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1. Introduction

In the integer quantum Hall effect (QHE) [1-3], the
Hall resistancé, of thei th plateau of a fully-quantized, the 2DEG is nearly dissipationless within the quantum
two-dimensional electron gas (2DEG)Rs(i) = Vu(i)/ Hall plateau regions of high-quality devices. The longi-
I+, whereVy(i) is the quantum Hall voltage measured tudinal resistancdR (i) = Vi(i)/l1, where V(i) is the
between potential probes located on opposite sides ofongitudinal voltage drop between potential probes lo-
the device, and; is the total current flowing between cated on the same side of the device, becomes very
the source and drain current contacts at the ends of themall over ranges of magnetic field over whigq(i)
device. Under ideal conditions, the valuesRf(i) in exhibits plateaus. The values Bf(i) increase with in-
standards-quality devices satisfy the relationshipscreasing temperature.

R4(i) = h/(e%) = R«/i, whereh is the Planck constant, Many laboratories are now attempting to employ the
eis the elementary chargeis an integer, an€ is the QHE to realize an intrinsic ac resistance standard by
von Klitzing constanR¢ = 25 812.807A). However, the  using an ac ratio bridge to compare the ac quantized
conditions are not always ideal. We will assume that the Hall resistanceR; with ac reference standards. Mea-
values ofR,(i) can vary with the device temperatufe  sured values [4-9] of the ac quantized Hall resistdce
and with the frequencyf of the applied ac current are reported to vary with the frequency of the applied
(although the equations will not explicitly indicate current (usually increasing linearly with frequency), and
orf). Thus the measured valuesRf(i ) will usually not differ from the dc value by more than T(R4(i) at a
be equal tch/(e%) in this paper. frequency of 1592 Hz (angular frequeney 2#f = 10
rad/s). With one notable exception [10], the reported ac

In the dc quantum Hall effect the current flow within
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longitudinal resistances are significantly larger than the 2. Equivalent Circuits
dc longitudinal resistances in the same device under the
same temperature and magnetic field conditions. The ac Two different equivalent electrical circuits for
longitudinal resistances increase with increasing standards-quality QHE devices operated under ideal dc
frequency of the applied current, and are of orderQ m conditions whenRy4(i) = h/(e%) = R«/i have been
at 1592 Hz [4, 5, 11]. The frequency dependenced’of  described in the literature: the “diamond-array” circuit
andR, are reported to be in the real, resistive (in-phase) of Ricketts and Kemeny [14] and the “ring-array”
component of the ac impedance measurements. circuit of Delahaye [13]. The algebraic equations of

These effects might be caused by intrinsic properties both circuits are identical in the absence of longitudinal
of the quantum Hall devices. However, calculations resistance. We use the circuit of Ricketts and Kemeny
[12] of the intrinsic impedance due to the Hall capaci- [14] with little alteration, except thak,(i) is allowed to
tance of the two-dimensional electron gas across the vary with temperature and frequency, and can thereby
guantum Hall device have provided no plausible intrin- differ from h/(e’); and we include longitudinal resis-
sic impedance explanations for the observed frequencytances at the source and the drain ends of the device.
dependences of the ac quantized Hall resistaR¢e The circuit of Delahaye [13], however, was derived
Furthermore, neither the kinetic inductance [12] nor the using the assumption that the longitudinal resistance
magnetic inductance [12] of the device can explain the vanished. In order to account for non-zero longitudinal
observed frequency dependences of the ac longitudinalresistance, we add resistors at appropriate places in the
resistancdr,. Even if the intrinsic impedances consid- circuit, and again allowr,(i) to be a function of tem-
ered in [12] were significant, they would primarily perature and frequency.
affect the imaginary (reactive) component of the = We show that when longitudinal resistance is in-
impedance not the real (resistive) componint cluded, the results calculated using the two circuits are

The observed frequency dependencefRkefand R, similar, but the algebraic solutions are much simpler
could arise from problems in the measurement systems,with the diamond-array circuit. The diamond-array cir-
from the large impedances in the sample probes, or cuit will therefore be used for all multi-series connec-
from uncorrected frequency dependences in the ac ref-tion calculations. However, we present solutions to the
erence standards. These possible problems should all besimplest multi-series ring-array in Appendix A to
addressed, but in this paper we assume that there arelemonstrate the added complexity of analyzing with
indeed significant in-phase ac longitudinal impedances that circuit.
(the resistances along the devices) as reported, and
investigate what effect real longitudinal resistances 2.1 Diamond-Array Circuit
would have on the measured in-phase ac valud®,of

We use equivalent electrical circuits of a QHE device  Figure 1 shows the QHE device equivalent circuit of
to investigate the effects of these non-vanishing longitu- Ricketts and Kemeny [14] for the case when (a) the
dinal resistances on the quantized Hall resistance mea-magnetic flux densityB shown in the inset is directed
surements. The analysis soon becomes non-trivial. Tointo the figure; and (b) at an instant when a positively-
simplify the analysis, only in-phase components are charged applied curremt enters the device drain con-
considered in the circuits. We ignore all capacitances tact pad D and exits the source contact pad 8Bnder
and inductances. The effects of electrical shielding and these conditions the drain contact pad D' and the poten-
leakage resistances are also not included. All multi- tial probe contact pads 13, and 5 at the device pe-
series connections [13] to the devices used in the litera- riphery are at higher potentials than contact pad2'$S
ture are considered. The algebraic equations are exacd', and 6. The higher potentials are represented in the
and sometimes lengthy. It is important that the solutions inset by thicker lines on the device periphery. The
be exact because we are looking for explanations of curves within the device show the current flow pattern
very small, but significant, experimental effects. The for this case. The arrows pointing in the opposite direc-
final equations are presented to alleviate the need for tion to I; indicate the direction of motion of electrons,
others to perform the task of deriving them. All the and are reminders to the reader that the current within
equations have been independently derived by at leastthe device is composed of electrons passing through the
two of the authors, and then numerically confirmed 2DEG, rather than positive charges. Tkeaxis is
with computer software. directed along the device, with theaxis across the

device.
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Fig. 1. Equivalent circuit, using diamond-arrays of internal voltage genersigy;,of a quantum Hall effect device when the device is operated
on a quantized Hall resistance plateau and has longitudinal resistance. The symbols and figure inset are explained in Sec. 2.1.

Every arm of the equivalent circuit has an intrinsic They can be measured pair-wise as a function of liquid
resistance whose value is helium level via two-terminal resistance measurements
when the quantum Hall device is replaced by electrical
shorts at positions'S1' through 6, and D. The lead
p = Rali) _ V(i) (1) resistances are typically each abou® In ac quantized
2 21y Hall resistance experiments.
The potentials at the ends of the arms at points S, 1
through 6, and D are produced by diamond-shaped
Note thatR,(i) can be a function of temperature and arrays of voltage generators, whéfg; is the generator
frequency, and can differ from the valbé(e? ). There located between arms A and B, and produces a voltage
is electrical access to the device at connection points S,defined by
1 through 6, and D. Each external arm of the circuit has
a lead resistance, r; throughrs, or rp which includes
the contact resistance to the 2DEG, the wire resistance
connecting a contact pad on the device to a sample
probe lead, and the inner conductor resistance of thatwherel, andlg are the magnitudes of the current flow-
coaxial sample probe lead. The lead resistance valuesing in arms A and B of the circuit. The currerlisand
vary with the liquid helium level in the sample probe. I within the absolute quantity sign of Eq. (2) are added

VABE%“Ai |B|, (2)
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if they both enter or both leave the voltage generator, and pair carries the curreit, so all four dc resistancesg rp,
are subtracted if one current enters and the other currentr,, andry can be measured. Sample probes for the ac
leaves the generator. Since the voltages produced by theQHE, however, have a single coaxial lead to each of the

voltage generators are functions Rf(i), their values
can vary with temperature and frequency. The arms A
and B in the diamond-array voltage generator definitions
can be the external arms S, 1 through 6, andrhe
two internal segments containing resistangeandr..
Hence all of the voltage generators in Fig. 1 have mag-
nitudesVag = [Ry(i)/2]1+ because there are not currents
in potential arms 1 through 6. For clarity, the voltage

contact pads in order to reduce heat loss. Therefore only
r, and r. can be determined directly via ac measure-
ments ofV,(4,2) andVy(6,4). Values forr, andr4 could
be estimated from their dc/r, and ry/r. ratios if the
ru/r. ratio is the same for both ac and dc measurements.
Typical acr, andr. values are reported [4,5,11] to be
about 1 nf) at 1592 Hz.

