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1. Introduction

Nanocrystalline ferromagnets exhibit favorable soft magnetic anisotropy. The nuclear microstructure deter-
[1,2] and hard magnetic [3,4,5] properties that are themines the magnitude and the local orientation of the
subject of current research. In the simplest conceptualanisotropy field,that is the derivative of the magnetic
case, these materials can be single phase, single comp@nisotropy energy density with respect to the orientation
nent polycrystalline solids with a grain size of the order of the magnetization, which acts as a torque on the
of 10 nm, and with uniform values of the local mag- magnetic moments, resulting in a nonuniform magnetic
netization magnitude and of the exchange stiffnessmicrostructure. Because of the importance of the an-
constant. In this case, the nuclear microstructure affectdsotropy fields for the magnetic properties of nanocrys-
the magnetization and, hence, magnetic properties suclalline materials, it is of interest to characterize their
as coercivity and remanence, exclusively through themagnitude and spatial arrangement, in other words the
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microstructure of the anisotropy fields. In this paper, we
show how quantitative information on the anisotropy
field microstructure can be obtained by combining
small-angle neutron scattering (SANS) data with an
analysis in terms of the theory of micromagnetics.
The magnetic domain structure of materials at low

and of the Fourier components of the anisotropy field.
Section 3 combines the results of micromagnetics with
the theory of magnetic neutron scattering, and derives a
result for the differential scattering cross-section in
terms of the Fourier components of the anisotropy field
and of a micromagnetics response function for SANS

applied magnetic fields gives rise to neutnafraction that depends on the applied field and on measurable
[6] and todepolarization[7,8] of the transmitted neu-  magnetic materials constants. Section 4 is a derivation of
tron beam, and can be studied thereby, but of interest expressions for averages of the scattering cross-section
here is neutrorscatteringat sufficiently high applied that apply to commonly used experimental scattering
fields where the scattering volume is essentially a single geometries and to materials with isotropic microstruc-
magnetic domain. In this case, magnetic SANS arises ture. Section 5 discusses an invariant of magnetic
from small (static) variations, on the scale of a few SANS, that relates to measurement of the magnitude of
nanometers to a few hundreds of nanometers, of thethe anisotropy field. Section 6 deals specifically with
orientation of the magnetization vector about the direc- the special case of nanocrystalline materials where the
tion of the applied field. The technique is therefore well anisotropy field is exclusively from magnetocrystalline
suited for combination with micromagnetics theory anisotropy. Section 6.1 discusses an approximate closed
[9,10,11], that describes the spatial variation of the form solution for the magnetization in real space, both
magnetization, at equilibrium, in terms of a continuum for a single grain and for a nanocrystalline material.
approach which applies to length scales where the Based on this solution, criteria are derived for the range
discrete atomic structure of matter can be neglected. In of grain size and applied field to which the result of the
amorphous ferromagnetsjelastic SANS is an estab-  previous sections apply. Section 6.2 presents results of
lished technique for determining an important para- the theory for SANS of nanocrystalline materials.
meter of micromagnetics, the spin-wave stiffness Experimental results on nanocrystalline Ni and Co will
constant [12,13]Elastic SANS, that is of interest inthe  be presented in a subsequent publication [20].
present context, has been shown to yield information on
magnetic correlations in superparamagnetic nanocom-2. Micromagnetics
posites [14], and on the ferromagnet-superparamagnet
transition which occurs near the Curie temperature of We aim to analyze the magnetic microstructure in
one of the phases in multi-phase nanocrystalline ferro- a bulk nanocrystalline material, that is a space-filling
magnets [15]. In single-phase nanocrystalline ferromag- array of nanometer-sized grains with different crystallo-
nets, SANS indicates the presence of correlations in the graphic orientations, restricting attention to situations
magnetic structure on a length-scale larger than the where elements of the nuclear microstructure, such as
grain size [16, 17]. Studies of dislocation arrays in cold- grain boundaries or dislocations, do not affect the local
worked ferromagnetic single crystals have demonstratedvalues of the atomic magnetic moment and of the
that a combination of SANS experiments with micro- exchange stiffness constant. With this in mind, we con-
magnetics theory can provide information on the sider the saturation magnetizatidms = p, ua and the
nuclear microstructure [18]. Preliminary results of the exchange stiffness consta#® to be uniform. The
present study [19] indicated that SANS experiments on symbolsp, and u, denote the atomic density and the
single-phase bulk nanocrystalline materials with low atomic magnetic moment, respectively. The inhomo-
porosity, hence low nuclear scattering cross-section, aregeneous nuclear microstructure affects the magnetiza-
in good agreement with predictions from micromagnet- tion because the combined effects of magnetocrystalline
ics over a wide range of applied magnetic fields and and magnetoelastic anisotropy determine the anisotropy
scattering vectors. energy densitya that depends on positior and on
Modeling remanence or coercivity of nanocrystalline the magnetizationM, that is a=a[x, M(x)]. The
materials by micromagnetics requires numerical anisotropy energy enters the equations of micromagnet-
computation [5]. But in the limit of nearly parallel ics theory through thanisotropy field(or perturbing
alignment of all spins, at sufficiently high applied fields, field) Hp(x), defined (in SI units, and withu, the
there are closed form solutions for the magnetization magnetic constant, also called the permeability of
[10,21] that are amenable to combination with scatter- vacuum) by
ing theory, and it is this approach that we shall explore. 1)
The paper is organized as follows: Sec. 2 discusses the
micromagnetics solution for the Fourier components of With M subject toM | = Mg, the vectoH » is normal to
the magnetization in terms of the applied magnetic field M; in other words, the anisotropy field results in a

