Volume 104, Number 4, July—August 1999
Journal of Research of the National Institute of Standards and dEgyn

[J. Res. Natl. Inst. Stand. Techn@i04, 323 (1999)]

Analyzing the Effects of Capacitances-to-Shield

In Sample Probes on AC Quantized Hall
Resistance Measurements

\Volume 104

Number 4

July—August 1999

M. E. Cage and A. Jeffery

National Institute of Standards and
Techrology,
Gaithersburg, MD 20899-0001

We analyze the effects of the large capaci-
tances-to-shields existing in all sample
probes on measurements of the ac quan-
tized Hall resistanc®y. The object of

this analysis is to investigate how these ca-
pacitances affect the observed frequency
dependence dR,. Our goal is to see if
there is some way to eliminate or mini-
mize this significant frequency dependence,
and thereby realize an intrinsic ac quan-
tized Hall resistance standard. Equivalent
electrical circuits are used in this analy-
sis, with circuit components consisting of:
capacitances and leakage resistances to
the sample probe shields; inductances and
resistances of the sample probe leads;
quantized Hall resistances, longitudinal re-
sistances, and voltage generators within
the quantum Hall effect device; and multi-
ple connections to the device. We derive
exact algebraic equations for the measured

Ry values expressed in terms of the cir-
cuit components. Only two circuits (with
single-series “offset” and quadruple-se-
ries connections) appear to meet our de-
sired goals of measuring bofR, and the
longitudinal resistanc&, in the same cool-
down for both ac and dc currents with a
one-standard-deviation uncertainty of
10 Ry or less. These two circuits will

be further considered in a future paper in
which the effects of wire-to-wire capaci-
tances are also included in the analysis.
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1. Introduction

Many laboratories are now attempting to employ the this still significant amount. Lead removal creates two

integer quantum Hall effect (QHE) [1-3] to realize an problems: (1) parasitic impedances within the QHE re-
intrinsic ac resistance standard by using ac bridges to sistance standard (which arise from capacitances, induc-
compare ac quantized Hall resistan&aswith ac refer- tances, lead resistances, and leakage resistances) be-
ence standards. In experiments reported to date [4-9],come more difficult to measure or estimate, making it
the measured values of the ac quantized Hall resistancesharder to apply corrections to the measured values of
Ry unfortunately varied with the applied frequerfoyf Ry; and (2) measurements of bd®& and the longitudi-

the current, and differed from the dc valueRf by at nal resistanc&, can not be made during the same cool-
least 10’ R4 at a frequencyf of 1592 Hz (where the  down, which has been found to be necessary [10] in
angular frequency = 2=f is 10* rad/s). Furthermore, order to obtain reliable values &, with direct (dc)
some sample probe leads had to be removed at thecurrents.

device in order to reduce the frequency dependence to
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Our desired goal at NIST is to measure b&hand We give a brief explanation of the dc quantum Hall
the longitudinal resistandg, in the same cool-down for  effect in Sec. 3. Section 4 describes our equivalent elec-
both ac and dc currents with all sample probe leads trical circuit model of an ac quantized Hall resistance
attached, and to do this with a one-standard-deviation standard. Single-series “normal”, single-series “offset”,
uncertainty equal to or less than-i@®, in order to double-series, and quadruple-series circuits are ex-
verify and replace parts of the calculable capacitor chain plained and analyzed in Secs. 5-7 and Sec. 9. We find
[11] that provides the System International (SI) value of that two of these circuits (those with single-series
Ry at NIST. The one-standard-deviation uncertainty of “offset” and quadruple-series connections) appear to

the entire NIST calculable capacitor chain is X40® meet our desired goals of measuring b&hand the

Ry. Therefore, we need to achieve uncertainties of 10 longitudinal resistancé, in the same cool-down for

Ry or less in the a®ky measurements. both ac and dc currents with an uncertainty of®IR),
Therefore, the frequency dependencdRpfis a seri- or less. These two circuits will be analyzed in more

ous problem that must be addressed. This paper investi-detail in a future paper in which the effects of wire-to-

gates the effects of the capacitances-to-shield, and thewire capacitances are also included in the analysis.

series inductances and series resistances of sample

probe leads on measurements of thdRaclt also iden-

tifies ways to eliminate or minimize the frequency de- 3. DC Quantum Hall Effect

pendences resulting from these parasitic impedances.

Most of the capacitances-to-shield arise from the capac- The quantum Hall effect (QHE) has been success-

itances between the inner and outer conductors of thefully used as an intrinsic dc resistance standard. In the

coaxial leads and connectors within the ac quantized integer dc QHE [1-3], the Hall resistanBg of theith

Hall resistance standard; a smaller amount arises fromplateau of a fully-quantized, two-dimensional electron

the capacitances between the quantum Hall effect gas (2DEG) ifR4(i) = Vu(i )1+, whereVy(i) is the quan-

device plus sample holder and the surrounding conduct-tum Hall voltage measured between potential probes

ing surfaces of the sample probe. located on opposite sides of the device, hrid the total
current flowing between the source and drain current
contacts at the ends of the device. Under ideal condi-

2. Strategy tions, the values oRy(i) in standards-quality devices
satisfy the relationshipBy(i) = h/(e%) = R«/i, whereh

We investigate the effects of capacitances-to-shield on is the Planck constarg,is the elementary chargeis an

measurements dRy by using equivalent electrical cir- integer, andR¢ is the von Klitzing constantR« =

cuits and multiple connections to the quantum Hall ef- 25 812.807() [12]. However, the conditions are not

fect device. The multiple connections will be defined in always ideal. The values dR(i) can vary with the

Secs. 7-9. We derive exact algebraic equations for thedevice temperatur@ [13] and with the applied current

currents and quantum Hall voltages of the standard. The I; [14]. Thus the measured dc valuesRf(i) are not

discrete circuit components consist of: (a) capacitancesnecessarily equal tb/(e%).

and leakage resistances to the shields of the ac quantized The current flow within the 2DEG is nearly dissipa-

Hall resistance standard; (b) inductances and series reionless in the quantum Hall plateau regions of high-

sistances of the internal and external sample probe leadsquality devices, and the longitudinal resistanBgl) of

and connectors; and (c) quantized Hall resistances, lon-this standard become very small over ranges of magnetic

gitudinal resistances, and voltage generators within the field in which quantized Hall resistance plateaus are

quantum Hall effect device itself. These circuit compo- observed. The dc longitudinal resistance is defined to be

nents include everything within the standard except R((i) = Vi(i)/l+, whereV,(i) is the measured longitudi-

wire-to-wire capacitances between pairs of the inner nal voltage drop between potential probes located on the

conductors. Significant wire-to-wire capacitances can same side of the device. The dc value®gfi ) can also

exist between pairs of conducting surfaces of the quan- be temperature [13] and current [14] dependent.

tum Hall effect device, the sample holder, and the bond-

ing wires between them. The wire-to-wire capacitances

may be important, but their inclusion makes the circuit 4. Equivalent Electrical Circuit of an AC

analyses extremely difficult, so they are excluded at this QHE Standard

intermediate stage where we are trying to find viable

circuit candidates for the final analysis of a complete  The quantized Hall resistand®(i) of an ac QHE

equivalent circuit representation of an ac quantized Hall resistance standard (ac QHRS) can be experimentally

resistance standard. compared with the impedances of ac reference stan-

324



Volume 104, Number 4, July—August 1999
Journal of Research of the National Institute of Standards and dEgyn

dards using ac measurement systems. NIST initially A “virtual” short has been drawn in Fig. 1 as a line
plans to use ac resistors as reference standards, and abetween the shield and inner conductor at the Detector
ac ratio bridge measurement system for the compari- coaxial port to indicate four-terminal-pair condition
sons. number (2). We let the Detector potential be zero, i.e.,

Figure 1 shows an equivalent electrical circuit repre- Vp = 0. At bridge balance the ac quantized Hall voltage
sentation of an ac QHRS in which the QHRS is being Vu(i) = Vu(3,4) =Vp is defined as
measured with an ac bridge using four-terminal-pair
[15,16] techniques. (Neither the ac reference standard Ve = [1 + A]Ru(i) lo Q)
nor the ac ratio bridge are shown in the figure.) This
circuit of an ac QHRS is rather detailed, so we explain where A, is the correction factor t&.(i) to be deter-
it one step at a time, starting with the periphery of the mined in this analysis.
standard, then proceeding to the QHE device withinthe  Next we describe the equivalent circuit model of the
central region of the figure, and finally discussing prop- QHE device located in the central dashed-line region of
erties of the sample probe leads within the standard. Fig. 1. This model is based on that of Ricketts and

The ac QHRS of Fig. 1 is bounded by an electrical Kemeny [18]. The device has contact pads that provide
shield indicated schematically by thick lines. Actual electrical access to the 2DEG at the sourGel& drain
shields have complicated surface geometries. They con-D', and the potential pads through 6. Each contact
sist of: (a) conductive surfaces surrounding the QHE pad is located at the end of an arm of the QHE device.
device and its sample holder at liquid helium tempera- Every arm in the equivalent circuit has an intrinsic resis-
tures; (b) the outer conductors of eight coaxial leads tor whose value iR.(i)/2. We assume that the device is
within the sample probe; and (c) the outer conductors of homogeneous, i.e., that the quantized Hall resistances
eight coaxial leads extending from the top of the sample R4(i) are all measured on plateau regions, that their
probe to room temperature access points S, 1 through 6,values are the same on all the Hall potential probe sets,
and D. The electrical shields will also be referred to in and that they are all measured at the same magnetic flux
the text as “outer conductors”. To simplify the figure, we density valueR,(i) can, however, vary with tempera-
label only currents in the inner conductors. ture [13] and current [14].

