
Volume 102, Number 4, July–August 1997
Journal of Research of the National Institute of Standards and Technology

[J. Res. Natl. Inst. Stand. Technol.102, 405 (1997)]

A Complete Multimode Equivalent-Circuit
Theory for Electrical Design

Volume 102 Number 4 July–August 1997

Dylan F. Williams, Leonard A.
Hayden,1 and Roger B. Marks

National Institute of Standards and
Technology,
Boulder, CO 80303

This work presents a complete equivalent-
circuit theory for lossy multimode transmis-
sion lines. Its voltages and currents are
based on general linear combinations of
standard normalized modal voltages and
currents. The theory includes new expres-
sions for transmission line impedance ma-
trices, symmetry and lossless conditions,
source representations, and the thermal
noise of passive multiports.

Key words: conductor current; conductor
representation; conductor voltage; electro-
magnetic modes; impedance matrix; modal
representation; multiconductor transmission
line.

Accepted: December 4, 1996

Contents

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . 407
2. Modal Description. . . . . . . . . . . . . . . . . . 408
3. Conductor Representation. . . . . . . . . . . . 409
4. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
5. Circuit Design. . . . . . . . . . . . . . . . . . . . . 410
6. Determination of Modal Quantities

from Zc andYc . . . . . . . . . . . . . . . . . . . . . 411
7. Impedance Matrix . . . . . . . . . . . . . . . . . . 412
8. Impedance Matrix of a Multimode

Transmission Line. . . . . . . . . . . . . . . . . . 412
9. Reciprocal Junctions. . . . . . . . . . . . . . . . 413

10. Symmetric Impedance and Admittance
Matrices. . . . . . . . . . . . . . . . . . . . . . . . . . 413

11. Passive and Lossless Junctions. . . . . . . . 414
12. Thevenin-Equivalent Voltage Sources . . . 414
13. Thermal Noise. . . . . . . . . . . . . . . . . . . . . 414
14. Symmetric Coupled Microstrip Lines. . . 415
15. Asymmetric Coupled Microstrip Lines. . 416
16. Conclusion. . . . . . . . . . . . . . . . . . . . . . . . 418
17. Appendix A. Unnormalized Modal

Voltages and Currents. . . . . . . . . . . . . . . 419
18. Appendix B. Symmetric and Power-

Orthogonal Modes (X = I ). . . . . . . . . . . . 419

1 Cascade Microtech, Inc., Beaverton, OR.

19. Appendix C. Diagonality ofM v
t M i and

Symmetry ofZc andYc . . . . . . . . . . . . . . 420
20. Appendix D. Symmetry of the Imped-

ance Matrices of Reciprocal Junctions
and ScalarWc. . . . . . . . . . . . . . . . . . . . . . 421

21. Appendix E. Renormalization Table. . . . 421
22. Appendix F. Form ofX andWm for Two

Modes WhenWc = I . . . . . . . . . . . . . . . . 421
23. References. . . . . . . . . . . . . . . . . . . . . . . . 422

1. Introduction

This work extends the general waveguide circuit the-
ory of Ref. [1] to multiple modes of propagation. The
resulting equivalent-circuit theory mimics the low-
frequency theory while rigorously accounting for loss.
Unlike earlier treatments, the theory is constructed from
the standard modal voltages and currents of Ref. [1],
which are normalized so that the product of the modal
voltage and current gives the power carried by a single
mode in the absence of other modes in the guide [2] and
so that they carry the conventional units volt and
ampere. This approach easily and consistently general-
izes the symmetry relations for reciprocal junctions
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reported in Refs. [1] and [3] and the noise results of Ref.
[4], and maintains all of the conventional modal normal-
izations, units, and definitions. We present new condi-
tions for lossless and passive devices, impedance matrix
representations for multimode transmission lines, and
Thevenin-equivalent voltage representations for the
internal sources and thermal noise of a circuit, complet-
ing the multimode equivalent-circuit theory.