Hp:—/.LQ_laa/(")M .
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torque on the magnetic moments, of nonuniform magni- position in the material and is here approximated by the
tude and direction, that deflects the magnetic moments uniform field H§=—Ng (M), with the demagnetizing
from the perfectly aligned state. factor Ny dependent on the sample geometry. It is em-
At equilibrium, the static response of the magneti- phasized that, as a consequence of the uniformityl of
zation to the magnetic fieldd and to the anisotropy andA, there is naa priori discontinuity ofM at internal
field satisfies the micromagnetics equation (compare to interfaces, thereforélj is exclusively from the macro-
Sec. 4.1 of Ref. 9): scopic external surface of the material, and is entirely
unrelated to the grain size or grain shape. Grain shape
[13 {V?My, VM, VM, }+ H+Hg X M =0 (2) enters the equations of micromagnetics throtigx),
and its effect on magnetic properties is therefore
for an orthonormal basis€, e,, e,}, where for any accounted for in the solution fdvl (x).

vectorf the scalars,, f,, f,, andf are, respectively, the The bulk contribution toHq is given by (compare
Cartesian coordinates dfelative to {e,, e, e,} and the Ref. 21)
modulus off . Themagnetostatic exchange lendh23]
lv is defined as HE(x) =—Ms(2’rr)’3’2fff [m(qaz' alg
2A -
Im= . 3 .
LRPAVE ) exp(-igx) o 7)

In the limit where the angle of misalignment of the it gives rise to a restoring force that tends to suppress
magnetic moments relative to the mean magnetization variations ofM with Fourier componentsi(q) parallel
(M) is small, Eq. (2) can be linearized [9] by neglecting q, thus stiffening the magnetic microstructure against
terms that are of second orderNhs(x), the component  such variations.

of the magnetization perpendicular gl ), Solutions to Eqg. (2) have been derived for several
special cases, in particular for amorphous ferromagnets
Mp(X) =M (X) —(M) . 4) with random anisotropy (ignoringl §) [22], and for the

case whereHp(x) is due to magnetostriction in cubic
It has been shown [10,21] that, with the magnetization single crystals, for instance in the strain field of a
and the fields expressed in terms of their Fourier trans- dislocation [10]. For the present case of a polycrystal,
forms, the linearized equation can be solved indepen- where a more general form of the magnetocrystalline
dently for each wavevectay. We find it useful to discuss  anisotropy field is considered, it is readily verified by
the solution in terms ofi(q), the Fourier transform of  insertion that, in the limit of small misalignment, the

He(x), and ofm(q), the Fourier transform ofs(x)/ solution is

e __h@  Ms a x[h(@)xal
Hox) = @0 2@ ep (a0 da, 6) Y T Mesi?0  Har q2(Hur + Masir?0)

Mp(x)/Ms = (2m)~>2 [ [ [Z. m(q) exp (-bx) d°q.  (6) 8

By definition, Hr depends not only or but also onvi The vectorg, denotes the componentgthat is normal

and, hence, on the applied magnetic field. For instance, to the applied fieldH,, andé is the angle betweemand

Hr vanishes when the magnetization is aligned with one H.. Her denotes areffective fielddefined by

of the low energy (“easy”) directions of the crystal lat-

tice. In the limit of small misalignment, changesté

due to re-orientation oM result only in second order

effects on the magnetization; therefore, the dependency

of Hp on M can be ignored. Hex depends on the magnitude of tlternal field
We write the magnetic fielH as the sum of the H;=H,+ Hgand on theexchange length of the internal

applied fieldH , and of the demagnetizing field,, and field [23], I, defined by

separateéH, into two components: the fieldd i, which

arises from the discontinuity d¥l at the macroscopic

sample surface, and the field }, which arises from the oA

divergence ofM in the bulk. H§ varies slowly with lh=/——— . (10)

o Ms H;

Her = Hi(1 +14% Q%) . 9
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A simpler expression than Eq. (8) is relevant for the 1000+
most commonly used geometry for SANS (compare E
Sec. 3 below). Consider the applied field and the mean
magnetization along,, hence the anisotropy field in the
plane containing, ande,. When the incident neutron
wavevectork, is alonge,, perpendicular tdd,, then the
scattering vector for elastic SANS is in the plane "E"
containinge, and e,. Therefore, only Fourier compo- c
nents of the magnetization witl = 0 are probed with —
this SANS geometry. For these components, Eq. (8) _x 104 ]

100+ _:

simplifies to
_h(a) . hy@) )
rnX(q)_ Heff ’ rny(q)_Heff"'MSSinzg ' mZ(q)_O 1 = POV R |
(12) 10" 10° 10" 10> 10° 10°

The term that depends ahin Eq. (11) originates Hi [kA/m]

from the demagnetizing field from divergence Mfin
bulk, H5 At high applied fields this term is small
compared td ¢, SO that the Fourier coefficient(q) of
the magnetization is essentially the product of the val of exchange lengths is comparable to the interval of
Fourier coefficienth (q) of the anisotropy field and of length scales that is accessible to measurement by
the reciprocal of the effective field. Because of the SANS. At low fieldsly is larger than typical grain sizes
convolution theorem, the product in reciprocal space in nanocrystalline materials, which are of the order of
corresponds in real space to a convolution with the 10 nm, but at the higher end of the field interValis
Fourier transform of M, which is a decaying  smaller than the grain size. The effective field for Ni is
exponential with a characteristic length The central plotted in Fig. 2 as a function of the magnitude of the
implication of the result, Egs. (8)-(10), is therefore that,
within the assumptions of uniformity and linearity,
the magnetic microstructure is the convolution of the
anisotropy field microstructure with an exponential
response function with a characteristic lengghthat
varies as the reciprocal root of the internal field.

For the purpose of illustration, we shall repeatedly
refer to the example of Ni. We denote lpyg, D, andg
the Bohr magneton, spin-wave stiffness, apdactor,
respectively, and use the following values for
Ni: Ms=528 kA/m (528 G) [24]a = 0.6155uz [25],
pa=9.14X 10 m™, D=6.41x 10°In? (400meV &)
[26, 27], g=2.21 [28]. With Eqg. (3) and the relation
[29]

Fig. 1. Exchange lengthy versus internal magnetic field; for Ni.

