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1. Introduction

The GRID method [1] for the determination of life-
times of levels in heavy nuclei is applicable provided
that there exists a precise enough way of predicting the
distribution for the velocity of the deexciting nucleus at
the moment when the level of interest is being depopu-
lated. In fact, this information is needed separately for
various assumed values of the lifetime of the level stud-
ied to predict corresponding Doppler �-line profiles.
These profiles are compared with the experimentally
measured profile and the lifetime can in turn be
estimated.

In the case of slow-neutron capture in heavy nuclei
the actual nuclear velocity distribution is shaped by
time-distributed nuclear recoils, originating from
emissions of a broad variety of � cascades, and by
the collisions of the atom, containing the deexciting
nucleus, with its environment. While � cascades, whose
behaviour is largely statistical, are a source of motion for
the nucleus, the collisions with surrounding atoms tend
to slow-down this motion.

It seems that the only possibility of getting the
required velocity distributions for heavy nuclei is
provided by modelling these two competing processes
and their interplay with the aid of the Monte Carlo
technique.

The global scheme we adopted consists in a simula-
tion of data about a large number of � cascades and
subsequent modelling the above-outlined interplay in
which these data are repeatedly used under various
assumptions about the lifetime, as already outlined.

The present paper describes briefly the method for
simulating � cascades based on the use of the algorithm
DICEBOX [2] and demonstrates its applicability. The
previously developed Mean Free Path Approach
(MFPA) for modelling atomic collisions and their
interplay with cascades, see Ref. [3], has been general-
ized. This generalization, referred to as the Fluctuating
Free Path Approach (FFPA), has been used for estimat-
ing lifetimes of selected levels in 150Sm and 158Gd. The
results obtained are discussed.
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2. Simulation of � Cascades
2.1 Algorithm

The algorithm DICEBOX [2] is based on the validity
of the extreme statistical model of a nucleus and further
simplifying assumptions as follows:

1. Below a certain critical energy Ecrit a full set of
levels is known, including level energies E , spins J ,
parities � and all branching intensities.

2. A full, presumably unknown set of level energies of
a nucleus above Ecrit represents a random dis-
cretization of an a priori known level density for-
mula � (E, J�).

3. In the case of a transition of pure type X (X = E, M)
and multipolarity L the corresponding partial radia-
tive width �a�b , governing the � decay of a level a
with energy above Ecrit to a level b , is assumed to
be a random choice from the Porter-Thomas distri-
bution whose mean value langle ��a�b � is uniquely
determined by the level density � (E, J�) and the
corresponding, a priori known photon strength
function S (XL)

� (E�), where E� is the �-ray energy.

Regarding assumptions (2) and (3), it should be
stressed that existing data on level densities and photon
strengths for heavy nuclei are very limited, especially at
energies of around 3 MeV. Several theoretical models
for these quantities have been developed, but in view of
the deficiency of experimental data in many instances it
is very difficult to decide which of these models are
closer to reality.

In the case of a typical heavy nucleus, the total
number of levels below the neutron capturing state
reaches the value as high as �3�106. As a conse-
quence, the total number of partial widths �a�b is
enormous, up to 1013. Hereafter, for these levels and all
these widths we use the term nuclear realization.
In accordance with assumptions (2) and (3) there exist
an infinite number of nuclear realizations, one of them
being represented by the actual set of levels and partial
widths.

In our approach the simulation of � cascades consists
of two stages: (i) the artificial construction of a
complete decay scheme, embodied by a random choice
of a nuclear realization; (ii) the proper simulation of the
� cascades governed by this scheme that yields energies
of the individual � rays and their multipolarities, as well
as energies and total radiation widths of the encountered
intermediate levels.

The myriads of partial radiation widths display
violent Porter-Thomas fluctuations. As a consequence,
if various nuclear realizations are chosen in the process
of simulations of � cascades, modelling the interplay

between the atomic collisions and the � emissions will
lead in principle to different predictions of nuclear ve-
locity distributions and consequently to different life-
time estimates. In other words, even if the level density
formula � (E, J�) and all photon strength functions
S (XL)

� (E�) together with their parameters were precisely
known, there would be still some residual uncertainty in
lifetime determination. To assess this uncertainty it is
important to model velocity distributions and resulting
�-line profiles for a reasonably large set of randomly
selected nuclear realizations.

