� ]. (10)

Figures analogous to Fig. 1 for each of the five values of
� show that when � = 0, the seven traces of Z vs X are
the closest to being nearly parallel and equally spaced as
shown in Fig. 3. Figure 4 then gives the seven traces of
Zi vs Z1. The next step is to plot in Figs. 5 and 6 the
intercepts Ii and the slopes Si for the transformed traces
Zi (X0) = ln Yi (X0) at X = X0 = 0 vs i . Polynomial fits for
the intercepts and slopes give expressions of the form

I (xi ) = a0 + a1 xi + a2 xi
2 + a3 xi

3 + ... + an xi
n (11)

and

S (xi ) = s0 + s1 xi + s2 xi
2 + s3 xi

3 + ... + sn xi
n (12)

where xi = 0.05 (i � 1) and i = 1(1)7. The condition of
near-constant spacing for Ii means that |a0 + a1 xi |
should be much greater than | a2 xi

2 + a3 xi
3 + ... + an xi

n|;
and the condition of near-constancy for Si means that | s0|
should be much greater than | s1 xi + s2 xi

2 + s3 xi
3 + ... +

sn xi
n|. The residual standard deviations Sres(I ) and Sres(S )

of polynomial fits to I (x ) and S (x ) are calculated for
increasing orders n of the polynomials until acceptably
small values of Sres occur. For the data in Fig. 1, cubic
fits to both I (x ) and S (x ) give Sres(I ) = 0.000 11 and
Sres(S ) = 0.000 04 in the logarithmically transformed
space. These values of Sres(I ) = 0.000 11 and Sres(S ) =
0.000 04 are sufficiently small to achieve the overall
goal of Sres(Y ) � 0.02.
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Fig. 3. Plots of the natural logarithm of the normalized minority electron mobility in p-type
Ga1�x Alx As for several values of mole fraction in the range 0.0 � x � 0.3. These curves include
the effects of the electrons scattering off hole plasmons and of deducting the density of holes
with energies below the Fermi energy from the electron-hole scattering process [8]. The plasmon
cut-off factor (PCF) q 2

c r 2
s is 1 where qc and rs are the cut-off wave number and the screening

radius respectively. The mobilities have been normalized to �ref = 1000 cm2/(V�s). The dimen-
sionless acceptor density is Nn = NA cm3.

Fig. 4. Plots of the transformed function Zi (X ) vs Z1(X ) for i = 1(1)7.
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Fig. 5. Plot of the intercepts Ii for the transformed curves Zi (X0) at X = X0 vs i = 1(1)7. The mole
fraction x is given by x = 0.05 (i � 1).

Fig. 6. Plot of the slopes Si for the transformed curves Zi (X0) at X = X0 = 0 vs i = 1(1)7. The mole
fraction x is given by x = 0.05(i � 1).
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In summary, the general strategy is to replace the
difficult task of finding one function f with three easier
tasks of finding a base function B (X ), an intercept func-
tion I (x ), and a slope function S (x ) that is weakly depen-
dent on x and for which i is the surrogate for the mole
fraction variable x = 0.05(i � 1).

3.3 Melding Functions

The task of finding the reference or base function
B (X ), which is essentially the minority electron mobil-
ity for GaAs, involves the following series representation
for B (X ):

B (X ) = �N
l=1

wl (X ) gl (X ), (13)

where the weighting functions wl (X ) satisfy the sum

rule �N
l=1

wl (X ) = 1. The function B (X ) is represented by

a melding function. A melding function in this case is a
global N -region additive function that joins the N local
functions gl (X ) to give a smooth function by the use of
the weighting functions wl (X ) that are bounded between
1 and 0 over the global region of X . For the illustrative
example here X is bounded between 0 and 4.

Figure 1 suggests that it is necessary to consider only
two regions namely N = 2. That is, we write B (X ) as

B (X ) = w (X ) g1(X ) + (1 � w (X )) g2(X ). (14)

Commonly used functions for the local functions gl (X )
are polynomials of n th order, rational functions, spline
functions, other flexible functions, and melding func-
tions themselves. We use cubic polynomials for the
functions gl (X ), namely,

g1(X ) = c10 + c11 X + c12 X 2 + c13 X 3 (15)

and

g2(X ) = c20 + c21 X + c22 X 2 + c23 X 3, (16)

because they, as for the above intercepts and slopes, give
acceptably small Sres(g1) and Sres(g2) values.