A:DPaIJ«a
29 pe

these parameters suggést 6.9 nm for the magneto-
static exchange length in Ni. This value is comparable

-3 -2 -1 0 1
to experimental grain sizes. In Fig. 1, the value of 10 10 10 10 10
the exchange length of the internal field, in Ni, is -1
plotted as a function dfi; for a typically accessible field q [m]

interval in a SANS experiment. It is seen that for fields
between 1kA/m and TA/m the exchange length Fig. 2. Effective fieldHe; for Ni versus wavevectay. The numbers
varies between about 500 nm and 2 nm. Thus, the inter-in the figure indicate the value of the magnetic fi¢lgl
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wavevectorq, and of the internal fieldH;. It is seen that
He is always large at higlg, irrespective of the mag-
netic field. By Eq. (8), this implies that the high-

The macroscopic differential scattering cross-section
(per volume) for elastic magnetic scattering at scattering
vectork, due to an arrangement of atoms with positions

Fourier components of the magnetization are small, in x;, occupying a total volume 0¥, is the square of the

other words sharp variations M are suppressed by the
effective field. Increasindd; has a significant effect on
Her oOnly at low g. Therefore only the lowg Fourier

magnitude of the sum of the atomic scattering ampli-
tudes, including phase-shifts that depend on the orienta-
tion of the moments and on the atomic position [6,

components of the magnetization are suppressed when31-33]:

H; is increased, and the long-range variationd/irare
reduced. An explicit solution for the spatial variation of
M for a special case is presented in Sec. 6.1 below.

dZmag(K)/dQ = | 3 brag; Q exp(ikx))|/V . (14)

For use in discussion of neutron scattering in Sec. 3, Here, b,y denotes the magnetic scattering length of a

it is of interest to computém|? With Eq. (8), this is
found to be

Ih (q)/?

m(q)f=————
| (q)| (Heff+ MgSin20)2

h(a) X q.]?
+ 2
q
Ms(2 Her + Ms Sin?0)
H %ff (Heff + MS Sin20)2

(12)

for arbitrary orientation ofy. We find it convenient to
express the vectdn in terms of the scalar anisotropy
field amplitudeh(q) = |h(q)| and of a suitable variable
for the orientation oh. In the following,H; andM wiill
be considered along,, so thatH, and, henceh, are
confined in the plane containirgy ande,. The orienta-
tion of h can then be specified by the angle,included
by h ande,. In terms of these quantities, Eq. (12) is

Im@)?=h(a)* F(s, a4, H) . (13)
In other words|m(q)|® is proportional to the magnitude
square of the anisotropy field and to a scalar funckon
that depends on the vectqrand (through the effective
field) on the vectoH;, as well as on their orientations
relative toh (q).

3. Magnetic Small Angle Neutron
Scattering

single atom with magnetic momept, and the vecto®
is related to a unit vectas in the direction ofk and to
the atomic magnetic moment by the vector function

_ Ma Ma
=—ge-=)-=,
Q= e(e - He) Lo

(15)
which is alternatively and equivalently expressed by the
Halpern-Johnson tensor [31].

It is well known that the discreteness of the atomic
structure of matter is of no importance for small-angle
scattering. Therefore, the sum in Eg. (14) can be
replaced by an integral involving the magnetization and
the phase factor; this leads to an expression for the
differential scattering cross-section in terms of the
Fourier transform of the magnetization [33]. It is also
well known that adding an arbitrary constant to all the
vectorsQ leaves the scattering cross-section invariant,
except for additional forward scattering which is not
relevant to experiment. Sing@ is a linear vector func-
tion of the magnetization, replacing./u. in Eq. (15),
or the equivalent continuous functiovi (x)/Ms, by the
reduced perpendicular component of the magnetization
Mp(x)/Ms amounts to such a change@by an additive
constant vector. Sinc#p(x)/Ms is the Fourier trans-
form of m(qg) [compare to Eq. (6)], evaluation of the
integral equivalent to Eq. (14) leads to

dZmeg(k)/d02 = 87° V7 biagp [P(K)[* . (16)

wherep, is assumed to be uniform, apdk) is defined
by

In this section, we derive a general equation for elastic
SANS by micromagnetics structures that describes the
differential scattering cross-section as the product of Eq. (17) implies|p(k)|? = |m(k)|* sir’ «, with a the
two functions: one dependent on the anisotropy field angle included byn andk. Equation (16) is therefore
microstructure alone, and thus independent of the formally identical to well known results for magnetic
applied magnetic field, and a second that accounts for neutron scattering (e.g., Ref. 33), except that it ex-
the field dependent response of the magnetization to thepresses the scattering cross-section in terms of the
anisotropy field. Fourier transform oM; instead ofM .

p(k) = e[e - m(k)] -m(k) . 17
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When the magnetization obeys the linearized micro-  The explicit general expression f&(y, k, H;) in
magnetics solution of the previous section, then Eq. (13) terms of the magnitudes and angles of the quantities
implies that the expression for the differential scattering involved is lengthy and not illuminating, and it is there-
cross-section, Eq. (16), can be re-written as the productfore preferred to display results for some special geo-
of an anisotropy field scattering function,&), that metries and averages that are of experimental interest.
depends only on the anisotropy field, hence on the
nuclear microstructure, but not on the applied field,
and of a micromagnetic response function for SANS, 4. Explicit Results for Scattering by
R(i, k, H)), that depends on the applied field and on the Isotropic Microstructures in Special
scattering vector, as well as on the relative orientations Scattering Geometries
of these quantities, but not on the geometry of the

microstructure: Two averages are often relevant to experiment: the
first extends over the scattering intensities of several
dZmag(k)/d2 = Sy (k) R(¥, k, Hj) . (18) defects that are statistically uncorrelated, and the
second is an azimuthal average of the intensity on the
It is convenient to defin&,; andR so thatR is a dimen- detector. In considering the first average, we assume
sionless function, and so th& has the same units as that the Fourier coefficients of the anisotropy field can
d2mad/ de2: be expressed as
Si(k) = 8m° V™ biagpi h(k)?/ M, (19) h(a) =2 hi(@), (23)
R(y, k, H) =M2F(y, k, H)) sirfa . (20) with the h; (q) originating from individual defects (e.g.,

