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1. Introduction

The basic theory of Fresnel diffraction at plane aper-
tures was developed long ago [1,2] and is summarized in
textbooks [3–6]. For apertures bounded by straight lines
(rectangle, slit, half plane), the standard textbook solu-
tion in terms of complex Fresnel integrals1 is based on
special but poorly documented transformations of coor-
dinates. It is shown in this paper that such transforma-
tions cannot be performed accurately for apertures irra-
diated by arbitrarily located point sources. In the past,
the numerical evaluation of the complex Fresnel inte-
grals themselves has also been a problem, and thus pre-
vious discussions were confined to simplified special
cases. Computational details were omitted and semi-
quantitative methods (Cornu spiral) were used to de-
scribe the nature of diffraction at rectangular apertures.

In the case of circular apertures, the rigorous solution
involves Lommel functions of two variables, which are

1 In this paper it is necessary to distinguish between the “Fresnel
diffraction integral”UF(P) defined by Eqs. (3a–c) of this paper and
the “complex Fresnel integral”F (s) defined by Eq. (8).

defined as series expansions in Bessel functions and
previously had to be evaluated by tedious manual calcu-
lations or approximations. For the most part, these ap-
proaches have been rendered obsolete by modern com-
puter software. However, approximative methods are
still useful for work on personal computers which in-
volves large values of the configuration parameteru
defined by Eq. (17a) of this paper. It is shown here that
a previously used approximation by Focke [7] is inade-
quate for this purpose on account of its poor accuracy,
but that an older approximation by Schwarzschild [8]
gives excellent results.

As algorithms for the computation of Fresnel diffrac-
tion patterns on a personal computer have not been
published, a compilation of such algorithms is presented
in this paper. The underlying theory is stated for off-axis
source points, so that the results can be applied to ex-
tended sources. For both types of aperture, the closed
solutions obtained are paraxial approximations.
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2. The Fresnel Diffraction Integral

The scalar wave functionU (P) associated with dif-
fraction at a plane aperture is customarily expressed by
one of the Rayleigh-Sommerfeld integrals2,

Up
RS(P) = 2

Asph

2p
EdQ

eik(P0Q+QP)

P0Q?QP Sik 2
1

P0Q
D ­P0Q

­n
, (1a)

U s
RS(P) = 2

Asph

2p
EdQ

eik(P0Q+QP)

P0Q?QP Sik 2
1

QPD ­QP
­n

, (1b)

or, alternatively, by the Kirchhoff integral,

UK(P) =
1
2

(Up
RS + U s

RS). (1c)

Here, as indicated in Figs. 1, 2, and 4,P0 is the location
of a point source emitting a monochromatic spherical
wave of amplitudeAsph, circular wave numberk = 2p/l ,
Q is a point in the aperture, dQ is the surface element at
Q, n is the aperture normal pointing away from the
source, andP is the point of observation.

In the Fresnel approximation the pointsP0 andP are
located at finite distances which are large compared to
the wavelength of light and the dimensions of the aper-
ture. Therefore, it is assumed that

1
P0Q

<< k,
1

QP
<< k, (2a)

and that the distancesP0Q and QP and their normal
derivatives do not vary appreciably inside the aperture.
Thus they can be replaced, except in the rapidly oscillat-
ing exponential function in the integrand, by their values
at an arbitrarily chosen reference pointO inside the
aperture. Under these conditions, the first Rayleigh-
Sommerfeld integral Eq. (1a) may be written in the form

U p
RS(P) ≈ 2

ikAsph

2p
­P0O

­n
eik(P0O+OP)

P0O?OP EdQ eikD(Q), (2b)

where

D(Q) = (P0Q + QP) 2 (P0O + OP), (2c)

is a small quantity that can be expressed in approximate
form. It is well known that, with

2 A subscripted notation for wave amplitudes is used to avoid confu-
sion between quantities which differ in physical significance and di-
mension. For example, the squared amplitude |Asph|

2 of a spherical
wave denotes a radiant intensity whereas the squared amplitude
|Aplane|

2 of a plane wave denotes an irradiance.

O = (0, 0, 0),P0 = (x0, y0, z0), Q = (j , h , 0),P = (x, y, z)
(2d)

expressed in cartesian coordinates, the required approx-
imation for D(Q) is

D(Q) = 2 [(l 2 l0)j + (m 2 m0)h ] +
1

2r0
[(j 2 + h2) 2

(l0j + m0h )2] +
1
2r

[(j 2 + h2) 2 (lj + mh )2] + e (j ,h ),

(2e)

wheree (j ,h ) is the residual error when terms of third
and higher order inj andh are neglected. Here,

l0 = 2
x0

r0
, m0 = 2

y0

r0
, l =

x
r

, m =
y
r

(2f)

are the first and second direction cosines of the vectors
P0O andOP, and

r0 = Ïx2
0 + y2

0 + z2
0, r = Ïx2 + y2 + z2 (2g)

are the distancesP0O andOP. The corresponding value
of the normal derivative3 in Eq. (2b) is

