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We analyze the effects of the large capaci-
tances-to-shields existing in all sample
probes on measurements of the ac quan-
tized Hall resistanceRH. The object of
this analysis is to investigate how these ca-
pacitances affect the observed frequency
dependence ofRH. Our goal is to see if
there is some way to eliminate or mini-
mize this significant frequency dependence,
and thereby realize an intrinsic ac quan-
tized Hall resistance standard. Equivalent
electrical circuits are used in this analy-
sis, with circuit components consisting of:
capacitances and leakage resistances to
the sample probe shields; inductances and
resistances of the sample probe leads;
quantized Hall resistances, longitudinal re-
sistances, and voltage generators within
the quantum Hall effect device; and multi-
ple connections to the device. We derive
exact algebraic equations for the measured

RH values expressed in terms of the cir-
cuit components. Only two circuits (with
single-series “offset” and quadruple-se-
ries connections) appear to meet our de-
sired goals of measuring bothRH and the
longitudinal resistanceRx in the same cool-
down for both ac and dc currents with a
one-standard-deviation uncertainty of
10–8 RH or less. These two circuits will
be further considered in a future paper in
which the effects of wire-to-wire capaci-
tances are also included in the analysis.
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1. Introduction

Many laboratories are now attempting to employ the
integer quantum Hall effect (QHE) [1–3] to realize an
intrinsic ac resistance standard by using ac bridges to
compare ac quantized Hall resistancesRH with ac refer-
ence standards. In experiments reported to date [4–9],
the measured values of the ac quantized Hall resistances
RH unfortunately varied with the applied frequencyf of
the current, and differed from the dc value ofRH by at
least 10–7 RH at a frequencyf of 1592 Hz (where the
angular frequencyv = 2pf is 104 rad/s). Furthermore,
some sample probe leads had to be removed at the
device in order to reduce the frequency dependence to

this still significant amount. Lead removal creates two
problems: (1) parasitic impedances within the QHE re-
sistance standard (which arise from capacitances, induc-
tances, lead resistances, and leakage resistances) be-
come more difficult to measure or estimate, making it
harder to apply corrections to the measured values of
RH; and (2) measurements of bothRH and the longitudi-
nal resistanceRx can not be made during the same cool-
down, which has been found to be necessary [10] in
order to obtain reliable values ofRH with direct (dc)
currents.
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Our desired goal at NIST is to measure bothRH and
the longitudinal resistanceRx in the same cool-down for
both ac and dc currents with all sample probe leads
attached, and to do this with a one-standard-deviation
uncertainty equal to or less than 10–8 RH in order to
verify and replace parts of the calculable capacitor chain
[11] that provides the System International (SI) value of
RH at NIST. The one-standard-deviation uncertainty of
the entire NIST calculable capacitor chain is 2.43 10–8

RH. Therefore, we need to achieve uncertainties of 10–8

RH or less in the acRH measurements.
Therefore, the frequency dependence ofRH is a seri-

ous problem that must be addressed. This paper investi-
gates the effects of the capacitances-to-shield, and the
series inductances and series resistances of sample
probe leads on measurements of the acRH. It also iden-
tifies ways to eliminate or minimize the frequency de-
pendences resulting from these parasitic impedances.
Most of the capacitances-to-shield arise from the capac-
itances between the inner and outer conductors of the
coaxial leads and connectors within the ac quantized
Hall resistance standard; a smaller amount arises from
the capacitances between the quantum Hall effect
device plus sample holder and the surrounding conduct-
ing surfaces of the sample probe.

2. Strategy

We investigate the effects of capacitances-to-shield on
measurements ofRH by using equivalent electrical cir-
cuits and multiple connections to the quantum Hall ef-
fect device. The multiple connections will be defined in
Secs. 7–9. We derive exact algebraic equations for the
currents and quantum Hall voltages of the standard. The
discrete circuit components consist of: (a) capacitances
and leakage resistances to the shields of the ac quantized
Hall resistance standard; (b) inductances and series re-
sistances of the internal and external sample probe leads
and connectors; and (c) quantized Hall resistances, lon-
gitudinal resistances, and voltage generators within the
quantum Hall effect device itself. These circuit compo-
nents include everything within the standard except
wire-to-wire capacitances between pairs of the inner
conductors. Significant wire-to-wire capacitances can
exist between pairs of conducting surfaces of the quan-
tum Hall effect device, the sample holder, and the bond-
ing wires between them. The wire-to-wire capacitances
may be important, but their inclusion makes the circuit
analyses extremely difficult, so they are excluded at this
intermediate stage where we are trying to find viable
circuit candidates for the final analysis of a complete
equivalent circuit representation of an ac quantized Hall
resistance standard.

We give a brief explanation of the dc quantum Hall
effect in Sec. 3. Section 4 describes our equivalent elec-
trical circuit model of an ac quantized Hall resistance
standard. Single-series “normal”, single-series “offset”,
double-series, and quadruple-series circuits are ex-
plained and analyzed in Secs. 5–7 and Sec. 9. We find
that two of these circuits (those with single-series
“offset” and quadruple-series connections) appear to
meet our desired goals of measuring bothRH and the
longitudinal resistanceRx in the same cool-down for
both ac and dc currents with an uncertainty of 10–8 RH

or less. These two circuits will be analyzed in more
detail in a future paper in which the effects of wire-to-
wire capacitances are also included in the analysis.

3. DC Quantum Hall Effect

The quantum Hall effect (QHE) has been success-
fully used as an intrinsic dc resistance standard. In the
integer dc QHE [1–3], the Hall resistanceRH of the i th
plateau of a fully-quantized, two-dimensional electron
gas (2DEG) isRH(i ) = VH(i )/IT, whereVH(i ) is the quan-
tum Hall voltage measured between potential probes
located on opposite sides of the device, andIT is the total
current flowing between the source and drain current
contacts at the ends of the device. Under ideal condi-
tions, the values ofRH(i ) in standards-quality devices
satisfy the relationshipsRH(i ) = h/(e2i ) = RK/i , whereh
is the Planck constant,e is the elementary charge,i is an
integer, andRK is the von Klitzing constant,RK ≈
25 812.807V [12]. However, the conditions are not
always ideal. The values ofRH(i ) can vary with the
device temperatureT [13] and with the applied current
IT [14]. Thus the measured dc values ofRH(i ) are not
necessarily equal toh/(e2i ).

The current flow within the 2DEG is nearly dissipa-
tionless in the quantum Hall plateau regions of high-
quality devices, and the longitudinal resistancesRx(i ) of
this standard become very small over ranges of magnetic
field in which quantized Hall resistance plateaus are
observed. The dc longitudinal resistance is defined to be
Rx(i ) = Vx(i )/IT, whereVx(i ) is the measured longitudi-
nal voltage drop between potential probes located on the
same side of the device. The dc values ofRx(i ) can also
be temperature [13] and current [14] dependent.

4. Equivalent Electrical Circuit of an AC
QHE Standard

The quantized Hall resistanceRH(i ) of an ac QHE
resistance standard (ac QHRS) can be experimentally
compared with the impedances of ac reference stan-
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dards using ac measurement systems. NIST initially
plans to use ac resistors as reference standards, and an
ac ratio bridge measurement system for the compari-
sons.

Figure 1 shows an equivalent electrical circuit repre-
sentation of an ac QHRS in which the QHRS is being
measured with an ac bridge using four-terminal-pair
[15,16] techniques. (Neither the ac reference standard
nor the ac ratio bridge are shown in the figure.) This
circuit of an ac QHRS is rather detailed, so we explain
it one step at a time, starting with the periphery of the
standard, then proceeding to the QHE device within the
central region of the figure, and finally discussing prop-
erties of the sample probe leads within the standard.

The ac QHRS of Fig. 1 is bounded by an electrical
shield indicated schematically by thick lines. Actual
shields have complicated surface geometries. They con-
sist of: (a) conductive surfaces surrounding the QHE
device and its sample holder at liquid helium tempera-
tures; (b) the outer conductors of eight coaxial leads
within the sample probe; and (c) the outer conductors of
eight coaxial leads extending from the top of the sample
probe to room temperature access points S, 1 through 6,
and D. The electrical shields will also be referred to in
the text as “outer conductors”. To simplify the figure, we
label only currents in the inner conductors.

The ac QHRS has electrical access at room tempera-
ture via four coaxial measurement ports labeled Inner/
Outer, Detector, Potential, and Drive. These four ports
are used in the four-terminal-pair measurements, where
each coaxial port is referred to as a “terminal-pair”. The
four coaxial ports are connected to room temperature
access points S, 4, 3, and D in the figure.

The ideal four-terminal-pair measurement definition
[15,16] ofRH(i ) is satisfied by the following three simul-
taneous conditions: (1) the currentIDr at the Drive coax-
ial port is adjusted so that there are no currents in the
inner or outer conductors of the Potential coaxial port,
i.e., IPt = 0; (2) the potential difference is zero across the
inner and outer conductors of the Detector coaxial port;
and (3) there are no currents in the inner or outer con-
ductors of the Detector coaxial port, i.e.,IDt = 0.

It is implicit in the four-terminal-pair definition that
each coaxial port is treated as a terminal-pair, and that
the current in the inner conductor of every port is equal
and opposite to the current in the outer conductor (the
shield). Coaxial chokes [17] (located outside the ac
quantized Hall resistance standard and therefore not
shown in the figure) assure that this equal and opposite
current condition is satisfied for each of the four termi-
nal-pairs in the circuit. The currentIOt exits the ac
QHRS at the Inner/Outer port and enters the ac refer-
ence standard (not shown).

A “virtual” short has been drawn in Fig. 1 as a line
between the shield and inner conductor at the Detector
coaxial port to indicate four-terminal-pair condition
number (2). We let the Detector potential be zero, i.e.,
VDt = 0. At bridge balance the ac quantized Hall voltage
VH(i ) = VH(3,4) =VPt is defined as

VPt = [1 + DH]RH(i ) IOt, (1)

whereDH is the correction factor toRH(i ) to be deter-
mined in this analysis.