The simulation of �-cascades involves the above-
mentioned discretization of level-density formula
� (E, J�) together with the randomization of partial
radiation widths �a�b . In our algorithm this is achieved
with the aid of usual procedures based on the Monte
Carlo technique. When discretizing the level density, the
Wigner repulsion between energies of neighbouring
levels of the same spin and parity is taken into account.
The process of getting a nuclear realization implicitly
involves the use of a deterministic generator of
uniformly distributed random numbers whose operation
is controlled by a parameter known as the generator
seed .

Assume for a while that realizations of all, say, 1013

partial radiation widths �a�b are at our disposal and so
also all branching intensities Ia�b , characterizing depop-
ulation of any level a below neutron binding energy to
individual levels b . With these data it would be easy to
simulate event by event the emissions of individual �
cascades, as well as the lifetimes of the intermediate
levels involved. However, in view of the enormous
number of required widths, this assumption is evidently
unrealistic. In order to overcome this difficulty the
algorithm DICEBOX provides random realizations of
partial radiation widths �a�b only for restricted pairs of
levels [a,b ]. Specifically, these realizations are being
obtained step by step only for all those possible
pairs [a,b ] for which their first member a equals to a0,
a1, a2, . . . , where a0 is the neutron capturing state and
a1, a2, . . . are the intermediate levels encountered
consecutively during deexcitation by a current � cas-
cade. The process of obtaining restricted sets of partial
radiation widths is depicted in Fig. 1, where widths for
sets of pairs [ai , b ] are represented by corresponding
sets of branching intensities. Figure 1 also illustrates the
way how the uniformly distributed random numbers, si ,
are used for the selection of the individual steps of the
four-step cascade shown; these steps are represented by
hatched arrows.

In keeping with the introduced concept of nuclear
realizations it is important to guarantee that each time
when a full set of partial radiation widths for a given
level a is needed, the above process yields the same set
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of values �a�b . As explained in detail in Ref. [2], this
requirement is satisfied by the introduction of so-called
precursors. These are represented by random generator
seeds �a , randomly ascribed to all levels a with energies
Ea in between the critical energy Ecrit and the energy of
neutron capturing state E1, see Fig. 1. Whenever a full
set of widths �a�b for a fixed a is to be generated, the
random generator used is preset with the aid of the
corresponding precursor �a .

2.2 Examples

The described method for the simulation of � cas-
cades has been applied to analyses of data from mea-
surements of Two-Step Cascades (TSCs) following the
capture of thermal neutrons. From these analyses valid-
ity of the existing models for photon strength functions
were tested at intermediate energy region near 3 MeV.
Conclusions reached for 146Nd and 163Dy are given in
Refs. [4, 5]. The same method has been used as a quan-
titative basis for spin and parity determination of neu-
tron s - and p -wave resonances of 113Cd and 107Ag
targets, see Refs. [6, 7]. Also in these cases, conclusions
about photon strengths could be drawn.

An additional example is the analysis of the un-
published data on TSCs, following the thermal neutron

capture in 157Gd. This reaction was studied at the
15 MW research reactor at R̆ez̆ near Prague using the
method, described in Ref. [8]. An example of a TSC
�-ray spectrum is given in Fig. 2. The integrated TSC
intensities that belong to various levels in 158Gd at which
TSCs terminate are plotted in Fig. 3. These intensities
were obtained by the integration of the corresponding
TSC spectra over the 3 MeV interval centered around
the midpoints of the spectra.

Modelling of TSCs was undertaken for each of three
choices of photon strength functions and the level-
density formula, as specified in Table 1. All of these
choices led to the values of total radiation width of the
neutron capturing state that are in reasonable agreement
with the known experimental value �� = 97�8 meV.

The integrated TSC intensities deduced from this
modelling are plotted in Fig. 3; the attached error bars
represent the fluctuations due to inherent statistical
character of nuclear realizations.