­P0O
­n

= 2
­r0

­z0
= 2

z0

r0
= 2 cosu0. (2h)

We now have

Up
RS(P) ≈ ikAsphcosu0

2pr0r
eik(r0+r)EdQeikD(Q). (2i)

The corresponding forms ofU s
RS(P) andUK(P) are es-

sentially the same, except that2cosu0 is replaced by
cosu and1/2(2cosu0 + cosu ), respectively, whereu is the
colatitude of the point of observationP. Because the
diffracted light is confined to a narrow angular range
about the central directionP0Q unless the aperture di-
mensions are extraordinarily small, these differences
may be judged insignificant. As the Rayleigh-Sommer-
feld solutions pertain to the respective cases ofp- and
s-polarization of the incident light, this implies that
Fresnel diffraction is independent of polarization. The
Kirchhoff solution has no definable meaning as far as
polarization is concerned, but turns out to be equivalent
to the Rayleigh-Sommerfeld solutions in the Fresnel

3 The angleu0 should not be confused with the anglep 2 u0 indicated
in Figs. 1 and 4.u andu0 are colatitudes which are measured clockwise
from the positivez-axis. In this paper,u0 is assumed to be on the order
of p , so that cosu0 is on the order of21.
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approximation. A further solution, the Maggi-Rubinow-
icz transformation of Kirchhoff’s integral [3,4], is not
suitable for computations of Fresnel diffraction patterns
because it is singular at the boundary of the geometrical
shadow.

In this paper, Eq. (2i) will be regarded as the basic
form of the Fresnel diffraction integral and will be writ-
ten as

UF(P) = 2 U0(P)cosu0aF(P), (3a)

where

U0(P) = Asph
eik(r0+r)

r0 + r
= ÏE0(P)eik(r0+r) (3b)

is the geometrical field at the point of observationP
according to Huygens’ principle,

aF(P) = 2
ik(r0 + r )

2pr0r
EdQeikD(Q) (3c)

is the modification of the geometrical field by diffrac-
tion, E0(P) is the normally incident geometrical irradi-
ance atP, and2cosu0 is the inclination factor according
to Lambert’s law.

The third- and fourth-order terms neglected in Eq.
(2e) are

e (j ,h ) = 2
1

2r 2
0
{( l0j + m0h )[(j 2 + h2) 2 (l0j + m0h )2]}

+
1

2r 2 {( lj + mh )[(j 2 + h2) 2 (lj + mh )2]}

2
1

8r 3
0
{( j 2 + h2)2 2 (l0j + m0h )2[6(j 2 + h2)

2 5(l0j + m0h )2]}

2
1

8r 3 {( j 2 + h2)2 2 (lj + mh )2[6(j 2 + h2)

2 5(lj + mh )2]}. (4a)

This shows that the error introduced by neglecting this
term depends in a complicated manner on the geometri-
cal parameters involved. Accordingly, it is difficult to
assess its magnitude without considering specific cases.
However, a few general comments are in order. Under
ordinary circumstances, the direction cosinesl0, l , ... are
small compared with unity, so that (l0j + m0h )2 and

(lj + mh )2 are much smaller than (j 2 + h2), and then
one finds4

e (j ,h ) ≈ 2
r 3

0 + r 3

8r 3
0 r 3 (j 2 + h2)2. (4b)

Hence, the magnitude ofe (j ,h ) relative to the quadratic
term of Eq. (2e) may be estimated as

2r0r|e (j ,h )|
(r0 + r )(j 2 + h2)

≈ (r 3
0 + r 3)(j 2 + h2)
4r 2

0 r 2(r0 + r )
<

q2
max

kr l2 , (4c)

whereqmax is the maximum value ofÏj 2 + h2 (e.g., the
radius of a circular aperture) andkr l is an average ofr0

and r . Accordingly, the relative error inD(Q) is in-
versely proportional to the square of the relative distance
kr l/qmax. At a distance of ten aperture dimensions, it is
on the order of 1 %.

3. Rectangular Aperture
3.1 General Theory (Fig. 1)

When applying the above equations to a rectangular
aperture of width 2w and height 2h, it is customary to
transform the global cartesian coordinates (x, y, z) as-
sumed in Sec. 2 into local coordinates (x', y', z') which
depend on the locations of the pointsP0 andP and are
chosen so that Eq. (3c) is separated into a product of
independent Fresnel integrals inj andh . That is,

aF(P) ~ Edjeiaj2Edheibh2
. (5)

The first step in this transformation is to place the origin
of the local coordinates at the pointM where the straight
line P0P intersects the aperture plane:

M = (xM , yM , 0), xM =
x0z 2 xz0

z 2 z0
, yM =

y0z 2 yz0

z 2 z0
. (6a)

This gives

l0' =
x0 2 xM

r0'
= l' =

x 2 xM

r'
,

m0' =
y0 2 yM

r0'
= m' =

y 2 yM

r'
,

r0' =
2 z0

cosuM
, r' =

z
cosuM

, (6b)

4 The direction cosines are identically equal to zero, and Eq. (4b) holds
exactly, for the rectangular aperture discussed in Sec. 3.1.2. See Eqs.
(9a–d).
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uM being the angle indicated in Fig. 1. The linear term
of Eq. (2e) now vanishes and we have

D(Q) =
1

2r'
{( j 2 xM )2 + (h 2 yM )2

2 [l0' (j 2 xM ) + m0' (h 2 yM )]2}, (6c)

r' =
r0'r'

r0' + r'
=

2zz0

(z 2 z0)cosuM
. (6d)

This result can be used in two ways to derive a final
result.