Next we describe the equivalent circuit model of the
QHE device located in the central dashed-line region of
Fig. 1. This model is based on that of Ricketts and
Kemeny [18]. The device has contact pads that provide
electrical access to the 2DEG at the source S' , the drain
D' , and the potential pads 1' through 6' . Each contact
pad is located at the end of an arm of the QHE device.
Every arm in the equivalent circuit has an intrinsic resis-
tor whose value isRH(i )/2. We assume that the device is
homogeneous, i.e., that the quantized Hall resistances
RH(i ) are all measured on plateau regions, that their
values are the same on all the Hall potential probe sets,
and that they are all measured at the same magnetic flux
density value.RH(i ) can, however, vary with tempera-
ture [13] and current [14].

While VPt has been observed to vary with frequency
[4–9], it is not clear whether this is due to a frequency
dependence ofRH(i ), of DH, or of bothRH(i ) and DH.
Calculations of the intrinsic impedance of the 2DEG
due to the internal Hall capacitance across the QHE
device [19], however, predict a negligible frequency de-
pendence ofRH(i ) itself, implying a frequency depen-
dence ofDH arising from parasitic impedances in the ac
QHRS. We therefore simplify the model, and assume
that the dc values are appropriate for theRH(i )/2 resis-
tances in the figure.

The symbolsra, rb, rc, andrd in Fig. 1 represent real
(in-phase) longitudinal resistances within the QHE
device. Their measured dc values can vary with temper-
ature [13] and current [14]. Sample probes normally
used in dc QHE measurements have ten leads, with a
pair of leads to the source contact pad S' and another
pair to the drain contact pad D' . Only one lead of each
pair carries the current, so the dc values of all four
longitudinal resistancesra, rb, rc, andrd can be obtained
using four-terminal measurements.

In order to reduce the heat load on the liquid helium,
sample probes for the ac QHE usually have a single
coaxial lead to each of the eight contact pads. Therefore
only rb andrc can be determined directly via four-termi-
nal-pair ac measurements. For example, a four-terminal-
pair ac longitudinal resistance measurement ofrb could
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be made by moving the Potential coaxial port from
access position 3 to position 2 in Fig. 1, and measuring
the ac longitudinal voltageVx(2,4).

Vx(2,4) = [1 +D24] rb IOt, (2)

whereD24 is the correction factor torb to be determined
in this analysis. Values forra andrd could be estimated
from their dcra/rb andrd/rc ratios if the measuredrb/rc

ratio happens to be the same for both ac and dc measure-
ments using the same sample probe during the same
cool-down.

With one exception [20], the reported ac longitudinal
resistances obtained from the real, in-phase components
of the ac longitudinal voltage measurements are signifi-
cantly larger than the dc longitudinal resistances in the
same device under the same temperature and magnetic
field conditions. The ac longitudinal resistances increase
with increasing frequency of the applied current, and are
of order 1 mV at 1592 Hz [4,5,21]. The large ac longi-
tudinal voltages might be due to intrinsic frequency
dependences ofra, rb, rc, andrd within the device, toD24,
D46, etc. corrections caused by parasitic impedances of
the QHRS, or to both of them. Calculations of the ki-
netic inductance of the 2DEG and the magnetic induc-
tance of the device [20] provide no plausible explana-
tions via intrinsic impedance for significant frequency
dependences ofra, rb, rc, and rd, suggesting that the
frequency dependence of the ac longitudinal resistance
is due to parasitic impedances of the QHRS, and there-
fore to the correction factorsD24, D46, etc. However, we
will assume the worst-case scenario in our numerical
calculations, that isra, rb, rc, andrd are themselves fre-
quency dependent and have 1 mV values at 1592 Hz.

At some moment in time, a positive currentIa enters
the 2DEG via device drain contact pad D' in Fig. 1, and
currentId exits the 2DEG via source contact pad S' . The
magnetic flux densityB is directed into the figure from
above. Under these current and magnetic field condi-
tions, the drain contact pad D' and the potential probe
contact pads 1' , 3' , and 5' at the device periphery are at
higher potentials than contact pads S' , 2' , 4' , and 6' .
These current and flux density directions are chosen to
be consistent with those we have used in earlier calcula-
tions [19,22–23].

Potentials at the contact pads S' , 1' through 6' , and D'
are produced by arrays of voltage generators, where
each voltage generatorVAB is located between a pair of
arms A and B of the equivalent circuit. The voltages are
defined as

VAB ≡ RH(i )
2

|IA 6 IB|, (3)

whereIA andIB are the magnitudes of the current flow-
ing in arms A and B. The currentsIA andIB within the
absolute quantity sign of Eq. (3) are added if they both
enter or both leave the voltage generator, and are sub-
tracted if one current enters and the other current leaves
the generator. For exampleV1D = [RH(i )/2]|Ia 2 IC1|. The
voltages generated are functions ofRH(i ); therefore their
values can vary with temperature [13] and current [14]
(and also possibly with frequency).

Diamond-shaped voltage generator arrays of Ricketts
and Kemeny [18] are employed in the equivalentcircuit
of the QHE device, rather than the ring-shaped voltage
generator arrays introduced later by Delahaye [24] and
then subsequently used by Jeffery, Elmquist, and Cage
[25]. Although both arrays give essentially identical
results [22], the calculations are much simpler with the
diamond arrays when longitudinal resistances are in-
cluded in the circuits [22]. We therefore use diamond
arrays.

For clarity, the voltage generators are indicated in the
figure as batteries, with positive terminals oriented to
give the correct potentials along each arm at the instant
considered. The ac currents alternate direction, so the
voltage generators reverse sign each half cycle. Thus, for
the part of the period in which the currents flow in the
directions indicated in Fig. 1, the voltage generators
have the polarities shown. Half a period later the cur-
rents change direction, and all the voltage generators
reverse polarities.

The QHE device is mounted on a sample holder at the
bottom of the sample probe. The QHE device and the
sample holder are located within the shaded region of
Fig. 1. Thin wires connect the device contact pads S' , 1'
through 6' , and D' to coaxial leads which extend to room
temperature access points S, 1 through 6, and D located
outside the sample probe (but still within the ac QHRS).
Each arm of the equivalent circuit has a resistancerS, r1

through r6, or rD. This resistance includes the contact
resistance to the 2DEG, the wire resistance connecting
a contact pad on the device to a coaxial lead, and the
inner conductor resistance of that coaxial lead. The in-
ner conductor lead resistances vary with the liquid he-
lium level in the sample probe. They can be measured
pair-wise (using access points S, 1 through 6, and D) as
a function of liquid helium level via two-terminal dc
resistance measurements by temporarily replacing the
QHE device with electrical shorts at positions S' , 1'
through 6' , and D' . The cooled inner conductor coaxial
lead resistances are typically each about 1V in ac quan-
tized Hall resistance standards. The outer conductor
coaxial lead resistances depend on the type of coaxial
cable, and their values also vary with liquid helium level.
Typical values range between about 0.1V and 1V in ac
quantized Hall resistance experiments.
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Each sample probe lead has an inductanceLS, L1

throughL6, or LD, that is electrically connected in series
with the lead resistancesrS, r1 throughr6, or rD, produc-
ing lead impedanceszS, z1 through z6, or zD, where
zS = rS + jvLS. Due to severe space limitations in the
figure, these impedances are unconventionally drawn as
resistors within rectangles. The inductance of each
coaxial lead of a typical ac QHE sample probe is about
1 3 10–6 H. We assume that the bonding pad wires are
thick enough to not vibrate in the magnetic field when
applied ac currents flow through them [4], but the out-
of-phase “inductance” generated by this vibration [4]
could be included in the lead inductances if necessary.

The eight coaxial leads, labeled S, 1 through 6, and D,
each have an inner and an outer conductor. The outer
conductors of the coaxial leads are connected together
outside the sample probe to help satisfy the four-termi-
nal-pair measurement conditions. As mentioned earlier,
the outer conductors of these leads act as electrical
shields, and are represented schematically as thick lines
in Fig. 1. (Other outer conductors of the ac QHRS also
contribute to the thick lines.)

Large capacitances-to-shield, labeled asCS, C1

throughC6, andCD, exist between the inner and outer
conductors of these coaxial leads. The open-circuit ca-
pacitances can be individually measured at access points
S, 1 through 6, and at D as a function of liquid helium
level by temporarily removing the QHE device from the
sample probe at the points S' , 1' through 6' , and D' . The
capacitance-to-shield of each coaxial lead in typical ac
QHE sample probes is about 250 pF, but it should be
reduced to about 100 pF (13 10–10 F) in a short sample
probe being designed at NIST.

A predominately 908 out-of-phase currentICS, IC1

through IC6, or ICD flows through each coaxial lead.
These currents, and all the other currents in Fig. 1, have
the correct signs for their dominant phase components
in the half-cycle under consideration. This is verified in
Sec. 5, where it is found that all currents shown in the
figure have positive signs for their major components.

The coaxial leads are not the only sources of capaci-
tances-to-shield. There are also additional contributions
from the QHE device—sample holder combination and
the electrical shielding surrounding them. These addi-
tional capacitances-to-shield are labeledCA and CB in
Fig. 1, where they are placed at either end of the QHE
device. (Note that rather than explicitly usingCA andCB,
one-eighth of the additional capacitancesCA + CB could
instead be added to each of the eight coaxial lead capac-
itancesCS, C1 throughC6, andCD, but that would make
the coaxial lead capacitance notation very confusing.)

The additional capacitancesCA andCB can be deter-
mined by two methods. In the first method the magnetic
field is adjusted so the QHE device is on a QHE plateau.