The quantized Hall resistancB;(3,4) measured

generators are indicated in the figure as batteries whosebetween points 3 and 4 in Fig. 1 is

positive terminals are oriented to give the correct poten-
tials at the end of each arm. The applied ac curtent

alternates direction, so the voltage generators reverse

sign each half cycle. Thus, for the part of the period in
which I flows in the direction indicated in Fig. 1, the
voltage generators have the polarities shown. Half a
period laterl; changes direction, and all the voltage
generators reverse polarities.

The circuit elements, ry, I, andry in Fig. 1 represent
real (in-phase) longitudinal resistances within the

= VuB.4) _ [Va—Vi] _ [Vea + Ved

R4(3,4) = Ry(i).

IT IT
(®)

The device shown in Fig. 1 is homogeneous, i.e., the
quantized Hall resistanceR, are all measured on
plateau regions, their values are th@mebetweenall

device. These resistances are functions of temperatureq Ha)| potential probe sets, and they are all measured
and frequency. Longitudinal resistances are obtained by 4, thesamemagnetic flux density. Therefore

potential difference measurements along a side of the

device in thex direction. For example, the longitudinal
resistanceR,(2, 6) between points 2 and 6 is

_Va(2,6)_ [Va

— VG]

I+

R«(2,6)

®)

where V,(2,6) is the voltage difference measured be-
tween points 2 and 6V, is the potential at point 2
relative to the circuit ground (which would be located at
point S when making four-terminal resistance measure-
ments).V; is the potential at point 6, and = Vr/Rr is
determined by measuring the voltage drép across

a reference resistand® connected in series with the
guantum Hall device. Then, according to Fig. 1,
Vi(2,6) =Vec + elt — Vg + Vap + Ipl7 = V. Since no
current flows through leads 2, 4, or 6 in Fig. \Is =

Ve4 = Vap = Vi = [R4(i)/2]1+. Therefore

R(2,6) =R(1,5) =rp + re. (4)

R4(1,2) =R(3,4) =R«(5,6) =Ru(i) . (6)

Note once again th&,(i) can be a function of temper-
ature and frequency, and can differ from the ideal value
h/(e%). This equivalent circuit of Ricketts and Kemeny
[14] satisfies the conditions of a quantum Hall effect
device.

2.2 Ring-Array Circuit

Figure 2 shows a generalized form of the ring-array
equivalent circuit of Delahaye [13] for the same current
and magnetic flux density directions as Fig. 1. Resis-
tancesrip, rap, throughrsg have been placed in series
with the voltage generators to simulate real (in-phase)
longitudinal resistances within the device. These series
resistances could be thought of as internal resistances of
the voltage generators. Once again, every arm of the
circuit has a lead resistancg r; throughre, andrp, and
an intrinsic resistance whose value isR4(i)/2. The
values of Ry(i) can be functions of temperature and

Sample probes used in dc QHE measurements have drequency, and are not necessarily equaii@?). The

pair of leads to the source contact pada8d another
pair to the drain contact pad DOnly one lead of each

564

resistancesp, rap, throughrss can also be functions of
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Fig. 2. Equivalent circuit, using ring-arrays of internal voltage generattags of a quantum Hall effect device when the device is operated on
a quantized Hall resistance plateau and has longitudinal resistance. The symbols are explained in Sec. 2.2.

The potentials at the ends of the arms at points S, 1 resistances; throughrse. Because there are no currents
through 6, and D are now produced by a ring-shaped in arms 1 through 6, the generatdfs, Vi, Vss, andVeg,
array of voltage generators, whekég denotes the  produce zero voltage in Fig. 2. The voltage generators
voltage produced by the generator located between Vip, Vap, Vss, andVss have magnitudegas = [Ra(i)/2]1+.
external arms A and B, and is again defined by We again measure potential differenc®gA,B)

Vag = (Ri/2)|Ia = lg|. The currents are addedlif and around the periphery of the device between points S, 1
Is both enter or both leave the voltage generator, and arethrough 6, and D, and then assign values to the voltage
subtracted if one current enters and the other currentgeneratord/,s and series resistances of the equiva-
leaves the generator. It is important to note that the armslent circuit. Unique assignments can not be made
A and B in the ring-array voltage generator definitions because there are nine unknown resistancesd the
include only currents in thexternalarms S, 1 through  eight values of »g) and eight unknown voltage genera-
6, and D,notin the eightinternal segments containing  tors, but only seven independent voltages which can be
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measured (three quantum Hall voltages and four longitu- 3. Non-Uniform Quantum Hall Voltage
dinal voltages). Therefore, we find the simplest solution Distributions

that is consistent with the results of Sec. 2.1, and assume

in Fig. 2 that (a) the sum of resistances in both the top  We assumed in Fig. 1 and Fig. 2 that the quantized
half and the bottom half of the ring are equal, i.e., that Hall Vo|tagesVH are all measured on p|ateau regions
lip+ T3+ s+ ss=Top+ a2+ Tea+ Ise @nd (D) that  \whereV, is independent of the magnetic flux density,
the device is homogeneous. Therefore the currents in theand that the resulting quantized Hall resistarRgsire

top half and the bottom half of the rinto andlzp, are  the same for all the Hall potential probe sets at the same

both equal td+/2. This means that magnetic flux density. These conditions will certainly
be necessary when making multiple-series connections
g2+ Teq _ o+ i i
R(2,6) =R.(1,5) =2 - 64 _ fa1 - 53 @) to the same device. But what if one .Of the Hall probe
potential sets has a value of the quantized Hall resistance

R that differs from theR, value of the other two sets?

This section examines that particular inhomogeniety,
if R«(2,6) is still defined to beR((2,6) = Vi(2,6)lr. which can occur if the device (a) has a nonuniform
Equation (7) still does not uniquely define the resis- 2DEG density due to improper fabrication techniques;
tances 4, r'ss, 31, @andrs, but we can assure that Eq. (7)  (b) suffers environmental deterioration of the surface;
is identical to Eq. (4) by lettingu = rs; = 2rp andres = (c) is operated at temperatures that are too high [15]; (d)

rss = 2re, wherer, andr. are defined in Fig. 1. The s cooled too rapidly; or (e) has one or more contacts
ring-array circuit of voltage generators distributes the with nonnegligible contact resistance.

current within the device into two paths, which is the
reason for the factors of two in the longitudinal resis- 3.1 Diamond-Array Circuit Results
tances. It follows that

Figure 3 shows the diamond-array-based equivalent
) circuit when the left end of the device has a quantized
Ri(1,2) =Ru(3,4) =Ru(5,6) =Ru(i) (8) Hall resistance valuR}(i) between probes 5 and 6 and
the remainder of the device is still R(i). In this case

. . i the Hall voltages are
only if rsg=rssandr,p = rip. This also requires thaitp

=rip = 2r,andrsg = rss = 2rq for Eq. (8) to be consistent

with Eqg. (5). We emphasize that the assumptions Vi(1,2) =Vu(3,4) =Ru(i)I+ (9a)
fop = 1p = 20 sy = I3 = 2rp, Fea = Is3 = 2r;, and

rse = Iss = 2rqg were made so that the solution for the

circuit in Fig. 2 is consistent with that of Fig. 1. - — R(i

We have also derived the equations s and R, Vi(5,6)= Ru(5,O)r = Rl (%)
using the equivalent circuit of Fig. 2 without making the
simplifying assumptions described above, but have not
included those equations because they are very compli-
cated. The simplest solution described above is adequate
to model this circuit.

In addition, we have derived the current and voltage v, (4 6)= R,(4,6) = {rc N [RH —Rs
equations for the equivalent circuit of Fig. 2 using 2
Delahaye’s [4] assumption that the resistances lakreled
have the ideal valub/(e%), and that the voltage gener-
ators produce ideal voltag®ss = h/(2e% )|l = Ig|. The
values of resistancesp, r2p, throughrsg are adjusted to
give the measured values &;(i) and R, around the
device periphery. The equations are very complicated,
but numerical results using typical experimental values

for the circuit elements are equivalent. For this reason, The longitudinal resistance along this section of the

we use the method of adjusting the valueRu{i) to device is therefore the averageR{f(4, 6) andR,(3, 5).
agree with quantized Hall resistance measurements be-The longitudinal voltaged/,(2, 4) = R(2, 4)lt = rylt

cause that method yields much simpler equations and andV,(1, 3) = R(1, 3)1 = ryly remain the same as in
identical numerical results. Sec. 2.1.

and the longitudinal voltages are

(10a)

| S——
——
—

V,(3,5) = R.(3,5) = {rc— [R“—ER“}} l.  (10b)
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Fig. 3. Equivalent circuit using diamond-arrays of voltage generators when the left end of the device has a quantized Hall resistd®ice value
and the rest of the device remainsRafi). The results are given in Sec. 3.1.

