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Many ac quantized Hall resistance experi-
ments have measured significant values of
ac longitudinal resistances under tempera-
ture and magnetic field conditions in which
the dc longitudinal resistance values were
negligible. We investigate the effect of non-
vanishing ac longitudinal resistances on
measurements of the quantized Hall resis-
tances by analyzing equivalent circuits of
quantized Hall effect resistors. These cir-
cuits are based on ones reported previously
for dc quantized Hall resistors, but use ad-
ditional resistors to represent longitudinal
resistances. For simplification, no capaci-
tances or inductances are included in the
circuits. The analysis is performed for many
combinations of multi-series connections to
quantum Hall effect devices. The exact

algebraic solutions for the quantized Hall
resistances under these conditions of finite
ac longitudinal resistances provide correc-
tions to the measured quantized Hall resis-
tances, but these corrections do not account
for the frequency dependences of the ac
quantized Hall resistances reported in the
literature.
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1. Introduction

In the integer quantum Hall effect (QHE) [1–3], the
Hall resistanceRH of thei th plateau of a fully-quantized,
two-dimensional electron gas (2DEG) isRH(i ) = VH(i )/
IT, whereVH(i ) is the quantum Hall voltage measured
between potential probes located on opposite sides of
the device, andIT is the total current flowing between
the source and drain current contacts at the ends of the
device. Under ideal conditions, the values ofRH(i ) in
standards-quality devices satisfy the relationships
RH(i ) = h /(e2i ) = RK/i , whereh is the Planck constant,
e is the elementary charge,i is an integer, andRK is the
von Klitzing constantRK ≈ 25 812.807V. However, the
conditions are not always ideal. We will assume that the
values ofRH(i ) can vary with the device temperatureT
and with the frequencyf of the applied ac current
(although the equations will not explicitly indicateT
or f ). Thus the measured values ofRH(i ) will usually not
be equal toh/(e2i ) in this paper.

In the dc quantum Hall effect the current flow within
the 2DEG is nearly dissipationless within the quantum
Hall plateau regions of high-quality devices. The longi-
tudinal resistanceRx(i ) = Vx(i )/IT, whereVx(i ) is the
longitudinal voltage drop between potential probes lo-
cated on the same side of the device, becomes very
small over ranges of magnetic field over whichRH(i )
exhibits plateaus. The values ofRx(i ) increase with in-
creasing temperature.

Many laboratories are now attempting to employ the
QHE to realize an intrinsic ac resistance standard by
using an ac ratio bridge to compare the ac quantized
Hall resistanceRH with ac reference standards. Mea-
sured values [4–9] of the ac quantized Hall resistanceRH

are reported to vary with the frequency of the applied
current (usually increasing linearly with frequency), and
differ from the dc value by more than 10–7 RH(i ) at a
frequency of 1592 Hz (angular frequencyv = 2pf = 104

rad/s). With one notable exception [10], the reported ac
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longitudinal resistances are significantly larger than the
dc longitudinal resistances in the same device under the
same temperature and magnetic field conditions. The ac
longitudinal resistances increase with increasing
frequency of the applied current, and are of order 1 mV
at 1592 Hz [4, 5, 11]. The frequency dependences ofRH

andRx are reported to be in the real, resistive (in-phase)
component of the ac impedance measurements.

These effects might be caused by intrinsic properties
of the quantum Hall devices. However, calculations
[12] of the intrinsic impedance due to the Hall capaci-
tance of the two-dimensional electron gas across the
quantum Hall device have provided no plausible intrin-
sic impedance explanations for the observed frequency
dependences of the ac quantized Hall resistanceRH.
Furthermore, neither the kinetic inductance [12] nor the
magnetic inductance [12] of the device can explain the
observed frequency dependences of the ac longitudinal
resistanceRx. Even if the intrinsic impedances consid-
ered in [12] were significant, they would primarily
affect the imaginary (reactive) component of the
impedance not the real (resistive) componentRH.

The observed frequency dependences ofRH and Rx

could arise from problems in the measurement systems,
from the large impedances in the sample probes, or
from uncorrected frequency dependences in the ac ref-
erence standards. These possible problems should all be
addressed, but in this paper we assume that there are
indeed significant in-phase ac longitudinal impedances
(the resistances along the devices) as reported, and
investigate what effect real longitudinal resistances
would have on the measured in-phase ac values ofRH.

We use equivalent electrical circuits of a QHE device
to investigate the effects of these non-vanishing longitu-
dinal resistances on the quantized Hall resistance mea-
surements. The analysis soon becomes non-trivial. To
simplify the analysis, only in-phase components are
considered in the circuits. We ignore all capacitances
and inductances. The effects of electrical shielding and
leakage resistances are also not included. All multi-
series connections [13] to the devices used in the litera-
ture are considered. The algebraic equations are exact
and sometimes lengthy. It is important that the solutions
be exact because we are looking for explanations of
very small, but significant, experimental effects. The
final equations are presented to alleviate the need for
others to perform the task of deriving them. All the
equations have been independently derived by at least
two of the authors, and then numerically confirmed
with computer software.

2. Equivalent Circuits

Two different equivalent electrical circuits for
standards-quality QHE devices operated under ideal dc
conditions whenRH(i ) = h/(e2i ) = RK/i have been
described in the literature: the “diamond-array” circuit
of Ricketts and Kemeny [14] and the “ring-array”
circuit of Delahaye [13]. The algebraic equations of
both circuits are identical in the absence of longitudinal
resistance. We use the circuit of Ricketts and Kemeny
[14] with little alteration, except thatRH(i ) is allowed to
vary with temperature and frequency, and can thereby
differ from h/(e2i ); and we include longitudinal resis-
tances at the source and the drain ends of the device.
The circuit of Delahaye [13], however, was derived
using the assumption that the longitudinal resistance
vanished. In order to account for non-zero longitudinal
resistance, we add resistors at appropriate places in the
circuit, and again allowRH(i ) to be a function of tem-
perature and frequency.

We show that when longitudinal resistance is in-
cluded, the results calculated using the two circuits are
similar, but the algebraic solutions are much simpler
with the diamond-array circuit. The diamond-array cir-
cuit will therefore be used for all multi-series connec-
tion calculations. However, we present solutions to the
simplest multi-series ring-array in Appendix A to
demonstrate the added complexity of analyzing with
that circuit.

2.1 Diamond-Array Circuit

Figure 1 shows the QHE device equivalent circuit of
Ricketts and Kemeny [14] for the case when (a) the
magnetic flux densityB shown in the inset is directed
into the figure; and (b) at an instant when a positively-
charged applied currentIT enters the device drain con-
tact pad D' and exits the source contact pad S' . Under
these conditions the drain contact pad D' and the poten-
tial probe contact pads 1' , 3' , and 5' at the device pe-
riphery are at higher potentials than contact pads S' , 2' ,
4' , and 6' . The higher potentials are represented in the
inset by thicker lines on the device periphery. The
curves within the device show the current flow pattern
for this case. The arrows pointing in the opposite direc-
tion to IT indicate the direction of motion of electrons,
and are reminders to the reader that the current within
the device is composed of electrons passing through the
2DEG, rather than positive charges. Thex axis is
directed along the device, with they axis across the
device.
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Fig. 1. Equivalent circuit, using diamond-arrays of internal voltage generatorsVAB, of a quantum Hall effect device when the device is operated
on a quantized Hall resistance plateau and has longitudinal resistance. The symbols and figure inset are explained in Sec. 2.1.

Every arm of the equivalent circuit has an intrinsic
resistancer whose value is

r ≡ RH(i )
2

=
VH(i )
2IT

. (1)

Note thatRH(i ) can be a function of temperature and
frequency, and can differ from the valueh /(e2i ). There
is electrical access to the device at connection points S,
1 through 6, and D. Each external arm of the circuit has
a lead resistancerS, r1 throughr6, or rD which includes
the contact resistance to the 2DEG, the wire resistance
connecting a contact pad on the device to a sample
probe lead, and the inner conductor resistance of that
coaxial sample probe lead. The lead resistance values
vary with the liquid helium level in the sample probe.

They can be measured pair-wise as a function of liquid
helium level via two-terminal resistance measurements
when the quantum Hall device is replaced by electrical
shorts at positions S' , 1' through 6' , and D' . The lead
resistances are typically each about 1V in ac quantized
Hall resistance experiments.

The potentials at the ends of the arms at points S, 1
through 6, and D are produced by diamond-shaped
arrays of voltage generators, whereVAB is the generator
located between arms A and B, and produces a voltage
defined by

VAB ≡ RH

2
uIA 6 IBu , (2)

whereIA andIB are the magnitudes of the current flow-
ing in arms A and B of the circuit. The currentsIA and
IB within the absolute quantity sign of Eq. (2) are added
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if they both enter or both leave the voltage generator, and
are subtracted if one current enters and the other current
leaves the generator. Since the voltages produced by the
voltage generators are functions ofRH(i ), their values
can vary with temperature and frequency. The arms A
and B in the diamond-array voltage generator definitions
can be the external arms S, 1 through 6, and Dor the
two internal segments containing resistancesrb and rc.
Hence all of the voltage generators in Fig. 1 have mag-
nitudesVAB = [RH(i )/2]IT because there are not currents
in potential arms 1 through 6. For clarity, the voltage
generators are indicated in the figure as batteries whose
positive terminals are oriented to give the correct poten-
tials at the end of each arm. The applied ac currentIT

alternates direction, so the voltage generators reverse
sign each half cycle. Thus, for the part of the period in
which IT flows in the direction indicated in Fig. 1, the
voltage generators have the polarities shown. Half a
period laterIT changes direction, and all the voltage
generators reverse polarities.