The external coaxial leads from the bridge are removed
from the Drive and Inner/Outer ports of the ac QHRS,
and an applied voltage signal is placed across the inner
and outer conductors of the Drive port. A measured
voltage signal appears across the inner and outer con-
ductors of coaxial leads S, D, 1, 3, and 5 for the mag-
netic field direction assumed in Fig. 1, so these particu-
lar coaxial leads draw most of the 908 out-of-phase
current. Therefore the measured total capacitance-to-
shieldCT is approximatelyCT(B) ≈ C1 + C3 + C5 + CD +
CA, and the value ofCA can be obtained by subtracting
the value ofC1 + C3 + C5 + CD from CT(B). The mag-
netic field is reversed. ThenCT(2B) ≈ C2 + C4 + C6 +
CS + CB when the voltage signal is placed across the
inner and outer conductors at the Inner/Outer port, thus
yielding the value ofCB. In the second method the
magnetic flux densityB is reduced to zero. The quan-
tum Hall voltages disappear, so the voltage generators
can be replaced in the circuit by electrical shorts. The
QHE device now behaves like a two-dimensional sheet
resistance, and theRH(i )/2 resistances located at the
source and drain ends of the QHE device in Fig 1 are
zero. Longitudinal resistancesra, rb, rc, and rd become
much larger than they were when on a QHE plateau.
Their values can be obtained by four-terminal resistance
measurements in a dc sample probe. TheRH(i )/2 resis-
tances of the six QHE side arms are replaced by much
smaller resistances whose values can be obtained from
two-terminal measurements via room temperature ac-
cess points S, 1 through 6, and D once the appropriate
lead and longitudinal resistances are subtracted. An ap-
plied voltage signal placed across the inner and outer
conductors of the Drive port would cause a voltage
signal to appear across the inner and outer conductors of
all capacitances-to-shield. Thus the total capacitance-to-
shield is given by the expressionCT = CS + C1 + C2 +
C3 + C4 + C5 + C6 + CD + CA + CB, whereCA ≈ CB if the
QHE device, the sample holder, and the bonding wires
between them are all symmetrically arranged. We ex-
pect bothCA andCB will be about 1 pF or smaller in the
NIST sample probes.

The equivalent circuit accounts for leakage currents
between the ac QHRS’s inner conductors and the shields
via resistancesrKA andrKB located on either side of the
QHE device. Rather large voltages are used when mea-
suring leakage resistances, so it would be safest to tem-
porarily replace the device with shorts when measuring
the total open-circuit leakage resistancerLk at access
point S, 1 through 6, or D. If the leakage resistances are
symmetrically distributed, thenrKA ≈ rKB ≈ 2rLK. (Their
values are large compared with the lead resistances, so
they are essentially connected in parallel within the cir-
cuit.) The NIST sample probes will be constructed so
these leakage resistances are very large;rKA and rKB
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should be at least 1014 V, but in the numerical examples
of this paper we will assume 1012 V arising from dirty
coaxial connectors.

The capacitances, inductances, and leakage resis-
tances of Fig. 1 contribute parasitic impedances to mea-
surements of the ac QHRS. These capacitances, induc-
tances, and leakage resistances are drawn as discrete
circuit elements. In reality they are distributed within
the standard. They could, in principle, be better repre-
sented. For example, we could replace capacitance-to-
shield C1 with a capacitor of valueC1/2, and place a
second capacitor of valueC1/2 and a series-connected
outer shield impedancez'1 between the other side of
circuit elementz1 at point 1' and the firstC1/2 capacitor.
This distributed impedance would, however, greatly
complicate the circuit analyses, with little gain in accu-
racy. (Our discrete elements circuit over-emphasizes the
capacitance-to-shield currents ifz1 $ z'1 and gives the
same capacitance-to-shield currents ifz1 = z'1.)

This completes the description of the equivalent cir-
cuit. The next section analyzes the circuit.

5. Analysis of the Single-Series “Normal”
Circuit

Kirchoff’s rules are used to sum the currents at branch
points and the voltages around loops to obtain exact
algebraic equations for the equivalent electrical circuit
shown in Fig. 1. We refer to this circuit as single-series
“normal”: single-series because there is just one current
lead connected to the source contact pad S' , and another
current lead connected to the drain pad D' of the QHE
device; and “normal” because the Hall voltage leads are
connected to the central arms 3 and 4 of the device.

5.1 Exact Single-Series “Normal” Equations

Finding the exact algebraic equations for all the cur-
rents, and for the correction factorDH to the quantum
Hall voltage, as defined by Eq. (1), is rather difficult
because there are many coupled equations, especially
for the multi-series circuits [24] examined later in this
paper. All the solutions of this paper were independently
derived by each author, and shown to be identical. Then
each author independently used computer software to
obtain identical numerical results for several test cases.
It is important to obtain the exact solutions, rather than
initially guess approximate solutions, because the fre-
quency dependent effects we are trying to minimize or
eliminate are small, but significant. The results are pre-
sented here in order to spare others the task of deriving
them.

To simplify the final algebraic expressions, we define
some substitutions of variables, and substitutions of sub-
stitutions. The particular substitutions depend on the
choice of loops. For example, the variablesA and B
listed below result from a voltage loop around the path
CS, S' , CB, and back through the shield toCS. This gives

the equation2
1

jvCS
ICS + zSIS +

1
jvCB

ICB = 0, so ICB =

CB

CS
ICS 2 jvCB zSIS, or ICB = AICS 2 BIS. Let

A =
CB

CS
(4a)

B = jvCB zS (4b)

C =
1

jvCB rKB

(4c)

D =
1

[1 + jvC6(RH + z6)]
C6

CB
(4d)

E =
jvC6rd

[1 + jvC6(RH + z6)]
(4e)

F =
1

[1 + jvC5z5]
C5

CB
(4f)

G =
jvC5(RH + rd)
[1 + jvC5z5]

(4g)

H =
[1 + jvC5(RH + z5)]

[jvC5(RH 2 rc)]
(4h)

I = 1 + C + D + F (1 2 H ) (4i)

J = E + G(1 2 H ) (4j)

K = I + J(1 + C) (4k)

L =
AK

[1 + J + K (A + B)]
(4l)

M =
jvC3RH

[1 + jvC3z3]
(4m)

N =
jvC2rb

[1 + jvC2(RH + z2)]
(4n)

O =
jvC1(RH + rb)
[1 + jvC1z1]

(4o)

P =
(RH + ra)

rKA

(4p)
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Q =
[1 + jvC2z2]
[jvC2rKA]

(4q)

R= jvCA rKA (4r)

S=
CD

CA
(4s)

T = jvCD zD. (4t)

We express all currents, and the quantum Hall voltage,
in terms ofIOt because that is the current that enters the
ac reference standard (not shown in Fig. 1). Three of the
current solutions are trivial because of the four-termi-
nal-pair definition [15,16] listed in Sec. 4

IDr = IPt = IC4 = 0. (5a)

The remaining exact equations for the single-series
“normal” circuit currents are

IS = LIOt (5b)

ICS = IOt 2 IS (5c)

ICB = AICS 2 BIS (5d)

IKB = CICB (5e)

Id = IS 2 ICB 2 IKB (5f)

IC6 = DICB 2 EId (5g)

IC5 = 2 FICB + GId (5h)

Ic = HIC5 (5i)

IC3 = MIc (5j)

Ib = Ic + IC3 (5k)

IC2 = NIb (5l)

IC1 = OIb (5m)

Ia = Ib + IC1 + IC2 (5n)

IKA = PIa + QIC2 (5o)

ICA = RIKA (5p)

ID = Ia + IKA + ICA (5q)

ICD = SICA + TID (5r)

IDr = ID + ICD. (5s)

The exact equation for the quantum Hall voltage is ob-
tained by summing the voltages between the inner con-
ductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through arm 4, voltage
generatorsVc4 andVc3, and arm 3 we find that

VH(3,4) =RH Ic 2 z3 IC3, (6a)

which can also be expressed in the form

VH(3,4) = [1 +D34]RH IOt (6b)

by using Eqs. (4) and (5). An approximate solution in
this form will be given in Eq. (11).

5.2 A Numerical Example

Contributions of the parasitic impedance within the
ac QHRS to the measured value ofVH(3,4) can be inves-
tigated by using numerical examples in Eqs. (5) and (6).
We assign cardinal numbers to circuit element values to
emphasize that the results are not intended to provide
corrections to existing experimental data because the
effects of wire-to-wire capacitances are not included at
this intermediate stage of the analysis.

Both the i = 2 (12 906.4V) and i = 4 (6 453.2V)
plateaus have been measured in ac experiments, so let
RH = 10 000V. The cardinal values we use are

RH = 104 V (7a)

rS = r1 = r2 = r3 = r4 = r5 = r6 = rD = 1 V (7b)

ra = rb = rc = rd = 10–3 V (7c)

rKA = rKB = 1012 V (7d)

CS = C1 = C2 = C3 = C4 = C5 = C6 = CD = 10–10 F (7e)

CA = CB = 10–12 F (7f)

LS = L1 = L2 = L3 = L4 = L5 = L6 = LD = 10–6 H (7g)

v = 104 rad/s. (7h)

Note that the 100 pF capacitances-to-shield values of
Eq. (7e) may be close to those that will be obtained in
the short NIST sample probe, but typical ac probes have
values around 250 pF.