The ac QHRS has electrical access at room tempera- While Ve has been observed to vary with frequency
ture via four coaxial measurement ports labeled Inner/ [4-9], it is not clear whether this is due to a frequency
Outer, Detector, Potential, and Drive. These four ports dependence oR4(i), of Ay, or of bothRy(i) and A.
are used in the four-terminal-pair measurements, where Calculations of the intrinsic impedance of the 2DEG
each coaxial port is referred to as a “terminal-pair”. The due to the internal Hall capacitance across the QHE
four coaxial ports are connected to room temperature device [19], however, predict a negligible frequency de-
access points S, 4, 3, and D in the figure. pendence oRy(i) itself, implying a frequency depen-

The ideal four-terminal-pair measurement definition dence ofAy arising from parasitic impedances in the ac
[15,16] of R4(i) is satisfied by the following three simul- QHRS. We therefore simplify the model, and assume
taneous conditions: (1) the currdptat the Drive coax- that the dc values are appropriate for fRei)/2 resis-
ial port is adjusted so that there are no currents in the tances in the figure.
inner or outer conductors of the Potential coaxial port,  The symbolg,, ry, rc, andrg in Fig. 1 represent real
i.e.,Ipy=0; (2) the potential difference is zero across the (in-phase) longitudinal resistances within the QHE
inner and outer conductors of the Detector coaxial port; device. Their measured dc values can vary with temper-
and (3) there are no currents in the inner or outer con- ature [13] and current [14]. Sample probes normally
ductors of the Detector coaxial port, i.é = 0. used in dc QHE measurements have ten leads, with a

It is implicit in the four-terminal-pair definition that  pair of leads to the source contact pada8d another
each coaxial port is treated as a terminal-pair, and that pair to the drain contact pad' DOnly one lead of each
the current in the inner conductor of every port is equal pair carries the current, so the dc values of all four
and opposite to the current in the outer conductor (the longitudinal resistances, ry, rc, andrq can be obtained
shield). Coaxial chokes [17] (located outside the ac using four-terminal measurements.
quantized Hall resistance standard and therefore not In order to reduce the heat load on the liquid helium,
shown in the figure) assure that this equal and opposite sample probes for the ac QHE usually have a single
current condition is satisfied for each of the four termi- coaxial lead to each of the eight contact pads. Therefore
nal-pairs in the circuit. The currert, exits the ac only r, andr, can be determined directly via four-termi-
QHRS at the Inner/Outer port and enters the ac refer- nal-pair ac measurements. For example, a four-terminal-
ence standard (not shown). pair ac longitudinal resistance measurement,afould
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be made by moving the Potential coaxial port from wherel, andlg are the magnitudes of the current flow-
access position 3 to position 2 in Fig. 1, and measuring ing in arms A and B. The currentg andlg within the

the ac longitudinal voltag¥®,(2,4). absolute quantity sign of Eq. (3) are added if they both
enter or both leave the voltage generator, and are sub-
Vy(2,4) = [1 + Az 1 Loy (2) tracted if one current enters and the other current leaves

the generator. For examplgp = [Ru(i)/2]|1a — I¢,|. The

whereA,, is the correction factor to, to be determined  voltages generated are functiondRp{i ); therefore their
in this analysis. Values far, andry could be estimated  values can vary with temperature [13] and current [14]
from their dcr,/rp, andry/r, ratios if the measuren,/r. (and also possibly with frequency).
ratio happens to be the same for both ac and dc measure- Diamond-shaped voltage generator arrays of Ricketts
ments using the same sample probe during the sameand Kemeny [18] are entgyed in the equivalentircuit
cool-down. of the QHE device, rather than the ring-shaped voltage

With one exception [20], the reported ac longitudinal generator arrays introduced later by Delahaye [24] and
resistances obtained from the real, in-phase componentghen subsequently used by Jeffery, EImquist, and Cage
of the ac longitudinal voltage measurements are signifi- [25]. Although both arrays give essentially identical
cantly larger than the dc longitudinal resistances in the results [22], the calculations are much simpler with the
same device under the same temperature and magneticliamond arrays when longitudinal resistances are in-
field conditions. The ac longitudinal resistances increase cluded in the circuits [22]. We therefore use diamond
with increasing frequency of the applied current, and are arrays.

of order 1 nf) at 1592 Hz [4,5,21]. The large ac longi- For clarity, the voltage generators are indicated in the
tudinal voltages might be due to intrinsic frequency figure as batteries, with positive terminals oriented to
dependences of, ry, r., andry within the device, tal,,, give the correct potentials along each arm at the instant

Ay, etc. corrections caused by parasitic impedances of considered. The ac currents alternate direction, so the
the QHRS, or to both of them. Calculations of the ki- voltage generators reverse sign each half cycle. Thus, for
netic inductance of the 2DEG and the magnetic induc- the part of the period in which the currents flow in the
tance of the device [20] provide no plausible explana- directions indicated in Fig. 1, the voltage generators
tions via intrinsic impedance for significant frequency have the polarities shown. Half a period later the cur-
dependences of,, ry,, r, andrg, suggesting that the rents change direction, and all the voltage generators
frequency dependence of the ac longitudinal resistancereverse polarities.
is due to parasitic impedances of the QHRS, and there- The QHE device is mounted on a sample holder at the
fore to the correction factord,,, A, etc. However, we  bottom of the sample probe. The QHE device and the
will assume the worst-case scenario in our numerical sample holder are located within the shaded region of
calculations, that is,, ry, ¢, andry are themselves fre-  Fig. 1. Thin wires connect the device contact padsl'S
quency dependent and have Idmmalues at 1592 Hz. through 6, and D to coaxial leads which extend to room
At some moment in time, a positive currdpienters temperature access points S, 1 through 6, and D located
the 2DEG via device drain contact padiB Fig. 1, and outside the sample probe (but still within the ac QHRS).
currently exits the 2DEG via source contact pad Bhe Each arm of the equivalent circuit has a resistance,
magnetic flux density is directed into the figure from  throughrs, or rp. This resistance includes the contact
above. Under these current and magnetic field condi- resistance to the 2DEG, the wire resistance connecting
tions, the drain contact pad' &nd the potential probe a contact pad on the device to a coaxial lead, and the
contact pads'1 3, and 5 at the device periphery are at inner conductor resistance of that coaxial lead. The in-
higher potentials than contact pads &, 4, and 6. ner conductor lead resistances vary with the liquid he-
These current and flux density directions are chosen to lium level in the sample probe. They can be measured
be consistent with those we have used in earlier calcula- pair-wise (using access points S, 1 through 6, and D) as
tions [19,22-23]. a function of liquid helium level via two-terminal dc
Potentials at the contact pads $ through 6, and D resistance measurements by temporarily replacing the
are produced by arrays of voltage generators, where QHE device with electrical shorts at positions, &
each voltage generatMg is located between a pair of  through 6, and D. The cooled inner conductor coaxial
arms A and B of the equivalent circuit. The voltages are lead resistances are typically each abofXih ac quan-
defined as tized Hall resistance standards. The outer conductor
coaxial lead resistances depend on the type of coaxial
cable, and their values also vary with liquid helium level.
Typical values range between about @ &nd 1Q in ac
quantized Hall resistance experiments.
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Each sample probe lead has an inductabgel, The external coaxial leads from the bridge are removed
throughLs, or Lp, that is electrically connected in series from the Drive and Inner/Outer ports of the ac QHRS,
with the lead resistances, r; throughr, or rp, produc- and an applied voltage signal is placed across the inner