grains). Attention is restricted to microstructures where
Besides makingr dimensionless, the inclusion of terms  the directions of the anisotropy fields of the individual
M3in the definitions of botts, andR has the additional ~ defects are uncorrelated, so that termgq) - h;(q)
benefit of makingS,, which is related to the anisotropy  with i #] take both signs with equal probability. Conse-
field, not to the magnetization, actually independent of quently, the expectation value for the sum over these
the atomic magnetic moment. This follows since, terms vanishes, and
by definition, Ms= uapa, and since bmag=0.27 X
10" mf wa/us, Wheref denotes a form factor with lh(@)>=23 |h(@)?. (24)
f=1 in the small-angle scattering region [6]. The
anisotropy field scattering function is therefore, equiva- Because Egs. (8) and (17) expressand p as linear
lently to Eq. (19), expressed in terms of the constgnt ~ vector functions ofh and m, respectively, it follows

which does not depend on the material: also that
Si(k) =8m° V™' bih(k)?, (21) Im(@)* =3 [m@)*, lpk)I> =3 Im)*.  (25)
by=0.27X 10 m/ug . (22) By comparing Eq. (25.2) with Eq. (16) for the differen-

tial scattering cross-section, it is readily verified that the

In Sl units, by =2.9X 10°A*m™ (in cgs units contributions of the individual defects to the overall
by =2.3%X 10°0e'*m™). differential scattering cross-section are also additive:

Equations (18)-(22) are central results of this work.
Within the limits of applicability of the linearized
micromagnetics equation, hence of the results of Sec. 2,
they imply that the field-dependent magnetic scattering
cross-section for neutrons depends on the microstruc-with Sy (k) = 8w® V™" b3 h; (k)% For nanocrystalline
ture through a single functiois, (k). When the satura-  solids, this additivity of the magnetic scattering associ-
tion magnetization and exchange stiffness constant areated with the individual grains contrasts with nuclear
known, then the response function can be computed, scattering, where interparticle interference is strong, to
and the equations then allow the anisotropy field scatter- the point that a decomposition of the overall nuclear
ing function to be determined from experimental scattering cross-section into a sum over cross-sections
scattering data, thus enabling measurement of theof individual grains, similar to Eq. (26), would be
anisotropy field microstructure. meaningless [34].

dZmag(K)/d2 =23 S (k) R (4, k, Hi), (26)
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For microstructures with a high number of defects in d2nag(k)/d02 = Sy (K) Rso (0, K, Hi), (31)
the total scattering volume the sum in Eq. (26) can
be replaced by an integral over the orientation of the
defects. This is conveniently done in terms of a distribu-

. . . 2
tion functions(k, ), defined so that Reo 1 (¢, K, HY) = Mj
2H g
21 S (k) =s(k, ) 8¢, (27) .
[ 1 +% ] (32)
the sum being over all defects with(q) oriented in the Ms . 2|’
interval [y—dy/2, y+d/2]. (1 + 5'”29°>
The response functioR has comparatively simple e
representations in terms of the magnitude and orienta-
tion of k when attention is restricted to two particular M2
scattering geometries: the first has the incident neutron Reo (¢, K, Hy) = S (33)

wavevector along,, normal to the applied field, and

hence has the scattering vector in the plane containing
g, and the direction of the field;,. In this geometry, the

azimuthal angle¢ under which the scattering is Consistent with the symmetry of the arrangement, the
recorded on the two-dimensional detector coincides scattering pattern has azimuthal isotropy when the field
with the angle included bl andH,, denoted above by s parallel to the neutron beam [Eqg. (33)], but when the
0. The second geometry has the incident neutron field is normal to the beam [Eg. (32)] then the scattering
wavevector along,, parallel to the applied field. For  can be highly anisotropic, with the detailed nature of the

2HZ

that geometry, we takep measured relative te. anisotropy dependent on the value of the parameter
With the response functions for the two scattering p=Ms/ Her and, hence, ok andH,. The polar plot of
geometries denoted, respectively, Ry (¢, ¢, k, H)) Rso for that geometry, Fig. 3, illustrates the anisotropy
andRy (¢, ¢, k, H;), one obtains for different values op. It is immediately obvious that,

Mg
RL (l/l, @, k, Hi):H_ZCOSzl!j

eff

M
+ sity coSe 28
(Hor + Masirg)? o1V €05¢ (28)
MZ
R (i, @, K, Hi):H—fsinZ(so—w) (29) 180
eff

In terms of the quantities introduced by Egs. (27)-
(29), the overall differential scattering cross-section
obeys

dZnag(K)/dQ = [§7 s(k, ) R (¢, @, k, Hi) dis . (30) 1.0 0.5 0.0 0.5 1.0
R(¢) / R(0)
The integral has comparatively simple closed-form Fig. 3. Polar plot of the micromagnetics response function for
solutions whers is isotropic with respect tg, that is, SANS of isotropic microstructures with neutron beam normal to
when S(k tﬂ) - Sr|(k)/2'rr: the magnetic fieldRio | (¢, k, H), versus azimuthal angle. The

numbers in the figure indicate the value of the parameteMg/Hefr.

! Equation (32) corrects an earlier, erroneous result in Ref. [19].
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at all fields, the dependency off./d(2 on azimuthal
angle is quite different from the well known Sin
variation that is observed for a magnetically aligned
array of isolated particles in a nonmagnetic matrix, or
for an array of pores in a saturated ferromagnetic
matrix. The azimuthal anisotropy of%.¢/d(2in Fig. 3

at large effective field (smap) is readily rationalized in
terms of a distribution om(k) that is isotropic in the
plane normal tdH .. At smaller field (largep), the scat-
tering cross-section is seen to develop a “spike” in the
direction parallel to the field that is explained as follows:
for the limit whereMs»Hq, Eq. (8) shows thain(k)
can have a significant magnitude only in the direction
wherem Lk. The suppression of componentsofpar-
allel to k is a consequence of the demagnetizing field
from divergence of the magnetization [compare to
Eq. (7)]. Besidesn 1L k, m needs also to satisfy L H,,
and for ageneralorientation ofk in the plane normal to
ko, that containdd,, the two conditions for the orienta-
tion of m can only be satisfied simultaneously whan
takes one of two discrete orientations, namaiparallel

or antiparallel tok, Scattering from these Fourier
components withm||k, leads to the circular part of
d2ma/d2in the polar plot for largg. But for thespecial
orientation wherek||H,, all orientations ofm in the
plane normal tdH , satisfym Lk, and can therefore have
significant values. For this orientation of the scattering
vector, @n.y/d(2 is therefore not only from two orienta-
tions of m, but from the full angular spectrum; hence
the spike of higher intensity.