There are initially many choices for the weighting
functions w (X ). The requirement that Sres(Y ) � 0.02
eliminates many of them. The two weighting functions
that give the smallest Sres(Y ) values for the data in Fig.
1 are the normal cumulative distribution function (CDF)
and the logistic CDF (LCDF). The Sres(Y ) values for the
normal CDF and the LCDF are almost the same. Since
the LCDF requires less computer time to evaluate, we
select it for the remaining analyses. The LCDF is given
by

L (X , X0,�0) = 1/{1 + exp[�(X � X0)/�0]} (17)

where X0 and �0 are location and scale parameters of the
logistic distribution.

4. Final Results—Closed-Form Analytic
Function

The function B (X ) is a global function in lnY space
composed of the two local functions g1(X ) and g2(X )
that have the same value at the region boundary X = Xb.
Figure 1 suggests that Xb should be near Xb = 2.75. The
next step is to obtain cubic non-linear fits for g1(X ) over
the region 0 � X � Xb and for g2(X ) over the region
Xb � X � 4.0.

The regression analyses involves three major steps:
1. Determine the non-linear base function B (X ) that

relates the logarithm of the reference mobility trace
Z1 directly to X .

2. Determine the intercept function Ii and the slope
function Si that relate the other logarithms of the
mobility traces Zi to Z1. In effect this allows the
mole-fraction variable x to enter the fit by means of
the relation x = 0.5(i � 1). At this point, we have
adequate non-linear fits relating the Zi to the doping
density X and the mole-fraction x via the expressions
Zi = Hi [B (X )] = Ii + Si [B (X )].

3. Use the estimated fitting coefficients from Step 1
above for the base function fitting [namely c1j , c2j , X0

and �0, where j = 0(1)3] as initial values for the final
non-linear fit relating the mobilities Yi to X and x by
means of the function

Yi = exp[Zi ] = exp{Hi [B (X )]} = exp[Ii + Si B (X )]. (18)

For this final fit, only the 10 base function coeffi-
cients c1j , c2j , X0 and �0 are varied. There is no need to
vary again the intercept and slope coefficients aj and sj

from Step 2.
Combining all of the numerical and statistical proce-

dures described in Steps 1 to 3 above, we obtain a
two-dimensional closed-form analytic expression for
electron mobilities in p-type Ga1�x Alx As as functions of
acceptor density NA and mole fraction x of AlAs,
namely,

�e(p-type; NA, x ) = �refexp{I (x )

+ S (x )[wL (X )g1(X ) + (1 � wL (X ))g2(X )]} (19)

where NA = 10X � 1016 cm�3, where the seven traces
containing 147 data points in Fig. 1 are represented by
the four cubic polynomial functions I (x ), S (x ), g1(X ),
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and g2(X ), and the exponential type function
wL (X ) = 1 � L (X , X0, �0) for a total of 18 fitting coeffi-
cients and Sres(Y ) = 0.018. Table 2 contains the final
values for the 18 fitting coefficients and other data that
will be discussed in the next paragraph.

First and foremost, the Sres(Y ) = 0.018 is sufficiently
small for the purposes of simulating the electronic and
optoelectronic behavior of semiconductor devices, and
verifies the adequacy of the fitted function, Eq. (19), and
its 18 coefficients given in Table 2. The value of
Sres(Y ) = 0.018 corresponds to a relative residual stan-
dard deviation of about 10 % which is more than
adequate for most microelectronic and optoelectronic
computer simulations. Second, the condition of near-
constancy of spacing of the intercepts Ii is met because
for the worst case of x = 0.30, |a0 + a1 x |x=0.3 = 0.593 is
much greater than |a2 x 2 + a3 x 3|x=0.3 = 0.038. And third,
the condition of near-constancy of the slopes Si is met
because for the worst case of x = 0.30 | s0| = 1.0 is much
greater than | s1 x + s2 x 2 + s3 x 3|x=0.3 = 0.199. All 10 of
the coefficients in B (X ) are significant because the ab-
solute values of their estimated standard deviation ratios
greatly exceed the nominal value of 2. The estimated
standard deviation ratio is the estimated value of a fitting
parameter divided by its estimated standard deviation. It