ing lead impedancegs, z through z, or z,, where and outer conductors of the Drive port. A measured
Zs=Trs+jwlLs. Due to severe space limitations in the voltage signal appears across the inner and outer con-
figure, these impedances are unconventionally drawn asductors of coaxial leads S, D, 1, 3, and 5 for the mag-
resistors within rectangles. The inductance of each netic field direction assumed in Fig. 1, so these particu-
coaxial lead of a typical ac QHE sample probe is about lar coaxial leads draw most of the 9@ut-of-phase
1 X 10° H. We assume that the bonding pad wires are current. Therefore the measured total capacitance-to-
thick enough to not vibrate in the magnetic field when shieldC; is approximatelyC(B) = C; + C3+ Cs + Cp +
applied ac currents flow through them [4], but the out- C,, and the value o€, can be obtained by subtracting
of-phase “inductance” generated by this vibration [4] the value ofC; + C; + Cs + Cp from Cy(B). The mag-
could be included in the lead inductances if necessary. netic field is reversed. The@(—B)=C,+ C,+ Ce +
The eight coaxial leads, labeled S, 1 through 6, and D, Cs + Cz when the voltage signal is placed across the
each have an inner and an outer conductor. The outerinner and outer conductors at the Inner/Outer port, thus
conductors of the coaxial leads are connected togetheryielding the value ofCs. In the second method the
outside the sample probe to help satisfy the four-termi- magnetic flux densityB is reduced to zero. The quan-
nal-pair measurement conditions. As mentioned earlier, tum Hall voltages disappear, so the voltage generators
the outer conductors of these leads act as electricalcan be replaced in the circuit by electrical shorts. The
shields, and are represented schematically as thick linesQHE device now behaves like a two-dimensional sheet
in Fig. 1. (Other outer conductors of the ac QHRS also resistance, and th&y(i)/2 resistances located at the
contribute to the thick lines.) source and drain ends of the QHE device in Fig 1 are
Large capacitances-to-shield, labeled &s, C; zero. Longitudinal resistances ry, r, andry become
throughCs, and Cp, exist between the inner and outer much larger than they were when on a QHE plateau.
conductors of these coaxial leads. The open-circuit ca- Their values can be obtained by four-terminal resistance
pacitances can be individually measured at access pointameasurements in a dc sample probe. Ri@é)/2 resis-
S, 1 through 6, and at D as a function of liquid helium tances of the six QHE side arms are replaced by much
level by temporarily removing the QHE device from the smaller resistances whose values can be obtained from
sample probe at the points,3' through 6, and D. The two-terminal measurements via room temperature ac-
capacitance-to-shield of each coaxial lead in typical ac cess points S, 1 through 6, and D once the appropriate
QHE sample probes is about 250 pF, but it should be lead and longitudinal resistances are subtracted. An ap-
reduced to about 100 pF (2 10°F) in a short sample  plied voltage signal placed across the inner and outer
probe being designed at NIST. conductors of the Drive port would cause a voltage
A predominately 90 out-of-phase currentc,, Ic, signal to appear across the inner and outer conductors of
through I, or I¢, flows through each coaxial lead. all capacitances-to-shield. Thus the total capacitance-to-
These currents, and all the other currents in Fig. 1, have shield is given by the expressidd; =Cs+C; +C, +
the correct signs for their dominant phase components C; + C, + Cs + Cs + Cp + Ca + Cg, WhereC, = Cy if the
in the half-cycle under consideration. This is verified in QHE device, the sample holder, and the bonding wires
Sec. 5, where it is found that all currents shown in the between them are all symmetrically arranged. We ex-
figure have positive signs for their major components. pect bothC, andCg will be about 1 pF or smaller in the
The coaxial leads are not the only sources of capaci- NIST sample probes.
tances-to-shield. There are also additional contributions  The equivalent circuit accounts for leakage currents
from the QHE device—sample holder combination and between the ac QHRS’s inner conductors and the shields
the electrical shielding surrounding them. These addi- via resistancesq, andrg, located on either side of the

tional capacitances-to-shield are labegdand C; in QHE device. Rather large voltages are used when mea-
Fig. 1, where they are placed at either end of the QHE suring leakage resistances, so it would be safest to tem-
device. (Note that rather than explicitly usi€g andCg, porarily replace the device with shorts when measuring
one-eighth of the additional capacitan&s+ Cg could the total open-circuit leakage resistarrgg at access

instead be added to each of the eight coaxial lead capacsoint S, 1 through 6, or D. If the leakage resistances are

itancesCs, C, throughCg, andCp, but that would make  symmetrically distributed, therk, = r, = 2r.«. (Their

the coaxial lead capacitance notation very confusing.) values are large compared with the lead resistances, so
The additional capacitanc&s andCg can be deter-  they are essentially connected in parallel within the cir-

mined by two methods. In the first method the magnetic cuit.) The NIST sample probes will be constructed so

field is adjusted so the QHE device is on a QHE plateau. these leakage resistances are very large;and rg,
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should be at least 10Q, but in the numerical examples To simplify the final algebraic expressions, we define
of this paper we will assume 1) arising from dirty some substitutions of variables, and substitutions of sub-
coaxial connectors. stitutions. The particular substitutions depend on the
The capacitances, inductances, and leakage resischoice of loops. For example, the variablasand B
tances of Fig. 1 contribute parasitic impedances to mea-listed below result from a voltage loop around the path
surements of the ac QHRS. These capacitances, inducCs, S, Cs, and back through the shield @. This gives
tances, and leakage resistances are drawn as discret
circuit elements. In reality they are distributed within
the standard. They could, in principle, be better repre- Cg
sented. For example, we could replace capacitance-to-Cs
shield C, with a capacitor of valueC,/2, and place a
second capacitor of valugé,/2 and a series-connected

. 1 1
the equation— —— g + zsls+j— lcg =0, solg, =

ijS (UCB
les — jwCsZsls, O Ic, = Algg — Bls. Let

e

outer shield impedance; between the other side of A= Cs (42)
circuit elementz at point 1 and the firsiC,/2 capacitor.
This distributed impedance would, however, greatly B=jwCszs (4b)
complicate the circuit analyses, with little gain in accu-
racy. (Our discrete elements circuit over-emphasizes the C= 1 (40)
capacitance-to-shield currentszf= z and gives the joCsry,
same capacitance-to-shield currentg if z.)
This completes the description of the equivalent cir- D= 1 GCs (4d)
cuit. The next section analyzes the circuit. [1+jwCs(Ry+ z)] Cs
) ) . E= joCslq (4e)
5. Analysis of the Single-Series “Normal” [1+jwCs(Ry + 2)]
Circuit
F=r G (40
Kirchoff's rules are used to sum the currents at branch [1+jwCsz] Cs
points and the voltages around loops to obtain exact
algebraic equations for the equivalent electrical circuit G :ijS(RH +rq) (49)
shown in Fig. 1. We refer to this circuit as single-series [1+jwCsz]
“normal”: single-series because there is just one current
lead connected to the source contact pa&Bd another H= [1+jwCs(Ry+ z)] (4h)
current lead connected to the drain padobthe QHE [ @Cs(Ry — 1]
device; and “normal” because the Hall voltage leads are
connected to the central arms 3 and 4 of the device. I=1+C+D+F(1—H) (41)
5.1 Exact Single-Series “Normal” Equations J=E+G(L—H) “)
Finding the exact algebraic equations for all the cur- K=1+J(1+C) (4k)
rents, and for the correction factds, to the quantum
Hall voltage, as defined by Eg. (1), is rather difficult L= AK @
because there are many coupled equations, especially [L+J+K(A+B)]
for the multi-series circuits [24] examined later in this
paper. All the solutions of this paper were independently _ jowCsRy (4m)
derived by each author, and shown to be identical. Then [1+jwCsz]
each author independently used computer software to
obtain identical numerical results for several test cases. N = jowCsry (4n)
It is important to obtain the exact solutions, rather than [1+jwCyRy+ 2)]
initially guess approximate solutions, because the fre-
quency dependent effects we are trying to minimize or =jwcl(RH +Ip) (40)
eliminate are small, but significant. The results are pre- [1+jwCiz]
sented here in order to spare others the task of deriving
them. p- (Ry+rJ) (4p)

Ik
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[ +jwCz] lor = Ip + lcp. (5s)

Q= [wCory,]

(49)

The exact equation for the quantum Hall voltage is ob-
R=jwCark, (4n tained by summing the voltages between the inner con-
ductors of the Detector coaxial port and the Potential

S (&) (4s) coaxial port. Taking the path through arm 4, voltage
" Ca generators/., and Vs, and arm 3 we find that
T=jwCpoz. (4t) Vi(3,4) =Rylc — zlc, (6a)

We express all currents, and the quantum Hall voltage, which can also be expressed in the form
in terms oflo; because that is the current that enters the

ac reference standard (not shown in Fig. 1). Three of the Vu(3,4) = [1 +Az] Ryl o (6b)
current solutions are trivial because of the four-termi-
nal-pair definition [15,16] listed in Sec. 4 by using Egs. (4) and (5). An approximate solution in

this form will be given in Eq. (11).
IDrZIPt:|C4:0- (Sa)

The remaining exact equations for the single-series 52 A Numerical Example

“normal” circuit currents are Contributions of the parasitic impedance within the
ac QHRS to the measured value\p{3,4) can be inves-
Is=Llo (5b) tigated by using numerical examples in Egs. (5) and (6).
We assign cardinal numbers to circuit element values to
les=lot— Is (5¢) emphasize that the results are not intended to provide
corrections to existing experimental data because the
lcg = Alcg — Bls (5d) effects of wire-to-wire capacitances are not included at
this intermediate stage of the analysis.
Iz = Cleg (5e) Both thei =2 (12 906.4Q)) andi =4 (6 453.2(})
plateaus have been measured in ac experiments, so let
lg=1s— lcg — lkg (5f) Ry =10 000Q). The cardinal values we use are
I, =Dlg, — Elq (50) Ry=10'Q (7a)
le,= — Flg, + Glg (5h) rS=r=T,=03=1=Is=Tg=Ip=1Q (7b)
le=Hlg, (5i) ra=rp=rc=rq=10°%Q (7¢c)
|C3 = MIC (5]) I’KA = I’KB = 10129 (7d)
lp=lc+lc, (5k) Cs=C=C,=C3=C;=Cs=Cs=Cp = 10"F (7e)
lc, = Nl (5l) Ca=Cg=10"F (7f)
|C1:O|b (5m) LS=L1=L2=L3=L4=L5=L6=LD=10_6H (79)
la=1lp+ 1, + g, (5n) w =10 rad/s. (7h)
Ik, = Pla+ Qlg, (50) Note that the 100 pF capacitances-to-shield values of
Eq. (7e) may be close to those that will be obtained in
lc, = Rlk, (5p) the short NIST sample probe, but typical ac probes have
values around 250 pF.
lp=la+ Ik, +lc, (59) The numerical results for the currents of Egs. (5) are
lcy =Sk, + Tlp (51) lee={—[1.0 X 107 +j[1.0 X 10} I (8a)
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Is={[1.00000] — j[1.0 X 10} I (8b) NIST high precision ac bridges are not capable of
providing out-of-phase adjustment signals larger than
le, ={—[2.0 X 10 +j[2.0 X 10} I o (8c) 5 X 10 Ry, so the 1 % out-of-phase signal is unaccept-
able. We next list the approximate solutions to show the

lke = {[2.0 X 10 +j[2.0 X 107"} o (8d) source of this problem.