The circuit elementsra, rb, rc, andrd in Fig. 1 represent
real (in-phase) longitudinal resistances within the
device. These resistances are functions of temperature
and frequency. Longitudinal resistances are obtained by
potential difference measurements along a side of the
device in thex direction. For example, the longitudinal
resistanceRx(2, 6) between points 2 and 6 is

Rx(2,6) ≡ Vx(2,6)
IT

=
[V2 – V6]

IT
, (3)

whereVx(2,6) is the voltage difference measured be-
tween points 2 and 6.V2 is the potential at point 2
relative to the circuit ground (which would be located at
point S when making four-terminal resistance measure-
ments).V6 is the potential at point 6, andIT = VR/RR is
determined by measuring the voltage dropVR across
a reference resistanceRR connected in series with the
quantum Hall device. Then, according to Fig. 1,
Vx(2,6) = V6c + rcIT – Vc4 + V4b + rbIT – Vb2. Since no
current flows through leads 2, 4, or 6 in Fig. 1,V6c =
Vc4 = V4b = Vb2 = [RH(i )/2]IT. Therefore

Rx(2,6) = Rx(1,5) = rb + rc. (4)

Sample probes used in dc QHE measurements have a
pair of leads to the source contact pad S' and another
pair to the drain contact pad D' . Only one lead of each

pair carries the currentIT, so all four dc resistancesra, rb,
rc, and rd can be measured. Sample probes for the ac
QHE, however, have a single coaxial lead to each of the
contact pads in order to reduce heat loss. Therefore only
rb and rc can be determined directly via ac measure-
ments ofVx(4,2) andVx(6,4). Values forra andrd could
be estimated from their dcra/rb and rd/rc ratios if the
rb/rc ratio is the same for both ac and dc measurements.
Typical acrb and rc values are reported [4,5,11] to be
about 1 mV at 1592 Hz.

The quantized Hall resistanceRH(3,4) measured
between points 3 and 4 in Fig. 1 is

RH(3,4) ≡ VH(3,4)
IT

=
[V3 – V4]

IT
=

[Vc4 + Vc3]
IT

= RH(i ).

(5)

The device shown in Fig. 1 is homogeneous, i.e., the
quantized Hall resistancesRH are all measured on
plateau regions, their values are thesamebetweenall
the Hall potential probe sets, and they are all measured
at thesamemagnetic flux density. Therefore

RH(1,2) = RH(3,4) = RH(5,6) = RH(i ) . (6)

Note once again thatRH(i ) can be a function of temper-
ature and frequency, and can differ from the ideal value
h/(e2i ). This equivalent circuit of Ricketts and Kemeny
[14] satisfies the conditions of a quantum Hall effect
device.

2.2 Ring-Array Circuit

Figure 2 shows a generalized form of the ring-array
equivalent circuit of Delahaye [13] for the same current
and magnetic flux density directions as Fig. 1. Resis-
tancesr1D, r2D, throughrS6 have been placed in series
with the voltage generators to simulate real (in-phase)
longitudinal resistances within the device. These series
resistances could be thought of as internal resistances of
the voltage generators. Once again, every arm of the
circuit has a lead resistancerS, r1 throughr6, andrD, and
an intrinsic resistancer whose value isRH(i )/2. The
values ofRH(i ) can be functions of temperature and
frequency, and are not necessarily equal toh/(e2i ). The
resistancesr1D, r2D, throughrS6 can also be functions of
temperature and frequency.
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Fig. 2. Equivalent circuit, using ring-arrays of internal voltage generatorsVAB, of a quantum Hall effect device when the device is operated on
a quantized Hall resistance plateau and has longitudinal resistance. The symbols are explained in Sec. 2.2.

The potentials at the ends of the arms at points S, 1
through 6, and D are now produced by a ring-shaped
array of voltage generators, whereVAB denotes the
voltage produced by the generator located between
external arms A and B, and is again defined by
VAB ≡ (RH/2)uIA 6 IBu. The currents are added ifIA and
IB both enter or both leave the voltage generator, and are
subtracted if one current enters and the other current
leaves the generator. It is important to note that the arms
A and B in the ring-array voltage generator definitions
include only currents in theexternalarms S, 1 through
6, and D,not in the eightinternal segments containing

resistancesr1D throughrS6. Because there are no currents
in arms 1 through 6, the generatorsV31, V42, V53, andV64

produce zero voltage in Fig. 2. The voltage generators
V1D, V2D, VS5, andVS6 have magnitudesVAB = [RH(i )/2]IT.

We again measure potential differencesV(A,B)
around the periphery of the device between points S, 1
through 6, and D, and then assign values to the voltage
generatorsVAB and series resistancesrAB of the equiva-
lent circuit. Unique assignments can not be made
because there are nine unknown resistances (r and the
eight values ofrAB) and eight unknown voltage genera-
tors, but only seven independent voltages which can be
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measured (three quantum Hall voltages and four longitu-
dinal voltages). Therefore, we find the simplest solution
that is consistent with the results of Sec. 2.1, and assume
in Fig. 2 that (a) the sum of resistances in both the top
half and the bottom half of the ring are equal, i.e., that
r1D + r31 + r53 + r S5 = r2D + r42 + r64 + rS6, and (b) that
the device is homogeneous. Therefore the currents in the
top half and the bottom half of the ring,I1D andI2D, are
both equal toIT/2. This means that

Rx(2,6) = Rx(1,5) =
r42 + r64

2
=

r31 + r53

2
(7)

if Rx(2,6) is still defined to beRx(2,6) ≡ Vx(2,6)/IT.
Equation (7) still does not uniquely define the resis-
tancesr42, r64, r31, andr53, but we can assure that Eq. (7)
is identical to Eq. (4) by lettingr42 = r31 = 2rb andr64 =
r53 = 2rc, where rb and rc are defined in Fig. 1. The
ring-array circuit of voltage generators distributes the
current within the device into two paths, which is the
reason for the factors of two in the longitudinal resis-
tances. It follows that

RH(1,2) = RH(3,4) = RH(5,6) = RH(i ) (8)

only if rS6 = rS5 andr2D = r1D. This also requires thatr2D

= r1D = 2ra andrS6 = rS5 = 2rd for Eq. (8) to be consistent
with Eq. (5). We emphasize that the assumptions
r2D = r1D = 2ra, r42 = r31 = 2rb, r64 = r53 = 2rc, and
rS6 = rS5 = 2rd were made so that the solution for the
circuit in Fig. 2 is consistent with that of Fig. 1.

We have also derived the equations forRH and Rx

using the equivalent circuit of Fig. 2 without making the
simplifying assumptions described above, but have not
included those equations because they are very compli-
cated. The simplest solution described above is adequate
to model this circuit.

In addition, we have derived the current and voltage
equations for the equivalent circuit of Fig. 2 using
Delahaye’s [4] assumption that the resistances labeledr
have the ideal valueh/(e2i ), and that the voltage gener-
ators produce ideal voltagesVAB = h/(2e2i )uIA 6 IBu. The
values of resistancesr1D, r2D, throughrS6 are adjusted to
give the measured values ofRH(i ) and Rx around the
device periphery. The equations are very complicated,
but numerical results using typical experimental values
for the circuit elements are equivalent. For this reason,
we use the method of adjusting the value ofRH(i ) to
agree with quantized Hall resistance measurements be-
cause that method yields much simpler equations and
identical numerical results.

3. Non-Uniform Quantum Hall Voltage
Distributions

We assumed in Fig. 1 and Fig. 2 that the quantized
Hall voltagesVH are all measured on plateau regions
whereVH is independent of the magnetic flux density,
and that the resulting quantized Hall resistancesRH are
the same for all the Hall potential probe sets at the same
magnetic flux density. These conditions will certainly
be necessary when making multiple-series connections
to the same device. But what if one of the Hall probe
potential sets has a value of the quantized Hall resistance
R'H that differs from theRH value of the other two sets?
This section examines that particular inhomogeniety,
which can occur if the device (a) has a nonuniform
2DEG density due to improper fabrication techniques;
(b) suffers environmental deterioration of the surface;
(c) is operated at temperatures that are too high [15]; (d)
is cooled too rapidly; or (e) has one or more contacts
with nonnegligible contact resistance.

3.1 Diamond-Array Circuit Results

Figure 3 shows the diamond-array-based equivalent
circuit when the left end of the device has a quantized
Hall resistance valueR'H(i ) between probes 5 and 6 and
the remainder of the device is still atRH(i ). In this case
the Hall voltages are

VH(1,2) = VH(3,4) = RH(i )IT (9a)

VH(5,6) ≡ RH(5,6)IT = R'H(i )IT (9b)

and the longitudinal voltages are

Vx(4,6) ≡ Rx(4,6)IT = Hrc + FR'H – RH

2 GJIT (10a)

Vx(3,5) ≡ Rx(3,5)IT = Hrc – FR'H – RH

2 GJ IT. (10b)

The longitudinal resistancerc along this section of the
device is therefore the average ofRx(4, 6) andRx(3, 5).
The longitudinal voltagesVx(2, 4) ≡ Rx(2, 4)IT = rbIT

andVx(1, 3) ≡ Rx(1, 3)IT = rbIT remain the same as in
Sec. 2.1.
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Fig. 3. Equivalent circuit using diamond-arrays of voltage generators when the left end of the device has a quantized Hall resistance valueR'H
and the rest of the device remains atRH(i ). The results are given in Sec. 3.1.