The numerical results for the currents of Eqs. (5) are

ICS = {2[1.0 3 10–8] + j[1.0 3 10–6]} IOt (8a)
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IS = {[1.00000]2 j[1.0 3 10–6]} IOt (8b)

ICB = {2[2.0 3 10–13] + j[2.0 3 10–11]} IOt (8c)

IKB = {[2.0 3 10–15] + j[2.0 3 10–17]} IOt (8d)

Id = {[1.00000]2 j[1.0 3 10–6]} IOt (8e)

IC6 = {2[1.0 3 10–11] + j[1.0 3 10–9]} IOt (8f)

IC5 = {[2.0 3 10–8] + j[0.01000]}IOt (8g)

Ic = {[1.00000] + j[0.01000]}IOt (8h)

IC3 = {2[1.0 3 10–4] + j[0.01000]}IOt (8i)

Ib = {[0.99990] + j[0.02000]}IOt (8j)

IC2 = {2[1.0 3 10–11] + j[1.0 3 10–9]} IOt (8k)

IC1 = {2[2.0 3 10–4] + j[0.01000]}IOt (8l)

Ia = {[0.99970] + j[0.03000]}IOt (8m)

IKA = {[1.0 3 10–8] + j[3.0 3 10–10]} IOt (8n)

ICA = {2[3.0 3 10–6] + j[1.0 3 10–4]} IOt (8o)

ID = {[0.99970] + j[0.03010]}IOt (8p)

ICD = {2[3.0 3 10–4] + j[0.01000]}IOt (8q)

IDr = {[0.99940] + j[0.04010]}IOt. (8r)

The 908 out-of-phase (j) parts of shunt currentsIC5,
IC3, IC1, ICD, and ICA, are much larger than for shunt
currentsIC2, IC6, ICS, andICB because contact pads 5' , 3' ,
1' , and D' are all near the quantum Hall potential, rather
than near the shield potential. A 1 % out-of-phase cur-
rent passes through each of the coaxial cable capaci-
tancesC5, C3, C1, andCD in this example. That is not
necessarily a problem if the bridge Drive can provide
this extra 4 % of out-of-phase current toIDr.

Expressing Eq. (6a) in the form of Eq. (6b), we find
that

VH(3,4) = {1 + [5.03 10–8] + j[0.01000]}RH IOt, (9a)

D34 = {[5.0 3 10–8] + j[0.01000]}. (9b)

The 53 10–8 in-phase correction toRH is too large com-
pared with the desired 13 10–8 RH absolute accuracy,
but even worse, there is a 1 % contribution toVH(3,4) in
the 908 out-of-phase j term. Auxiliary balances in the

NIST high precision ac bridges are not capable of
providing out-of-phase adjustment signals larger than
5 3 10–4 RH, so the 1 % out-of-phase signal is unaccept-
able. We next list the approximate solutions to show the
source of this problem.

5.3 Approximate Single-Series “Normal” Solutions

Many of the terms in the following approximate solu-
tions were obtained by algebraically finding the domi-
nant contributions to the exact equations. Other terms
were found by “educated guesses” and “trial-and-error”.
We verified all the terms by changing the values of
relevant circuit element components in the computer
programs. The following approximate solutions give nu-
merical results that agree with the results from the exact
solutions to within at least two significant figures for
both the real and imaginary parts of the numerical re-
sults. Other terms may need to be added to these approx-
imate equations if the circuit components have values
significantly different from those listed in Eqs. (7).

ICS ≈ { 2[v2CS(C5 + C6)RH rc 2 v2CSCSrSrS + v2CSLS]

+ j[vCSrS]} IOt (10a)

IS ≈ {1 2 j[vCSrS]} IOt (10b)

ICB ≈ { 2[v2CB(C5+C6)RH rc]+ j[ vCB(rc+ rd)]} IOt (10c)

IKB ≈ HF(rc + rd)
rKB

G+ jFv (C5 + C6)
RH rc

rKB

GJIOt (10d)

Id ≈ {1 2 j[vCSrS]} IOt (10e)

IC6 ≈ { 2[v2C5C6RH rc] + j[ vC6rc]} IOt (10f)

IC5≈ {[ v2CSC5RH rS+v2C5C5RH r5]+ j[ vC5RH]} IOt(10g)

Ic ≈ IOt + IC5 2 ICS (10h)

IC3 ≈ { 2[v2C3C5RH RH] + j[ vC3RH]} IOt (10i)

Ib ≈ IOt + IC5 + IC3 (10j)

IC2≈ { 2[v2C2(C3+C52C2)RH rb]+ j[ vC2rb]} IOt (10k)

IC1≈ { 2[v2C1(C3+C5)RH RH]+ j[ vC1RH]} IOt (10l)

Ia ≈ IOt + IC5 + IC3 + IC1 (10m)

IKA ≈ HFRH

rKA

G+ jFv (C1 + C3 + C5)
RH RH

rKA

GJIOt (10n)
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ICA ≈ { 2[v2CA(C1+C3+C5)RH RH]+ j[ vCA RH]} IOt(10o)

ID ≈ IOt + IC5 + IC3 + IC1 + ICA (10p)

ICD ≈ { 2[v2CD(C1+C3+C5)RH RH]+ j[ vCD RH]} IOt(10q)

IDr ≈ IOt + IC5 + IC3 + IC1 + ICA + ICD. (10r)

Expressing Eq. (6a) in the form (6b),

DH ≈ {[ v2CSC5RH rS+v2C3C5RH r3+v2C5C5RH r5

2v2CSCSrSrS]+ [v2CS(C5+C6)RH rc+v2CSLS

+v2C3L3]+ j[ vC5RH 2vCSrS2vC3r3]}. (11)

We see from Eq. (11) that sample probe lead 5 is the
dominant source of the 1 % out-of-phase component of
the quantum Hall voltage signal. The next subsection
investigates the effect of removing this lead.

5.4 Disconnecting Sample Probe Lead 5

Equation (11) predicts that the out-of-phase term
j[vC5RH] in the expression forD34 can be reduced by
disconnecting coaxial cable 5 at position 5' , where 5' is
either located at the potential contact pad on the QHE
device, or at an intermediate contact point in the sample
holder. There is a capacitanceC5' between the QHE
device and the shield that replaces capacitanceC5 in
Fig. 1. Also, a shield impedancez5' replaces the lead
impedancez5.

The most significant terms of Eq. (11) are now

D34≈ {[ v2CSLS+v2C3L3]+

j[vC5' RH 2 vCSrS2 vC3r3]}. (12)

If we assume in the numerical examples that

C5' = CA = CB = 1 pF (13)

r5' = r5 = 1 V. (14)

Then

D34 = {[2.0 3 10–8] + j[9.8 3 10–5]} (15)

when the coaxial lead capacitances are all 100 pF, and

D34 = {[5.0 3 10–8] + j[9.5 3 10–5]} (16)

when they are 250 pF. All experiments which have mea-
sured ac values ofVH(3,4) have had to remove coaxial

lead 5 because of the effects due to the large capaci-
tance-to-shieldC5 presented above.

Equations (11) or (12) might be used to apply correc-
tions to the experimental data in order to reduce the
5 3 10–8 in-phase error inRH IOt. However, there are
several points of concern: (a) our approximate and exact
equations do not include the effects of wire-to-wire ca-
pacitances, and these may be significant; (b) the out-of-
phase component ofVH(3,4) has been reduced to about
1 3 10–4 RH IOt by removing lead 5, but great care must
be taken to correct for the in-phase (phase defect) con-
tributions of the bridge components used to null the
out-of-phase signal because these in-phase (phase de-
fect) signals can be unintentionally added to the real,
second-order terms of the in-phase component of
VH(3,4) in Eqs. (11) or (12) that vary withv2; and (c) it
is not trivial to measure the value ofC5' in order to apply
the correction with lead 5 disconnected.

We will not consider further the single-series
“normal” circuit as a viable ac QHRS candidate because
lead 5 must be disconnected, and that violates one of our
desired goals.

6. Analysis of the Single-Series “Offset”
Circuit

Figure 2 shows an equivalent electrical circuit repre-
sentation of an ac QHRS using single-series “offset”
connections to the QHE device. It is single-series be-
cause there is just one current lead connected to the
source contact pad S' , and another current lead con-
nected to the drain pad D' of the QHE device, and
“offset” because the Hall voltage leads are connected to
the off-center arms 5 and 6 of the device. Arms 5 and 6
are closest to the low potential end of the device at S' ,
and nearest to the ac reference resistor (not shown in the
figure). Those arms were chosen in an attempt to reduce
the effects of shunt currents throughIC5 that we found in
Sec. 5.

6.1 Exact Single-Series “Offset” Equations

To simplify the final algebraic expressions, we again
define some intermediate substitutions of variables, and
substitutions of substitutions. Let

A =
CB

CS
(17a)

B = jvCB zS (17b)

C =
1

jvCB rKB

(17c)
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D = jvCSzS (17d)

E = jvCSrd (17e)

F = BE(1 + C) (17f)

G = AE(1 + C) (17g)

H = 1 + D + E + F + G (17h)

I =
jvC5RH

[1 + jvC5z5]
(17i)

J =
jvC4rc

[1 + jvC4(RH + z4)]
(17j)

K =
jvC3(RH + rc)
[1 + jvC3z3]

(17k)

L =
jvC2rb

[1 + jvC2(RH + z2)]
(17l)

M =
FC2

C4
+ jvC2z4G

[1 + jvC2(RH + z2)]
(17m)

N =
jvC1rb

[1 + jvC1z1]
(17n)

O =
FC1

C3
+ jvC1(RH + z3)G
[1 + jvC1z1]

(17o)

P =
(RH + ra)

rKA

(17p)

Q =
[1 + jvC2z2]
[jvC2rKA]

(17q)

R= jvCA rKA (17r)

S=
CD

CA
(17s)

T = jvCD zD. (17t)

Three of the current solutions are trivial because of the
four-terminal-pair definition [15,16]

IDt = IPt = IC6 = 0. (18a)

The remaining exact equations for the single-series
“offset” circuit currents are

IS =
(1 + G)

H
IOt (18b)

ICs = IOt 2 IS (18c)

ICB = AICs 2 BIS (18d)

IKB = CICB (18e)

Id = IS 2 ICB 2 IKB (18f)

IC5 = I I d (18g)

Ic = Id + IC5 (18h)

IC4 = J Ic (18i)

IC3 = KIc (18j)

Ib = Ic + IC3 + IC4 (18k)

IC2 = L Ib + MIC4 (18l)