3.2 Ring-Array Circuit Results it is necessary that

Figure 4 shows the ring-array-based equivalent circuit Fsslip = Fselan (11b)
when the left end of the device has a quantized Hall
resistancéR(i) and the rest of the device is still Bt(i ).

We label the internal currents in the top and bottom
halves of the ring a;p andl,p, respectively. Note that = — B (i

even though the top and bottom halves of the circuit VH(3, 4= Ru(3, Dl = ROl (123)
appear to be symmetricdl, does not have to be equal

to I, and in fact is not equal, as will be shown. In order the internal current in the bottom leg of the circuit must

for the quantum Hall voltage to be be

and in order for

V(5. 6) = Ry(5,6) = Ri(i)Ir (11a) lyo = 'T_'“’:W . (12b)
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oy

Fig. 4. Equivalent circuit using ring-arrays of voltage generators when the left end of the device has a quantized Hall resistaRgg vahdse
the rest of the device remains Rt(i). The results are given in Sec. 3.2.

Furthermore, in order that homogeneous device. However, we find below that
se # lss # 2rg, [31 F T2 F 2y, @NAT1p # Ip F 2Ua
Vu(4, 6)= R(4, 6)l; = {rc N [RH - RH]}IT (13a) The combination of Eq. (11b) and Eqg. (12b) yields the
2 result
and Fs _ o _ [2Fc= (R = Ry)] 13c
rss lao  [2re+ (RE—=Ry)]’ (13¢)
V,(3,5)= R(3, 5)i; = {rc - [R“ - R“}}h . (13b)
SOrse # Iss # 2rgandlip # lop .
We also require
as in the diamond-array case, = rss= 2r., which is the )
same assumption made in Sec. 2.2 for the case of the Vi(1,2) = Ry(1, 2 = Ry(i)Ir (14a)
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SO
fz _[2re= R4 —=Ry)] _ i
rsi [2re+ (RY—Ry)] o (14b)
and
oo _ lio
o o (14c)

Since the voltages must sum to zero around the ring of
voltage generators and internal resistanbgsnust also
satisfy the condition

[(RY—Ry) + (rip + rap + sz + I'sg)]

+ a1+ Tsg+Is) + (Moo + laz + Tea + 5]

Iz = [(ro

(14d)

as well as Eq. (12b).

Because of the larger number of unknown variables,
the solutions derived using the ring-array circuit are
more complicated than those for the diamond-shaped
array of Sec. 3.1. Furthermore, many of the internal

resistances are expressed as ratios relative to other resis-

tances in the circuit, rather than unigue values. However,
they could be assigned unique values by lettiag=

Is3 = 2, I'se = I = Ip = [2r. — (Ry — Ry)], andrss =

s = rip = [2rc + (R — Ry)].

4. Load Resistance Across the Device
Ricketts and Kemeny [14] tested their equivalent cir-
cuit experimentally by placing a load resistor across one
pair of Hall potential probes. We consider the effects of
a load resistor in this section for both diamond-array and
ring-array circuits. The results may explain the observa-
tions of negative values ofy reported by Ricketts and
Kemeny [14]. The equations fdry andV, are not the
same for the two equivalent circuits, but the numerical
results are nearly identical if representative experimental
values are used for the circuit elements.

4.1 Diamond-Array Circuit Results

Figure 5 shows the equivalent circuit when an external
load resistanc®_is placed across the potential contacts
3 and 4. The directions of the applied currénand the
magnetic flux densityB are reversed from those in Fig.
1 in order to easily compare the results with Ref. [14].
Thus the source contact pata®d the potential contact
pads 1, 3, and 5 are at a higher potential at this instant
in time than the drain contact pad Bnd the potential

569

contact pads'24', and 6 when there is no external load
resistor. We have separated the lead resistanaexir,
from the load resistand® . The solutions for the current
through the load resistance, the quantum Hall voltages,
and the longitudinal voltages are

RH

IL:(RH+RL+r3+r4) Ir (15)
Vu(1,2) =Vu(5,6) =Rult (16a)
_ (Ritrs+ry)
V(3,4) = RH[l _(RH +R +r3+ r4)} I (16b)
and
V(@.2)= [+ (R EHgLQH:rZAl ! (17a)
_ [ rsRy 1
V,(3,1) = _rb "RiIFR LTI I+ (17b)
_ [ raRy 1
V,(6,4) = _rc “RiFR 15719 I (17c)
_ Ru(Ru + 13)
V,(5,3) = [rc + Ri+R 15+ r4)] I . (A7d)

Equation (17b) and Eqg. (17¢) may explain why some
of the V, measurements of Ricketts and Kemeny [14]
were negative wheB was within a quantized Hall resis-
tance plateau. If this equivalent circuit is a correct repre-
sentation of quantum Hall devices shunted by load resis-
tors, then negative voltages should be experimentally
observable when the second terms within the brackets in
these two equations are larger than the longitudinal re-
sistances, andr.. Even though some measured voltages
become negative when an external load resistor is placed
across a quantum Hall potential probe set, all resistances
in the equivalent circuit remain positive, as they must.

Equations (15) through (17) were derived for an
externalload resistance. If there wasternal leakage
resistance within the devic®_ would be placed across
the contact pads and 4 in that case, rather than across
connection points 3 and 4. The currents then bypass
resistances; andr,, so they would be removed from
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Fig. 5. Equivalent circuit using diamond-array voltage generators when a load resiftanseplaced across the Hall potential contacts 3
and 4. The results are presented in Sec. 4.1.

Egs. (15) through (17), and there would be no negative It then follows that
longitudinal voltages.

_ Ry
4.2 Ring-Array Circuit Results = (Ri+ R +r3+71y)
Figure 6 shows the equivalent circuit with ring-arrays 1
of voltage generators when there is an external load X I+
resistancé®_across the device. We found in Sec. 2.2 that [1 + Ara+ 1) (re + 1o) }
in order to be compatible with the diamond-array re- (Ry+ R+ s+ 1a) (Ta+ T + Fe + To)
sults, (19a)
p=Tp=2r 18a
o : (182) Iss=lr —lsa=1L+I3p
31 = T4 = 2rb (18b)
fro = foa = 21 (180) _1 [1 4 2ratry) _] | (19b)
Fss=Tse= 2rq. (18d) 2 (ratmm+re+rg] "
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Fig. 6. Equivalent circuit using ring-array voltage generators when a load resistans@laced across the Hall potential contacts 3 and 4. The
results are presented in Sec. 4.2.

Ary(ra + rp)

(FatFp + Fe + o) o (200)

1 2(ra +
lsa=lr=ls3=lap—1L = 2 {l _ﬁ] I VH(5,6) =Rulr +

(19¢) Note that, unlike the results derived in Sec. 4.1 using the
diamond-array circuit, there are corrections of order
2r I to Vu(1,2) andvy(5, 6) in the presence of longitu-

Ar(re + 1y dinal resistance and a load resistor. The exact solution

Vi(1,2) =Rl - (Fat Fp + Fe + Q) 0 (202) for Vi(3,4) is much more complex than the ring-array
Eq. (16b), and we do not give it here; but it can be
greatly simplified by making the assumption that the

| device is homogeneous, so thiat- r, = r. + rq. Then
Ry+rs+r,—2(0.+r, 202+ 1,
w.=rfs - Bl o el @D
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and

T (22a)

a2 s B2

(Ri+ R +r3+ry)

(rs + 2ry) Ry

VX(3,1): |:rb - (RH n RL s+ r4):| IT (22b)
V(6®=[r— (ra + 2re) R ]| (220)
e ¢ (Ryu+ R +r3+ry) T

V,(5,3) = [rc + (EHH(fHRt _rjr: f_ri)] . (22d)

As with the quantized Hall voltages, the equations for
the longitudinal voltages differ somewhat from those of
the diamond-array circuit. The numerical values of

5.1 Hall Voltage Configuration

Figure 7 shows two double-series connections to the
device. One double-series connection emanates from
point Y to points D and 3. The other double-series con-
nection proceeds from point Z to S and 4. Points Y and
Z are where the four-terminal-pair definitions [17, 18]
of the resistance standard are achievédandV; are
voltages at points Y and Z, respectively. The magnetic
flux densityB is directed into the figure, and the total
positive current; again enters the device from the right
to the left. Therefore the electron flow pattern within the
device is the same as that in Fig. 1. The drain contact
pad D and potential probe contact pads 3, and 5are
all near one potential, while the source contact pad S'
and potential pads'24', and 6 are all near another
potential.