ls = {[1.00000] - j[1.0 X 10T} lox (8e) 5.3 Approximate Single-Series “Normal” Solutions

le,={—[1.0 X 10™] +j[1.0 X 10} o (8) Many of the terms in the following approximate solu-

tions were obtained by algebraically finding the domi-
le, ={[2.0 X 10 +j[0.01000]} o (89) nant contributions to the exact equations. Other terms
were found by “educated guesses” and “trial-and-error”.

I ={[1.00000] + j[0.01000]} o (8h) We verified all the terms by changing the values of
relevant circuit element components in the computer

lc,={—[1.0 X 107 + j[0.01000]} ¢ (8i) programs. The following approximate solutions give nu-
merical results that agree with the results from the exact

I, = {[0.99990] + j[0.02000]} o (8j) solutions to within at least two significant figures for

both the real and imaginary parts of the numerical re-
le,={—[1.0 X 10™] +j[1.0 X 107} I (8K) sults. Other terms may need to be added to these approx-
imate equations if the circuit components have values

le, ={—[2.0 X 10 +j[0.01000}lox (8))  significantly different from those listed in Egs. (7).
la={[0.99970] +[0.03000]) ot (8m) les={ ~[@?Cs(Cs + Ce)Rurc — w’CsCslsfs + @*CsLd]
Iy = {[1.0 X 109 +j[3.0 X 109} 1o, (8N) +jlwCsrd} ot (10a)
I, ={—[3.0 X 10 +j[1.0 X 107} lo (80) Is={1 — jloCsrg]} lot (10b)
I = {[0.99970] + j[0.03010]} o (8p) ey ={ —[@’Ca(Cs+Ce)Rurc] +j[ @Ca(re+rq)]} lor (10c)
o ={~[3.0 X 10 +][0.01000]lo  (89) e = {[LKM)] +j[a)(C5 " CG)F?:ZC]}M (10d)

lor = {{0.99940] + j[0.04010]} or. (8r)
ld:{l _j[wCSrs]}Io[ (109)
The 90 out-of-phase (j) parts of shunt currerits,
ley ley oo, @ndlc,, are much larger than for shunt leg={—[@w*CsCsRurd + jlwCerJ} lox (106
currentslc,, lc, lc,, andlc, because contact pads 8',
1', and D are all near the quantum Hall potential, rather I, ={[ ®°CsCsRurs+ @’CsCsRyrs]+j[ @ CsRy]} 10:(10g)
than near the shield potential. A 1 % out-of-phase cur-

rent passes through each of the coaxial cable capaci- le=lot+lgg — leg (20h)
tancesCs, Cs;, C;, andC;, in this example. That is not
necessarily a problem if the bridge Drive can provide le,={—[@*CsCsRyRA] + j[@CsR} o (10i)
this extra 4 % of out-of-phase current Itg.

Expressing Eq. (6a) in the form of Eq. (6b), we find lp=lot+ e, + I, (20j)
that

le,={ —[@?Cx(Cs+Cs— C;) Rurp] +j[ @Carp]} lor (10K)
Vi(3,4) ={1 +[5.0 X 109 + j[0.01000]}Rylo,  (92)
le,={ —[w’Ci(Cs+Cs) RaRe] +j[@CiRJ} lor  (101)
Az, ={[5.0 X 10 +j[0.01000]}. (9b)
Ia:|0t+|C5+|C3+|C1 (10m)
The 5x 10?in-phase correction tBy is too large com-
pared with the desired X 10® R, absolute accuracy,
but even worse, there is a 1 % contributiontg3,4) in
the 90 out-of-phase j term. Auxiliary balances in the

Ry Ry

Mka

le, = {[%} +j[w(C1 +C+Cy) ]}b (10n)
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Iy ={ —[w?Ca(C1+Cs+Cs) RyRy] +j[ @ Ca Ri]} 10:(100)
(10p)

lep={ —[@?Cp(C1+Cs+Cs) RyRu] +j[ @ Co RiJ} 10 (10q)

lo=lot+ g+l +lc, +1c,
IDI’:IOt+|C5+|Cg+|01+|CA+ICD- (10r)
Expressing Eqg. (6a) in the form (6b),
Ay={[ ®’CCsRir's+ w’CiCsRur3+ w?CsCsRyrs
- a)ZCSCSrSrs] + [(UZCS(C5+C6) RH rc+ (J)ZCSLS

+w2C3L3]+j[wC5RH— a)Csrs_wC3r3]}. (11)

lead 5 because of the effects due to the large capaci-
tance-to-shieldCs presented above.

Equations (11) or (12) might be used to apply correc-
tions to the experimental data in order to reduce the
5 X 10°% in-phase error inR4lo. However, there are
several points of concern: (a) our approximate and exact
equations do not include the effects of wire-to-wire ca-
pacitances, and these may be significant; (b) the out-of-
phase component &f,(3,4) has been reduced to about
1 X 10 Rylo by removing lead 5, but great care must
be taken to correct for the in-phase (phase defect) con-
tributions of the bridge components used to null the
out-of-phase signal because these in-phase (phase de-
fect) signals can be unintentionally added to the real,
second-order terms of the in-phase component of
Vu(3,4) in Egs. (11) or (12) that vary with? and (c) it

We see from Eq. (11) that sample probe lead 5 is the is not trivial to measure the value Gf in order to apply
dominant source of the 1 % out-of-phase component of the correction with lead 5 disconnected.

the quantum Hall voltage signal. The next subsection

investigates the effect of removing this lead.

5.4 Disconnecting Sample Probe Lead 5

Equation (11) predicts that the out-of-phase term
[oCsRy] in the expression fors, can be reduced by

disconnecting coaxial cable 5 at position Where 5is

either located at the potential contact pad on the QHE
device, or at an intermediate contact point in the sample

holder. There is a capacitan€& between the QHE
device and the shield that replaces capacitabgcén
Fig. 1. Also, a shield impedancg replaces the lead
impedancezs.

The most significant terms of Eqg. (11) are now

A34:{[ wZCs Ls+ w2C3 L3] +

We will not consider further the single-series
“normal” circuit as a viable ac QHRS candidate because
lead 5 must be disconnected, and that violates one of our
desired goals.

6. Analysis of the Single-Series “Offset”
Circuit

Figure 2 shows an equivalent electrical circuit repre-
sentation of an ac QHRS using single-series “offset”
connections to the QHE device. It is single-series be-
cause there is just one current lead connected to the
source contact pad' Sand another current lead con-
nected to the drain pad'Df the QHE device, and
“offset” because the Hall voltage leads are connected to
the off-center arms 5 and 6 of the device. Arms 5 and 6
are closest to the low potential end of the device'at S

j[wCsRy— wCsrs— wCsrs]}. (12) and nearest to the ac reference resistor (not shown in the
figure). Those arms were chosen in an attempt to reduce
If we assume in the numerical examples that the effects of shunt currents througythat we found in
Sec. 5.
Cy=Ch=Cg=1 pF (13)
fe=re=10. (14) 6.1 Exact Single-Series “Offset” Equations
To simplify the final algebraic expressions, we again
Then define some intermediate substitutions of variables, and
substitutions of substitutions. Let
Az, ={[2.0 X 10 +j[9.8 X 107} (15)
-G
when the coaxial lead capacitances are all 100 pF, and A= Cs (172)
when they are 250 pF. All experiments which have mea- C= 1 (17¢)
sured ac values d¥y(3,4) have had to remove coaxial " joCary,
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D =jwCszs (17d) o= (1 +HG) lox (18b)
E=jwCslq (17e)
le,=lot— Is (18c)
F=BE(1+C) (17f)
ICB = /A\Ics - BIS (18d)
G=AE(1+C 17
(1+c) (179 Iy = Clg, (18e)
H=1+D+E+F+G (17h)
Idzls_ lCB_ IKB (18f)
joC .
- % (17i) lo, =114 (189)
j0Car le=lg+ g (18h)
J= - £ a7j)
[1+]joCyRy+ z)] le, = Jle (18i)
K= ]§E3J(2HC+;3) (17K) le, =Kl (18))
343
. Ib:|C+IC3+IC4 (18k)
L= et (171)
[1+jwCyRq+2)] le,= LI+ Mlg, (18l)
[92+iwC224] lc,=Nlp+Olg, (18m)
__ LGy
M= L+ joCRe+ )] (17m) o=l + I, + o, (28n)
_ jwclrb IKA: PIa+QICz (180)
"M+ jwCiz] (17n)
lCA =R |KA (18p)
C . .
[é+JwC1(RH+Za)] Ip=la+ g, +lc, (18q)
O etz (170)
ICD:SICA+TID (18I’)
p={Batld (17p) lor = 1o + Iy (185)
[1+jwCz)] The exact equation for the quantum Hall voltage is ob-