In addition to the average over the orientations of the
anisotropy field, one is often interested in the azimuthal
average of the scattering cross-sections,g(k)/
d2 = (2m) ™ 2 dZpnag(k)/d2 dp. The asymmetry of
the microstructure is further restricted by considering
only cases wher&, depends only on the magnitude of
k, not ong. This applies, e.g., to untextured polycrystals
with equiaxed grains or with elongated grains with
isotropic orientation distribution of the long axes. Inte-
gration of Eqgs. (31)-(33) for the isotropic case then yield

dfmag(k)/d() =Sy (k) ﬁso(k, H) (34)
h Rk my= Mef,, 1 35
|50,L( y |)— 4H,§ﬁ MS ’ ( )
1 * Heff
_ &
Riso k, Hi = 36
1(k, H) oHE, (36)
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Figure 4 displays the response functiéts | (k, H;) and
Risoji(k, Hi) at different applied fields, for the example of
Ni.
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Fig. 4. Log-log plot of the micromagnetics response functions
for SANS of isotropic microstructures, for neutron beam normal
to the field, Rio. (k, Hi), (solid lines); and for neutron beam

parallel to the fieldRiso;(k, Hi), (dotted lines), versus scattering vec-
tor k. Values of magnetic fieldd; are indicated in the figure.

The results for the response function derived in this
section can be combined with measured values for the
magnetic fieldH;, with estimates for the demagnetizing
field based on known sample shape, and with known
values of the materials parameters, the exchange
stiffness constanf and saturation magnetizatiovs
to explicitty compute the response function. The
anisotropy field scattering function can then be
computed from experimental scattering data.

5. A Sum Rule for the Anisotropy Field
Scattering Function

In studies of nuclear scattering, one can often obtain
useful information from an invariant of nuclear scatter-
ing: the second moment of the radially averaged scatter-
ing intensity depends only on the root-mean-square of
the variation in scattering length density, but not on the
detailed geometry of the microstructure. Here, a similar
expression is derived for the anisotropy field scattering
functionS,(q). The procedure is quite analogous to that
applicable to nuclear scattering [35], and is outlined here
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merely to confirm its applicability to ectorfunction, 6. Results for a Nanocrystalline Material
the anisotropy field, as opposed to thealar nuclear 6.1 Micromagnetics Model

density.

The square of the magnitude of the anisotropy field  In this section we derive a solution for the magnetiza-
Fourier coefficient|h(q)|* is related toH(x) in real tion in real space in a nanocrystalline material with
space by spherical grains. Based on this solution, criteria are

derived for the minimum applied field necessary to
warrant the validity of the small misalignment approxi-
Ih(@)]?=2m)2 [[[Z Hp(x) exp (—ox) d*x mation, that is, foMa/Ms«1.
Consider a single-phase, single component nanocrys-
talline material where the crystallites have random
JT1Z Hp(x) exp (+igx) d® . (37) crystallographic orientation, and where the anisotropy
field arises from the magnetocrystalline anisotropy
alone. Because each graij’‘is a single crystal, the
The right-hand side of this equation can be expressed inanisotropy field in the grain is a constant vecttr;;
terms of the Fourier transform of the Patterson or auto- between any pair of grains there is a random jump in the
correlation function [35,36]C(r) of the anisotropy  direction of the anisotropy field. Since the directions of

field: the Hp; are uncorrelated)(q) obeys Eq. (24), that is,
the mean-square anisotropy field amplitude of the
lh(@)fF=@m)32 Sz Cr)exp(igr)d®r, (38) microstructure is a weighted sum of the mean-square

anisotropy field amplitudes of the individual grains. The
computation ofh(q)|* for an arbitrary arrangement of
Cr)=/[J% Ho(x+r)Hyx) dx . (39) grains is therefore straightforward once the solution for
the single grain case is known. Therefore, we shall
proceed to derive an expression for the anisotropy field
The back transform of Eq. (38) is amplitude of a single grain, assuming the most simple
grain shape, the sphere.
For a sphere with radius®? and constanHp, the
C(r)=/[[=|h(q)|?exp (-r) d*q . (40) definition of h(q) as the Fourier transform dfl o(x)
suggests that

When |h(q)|? is isotropic in the sense that it depends

only on the magnitude af, then evaluation of Egs. (39)

and (40) at = 0 leads to a relation for the mean square

anisotropy field(|Hg(x)|?)v, defined by [sin(q%) — g% cosGR)]
=3 (2m)>?Hp Vs Q)

with Vs the volume of the sphere. Except for the pre-
factors, Eq. (43) agrees with a well-known result in the
theory of nuclear scattering [36].