3.1.1 Paraxial Approximation

As mentioned in deriving Eq. (4b) above, the direc-
tion cosinesl0' andm0' will be small if the pointsP0 and
P are close to thez-axis of Fig. 1. To a first-order
approximation inuM we havel'02, m'02 « 1, so that the
third term of Eq. (6c) can be omitted and Eq. (3c) leads
directly to

aF(P) ≈ 2
ik

2pr' E
w

2w

djeik(j2xM)2/2r' Eh

2h

dheik(h2yM)2/2r'

= 2
i
2

[F (s+) 2 F (s2)][F (t+) 2 F (t2)], (7a)

where

s6 = Î k
pr'

(6 w 2 xM ), t6 = Î k
pr'

(6 h 2 yM ), (7b)

and

F (s) = C(s) + iS(s) = Es

0

ds eips2/2 (8)

is the complex Fresnel integral.

3.1.2 Coordinate Transformation for Off-Axis
Sources

According to textbooks, a rotation of coordinates may
be necessary when the direction cosinesl0' and m0'

❘

Fig. 1. Notation for rectangular apertures.

are too large to justify the paraxial approximation of
Sec. 3.1.1, a rotation of coordinates may be necessary.
The usual recommendation [3, 5] is to place the new
x'-axis along the projection of the lineP0P onto the
aperture plane. This givesm0' = 0, so thataF(P) does
indeed assume the form stipulated by Eq. (5). However,
the x'- and y'-axes so defined are not parallel to the
edges of the aperture, and consequently the two inte-
grals are not separable because the limits of thej -inte-
gral depend onh , and vice versa.

To overcome this difficulty, a different transformation
is attempted in the following: Thez'-axis is placed in the
direction of the unit vector along the lineP0P, so that
l0' = m0' = 0 and Eq. (5) is again satisfied. Thex'-axis is
chosen so that its projection onto the aperture plane is
parallel to thej -direction. They'-axis is defined in the
usual manner asy' = z' 3 x' . Thus,

x' 1/W 0 2 cosfM tanuM /W x2 xM1y'2=12 sinfMcosfMsinuM tanuM /W WcosuM 2 sinfMsinuM /W21y 2 yM2
z' cosfMsinuM sinfMsinuM cosuM z (9a)
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wherefM anduM are the longitudes and colatitudes ofP0

andP with respect to M,

tanfM =
y 2 y0

x 2 x0
, tanuM =

Ï(x 2 x0)2 + (y 2 y0)2

z 2 z0
, (9b)

and

W = Ï1 + cos2fM tan2uM . (9c)

Accordingly, forz = 0,

j ' =
1
W

(j 2 xM ),

h' = WcosuMF2 sinfMcosfM tan2uM

W2 (j 2 xM )

+ (h 2 yM )G. (9d)

Equation (9d) shows thath' is still not independent ofj .
This was to be expected as it is not possible to rotate the
z-axis and have orthogonalx- andy-axes which are both
aligned with the aperture edges. Accordingly, the sepa-
ration of integration limits is not complete unless the
first term in the above expression forh' is omitted—a
first-order approximation inuM . Then,

j =
1
W

(j 2 xM ), h' = WcosuM (h 2 yM ),

dj 'dh' = cosuMdjdh . (10a)

and

aF(P) =

2
ikcosuM

2pr' Ew

2w

djeik(j2xM )2/2W2r'2Eh

2h

dheikW2cos2u(h2yM )2/2r'2

= 2
i
2

[F (s+/W) 2 F (s2/W)][F (WcosuM t+)

2 F (WcosuM t2)], (10b)

where s+ and s2 are the same as in Eq. (7b), above. It
should be noted that this result differs from the paraxial
approximation only by the factors 1/W andWcosuM in
the arguments of the Fresnel integrals. Within the above
approximation forh' these factors are equal to unity, and
thus Eq. (10b) appears to be no improvement over the
paraxial approximation Eq. (7b) of Sec. 3.1.1. It follows
that, for rectangular apertures, the coordinate transfor-
mations recommended in Refs. [3] and [5] are superflu-

ous. To higher than first order inuM , thej - andh -inte-
grals remain inseparable and a closed solution foraF(P)
is not possible.

3.1.3 Evaluation of Fresnel Cosine and Sine
Integrals

The use of Eqs. (7a) and (10b) is straightforward. An
example is given in Sec. 3.2, below. It should be remem-
bered that the variation ofaF (P) with P is implicit in
Eqs. (7b) and (10b), in thatxM , yM , fM anduM depend on
the location ofP. It should also be borne in mind that the
point M of Fig. 1 will be outside the aperture whenP
lies in the geometric shadow. This can lead to values of
j andh larger than assumed in Eq. (3a). For this reason,
the computation ofaF (P) based on Eq. (7b) or (10b)
must not be carried too far into the shadow region.