Inner conductor resistances in the coaxial cables mak-
ing up the double-series connections are again included
in the lead resistancesg r, throughre, andrp along with
the contact resistances to the two-dimensional electron

these expressions are nearly identical for both circuits, gas and any wire-bonding resistances. The lead resis-
however, when typical experimental values are used for tance of each arms throughr;, of the equivalent circuit
the circuit elements. can be determined from pair-wise, two-terminal resis-
We have seen in Secs. 2 and 3, and in this section, thattance measurements described in Sec. 2.1. Lead resis-
in the absence of significant longitudinal resistance, the tances are each typically @ for ac quantized Hall
diamond-array and ring-array circuit results reduce to resistance experiments.
identical forms. The validity of ring-array circuits with It is important to note that the values for the longitu-
negligible longitudinal resistances present have beendinal resistances, Iy, re, andrq shown in Fig. 7 and in
verified in the precision experiments of Jeffery, all subsequent figures can be obtained from potential
Elmquist, and Cage [16]. We have chosen to use the difference measurements around the periphery of the
diamond-shaped voltage generator arrays of Ricketts device for theregular (single-series) connections of
and Kemeny [14] in the remainder of the calculations, Fig. 1. For example, we hawg = R(2,4) = V,(2, 4)]+.
rather than the ring-shaped arrays of Delahaye [13], The ac longitudinal resistances are of order O rat
because the calculations are much easier in the dia-1592 Hz. We use the regular (single-series) connections
mond-array circuits when longitudinal resistances are to assign values to, Iy, rc, andrg in order to see what
present. Appendix A will, however, give the simplest errors occur in measurements of multi-series circuits.
example of a ring-array multi-series circuit having lon- The double-series diamond-array circuit current solu-
gitudinal resistance. tions are

5. Double-Series Connections
_ (Ry +1y)

T (Ry+rs+ratro+rg)

Is I+ (23a)

Accurate ac quantized Hall resistance experiments
use four-terminal-pair measurement techniques [17, 18].
The large coaxial lead resistances and capacitances in

the ac sample probes necessitate the use of Delahaye’s _ (Ry + r3)

[13] multiple-series connections to the device. We use o = (Ry+rp+rs+ra+ry) | (23b)
Kirchoff's rules to sum the currents at branch points and

the voltages around loops to obtain exact algebraic solu-

tions for currents and voltages of the equivalent circuits

when using multi-series connections to the quantum l. = (ro + ra+rp) I =~ r_DI (23c)
Hall device. All multi-series connections either used or ST(Ry*roFrstratr) TRy

proposed in the literature are considered.
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Fig. 7. Equivalent circuit for two double-series connections to a quantum Hall effect device with diamond-array voltage generators. The
quantized Hall voltag&/,(Y, Z) is measured between points Y and Z. See Sec. 5.1 for the algebraic solutions.

The quantized Hall voltage measured between points

(rs+re+ry) l=Ts |
™ Y and Z is by definition

(Ri+rs+ra+r.+ry) ' Ry

l4

(23d)

Vu(Y,Z) = [Wy =Vz] = Ru(Y,2) I+ . 24
where the values of the quantized Hall resistance w(¥.2) = Vv =Vd] ¥.2) Ir (24)
Ry = Vy/l; are obtained from single-series quantum Hall
voltage measurements. Once again, the vaIueEEHof. Taking the path along potential probes 4 and 3, the
should be.the same _along the device before making quantized Hall voltage is
double-series connections, but the values are not neces-
sarily equal to the von Klitzing constaRk.

| VH(Y, Z) = Ryl +r3lz + raly (253.)

— I3 (rD + Iyt rb) r4(rs +r.+ rd) :|
VulY.2) = RH[l T R(Ri+ o+l 1+ 1) R(Ra+ T+ ot 1o+ 1) I (25b)
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tances are used in Table 1. This islage error
compared with the 2.4 107 relative combined stan-
dard uncertainty of the complete measurement chain at
NIST [19, 20], i.e., from the quantized Hall resistance to
o the calculable capacitor. The fractional correction to
The sum of the last two terms within the brackets of Ru(Y,Z) should preferably be no larger thanx 10™.

Eq. (25b) is the error in measurify(Y, Z) in a double-  th4t js why triple-series or quadruple-series connec-
series circuit relative to the correct single-series circuit tjons are required in accurate experiments.

valueR,. _ _ _ The approximate solutions to the curretdsand I,
Table 1 lists the current ratios and the relative errors in and the quantized Hall resistareg(Y, Z) [not shown in

Ra(Y, Z) for four representative cases with double-series {q taple but given by Egs. (23c), (23d), and (25¢)] are

connections. The lead resistances in these four cases ar@atisfactory. The worst case is for Wlead resistances

all either 1Q or 1042, and the longitudinal resistances 54 0.1 n6) longitudinal resistances where the approxi-

are all between 0 and 1 nf). (We chose 1@) because  5te values of, andl, are fractionally 1.2< 10° larger

the lead resistances can approach that value in samplgpan the exact calculation. The approximate value of

probe leads of helium-3 refrigerators.) . Ra(Y, Z) is fractionally 1.8x 107 larger than the exact
There is a fractional correction 132 10° to the exact calculation for that case.

calculation ofRy(Y, Z) when typical 1Q) ac lead resis-

or approximately

Vi(Y,2) = RH[l +fafo r“rs] lr.  (25c)

R-R: " RiRs

Table 1. Current ratios and fractional errors in multi-series measurements of the quantized Hall res¥s(&hZ¢ when all the lead resistances
have representative values and all the longitudinal resistances have representative vajues

Configuration Fig. / Sec. Lead Longitudinal Current Current Current Fractional Hall
numbers resistance resistance ratio ratio ratio resistance error
o Iy la/I+ la/l+ I/l [Ru(Y,Z)/R] -1
(®) (mQ)
Double-series 7/5.1 10 1.0 7.73810% 1.199 x 10°®
10 0.1 7.736x 107 1.199 x 10°
1 1.0 7.762x 10° 1.203 x 10°
1 0 7.747x 10° 1.200 x 10°%
Triple-series 9/6.1 10 1.0 7.73¢7 10* 6.764x 107 1.048 x 107
“normal” 10 0.1 7.736< 107 6.067x 107 9.401 x 107*°
1 1.0 7.755< 107 8.348x 10°® 1.294x 1071
1 0 7.747x 10° 6.002x 10°° 9.301x 107*
Triple-series 11/7.1 10 1.0 7.737 10 7.538x 107 -1.538x 1072
“symmetric” 10 0.1 7.736< 107 6.144X 107 -1.454x 10°%°2
1 1.0 7.755< 10° 1.610x 107 -1.549x 107°2
1 0 7.747x 10°° 6.002x 10° 9.301x 10°®
Triple-series 13/8.1 10 1.0 7.738 10" 6.764x 107 -1.538x 107"
“offset” 10 0.1 7.736x 10*  6.067x 107 -1.454% 10°%°
1 1.0 7.762x 10° 8.348x 10°® -1.549x 107"
1 0 7.747x 10° 6.002x 10° 9.301x 107*®
Quad-series 15/9.1 10 1.0 7.73710°* 6.764X 107 7.794X 10® -1.548% 107°¢
10 0.1 7.736x 107 6.067x 107 8.212x 10° -1.548x 10°8°
1 1.0 7.755x< 10° 8.348x 10® 7.748x 10® —1.550% 107°
1 0 7.747x 10° 6.002x 10° 4.650%x 10" 0