It is evident that the option referred to as “Adopted”
leads to an acceptable reproduction of the experimen-
tally measured integrated TSCs intensities, while the
other two considered alternatives seem to be ruled out.
This suggests that the traditional model of Axel and
Brink [11, 12] for the E1 strength is not acceptable,
while the validity of the model of Kadmenskij,

Fig. 1. Schematic description of random cascading.
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Fig. 2. Spectrum of TSCs terminating at the first J� = 2+ level in 158Gd.

Fig. 3. Experimental and modelled integrated intensities of TSCs terminating at various low-
energy levels in 158Gd.
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Markushev, and Furman [13], seems to have been sup-
ported. Note that the model of Axel and Brink assumes
the energy-independent damping width of the giant elec-
tric dipole resonance, while the model of Kadmenskij et
al. introduces the energy and temperature dependence.
The disagreement with the model of Axel and Brink is
surprising, as this model leads to reasonable predictions
of the E1 photon strength for deformed rare-earth nuclei
at energies of primary � rays, i.e., at 6 to 8 MeV. Never-
theless, as shown in Ref. [14] for the case of the neigh-
bour 157Gd compound nucleus, the model of Kadmenskij
et al. may still play some role. With this, it should be
stressed that this model represents only a low-energy
approximation. It may be the case that the true E1 pho-
ton strength function is close to such an approximation
at low energies, while at 6 to 8 MeV it tends towards the
predictions of the model of Axel and Brink. The
comparison in Fig. 3 suggests that the M1 photon
strength comes from simultaneous contributions of the
scissors resonance and the giant magnetic dipole reso-
nance which are assumed to be built upon each level in
158Gd, supporting the analogous conclusion for the 163Dy
compound nucleus [5].

Notwithstanding the progress in understanding the
behaviour of photon strengths during the last decade, the
discussed analysis of TSCs in 158Gd indicates still per-
sisting problems. To be strict, there exists also a problem
of correct choice of level density formula, which repre-
sents the second potential hurdle in rigorous simulations
of � cascades.

3. Fluctuating Free Path Approach

The application of the previously developed MFPA
[3] leads to values of lifetime estimates that are at aver-
age higher by a factor of 1.35, compared to estimates,
yielded by other, presumably more reliable methods, see

Table 1. Photon strength functions and level-density formulas used
in modelling the TSCs, following the 157Gd(n,�)158Gd reaction

Model for photon strength
Choice Level ��

density (meV)
E1 M1 E2

Adopted KMFa GDR+SRb SPc BSFGd 92
Alternative 1 KMF SP SP BSFG 108
Alternative 2 ABe GDR+SR SP CTFf 114

a The model of Kadmenskij, Markushev and Furman [13].
b The model assuming the existence of the giant dipole and scissors magnetic

resonances, see e.g. Ref. [5].
c The single-particle model assuming energy-independent S (XL)

� (E�) [9].
d

The level-density formula according to the back-shifted Fermi-gas model,
see e.g. Ref. [10].

e
The model of Axel and Brink [11,12].

f
The constant-temperature level-density formula, see e.g. Ref. [10].

Ref. [15]. Here we mean the well-established DSAM
method and—in case of simple feeding patterns—also
the GRID method combined with true Molecular Dy-
namic (MD) modelling. The difficulties with biased
estimates of lifetime motivated us to develop the FFPA
as a sophistication of the MFPA.

3.1 Brief Description

The successive emissions of � rays in a cascade are
assumed not to be angularly correlated and the time
interval between any pair of them is treated as a quantity
randomly drawn from the exponential distribution
whose “lifetime parameter” is deduced from the total
radiation width of the appropriate intermediate level.
The recoil velocity v is then given by a simple expres-
sion

v =
E�

mc
, (1)

where m is a mass of the colliding atom and E� is the
energy of the � ray inducing the recoil.

Only binary, classical hard-sphere collisions between
the projectile atom and atoms of the sample are consid-
ered. Similarly, as in the MFPA, the energy-dependent
hard-sphere radius is deduced from equality of the ini-
tial kinetic energy �in in the center-of-mass system to the
Born-Mayer potential. In this system the angular distri-
bution of atoms is understood to be isotropic, which
implies that energy losses are variable. The velocities of
atoms of the sample follow the Maxwell-Boltzmann dis-
tribution. As in MFPA, no corrections for inaccessible
volume inside the assumed hard spheres are performed.
Actual free paths of colliding atoms are fluctuating
around their average for a given energy �in. While calcu-
lating the cross sections for collision of projectile and
target atoms, the “velocity aberration,” represented by
factor �V – v �/�v �, is taken into account. This cross sec-
tion is

	 =
�V – v �

�v � �a ln � 2(M+m )A

mM �V – v �2��
2

, (2)

where M is the mass of the target, while v and V are
velocity vectors of the target and projectile, respectively;
quantities a and A are parameters of the Born-Mayer
potential.