Q="F 7 (17q) tained by summing the voltages between the inner con-
[ wCsrk,] . .
ductors of the Detector coaxial port and the Potential

— coaxial port. Taking the path through arm 6, voltage
R=jwCar 17r
JoRaTks (270 generatord/ss andVss, and arm 5 we find that
C
S=¢, (17s) Vi(5,6) =Ruly — zslcs, (19a)
T=jwCo. (171) which can also be expressed in the form

Three of the current solutions are trivial because of the Vii(5,6) = [1 +AsqRuloe (19b)

four-terminal-pair definition [15,16]
6.2 A Numerical Example

Iot=lp=1c,=0. 18a . . o I
bR G (182) We investigate the parasitic impedance contributions

of the ac QHRS on the measured value\vi@{5,6) by
using the cardinal numbers listed in Egs. (7) in Egs. (18)
and (19). The numerical results for the currents are

The remaining exact equations for the single-series
“offset” circuit currents are
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le,={—[1.0 X 109 +j[1.0 X 10} I (20a) The 2% 10°® in-phase correction t&, for 100 pF
leads is larger than our desired<110® R, total uncer-
Is={[1.00000] — j[1.0 X 10"}l (20b) tainty, but a correction could be made to the measure-

ments via the approximate equation
le, ={[1.0 X 10™] +j[1.0 X 10} I (20c)

Ase = {[ @?CsLs + @?CsLg] — j[wCsrs+ wCsr 23
e = {[1.0 X 109 — 1.0 X 10?J} 1. (20d) so={[ @Gl + 0 Cle] — JlaGars+ wCord} (23)

that might provide sufficient accuracy. We will therefore

la={[1.00000] — j[1.0 X 10} lox (20e) consider the single-series “offset” circuit as a possible

B . ac QHRS in a future paper which includes the effects of

ls = {[2.0 > 107 + j[0.01000]}ox (200) wire-to-wire capacitances. The approximate equations
I, = {[1.00000] + j[0.01000]ox (209) for the currents will be given in that paper.

—_ 1 H
e, = {20 X 10 +][1.0 X 107 (200 7 Analysis of the Double-Series Circuit

le, ={—[1.0 X 10 +j[0.01000]}! o (20i) , : o
Figure 3 shows an equivalent electrical circuit repre-
I, = {[0.99990] + j[0.02000]} o (20j) sentation of an ac QHRS using two double-series con-
nections to the QHE device. It is called double-series
I, = {[3.0 X 109 +j[2.0 X 10} lo (20k) because there are two current paths to the device pro-
vided by a short coaxial lead outside the sample probe

lc, ={—[2.0 X 10 + j[0.01000]} o (200) that connects room temperature access points 3 and D at
point Y. Another short coaxial lead connects access
1.={[0.99970] + j[0.03000]} o (20m) points 4 and S at point Z. Short coaxial leads connect

point Y with the Drive and Potential ports, and point Z
lo ={[1.0 X 10 +j[3.0 X 10™}loc ~ (20n)  with the Inner/Outer and Detector ports. For simplicity,
we have placed all the parasitic impedances of the short

le, ={—[3.0X 10 +j[1.0 X 10} loc ~ (200) coaxial cables in the cables and coaxial connectors la-
) beled Ot, Dt, Pt, and Dr. These connections were first
Ip ={[0.99970] +j[0.03010]} o (20p)  used by Delahaye [24] in ac quantized Hall resistance

measurements (but points Y and Z were at the sample
holder rather than outside the cryostat). Most subsequent
ac experiments have used double-series or triple-series
connections.

le, = {—[3.0 X 10 +j[0.01000} o, (20q)
lor = {{0.99940] + j[0.04010]} 0. (20r)

The 90 out-of-phase parts of shunt currem¢s Ic,,
ley le,, @andlc, are again much larger than for shunt 7.1 Exact Double-Series Equations

currentsle, lc, loy andlc, because contact pads ', To simplify the final algebraic expressions, we again

1', and D are all near the quantum Hall potential, rather . I : o
. . define substitutions of variables, and substitutions of
than near the shield potential. A 1 % out-of-phase cur- o
substitutions. Let

rent once again passes through each of the coaxial cable
capacitance€s, Cs, C;, andCy in this example, which

is not necessarily a problem if the bridge Drive can A=JwColor (243)
provide this extra 4 % of out-of-phase currentl o .
Expressing Eq. (19a) in the form of Eq. (19b), we B=jwCszs (24b)
find that 1
C= C— (24C)
Vi(5,6)={1+[2.0X 1079 —j[2.0 X 10} Ralo, (21a) joCar,
Ass={[2.0 X 109 — j[2.0 X 107} (21b) D 1 Cs (24d)

T +]wCsRa+ 2] Co
for 100 pF lead capacitances and

E JoCelg (24€)

Ase={[5.0 X 10 —j[5.0 X 10} (22) - [1+jwCs(Ry + z)]

for 250 pF coaxial leads.
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_ 1 Cs (241) Qa=ra+2p[1 + Py(1 + Q)] (24z2)
[l + j(x)CsZs] CB
Q:=2P(1+Qy) (25a)
_10Cs(Ri + 1q)
C="M+jwCaz] (249) Qi=ro+ Q+ ORi+ Q) (25b)
_ 7 Qs = Qs+ Ny(Q2+ Q) (25¢)
"R (240
Qs=Ri+2+ Qs+ Ox(Ry+Qz) = M2O3(Ry+ Q)  (25d)
] .
H2 = (24|)
(Ru+2) Q= [Qs + LOs(Ry + Q)] (25€)
Qs
r .
Hs:= < (24))
(Ru+z) Qs = [Qs + Nz((?Qz +Q3)] (25f)
6
RH
Hy= (24k)
(Ra+2) Q= —Mlo3(g‘; + Q) (250)
I = H2 + H3(1 + G) + E(H3 - H4) (24')
J=1(1+C)+FH3z+D(Hs — Hy) (24m)
1 S= % (25i)
— A
KEL+H.+1+BJ] (24n)
_Cr 1 -
L=jwCsr (240) T= C_D [1+joCulp] (25))
My = S+ o CoRe + 2) (24p) U= (25K)
5 D
M = jwCszs (24q) Uz = jwCoor (25l)
N, = joCsry oar Six of the current solutions are trivial because of the
T+ jwC(Ry + )] (241) four-terminal-pair definition [15,16]
Nz J(UCQZ4 (243) IDt:IPt:ICSZICDt:|C4:||’Dt:0' (26a)

T [1+jwCyRy + 22)]
The remaining exact equations for the double-series cir-
joCyiry Cuit currents are

O, = —[1 FjwCizl (24¢1)
A
. ley, = 77— | 2
0,=10CRi*2) (240) LA @ (260)
2" [1+jwCiz]
Ifoz =lo— ICox (26C)
Os= i (24v)
T C1 +jwCiz] ls = Kly, (26d)
P, = FR.—:‘—"'I'S) (24W) l4= IrOt —ls (266)
Ka
lc; = Bls (26f)
y2) 1
P= 2t 24
2 rKA J(x)CerA ( X) IKB = CICB (269)
Q1=ijAI’KA (24y) Id:ls+|CB+|KB (26h)
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g, = Dlg, + Elqg (26i)
e, = Flg, + Glq (26))
le=lg+ g+ e, (26k)

I3 =Qslc+ Qgls+ Qolc, (261)
I, =Llc+ Mylg, + M;lg (26m)
l3=13+ ¢, (26n)
lb=lc+1s— I3 (260)
lc, = Nylp+ Naly (26p)

lc, = O1ly — Oy l3 + Oslc, (26q)
la=lp+ 1, + g, (26r)
Ik, = Pila+ P2lc, (26s)

le, = Qulk, (26t)
Io=latlk, +lc, (26u)

lc, =Sk, +Rlp (26v)

leo = Tley (26w)

I, = o+ 1+ ey + Iy, (26x)
e = Usley + Uzl (26y)
lor = Iy, + Iy (262)

The exact equation for the quantum Hall voltage is
obtained by summing the voltages between the inner
conductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through point Z, arm 4,
voltage generator¥,, andV,, arm 3, and point Y we
find that

Vu(Y,Z) =Rylc+ Ry +z) s+ Zl3 — e, (273)
which can also be expressed as
VH(Y,Z) = [1 + Ayz]RHIOt. (27b)

7.2 A Numerical Example

We investigate the parasitic impedance contributions
of the ac QHRS on the measured valua/gfY,Z) for a
particular example of the double-series circuit by using

338

the cardinal numbers listed in Eqgs. (7), plus the follow-
ing cardinal numbers for the additional circuit elements

Fot= ot =rpt=rp =102 Q) (28a)
COt = CDt = Cp[ = CDr = 1012 F. (28b)