#Eqg. (33c) predicts that the measured quantized Hall resis®i(deZ) is approximately the quantized Hall resistafgeminusthe longitudinal
resistancerg + r¢), rather than jusRy.
P Eq. (38b) predicts that the measured quantized Hall resis®(de Z) is approximately the quantized Hall resistafgeminusthe longitudinal
resistancerg + r¢), rather than jusRy.
¢ Eq. (43b) predicts that the measured quantized Hall resisR(d€ Z) is approximately the quantized Hall resistafeminusthe longitudinal
resistancerg + r¢), rather than jusRy.
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5.2 Longitudinal Voltage Configuration lines [21] for dc quantum Hall effect measurements.
Instead, a double-series equivalent circuit shown in
The most direct method of measuring ac longitudinal Fig. 8 might be used for longitudinal voltage measure-
voltages is to use the regular single-series connections toments if significant antenna noise is present in the sam-
the device shown in Fig. 1, whek&(2,4) =V,(1,3) = ple probe leads. We assume that potential points 2, 4,
rplr and Vi (4,6) = V(3,5) = rlt. Some experiments, and 6 are near virtual ground in the balanced ac bridge,
however, report large antenna noise generated on samso only open leads 1 and 5 act as antennas. What is the
ple probe leads that remain unconnected at potential effect on theV, measurements with this circuit?
points 1 through 6. It is reportedly best in that situation
to either remove unused potential probe leads at the

. . +
device potential contact padsttirough 6, or to connect Ipb = (Rt 1s) I+ (26a)
e . (Ry+rp+r3+r,+rp)
as many existing sample probe leads as possible to the
device.
Removing leads at the contact pads would not be
desirable for a resistance standard because the device _ (rp +ra+r1p) _

D
must be warmed to room temperature between the quan- ls = (Re+rp+rs+ra+ry) Ir = Ry I, (26b)
tized Hall resistance measurements and the longitudinal
resistance measurements; that violates the recom-

mended Consultative Committee on Electricity guide- which are the same as in Sec. 5.1, and

o .
s

5 3 1
[ . i IT 1.3 Y
S D ¢
6| 4| 2:

5 3 1 Do

r. I.3r r

° 53 1. I,
5 l 3 1 .

r r r D§ l

r r r
r
<§ S 6| 41 2|
I; Ie Iy P
l s 6 4

2
f Vi (4,6) f Vy (2,4) f

Fig. 8. Equivalent circuit for one double-series connection to a quantum Hall effect device with diamond-array voltage generators. The
longitudinal Hall voltaged/ (2, 4) andVi (4, 6) are measured between points 2 and 4, and between points 4 and 6. See Sec. 5.2 for the algebraic
solutions.
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There is no correction tw, (4, 6). Table 2 displays the
current ratios and the relative errorsi(2,4) arising

Vi(2,4) :rb[l o (otlatry ] I = rb[l —r—"} Iy

(Ri+rp+rs+ra+ry) R

Vy(4,6) =rclt

(27a)

(27b)

Ru(Y, Z) measurements. The relative errorsRpa(2,4)
are acceptably small becauseas small; the same argu-

from the three combinations of lead resistances and ment holds for the approximation tg in Eq. (27a).
nonzero longitudinal resistances used in Table J[ for

Table 2. Current ratios and fractional errors in multi-series measurements of the longitudinal resi®g@¢cé¥ andR, (4, 6) when all the lead

resistances have representative valiieand all the longitudinal resistances have representative véjues

Configuration Fig./Sec. Lead Long. Current Current Current Fractional Fractional
numbers resist. resist. ratio ratio ratio resistance resistance
o Iy I4/1+ 1a/l+ Is/l+ error error
()] (mQ) R(2,4)f—1  R(4,6)f—1
Double-series 8/5.2 10 1.0 7.73810* —-7.738% 10* 0
10 0.1 7.736x 10* -7.736x 10* 0
1 1.0 7.762x 10° -7.762% 10° 0
Triple-series 10/6.2 10 1.0 7.737 10 6.764x 107 —6.764% 1077 0
“normal” 10 0.1 7.736x 10™* 6.067 X 107 —6.067X 107 0
1 1.0 7.755% 10° 8.348% 10°® —8.348% 10° 0
Triple-series 12/7.2 10 1.0 7.737 10* 7.538x 107 -7.538x 107 -7.538x 107
“symmetric” 10 0.1 7.736< 10 6.144%X 107 —6.144X 107 —6.144X 107
1 1.0 7.755x 10° 1.610x 107 -1.610x 107 -1.610x 107
Triple-series 14/8.2 10 1.0 7.73810* 6.765X 107 —7.744X 10* -6.764X 107
“offset” 10 0.1 7.736x 10* 6.067Xx 107 —7.742x 10* -6.607x 107
1 1.0 7.762x 10° 8.349x 10® —7.771x 10° -8.348% 10°®
Quad-series 16/9.2 10 1.0 7.7%710* 6.764X 107 7.794Xx 10® —7.544Xx 107 -7.794x 10°®
10 0.1 7.736x 10™* 6.067x 107 8.212X 10° —6.149x 107 -8.212Xx 10°
1 1.0 7.755% 10° 8.348x 10° 7.748x 10® -1.610x 107 -7.748x 10°®

6. “Normal” Triple-Series Connections

6.1 Hall Voltage Configuration

Figure 9 shows two triple-series combinations to the quantum Hall effect device connected in the usual

| [(ro + ra)(rs + ry) + ro(Ru + ra)]
7 [(Ry+rpo+ri+rg)(Ry+rs) + (rp+ra)(r+ro) + ro(Ry + rl)]

Iy ol
la = [RH * RHR.J

| [(rS + rd)(rG + rC) + rC(RH + rG)]
TRy +rs+ ro+ r)(Ru + 1) + (s + 1) (e + 1) + re(Ra + re)]
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Fig. 9. Equivalent circuit for two “normal” triple-series connections to a quantum Hall effect device. The quantized Hall xGl{xg#) is
measured between points Y and Z. See Sec. 6.1 for the algebraic solutions.

= [I;Z ¥ Rr:Ir:;H] Ir (28d) lp = ((I?H o ::)) Iy (289)
_(Ra+re)
=& +(rr°Dirf) Tyl (@8e) ls= vty o (28h)

Taking the path along potential probes 4 and 3, the
quantized Hall voltage is

_ (rs+r1g) rs
|6 = (lT - |4) == IT (28f)
(Ry+rs+rg+rg) Ry V(Y,Z) = Rals + Tsls + Fals (29a)
_ rs [(ro + ra(ra + ry) + ro(Ra + 1]
Vu(Y,Z) = { RH[(RH +rp+ri+71y) (Ry+r3) + (rp+ra) (r+rp) + rp(Ry + r1)]

raf(rs + ro)(re + ro) + re(Ry + re)] } It | (29b)

Ral(Ra +rs+re+1g) (Ry+14) + (rs+rg) (re + 1) + re(Ry + 1)
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or approximately

rarsre + rcRyl
RuR1R4

rs[rory + ryRy]
RiR4Ry

}h

(29¢)

Vi(Y,2) = RH{l +

Table 1 lists the current ratios and the relative errors in
Ru(Y, 2) for the four representative cases with “normal”
triple-series connections. There is an acceptable frac-
tional 1 X 10° correction to the exact calculation of
Ru(Y, Z) for untypically large 100} ac lead resistances;
typical 1Q) ac lead resistances present no problem at all.

The approximate solutions to the currents [not shown
in Table 1 but given by Egs. (28b), (28d), (28e), and
(28f)] are satisfactory. The worst case is for @Qead
resistances and 0.1{nlongitudinal resistances, thre

the approximate values bfandlg are fractionally larger
by 1.2 X 10° than the exact calculations. The worst
approximation to the value &(Y, Z) [not shown in the
table but given by Eq. (29¢)] is only fractionally larger
by 1.8 x 10*?than the exact calculation for the case of
100 lead resistances and Xongitudinal resistances.