The only problem that may be encountered on a per-
sonal computer is that the Fresnel cosine and sine inte-
grals defined by Eq. (8) are not usually included in
standard software packages. For modest accuracy re-
quirements, they can be computed from the equations
quoted in Ref. [9],

C(s) =
1
2

+ f (s)sinSps2

2 D 2 g(s)cosSps2

2 D,

C(2 s) = 2 C(s), (11a)

S(s) =
1
2

2 f (s)cosSps2

2 D 2 g(s)sinSps2

2 D,

S(2 s) = 2 S(s), (11b)

f (s) =
1 + 0.926s

2 + 1.792s + 3.104s2 + e (s), s $ 0, (11c)

g(s) =
1

2 + 4.142s + 3.492s2 + 6.67s3 + e (s), s $ 0,

(11d)

where |e (s)| # 2 3 1023. Accordingly, the following
simple algorithm may be used:

1. Defines.
2. Let s' = |s|.
3. Calculatef (s'), g(s') from Eq. (11c,d).
4. CalculateC(s'), S(s') from Eq. (11a,b).
5. If s < 0 let C(s) = 2 C(s'), S(s) = 2 S(s'). Else, let

C(s) = C(s'), S(s) = S(s').

If better accuracy is desired, this algorithm can be im-
proved by using the method described in Ref. [10].
Alternatively, software for computingC(s) andS(s) in
Fortran or C can be downloaded [11, 12].
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3.2 Application to Slits (Fig. 2)

The rectangular aperture discussed so far is trans-
formed into a slit of width 2w on settingh = ` in Eq.
(7b).5 It may then also be assumed that the source is a
long luminous line which is parallel to the slit and passes
through the pointP0 in Fig. 1, so that it will suffice to
compute the diffraction pattern in thexz-plane shown in
Fig. 2. With these assumptions we havet6 = 6 `, so that
F (t6) = 6 1/2 (1 + i), [F (t+) 2 F (t2)] = 1 + i, and Eq.
(10b) is reduced to

aF(P) =
1 2 i

2
[F (s+) 2 F (s2)]

=
1 2 i

2
{[ C(s+) 2 C(s2)] + i[ S(s+) 2 S(s2)]}, (12a)

with s as defined by Eq. (7b) but assuming
y0 = y = yM = 0 so that Eq. (9b) is simplified to

uM = arctan
x0 2 xM

z0
, x = xM + ztanuM . (12b)

As the diffraction pattern is centered at and symmetrical
about the geometrical source imageC shown in Fig. 2,
where

Fig. 2. Notation for slits.

5 This assumption seems to violate the condition that the values ofh
in Eq. (2e) must be small, but is justifiable on account of Fresnel’s
zone construction. Because the field atP is not affected by zones
located at large distances from the lineP0P in Fig. 1, theh -integration
can be extended to infinity without introducing an error.

xM = 0, uM = uC = arctan
x0

z0
, x = xC =

x0z
z0

, (12c)

it will also suffice to compute it for positive value values
of xM , only. The computation is typically carried to a
maximum value ofuM beyond the shadow boundaryS,
the latter being given by

xM = w, uM = uS = arctan
x0 2 w

z0
, x = xS = w + ztanuS.

(12d)

Accordingly, the following procedure may be used to
evaluate the dependence ofaF(P) on x:

1. Define a maximum (xM )max and a step sizeDxM for
xM .

2. Let xM = 0.
3. ComputeuM andx from Eq. (12b) ands6 from Eq.

(7b). Use the algorithm of Sec. 3.1 to findC(s6) and
S(s6). ComputeaF(P) from Eq. (12a).

4. LetxM = xM + DxM . If xM < (xM )max, go to Step 3. Else,
stop.

A typical diffraction pattern computed in this manner is
shown in Fig. 3. The numerical parameters chosen for
this particular example are listed in the figure caption
and were taken from an experiment described by
Fresnel.6

Fig. 3. Relative irradiance, |aF(u, v)|2 vs v/u, for a slit. w = 1 mm,
z0 = 2 2.507 m,z = 1.140 m,l = 639 nm.

6 Reference [1], pp. 117 and 128. At first glance, the variation of
|aF(P)|2 shown in Fig. 3 does not appear to match the results described
by Fresnel. However, the agreement is satisfactory when the data are
replotted on alogarithmic scale to simulate Fresnel’s visual readings.
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4. Circular Aperture (Fig. 4)
4.1 General Theory

In evaluating the Fresnel diffraction integral Eqs.
(3a–c) for a circular aperture with diameter 2a it is
convenient to use spherical coordinates centered at the
aperture center O, so that

P0 = (x0, y0, z0) = r0(cosf0 sinu0, sinf0 sinu0, cosu0)

= 2 r0(l0, m0, n0), (13a)

Q = (j , h , 0) = q(cosx , sinx , 0), (13b)

P = (x, y, z) = r (cosf sinu , sinf sinu , cosu )

= r (l , m, n). (13c)

In these coordinates, the path differenceD(Q) defined
by Eq. (2e) can be evaluated as follows.