For a single ferromagnetic spherical inclusion in a
uniform ferromagnetic matrix where the anisotropy
field vanishes everywhere outside of the inclusion, the
Fourier transforrm(q) of the magnetization is obtained
by inserting the result fons(q) into Eq. (8). We could
not find exact closed-form solutions for the magnetiza-
tion in real space, that is, for the inverse Fourier trans-
form of m(q). However, an approximate closed-form
The integrals in that equation are invariants of magnetic solution is obtained when the terms in Eq. (8) that are
scattering that depend only on the mean square due tothe demagnetizing field from divergencé/bare
anisotropy field but not on the applied field or on the neglected, so tham(q) = h(q)/Hex. This approximation
details of the microstructure. is valid when Hgz»Ms. At smaller Hes the results

hs(d, ) = (2m)*?He [ [ v exp (ix)d

, (43)

(IHefy = VT2 [Hox)[? dx (41)

in terms of the measurable functi@ (q):

(IHel>v=V™ [ h(q)*4m q*dg

= (202 b2 [} Su (k) K k. (42)
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constitute upper bounds for the magnitudesnofind

M5, because the demagnetizing field always reduces the 4 Q4--=-=cccecceana. < 3x105KA m"
magnitude ofn. With the above assumption, the inverse . ) A
Fourier transform ofm(q) yields a magnetization that . 107 kAmMT
depends on position only through the scalar distance TS \
from the center of the inclusion: ‘\\ '
o N\ S
0.5¢ N
Hp \4
MP(T):g(r,ngH)MsW, (44) 10° kKA m™ 1
---- -~ N
=~ \" \\
g(r,@,m):l—(l@u) exp(—?) sinh(%)l—” 102 kA m’* R
) ) v % 5 Too10
whenr< R, r [nm]
and (45)

Fig. 5. The functiong for an inclusion with radius? =5 nm in Ni,
versus distancefrom the center of the inclusion. The numbers in the

g(r ,%,|H):[|@ COSh(?) —sinh<@>] exp <_|L> I_H figure indicate the value of the magnetic fiett.
H H v/ r

I

whenr > R.

The functiong describes the response of the magne-
tization to the anisotropy field in the inclusion. Figure 5 0.021
displaysg for different values of the internal field, and
for the example of an inclusion in Ni wit? =5 nm, (%]
corresponding to a grain size of 10 nm. It is seen that at <.
high magnetic fieldsg varies steeply at the interface §°'
between inclusion and matrix; as the field is decreased, 0.01¢
the variation at the interface is smeared out. Figure 6
shows the magnitude of the normal component of the

magnetizationM, versusr. In Fig. 6, H,=1072T, and 3x10* 10° 100 10\&
the remaining parameters are the same as in Fig. 5. 0 \ \\
Consistent with Fig. 5, it is seen that at high fields, when 0 5 10 15 20 25
Iy «R, the variation of the magnetization is confined to r[nm]

a narrow region near the interface between inclusion and

matrix, and that at lower fields the magnetization varies
in a transition region which extends on a larger scale Fig. 6. The reduced componeMs/Ms of the magnetization normal

into the inclusion and into the matrix. to the applied field for a spherical inclusion of radigs=5 nm in
Consider the case of small applied fields, where an otherwise anisotropy field-free matrix versus distancizom
ly > . In this case, inspection of Eq. (44) shows that the center of the inclusion. The numbers in the figure indicate the
there i.S 2 “slow” dec,rease Mo with distz.;\ncer from the value of the magnetic fieléH; in units of kKA/m. Material parameters
P

center of the inclusion in the region outside the inclusion are for .

where # <r<ly , with approximatelyMp o« 1/r. A (compare to Fig. 1). This is also seen from the limiting-
faster, approximately exponential decrease is suggestedorm of Eq. (44) forH; = 0, which has a t/variation of
by the same equation for larger distances, |y. This is the normal component ofl everywhere outside the

illustrated in the log-log plot oMp versusr in Fig. 7, inclusion:

where the It/ variation ofMp leads to a straight line for 3P2_r2

R <r<ly .The transition between slow and fast de- Me(r) =Hp——— whenr<®, H; =0,
crease oMp atr = |, suggests that variations & are 61

correlated on a length-scale of the orderlf Since and

Iy varies as the inverse root of the applied field, this S

correlation length diverges wheth is reduced to zero Mg(r) = Hp3 2
fr

(46)

whenr>%, H; = 0.
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individual magnetization profiles of all grains. With
001+ Eq. (44) forMp, this leads to
0.001+ 4 3
4 91y 1513
MZ - H 2 _|: —
P (IMef2y ={ P|>V|K/|‘ Az a7
< 0.0001}
=
1 3 R I 13 I3
0-00001 ——exp<—2—><2+7—H+ 10— +5—“>], 47)
4 In R R R
1.x1078 ¢
. ‘ and to the limiting forms
1 10 100 1000

r [nm]

Ms
; L <|MP|2>V:_<|HP|2>V|3 \/ , whenly»R,
Fig. 7. Log-log plot of reduced normal magnetizatibh/Ms versus Hi

distancer from the center of a spherical inclusion with radius 48.1
% =5nmin Ni, at an internal field of I8 kA/m. The arrow indicates (48.1)
the exchange lengthy. and

Equation (46) suggests that, in the case of a single 2 2 (H P| N
. o . : . " (Mp|?y = M3
inclusion in an otherwise uniform matrix, the condition 2
Ho«2Ms 1 5/%? is sufficient for the misalignment to (48.2)
be small and the linearized theory to be applicable,
independent of the applied field. For Ni with a grain size
of 10 nm, this requireblp«2000 kA/m, and comparesto Expressing the requirement of small misalignment,
considerably smaller expectation values kb due to somewhat arbitrarily, aM g%y /Ms? < 0.01, it is found
magnetocrystalline anisotropy of about 3.7 kA/m at from these results that small misalignment requires
300 K and 74 kA/m at 4 K (compare to Sec. 6.2 below). H; > 300 (|Hu(Xx)[*2 M} (R/Iy)® when |, » %, and