The numerical results for the currents in Egs. (26) are

leo={[1.0 X 10?7 +{[1.0 X 10} l;  (29a)
I, = {[1.00000] - j[1.0 X 10"}, (29b)
Is = {[0.99990] + j[9.0 X 10°4} I, (29c)
log ={—[1.0X 10% +j[1.0 X 109} lo,  (29d)
lky = {[1.0 X 10 +j[1.0 X 10"} o, (29€)
lg = {[0.99990] + j[1.0 X 10} lo; (29
le,={[1.1 X 10 +j[1.0 X 10} lor  (299)
ls={~[1.0X 109 +j[0.01000]}lo;  (29h)
I, = {{0.99990] + j[0.01000} o (29i)
1,={[1.0 X 10 — j[L.O X 10} o (29))
I = {[1.0 X 10 +j[0.01000]}lo, (29K)
le,={~[1.0 X 10 +j[0.01000Hlo;  (291)
= {[1.6 X 107] + j[0.02000]Ho, (29m)
I, = {[0.99990] + j[1.0X 10} I, (29n)
le,={[1.0 X 10 +j[1.1 X 109} lor  (290)
le,={~[1.0X 10" +j[0.01000]}lo;  (29p)
1= {{0.99990] + j[0.01000]) o (29q)

ko = {[1.0 X 109 +[1.0 X 10 1, (29r)
lo, ={—[1.0X 109 +[1.0 X 109} oy (295)
Ip = {[0.99990] + j[0.01010]}o; (291)

lp ={—[1.0 X 10 +j[0.01000or  (29U)
lo={—[1.0 X 109 +j[1.0 X 10} oy (29V)
l,., = {[0.99980] + j[0.04020]} o, (29w)
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leo, ={—[1.0X 109 +j[1.0 X 10T} oy (29%) lio = o, = {1 — jl@Corol} lox (32b)
lor = {[0.99980] + j[0.04030]}o. (29y) | zl%:{[l_ﬁ]ﬂ.[wc (1) — wCato— &Corlo]
S RH 6\! S 51c Ot ! Ot

The 90 out-of-phase parts of shunt currem¢g Ic,,

Iy legs leas lcoy @ndlc,, are again much larger than for B .[wﬁ_ wﬁﬁ]}l (320)
shunt currentsc,, I, lc,, andlc,, because contact pads J Ry RiRil)
5,3,1,and D are all near the quantum Hall potential,
rather than near the shield potential. A 1 % out-of-phase leg=lcs,={ —[w?Cs(Csrs— Cotro)rs+ w?Cg Ly
current passes through each of the coaxial cable capaci-
tancesCs, Cs, C;, andCp, in this example, which once +j[wCsrg]} ot (32d)
again is not necessarily a problem if the bridge Drive
can provide this extra 4 % of out-of-phase currerito L=l = {[E] . [ E]}I (32€)
Expressing Eq. (27a) in the form of Eq. (27b), we Ko™ o™ | |1y, J el
find that
=1 =4l1-Ts|+; 0=
Vi(Y,Z) = {1 +[9.8 X 10 +j[0.01000]}R4lc;, (30a) 'd~'da‘{[1 RH} +J[w(CB+Cs) s—w RHHIQ (32f)
AYZ = {[98 X 10_9] + j[OOlOOO]} (30b) |06: Iceaz{[ Q)ZCG C6 RH(r5+ rd) + w2C5 Cel‘gl’6
for 100 pF lead capacitances and — 0 CsL+j[wCsrd} lot (329)
Ayz = {[32 X 10_8] + 1[002501]} (31) ICS: |c5a:{[ w2C5C5RHr5— w2C5C6 R|-|(r5+rd)
for 250 pF coaxial leads. — w?Cg CsRu(rs+rq)| +[w?CsCsRurc +j[ @ Cs R} o
The 1X 10®R; in-phase correction tB, for 100 pF (32h)
leads meets our desired¥®, absolute accuracy, but
there is a 1 % contribution t@,(Y,Z) in the 90 out-of- le=le,=lg,+lcg, + e, (32i)
phase jterm. Auxiliary balances in the NIST high preci-
sion ac bridges are not capable of providing out-of- 4=y, ={1 — j[wCotrof} lot — Is, (32)
phase adjustment signals larger thax 30 R, so the
1 % out-of-phase signal is unacceptable. The approxi- _ _{[r_D (ro+ry) . _
mate solutions are listed in the next subsection to show l3=1s,= Ry T GG CIRRy

the source of this out-of-phase problem.

+ w201C1 RH(rl — r3)] — [w2C1C6 RH rs+ wz(CA + C5) LD]
7.3 Approximate Double-Series Solutions

Some of the terms in the following approximate solu- +j[wCy(Ry —13) + w(Ca+Cs) rpl} o (32k)
tions were obtained using the results of the dc double-se-
ries analysis of [22]. Most terms were found in a tedious le;=lc,={ —[0°CsCs Ry Ry + 0”CiC3 Ry T3
process by changing the individual values of circuit
element components by an order of magnitude in the +w?CsCsRurg] +j[ @ Cs R} o (321
computer program, observing the calculated results, and
then finding the algebraic expressions that produced l3= 15, =3, +lc, (32m)
these results. The approximate solutions yield numerical
results that agree with the exact numerical results listed lo=lp, = le,+ la, — Iy (32n)

in Egs. (29) and (30) to within at least two significant
figures for both the real and imaginary parts, but other  Ic,=lc, ={[ 0?Cy(Cy+Cs— Cy) rsly+ w?CiCoRy 1y
terms may need to be added to these approximate equa-
tions if the circuit components have values significantly

2 _ — 2 E
different from those listed in Eqgs. (7) and (28). +[w CAC = Co)Rury — 0°Colls ]

RH

(,()Czrb+a)C2_

lco = |c0ta ={[ wzcotCOtrOtrOt] +j[wColof} lor (323) +J[ r;r]}lm (320)

339



Volume 104, Number 4, July—August 1999
Journal of Research of the National Institute of Standards and dEgyn

lc,= |C1a: {[wzcl(cl — Cs) RiRy+ w?CiCiRy(r1 — 13)]

i

— 0?C,CeRTs+ 2Cy Lo+ w?Cy Llﬁ]

- [w2(01+05) LS%]+ j[wclRH]}lOt (32p)
|a:|a3:|ba+lcla+|cza (32q)
lKA:lKAa:{[%] +j|:(,()C5 RI.:'KRH]}l()t (32!‘)

lcy = len, = { ~[@*CaACsRiRA] + [[@CaR]} lor (325)

(321)

ID: lDa: |3a+ IKAa+ ICAa
ley = lep, = { —[@’CoCsRuRu] + j[@CoRuJ} lor (32u)
lCPt: ICan: { _[wZCPlcsRHRH] + ][wcptRH]} IOt (32V)

(32w)

II'Dr: II'Dra: IDa+ I3a+ ICDa+ ICP‘a
leo = le,, = { ~[@*CoilCsRi R4 + jlwCor R} lox (32)

(32y)

As expected, Egs. (32i) and (32h) suggest that the
currentlc, in Fig. 3 enters the Drive, goes to point Y, to
point D', through longitudinal resistanceg r,, andr,,
through arm 5, and then exits through capacitance-to-
shield Cs. We would have likewise assumed that the
currentlc, enters the Drive, goes to point Y, to point,D
throughr,, through arm 1, and then exits throu@h.
However, the approximate Eqs. (32p) and (32k), where
Ic, appears ifly, suggest thal, enters the Drive, goes
to point Y, to point 3, through arm 3, travels “upstream”
throughr,, through arm 1, and then exits through.

The currentc,, on the other hand, enters the Drive, goes
to point Y, to point 3, and then exits throu@h, bypass-
ing the device altogether; this latter effect provides an

IDr = IDra = IrD,a + |CDra-

advantage to double-series connections by reducing

shunt currents within the device.

Expressing Eq. (27a) in terms of Eq. (27b), we find
that Eq. (33) gives the approximate quantum Hall
voltage correction terms.

We see from Eq. (33) that sample probe lead 5, just as
in the single-series “normal” case, is the dominant
source of the 1 % out-of-phase component of the quan-
tum Hall voltage signal in the numerical example for
this double-series connection to the QHE device. The
next subsection investigates the effect of removing this
lead, which was effective before in the single-series
“normal” case of Sec. 5.
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rsfa

RiR

rsrp , ra(rp +ry)

RRi~ RiRi

+

e

- [(,()ZCBC5 RH rs+ Q)ZCG(Cs - C5) RH rs

+ (1)2C5C5 RH r5]

- wzcl(Cl —Cs)Rurq
+ [w2C6C5 RH(rd + I’C) - WZCS(CB + CG) RH I’d]

+ [wZCGCe Isleg— w2C1C6 Isfz+ wzClClrg(rl — r3)]
7]
RH
+j[wCs(Ry+rg) + wCirst+w(Cs+Co)rgl

J}

7.4 Disconnecting Sample Probe Lead 5

- |:(D2CB Ls+ a)ZCG(Ls+ L3) + (l)z(CA + C5) LD

I's

RaRs

—j[(uCG(r5+ rd)+wL4 (33)

Equation (33) predicts that the out-of-phase term
jloCsRy] in the expression forly; can be reduced by
disconnecting coaxial cable 5 at position Where 5is
either located at the potential contact pad on the QHE
device, or at an intermediate contact point in the sample
holder. There is a capacitan€® between the QHE
device and the shield that replaces capacitaficén
Fig. 3. Also, a shield impedancs replaces the lead
impedancezs.