Fig. 4. Notation for circular apertures.

Let C = r (l0, m0, n0) be the geometrical image ofP0 at
the distancer from the aperture center, so that the posi-
tion of P relative to C will be given by the vector
CP= r (l 2 l0, m 2 m0, n 2 n0). Let F be the foot of the
perpendicular fromC onto thexy-plane, letc = FP, and
define

FP = r (l 2 l0, m 2 m0, 0) = c(cosg , sing , 0), (14a)

where

c = r Ï(l 2 l0)2 + (m 2 m0)2

= r Ïsin2u + sin2u0 + 2sinusinu0cos(f 2 f ), (14b)

tang =
m 2 m0

l 2 l0
=

sinfsinu + sinf0sinu0

cosfsinu + cosf0sinu0
. (14c)

Accordingly, the linear term of Eq. (2e) can be ex-
pressed in the form

(l 2 l0)j + (m 2 m0)h =
1
r

FP ?OQ

=
qc
r

(cosxcosg + sinxsing ) =
qc
r

cos(x 2 g ). (14d)

In the quadratic term of Eq. (2e), we have

(j 2 + h2) 2 (l0j + m0h )2

= q2[1 2 sin2u0(cosf0cosx + sinf0sinx )2]

= q2[1 2 sin2u0cos2(x 2 f0)] (15a)

and, likewise,

(j 2 + h2) 2 (lj + mh )2 = q2[1 2 sin2ucos2(x 2 f )].
(15b)

In the following, it will be assumed that the pointsP0

andP are close to thez-axis so that sin2u0 and sin2u are
negligibly small compared to unity. In this paraxial ap-
proximation one obtains

1
2r0

[(j 2 + h2) 2 (l0j + m0h )2]

+
1
2r

[(j 2 + h2) 2 (lj + mh )2] ≈ r0 + r
2r0r

q2. (15c)

On substitution of Eqs. (14d) and (15c) into Eq. (2e) we
have
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D(Q) = 2
qc
r

cos(x 2 g ) +
r0 + r
2r0r

q2, (16a)

and hence Eq. (3c) is reduced to

aF(P) = 2
ik(r0 + r )

2pr0r
Ea

0

dqqeik
r0+r
2r0r

q2 E2p

0

dxe2ik
qc
r

cos(x2g)

= 2
ik(r0 + r )

r0r
Ea

0

dqqJ0Sk
qc
r Deik

r0+r
2r0r

q2
, (16b)

where the integral overx was evaluated as 2pJ0(kqc/r )
[9]. On substituting

r =
q
a

, u =
ka2(r0 + r )

r0r
, v =

kac
r

, (17a)

this becomes

aF(P) = 2 iuE1

0

drrJ0(vr )e
i
2

ur2
. (17b)

As expected, these equations describe a circular dif-
fraction pattern which is fully determined by a radial
variable,c or v. The pattern is centered at the geometri-
cal source imageC, defined byc = v = 0, andaF(P) is
constant on any circle aboutC. The radius of the geo-
metrically illuminated spot at the distancer from the
aperture isa (r0 + r )/r0, so that in the notation of Eq.
(17a) the geometrical shadow boundary is defined by
v = u. The parameteru, which relates the aperture ra-
dius a to the wavelengthl and the distancesr0 and r ,7

can assume widely different values. For example, in the
case of a classroom demonstration of Fresnel diffrac-
tion, the parametersl = 500 nm,a = 0.1 mm,r0 = r =
100 mm are typical and in this case one hasu = 0.8p.
On the other hand, for limiting apertures used in a
radiometer, parameters such asl = 500 nm,a = 5 mm,
r0 = r = 1 m are typical, and then one hasu = 200p. As
will be shown later, the diffraction patterns encountered
in these different cases are very different. Foru → 0 the
diffraction pattern approaches the Fraunhofer limit
(Airy function), and foru → ` it approaches the limit
of geometrical optics (rectangle function). (See Sec.
4.2, Figs. 6a–d).

7 It should be noted that, according to Eq. (13c), the distancer = z/
cosu depends on the location of the point of observationP so that,
strictly speaking,u is not a constant if the diffraction pattern is ob-
served at at fixed distancez from the aperture. This dependence ofu
on P is considered negligible in the Fresnel approximation.