Let us now consider the validity of the small mis- H; > 10(|Hs(x)|>)¥>whenl, «%. For the example of Ni
alignment approximation in the case of a nanocrystalline with a grain size of 10 nm andHr =50 kA/m, the
material, that is, a material entirely occupied by grains two conditions areH; > 1.9 kA/m andH; > 500 kA/m,
such as the one discussed above. At internal fields suffi- respectively. The second condition is automatically
ciently large thaty, «% (or, equivalentlyH;» Ms 1 3/ #?), satisfied since, by Eg. (10)ly <% implies H;>
the perpendicular magnetization decays exponentially 1000 kA/m. In conjunction with the first condition this
outside each grain, so that there is little overlap of implies that, for the example, the small misalignment
magnetization profiles from neighboring grains. approximation remains valid down to quite small
However, at small applied fielddy, and hence the applied fields.
range of the perturbations, are larger than the grain size  Since the magnitude of the mean (macroscopic) mag-
(In»% or, equivalentlyH;«Ms | 3/ #?). In this case, the  netization in the model is approximately
net value of the perpendicular magnetization at a given
point is a superposition of perturbations with random
sign originating from a large number of neighboring
grains. Therefore, even whéw, due to the anisotropy
field of each individual grain is small, the expectation Eg. (47) has an immediate relation to the approach to
value for the net magnitude ®fl, may be large. As a  saturation in a magnetization isotherm. Results for the
measure of the mean net misalignment in the nanocrys- magnetization of amorphous ferromagnets with random
talline material we consider the volumetric mean square anisotropy are formally similar to the expression for the
of Mp , defined by(Mg?y =V [IMg?dV, with the mean magnetization implied by Eq. (47), and compare
integral extending over the entire volume of the material. favorably to experimental magnetization isotherms of
Considerations analogous to those leading to Eq. (25) nanocrystalline ferromagnets [22, 37, 38]. A discussion
suggest that the contributions of individual grains with relation to experimental magnetization data for
to the integral are additive, so that|Mp|?)y = nanocrystalline Ni and Co will be given in a subsequent
V73 My, (r)|?4 = r?dr, the summation being over the publication [20].

, whenly «%.

(IMe?v

|<M>v|:Ms— 2Ms
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6.2 SANS Note that information on the nuclear microstructure is
here obtained by analysis &f (k); since the differential
As above, we consider a nanocrystalline material with scattering cross-section depends on the produst ()
magnetocrystalline anisotropy only, and with random and the micromagnetics response functi®dnit is not
crystallographic orientations of the grains. The scatter- permissible to derive information on the nuclear mi-
ing cross-section will then depend on the mean-squarecrostructure by analyzing X,.4/d( immediately in
anisotropy field and on the grain size or the distribution terms of the Guinier or Porod approximations. In fact,
of sizes. Because of the random orientation, the expecta-the asymptotic variation of B,,4/d(2 at highkis readily
tion value for|H ¢ in a grain is independent of the grain  seen to by quite different from the law: at highk, the
size, and is identical to the value of the volumetric effective field He increases as? and hence the
mean-square anisotropy field. The expectation value is response functions vary asymptotically la$. In con-
obtained by computingl» in a single crystal as a func-  junction with thek=* variation ofS, (k), this gives rise to
tion of the orientation of the magnetization relative to dX./d2 « k™8 which is a much steeper dependency
the crystal lattice, and averaginig | over all orienta-  than the &/dQ « k™ intensity variation that is ex-
tions: pected for nuclear scattering from microstructures with
sharp interfaces. The high power-law exponent at large
(He|?0 = (4m)" HH? dQ2, (49) k can be seen in Fig. 8, which shows plots &f,dy/d2
at different magnetic fields for Ni with a monodisperse
where(2 denotes the solid angl§Hg?, is a materials  grain size of 10 nm and witk{H|?,*? = 50 KA/m.
constant, and is independent of grain size and grain
shape. Using the values for the magnetocrystalline an-

isotropy constants in Refs. [39, 40], one finds that for Ni 10* E
(He[»H? =74 KA/Im at 4 K and(|Hg/%)3?= 3.7 KA/m at ]
300 K. 102 ]
The distribution of grain sizes is described by the — ]
function n(%), defined so that the number of grains "8 10°
with radius in the interval®, Z+d%] is n(R)dZR. In o E
analogy to nuclear scattering by noninterfering parti- & 102 ]
cles, the anisotropy field scattering function is an inte- F'E
gral over the scattering cross-sections of the individual G, 10’ !
grains, weighted by the grain-size distribution function. |
For spherical grains with random crystallographic ori- %} 10° L
entations, Egs. (20) and (43) suggest that the anisotropy < 1
field scattering function is then g 10° E
L
Si(k) = 12"‘Tb£<|HP|2>!2 k=® _10-I
10"
0 H 2
S n@)lsin)kRcosk) d o I
5 n(@) 2 d2 0.01 0.1 1

k [nm’]
Except for the prefactors, Eq. (50) is identical to the
nuclear interference function of an array of noninterfer-
ing particles, and general asymptotic results at small and _. ) o . ) )
. . . Fig. 8. Full lines: magnetic differential scattering cross-section
largek are th.er.efore Imm_edlaltely tranSfer‘?ble' In partic- dnadd2 for nanocrystalline Ni with spherical grains of radius
ular, the Guinier approximation [35, 36] links; (k) at % =5nm and with(Hg?4?=50 kA/m, plotted versus scattering
small k to a mean grain radius?, according to vectork for parallel geometry. The numbers indicate values of the
Si(k) « eXp(—@ﬁkZIS); and the asymptotic variation of magnetic fieldH; in kA/m. Dotted line: anisotropy field scattering
S4(K) at largek satisfies the Porod approximation [41] ~ function S.

with
The Guinier radius obtained by analysis ofg/d(2
Si(kK) = 2wbi(|Hp Do k™ A1V, (51) depends both on the anisotropy field microstructure and
on the applied field. A series expansion of Eq. (36)
where ¢f denotes the total grain boundary area. about k=0 vyields &; « 1 —142k? at small k, which
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implies the asymptotic form H,,./d(2 o exp[— (Rn?/ Therefore, when the response function is known,
3 +14?) k7. UnlessH,;«Ms, the same result is obtained measurement of the total scattering cross-section at two
with Eqg. (35). Therefore, independent of the scattering different applied fields is required to compute the two
geometry, a Guinier fit to Hn./d(2 yields a field- unknown functions &esiqua(k)/d2 and S,(k). Note

dependent effective Guinier radius that obeys that the azimuthal anisotropy of the residual scattering
_ R oA cross-section is in general quite different from that of
%gﬂ:?mM—H_ (52) dXnag/d(2. For instance, an isotropic microstructure
0 s

subject to an applied field orthogonal to the incident
beam has Hiesiquald2 = [bZ,.+ biagSiM(¢)], Where
b, denotes the atomic nuclear scattering length,
whereas &4/ df2 obeys the quite different dependence
on azimuthal angle expressed by Eq. (32).