Maxwell’s equations are separable in the longitudinal
and transverse directions of uniform waveguides and
transmission lines. This leads to a natural description of
the electromagnetic fields in the line in terms of the
eigenfunctions of the two-dimensional eigenvalue prob-
lem. These eigenfunctions form a discrete set of forward
and backward modes which propagate independently
with an exponential dependence along their lengths; in
open guides, this discrete set of modes is augmented by
a continuous set of radiation modes. This modal de-
scription has a natural equivalent-circuit representation,
even in the presence of loss [1]. In this representation
each unidirectional mode is described by a modal
voltage and current that propagate independently of
those associated with the other modes of the line; this is
the simplest equivalent-circuit representation of a lossy
multimode transmission line from a physical point of
view.

When a circuit can be partitioned into elements that
communicate with each other through transmission
lines supporting, in each case, only a single bidirec-
tional mode, the modal description of Ref. [1] mimics
closely the low-frequency theory, in which the complex
powerp is given byvm im*, wherevm is the modal voltage
andim is the modal current. This allows the construction
of a low-frequency equivalent-circuit analogy and the
straightforward application of the methods of nodal
analysis familiar to electrical engineers and commonly
used for electrical design. To create the analogy, we
specify reference planes far enough away from the ends
of the lines interconnecting the circuit elements to
ensure that only a single mode is present there. We then
assign a node to each of these modes, setting the nodal
voltages and currents equal to the modal voltages and
currents. The normalization of Brews [2], which fixes
the relationship between the modal voltages and
currents, is used to ensure that the power in the actual
circuit corresponds to that in the equivalent-circuit
analogy.

The normalization of Brews leaves open the normal-
ization of either the modal voltage or the modal current
in each line, often chosen so as to simplify modeling of
the circuit elements in the equivalent-circuit analogy.
Typically the modal voltage is defined to correspond to
the actual voltage between conductor pairs across which
circuit elements are attached and the modal current is

determined from the constraint on the power. It is also
possible to define the modal current to correspond to the
actual current in a particular conductor; in this case the
modal voltage is determined from the constraint on the
power.

Models of the embedded circuit elements can be
further simplified in the equivalent-circuit analogy by
representing them as an interior circuit connected to
lines with lengths equal to those physically connected to
the element. This approach results in simple lumped-
element circuit models for the interior circuits that
correspond closely to those predicted from physical
models. While these models are not exact, they are
extremely important for circuit design.

When multiple modes of propagation are excited in a
transmission line, the total voltage across a given con-
ductor pair will in general be a linear combination of all
of the modal voltages and currents. Thus the circuit
elements, which are usually connected between pairs of
transmission-line conductors, will in general both excite
and be excited by all of the modes propagating down the
transmission line. As a result, the voltage across even the
simplest of circuit elements, such as a resistor connected
between a particular conductor pair, will not correspond
to any one of the modal voltages but rather to a linear
combination of all of them. This illustrates that the
modal voltages and currents, which are associated with
the modes rather than with the connection points of the
circuit elements, do not correspond in even an approxi-
mate sense to those across or entering into the device
terminals.

A number of authors, including those of Refs. [5], [6],
[7], [8], and [9], have proposed models and equivalent-
circuit theories for lossless multimode transmission
lines. In Ref. [10] Jansen introduced the notion of a
“partial power” characteristic impedance matrix for
lossless coupled lines, which Tripathi and Lee [11] later
extended to lossy coupled lines. Gardiol [12] considers
loss in his development of an equivalent circuit theory
and coupled transmission-line models but begins with
assumptions of symmetric transmission-line representa-
tions.