6.2 Longitudinal Voltage Configuration

Figure 10 shows a “normal” triple-series equivalent
circuit that can be used for longitudinal voltage mea-
surements if significant sample probe lead antenna
noise is present. The solutions for currehtds, andlp
are the same as those listed in Eqgs. (28a), (28b), (28e),
and (28g). The longitudinal voltages are

Vi(2,4) = rb{l

or approximately

There is no correction t&,(4,6). Table 2 displays
the current ratios and the relative errordli{2, 4) aris-

VX(2,4): Iolt =Tl (30a)
[(ro + r)(ry + 1p) + ro(Ry + 1y)]
T[(Ry+rp+r+r)(Ry+r3) + ?rD +bra) (1 + o) + ro(Ry + 11)] }IT : (30b)
Vy(2,4) = rb{l - [% + F;:);e:]} It (30c)
Vi(4,6) =rdy . (30d)
| ]
b=[(ro + r)(Ru + rs + e + ry)] (31b)

ing from the three combinations of lead resistances and
nonzero longitudinal resistances used in Table 1 for
R4(Y,Z) measurements. The errority(2, 4) relative to

the correct valuer,, and the approximate value of
R«(2,4) given by Eq. (30c) are acceptably small because
ry, is small.

7. “Symmetric” Triple-Series Connec-

tions
7.1 Hall Voltage Configuration

Figure 11 shows two triple-series combinations to the
guantum Hall effect device connected in a symmetrical
manner. The solutions are more complicated, so we
define some intermediate substitutions to simplify the
final algebraic expressions. Let

a= [(rb + rc)(F\)H +trs+rg+ rd) + re(rs + rd)] (316\)

578

¢c=

[(Ry+ra+rp+r)(Ry+rs+rs+rg) +re(rs+ ry)]

(31¢c)
d=[(ro+ 1Ry +ra+ 1.+ 1) +ry(rp + 1] (31d)
e=[(ro+r(Ra+rp+ri+ry] (31e)

f=
[(Ri+rs+ry+r)(Ry+rp+ry+ry) +ry(rp+ry)l
(31f)

The “symmetric” triple-series current solutions are then
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Fig. 10. Equivalent circuit for one “normal” triple-series connection to a quantum Hall effect device. The longitudinal Hall val{é&€s and
V,(4,6) are measured between points 2, 4 and 4, 6. See Sec. 6.2 for the algebraic solutions.

= _‘_‘_(éf — M — (rs+rg _Is
I, = [(éf—bé)] It (32a) b= mrrrrnary (=gl (20
~ (rp + 1o Idfe
e e O
_ (é&—éé)]
s = [7—»7 I+ (32c)
(& =be) _ (Ru+ro)
Is = m lg . (32h)
| o *ro)  rors
i sl (820)

Taking the path along potential probes 6 and 5, the
guantized Hall voltage is

(ro +ra)

I, = (lr—l) =21, (32
(Retfo+n+rd R 1 Vi(Y,2) = Rilr =Rl + Tls + 1els (33a)
VY. 2) = RH{l_(af—Ba) s @d-28) 1 (rs+rg [ _(af—E)d“)]}l (33b)
AR (6f —b&) Ry (&f —b&) Ry (Ri+Trs+r6+r1y) @cf -]’
Vi(Y,Z) = &{1—% ]} Iy . (33c)
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B

Fig. 11. Equivalent circuit for two “symmetric” triple-series connections to a quantum Hall effect device. The quantized Hall viltdg®
is measured between points Y and Z. See Sec. 7.1 for the algebraic solutions.

Table 1 lists the current ratios and the relative errors  The approximate solutions to the currents [not shown
in Ry(Y,Z) for the four representative cases with in Table 1 but given by Egs. (32b), (32d), (32e), and
“symmetric” triple-series connections. It at first appears (32f)] are satisfactory. The worst case is for @Jead
that the measured valuesi{(Y, Z) are too small, with resistances and 0.1(nlongitudinal resistances, where
fractional errors that can exceed 2¥510~'. However, the approximate values tfandls are each fractionally
Eqg. (33c) predicts that the voltagé(Y,Z) measured larger than the exact calculations by 210°.
between points Y and Z is the correct quantized Hall
voltage Vy across the deviceninus the longitudinal 7.2 Longitudinal Voltage Configuration
voltage V,(2,6) along the device between points 2
and 6; i.e., thatRy(Y,Z) = [Ry — R«(2,6)], where
R«(2,6) = R(1,5) = [, + rJ]. This prediction for
R4(Y, Z) is within 1 X 107 of the quantityR, — R,(2, 6)
when the lead resistances are @ and is within
3 X 10™ of the same quantitiRy — R(2,6) when the

Figure 12 shows a “symmetric” triple-series equiva-
lent circuit that can be used for longitudinal voltage
measurements if significant sample probe lead noise is
present. The solutions for currettsandl are the same
as those listed in Eqgs. (32e) and (32g). The solution for

lead resistances are(L | ls is simpler:
|- = é I = { [(ro + r)(Ra + 1o+ 11+ 13 +1a(rp +15)] } | (34a)
T T URi+rs+trmo+rdRa+ro+ri+r)+ry(rp+r)]) 77
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Fig. 12. Equivalent circuit for one “symmetric” triple-series connection to a quantum Hall effect device. The longitudinal Hall vdité2yd3
andV,(4,6) are measured between points 2, 4 and 4, 6. See Sec. 7.2 for the algebraic solutions.

or approximately Vy(4,6) = c{l - [M + ﬂ]} lr. (35d
( ) r RH RHRH T ( )
My + 1) . Tof
s = [% + _R,?Rﬂ Ir. (34b) Table 2 displays the current ratios and the relative

errors inR(2,4) andR(4,6) arising from the three
o combinations of lead resistances and nonzero longitudi-
The longitudinal voltages are nal resistances used in Table 1 (Y, Z) measure-
ments. The current ratio results are identical to those of
d Sec. 7.1. The errors iR(2,4) andR(4, 6) relative to
Vi(2,4) =rply = Tpls = rb|:l —?] I (35a) the correct values, andr. are again acceptably small
because, andr, are small.

(o + ro) m]}h (35b) 8. “Offset” Triple-Series Connections

Vu(2.4)= “’{1 - [T "R
8.1 Hall Voltage Configuration
d Figure 13 shows two triple-series combinations to the
Vi(4,6) =rcly —rels = rc[l —?] It (35¢) quantum Hall effect device with the connections
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displaced or “offset” from the symmetric or the normal suggested by others.) The solutions are complicated, so
triple-series configurations. (We consider this case for once again we define intermediate substitutions to sim-
completeness and because the circuit has Ibeenplify the final algebraic expressions. Let

a= [rb * (R4 :—4(:-: rr:: rr:)+ ro (R -rl-b(rr;:rr:: rr:)+ rb)] (362)
b= [rb * (Ry +rs +r4rr4c+ re+trg) (Ra :b(rr.::rr:: rr:)+ rb)] (36b)
¢=| R @ e - R e (360)
o= [ e e w e e ) (569
= [r° TRt o Jrrsrrsb+ ra+tr) (R :C(rrss : rr: : rr:)+ rd)] (36€)
R R o e e SO I (360

Fig. 13. Equivalent circuit for two “offset” triple-series connections to a quantum Hall effect device. The quantized Hall Wil{agg) is
measured between points Y and Z. See Sec. 8.1 for the algebraic solutions.
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The “offset” triple-series current solutions are then

2= | e |

< [R R v
RH

(cd - ae)]
(cf —Db'e)

-
o= [f R

(ro + ra+ 1) (I —1¢)
(Ri+rp+rg+ra+ry) ' >

%UIo

ls =

Mo
(RH+rD+r3+ra+rb)

TR

(rS+ re + rd) (| _
(Ri+trs+r,+rc+rg) '

|4:

|2)

e ls rsl
C(Ry+rstratrotrg) °T Ry

(Rq+r3) I

|
(lo+ra+ry) > (fo+ra+ry) 2

b=

(Ra+r1s) L+ re

|
(rs+rc+ry) * (rs+re+ry °

Is=

(37a)

(37b)

(37¢)

(37d)

(37e)

(37

(379)

(37h)

Taking the path along potential probes 4 and 3, we find
the quantized Hall voltage is

VH(Y,Z) = RHlT — RH(|2 + |5) + I3 |3 + r4|4 y (388.)
or approximately
Vi(Y,2) = RH{l - [“‘%r)]} Ie (38b)

Table 1 lists the current ratios and the relative errors
in Ry(Y,Z) for the four representative cases with
“offset” triple-series connections. The measured values
of Ry(Y,Z) would again be too small, with errors that
are identical to the “symmetric” triple-series configura-
tion. However, Eqg. (38b) predicts that the voltage
Vu(Y,Z) measured between points Y and Z is once
again the correct quantized Hall voltalyg across the
device minus the longitudinal voltagé,(2,6) along
the device between points 2 and 6; i.e., that
Ru(Y,Z2) = [Ry — Ri(2,6)], whereR((2,6) =R((1,5) =
[ro + r]. This prediction forR4(Y,Z) is again within
1 X 10° of the quantityR; — R,(2,6) when the lead
resistances are X0, and is within 3x 10™ of the same
quantity when the lead resistances ar@.1

The approximate solutions to the currents [not shown
in Table 1 but given by Egs. (37b), (37d), (37¢e), and
(37f)] are satisfactory. The worst case is for @dead
resistances and 0.1(nlongitudinal resistances, where
the approximate values dg and |, are fractionally
larger than the exact calculations by 210°.