3.2 Ring-Array Circuit Results

Figure 4 shows the ring-array-based equivalent circuit
when the left end of the device has a quantized Hall
resistanceR'H(i ) and the rest of the device is still atRH(i ).
We label the internal currents in the top and bottom
halves of the ring asI1D and I2D, respectively. Note that
even though the top and bottom halves of the circuit
appear to be symmetrical,I1D does not have to be equal
to I2D, and in fact is not equal, as will be shown. In order
for the quantum Hall voltage to be

VH(5, 6) = RH(5,6)IT = R'H(i )IT (11a)

it is necessary that

rS5I1D = rS6I2D , (11b)

and in order for

VH(3, 4) ≡ RH(3, 4)IT = RH(i )IT , (12a)

the internal current in the bottom leg of the circuit must
be

I2D = IT – I1D =
[(R'H – RH) + r53]

[r53 + r64]
IT . (12b)
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Fig. 4. Equivalent circuit using ring-arrays of voltage generators when the left end of the device has a quantized Hall resistance valueR'H(i ) and
the rest of the device remains atRH(i ). The results are given in Sec. 3.2.

Furthermore, in order that

Vx(4, 6) ≡ Rx(4, 6)IT = Hrc + FR'H – RH

2 GJIT (13a)

and

Vx(3, 5) ≡ Rx(3, 5)IT = Hrc – FR'H – RH

2 GJIT , (13b)

as in the diamond-array case,r64 = r53 = 2 rc, which is the
same assumption made in Sec. 2.2 for the case of the

homogeneous device. However, we find below that
rS6 Þ rS5 Þ 2rd, r31 Þ r42 Þ 2rb, andr1D Þ r2D Þ 2ra.

The combination of Eq. (11b) and Eq. (12b) yields the
result

rS6

rS5
=

I1D

I2D
=

[2rc – (R'H – RH)]
[2rc + (R'H – RH)]

, (13c)

so rS6 Þ rS5 Þ 2rd and I1D Þ I2D .

We also require

VH(1,2) ≡ RH(1,2)IT = RH(i )IT , (14a)
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so
r42

r31
=

[2rc – (R'H – RH)]
[2rc + (R'H – RH)]

=
I1D

I2D
(14b)

and
r2D

r1D
=

I1D

I2D
. (14c)

Since the voltages must sum to zero around the ring of
voltage generators and internal resistances,I2D must also
satisfy the condition

I2D =
[(R'H – RH) + (r1D + r31 + r53 + rS5)]

[(r1D + r31 + r53 + rS5) + (r2D + r42 + r64 + rS6)]
IT,

(14d)

as well as Eq. (12b).
Because of the larger number of unknown variables,

the solutions derived using the ring-array circuit are
more complicated than those for the diamond-shaped
array of Sec. 3.1. Furthermore, many of the internal
resistances are expressed as ratios relative to other resis-
tances in the circuit, rather than unique values. However,
they could be assigned unique values by lettingr64 =
r53 = 2rc, rS6 = r42 = r2D = [2rc – (R'H – RH)], and rS5 =
r31 = r1D = [2rc + (R'H – RH)].

4. Load Resistance Across the Device

Ricketts and Kemeny [14] tested their equivalent cir-
cuit experimentally by placing a load resistor across one
pair of Hall potential probes. We consider the effects of
a load resistor in this section for both diamond-array and
ring-array circuits. The results may explain the observa-
tions of negative values ofVx reported by Ricketts and
Kemeny [14]. The equations forVH andVx are not the
same for the two equivalent circuits, but the numerical
results are nearly identical if representative experimental
values are used for the circuit elements.

4.1 Diamond-Array Circuit Results

Figure 5 shows the equivalent circuit when an external
load resistanceRL is placed across the potential contacts
3 and 4. The directions of the applied currentIT and the
magnetic flux densityB are reversed from those in Fig.
1 in order to easily compare the results with Ref. [14].
Thus the source contact pad S' and the potential contact
pads 1' , 3' , and 5' are at a higher potential at this instant
in time than the drain contact pad D' and the potential

contact pads 2' , 4' , and 6' when there is no external load
resistor. We have separated the lead resistancesr3 andr4

from the load resistanceRL. The solutions for the current
through the load resistance, the quantum Hall voltages,
and the longitudinal voltages are

IL =
RH

(RH + RL + r3 + r4)
IT (15)

VH(1,2) = VH(5,6) = RHIT (16a)

VH(3,4) = RHF1 –
(RH + r3 + r4)

(RH + RL + r3 + r4)
G IT (16b)

and

Vx(4,2) = Frb +
RH(RH + r4)

(RH + RL + r3 + r4)
G IT (17a)

Vx(3,1) = Frb –
r3RH

(RH + RL + r3 + r4)
G IT (17b)

Vx(6,4) = Frc –
r4RH

(RH + RL + r3 + r4)
G IT (17c)

Vx(5,3) = Frc +
RH(RH + r3)

(RH + RL + r3 + r4)
G IT . (17d)

Equation (17b) and Eq. (17c) may explain why some
of the Vx measurements of Ricketts and Kemeny [14]
were negative whenB was within a quantized Hall resis-
tance plateau. If this equivalent circuit is a correct repre-
sentation of quantum Hall devices shunted by load resis-
tors, then negative voltages should be experimentally
observable when the second terms within the brackets in
these two equations are larger than the longitudinal re-
sistancesrb andrc. Even though some measured voltages
become negative when an external load resistor is placed
across a quantum Hall potential probe set, all resistances
in the equivalent circuit remain positive, as they must.

Equations (15) through (17) were derived for an
external load resistance. If there wasinternal leakage
resistance within the device,RL would be placed across
the contact pads 3' and 4' in that case, rather than across
connection points 3 and 4. The currents then bypass
resistancesr3 and r4, so they would be removed from
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Fig. 5. Equivalent circuit using diamond-array voltage generators when a load resistanceRL is placed across the Hall potential contacts 3
and 4. The results are presented in Sec. 4.1.

Eqs. (15) through (17), and there would be no negative
longitudinal voltages.

4.2 Ring-Array Circuit Results

Figure 6 shows the equivalent circuit with ring-arrays
of voltage generators when there is an external load
resistanceRL across the device. We found in Sec. 2.2 that
in order to be compatible with the diamond-array re-
sults,

r1D = r2D = 2ra (18a)

r31 = r42 = 2rb (18b)

r53 = r64 = 2rc (18c)

rS5 = rS6 = 2rd . (18d)

It then follows that

IL =
RH

(RH + RL + r3 + r4)

3
1

F1 +
4(ra + rb) (rc + rd)

(RH + RL + r3 + r4) (ra + rb + rc + rd)
G IT

(19a)

IS3 = IT – IS4 = IL + I3D

=
1
2 F1 +

2(ra + rb)
(ra + rb + rc + rd)

G IL (19b)
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Fig. 6. Equivalent circuit using ring-array voltage generators when a load resistanceRL is placed across the Hall potential contacts 3 and 4. The
results are presented in Sec. 4.2.

IS4 = IT – IS3 = I4D – IL =
1
2 F1 –

2(ra + rb)
(ra + rb + rc + rd)

G IL

(19c)

VH(1,2) = RHIT –
4ra(rc + rd)

(ra + rb + rc + rd)
IL (20a)

VH(5,6) = RHIT +
4rd(ra + rb)

(ra + rb + rc + rd)
IL . (20b)

Note that, unlike the results derived in Sec. 4.1 using the
diamond-array circuit, there are corrections of order
2raIL to VH(1,2) andVH(5,6) in the presence of longitu-
dinal resistance and a load resistor. The exact solution
for VH(3,4) is much more complex than the ring-array
Eq. (16b), and we do not give it here; but it can be
greatly simplified by making the assumption that the
device is homogeneous, so thatra + rb ≈ rc + rd. Then

VH(3,4) ≈ RHH1 –
[RH + r3 + r4 – 2(ra + rb)]

(RH + RL + r3 + r4)
F1 –

2(ra + rb)
(RH + RL + r3 + r4)

GJ IT (21)
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and

Vx(4,2) ≈ Frb +
RH(RH + r4 + 2rb)

(RH + RL + r3 + r4)
G IT (22a)

Vx(3,1) ≈ Frb –
(r3 + 2rb) RH

(RH + RL + r3 + r4)
G IT (22b)

Vx(6,4) ≈ Frc –
(r4 + 2rc) RH

(RH + RL + r3 + r4)
G IT (22c)

Vx(5,3) ≈ Frc +
RH(RH + r3 + 2rc)

(RH + RL + r3 + r4)
G IT . (22d)

As with the quantized Hall voltages, the equations for
the longitudinal voltages differ somewhat from those of
the diamond-array circuit. The numerical values of
these expressions are nearly identical for both circuits,
however, when typical experimental values are used for
the circuit elements.