Fachéand De Zutter [13] proposed the first equivalent
circuit theory applicable to general lossy coupled lines.
It is based on power-normalized voltages and currents
constructed from linear combinations of unnormalized
modal voltages and currents. While these linear combi-
nations may not correspond exactly to physical voltages
between conductor pairs or physical currents in a partic-
ular conductor, Ref. [13] calls them the “conductor” or
“circuit” voltages and currents. We will base our equiv-
alent-circuit analogy on these power-normalized con-
ductor voltages and currents.
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Figure 1 illustrates the equivalent-circuit theory of
Ref. [13]. In this theory the appropriate choice of the
conductor voltages and currents depends on the way in
which circuit elements are connected to the transmission
line. Figure 1 shows several ways in which discrete
devices might be connected to a symmetric pair of
microstrip lines. In the first, a single device is connected
directly across the two signal conductors. The device
will mainly excite the mode of the transmission line
with odd electric field symmetry; its even mode is con-
sidered to be parasitic. Since the device communicates
directly with one mode and parasitically with another, it
would be appropriate to work directly with the modal
equivalent-circuit representation of Ref. [1].

conductor voltages to the second connection method of
Fig. 1, we would select the first conductor current so that
it is equal to the integral of the total magnetic intensity
around a path enclosing the left signal conductor and the
second conductor current equal to that integral around a
path enclosing the right signal conductor. In fact, this
choice suffers the same ambiguities as the choice of
conductor voltage. For example, if the conductors are
embedded in a lossy dielectric, some real current will
flow there; it is no longer clear over which path we
should integrate to define the conductor currents. Each
new choice of integration path enclosing the conductors
will change the currents in the conductor representation
while leaving their voltages fixed. This simple example
illustrates a difficulty with this strategy: the expression
for the power will depend on the choice of the conductor
voltages and currents and may not be compatible with
that of the nodal low-frequency theory that the equiva-
lent-circuit analogy is constructed to emulate. Expres-
sions for the power are further complicated since the
total power in the line is not generally the sum of the
powers carried by each mode alone: examples of this
behavior are discussed in Refs. [14] and [15].

In the single-mode case this difficulty is resolved by
the power normalization of Brews [2], also used in
Ref. [1]. There either the modal voltage or the modal
current is fixed to correspond to an integral of the appro-
priate field quantity. The other is then determined so
that the product of the voltage and the conjugate of the
current gives the complex power.

Fachéand De Zutter [13] developed a similar power-
normalization procedure for the lossy multimode case;
they picked either the conductor voltages or the conduc-
tor currents to correspond to the appropriate field inte-
grals. As in the single-mode case, the undetermined
quantity is found from a condition fixing the relation
between the power and the conductor voltages and cur-
rents. This approach allows the construction of a useful
equivalent-circuit analogy to which we can apply
straightforward low-frequency nodal analysis methods.

Dhaene and De Zutter [16], Fache´ , Olyslager, and
De Zutter [17], and Olyslager, De Zutter, and de Hoop
[18] clarify and extend the theory of Ref. [13] and
explore alternatives to the power normalization used
there and in this work. However, none of these works
includes all of the symmetry, noise, and other expres-
sions needed to complete the equivalent-circuit theory.
They also construct the conductor representation from
unnormalized modal representations that do not result
in the habitual units for the modal quantities and compli-
cate their frequency dependence.

Here we examine the power-normalized conductor
voltages and currents of Fache´ and De Zutter [13]
constructed from general linear combinations of any

Fig. 1. A symmetric microstrip line, its two dominant modes, and
three methods of connecting devices between the conductors.

In the second connection method of Fig. 1, one device
is connected between the left signal conductor and the
ground plane, while the other is connected between the
right signal conductor and the ground. Here each device
excites both the even and odd modes of the transmission
line. In this case it is easier to work with linear combina-
tions of the modal voltages and currents, forming the
first conductor voltage so that it corresponds to the inte-
gral of the electric field between the left signal line and
the ground plane and the second so that it corresponds
to that integral between the right signal line and the
ground. Of course, there is some ambiguity here: differ-
ent choices of paths between the conductors will give
different voltages. This ambiguity, like its single mode
counterpart, seems to be unavoidable.

For the third connection method of Fig. 1 yet even
another choice of the conductor voltages is appropriate.