If we assume in the numerical examples that

Cs=Ca=Cg=1pF (34a)
rs =rs=21€. (34b)
Then
Ay ={[2.0 X 109 +j[1.0 X 107} (35)

when the coaxial lead capacitances are all 100 pF, and

Az ={[9.4 X 10% +j[1.1 X 107} (36)
when they are 250 pF. All experiments which have mea-
sured ac values of,(Y,Z) for double-series connections
have had to remove coaxial lead 5 because of the effects
due to the large capacitance-to-shigld presented
above.

Equation (33) could be used to apply corrections to
the experimental data in order to reduce the9.40°
in-phase error iRy lo.. However, our approximate and
exact equations do not include the effects of wire-to-
wire capacitances; the bridge auxiliary balance could
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introduce unintentional in-phase contributions because
of the large out-of-phase component\6f(Y,Z); and it

is not trivial to measure the value Gf in order to apply

the correction with lead 5 disconnected.

7.5 Double-Series Connections at the QHE Device

Many experiments have made double-series connec-
tions to the QHE device at the bottom of the sample
probe by using short bonding wires to form the circuit.
Points Y and Z of Fig. 3 are thus moved from outside the
sample probe down to the sample holder. There are no
coaxial leads connected to points 1, 2, 5, and 6, so their
capacitances-to-shield become much smaller. Four
coaxial leads labeled Ot, Dt, Pt, and Dr connect the
QHE device to the outside world. The double-series
circuit shown in Fig. 3 remains exactly the same for this
case, as do Egs. (24) through (27). The values of some
circuit components, however, change.

We use the following cardinal values in our numerical
example

Ry =100 (37a)
Fs=r1=r1,=I3=0,=I5=rs=1,=10°Q (37b)
ra=rp=rc.=rq=10%0Q (37¢)

Mey = Feg = 102 Q) (37d)
Fot=Ipt=rp="rp =10 (37e)

CS:C1:C2:C3:C4:C5:C6:CD:10_12F (37f)

Ca=Cg=10"F (379)

Cor = CDt = Cpt = CDr = 10_10 F. (37h)

The numerical results for the currents in Egs. (26)
with the double-series leads connected at the bottom of
the sample probe are

18,={[1.0 X 10" +j[1.0 X 109} lor  (38a)
18, = {[1.00000] — j[1.0 X 10°%} lox (38b)
18 = {[1.00000] — j[2.0 X 10} Io (38¢)
18, ={—[1.0X 10% +j[1.0 X 10} Io,  (38d)
12,={[1.0 X 10 +j[1.0 X 10} lo,  (38e)
1§ = {[1.00000] — j[2.0 X 107} Io, (38f)
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18 ={—[1.0X 10" +j[2.0 X 10"} I,  (380)
1€ ={[1.0 X 10" +j[1.0 X 10T} lo;  (38h)
18 = {[1.00000] +j[9.8 X 10°%} Ioy (38i)
12 ={[3.0 X 107 +j[1.0 X 10} Iy (38))
18 ={[3.0 X 107] +j[1.0 X 107} lot (38k)
18 ={~[1.0X 109 +j[1.0 X 10} lo;  (38l)
15 ={[2.9 X 107 +[2.0 X 107} lo, (38m)
12 = {[1.00000] — j[2.0 X 10} I (38n)
1&={[9.8 X 109 +j[1.0 X 10"} o,  (380)
18 ={[2.0 X 109 +j[1.0 X 107} lo (38p)
12 = {[1.00000] +j[9.8 X 10°%} Ioy (38q)
12, ={[1.0 X 109 +j[9.8 X 10T} I, (380
1& ={-[9.8X 107 +j[1.0 X 10} loi  (38s)
I8 = {[1.00000] +j[2.0 X 107} lo (38t)
1& ={-[9.9X 107 +j[1.0 X 10} lo:  (38u)
1&,={~[9.8 X 107 +][0.01000}}lo:  (38V)
12 = {[1.00000] + j[0.01050]} o, (38w)
18, ={—[1.0 X 109 +j[0.01000]}lo;  (38X)
1§ = {[1.00000] + j[0.02050]}l .. (38y)

Expressing Eq. (27a) in the form of Eq. (27b), we
find that

VE(Y,Z)={1 —[1.0X 10 9 +j[9.8 X 107} Ryloy, (39a)

A%, ={—[1.0 X 10" +[9.8 x 107} (39b)
for 100 pF lead capacitances and
AY, ={[1.8 X 10 +j[9.5 X 107} (40)

for 250 pF coaxial leads.

Equation (40) implies a very small in-phase error in
Rylo. This is not supported by measurements, which
have observed errors iRy lo; of order 10°. The dis-
crepancy could either be due to unintentional in-phase
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contributions from the bridge auxiliary balances arising between points Y and 1 and Z and 6. We do not consider

from the large out-of-phase component\6fY,z), or this triple-series circuit since it would involve several
because our equations do not include the effects of wire- additional months of effort to perform the analysis, and
to-wire capacitances. the problems found in double-series circuits in Sec. 7

To assist laboratories who are making double-series due to large shunt currents through also occur in
connection measurements at the QHE device we list the triple-series circuits. Either coaxial lead 5 would have to
additional terms that should be added to the approxi- be disconnected at positiohd& the QHE device end of
mate current and quantum Hall voltage solutions given the sample probe, or the triple-series connections would
by Egs. (32) and (33). Those equations which require have to be made at the device. Neither choice satisfies

additional terms are: our goal of measuring the ac and dc quantized Hall and
longitudinal resistances on the same cool-down. We
1§ =18 =14, — {j[ oCotlod} lot (41a) therefore proceed to quadruple-series connections,
which turns out to satisfy our requirements at this stage
1&=18&, = lcs, + {il @Cosrd} lot (41Db) of analysis.

1& =18 =lc, +{[ @*CorCsRuTol} ot (41c) _ .
9. Analysis of the Quadruple-Series
1B = lm{[%ﬂlm (41d) Circuit
Figure 4 shows an equivalent electrical circuit repre-

. {j[mﬁ]}l (41e) sentation of an ac QHRS using two quadruple-series
a Ve Rl connections to the QHE device. It is quadruple-series
because short coaxial leads outside the sample probe
connect room temperature access points 5, 3, 1, and D
at point Y, providing four current paths to the device.
Other short coaxial leads connect access points 2, 4, 6,
18,=18, =lcy, +{[ @*CorCaRuror+ 0*Calo]} lor (419) and S at point Z. Short coaxial leads outside the sample
probe connect point Y with the Drive and Potential
1&,=18,, = lep, + {{ 0°CotCoRurod} lor (41h) ports, and point Z with the Inner/Outer and Detector
ports.

. L
IEA: |KBAa: |KAB_{J|:w001r&rol+wr—Dj|}|0t (41f)

Ka Ka

ICBPI:: Igpg: ICPga
+{[ ©°CoCrRuTor+ ©°CoCorRue} lo (41i) 9.1 Exact Quadruple-Series Equations
To simplify the final algebraic expressions, we once
and again define substitutions of variables, and substitutions
of substitutions. Let
AR = Ay +{[ 0’CsCotRaror+ w?CsChtRi It

A= ijOtI’Ot (433)
— w*CoCortlotlof — [@*CeCrirpirp] )
B= J(I)CB Zs (43b)
_j[(l)Co(rot‘l‘(l)Cptrp{l}. (42) 1
) ) ) = (43c)
We once again caution the reader that these approxi- JoCar,
mate equations do not include the effects of wire-to-
wire capacitances. This circuit is not a good candidate D, = _ 5 (43d)
for further analysis because the quantized Hall and lon- (Rq + Z)
gitudinal resistances could not be measured on the same ;
cool-down. Dp=—%— 43e
T (Ritz) (43e)
8. Triple-Series Circuit Dgzw (43)
The double-series circuit of Fig. 3 could be converted 1
to a triple-series circuit by adding short coaxial leads D“:m (430)
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1 Gs=Fs + EG 44b
DS:M (43h) s = Fg + E4Gy (44b)
Gy=G4(1 +Fy) + ExG; (44c)
26 .
D = 43
TR “3 Gi=Gu+ F.G, (@4
D, = (Rfi z) (43j) Ge= Gt BG, (aae)
. G; =Gy + FGs + D/Gg (44f)
D == 43K
TG (43k) Gs = G7 + DeGs (449)
B R (43) Co= G FiGs aan
2,
_ (D5G7 - DS) i
" Hy=~>22f =3 (44i)
_ 1+DsG
B = Re D) (43m) (1 +D:<Go)
__ Ds '
Es= % (43n) b= 1 +DsGy) 4
3
D5Gg
+ =
E,= (RHrK & (430) s (1 +DsGy) (449
. JL=1+E +E (441)
E5 = ; (43p)
A 3= E(1 +F)) (44m)
Ee=jwCar 43
5= jwCark, (430) J=3,+Dyd (44n)
+
F,= —(RHZ3 2} (43r) Ja=1+J3+Dedr (440)
" Js=J:+ E:Fy (44p)
Fom (43s)
J6 = J4 - H3\]5 (44q)
Ry +Z
= ( - ) (43t) J7=J3 = HiJs + D2Je (441)
r Js=1+J,+D.Js (44s)
F4 = Zb (43U)
1 Jo=J(1+C) +HyJs (441)
(Rit+z)
F.= (43v) 1
5 Z JlO = m (44“)
r
F.=-2 43w
=5 (43w) K, = % (44v)
A
C
F=g (43x) K:=joCoz (44w)
B C 1
Fo=jwCs2 43 AT ocrd
8 J(l) 5 ( y) K3 CD [1 +JwCPtrP£| (44X)
Gl = Fg + EG(F7 + Fg) (432) C
K4 = C_Dr (44y)
G2 = Fg + G]_(E4 + E5) (44a) D
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K5 = ja)CD, I'pr.