We have seen in Secs. 2 and 3, and in this section, that
in the absence of significant longitudinal resistance, the
diamond-array and ring-array circuit results reduce to
identical forms. The validity of ring-array circuits with
negligible longitudinal resistances present have been
verified in the precision experiments of Jeffery,
Elmquist, and Cage [16]. We have chosen to use the
diamond-shaped voltage generator arrays of Ricketts
and Kemeny [14] in the remainder of the calculations,
rather than the ring-shaped arrays of Delahaye [13],
because the calculations are much easier in the dia-
mond-array circuits when longitudinal resistances are
present. Appendix A will, however, give the simplest
example of a ring-array multi-series circuit having lon-
gitudinal resistance.

5. Double-Series Connections

Accurate ac quantized Hall resistance experiments
use four-terminal-pair measurement techniques [17,18].
The large coaxial lead resistances and capacitances in
the ac sample probes necessitate the use of Delahaye’s
[13] multiple-series connections to the device. We use
Kirchoff's rules to sum the currents at branch points and
the voltages around loops to obtain exact algebraic solu-
tions for currents and voltages of the equivalent circuits
when using multi-series connections to the quantum
Hall device. All multi-series connections either used or
proposed in the literature are considered.

5.1 Hall Voltage Configuration

Figure 7 shows two double-series connections to the
device. One double-series connection emanates from
point Y to points D and 3. The other double-series con-
nection proceeds from point Z to S and 4. Points Y and
Z are where the four-terminal-pair definitions [17, 18]
of the resistance standard are achieved.VY and VZ are
voltages at points Y and Z, respectively. The magnetic
flux densityB is directed into the figure, and the total
positive currentIT again enters the device from the right
to the left. Therefore the electron flow pattern within the
device is the same as that in Fig. 1. The drain contact
pad D' and potential probe contact pads 1' , 3' , and 5' are
all near one potential, while the source contact pad S'
and potential pads 2' , 4' , and 6' are all near another
potential.

Inner conductor resistances in the coaxial cables mak-
ing up the double-series connections are again included
in the lead resistancesrS, r1 throughr6, andrD along with
the contact resistances to the two-dimensional electron
gas and any wire-bonding resistances. The lead resis-
tance of each armrS throughrD of the equivalent circuit
can be determined from pair-wise, two-terminal resis-
tance measurements described in Sec. 2.1. Lead resis-
tances are each typically 1V for ac quantized Hall
resistance experiments.

It is important to note that the values for the longitu-
dinal resistancesra, rb, rc, andrd shown in Fig. 7 and in
all subsequent figures can be obtained from potential
difference measurements around the periphery of the
device for theregular (single-series) connections of
Fig. 1. For example, we haverb = Rx(2,4) ≡ Vx(2,4)/IT.
The ac longitudinal resistances are of order 1 mV at
1592 Hz. We use the regular (single-series) connections
to assign values tora, rb, rc, andrd in order to see what
errors occur in measurements of multi-series circuits.

The double-series diamond-array circuit current solu-
tions are

IS =
(RH + r4)

(RH + rS + r4 + rc + rd)
IT (23a)

ID =
(RH + r3)

(RH + rD + r3 + ra + rb)
IT (23b)

I3 =
(rD + ra + rb)

(RH + rD + r3 + ra + rb)
IT ≈ rD

RH
IT (23c)
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Fig. 7. Equivalent circuit for two double-series connections to a quantum Hall effect device with diamond-array voltage generators. The
quantized Hall voltageVH(Y, Z) is measured between points Y and Z. See Sec. 5.1 for the algebraic solutions.

I4 =
(rS + rc + rd)

(RH + rS + r4 + rc + rd)
IT ≈ rS

RH
IT ,

(23d)

where the values of the quantized Hall resistance
RH ≡ VH/IT are obtained from single-series quantum Hall
voltage measurements. Once again, the values ofRH

should be the same along the device before making
double-series connections, but the values are not neces-
sarily equal to the von Klitzing constantRK.

The quantized Hall voltage measured between points
Y and Z is by definition

VH(Y,Z) = [VY – VZ] ≡ RH(Y, Z) IT . (24)

Taking the path along potential probes 4 and 3, the
quantized Hall voltage is

VH(Y, Z) = RHIT + r3I3 + r4I4 (25a)

VH(Y, Z) = RHF1 +
r3 (rD + ra + rb)

RH(RH + rD + r3 + ra + rb)
+

r4(rS + rc + rd)
RH(RH + rS + r4 + rc + rd)

G IT , (25b)
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or approximately

VH(Y,Z) ≈ RHF1 +
r3 rD

RHRH
+

r4rS

RHRH
G IT . (25c)

The sum of the last two terms within the brackets of
Eq. (25b) is the error in measuringRH(Y,Z) in a double-
series circuit relative to the correct single-series circuit
valueRH.

Table 1 lists the current ratios and the relative errors in
RH(Y,Z) for four representative cases with double-series
connections. The lead resistances in these four cases are
all either 1V or 10 V, and the longitudinal resistances
are all between 0V and 1 mV. (We chose 10V because
the lead resistances can approach that value in sample
probe leads of helium-3 refrigerators.)

There is a fractional correction 1.23 10–8 to the exact
calculation ofRH(Y,Z) when typical 1V ac lead resis-

tances are used in Table 1. This is alarge error
compared with the 2.43 10–8 relative combined stan-
dard uncertainty of the complete measurement chain at
NIST [19, 20], i.e., from the quantized Hall resistance to
the calculable capacitor. The fractional correction to
RH(Y,Z) should preferably be no larger than 13 10–9.
That is why triple-series or quadruple-series connec-
tions are required in accurate experiments.

The approximate solutions to the currentsI3 and I4,
and the quantized Hall resistanceRH(Y,Z) [not shown in
the table but given by Eqs. (23c), (23d), and (25c)] are
satisfactory. The worst case is for 10V lead resistances
and 0.1 mV longitudinal resistances where the approxi-
mate values ofI3 andI4 are fractionally 1.23 10–6 larger
than the exact calculation. The approximate value of
RH(Y,Z) is fractionally 1.83 10–9 larger than the exact
calculation for that case.

Table 1. Current ratios and fractional errors in multi-series measurements of the quantized Hall resistanceRH(Y,Z) when all the lead resistances
have representative valuesrD and all the longitudinal resistances have representative valuesrb

Configuration Fig. / Sec. Lead Longitudinal Current Current Current Fractional Hall
numbers resistance resistance ratio ratio ratio resistance error

rD rb I1/IT I3/IT I5/IT [RH(Y,Z)/RH] –1
(V) (mV)

Double-series 7/5.1 10 1.0 7.7383 10–4 1.199 3 10–6

10 0.1 7.7363 10–4 1.199 3 10–6

1 1.0 7.7623 10–5 1.203 3 10–8

1 0 7.7473 10–5 1.200 3 10–8

Triple-series 9/6.1 10 1.0 7.7373 10–4 6.7643 10–7 1.048 3 10–9

“normal” 10 0.1 7.7363 10–4 6.0673 10–7 9.401 3 10–10

1 1.0 7.7553 10–5 8.3483 10–8 1.294 3 10–11

1 0 7.7473 10–5 6.0023 10–9 9.301 3 10–13

Triple-series 11/7.1 10 1.0 7.7373 10–4 7.5383 10–7 –1.5383 10–7 a

“symmetric” 10 0.1 7.7363 10–4 6.1443 10–7 –1.4543 10–8 a

1 1.0 7.7553 10–5 1.6103 10–7 –1.5493 10–7 a

1 0 7.7473 10–5 6.0023 10–9 9.3013 10–13

Triple-series 13/8.1 10 1.0 7.7383 10–4 6.7643 10–7 –1.5383 10–7 b

“offset” 10 0.1 7.7363 10–4 6.0673 10–7 –1.4543 10–8 b

1 1.0 7.7623 10–5 8.3483 10–8 –1.5493 10–7 b

1 0 7.7473 10–5 6.0023 10–9 9.3013 10–13

Quad-series 15/9.1 10 1.0 7.7373 10–4 6.7643 10–7 7.7943 10–8 –1.5483 10–7 c

10 0.1 7.7363 10–4 6.0673 10–7 8.2123 10–9 –1.5483 10–8 c

1 1.0 7.7553 10–5 8.3483 10–8 7.7483 10–8 –1.5503 10–7 c

1 0 7.7473 10–5 6.0023 10–9 4.6503 10–13 0

a Eq. (33c) predicts that the measured quantized Hall resistanceRH(Y,Z) is approximately the quantized Hall resistanceRH minusthe longitudinal
resistance (rb + rc), rather than justRH.
b Eq. (38b) predicts that the measured quantized Hall resistanceRH(Y,Z) is approximately the quantized Hall resistanceRH minusthe longitudinal
resistance (rb + rc), rather than justRH.
c Eq. (43b) predicts that the measured quantized Hall resistanceRH(Y,Z) is approximately the quantized Hall resistanceRH minusthe longitudinal
resistance (rb + rc), rather than justRH.
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5.2 Longitudinal Voltage Configuration

The most direct method of measuring ac longitudinal
voltages is to use the regular single-series connections to
the device shown in Fig. 1, whereVx(2,4) = Vx(1,3) ≡
rbIT and Vx(4,6) = Vx(3,5) ≡ rcIT. Some experiments,
however, report large antenna noise generated on sam-
ple probe leads that remain unconnected at potential
points 1 through 6. It is reportedly best in that situation
to either remove unused potential probe leads at the
device potential contact pads 1' through 6' , or to connect
as many existing sample probe leads as possible to the
device.