IC1 = NIb + OIC3 (18m)

Ia = Ib + IC1 + IC2 (18n)

IKA = PIa + QIC2 (18o)

ICA = RIKA (18p)

ID = Ia + IKA + ICA (18q)

ICD = SICA + TID (18r)

IDr = ID + ICD. (18s)

The exact equation for the quantum Hall voltage is ob-
tained by summing the voltages between the inner con-
ductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through arm 6, voltage
generatorsVS6 andVS5, and arm 5 we find that

VH(5,6) =RH Id 2 z5 IC5, (19a)

which can also be expressed in the form

VH(5,6) = [1 +D56]RH IOt. (19b)

6.2 A Numerical Example

We investigate the parasitic impedance contributions
of the ac QHRS on the measured value ofVH(5,6) by
using the cardinal numbers listed in Eqs. (7) in Eqs. (18)
and (19). The numerical results for the currents are
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ICs = {2[1.0 3 10–8] + j[1.0 3 10–6]} IOt (20a)

IS = {[1.00000]2 j[1.0 3 10–6]} IOt (20b)

ICB = {[1.0 3 10–17] + j[1.0 3 10–11]} IOt (20c)

IKB = {[1.0 3 10–15] 2 j[1.0 3 10–21]} IOt (20d)

Id = {[1.00000]2 j[1.0 3 10–6]} IOt (20e)

IC5 = {[2.0 3 10–8] + j[0.01000]}IOt (20f)

Ic = {[1.00000] + j[0.01000]}IOt (20g)

IC4 = {[2.0 3 10–15] + j[1.0 3 10–9]} IOt (20h)

IC3 = {2[1.0 3 10–4] + j[0.01000]}IOt (20i)

Ib = {[0.99990] + j[0.02000]}IOt (20j)

IC2 = {[3.0 3 10–15] + j[2.0 3 10–9]} IOt (20k)

IC1 = {2[2.0 3 10–4] + j[0.01000]}IOt (20l)

Ia = {[0.99970] + j[0.03000]}IOt (20m)

IKA = {[1.0 3 10–8] + j[3.0 3 10–10]} IOt (20n)

ICA = {2[3.0 3 10–6] + j[1.0 3 10–4]} IOt (20o)

ID = {[0.99970] + j[0.03010]}IOt (20p)

ICD = {2[3.0 3 10–4] + j[0.01000]}IOt (20q)

IDr = {[0.99940] + j[0.04010]}IOt. (20r)

The 908 out-of-phase parts of shunt currentsIC5, IC3,
IC1, ICD, and ICA are again much larger than for shunt
currentsIC2, IC4, ICS, andICB because contact pads 5' , 3' ,
1' , and D' are all near the quantum Hall potential, rather
than near the shield potential. A 1 % out-of-phase cur-
rent once again passes through each of the coaxial cable
capacitancesC5, C3, C1, andCD in this example, which
is not necessarily a problem if the bridge Drive can
provide this extra 4 % of out-of-phase current toIDr.

Expressing Eq. (19a) in the form of Eq. (19b), we
find that

VH(5,6)= {1+ [2.0310–8] 2 j[2.0310–6]} RH IOt, (21a)

D56 = {[2.0 3 10–8] 2 j[2.0 3 10–6]} (21b)

for 100 pF lead capacitances and

D56 = {[5.0 3 10–8] 2 j[5.0 3 10–6]} (22)

for 250 pF coaxial leads.

The 23 10–8 in-phase correction toRH for 100 pF
leads is larger than our desired 13 10–8 RH total uncer-
tainty, but a correction could be made to the measure-
ments via the approximate equation

D56 ≈ {[ v2CSLS + v2C5L5] 2 j[vCSrS + vC5r5]} (23)

that might provide sufficient accuracy. We will therefore
consider the single-series “offset” circuit as a possible
ac QHRS in a future paper which includes the effects of
wire-to-wire capacitances. The approximate equations
for the currents will be given in that paper.

7. Analysis of the Double-Series Circuit

Figure 3 shows an equivalent electrical circuit repre-
sentation of an ac QHRS using two double-series con-
nections to the QHE device. It is called double-series
because there are two current paths to the device pro-
vided by a short coaxial lead outside the sample probe
that connects room temperature access points 3 and D at
point Y. Another short coaxial lead connects access
points 4 and S at point Z. Short coaxial leads connect
point Y with the Drive and Potential ports, and point Z
with the Inner/Outer and Detector ports. For simplicity,
we have placed all the parasitic impedances of the short
coaxial cables in the cables and coaxial connectors la-
beled Ot, Dt, Pt, and Dr. These connections were first
used by Delahaye [24] in ac quantized Hall resistance
measurements (but points Y and Z were at the sample
holder rather than outside the cryostat). Most subsequent
ac experiments have used double-series or triple-series
connections.

7.1 Exact Double-Series Equations

To simplify the final algebraic expressions, we again
define substitutions of variables, and substitutions of
substitutions. Let

A = jvCOtrOt (24a)

B = jvCB zS (24b)

C =
1

jvCB rKB

(24c)

D =
1

[1 + jvC6(RH + z6)]
C6

CB
(24d)

E =
jvC6rd

[1 + jvC6(RH + z6)]
(24e)
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F =
1

[1 + jvC5z5]
C5

CB
(24f)

G =
jvC5(RH + rd)
[1 + jvC5z5]

(24g)

H1 =
zS

(RH + z4)
(24h)

H2 =
rd

(RH + z4)
(24i)

H3 =
rc

(RH + z4)
(24j)

H4 =
RH

(RH + z4)
(24k)

I = H2 + H3(1 + G) + E(H3 2 H4) (24l)

J= I (1 + C) + FH3 + D (H3 2 H4) (24m)

K =
1

[1 + H1 + I + BJ]
(24n)

L = jvC3rc (24o)

M1 =
C3

C5
+ jvC3(RH + z5) (24p)

M2 = jvC3z3 (24q)

N1 =
jvC2rb

[1 + jvC2(RH + z2)]
(24r)

N2 =
jvC2z4

[1 + jvC2(RH + z2)]
(24s)

O1 =
jvC1rb

[1 + jvC1z1]
(24t)

O2 =
jvC1(RH + z3)
[1 + jvC1z1]

(24u)

O3 =
C1

C3[1 + jvC1z1]
(24v)

P1 =
(RH + ra)

rKA

(24w)

P2 =
z2

rKA

+
1

jvC2rKA

(24x)

Q1 = jvCA rKA (24y)

Q2 = ra + zD[1 + P1(1 + Q1)] (24z)

Q3 = zD P2(1 + Q1) (25a)

Q4 = rb + Q2 + O1(RH + Q) (25b)

Q5 = Q4 + N1(Q2 + Q3) (25c)

Q6=RH +z3+Q5+O2(RH +Q2)2M2O3(RH +Q2) (25d)

Q7 =
[Q5 + LO3(RH + Q2)]

Q6
(25e)

Q8 =
[Q5 + N2(Q2 + Q3)]

Q6
(25f)

Q9 =
M1O3(RH + Q2)

Q6
(25g)

R= jvCD zD (25h)

S=
CD

CA
(25i)

T =
CPt

CD

1
[1 + jvCPtrPt]

(25j)

U1 =
CDr

CD
(25k)

U2 = jvCDr rDr. (25l)

Six of the current solutions are trivial because of the
four-terminal-pair definition [15,16]

IDt = IPt = ICS = ICDt = IC4 = IrDt = 0. (26a)

The remaining exact equations for the double-series cir-
cuit currents are

ICOt =
A

(1 + A)
IOt (26b)

IrOt = IOt 2 ICOt (26c)

IS = KIrOt (26d)

I4 = IrOt 2 IS (26e)

ICB = BIS (26f)

IKB = CICB (26g)

Id = IS + ICB + IKB (26h)
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IC6 = DICB + EId (26i)

IC5 = FICB + GId (26j)

Ic = Id + IC5 + IC6 (26k)

I3' = Q7 Ic + Q8 I4 + Q9 IC5 (26l)

IC3 = L Ic + M1 IC5 + M2 I3' (26m)

I3 = I3' + IC3 (26n)

Ib = Ic + I4 2 I3' (26o)

IC2 = N1 Ib + N2 I4 (26p)

IC1 = O1 Ib 2 O2 I3' + O3 IC3 (26q)

Ia = Ib + IC1 + IC2 (26r)

IKA = P1 Ia + P2 IC2 (26s)

ICA = Q1 IKA (26t)

ID = Ia + IKA + ICA (26u)

ICD = SICA + RID (26v)

ICPt = TICD (26w)

IrDr = ID + I3 + ICD + ICPt (26x)

ICDr = U1 ICD + U2 IrDr (26y)

IDr = IrDr + ICDr. (26z)

The exact equation for the quantum Hall voltage is
obtained by summing the voltages between the inner
conductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through point Z, arm 4,
voltage generatorsVc4 andVc3, arm 3, and point Y we
find that

VH(Y,Z) = RH Ic + (RH + z4) I4 + z3 I3' 2 rPtICPt (27a)

which can also be expressed as

VH(Y,Z) = [1 + DYZ]RH IOt. (27b)

7.2 A Numerical Example

We investigate the parasitic impedance contributions
of the ac QHRS on the measured value ofVH(Y,Z) for a
particular example of the double-series circuit by using

the cardinal numbers listed in Eqs. (7), plus the follow-
ing cardinal numbers for the additional circuit elements

rOt = rDt = rPt = rDr = 10–3 V (28a)

COt = CDt = CPt = CDr = 10–12 F. (28b)

The numerical results for the currents in Eqs. (26) are

ICOt = {[1.0 3 10–22] + j[1.0 3 10–11]} IOt (29a)

IrOt = {[1.00000]2 j[1.0 3 10–11]} IOt (29b)

IS = {[0.99990] + j[9.03 10–11]} IOt (29c)