lot=lp=lcs=lcy,=lcs=lc,=lc,= 115, =0.

lc :L lot
o~ (1+A)

IFOt =lot— ICOt
|s:~]10|roI
ICB:BIS
lkg = Clcg

la=ls+ ey + kg

l¢=D1ls+ Dzly

s =Hilg — Haolg, + Hsle

|05:G7|d+G3|6 - Gg|5'

|5:|5'+|(;5
Iczld_ |5'+|6
|4=D5|6+D7|C
|3':F1|5' - FZIC
|C3:D8|05
|3:|3'+|C3
Ibzlc_ |3'+|4
|2=E1|4+ E2|b
Il':F3|3' - F4|b
|01:E3|c:3
|1:|1'+|Cl
Iazlb_ |1'+|2

Ik, = Esalat Esly

(442)

(45a)

(45b)

(45¢)
(45d)
(45€)
(45f)
(459)
(45h)
(45i)
(45))
(45k)
(451)
(45m)
(45n)
(450)
(45p)
(450)
(45r)
(45s)
(45t)
(45u)
(45v)

(45w)

Eight of the current solutions are trivial because of the
four-terminal-pair definition [15,16]

The remaining exact equations for the quadruple-series
circuit currents are
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lc, = Eslk, (45x)

lo=lat Ik, +lc, (45y)

ley = Kilg, + Kzlp (452)

lco = Ksleg (46a)

Iy, =lp i+ 13+ 15+ I, + e, (46b)
Iy, = Kaley + Kslig, (46c)

lor = Iy, + I, (46d)

The exact equation for the quantum Hall voltage is
obtained by summing the voltages between the inner
conductors of the Detector coaxial port and the Potential
coaxial port. Taking the path through point Z, arm 4,
voltage generator¥., and V.3, arm 3, and point Y we
find that

VWY, Z) = Rilc+ (Ru+ z) ls + zls — rpil,, (47a)
which can also be expressed as
Vu(Y,2) = [1 + Avz] Rylo. (47b)

9.2 A Numerical Example

We investigate the parasitic impedance contributions
of the ac QHRS on the measured valua/afY,Z) for a
particular example of the quadruple-series circuit by
using the cardinal numbers listed in Egs. (7) and Egs.
(28). The numerical results for the currents in Eqgs. (45)
and (46) are

leo={[1.0 X 10?7 +j[1.0 X 10"} I,  (48a)
I, = {[1.00000] — j[1.0 X 10™} I, (48b)
ls={[0.99990] — j[1.0 X 10} Io, (48c)
ley = {—[1.0 X 109 +[1.0 X 109} lo;  (48d)
e ={[1.0 X 10" +][1.0 X 10} o,  (48e)
Iy = {[0.99990] — j[9.9 X 107} lo; (48
lo={[1.0 X 10 +j[1.0 X 109} oy (48g)
ls = {[1.0 X 107 +j[3.1 X 10"} lo,  (48h)
ls={—[1.0 X 10" +j[0.01000]}lo;  (48i)
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ls={[1.0 X 107] +j[0.01000]} I (48j)

| = {[1.00000] + j[9.8 X 10°%} loy (48Kk)
l,={[1.1 X 107] +j[2.0 X 1079} Io, (48l)
ly={[1.1 X 107 +j[2.0 X 10} I, (48m)
le,={—[1.0 X 109 +j[0.01000]}lo;  (48n)
l3={[1.1 X 107] +j[0.01000]} I o (480)
I, = {[1.00000] + j[9.8 X 1077} lox (48p)
I,={[1.0 X 107 +j[8.1 X 10} lor  (480)
Iy ={[1.0 X 107 +j[1.0 X 109} I (48r)
le, ={—[1.0 X 1079 +j[0.01000]}lo; ~ (48s)
I, = {[1.0 X 10 +j[0.01000]} I o (48t)
la={[0.99990] — j[1.0 X 10} Io, (48u)
ley = {[1.0 X 109 — j[1.0 X 10} Iy (48v)
le, ={[1.0 X 101 +j[1.0 X 10} lox  (48w)
Ip = {[0.99990] +j[9.9X 109} Io, (48x)
le, = {—[1.0 X 109 +j[0.01000]}lo:  (48y)
lon={—[1.0 X 1014 +j[1.0 X 107} lo,  (482)
I, = {[1.00000] + j[0.04020]}l o (49a)
lep, = {—[1.4X 10 +j[1.0 X 10} Io:  (49b)
lor = {{1.00000] + j[0.04030]} ox. (49c)

The 90 out-of-phase parts of shunt currems Ic,,
lcys leps leas lepe @ndlc,, are much larger than for shunt
currentslc, andlc,, because contact pads 3', 1', and
D' are all near the quantum Hall potential, rather than
near the shield potential. A 1 % out-of-phase current

Expressing Eq. (47a) in the form of Eq. (47b), we
find that

Vi(Y,Z)={1 — [2.0X 107]+j[1.0 X 109} Ryloy (50a)

Ay ={—[2.0X 107 +j[1.0 X 1079} (50b)

for 100 pF lead capacitances, and also the same value

Ay;={—[2.0X107+j[1.0 X 107} (51)
for 250 pF coaxial leads.

There is only a 1x 10® Ryl out-of-phase compo-
nent in theVy(Y,Z) signal for the numerical examples
given in Egs. (50) and (51). Unlike the double-series
circuit, this out-of-phase result is very promising. The
real part ofVy(Y,Z), however, appears to have a very
large error term that is-2 X 107 Ryl in these two
examples; butvy(Y,Z) actually is the quantized Hall
voltage V,; across the deviceninus the longitudinal
voltageV,(2,6) along the device between points 2 and 6,

Vu(Y,Z) = Vi — V(2,6), (52a)
and
Vi(2,6)= (rp + 1) lor. (52b)
Therefore,
Vy = [1+AH+M]RHIQ, (53a)
Ry
or
Vi =[1 + 84 Rylo. (53b)

Vy has a correction factdy; in the real term that is only
—7.9X 10" Ryl for these two numerical examples
where ¢, + o) =2 X 107 Ry

The quadruple-series circuit is an excellent candidate
as a possible ac QHRS, and will be further considered
in a future paper which includes the effects of wire-to-
wire capacitances. The approximate equations for the
currents and quantum Hall voltage will be given in that

passes through each of the coaxial cable capacitancepaper. In the meantime, some approximate equations

Cs, Cs, Cy, andCp, in this numerical example, which is
not necessarily a problem if the bridge Drive can
provide this extra 4 % of out-of-phase currentgp We

can see from the small out-of-phase components of cur-

rentsls, |z, 1, andlp that the four shunt currents,, Ic,,
lc,, andlc, all bypass the QHE device, which is a great
advantage of the quadruple-series circuit.
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can found in Ref. [23].

10. Conclusions

We have used an equivalent electrical circuit model of
the quantum Hall effect device to calculate the effects of
parasitic impedances that are present in four-terminal-
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pair [15,16] measurements of ac quantized Hall resis-
tance standards. The discrete circuit components in-
clude all of the parasitic capacitances, inductances, and(*1!
leakage resistances of the standard except the wire-to

wire-capacitances.

Exact algebraic equations have been derived for the
currents and quantum Hall voltages for single-series

“normal’, single-series “offset”, double-series, and

quadruple-series circuit connections to the device. We

[10] F. Delahaye, Technical Guidelines for Reliable Measurements

of the Quantized Hall Resistance, Metrologig 63—68 (1989).

A. Jeffery, R. E. Elmquist, J. Q. Shields, L. H. Lee, M. E. Cage,

S. H. Shields, and R. F. Dziuba, Determination of the von

Klitzing Constant and the Fine-Structure Constant through a

Comparison of the Quantized Hall Resistance and the Ohm

Derived from the NIST Calculable Capacitor, Metrolodig,

83-96 (1998).

[12] B. N. Taylor and T. J. Witt, New International Electrical Refer-
ence Standards Based on the Josephson and Quantum Hall Ef-
fects, Metrologia26, 47—62 (1989).

find that the single-series “offset” and quadruple-series [13] m. E. cage, B. F. Field, R. F. Dziuba, S. M. Girvin, A. C.

connections appear to meet our desired goals of measur-

ing both the quantized Hall resistanRg and the longi-
tudinal resistanc&, in the same cool-down for both ac
and dc currents with an absolute accuracy of R) or
better. These two circuits will be further considered in
a future paper in which the effects of wire-to-wire ca-
pacitances are also included in the analysis.
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