The conductor currents must be chosen as well. If
we apply the same logic we used for our choice of
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number of the modal voltages and currents of Ref. [1],
which carry conventional units and satisfy the power
normalization of Brews [2]. This straightforward ap-
proach incorporates the advances of Refs. [1], [3], and
[4] into the theory in a natural way and results in a
complete equivalent-circuit theory for lossy multimode
transmission lines that clearly illustrates and differenti-
ates the modal and conductor representations. We de-
velop concise definitions of impedance matrices and
other circuit quantities and, for the first time, provide
explicit means of incorporating multimode transmission
lines in conductor representations via their impedance
matrices: partial-power characteristic impedance ma-
trices or symmetric per-unit-length representations are
not required. We also present new symmetry and loss-
less conditions and expressions for the thermal noise of
passive multiports.

2. Modal Description

We assume a time-harmonic dependence e+jvt, where
v is the real angular frequency, and that the transmission
lines are uniform inz. These restrictions ensure that the
electromagnetic boundary-value problem is separable in
the longitudinalz coordinate and the transversex andy
coordinates. They also ensure that each line supports a
countable set of discrete forward and backward modes
[19] and, if the line is open, a continuous set of addi-
tional radiation modes [20]. All of these modes have, for
some g , an exponentialz dependence e6gz. We will
restrict our attention to finite or countable sets of modes
excited in the line. In closed guides, we can account
either for all of the modes or for just the subset of
excited modes (usually the dominant modes) that enter
into the problem. In open guides, the restriction of finite
or countable sets of modes requires that we restrict
ourselves to problems in which the continuous spectrum
of radiation modes can be ignored.

We will also restrict our attention to lines constructed
entirely of materials with isotropic permittivity and per-
meability, in which case the total transverse electric
field Et and magnetic field strengthH t in the line due to
the excited modes with modal voltagesvmk and imk and
transverse modal electric fieldsetk and magnetic field
strengthshtk can be written as

Et(x, y, z) = O
k

vmk (z)
v0k

(etk (x, y) (1)

and

H t(x, y, z) = O
k

imk (z)
i0k

htk (x, y) , (2)

where the sums span all of the excited modes in the line
and we have added the dependence on the coordinatesx,
y, and z for clarity. Here the subscript m stands for
“mode” and signifies the fact that the indicated quantity
is associated with the modal, as opposed to the conduc-
tor, representation. The introduction of the normalizing
factorsv0k andi0k allows thevmk andv0k to have units of
voltage, theimk and i0k to have units of current, and the
Et, H t, etk, andhtk to have units appropriate to the fields.
Appendix A shows that this is not so in the formulation
of Ref. [13], which uses unnormalized modal voltages
and currents, and presents conversions between all of the
modal quantities in the conventional system of units used
here and the unconventional system of units used in Ref.
[13].

We restrict the normalizing voltagev0k and currenti0k

by

v0k i0k* = p0k ≡ E
S

etk 3 htk* ? z dS, (3)

where Re(p0k) $ 0. This normalizes the modal voltages
and currents so that when only thekth mode is present,
the complex power carried by thekth mode alone in the
forward direction is given byvmk imk*; this is the normal-
ization used in Ref. [1] and corresponds to the power
condition suggested by Brews [2].

The characteristic impedance of thekth mode isZ0k

≡ v0k/i 0k = |v0k|
2 /p0k* = p0k/ |i0k|2; its magnitude is fixed

by the choice of|v0k| or |i0k| while its phase is fixed by
(3). With this definition,Z0k corresponds to the ratio of
the modal voltage to the modal current in the line when
only the kth forward mode is present, has units of ohms,
and corresponds to accepted definitions [1].