ICB = {2[1.0 3 10–10] + j[1.0 3 10–8]} IOt (29d)

IKB = {[1.0 3 10–12] + j[1.0 3 10–14]} IOt (29e)

Id = {[0.99990] + j[1.03 10–8]} IOt (29f)

IC6 = {[1.1 3 10–11] + j[1.0 3 10–6]} IOt (29g)

IC5 = {2[1.0 3 10–10] + j[0.01000]}IOt (29h)

Ic = {[0.99990] + j[0.01000]}IOt (29i)

I4 = {[1.0 3 10–4] 2 j[1.0 3 10–10]} IOt (29j)

I3' = {[1.0 3 10–4] + j[0.01000]}IOt (29k)

IC3 = {2[1.0 3 10–4] + j[0.01000]}IOt (29l)

I3 = {[1.6 3 10–7] + j[0.02000]}IOt (29m)

Ib = {[0.99990] + j[1.03 10–6]} IOt (29n)

IC2 = {[1.0 3 10–11] + j[1.1 3 10–9]} IOt (29o)

IC1 = {2[1.0 3 10–12] + j[0.01000]}IOt (29p)

Ia = {[0.99990] + j[0.01000]}IOt (29q)

IKA = {[1.0 3 10–8] + j[1.0 3 10–10]} IOt (29r)

ICA = {2[1.0 3 10–6] + j[1.0 3 10–4]} IOt (29s)

ID = {[0.99990] + j[0.01010]}IOt (29t)

ICD = {2[1.0 3 10–4] + j[0.01000]}IOt (29u)

ICPt = {2[1.0 3 10–6] + j[1.0 3 10–4]} IOt (29v)

IrDr = {[0.99980] + j[0.04020]}IOt (29w)
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ICDr = {2[1.0 3 10–6] + j[1.0 3 10–4]} IOt (29x)

IDr = {[0.99980] + j[0.04030]}IOt. (29y)

The 908 out-of-phase parts of shunt currentsIC5, IC3,
IC1, ICD, ICA, ICPt, andICDr are again much larger than for
shunt currentsIC2, IC6, ICB, andICOt because contact pads
5' , 3' , 1' , and D' are all near the quantum Hall potential,
rather than near the shield potential. A 1 % out-of-phase
current passes through each of the coaxial cable capaci-
tancesC5, C3, C1, andCD in this example, which once
again is not necessarily a problem if the bridge Drive
can provide this extra 4 % of out-of-phase current toIDr.

Expressing Eq. (27a) in the form of Eq. (27b), we
find that

VH(Y,Z) = {1 + [9.8 3 10–9] + j[0.01000]}RH IOt, (30a)

DYZ = {[9.8 3 10–9] + j[0.01000]} (30b)

for 100 pF lead capacitances and

DYZ = {[3.2 3 10–8] + j[0.02501]} (31)

for 250 pF coaxial leads.
The 13 10–8 RH in-phase correction toRH for 100 pF

leads meets our desired 10–8 RH absolute accuracy, but
there is a 1 % contribution toVH(Y,Z) in the 908 out-of-
phase j term. Auxiliary balances in the NIST high preci-
sion ac bridges are not capable of providing out-of-
phase adjustment signals larger than 53 10–4 RH, so the
1 % out-of-phase signal is unacceptable. The approxi-
mate solutions are listed in the next subsection to show
the source of this out-of-phase problem.

7.3 Approximate Double-Series Solutions

Some of the terms in the following approximate solu-
tions were obtained using the results of the dc double-se-
ries analysis of [22]. Most terms were found in a tedious
process by changing the individual values of circuit
element components by an order of magnitude in the
computer program, observing the calculated results, and
then finding the algebraic expressions that produced
these results. The approximate solutions yield numerical
results that agree with the exact numerical results listed
in Eqs. (29) and (30) to within at least two significant
figures for both the real and imaginary parts, but other
terms may need to be added to these approximate equa-
tions if the circuit components have values significantly
different from those listed in Eqs. (7) and (28).

ICOt ≈ ICOta
= {[ v2COtCOtrOtrOt] + j[ vCOtrOt]} IOt (32a)

IrOt ≈ IrOta
= {1 2 j[vCOtrOt]} IOt (32b)

IS≈ ISa=HF12
rS

RH
G+ j[vC6(rS+ rd)2 vC5rc2 vCOtrOt]

2 jFv
LS

RH
2v

L4

RH

rS

RH
GJIOt (32c)

ICB ≈ ICBa
= {2[v2CB(C6rS2COtrOt)rS+v2CB LS]

+ j[vCB rS]} IOt (32d)

IKB ≈ IKBa
= HF rS

rKB

G+ jFv
LS

rKB

GJIOt (32e)

Id≈ Ida=HF12
rS

RH
G+ jFv (CB +C6) rS2 v

LS

RH
GJIOt (32f)

IC6≈ IC6a
= {[ v2C6C6RH(rS+ rd)+v2C6C6rSr6

2 v2C6LS]+ j[ vC6rS]} IOt (32g)

IC5≈ IC5a
= {[ v2C5C5RH r52v2C5C6RH(rS+ rd)

2v2CB C5RH(rS+ rd)]+ [v2C6C6RH rc]+ j[ vC5RH]} IOt

(32h)

Ic ≈ Ica = Ida + IC5a
+ IC6a

(32i)

I4 ≈ I4a = {1 2 j[vCOtrOt]} IOt 2 ISa (32j)

I3' ≈ I3'a=HF rD

RH
+

(rb+ ra)
RH

+v2C1(C12C5)RH RH

+v2C1C1RH(r12 r3)G2 [v2C1C6RH rS+v2(CA +C5)LD]

+ j[vC1(RH 2 r3)+v (CA +C5) rD]} IOt (32k)

IC3≈ IC3a= {2[v2C3C5RH RH +v2C1C3RH r3

+v2C3C6RH rS]+ j[ vC3RH]} IOt (32l)

I3 ≈ I3a = I3'a + IC3a
(32m)

Ib ≈ Iba = Ica + I4a 2 I3'a (32n)

IC2≈ IC2a
= {[ v2C2(C2+C62C1) rSr4+v2C1C2RH rb]

+Fv2C2(C22C5)RH rb2 v2C2LS
r4

RH
G

+ jFvC2rb+vC2
rSr4

RH
GJIOt (32o)
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IC1≈ IC1a
=H[v2C1(C12C5)RH RH +v2C1C1RH(r12 r3)]

+F2 v2C1C6RH rS+v2C1LD +v2C1L1
rS

RH
G

2Fv2(C1+C5)LS
rS

RH
G+ j[vC1RH]JIOt (32p)

Ia ≈ Iaa = Iba + IC1a
+ IC2a

(32q)

IKA ≈ IKAa
= HFRH

rKA

G + jFvC5
RH RH

rKA

GJIOt (32r)

ICA ≈ ICAa
= {2[v2CAC5RH RH] + j[ vCA RH]} IOt (32s)

ID ≈ IDa = Iaa + IKAa
+ ICAa

(32t)

ICD ≈ ICDa
= {2[v2CDC5RH RH] + j[ vCD RH]} IOt (32u)

ICPt ≈ ICPta
= {2[v2CPtC5RH RH] + j[ vCPtRH]} IOt (32v)

IrDr ≈ IrDra
= IDa + I3a + ICDa

+ ICPta
(32w)

ICDr ≈ ICDra
= {2[v2CDrC5RH RH] + j[ vCDr RH]} IOt (32x)

IDr ≈ IDra = IrDra
+ ICDra

. (32y)

As expected, Eqs. (32i) and (32h) suggest that the
currentIC5 in Fig. 3 enters the Drive, goes to point Y, to
point D' , through longitudinal resistancesra, rb, andrc,
through arm 5, and then exits through capacitance-to-
shield C5. We would have likewise assumed that the
currentIC1 enters the Drive, goes to point Y, to point D' ,
through ra, through arm 1, and then exits throughC1.
However, the approximate Eqs. (32p) and (32k), where
IC1 appears inI3' , suggest thatIC1 enters the Drive, goes
to point Y, to point 3, through arm 3, travels “upstream”
through rb, through arm 1, and then exits throughC1.
The currentIC3, on the other hand, enters the Drive, goes
to point Y, to point 3, and then exits throughC3, bypass-
ing the device altogether; this latter effect provides an
advantage to double-series connections by reducing
shunt currents within the device.

Expressing Eq. (27a) in terms of Eq. (27b), we find
that Eq. (33) gives the approximate quantum Hall
voltage correction terms.

We see from Eq. (33) that sample probe lead 5, just as
in the single-series “normal” case, is the dominant
source of the 1 % out-of-phase component of the quan-
tum Hall voltage signal in the numerical example for
this double-series connection to the QHE device. The
next subsection investigates the effect of removing this
lead, which was effective before in the single-series
“normal” case of Sec. 5.

DYZ ≈ HF rSr4

RH RH
+

r3rD

RH RH
+

r3(rb + ra)
RH RH

+ v2C5C5RH r5G
2 [v2CBC5RH rS+v2C6(C52C6)RH rS

2 v2C1(C12C5)RH r3]

+ [v2C6C6RH(rd+ rc)2v2C5(CB +C6)RH rd]

+ [v2C6C6rSr62 v2C1C6rSr3+v2C1C1r3(r12 r3)]

2Fv2CB LS+v2C6(LS+L3)+v2(CA +C5)LD
r3

RH
G

+ j[vC5(RH + rd)+vC1r3+v (CB +C6) rS]

2 jFvC6(rS+ rd)+vL4
rS

RH RH
GJ. (33)

7.4 Disconnecting Sample Probe Lead 5

Equation (33) predicts that the out-of-phase term
j[vC5RH] in the expression forDYZ can be reduced by
disconnecting coaxial cable 5 at position 5' , where 5' is
either located at the potential contact pad on the QHE
device, or at an intermediate contact point in the sample
holder. There is a capacitanceC5' between the QHE
device and the shield that replaces capacitanceC5 in
Fig. 3. Also, a shield impedancez5' replaces the lead
impedancez5.