In addition to their different dependency on the
7. Summary and Discussion applied magnetic field and on the azimuthal angle, the

two contributions to the total scattering cross-section

In summary, we have presented an analysis of small- also depend in a different way on change of the neutron
angle neutron scattering by nanocrystalline ferromag- polarization state. In residual scattering there is interfer-
nets that is based on an analysis of the magnetic mi- ence between magnetic and nuclear scattering ampli-
crostructure in terms of the theory of micromagnetics. tudes; such interference implies that the magnitude of
The analysis requires small misalignment of the the scattering cross-section will depend on the neutron
magnetic moments and uniform magnitude of magne- polarization state [6, 33]. By contrast, there is no inter-
tization and exchange interaction; it applies irrespective ference between the nuclear scattering and the scatter-
of the nature of the magnetic anisotropy. Our results for ing from micromagnetics structures in our model, and
the variation of the differential scattering cross-section consequently d,.4/d{(2 is invariant with respect to a
with the applied field suggest that SANS experiments change of polarization. Experimental studies with polar-
carried out at different fields allow the measurement of ized neutrons may therefore provide a verification of the
the anisotropy field scattering function. This function separation of residual from micromagnetics scattering.
contains information on the magnitude of the anisotropy ~ Spin waves do not give rise &asticscattering, since
field and on the length scales over which it is correlated. the cross-section for elastic scattering depends on the
Because the coefficients of magnetocrystalline and time average of the time-dependent correlation function.
magnetoelastic anisotropy vary independently with But in general SANS instrumentation does not com-
temperature, comparison of anisotropy field scattering pletely discriminate inelastic scattering; therefore,
functions measured at different temperatures can alsoexperimental SANS data may contain contributions due
lead to insight into the nature of the anisotropy. to inelastic scattering from spin waves [42]. With a

In experimental studies, the nuclear density and/or magnon dispersion relatiofiw = D k? + gus woH;, and
composition will generally be nonuniform, and conse- an incident neutron of wavevectdt, massm, and
quently there can be a nonuniformity in the magnetiza- energy7w = 7%%k?/(2 m,), the balances of energy and
tion, even at the highest fields when all spins are aligned. momentum for the inelastic scattering event can only be
The nuclear scattering cross-section is independent of satisfied simultaneously when
the applied field and the same holds true, in the limit
of small misalignment (smalMg), for the magnetic
scattering due to nonuniform saturation magnetization. ‘ (2 m,D +1> k N Mag pe poHi
This combined nuclear and magnetsidual scattering 72 2k, 7% 2ok
cross-sectiond X 5iqua/d(2 is not accounted for in our
micromagnetics approach. When the arrangement of the
elements of the nuclear microstructure that give rise to This relation imposes upper and lower limits for the
residual scattering is uncorrelated with the arrangement allowed range of scattering vectde$or inelastic SANS
of elements that are responsible for the anisotropy field from spin waves, and implies that this range narrows as
microstructure, then the two scattering cross-sections the magnetic fielcH; is increased. With 2n, D/7%%»1
are additive, so that théotal differential scattering  for most elemental ferromagnets (the value for Ni is

In conjunction with this result, experimental investiga-
tion of the field-dependence afks may provide a
means for measuring the exchange consfant

cross-section H/d(2 is 193), the termt1 (where + or — refer to the generation
or annihilation of a magnon, respectively) may be
Aok, Hi) _ dZresiaualk) | dZmag(k, Hi) neglected, and it follows that spin wave scattering is

dQ Tdn dQ '
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completely suppressed when the applied magnetic field cross-sections of the individual perturbations can be

satisfies
%%K3
Hs———.
4ma gus o D

For Ni and an incident neutron wavelength of 0.6 nm,
this requireH; = 73 kA/m (920 Oe). Correction of the
scattering data for signal from inelastic scattering may
be required at smaller magnetic fields.

Our results imply that information on the anisotropy
field microstructure may be obtained by analyzing the
experimental anisotropy field scattering function: the
value of the volumetric mean square anisotropy field

can be measured, as can the total grain boundary areahe predictions
per volume and a mean grain radius, in case the mag-

netic anisotropy is dominated by magnetocrystalline
anisotropy. In principle, the anisotropy field scattering

additive, but their functional form (which depends on
the applied magnetic field) is quite different from
scattering by uniformly magnetized domains.

Contrary to our assumption of uniform exchange
stiffness constant, the magnetic interactions in the core
of defects in real materials may differ from those in the
bulk. For instance the exchange coupling across grain
boundaries may be weakened relative to the bulk,
suggesting a jump of the magnetization vector across
grain boundaries. The correspondingly larger Fourier
components of the magnetization at high wavevector
would lead to measurable deviations of the experimental
scattering cross-section at high scattering vector from
in the present work. Therefore,
experiment may provide a test of the validity of the
assumption of uniform exchange stiffness constant.

In subsequent publications [20], we shall present

function can also be analyzed in terms of a grain size experimental SANS data for electrodeposited nano-
distribution function, quite analogous to the analysis of crystalline Ni and Co that show good agreement with
nuclear scattering data by non-interfering particles. This the predictions of this paper.

is of relevance because a similar analysis is not possible

for nuclear scattering by bulk nanocrystalline solids
[34]. Thus, magnetic SANS may contribute to the
characterization of the nuclear microstructure of nano-
crystalline solids.

Because of the restrictive assumption of small

misalignment, our discussion cannot provide an ade-
quate analysis of the magnetic domain structure that

develops at small applied magnetic fields. When the

domain size is much larger than the characteristic size

of coherent magnetic fluctuations, then it may be
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