4.2 Lommel’s Solution

Lommel [2] evaluated the integral Eq. (17b) in the
form8

E1

0

drrJ0(vr )e
i
2

ur2
=

1
2

[L(u, v) + iM(u, v)], (18a)

so that

aF(u, v) ≡ aL(u, v) =
u
2

M(u, v) 2 i
u
2

L(u, v). (18b)

In this notation,

|aL(u, v)|2 =
u2

4
[M2(u, v) + L2(u, v)] (18c)

is the relative irradiance of the diffracted light and

FL(u, v) = arctan
Im(aL)
Re(aL)

= 2 arctan
L(u, v)
M(u, v)

(18d)

is the phase difference relative to the geometric field.
The functions L(u, v) and M(u, v) appearing in these

equations are defined by

u
2

L(u, v) = sin
v2

2u
+ V0(u, v)sin

u
2

2 V1(u, v)cos
u
2

= U1(u, v)cos
u
2

+ U2(u, v)sin
u
2

, (19a)

u
2

M(u, v) = cos
v2

2u
+ V0(u, v)cos

u
2

2 V1(u, v)sin
u
2

= U1(u, v)sin
u
2

2 U2(u, v)cos
u
2

, (19b)

where

V0(u, v) = J0(v) 2 Sv
uD2J2(v) + Sv

uD4J4(v) + 2 ...,

(20a)

V1(u, v) = Sv
uD J1(v) 2 Sv

uD3J3(v) + Sv
uD5J5(v) + 2 ...,

(20b)

8 Elsewhere in the literature, L(u, v) and M(u, v) are denoted by
C(u, v) and S(u, v). This practice is not followed here in order to
avoid confusion with the Fresnel integrals C(s) and S(s) of Eq. (8).
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U1(u, v) = Su
vD J1(n ) 2 Su

vD3J3(v) + Su
vD5J5(v) + 2 ...,

(20c)

U2(u, v) = Su
vD2J2(v) 2 Su

vD4J4(v) + Su
vD6J6(v) + 2 ...

(20d)

are Lommel functions of two variables, Jn(v) being a
Bessel function of the first kind and ordern.

For checking the accuracy of numerical results, it is
useful to note the values of these expressions in special
cases:

a. In the limitu → 0, Lommel’s equations simplify to
the familiar Airy formula for Fraunhofer diffraction at a
circular aperture. In this case, the entire diffraction pat-
tern lies in the geometrical shadow and Eqs. (20c,d) are
reduced to

U1(u, v)
u

→ J1(v)
v

,
U2(u, v)

u
→ 0, aL(P) → 2 iuJ1(v)

v
,

(21)

so that Airy’s formula, U(P) ~ J1(v)/v, is obtained from
Eqs. (17a) and (3a,b).

b. Forv = 0, we have

Re[aL(u, 0)] = S1 2 cos
u
2D, Im[aL(u, 0)] = 2 sin

u
2

,

(22a)

|aL(u, 0)|2 = 2S1 2 cos
u
2D, (22b)

FL(u, 0) = 2 arctanF sin(u/2)
1 2 cos(u/2)G. (22c)

c. Forv = u, the well-known relations [9]

1
2

cosu =
1
2

J0(u) 2 J2(u) + J4(u) ..., (23a)

1
2

sinu = J1(u) 2 J3(u) + J5(u) ..., (23b)

may be used to show that

V0(u, u) =
1
2

[J0(u) + cosu], V1(u, u) =
1
2

sinu, (23c)

U1(u, u) =
1
2

sinu, U2(u, u) =
1
2

[J0(u) 2 cosu]. (23d)

Accordingly,

Re[aL(u, u)] =
1
2

[1 2 J0(u)]cos
u
2

,

Im[aL(u, u)] = 2
1
2

[1 + J0(u)]sin
u
2

, (23e)

|aL(u, u)|2 =
1
4

[1 2 2J0(u)cosu + J2
0(u)]. (23f)

FL(u, u) = 2 arctanF1 + J0(u)
1 2 J0(u)

tan
u
2G (23g)

The use of Lommel’s equations for numerical compu-
tations is straightforward, provided that accurate values
of the Bessel functions Jn(v) required for Eqs. (20a–d)
are available and the convergence behavior of these
equations is taken into consideration.

When v/u or u/v are small, these expansions will
converge on account of the monotonic decrease of (v/
u)n or (u/v)n, provided of course that L and M are
evaluated in terms of the Lommel functions V0 and V1

whenv < u and in terms of U1 and U2 whenv > u.
Whenv/u or u/v are close to unity, Eqs. (20a–d) will

converge on account of the relation Jn(v) → 0 when
n → `. The manner in which this limit is approached is
illustrated in Fig. 5. Asn increases, Jn(v) exhibits an
oscillatory behavior before vanishing after passing
through a pronounced final maximum at or belown = v.
In this case, L and M can be evaluated in terms V0, V1

or U1,U2, although for consistency it is better to use the
former method whenv < u and the latter method when
v > u.