3.2 Testing the Approach

In order to make comparison of the FFPA to a pre-
sumably more reliable approach, we modelled evolution
of velocity distribution for colliding atoms using the
FFPA and the Restricted Molecular Dynamic (RMD)
approach. With both the mentioned above approaches
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we modelled collisions of Sm atoms in a sample of
Sm2O3, assuming that the only source of movement of
colliding atoms is the initial recoil, represented by a
fixed velocity of 0.15 Å fs–1. Such a velocity represents
approximately a recoil from a typical primary capture
� ray.

In our RMD modelling we assumed a finite cell of
fixed volume formed by N = 3200 atoms of the sample
with no interaction between any pair of them. The addi-
tional atom enters as a projectile with the above-
mentioned fixed velocity and interacts with each of the
N atoms, the interaction being governed by the Born-
Mayer repulsive potential. Atoms of the cell start to
move. Trajectories of all N + 1 atoms are obtained from
solution of classical equations of motion. A periodic
boundary condition is imposed. Thus, if some of N + 1
atoms leaves the volume of the cell, it will reappear on
the “opposite side” of the cell preserving its velocity.

The FFPA and RMD predictions of velocity distribu-
tions are illustrated in Fig. 4. It can be seen that for short
times of atomic slowing down the velocity distributions
obtained are very close to each other, which seems to be
the most important conclusion from this comparison,
suggesting that our strongly simplified modelling
atomic collisions at early stages of this process is
correct.

The apparent disagreement for times of slowing down
exceeding 100 fs can be, at least in part, accounted for
by the following three mutually related artifacts of
RMD modelling: (i) the formation of a thermal spike
followed by its subsequent fading away, (ii) the gradual
warming-up of a relatively small cell due to the energy
deposited from the projectile, and (iii) the thermali-
sation of the projectile. To test the correctness of the
FFPA at the full time scale, more sophisticated MD
modelling is to be performed yet.

4. Examples of Lifetime Estimates and
Discussion

A case of routine application of the FFPA in conjunc-
tion with the simulation of � cascades by the DICEBOX
algorithm, described in Sec. 2.1, is illustrated in Fig. 5.
The shown profile of the 737.4 keV � line determined
from GRID (n,�) measurements with 149Sm target is
satisfactorily reproduced and the lifetime for the corre-
sponding level of interest in 150Sm at 1071.4 keV is
estimated to be 318+25

–21 fs.
For comparison, results obtained with the aid of the

MFPA are also shown in Fig. 5. As it is evident, both

the approaches, FFPA and MFPA, lead to indistinguish-
able best fits of the experimental line profile. However,
the determination of lifetime within the MFPA yields a
value 478+31

–28 fs which differs significantly from what has
been obtained using the FFPA.

The same conclusion could be drawn from analyses of
16 �-line profiles deduced from GRID measurements
with 157Gd target [16]. In this case it has been found that
the ratio between lifetime estimates, 
FFPA/
MFPA, varies
within the interval from 0.65 to 0.8, displaying a smooth
dependence on lifetime in the region from 30 ps
to 5000 ps. Although there is no direct comparison
between the FFPA and the approaches based on the
DSAM or the true MD modelling, it seems that FFPA
estimates are biased in a substantially lower degree than
those provided by the MFPA.

In Table 2 the FFPA lifetime estimates of selected
158Gd levels are listed for all three choices of S (XL)

� (E�)
and � (E,J�) specified in Table 1. It is evident that for
long-lived levels all of these choices lead virtually to the
same lifetime estimates. In contrast, for short-lived
levels the lifetimes deduced vary strongly from choice
to choice.