8.2 Longitudinal Voltage Configuration

Figure 14 shows an “offset” triple-series equivalent
circuit that can be used for longitudinal voltage mea-
surements if significant sample probe lead noise is
present. The solutions for the currents are simpler than
in Sec. 8.1:

rs (rp + ra+rp)

[r°+(R4+rD+r3+ra+rb)] d
=9

rs (o + ra + ') =gl (392)
3\/D a b,
[(RH+r5+re)+(RH+fD+r3+fa+rb)]
'5:[%+RHRH] " (39b)
(rp +ra+1p) _r
ls = (RH+rDD+r3+rba+rb)(IT_|5)~EDIT (39c)
Ip = Rt ) (390)

(lo+ra+ry) °
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Fig. 14. Equivalent circuit for one “offset” triple-series connection to a quantum Hall effect device. The longitudinal Hall vog&8es and
V(4,6) are measured between points 2, 4 and 4, 6. See Sec. 8.2 for the algebraic solutions.

The longitudinal voltages are nal resistances used in Table 1 fRK(Y,Z) measure-
ments. The current ratio results are nearly identical to
Vi(2,4) =rplt = rpls = rpls (40a) those of Sec. 8.1. The errors Ry(2,4) are larger than

R«(4,6), but both errors are acceptably small becapise
andr. are small.
l'e

V,(2,4) = rb{l _[ % tR ;:EH]} It (40b)

9. Quadruple-Series Connections

Vi(4.6) =rdly — rels (400) 9.1 Hall Voltage Configuration
Figure 15 shows two quadruple-series combinations
" ror to the quantum Hall effect device. The solutions are
Vy(4,6) = rc{l - [—C + 23 ]} It . (40d) even more complicated, so we define substitutions of
Ri " RiR substitutions to simplify the final exact algebraic
expressions. Let

Table 2 displays the current ratios and the relative
errors in R(2,4) andR((4,6) arising from the three

L . o M= +r, +
combinations of lead resistances and nonzero longitudi- M= R+ 12+ 1) (412)
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By

Fig. 15. Equivalent circuit for two quadruple-series connections to a quantum Hall effect device. The quantized HalMugfaggis measured
between points Y and Z. See Sec. 9.1 for the algebraic solutions.

A=(Ry+rs+ry) (41b) P =[rRy + rs+ re +ry)] (41d
O=[(rs+rg)(re +ro) + r(Ry +r1g)] (41c)
|

G=[(Ry+rs+rs+rg(Rqy+rg) + (rs + rg)(re + 1) + re(Ry + re)] (41e)

§=[(rp + ra(ry + ry) + ro(Ry + ry)] (41f)

{=[ro(Ry + rp + 11+ 1) (419)

O=[(Ry+rp+ri+r(Ry+r3) + (rp+ry)(rs + ry) + ro(Ru + 11)] (41h)

U =[req (0 - 8)] (41i) | ¥ =[r0(g - 0)] (41k)|

W = [q(0 —ryf)] (41)) 2= [0(hg - rcp)] - (411)
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The quadruple-series exact and approximate currentTaking the path along potential probes 4 and 3, the

solutions are then

1, {[(\7 + 1,00)(Z + 15GS) — (V + rapU)(Y + r585)]

[W + r,00)(2 + r408) — ( + r,p0)(§ + ra6t)]

h

(42a)
m% It (42b)
.= {[(W + 1,00)(Y + r3GS) — (V + r,00) (Y + rsqt)]} |
* 7 U[(W + 1 00)(2 + 1508) — (U + rp0)(§ + rs60)]) 7
(42¢c)
m% It (42d)
_ 5 t (S

ls_ﬁlT_Glz_ﬁls (426)

~|To, Tola
o= | Rl (420)

_0,.06, P

li=gli-gl-gls (42g)

~ | Fe , Isfs
Iy = [RH + RHRH] Iy (42h)
"R +(rrr;:rra1) rry (b=l = % 't (42)
le = Ry +(rrss-:_rrd3+ r) (Ir=l=1) = % I+ (42))

_(Ratry
o= s (42K)

_(Ritre)

5=y e (42l)
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guantized Hall voltage is

Vu(Y,Z) = Ralr = Ru(l2 + Is) + r3ls + 14ly,  (43a)
or approximately
Viu(Y,Z) = RH{l - [(“’f;“)]} I+ (43b)

Table 1 lists the current ratios and the relative errors in
Ru(Y,Z) for the four representative cases with quadru-
ple-series connections. The measured valués,0f, Z)
would again be too small, with errors that are nearly
identical to the “symmetric” and “offset” triple-series
configurations. However, Eq. (43b) once again predicts
that the voltag&/(Y,Z) measured between points Y and
Z is the correct quantized Hall voltagé, across the
device minus the longitudinal voltag¥,(2,6) along
the device between points 2 and 6; i.e., tRafY,Z) =
[Ri —Ri(2,6)], whereR((2,6) =R«(1,5) = [ro + r¢]. This
prediction forR(Y, Z) is within 1.2 X 10™° of the quan-
tity Ry — R(2,6) when the lead resistances are(10

The approximate solutions to the currents [not shown
in Table 1 but given by Egs. (42b), (42d), (42f), (42h),
(42i), and (42j)] are satisfactory. The worst case is for
10 Q lead resistances and 0.1(riongitudinal resis-
tances, where the approximate valuesl,0énd I are
each fractionally larger than the exact calculations by
1.2 X 10°®

9.2 Longitudinal Voltage Configuration

Figure 16 shows a quadruple-series equivalent circuit
that can be used for longitudinal voltage measurements
if significant sample probe lead noise is present. The
solutions for the currents are much simpler than in
Sec. 9.1:

_ [rch + r38]
s = A+ ] T (442)
re
5= by (44b)
|3—§(IT_|5) (44c)
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f V, (4,6) f Vy (2,4) 1

Fig. 16. Equivalent circuit for one quadruple-series connection to a quantum Hall effect device. The longitudinal Hall Vél{@gésand
V(4,6) are measured between points 2, 4 and 4, 6. See Sec. 9.2 for the algebraic solutions.

I3 = [% + Rr:;e:] It (44d) Va(2,4) =rb{[1 —%][1 —HH lr (45b)
— (ro +ra) la_)=To
|1 = (RH Frp+ 0+ ra) (IT |3 |5) RH IT (44e) Vx(214): rb{l — [LR-:I’C) + %]} IT (45C)
_ (RH + rl) VX(4,6) = rclT - I’c|5 (45d)
b=ty (44f)
- (rd + 138)
The longitudinal voltages are V(4.6) = rc{l - (Ao + rgé)} I (45¢)
Vi(2,4) =1yl — rols — Tyl (45a) Vy(4,6) = rc[l —%] Iy . (45f)
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Table 2 displays the current ratios and the relative  Not surprisingly, the largest multi-series errors in
errors in R(2,4) andR,(4,6) arising from the three  Ry(Y,Z) occur for double-series connections. Triple-se-
combinations of lead resistances and nonzero longitudi- ries or quadruple-series connections should be used for
nal resistances used in Table 1 f&i(Y,Z) measure- accurate quantized Hall resistance measurements. How-
ments. The current ratio results are identical to those of ever, the double-series errors calculated here are still an
Sec. 9.1. The errors iR(2,4) andR.(4,6) are very order of magnitude smaller than the experimentally ob-
small because, andr. are very small. served deviations of the ac valuesR{Y,Z) from the dc
values ofR4(Y,Z) when using typical X) sample probe
lead resistances. The multi-series connection errors cal-
culated here are due mainly to the lead resistances [13,
16]. We can see from Table 1 that the multi-series con-
nection errors are insensitive to the longitudinal resis-
tances, except for the triple-series “symmetric,” triple-
series “offset,” and the quadruple-series connections
which measure the quantifg(Y,2) = [Ry — R«(2,6)].