It follows that, for computations of the Lommel func-
tions tomdecimals, the expansions Eqs. (20a–d) can be
truncated when either of the conditions,

Fig. 5. Dependence of Bessel functions Jn(v) on n.
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Sv
uD

n

or Su
yD

n

<
1
2

102m, (24a)

n $ v and Jn(v) <
1
2

102m, (24b)

are satisfied.
The numerical results presented in this paper were

obtained on a personal computer, using standard spread-
sheet software9 (a 133 Mhz Pentium computer and Mi-
crosoft Excel 7.0). It was found that this software pro-
vides accurate values of the Bessel functions Jn(v)
needed for Eqs. (20a–d) without problems, but that the
large number of them required to satisfy Eq. (24b) im-
peded the speed of program execution whenu is large
and v ≈ u. In addition, the capabilities of the personal

computer were overtaxed by the fact that the diffraction
patterns for large values ofu are highly structured (see
Figs. 6a–d), so that a very large number of data points
had to be computed. For these reasons, Eqs. (18a) to
(20d) were used in this work only foru # 300 while for
larger values of the approximation of Sec. 4.3, below,
was used. It should be emphasized that this limitation is
unnecessary for larger computers. When sufficient com-
puting power is available, the Lommel functions for
large values ofu can be evaluated efficiently by iterative
use of recurrence relations for Bessel functions, begin-
ning at the required large orders and iterating towards
J0(v) from above, as mentioned by Shirley and Datla
[13]. Under these conditions, the fine structure of the
diffraction pattern poses no difficulties.

a

c

b

d

Fig. 6. Relative irradiances for circular apertures: a, b, c) |aL(u, v)|2 vs v/u for u = 1, 10, and 100 according to Sec. 4.2. d) |aSchw(u, v)|2 vs v/u
u for u = 1000 according to Sec. 4.3.

9 Certain commercial equipment, instruments, or materials are identi-
fied in this paper to foster understanding. Such identification does not
imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the materials or
equipment identified are necessarily the best available for the purpose.
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The algorithm used in this work foru # 300 was as
follows.

1. Define the value ofu, a maximum valuevmax, a step
sizeDv, and the desired decimal accuracy 102m.

2. Let v = 0. ComputeaL(u, 0) from Eq. (22a).
3. Let v = v + Dv. Compute (u/2) V0(u, v), (u/2)?

V1(u, v) from Eq. (20a,b), terminating when Eq.
(24a or b) are satisfied. Compute L(u, v), M(u, v)
from Eq. (19a,b) andaL(u, v) from Eq. (18b).

4. If v < u, go to Step 3.
5. ComputeaL(u, u) from Eq. (23e).
6. Let v = v + Dv. Compute (u/2) U1(u, v), (u/2)

U2(u, v) from Eq. (20c,d), terminating when Eq.
(24a or b) are satisfied. Compute L(u, v), M(u, v)
from Eq. (19a,b) andaL(u, v) from Eq. (18b).

7. If v < vmax, go to Step 6. Else, stop.

The relative irradiances |aL(u, v)|2 computed in this
manner foru = 1, 10, and 100 are plotted in Figs. 6a–c.

4.3 Schwarzschilds’s Approximation

The above-mentioned computational problems en-
countered with Lommel’s solution whenu is large can
be avoided by using an asymptotic approximation for
aF(P) derived by Schwarzschild [8] in a paper on dif-
fraction effects in defocused telescopes. As this paper is
no longer readily available, its contents will be outlined
here.

Schwarzschild considered the integral

W =
iu
2p

E1

0

drrE2p

0

dxe2i(ur2/22vrcosx+v2/2u)

=
iu
2p

FE`

0

dr ... 2 E`

1

dr ...G = W1 2 W2, (25a)

so that his approximation of Eq. (17b) is given by10

aL(u, v) ≈ aSchw(u, v) = e
iy2

2u W*. (25b)

The integralW1 is readily shown to be equal to

W1 = 1, (26a)

and by evaluating thex -integral ofW2 as in Eq. (16b)
and then substituting the asymptotic expression [9]

10 It is well known that the wave functions for diffraction with and
without a lens are complex conjugates.

J0(vr ) = Î 2
prv

cosSvr 2
p
4D, vr >> 1 (26b)

one obtains

W2 ≈ 1

Ï2pv
Fe

ip
4 iuE`

1

drÏre2
iu
2

(r+v/u)2

+ e2
ip
4 iuE`

1

drÏre2
iu
2

(r2v/u)2G. (26c)

Letting

f =
Ïr

r + v/u
, g = 2 e2

iu
2

(r+v/u)2, (27a)

the first integral in Eq. (26c) can be expressed in the
form ef dg so that

iuE`

1

drÏre2
iu
2

(r+v/u)2 =
e2

i(u+v)2

2u

1 + v/u

+ E`

1

dS Ïr
r + v/uDe2

iu
2

(r+v/u)2. (27b)

The second integral in Eq. (26b) can be written as

iuE`

1

drÏre2
iu
2

(r2v/u)2

=iuE`

1

dr (Ïr 2 Ïv/u)e2
iu
2

(r2v/u)2

+ iÏuvE`

1

dre2
iu
2

(r2v/u)2 (28a)

where the first term can again be evaluated by partial
integration, using

f =
Ïr 2 Ïv/u

r 2 v/u
=

1

Ïr + Ïv/u
, (28b)

and the second term is a complex Fresnel integral [Eq.
(8)]. In this manner, Schwarzschild found

iuE`

1

drÏre2
iu
2

(r2v/u)2

= iÏpv{ F*(`) 2 F*[ Ïu/p(1 2 v/u)]}

+
e2

i(u2v)2

2u

1 + Ïv/u
+ E`

1

dS 1

Ïr + Ïv/u
De2

iu
2

(r2v/u)2. (28c)