Removing leads at the contact pads would not be
desirable for a resistance standard because the device
must be warmed to room temperature between the quan-
tized Hall resistance measurements and the longitudinal
resistance measurements; that violates the recom-
mended Consultative Committee on Electricity guide-

lines [21] for dc quantum Hall effect measurements.
Instead, a double-series equivalent circuit shown in
Fig. 8 might be used for longitudinal voltage measure-
ments if significant antenna noise is present in the sam-
ple probe leads. We assume that potential points 2, 4,
and 6 are near virtual ground in the balanced ac bridge,
so only open leads 1 and 5 act as antennas. What is the
effect on theVx measurements with this circuit?

ID =
(RH + r3 )

(RH + rD + r3 + ra + rb)
IT (26a)

I3 =
(rD + ra + rb)

(RH + rD + r3 + ra + rb)
IT ≈ rD

RH
IT , (26b)

which are the same as in Sec. 5.1, and

Fig. 8. Equivalent circuit for one double-series connection to a quantum Hall effect device with diamond-array voltage generators. The
longitudinal Hall voltagesVx(2, 4) andVx(4, 6) are measured between points 2 and 4, and between points 4 and 6. See Sec. 5.2 for the algebraic
solutions.
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Vx(2,4) = rbF1 –
(rD + ra + rb)

(RH + rD + r3 + ra + rb)
G IT ≈ rbF1 –

rD

RH
G IT (27a)

Vx(4,6) = rcIT . (27b)

There is no correction toVx(4,6). Table 2 displays the
current ratios and the relative errors inRx (2,4) arising
from the three combinations of lead resistances and
nonzero longitudinal resistances used in Table 1 for

RH(Y, Z) measurements. The relative errors inRx (2,4)
are acceptably small becauserb is small; the same argu-
ment holds for the approximation torb in Eq. (27a).

Table 2. Current ratios and fractional errors in multi-series measurements of the longitudinal resistancesRx(2,4) andRx(4,6) when all the lead
resistances have representative valuesrD and all the longitudinal resistances have representative valuesrb

Configuration Fig. /Sec. Lead Long. Current Current Current Fractional Fractional
numbers resist. resist. ratio ratio ratio resistance resistance

rD rb I1/IT I3/IT I5/IT error error
(V) (mV) Rx(2,4)/rb–1 Rx(4,6)/rc–1

Double-series 8/5.2 10 1.0 7.7383 10–4 –7.7383 10–4 0
10 0.1 7.7363 10–4 –7.7363 10–4 0
1 1.0 7.7623 10–5 –7.7623 10–5 0

Triple-series 10/6.2 10 1.0 7.7373 10–4 6.7643 10–7 –6.7643 10–7 0
“normal” 10 0.1 7.7363 10–4 6.0673 10–7 –6.0673 10–7 0

1 1.0 7.7553 10–5 8.3483 10–8 –8.3483 10–8 0

Triple-series 12/7.2 10 1.0 7.7373 10–4 7.5383 10–7 –7.5383 10–7 –7.5383 10–7

“symmetric” 10 0.1 7.7363 10–4 6.1443 10–7 –6.1443 10–7 –6.1443 10–7

1 1.0 7.7553 10–5 1.6103 10–7 –1.6103 10–7 –1.6103 10–7

Triple-series 14/8.2 10 1.0 7.7383 10–4 6.7653 10–7 –7.7443 10–4 –6.7643 10–7

“offset” 10 0.1 7.7363 10–4 6.0673 10–7 –7.7423 10–4 –6.6073 10–7

1 1.0 7.7623 10–5 8.3493 10–8 –7.7713 10–5 –8.3483 10–8

Quad-series 16 /9.2 10 1.0 7.7373 10–4 6.7643 10–7 7.7943 10–8 –7.5443 10–7 –7.7943 10–8

10 0.1 7.7363 10–4 6.0673 10–7 8.2123 10–9 –6.1493 10–7 –8.2123 10–9

1 1.0 7.7553 10–5 8.3483 10–8 7.7483 10–8 –1.6103 10–7 –7.7483 10–8

6. “Normal” Triple-Series Connections

6.1 Hall Voltage Configuration

Figure 9 shows two triple-series combinations to the quantum Hall effect device connected in the usual
manner. The “normal” triple-series current solutions are

I3 =
[(rD + ra)(r1 + rb) + rb(RH + r1)]

[(RH + rD + r1 + ra)(RH + r3 ) + (rD + ra)(r1 + rb) + rb(RH + r1)]
IT (28a)

I3 ≈ F rb

RH
+

rDr1

RHRH
G IT (28b)

I4 =
[(rS + rd)(r6 + rc) + rc(RH + r6)]

[(RH + rS + r6 + rd)(RH + r4) + (rS + rd) (r6 + rc) + rc(RH + r6)]
IT (28c)
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Fig. 9. Equivalent circuit for two “normal” triple-series connections to a quantum Hall effect device. The quantized Hall voltageVH(Y,Z) is
measured between points Y and Z. See Sec. 6.1 for the algebraic solutions.

I4 ≈ F rc

RH
+

rSr6

RHRH
G IT (28d)

I1 =
(rD + ra)

(RH + rD + r1 + ra)
(IT – I3) ≈ rD

RH
IT (28e)

I6 =
(rS + rd)

(RH + rS + r6 + rd)
(IT – I4) ≈ rS

RH
IT (28f)

ID =
(RH + r1)
(rD + ra)

I1 (28g)

IS =
(RH + r6)
(rS + rd)

I6 . (28h)

Taking the path along potential probes 4 and 3, the
quantized Hall voltage is

VH(Y,Z) = RHIT + r3I3 + r4I4 (29a)

VH(Y,Z) = RHH1 +
r3 [(rD + ra)(r1 + rb) + rb(RH + r1)]

RH[(RH + rD + r1 + ra) (RH + r3) + (rD + ra) (r1 + rb) + rb(RH + r1)]

+
r4[(rS + rd)(r6 + rc) + rc(RH + r6)]

RH[(RH + rS + r6 + rd) (RH + r4) + (rS + rd) (r6 + rc) + rc(RH + r6)]
J IT , (29b)
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or approximately

VH(Y,Z) ≈ RHH1 +
r3 [rDr1 + rbRH]

RHRHRH
+

r4[rSr6 + rcRH]
RHRHRH

J IT.

(29c)

Table 1 lists the current ratios and the relative errors in
RH(Y,Z) for the four representative cases with “normal”
triple-series connections. There is an acceptable frac-
tional 1 3 10–9 correction to the exact calculation of
RH(Y,Z) for untypically large 10V ac lead resistances;
typical 1V ac lead resistances present no problem at all.

The approximate solutions to the currents [not shown
in Table 1 but given by Eqs. (28b), (28d), (28e), and
(28f)] are satisfactory. The worst case is for 10V lead
resistances and 0.1 mV longitudinal resistances, where

the approximate values ofI1 andI6 are fractionally larger
by 1.2 3 10–6 than the exact calculations. The worst
approximation to the value ofRH(Y,Z) [not shown in the
table but given by Eq. (29c)] is only fractionally larger
by 1.83 10–12 than the exact calculation for the case of
10V lead resistances and 1 mV longitudinal resistances.

6.2 Longitudinal Voltage Configuration

Figure 10 shows a “normal” triple-series equivalent
circuit that can be used for longitudinal voltage mea-
surements if significant sample probe lead antenna
noise is present. The solutions for currentsI1, I3, andID

are the same as those listed in Eqs. (28a), (28b), (28e),
and (28g). The longitudinal voltages are

Vx(2,4) = r bIT – rbI3 (30a)

Vx(2,4) = r bH1 –
[(rD + ra)(r1 + rb) + rb(RH + r1)]

[(RH + rD + r1 + ra)(RH + r3) + (rD + ra) (r1 + rb) + rb(RH + r1)]
JIT , (30b)

or approximately

Vx(2,4) ≈ rbH1 – F rb

RH
+

rDr1

RHRH
GJ IT (30c)

Vx(4,6) = rcIT . (30d)

There is no correction toVx(4,6). Table 2 displays
the current ratios and the relative errors inRx(2,4) aris-
ing from the three combinations of lead resistances and
nonzero longitudinal resistances used in Table 1 for
RH(Y,Z) measurements. The error inRx(2,4) relative to
the correct valuerb, and the approximate value of
Rx(2,4) given by Eq. (30c) are acceptably small because
rb is small.

7. “Symmetric” Triple-Series Connec-
tions

7.1 Hall Voltage Configuration

Figure 11 shows two triple-series combinations to the
quantum Hall effect device connected in a symmetrical
manner. The solutions are more complicated, so we
define some intermediate substitutions to simplify the
final algebraic expressions. Let

â = [(rb + rc)(RH + rS + r6 + rd) + r6(rS + rd)] (31a)

b̂= [(rb + rc)(RH + rS + r6 + rd)] (31b)

ĉ =

[(RH + r2 + rb + rc)(RH + rS + r6 + rd) + r6(rS + rd)]

(31c)

d̂ = [(rb + rc)(RH + rd + r1 + ra) + r1(rD + ra)] (31d)

ê = [(rb + rc)(RH + rD + r1 + ra)] (31e)

f̂ =

[(RH + r5 + rb + rc)(RH + rD + r1 + ra) + r1(rD + ra)].