gives the number of standard deviations by which a
fitting parameter differs from zero. The nominal value
of 2 is based on the 97.5 % point of the normal (Gaus-
sian) distribution. In practice, coefficients with esti-
mated standard deviation ratios less than two are consid-
ered to be statistically insignificant. Because the
estimated standard deviation ratio of the intercept fitting
parameter a0 is less than 2, a0 could be omitted from the
final model with little effect. In fact, setting a0 = 0.0
gives the same value Sres(Y ) = 0.018 to within 10�6. The
collective significance for the 17 remaining fitting
parameters implies that the fitted function is parsimo-
nious in its form and cannot be “trimmed” to a simpler
form with fewer parameters or coefficients. For a fur-
ther discussion of the above, we refer the reader to
Draper and Smit [14].

Conventional non-linear fitting procedures usually do
not contain regression analyses, transformations, and
separable functions. As a consequence, they typically
require more than 40 fitting coefficients for the data in
Fig. 1, yield Sres(Y ) values for the data in Fig. 1 that are
greater than 0.07. They therefore give analytic fits to the
minority electron mobilities that may be of questionable
value for use in device simulators.

Table 2. The 18 final fitting parameters for the minority electron mobility from Eq. (19)a

Intercept and slope Estimated Estimated standard Ratio
fitting parameters value deviation

a0 �0.000 05 0.1052 � 10�3 �0.48
a1 �1.976 36 0.3323 � 10�2 �0.59 � 10+3

a2 0.524 177 0.2716 � 10�1 19.0
a3 �0.339 191 0.5943 � 10�1 �5.7
s0 0.999 986 0.3411 � 10�4 2.9 � 10+4

s1 �0.061 328 0.1077 � 10�2 �57.0
s2 �1.530 36 0.8808 � 10�2 �1.7 � 10+2

s3 1.695 421 0.1927 � 10�1 88.0

Base-reference function
fitting parameters

c10 1.741 24 0.001 598 1100.
c11 �0.350 382 0.009 642 �36.
c12 �0.076 087 0.014 74 �5.2
c13 �0.038 110 0.007 677 �5.0
c20 68.654 8 0.103 7 660.
c21 �50.516 9 0.216 0 �230.
c22 12.841 4 0.002 999 4300.
c23 �1.106 75 0.011 30 �98.
X0 3.242 62 0.042 98 75.
�0 0.259 828 0.009 315 28.

a �e(p-type; NA, x ) = �refexp{I (x ) + S (x )[wL(X )g1(X ) + (1 � wL(X ))g2(X )]}, where I (x ) = a0 + a1 x + a2 x 2 + a3 x 3, S (x ) = s0 + s1 x + s2 x 2 + s3 x 3,
g1(X ) = c10 + c11 X + c12 X 2 + c13 X 3, g2(X ) = c20 + c21 X + c22 X 2 + c23 X 3, and wL(X ) = 1/{1 + exp[(X � X0)/�0]} where the normalized-dimension-
less acceptor density is X = log10 (NA/1016 cm�3), the mole fraction of AlAs is x , and �ref = 1000 cm2/(V�s). All of the fitting parameters are
dimensionless. The ratio is the estimated value divided by its estimated standard deviation.

450



Volume 105, Number 3, May–June 2000
Journal of Research of the National Institute of Standards and Technology

The above closed-form fit of the data in Fig. 1 is of
such precision that the fitted curves lie almost within the
line-widths of the theoretical traces. The analytic ex-
pression in Eq. (19) now enables quantum mechanically
based results, which required tens of hours of supercom-
puter time, to be readily and efficiently incorporated
into commercial workstation-based simulations of
HBTs.