If we assume in the numerical examples that

C5' = CA = CB = 1 pF (34a)

r5' = r5 = 1 V. (34b)

Then

DYZ = {[2.0 3 10–8] + j[1.0 3 10–4]} (35)

when the coaxial lead capacitances are all 100 pF, and

DYZ = {[9.4 3 10–8] + j[1.1 3 10–4]} (36)

when they are 250 pF. All experiments which have mea-
sured ac values ofVH(Y,Z) for double-series connections
have had to remove coaxial lead 5 because of the effects
due to the large capacitance-to-shieldC5 presented
above.

Equation (33) could be used to apply corrections to
the experimental data in order to reduce the 9.43 10–8

in-phase error inRH IOt. However, our approximate and
exact equations do not include the effects of wire-to-
wire capacitances; the bridge auxiliary balance could
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introduce unintentional in-phase contributions because
of the large out-of-phase component ofVH(Y,Z); and it
is not trivial to measure the value ofC5' in order to apply
the correction with lead 5 disconnected.

7.5 Double-Series Connections at the QHE Device

Many experiments have made double-series connec-
tions to the QHE device at the bottom of the sample
probe by using short bonding wires to form the circuit.
Points Y and Z of Fig. 3 are thus moved from outside the
sample probe down to the sample holder. There are no
coaxial leads connected to points 1, 2, 5, and 6, so their
capacitances-to-shield become much smaller. Four
coaxial leads labeled Ot, Dt, Pt, and Dr connect the
QHE device to the outside world. The double-series
circuit shown in Fig. 3 remains exactly the same for this
case, as do Eqs. (24) through (27). The values of some
circuit components, however, change.

We use the following cardinal values in our numerical
example

RH = 104 V (37a)

rS = r1 = r2 = r3 = r4 = r5 = r6 = rD = 10–3 V (37b)

ra = rb = rc = rd = 10–3 V (37c)

rKA = rKB = 1012 V (37d)

rOt = rDt = rPt = rDr = 1 V (37e)

CS = C1 = C2 = C3 = C4 = C5 = C6 = CD = 10–12 F (37f)

CA = CB = 10–12 F (37g)

COt = CDt = CPt = CDr = 10–10 F. (37h)

The numerical results for the currents in Eqs. (26)
with the double-series leads connected at the bottom of
the sample probe are

I B
COt = {[1.0 3 10–12] + j[1.0 3 10–6]} IOt (38a)

I B
rOt = {[1.00000]2 j[1.0 3 10–6]} IOt (38b)

I B
S = {[1.00000]2 j[2.0 3 10–6]} IOt (38c)

I B
CB = {2[1.0 3 10–10] + j[1.0 3 10–11]} IOt (38d)

I B
KB = {[1.0 3 10–15] + j[1.0 3 10–14]} IOt (38e)

I B
d = {[1.00000]2 j[2.0 3 10–6]} IOt (38f)

I B
C6 = {2[1.0 3 10–10] + j[2.0 3 10–11]} IOt (38g)

I B
C5 = {[1.0 3 10–10] + j[1.0 3 10–4]} IOt (38h)

I B
c = {[1.00000] + j[9.83 10–5]} IOt (38i)

I B
4 = {[3.0 3 10–7] + j[1.0 3 10–6]} IOt (38j)

I B
3' = {[3.0 3 10–7] + j[1.0 3 10–4]} IOt (38k)

I B
C3 = {2[1.0 3 10–8] + j[1.0 3 10–4]} IOt (38l)

I B
3 = {[2.9 3 10–7] + j[2.0 3 10–4]} IOt (38m)

I B
b = {[1.00000]2 j[2.0 3 10–6]} IOt (38n)

I B
C2 = {[9.8 3 10–16] + j[1.0 3 10–11]} IOt (38o)

I B
C1 = {[2.0 3 10–10] + j[1.0 3 10–4]} IOt (38p)

I B
a = {[1.00000] + j[9.83 10–5]} IOt (38q)

I B
KA = {[1.0 3 10–8] + j[9.8 3 10–13]} IOt (38r)

I B
CA = {2[9.8 3 10–9] + j[1.0 3 10–4]} IOt (38s)

I B
D = {[1.00000] + j[2.03 10–4]} IOt (38t)

I B
CD = {2[9.9 3 10–9] + j[1.0 3 10–4]} IOt (38u)

I B
CPt = {2[9.8 3 10–7] + j[0.01000]} IOt (38v)

I B
rDr = {[1.00000] + j[0.01050]}IOt (38w)

I B
CDr = {2[1.0 3 10–6] + j[0.01000]} IOt (38x)

I B
Dr = {[1.00000] + j[0.02050]}IOt. (38y)

Expressing Eq. (27a) in the form of Eq. (27b), we
find that

VB
H(Y,Z)={1 2[1.0310210]+ j[9.8310–5]} RH IOt, (39a)

DB
YZ = {2[1.0 3 10–10] + j[9.8 3 10–5]} (39b)

for 100 pF lead capacitances and

DB
YZ = {[1.8 3 10–10] + j[9.5 3 10–5]} (40)

for 250 pF coaxial leads.
Equation (40) implies a very small in-phase error in

RH IOt. This is not supported by measurements, which
have observed errors inRH IOt of order 10–7. The dis-
crepancy could either be due to unintentional in-phase
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contributions from the bridge auxiliary balances arising
from the large out-of-phase component ofVH(Y,Z), or
because our equations do not include the effects of wire-
to-wire capacitances.

To assist laboratories who are making double-series
connection measurements at the QHE device we list the
additional terms that should be added to the approxi-
mate current and quantum Hall voltage solutions given
by Eqs. (32) and (33). Those equations which require
additional terms are:

I B
d ≈ I B

da = Ida 2 { j[ vCOtrOt]} IOt (41a)

I B
C6 ≈ I B

C6a
= IC6a

+ { j[ vC6rd]} IOt (41b)

I B
C5 ≈ I B

C5a
= IC5a

+ {[ v2COtC5RH rOt]} IOt (41c)

I B
4 ≈ I B

4a = I4a + HF(rd + rc)
RH

GJIOt (41d)

I B
3' ≈ I B

3'a = I 3'a + HjFv
LD

RH
GJIOt (41e)

I B
KA ≈ I B

KAa
= IKAa

2HjFvCOt
RH

rKA

rOt+v
LD

rKA

GJIOt (41f)

I B
CA ≈ I B

CAa
= ICAa

+ {[ v2COtCA RH rOt+v2CA LD]} IOt (41g)

I B
CD ≈ I B

CDa
= ICDa

+ {[ v2COtCD RH rOt]} IOt (41h)

I B
CPt≈ I B

CPta
= ICPta

+ {[ v2COtCPtRH rOt+v2CPtCPtRH rPt]} IOt (41i)

and

DH
B ≈DH +{[ v2C5COtRH rOt+v2C5CPtRH rPt

2 v2COtCOtrOtrOt] 2 [v2CPtCPtrPtrPt]

2 j[vCOtrOt+vCPtrPt]}. (42)

We once again caution the reader that these approxi-
mate equations do not include the effects of wire-to-
wire capacitances. This circuit is not a good candidate
for further analysis because the quantized Hall and lon-
gitudinal resistances could not be measured on the same
cool-down.

8. Triple-Series Circuit

The double-series circuit of Fig. 3 could be converted
to a triple-series circuit by adding short coaxial leads

between points Y and 1 and Z and 6. We do not consider
this triple-series circuit since it would involve several
additional months of effort to perform the analysis, and
the problems found in double-series circuits in Sec. 7
due to large shunt currents throughC5 also occur in
triple-series circuits. Either coaxial lead 5 would have to
be disconnected at position 5' at the QHE device end of
the sample probe, or the triple-series connections would
have to be made at the device. Neither choice satisfies
our goal of measuring the ac and dc quantized Hall and
longitudinal resistances on the same cool-down. We
therefore proceed to quadruple-series connections,
which turns out to satisfy our requirements at this stage
of analysis.

9. Analysis of the Quadruple-Series
Circuit

Figure 4 shows an equivalent electrical circuit repre-
sentation of an ac QHRS using two quadruple-series
connections to the QHE device. It is quadruple-series
because short coaxial leads outside the sample probe
connect room temperature access points 5, 3, 1, and D
at point Y, providing four current paths to the device.
Other short coaxial leads connect access points 2, 4, 6,
and S at point Z. Short coaxial leads outside the sample
probe connect point Y with the Drive and Potential
ports, and point Z with the Inner/Outer and Detector
ports.