(31f)

The “symmetric” triple-series current solutions are then
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Fig. 10. Equivalent circuit for one “normal” triple-series connection to a quantum Hall effect device. The longitudinal Hall voltagesVx(2,4) and
Vx(4,6) are measured between points 2, 4 and 4, 6. See Sec. 6.2 for the algebraic solutions.

I2 = F (âf̂ – b̂d̂
(ĉf̂ – b̂ê)G IT (32a)

I2 ≈ F(rb + rc)
RH

+
rSr6

RHRH
G IT (32b)

I5 = F(ĉd̂ – âê)
(ĉf̂ – b̂ê)

G IT (32c)

I5 ≈ F(rb + rc)
RH

+
rDr1

RHRH
G IT (32d)

I1 =
(rD + ra)

(RH + rD + r1 + ra)
(IT – I5) ≈ rD

RH
IT (32e)

I6 =
(rS + rd)

(RH + rS + r6 + rd)
(IT – I2) ≈ rS

RH
IT (32f)

ID =
(RH + r1)
(rD + ra)

I1 (32g)

IS =
(RH + r6)
(rS + rd)

I6 . (32h)

Taking the path along potential probes 6 and 5, the
quantized Hall voltage is

VH(Y,Z) = RHIT – RHI2 + r5I5 + r6I6 (33a)

VH(Y,Z) = RHH1 –
(âf̂ – b̂d̂)
(ĉf̂ – b̂ê)

+
r5

RH

(ĉd̂ – âê)
(ĉf̂ – b̂ê)

+
r6

RH

(rS + rd)
(RH + rS + r6 + rd)

F1 –
(âf̂ – b̂d̂)
(ĉf̂ – b̂ê)GJ IT (33b)

VH(Y,Z) ≈ RHH1 –
(rb + rc)

RH
GJ IT . (33c)
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Fig. 11. Equivalent circuit for two “symmetric” triple-series connections to a quantum Hall effect device. The quantized Hall voltageVH(Y,Z)
is measured between points Y and Z. See Sec. 7.1 for the algebraic solutions.

Table 1 lists the current ratios and the relative errors
in RH(Y,Z) for the four representative cases with
“symmetric” triple-series connections. It at first appears
that the measured values ofRH(Y,Z) are too small, with
fractional errors that can exceed 1.53 10–7. However,
Eq. (33c) predicts that the voltageVH(Y,Z) measured
between points Y and Z is the correct quantized Hall
voltage VH across the deviceminus the longitudinal
voltage Vx(2,6) along the device between points 2
and 6; i.e., thatRH(Y,Z) ≈ [RH – Rx(2,6)], where
Rx(2,6) = Rx(1,5) = [rb + rc]. This prediction for
RH(Y,Z) is within 1 3 10–9 of the quantityRH – Rx(2,6)
when the lead resistances are 10V and is within
3 3 10–11 of the same quantityRH – Rx(2,6) when the
lead resistances are 1V.

The approximate solutions to the currents [not shown
in Table 1 but given by Eqs. (32b), (32d), (32e), and
(32f)] are satisfactory. The worst case is for 10V lead
resistances and 0.1 mV longitudinal resistances, where
the approximate values ofI1 andI6 are each fractionally
larger than the exact calculations by 1.23 10–6.

7.2 Longitudinal Voltage Configuration

Figure 12 shows a “symmetric” triple-series equiva-
lent circuit that can be used for longitudinal voltage
measurements if significant sample probe lead noise is
present. The solutions for currentsI1 andID are the same
as those listed in Eqs. (32e) and (32g). The solution for
I5 is simpler:

I5 =
d̂

f̂
IT = H [(rb + rc)(RH + rD + r1 + ra) + r1(rD + ra)]

[(RH + r5 + rb + rc)(RH + rD + r1 + ra) + r1(rD + ra)]
J IT , (34a)
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Fig. 12. Equivalent circuit for one “symmetric” triple-series connection to a quantum Hall effect device. The longitudinal Hall voltagesVx(2,4)
andVx(4,6) are measured between points 2, 4 and 4, 6. See Sec. 7.2 for the algebraic solutions.

or approximately

I5 ≈ F(rb + rc)
RH

+
rDr1

RHRH
G IT . (34b)

The longitudinal voltages are

Vx(2,4) = rbIT – rbI5 = rbF1 –
d̂

f̂
G IT (35a)

Vx(2,4) ≈ rbH1 – F(rb + rc)
RH

+
rDr1

RHRH
GJ IT (35b)

Vx(4,6) = rcIT – rcI5 = rcF1 –
d̂

f̂
G IT (35c)

Vx(4,6) ≈ rcH1 – F(rb + rc)
RH

+
rDr1

RHRH
GJ IT . (35d)

Table 2 displays the current ratios and the relative
errors in Rx(2,4) andRx(4,6) arising from the three
combinations of lead resistances and nonzero longitudi-
nal resistances used in Table 1 forRH(Y,Z) measure-
ments. The current ratio results are identical to those of
Sec. 7.1. The errors inRx(2,4) andRx(4,6) relative to
the correct valuesrb and rc are again acceptably small
becauserb and rc are small.

8. “Offset” Triple-Series Connections

8.1 Hall Voltage Configuration

Figure 13 shows two triple-series combinations to the
quantum Hall effect device with the connections
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displaced or “offset” from the symmetric or the normal
triple-series configurations. (We consider this case for
completeness and because the circuit has been

suggested by others.) The solutions are complicated, so
once again we define intermediate substitutions to sim-
plify the final algebraic expressions. Let

a' = Frb +
r4(rS + rc + rd)

(RH + rS + r4 + rc + rd)
–

rb(rD + ra + rb)
(RH + rD + r3 + ra + rb)

G (36a)

b' = Frb +
r4rc

(RH + rS + r4 + rc + rd)
–

rb(rD + ra + rb)
(RH + rD + r3 + ra + rb)

G (36b)

c' = F(RH + r2 + rb) +
r4(rS + rc + rd)

(RH + rS + r4 + rc + rd)
–

rbrb

(RH + rD + r3 + ra + rb)
G (36c)

d' = Frc +
r3(rD + ra + rb)

(RH + rD + r3 + ra + rb)
–

rc(rS + rc + rd)
(RH + rS + r4 + rc + rd)

G (36d)

e' = Frc +
r3 rb

(RH + rD + r3 + ra + rb)
–

rc(rS + rc + rd)
(RH + rS + r4 + rc + rd)

G (36e)

f ' = F(RH + r5 + rc) +
r3(rD + ra + rb)

(RH + rD + r3 + ra + rb)
–

rcrc

(RH + rS + r4 + rc + rd)
G . (36f)

Fig. 13. Equivalent circuit for two “offset” triple-series connections to a quantum Hall effect device. The quantized Hall voltageVH(Y,Z) is
measured between points Y and Z. See Sec. 8.1 for the algebraic solutions.
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The “offset” triple-series current solutions are then

I2 = F(a'f' – b'd')
(c'f' – b'e')G IT (37a)

I2 ≈ F rb

RH
+

rSr4

RHRH
G IT (37b)

I5 = F(c'd' – a'e')
(c'f' – b'e')G IT (37c)

I5 ≈ F rc

RH
+

rDr3

RHRH
G IT (37d)

I3 =
(rD + ra + rb)

(RH + rD + r3 + ra + rb)
(IT – I5)

–
rb

(RH + rD + r3 + ra + rb)
I2 ≈ rD

RH
IT (37e)

I4 =
(rS + rc + rd)

(RH + rS + r4 + rc + rd)
(IT – I2)

–
rc

(RH + rS + r4 + rc + rd)
I5 ≈ rS

RH
IT (37f)

ID =
(RH + r3 )

(rD + ra + rb)
I3 +

rb

(rD + ra + rb)
I2 (37g)

IS =
(RH + r4)

(rS + rc + rd)
I4 +

rc

(rS + rc + rd)
I5 . (37h)

Taking the path along potential probes 4 and 3, we find
the quantized Hall voltage is

VH(Y,Z) = RHIT – RH(I2 + I5) + r3 I3 + r4I4 , (38a)

or approximately

VH(Y,Z) ≈ RHH1 – F(rb + rc)
RH

GJ IT . (38b)

Table 1 lists the current ratios and the relative errors
in RH(Y,Z) for the four representative cases with
“offset” triple-series connections. The measured values
of RH(Y,Z) would again be too small, with errors that
are identical to the “symmetric” triple-series configura-
tion. However, Eq. (38b) predicts that the voltage
VH(Y,Z) measured between points Y and Z is once
again the correct quantized Hall voltageVH across the
device minus the longitudinal voltageVx(2,6) along
the device between points 2 and 6; i.e., that
RH(Y,Z) ≈ [RH – Rx(2,6)], whereRx(2,6) = Rx(1,5) =
[rb + rc]. This prediction forRH(Y,Z) is again within
1 3 10–9 of the quantityRH – Rx(2,6) when the lead
resistances are 10V, and is within 33 10–11 of the same
quantity when the lead resistances are 1V.