The analytic fit in Eq. (19) is valid only within the
ranges 0 � X � 4 and 0 � x � 0.30, and must not be
used beyond this bounded two-dimensional space in
which it is derived. Also, combining Eq. (19) with other
transport models for mobilities, bandgaps, and effective
intrinsic carrier concentrations that are derived from the
interpretation of electrical measurements on the devices
themselves may lead to incorrect descriptions of the
electrical and optical behavior.

5. Engineering Significance

Using the above Eq. (19) and applying additional
results from recent calculations [8,15] to microwave
HBTs [16] for linear power amplifiers may suggest dif-
ferent design strategies to optimize HBT performance.
The calculated changes in carrier densities of states
(DOS), band edges, band offsets, effective carrier con-
centrations nie, and carrier mobilities due to high dopant
and carrier concentration effects in Ga1�x Alx As are
given in Refs. [8] and [15] at 300 K for mole fractions
x of AlAs between 0.0 and 0.3, for donor densities ND

between 1016 cm�3 and 1019 cm�3, and for acceptor den-
sities NA between 1016 cm�3 and 1020 cm�3. Only one
quantum mechanical theory is used to treat both sides of
the Mott transition in these calculations. They give, with
no fitting parameters to experimental measurements, an
internally self-consistent description of carrier transport
in Ga1�x Alx As/GaAs heterostructures for lasers, light
emitting diodes, digital devices, and microwave devices.
The predicted values for the distorted DOS, band edges,
band offsets, nie, and majority and minority mobilities
differ significantly from those values found in many
simulations of Ga1�x Alx As/GaAs heterostructures.
Many simulators set nie/ni = 1 in Ga1�x Alx As for all ND

or NA, approximate �e(p-type; NA) with �e(n-type;
ND = NA), and assert that all mobilities are monotoni-
cally decreasing functions of the dopant density. How-
ever, Fig. 1 shows that a relative minimum exists for
�e(p-type; NA) and suggests that a different design strat-
egy could be significant for linear HBT amplifiers in
digital cellular phones. Because a relative minimum in
the minority electron mobility as a function of the ac-
ceptor density exists, we have identified additional de-
sign considerations for HBT power amplifiers that
would have not otherwise been known. The above rela-

tive minimum arises from dependencies of several com-
peting scattering mechanisms on both the dopant and
carrier densities. A reduction in the scattering of minor-
ity electrons off hole plasmons and the removal of ma-
jority hole carriers from minority carrier-majority car-
rier scattering due to the Pauli exclusion principle
accounts for the relative minimum in the decade of
1018 cm�3.

If other parameters remain essentially the same and
NA increases from 6 � 1018 cm�3 to 6 � 1019 cm�3 then
the following occurs:
1. the minority electron mobility increases by a factor

of 2.5 [8],
2. the base transit time decreases by about a factor of

2.5, and
3. the base resistivity decreases by about a factor of 10

[17].
Combining these last three results into expressions from
compact models for microwave HBTs predicts increases
in operating frequencies of about 40 % and in figures of
merits (maximum frequencies at unity gain) of about
300 %. These estimates are considered to be upper lim-
its because more rigorous simulations depend on both
processing and operating parameters whose choices are
determined by the application.

6. Conclusions

We have constructed a two-dimensional closed-form
analytic function for the minority electron mobilities in
Ga1�x Alx As at 300 K that is a function of the mole
fraction and acceptor doping density. All of the impor-
tant scattering mechanisms including carrier-carrier and
plasmon scattering are considered. The minority elec-
tron mobility from first-principles quantum mechanical
calculations shows an interesting structure at high densi-
ties due to the reduction in plasmon scattering and the
Pauli exclusion principle. The results are important for
device modeling because of the need to have accurate
values for minority mobilities which in turn allow im-
proved design of HBTs for microelectronic and op-
toelectronic applications, for example, digital cellular
phones and modulators in optical communications sys-
tems, respectively.

The general modeling approach given here may be
used to:
1. generate close-form analytic expressions
2. eliminate interpolator look-up tables and
3. enable more efficient computer simulations
for many microelectronics and optoelectronic applica-
tions such as obtaining expressions for carrier transport
properties and extracting two-dimensional doping pro-
files from scanning capacitance microscopy measure-
ments.
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