10. Conclusions

We have derived the exact algebraic solutions (and
approximate solutions) for a variety of multi-series con-
nections to equivalent electrical circuits of quantum Hall

effect devices which have significant longitudinal resis-
tances. All of the circuit element resistances can be . ; ‘ .
The exact algebraic solutions of the equivalent cir-

determined experimentally from single-series voltage cuits presented here can be used with confidence to

measurements around the periphery of the device. The . :
: ) make corrections to dc measurements when using
approximate solutions are adequate for the representa-

tive cases we have considered, but it is preferable forthemum_Serles connections to quantum Hall effect

. : devices. These dc corrections should be used when
reader to use the exact solutions when applying correc- . .
) ) ; comparing the dc and ac values of the quantized Hall
tions to their experimental results.

We have found that, in all the circuits considered, the re5|_sta_nces. _Hov_vever, another purpose qf th|_s work '_‘Q’ to
: S . .~ begin investigating the effect of ac longitudinal resis-
current in each external arm of a circuit is nearly identi-

cal for the longitudinal voltage configuration (with one tances on measurements of ac quantized Hall resis-

) . . . tances. Finding exact solutions to the complete multi-
multi-series connection to the device) and for the quan- . 2T . -
. . ) ) L series ac circuits in the presence of finite ac longitudinal
tized Hall voltage configuration (with two multi-series

. ? : L ) resistances is an extremely difficult problem because

connections to the device). Since it is much easier to o . . .
. ) . . . the circuits should ultimately include all of the inner

derive the current equations for a single multi-series . : .

o . . .~ _conductor-to-shield capacitances, all of the inner con-
connection, it may be safe to use a single multi-series : .

. . . L ductor-to-inner conductor capacitances, and all of the
connection configuration when deriving current equa- . . ;
. ; L2 . inductances of the device, the device holder, and the
tions in other circuits not considered here. Although the . . .
. .~ sample probe. As a first step in solving the complete
diamond-shaped voltage generator arrays and the ring-

R circuit we have ignored these capacitances and induc-
shaped voltage generator arrays both give similar results . o
, ; o . o tances, and have considered only the contributions of ac
when including longitudinal resistances, it is much

i ; . . A - longitudinal resistances on the ac quantized Hall resis-
easier to derive the equations using circuits with . i
. tance measurements of multiply-connected devices. We
diamond-shaped voltage generator arrays. Also, the

. : ) find that finite ac longitudinal resistances within the
diamond-array solutions are simpler. (Compare the devices do not explain the observed frequency depen-
results in Sec. 5 and Appendix A as an example.) Thus P q y aep

. . . . .~"dences of the ac quantized Hall resistances, i.e., the
we recommend using diamond-array equivalent circuits. : .
) o frequency dependences of the ac quantized Hall resis-
It is preferable to measure the longitudinal voltages oo )
. ) ) . . tances are not due to ac longitudinal resistances.
with regular single-series connections to the device (as
in Fig. 1). However, if antenna noise generated in the
sample probe leads becomes a problem, or if the 11. Appendix A. Ring-Array Double-
impedances of the coaxial sample probe leads are too Series Connections
large, then a single quadruple-series connection to the
device (as in Fig. 16) is preferable when making ac  This appendix demonstrates the complexity of exact
longitudinal voltage measurements because all the off- sojutions for ring-array multi-series connections com-
ground potential leads are connected in that configura- pared with the solutions for diamond-arrays when
tion. A single “normal,” “symmetric,” or “offset” triple-  |ongitudinal resistances are included in the circuit. We
series connection could be used for ac longitudinal consider only the simplest case (double-series connec-

voltage measurements if one sample probe potential leadtions), which can be compared with the double-series
was not connected at device contacts 1', 3', or 5". diamond-array solutions of Sec. 5.
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Because the ring-array solutions are so complex, and
the numerical results differ insignificantly from the dia-
mond-array circuit results, we use the diamond-array
circuits in the main text to find the solutions for the
currents, quantized Hall voltages, and longitudinal

voltages of triple-series and quadruple-series connec-

tions to the device. It is left as an exercise for the reader
to find the exact ring-array solutions for triple-series and
quadruple-series connections.

11.1 Hall Voltage Conriguration

Figure A-1 shows two double-series connections to
the device. We define four internal currems Isq, |3p,
andlp, and make the following substitutions to simplify
the current and voltage equations:

b

e - oean | IEGES
o~ n dn AW
o e s G
N s T (I
B o (Ao
S () (A-1f)

(ra+rb+rc+rd).

The double-series ring-array current solutions are then

_ [+ AE - (€ + D)F]
ls3= [ [2 — BE — DF] ] It (A-2a)
lap = v —Is3 (A-2b)
ly = Al + Blgs = % e (A-2¢)
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l,=Cly + 6|4D:% It (A-2d)
lap = lsa— I3 (A-2€)
lsa = lap — L (A-2f)
lo =ty = 1s (A-29)
lo=lr—ls. (A-2h)

The quantized Hall voltage measured between points Y
and Z is

VH(Y,Z) = RHIT + I’3|3 + r4|4

+ 2 + ro)(Iss—Isa) , (A-3a)
or approximately
~ lalp lal's )
Vu(Y,Z) = Ry| 1 + RR. + RiR. IT. (A-3b)

The exact solutions for the currents and Ye(Y, Z)
in Eq. (A-3a) are slightly different from the results
calculated in Sec. 5.1 for the diamond-array with the
same device connections. While the double-series ring-
array calculation results are not presented in Table 1,
they are nearly identical to the double-series diamond-
array results when using the same four representative
cases of lead and longitudinal resistances. The largest
discrepancies are for the case withQ@ad resistances
and 1 nf) longitudinal resistances, where the ring-array
current ratiols/lt is fractionally smaller than the
diamond-array current ratio by 1.2 10, and the
fractional Hall resistance erroRj(Y,Z2)/Ry] —1 is
2.4 X 10 larger. Even though the results are similar
for these representative cases, the diamond-array
solutions are much simpler to derive and to calculate.

11.2 Longitudinal Voltage Configuration

Figure A-2 shows a double-series ring-array connec-
tion to the device that could be used for longitudinal
voltage measurements if significant antenna noise is
present in the sample probe leads. The current solutions
are now
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B

Fig. A-1. Equivalent circuit for two double-series connections to a quantum Hall effect device with ring-array voltage generators. The quantized
Hall voltageV(Y,Z) is measured between points Y and Z. See Sec. 11.1 for the algebraic solutions.

lss = {[é—té%]} Ir (A-4a)
ls = Aly + B|53=[ED It (A-4b)
lap = lsa— I (A-4c)
lsa = I7 — I3 = Lo (A-4d)
lb=1lr—1s. (A-4e)

and longitudinal resistances. The largest discrepancies
are for the case with 10 lead resistances and 1(In
longitudinal resistances, where the ring-array current
ratio |/l is fractionally smaller than the diamond-array
current ratio by 6x 10

The longitudinal voltages are

Vi(2,4) = Aplap = 2plsa (A-5a)

Vi(2,4) = rb[l —Z%H] Iy (A-5b)

The double-series ring-array calculation results are
not presented in Table 2 for the longitudinal voltage
configuration, but the current ratios/I+ are nearly
identical to the double-series diamond-array results
when using the same four representative cases of lead
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VX(4,6) = Zc|54

V,(4,6) = rc[l —Zr—FgH] Iy .

(A-5c)

(A-5d)
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? V,(4,6) * VX(2,4)*

Fig. A-2. Equivalent circuit for one quadruple-series connection to a quantum Hall effect device. The longitudinal Hall vgl@g&sand
V(4,6) are measured between points 2, 4 and 4, 6. See Sec. 11.2 for the algebraic solutions.

Both longitudinal voltage¥,(2,4) andV,(4, 6) have
approximate [1 +p/2Ry] corrections in the ring-array,
whereas there is an approximate [I5/R4] correction (1]
to V«(2,4) and no correction td,(4, 6) in the diamond-
array of Sec. 5.2. The largest discrepancies between
Vy(2,4) andV(4, 6) are for the two cases with IDlead [2]
resistances, where the ring-array longitudinal voltages
are both fractionally smaller than the diamond-array (3]
voltages by 3.9x 10 These are small discrepancies
because the longitudinal voltages are small.
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