The approximate solutions to the currents [not shown
in Table 1 but given by Eqs. (37b), (37d), (37e), and
(37f)] are satisfactory. The worst case is for 10V lead
resistances and 0.1 mV longitudinal resistances, where
the approximate values ofI3 and I4 are fractionally
larger than the exact calculations by 1.23 10–6.

8.2 Longitudinal Voltage Configuration

Figure 14 shows an “offset” triple-series equivalent
circuit that can be used for longitudinal voltage mea-
surements if significant sample probe lead noise is
present. The solutions for the currents are simpler than
in Sec. 8.1:

I5 =
Frc +

r3 (rD + ra + rb)
(RH + rD + r3 + ra + rb)

G
F(RH + r5 + rc) +

r3 (rD + ra + rb)
(RH + rD + r3 + ra + rb)

G IT ≈ d'
f'

IT (39a)

I5 ≈ F rc

RH
+

rDr3

RHRH
G IT (39b)

I3 =
(rD + ra + rb)

(RH + rD + r3 + ra + rb)
(IT – I5) ≈ rD

RH
IT (39c)

ID =
(RH + r3 )

(rD + ra + rb)
I3 . (39d)

5 6
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Fig. 14. Equivalent circuit for one “offset” triple-series connection to a quantum Hall effect device. The longitudinal Hall voltagesVx(2,4) and
Vx(4,6) are measured between points 2, 4 and 4, 6. See Sec. 8.2 for the algebraic solutions.

The longitudinal voltages are

Vx(2,4) = rbIT – rbI3 – rbI5 (40a)

Vx(2,4) ≈ rbH1 –F rD

RH
+

rc

RH
+

rDr3

RHRH
GJ IT (40b)

Vx(4,6) = rcIT – rcI5 (40c)

Vx(4,6) ≈ rcH1 – F rc

RH
+

rDr3

RHRH
GJ IT . (40d)

Table 2 displays the current ratios and the relative
errors in Rx(2,4) andRx(4,6) arising from the three
combinations of lead resistances and nonzero longitudi-

nal resistances used in Table 1 forRH(Y,Z) measure-
ments. The current ratio results are nearly identical to
those of Sec. 8.1. The errors inRx(2,4) are larger than
Rx(4,6), but both errors are acceptably small becauserb

and rc are small.

9. Quadruple-Series Connections

9.1 Hall Voltage Configuration

Figure 15 shows two quadruple-series combinations
to the quantum Hall effect device. The solutions are
even more complicated, so we define substitutions of
substitutions to simplify the final exact algebraic
expressions. Let

m̂ = (RH + r2 + rb) (41a)
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Fig. 15. Equivalent circuit for two quadruple-series connections to a quantum Hall effect device. The quantized Hall voltageVH(Y,Z) is measured
between points Y and Z. See Sec. 9.1 for the algebraic solutions.

n̂ = (RH + r5 + rc) (41b)

ô = [(rS + rd)(r6 + rc) + rc(RH + r6)] (41c)

p̂ = [rc(RH + rS + r6 + rd)] (41d

q̂ = [(RH + rS + r6 + rd)(RH + r4) + (rS + rd)(r6 + rc) + rc(RH + r6)] (41e)

ŝ = [(rD + ra)(r1 + rb) + rb(RH + r1)] (41f)

t̂ = [rb(RH + rD + r1 + ra)] (41g)

û = [(RH + rD + r1 + ra)(RH + r3) + (rD + ra)(r1 + rb) + rb(RH + r1)] (41h)

v̂ = [rbq̂(û – ŝ)] (41i)

ŵ = [q̂(m̂û –rbt̂ )] (41j)

ŷ = [rcû(q̂ – ô)] (41k)

ẑ = [û(n̂q̂ – rcp̂)] . (41l)

585



Volume 103, Number 6, November–December 1998
Journal of Research of the National Institute of Standards and Technology

The quadruple-series exact and approximate current
solutions are then

I2 = H[(v̂ + r4ôû)(ẑ + r3q̂s) – (v̂ + r4p̂û)(ŷ + r3q̂ŝ)]
[ŵ + r4ôû)(ẑ + r3q̂ŝ) – (v̂ + r4p̂û)(ŷ + r3q̂t̂ )] J IT

(42a)

I2 ≈ rb

RH
IT (42b)

I5 = H[(ŵ + r4ôû)(ŷ + r3q̂ŝ) – (v̂ + r4ôû)(ŷ + r3q̂t̂ )]
[(ŵ + r4ôû)(ẑ + r3q̂ŝ) – (v̂ + r4p̂û)(ŷ + r3q̂t̂ )]J IT

(42c)

I5 ≈ rc

RH
IT (42d)

I3 =
ŝ
û

IT –
t̂
û

I2 –
ŝ
û

I5 (42e)

I3 ≈ F rb

RH
+

rDr1

RHRH
G IT (42f)

I4 =
ô
q̂

IT –
ô
q̂

I2 –
p̂
q̂

I5 (42g )

I4 ≈ F rc

RH
+

rSr6

RHRH
G IT (42h)

I1 =
(rD + ra)

(RH + rD + r1 + ra)
(IT – I3 – I5) ≈ rD

RH
IT (42i)

I6 =
(rS + rd)

(RH + rS + r6 + rd)
(IT – I2 – I4) ≈ rS

RH
IT (42j)

ID =
(RH + r1)
(rD + ra)

I1 (42k)

IS =
(RH + r6)
(rS + rd)

I6 . (42l)

Taking the path along potential probes 4 and 3, the
quantized Hall voltage is

VH(Y,Z) = RHIT – RH(I2 + I5) + r3I3 + r4I4 , (43a)

or approximately

VH(Y,Z) ≈ RHH1 – F(rb + rc)
RH

GJ IT . (43b)

Table 1 lists the current ratios and the relative errors in
RH(Y,Z) for the four representative cases with quadru-
ple-series connections. The measured values ofRH(Y,Z)
would again be too small, with errors that are nearly
identical to the “symmetric” and “offset” triple-series
configurations. However, Eq. (43b) once again predicts
that the voltageVH(Y,Z) measured between points Y and
Z is the correct quantized Hall voltageVH across the
device minus the longitudinal voltageVx(2,6) along
the device between points 2 and 6; i.e., thatRH(Y,Z) ≈
[RH – Rx(2,6)], whereRx(2,6) =Rx(1,5) = [rb + rc]. This
prediction forRH(Y,Z) is within 1.23 10–10 of the quan-
tity RH – Rx(2,6) when the lead resistances are 10V.

The approximate solutions to the currents [not shown
in Table 1 but given by Eqs. (42b), (42d), (42f), (42h),
(42i), and (42j)] are satisfactory. The worst case is for
10 V lead resistances and 0.1 mV longitudinal resis-
tances, where the approximate values ofI1 and I6 are
each fractionally larger than the exact calculations by
1.2 3 10–6.

9.2 Longitudinal Voltage Configuration

Figure 16 shows a quadruple-series equivalent circuit
that can be used for longitudinal voltage measurements
if significant sample probe lead noise is present. The
solutions for the currents are much simpler than in
Sec. 9.1:

I5 =
[rcû + r3ŝ]
[n̂û + r3ŝ]

IT (44a)

I5 ≈ rc

RH
IT (44b)

I3 =
ŝ
û

(IT – I5) (44c)
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Fig. 16. Equivalent circuit for one quadruple-series connection to a quantum Hall effect device. The longitudinal Hall voltagesVx(2,4) and
Vx(4,6) are measured between points 2, 4 and 4, 6. See Sec. 9.2 for the algebraic solutions.

I3 ≈ F rb

RH
+

rDr1

RHRH
G IT (44d)

I1 =
(rD + ra)

(RH + rD + r1 + ra)
(IT – I3 – I5) ≈ rD

RH
IT (44e)

ID =
(RH + r1)
(rD + ra)

I1 . (44f)

The longitudinal voltages are

Vx(2,4) = rbIT – rbI3 – rbI5 (45a)

Vx(2,4) = rbHF1 –
ŝ
ûGF1 –

(rcû + r3ŝ)
(n̂û + r3ŝ)GJ IT (45b)

Vx(2,4) ≈ rbH1 – F(rb + rc)
RH

+
rDr1

RHRH
GJ IT (45c)

Vx(4,6) = rcIT – rcI5 (45d)

Vx(4,6) = rcH1 –
(rcû + r3ŝ)
(n̂û + r3ŝ)J IT (45e)

Vx(4,6) ≈ rcF1 –
rc

RH
G IT . (45f)

587



Volume 103, Number 6, November–December 1998
Journal of Research of the National Institute of Standards and Technology

Table 2 displays the current ratios and the relative
errors in Rx(2,4) andRx(4,6) arising from the three
combinations of lead resistances and nonzero longitudi-
nal resistances used in Table 1 forRH(Y,Z) measure-
ments. The current ratio results are identical to those of
Sec. 9.1. The errors inRx(2,4) andRx(4,6) are very
small becauserb and rc are very small.