He noted that, by further partial integrations, the result-
ing expression forW2 would become an asymptotic ex-
pansion in negative powers ofu but that there was no
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point in taking the trouble as the last terms in Eqs. (27b)
and (28c) are already negligibly small for practical pur-
poses. Therefore,

W = 1 2W2 ≈ 1
2

+
i

Ï2
e2

ip
4 F*[ Ïu/p(1 2 v/u)]

2
1

Ï2pv
3e2

i(u+v)2

2u
+

ip
4

1 + v/u
+

e2
i(u2v)2

2u
2

ip
4

1 + Ïv/u
4, u, v >> 1. (29)

Schwarzschild estimated that this expression is accurate
to 0.005 ifu = 100,v/u > 0.2; oru = 300,v/u > 30.

When put in the form of Eq. (25b), Schwarzschild’s
approximation becomes

aF(u, v) ≈ aSchw(u, v) =
1
2

e2id 2
i

Ï2
e2i(d2p/4) F(s)

2
1

Ï2pv
F ei(b+2p/4)

1 + v/u
+

ei(b2+p/4)

1 + Ïv/u
G, u, v >> 1, (30a)

Re[aSchw(u, v)]=
1
2

cosd 2
1

Ï2
[C(s)sin(d 2 p/4)

2 S(s)cos(d 2 p/4)] 2
1

Ï2pv
F cos(b+ 2 p/4)

1 + v/u

+
cos(b2 + p/4)

1 + Ïv/u
G, u, v >> 1, (30b)

Im[aSchw(u, v)]= 2
1
2

sind 2
1

Ï2
[C(s)cos(d 2 p/4)

+ S(s)sin(d 2 p/4)] 2
1

Ï2pv
F sin(b+ 2 p/4)

1 + v/u

+
sin(b2 + p/4)

1 + Ïv/u
G, u, v >> 1.., (30c)

where

d =
v2

2u
, b6 =

u
2

6 v, s = Ïu/p(1 2 v/u). (30d)

The use of these expressions on a computer is simple.
The only caveat is that they are not valid for small values
of v/u so that Lommel’s equations must still be used
below a suitably chosen minimum valuev = vmin. The
choice ofvmin can be based on the following table, which
was obtained by computing the residuals
D = |aSchw|2 2 |aL|2 for selected values ofu.

u D # 0.01 D # 0.001
30 if v/u $ 0.23 if v/u $ 0.7

100 if v/u $ 0.06 if v/u $ 0.27

For such small values ofv/u, only a few terms of Eqs.
(20a,b) are sufficient to obtainaL with comparable ac-
curacy. Thus, the following procedure will provide the
entire diffraction pattern.

1. Defineu, vmin, vmax, andDv.
2. Let v = 0. ComputeaL(0, v) from Eq, (22a).
3. Let v = v + Dv. Compute (u/2)?V0(u, v), (u/2)?

V1(u, v) from Eqs. (20a,b), terminating after the
third terms. Compute L(u, v), M(u, v) from Eqs.
(19a,b) andaL(u, v) from Eq. (18b).

4. If v < vmin, go to Step 3.
5. Let v = v + Dv. Computed , b6, s from Eq. (30d).

Use the algorithm of Sec. 3.1 to findC(s), S(s).
ComputeaSchw(u, v) from Eqs. (30b,c).

6. If v < vmax, go to Step 5. Else, stop.

The values of |aSchw(u, v)|2 computed by this algorithm
for u = 1000 are shown in Fig. 6d. They were found to
be in excellent agreement with the values of |aL(u, v)|2

obtained from Lommel’s solution.11

It should be emphasized that Schwarzschild’s approx-
imation is different from a superficially similar but sig-
nificantly less accurate asymptotic approximation of the
diffraction integral (17b) cited by Focke [7] and used by
Blevin [14], Steel, De, and Bell [16], and Boivin [16] in
their work on diffraction errors in radiometry. The re-
spective accuracies of the Schwarzschild and Focke ap-
proximations can be assessed by comparing the relative
irradiances at the shadow boundary,12

|aSchw(u, u)|2 =
1
4 F1 2 Î 8

pu
cosucosSu 2

p
4D

+
2

pu
cos2Su 2

p
4DG, (31a)

|aFocke(u, u)|2 =
1
4 F1 2

1

Ïpu
(cos2u + sin2u) +

1
2puG,

(31b)

to the exact value |aL(u, u)|2 given by Eq. (23f). From
the ratios plotted in Fig. 7 it follows that the
Schwarzschild values are accurate to 0.1 % foru > 10,
while for u = 100 the Focke values are still off by 6 %.

11 This comparison was kindly performed by Dr. Eric Shirley of NIST.
12 Equations (31a,b) follow from Eq. (30a) of this paper and Eq. (7) of
Ref. [13], respectively.
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Fig. 7. Irradiance ratios, |aSchw(u, u)|2/|aL(u, u)|2 and |aFocke(u, u)|2/
|aL(u, u)|2, vs u.
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