Regarding the short-lived 158Gd levels, the modelled
line profiles for the individual choices of S (XL)

� (E�) and
� (E,J�) turned out to be almost the same, see the exam-
ple in Fig. 6. The shape of experimentally determined
line profile itself could not thus set a meaningful
constraint on the choice of the entities discussed. On the
other hand, as is evident from the discussion in Sec. 2.2,
the data on TSCs for 158Gd yielded some limitation for
the choice of photon strength functions. As data in Table
2 indicate, for correct determination of short lifetimes
by the GRID technique the strength functions must have
very finely tuned shapes and sizes. Unfortunately,
because of lack of adequate experimental data, this is
not the case for majority of heavy nuclei.

As already pointed out in Sec. 2.1, the inherent statis-
tical behaviour of nuclear realizations is a source of
residual uncertainties in determination of lifetimes.
Table 3 lists such uncertainties for three selected levels
in 158Gd and compare them with the experimental uncer-
tainties, associated with finite precision of measure-
ments of �-line profiles. The data in Table 3 suggest that
residual uncertainties may limit accuracy of lifetime
determination only in cases of extremely short lifetimes.
It is worthwhile to note that the role of such uncertain-
ties is expected to be enhanced in cases of even-even
product nuclei that display low level densities.
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Fig. 4. Comparisons between distributions of velocities of Sm atoms obtained from the FFPA and RMD modelling at various times of
slowing down from (10 fs to 1280 fs). Initial velocities of Sm atoms were adjusted to 0.15 Å fs–1.
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Fig. 5. The profile of the 737.4 keV line, resulting from depopulation of the J� = 3+ level at 1071.4 keV in 150Sm, fitted within the
FFPA and MFPA.
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Fig. 6. The profile of the 1323.4 keV line, resulting from depopulation of the 1402.9 keV level in 158Gd, fitted within the FFPA. Three
different choices for photon strength functions and the level-density formula were used, as specified in Table 1.
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5. Concluding Remarks

We stress that our proposed FFPA is still based on
a very simplified scenario of interatomic collisions.
Nevertheless, this approach seems to work, reducing the
long-lasting problem with overestimating lifetimes by
the MFPA.

Regarding simulations of � cascades, the still open
questions concerning quantities S (XL)

� (E�) and � (E,J�)
represent the only serious limitation. In view of this
difficulty the routine use of the FFPA for estimating
lifetimes of short-lived levels (
<100 ps) in heavy
nuclei by the GRID method becomes problematic.

The need for data from dedicated experiments is
clearly indicated. Of special importance seem the
conventional (n,�) measurements at isolated s - and p -
resonances, the studies of TSCs following the capture of
thermal neutrons and, in particular, future possible
studies of multistep � cascades with the aid of sophisti-
cated technique of the BaF2 or HPGe crystal balls.
Regarding multistep cascades it would be interesting to
perform the measurements at neutron energies of sev-
eral tens of keV when contributions of p -wave neutrons
become important. All these studies seem to be crucial
not only for better determination of photon strength
functions in specific cases, but mainly for understanding
systematic behaviour of photon strength functions and
the level-densities in a broad class of heavy nuclei.

Table 2. Estimates of lifetimes for levels in 158Gd obtained for three different choices of the photon strength functions and the level density
formula. The choices, referred to as “Adopted,” “Alternative 1” and “Alternative 2,” are specified in Table 1

Lifetime (fs)
Level energy Transition energy

(keV) (keV) Adopted Alternative 1 Alternative 2

977.1 897.6 938+181
–135 918+170

–130 947+172
–131

1176.4 915.0 286+31
–27 268+29

–25 276+31
–27

1196.1 1116.5 3867+2288
–1056 3795+1126

–752 3803+1095
–741

1263.5 1263.5 39.5+7.5
–6.8 31.5+7.2

–6.5 54.8+7.9
–7.0

1402.9 1141.4 36.2+5.0
–4.7 20.7+4.8

–4.6 49.6+5.2
–4.9

1402.9 1323.4 29.2+5.2
–4.7 10.7+4.8

–4.2 48.9+5.5
–5.2

On the other hand, the limited knowledge of photon
strength functions does not seem to be a snag in deter-
mination of long lifetimes. However, in order to avoid a
bias in lifetime estimates in such cases, thoroughgoing
tests of the FFPA are to be undertaken yet.
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