10. Conclusions

We have derived the exact algebraic solutions (and
approximate solutions) for a variety of multi-series con-
nections to equivalent electrical circuits of quantum Hall
effect devices which have significant longitudinal resis-
tances. All of the circuit element resistances can be
determined experimentally from single-series voltage
measurements around the periphery of the device. The
approximate solutions are adequate for the representa-
tive cases we have considered, but it is preferable for the
reader to use the exact solutions when applying correc-
tions to their experimental results.

We have found that, in all the circuits considered, the
current in each external arm of a circuit is nearly identi-
cal for the longitudinal voltage configuration (with one
multi-series connection to the device) and for the quan-
tized Hall voltage configuration (with two multi-series
connections to the device). Since it is much easier to
derive the current equations for a single multi-series
connection, it may be safe to use a single multi-series
connection configuration when deriving current equa-
tions in other circuits not considered here. Although the
diamond-shaped voltage generator arrays and the ring-
shaped voltage generator arrays both give similar results
when including longitudinal resistances, it is much
easier to derive the equations using circuits with
diamond-shaped voltage generator arrays. Also, the
diamond-array solutions are simpler. (Compare the
results in Sec. 5 and Appendix A as an example.) Thus,
we recommend using diamond-array equivalent circuits.

It is preferable to measure the longitudinal voltages
with regular single-series connections to the device (as
in Fig. 1). However, if antenna noise generated in the
sample probe leads becomes a problem, or if the
impedances of the coaxial sample probe leads are too
large, then a single quadruple-series connection to the
device (as in Fig. 16) is preferable when making ac
longitudinal voltage measurements because all the off-
ground potential leads are connected in that configura-
tion. A single “normal,” “symmetric,” or “offset” triple-
series connection could be used for ac longitudinal
voltage measurements if one sample probe potential lead
was not connected at device contacts 1', 3', or 5'.

Not surprisingly, the largest multi-series errors in
RH(Y,Z) occur for double-series connections. Triple-se-
ries or quadruple-series connections should be used for
accurate quantized Hall resistance measurements. How-
ever, the double-series errors calculated here are still an
order of magnitude smaller than the experimentally ob-
served deviations of the ac values ofRH(Y,Z) from the dc
values ofRH(Y,Z) when using typical 1V sample probe
lead resistances. The multi-series connection errors cal-
culated here are due mainly to the lead resistances [13,
16]. We can see from Table 1 that the multi-series con-
nection errors are insensitive to the longitudinal resis-
tances, except for the triple-series “symmetric,” triple-
series “offset,” and the quadruple-series connections
which measure the quantityRH(Y,Z) ≈ [RH – Rx(2,6)].

The exact algebraic solutions of the equivalent cir-
cuits presented here can be used with confidence to
make corrections to dc measurements when using
multi-series connections to quantum Hall effect
devices. These dc corrections should be used when
comparing the dc and ac values of the quantized Hall
resistances. However, another purpose of this work is to
begin investigating the effect of ac longitudinal resis-
tances on measurements of ac quantized Hall resis-
tances. Finding exact solutions to the complete multi-
series ac circuits in the presence of finite ac longitudinal
resistances is an extremely difficult problem because
the circuits should ultimately include all of the inner
conductor-to-shield capacitances, all of the inner con-
ductor-to-inner conductor capacitances, and all of the
inductances of the device, the device holder, and the
sample probe. As a first step in solving the complete
circuit we have ignored these capacitances and induc-
tances, and have considered only the contributions of ac
longitudinal resistances on the ac quantized Hall resis-
tance measurements of multiply-connected devices. We
find that finite ac longitudinal resistances within the
devices do not explain the observed frequency depen-
dences of the ac quantized Hall resistances, i.e., the
frequency dependences of the ac quantized Hall resis-
tances are not due to ac longitudinal resistances.

11. Appendix A. Ring-Array Double-
Series Connections

This appendix demonstrates the complexity of exact
solutions for ring-array multi-series connections com-
pared with the solutions for diamond-arrays when
longitudinal resistances are included in the circuit. We
consider only the simplest case (double-series connec-
tions), which can be compared with the double-series
diamond-array solutions of Sec. 5.
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Because the ring-array solutions are so complex, and
the numerical results differ insignificantly from the dia-
mond-array circuit results, we use the diamond-array
circuits in the main text to find the solutions for the
currents, quantized Hall voltages, and longitudinal
voltages of triple-series and quadruple-series connec-
tions to the device. It is left as an exercise for the reader
to find the exact ring-array solutions for triple-series and
quadruple-series connections.

11.1 Hall Voltage Conriguration

Figure A-1 shows two double-series connections to
the device. We define four internal currentsIS3, IS4, I3D,
andI4D, and make the following substitutions to simplify
the current and voltage equations:

Â = H rD

[RH + rD + r3 + 2(ra + rb)]
J (A-1a)

B̂ = H 2(ra + rb)
[RH + rD + r3 + 2(ra + rb)]

J (A-1b)

Ĉ = H rS

[RH + rS + r4 +2(rc + rd)]
J (A-1c)

D̂ = H 2(rc + rd)
[RH + rS + r4 +2(rc + rd)]

J (A-1d)

Ê =
(ra + rb)

(ra + rb + rc + rd)
(A-1e)

F̂ =
(rc + rd)

(ra + rb + rc + rd)
. (A-1f)

The double-series ring-array current solutions are then

IS3 = F[1 + ÂÊ – (Ĉ + D̂ )F̂ ]
[2 – B̂Ê – D̂F̂ ] G IT (A-2a)

I4D = IT – IS3 (A-2b)

I3 = ÂIT + B̂IS3 ≈ rD

RH
IT (A-2c)

I4 = ĈIT + D̂I4D ≈ rS

RH
IT (A-2d)

I3D = IS3 – I3 (A-2e)

IS4 = I4D – I4 (A-2f)

IS = IT – I4 (A-2g)

ID = IT – I3 . (A-2h)

The quantized Hall voltage measured between points Y
and Z is

VH(Y,Z) = RHIT + r3I3 + r4I4

+ 2(rc + rd)(IS3 – IS4) , (A-3a)

or approximately

VH(Y,Z) ≈ RHF1 +
r3rD

RHRH
+

r4rS

RHRH
G IT . (A-3b)

The exact solutions for the currents and forVH(Y, Z)
in Eq. (A-3a) are slightly different from the results
calculated in Sec. 5.1 for the diamond-array with the
same device connections. While the double-series ring-
array calculation results are not presented in Table 1,
they are nearly identical to the double-series diamond-
array results when using the same four representative
cases of lead and longitudinal resistances. The largest
discrepancies are for the case with 10V lead resistances
and 1 mV longitudinal resistances, where the ring-array
current ratio I3/IT is fractionally smaller than the
diamond-array current ratio by 1.23 10–10, and the
fractional Hall resistance error [RH(Y,Z)/RH] – 1 is
2.4 3 10–10 larger. Even though the results are similar
for these representative cases, the diamond-array
solutions are much simpler to derive and to calculate.

11.2 Longitudinal Voltage Configuration

Figure A-2 shows a double-series ring-array connec-
tion to the device that could be used for longitudinal
voltage measurements if significant antenna noise is
present in the sample probe leads. The current solutions
are now
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Fig. A-1. Equivalent circuit for two double-series connections to a quantum Hall effect device with ring-array voltage generators. The quantized

Hall voltageVH(Y,Z) is measured between points Y and Z. See Sec. 11.1 for the algebraic solutions.

IS3 = H[1 + ÂÊ]
[2 – B̂Ê]J IT (A-4a)

I3 = ÂIT + B̂IS3 ≈ rD

RH
IT (A-4b)

I3D = IS3 – I3 (A-4c)

IS4 = IT – IS3 = I4D (A-4d)

ID = IT – I3 . (A-4e)

The double-series ring-array calculation results are
not presented in Table 2 for the longitudinal voltage
configuration, but the current ratiosI3/IT are nearly
identical to the double-series diamond-array results
when using the same four representative cases of lead

and longitudinal resistances. The largest discrepancies
are for the case with 10V lead resistances and 1 mV
longitudinal resistances, where the ring-array current
ratio I3/IT is fractionally smaller than the diamond-array
current ratio by 63 10–11.

The longitudinal voltages are

Vx(2,4) = 2rbI4D = 2rbIS4 (A-5a)

Vx(2,4) ≈ rbF1 –
rD

2RH
G IT (A-5b)

Vx(4,6) = 2rcIS4 (A-5c)

Vx(4,6) ≈ rcF1 –
rD

2RH
G IT . (A-5d)
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Fig. A-2. Equivalent circuit for one quadruple-series connection to a quantum Hall effect device. The longitudinal Hall voltagesVx(2,4) and

Vx(4,6) are measured between points 2, 4 and 4, 6. See Sec. 11.2 for the algebraic solutions.

Both longitudinal voltagesVx(2,4) andVx(4,6) have
approximate [1 –rD/2RH] corrections in the ring-array,
whereas there is an approximate [1 –rD/RH] correction
to Vx(2,4) and no correction toVx(4,6) in the diamond-
array of Sec. 5.2. The largest discrepancies between
Vx(2,4) andVx(4,6) are for the two cases with 10V lead
resistances, where the ring-array longitudinal voltages
are both fractionally smaller than the diamond-array
voltages by 3.93 10–4. These are small discrepancies
because the longitudinal voltages are small.
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