9.1 Exact Quadruple-Series Equations

To simplify the final algebraic expressions, we once
again define substitutions of variables, and substitutions
of substitutions. Let

A = jvCOtrOt (43a)

B = jvCB zS (43b)

C =
1

jvCB rKB

(43c)

D1 =
zS

(RH + z6)
(43d)

D2 =
rd

(RH + z6)
(43e)

D3 =
(RH + rd)

z5
(43f)

D4 =
1

jvCB z5
(43g)
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D5 =
1

jvC5z5
(43h)

D6 =
z6

(RH + z4)
(43i)

D7 =
rc

(RH + z4)
(43j)

D8 =
C3

C5
(43k)

E1 =
z4

(RH + z2)
(43l)

E2 =
rb

(RH + z2)
(43m)

E3 =
C1

C3
(43n)

E4 =
(RH + ra)

rKA

(43o)

E5 =
z2

rKA

(43p)

E6 = jvCA rKA (43q)

F1 =
(RH + z5)

z3
(43r)

F2 =
rc

z3
(43s)

F3 =
(RH + z3)

z1
(43t)

F4 =
rb

z1
(43u)

F5 =
(RH + z1)

zD
(43v)

F6 =
ra

zD
(43w)

F7 =
C5

CA
(43x)

F8 = jvC5zD (43y)

G1 = F8 + E6(F7 + F8) (43z)

G2 = F8 + G1(E4 + E5) (44a)

G3 = F8 + E4G1 (44b)

G4 = G3(1 + F4) + E2G2 (44c)

G5 = G4 + F3G3 (44d)

G6 = G4 + E1G2 (44e)

G7 = G4 + F2G5 + D7G6 (44f)

G8 = G7 + D6G6 (44g)

G9 = G7 + F1G5 (44h)

H1 =
(D5G7 2 D3)
(1 + D5G9)

(44i)

H2 =
D4

(1 + D5G9)
(44j)

H3 =
D5G8

(1 + D5G9)
(44k)

J1 = 1 + E1 + E2 (44l)

J2 = E2(1 + F2) (44m)

J3 = J2 + D7J1 (44n)

J4 = 1 + J3 + D6J1 (44o)

J5 = J3 + E2F1 (44p)

J6 = J4 2 H3J5 (44q)

J7 = J3 2 H1J5 + D2J6 (44r)

J8 = 1 + J7 + D1J6 (44s)

J9 = J7(1 + C) + H2J5 (44t)

J10 =
1

(J8 + BJ9)
(44u)

K1 =
CD

CA
(44v)

K2 = jvCD zD (44w)

K3 =
CPt

CD

1
[1 + jvCPtrPt]

(44x)

K4 =
CDr

CD
(44y)
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K5 = jvCDr rDr. (44z)

Eight of the current solutions are trivial because of the
four-terminal-pair definition [15,16]

IDt = IPt= ICS= ICDt = IC6= IC4= IC2= IrDt =0. (45a)

The remaining exact equations for the quadruple-series
circuit currents are

ICOt =
A

(1 + A)
IOt (45b)

IrOt = IOt 2 ICOt (45c)

IS = J10IrOt (45d)

ICB = BIS (45e)

IKB = CICB (45f)

Id = IS + ICB + IKB (45g)

I6 = D1 IS + D2 Id (45h)

I5' = H1 Id 2 H2 ICB + H3 I6 (45i)

IC5 = G7 Id + G8 I6 2 G9 I5' (45j)

I5 = I5' + IC5 (45k)

Ic = Id 2 I5' + I6 (45l)

I4 = D6 I6 + D7 Ic (45m)

I3' = F1 I5' 2 F2 Ic (45n)

IC3 = D8 IC5 (45o)

I3 = I3' + IC3 (45p)

Ib = Ic 2 I3' + I4 (45q)

I2 = E1 I4 + E2 Ib (45r)

I1' = F3 I3' 2 F4 Ib (45s)

IC1 = E3 IC3 (45t)

I1 = I1' + IC1 (45u)

Ia = Ib 2 I1' + I2 (45v)

IKA = E4 Ia + E5 I2 (45w)

ICA = E6 IKA (45x)

ID = Ia + IKA + ICA (45y)

ICD = K1 ICA + K2 ID (45z)

ICPt = K3 ICD (46a)

IrDr = ID + I1 + I3 + I5 + ICD + ICPt (46b)

ICDr = K4 ICD + K5 IrDr (46c)

IDr = IrDr + ICDr. (46d)

The exact equation for the quantum Hall voltage is
obtained by summing the voltages between the inner
conductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through point Z, arm 4,
voltage generatorsVc4 andVc3, arm 3, and point Y we
find that

VH(Y,Z) = RH Ic + (RH + z4) I4 + z3 I3' 2 rPtICPt, (47a)

which can also be expressed as

VH(Y,Z) = [1 + DYZ] RH IOt. (47b)

9.2 A Numerical Example

We investigate the parasitic impedance contributions
of the ac QHRS on the measured value ofVH(Y,Z) for a
particular example of the quadruple-series circuit by
using the cardinal numbers listed in Eqs. (7) and Eqs.
(28). The numerical results for the currents in Eqs. (45)
and (46) are

ICOt = {[1.0 3 10–22] + j[1.0 3 10–11]} IOt (48a)

IrOt = {[1.00000]2 j[1.0 3 10–11]} IOt (48b)

IS = {[0.99990]2 j[1.0 3 10–6]} IOt (48c)

ICB = {2[1.0 3 10–10] + j[1.0 3 10–8]} IOt (48d)

IKB = {[1.0 3 10–12] + j[1.0 3 10–14]} IOt (48e)

Id = {[0.99990]2 j[9.9 3 10–7]} IOt (48f)

I6 = {[1.0 3 10–4] + j[1.0 3 10–6]} IOt (48g)

I5' = {[1.0 3 10–7] + j[3.1 3 10–14]} IOt (48h)

IC5 = {2[1.0 3 10–10] + j[0.01000]} IOt (48i)
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I5 = {[1.0 3 10–7] + j[0.01000]} IOt (48j)

Ic = {[1.00000] + j[9.83 10–9]} IOt (48k)

I4 = {[1.1 3 10–7] + j[2.0 3 10–10]} IOt (48l)

I3' = {[1.1 3 10–7] + j[2.0 3 10–10]} IOt (48m)

IC3 = {2[1.0 3 10–10] + j[0.01000]} IOt (48n)

I3 = {[1.1 3 10–7] + j[0.01000]} IOt (48o)

Ib = {[1.00000] + j[9.83 10–9]} IOt (48p)

I2 = {[1.0 3 10–7] + j[3.1 3 10–14]} IOt (48q)

I1' = {[1.0 3 10–4] + j[1.0 3 10–6]} IOt (48r)

IC1 = {2[1.0 3 10–10] + j[0.01000]} IOt (48s)

I1 = {[1.0 3 10–4] + j[0.01000]} IOt (48t)

Ia = {[0.99990]2 j[1.0 3 10–6]} IOt (48u)

IKA = {[1.0 3 10–8] 2 j[1.0 3 10–14]} IOt (48v)

ICA = {[1.0 3 10–10] + j[1.0 3 10–4]} IOt (48w)

ID = {[0.99990] + j[9.93 10–5]} IOt (48x)

ICD = {2[1.0 3 10–10] + j[0.01000]} IOt (48y)

ICPt = {2[1.0 3 10–12] + j[1.0 3 10–4]} IOt (48z)

IrDr = {[1.00000] + j[0.04020]}IOt (49a)

ICDr = {2[1.4 3 10–12] + j[1.0 3 10–4]} IOt (49b)

IDr = {[1.00000] + j[0.04030]}IOt. (49c)

The 908 out-of-phase parts of shunt currentsIC5, IC3,
IC1, ICD, ICA, ICPt, andICDr are much larger than for shunt
currentsICB andICOt because contact pads 5' , 3' , 1' , and
D' are all near the quantum Hall potential, rather than
near the shield potential. A 1 % out-of-phase current
passes through each of the coaxial cable capacitances
C5, C3, C1, andCD in this numerical example, which is
not necessarily a problem if the bridge Drive can
provide this extra 4 % of out-of-phase current toIDr. We
can see from the small out-of-phase components of cur-
rentsI5' , I3' , I1' , andID that the four shunt currentsIC5, IC3,
IC1, andICD all bypass the QHE device, which is a great
advantage of the quadruple-series circuit.

Expressing Eq. (47a) in the form of Eq. (47b), we
find that

VH(Y,Z)={1 2 [2.0310–7]+ j[1.0310–8]} RH IOt, (50a)

DYZ = {2[2.0310–7]+ j[1.0310–8]} (50b)

for 100 pF lead capacitances, and also the same value

DYZ = {2[2.0310–7]+ j[1.0310–8]} (51)

for 250 pF coaxial leads.
There is only a 13 10–8 RH IOt out-of-phase compo-

nent in theVH(Y,Z) signal for the numerical examples
given in Eqs. (50) and (51). Unlike the double-series
circuit, this out-of-phase result is very promising. The
real part ofVH(Y,Z), however, appears to have a very
large error term that is22 3 10–7 RH IOt in these two
examples; butVH(Y,Z) actually is the quantized Hall
voltage VH across the deviceminus the longitudinal
voltageVx(2,6) along the device between points 2 and 6,

VH(Y,Z) ≡ VH 2 Vx(2,6), (52a)

and

Vx(2,6)≈ (rb + rc) IOt. (52b)

Therefore,

VH ≈ F1 + DH +
(rb + rc)

RH
GRH IOt, (53a)

or

VH ≈ [1 + dH] RH IOt. (53b)

VH has a correction factordH in the real term that is only
27.93 10–11 RH IOt for these two numerical examples
where (rb + rc) = 2 3 10–7 RH.

The quadruple-series circuit is an excellent candidate
as a possible ac QHRS, and will be further considered
in a future paper which includes the effects of wire-to-
wire capacitances. The approximate equations for the
currents and quantum Hall voltage will be given in that
paper. In the meantime, some approximate equations
can found in Ref. [23].

10. Conclusions

We have used an equivalent electrical circuit model of
the quantum Hall effect device to calculate the effects of
parasitic impedances that are present in four-terminal-

346



Volume 104, Number 4, July–August 1999
Journal of Research of the National Institute of Standards and Technology

pair [15,16] measurements of ac quantized Hall resis-
tance standards. The discrete circuit components in-
clude all of the parasitic capacitances, inductances, and
leakage resistances of the standard except the wire-to
wire-capacitances.

Exact algebraic equations have been derived for the
currents and quantum Hall voltages for single-series
“normal”, single-series “offset”, double-series, and
quadruple-series circuit connections to the device. We
find that the single-series “offset” and quadruple-series
connections appear to meet our desired goals of measur-
ing both the quantized Hall resistanceRH and the longi-
tudinal resistanceRx in the same cool-down for both ac
and dc currents with an absolute accuracy of 10–8 RH or
better. These two circuits will be further considered in
a future paper in which the effects of wire-to-wire ca-
pacitances are also included in the analysis.
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