The transmission line equations for thekth bidirec-
tional mode are

dvmk

dz
= – (gk Z0k)imk ≡ – Zmk imk ≡

– (Rmk + jvLmk) imk (4)

and

dimk

dz
= – (gk /Z0k)vmk ≡ –Ymk vmk ≡

– (Gmk + jvCmk)vmk , (5)

where thekth mode has propagation constant6 gk and
Lmk, Rmk, Cmk, andGmk are real [1] and have the conven-
tional units of inductance, resistance, capacitance, and
conductance per unit length.
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For a transmission line in whichn modes propagate
independently, we can express these transmission line
equations in vector form as

dvm

dz
= – Zm im (6)

and
dim

dz
= – Ymvm . (7)

Here vm and im are column vectors of the modal
voltages and currents of the various modes:

vm ≡ (vm1, vm2, vm3, . . .)t (8)

and
im ≡ (im1, im2, im3, . . .)t , (9)

where the superscript t indicates the transpose. The
diagonal matricesZm andYm of modal impedances and
admittances per unit length of line are defined by

Zm ≡ diag(Zm1, Zm2, Zm3, . . .)

= diag(g1Z01, g2Z02, g3Z03, . . .) (10)

and

Ym ≡ diag(Ym1, Ym2, Ym3, . . .)

= diag(g1/Z01, g2/Z02, g3/Z03, . . .) . (11)

Equations (6) and (7) imply that

d2vm

dz2 = Zm Ym vm = g2 vm (12)

and

d2 im

dz2 = Ym Zm im = Zm Ym im = g2 im , (13)

where the diagonal matrixg is

g ≡ diag(g1, g2, g3, . . .) . (14)

Figure 2 shows the equivalent-circuit model for a multi-
mode transmission line in the modal representation.

Fig. 2. Modal equivalent-circuit model per unit length of transmis-
sion line for two modes of propagation.

3. Conductor Representation

The modal representation, upon which the preceding
discussion was based, is the simplest description of a
multimode transmission line: its impedance and admit-
tance matricesZm andYm per unit length are not only
symmetric, but diagonal, and the voltages and currents
corresponding to different modes are decoupled. How-
ever, we have already argued that this representation is
not the most convenient for circuit design, where
devices are connected between transmission line con-
ductors. Following Ref. [13] we introduce the column
vectors of conductor voltagesvc and currentsic, where
the subscript c denotes the conductor or circuit parame-
ters. However we definevc andic to be arbitrary invert-
ible linear transformations ofvm andim, the convention-
ally normalized modal voltages and currents of Ref. [1]:

vc ≡ Mv vm (15)

and

ic ≡ M i im, (16)

where bothMv andM i are unitless.
Inserting these expressions into Eqs. (6) and (7)

results in the transmission line equations for the
conductor voltages and currents

dvc

dz
= – Zc ic (17)

and
dic
dz

= –Ycvc, (18)

where the matrices of conductor impedances and admit-
tances per unit length are defined by
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Zc ≡ Rc + jvLc ≡ Mv Zm M i
–1 (19)

and

Yc ≡ Gc + jvCc ≡ M i Ym Mv
–1 , (20)

where Rc, Lc, Gc, and Cc are the transmission line’s
matrices of resistances, inductances, conductances, and
capacitances per unit length. Equations (15) and (16)
imply that

d2vc

dz2 = Zc Yc vc

= Mv Zm Ym Mv
–1vc = Mv g2 Mv

–1vc (21)

and
d2ic

dz2 = Yc Zc ic =

M i Ym Zm M i
–1 ic = M i g2 M i

–1 ic . (22)

The matricesZc Yc andYc Zc are related tog2(= Zm Ym

= Ym Zm) by similarity transforms; thus all four matrices
have the identical eigenvaluesg2. Mv diagonalizesZc Yc

andM i diagonalizesYc Zc. The equivalent-circuit model
of Fig. 2 does not apply in the conductor representation
becauseZc andYc are not in general diagonal.

4. Power

The total complex powerp transmitted across a refer-
ence plane is given by the integral of the Poynting vector
over the transmission-line cross sectionS:

p = E
S

Et 3 H t* ? zdS

= O
j,k

vmj (z)
v0j

imk* (z)
i0k*

E
S

etj 3 htk* ? zdS . (23)

This can be put into the form

p = im
T X vm , (24)

where the superscriptT indicates the Hermitian adjoint
(conjugate transpose) and the elements of the cross-
power matrixX are

Xkj ≡ 1
v0j i0k*

E
S

etj 3 htk* ? z dS . (25)

Reference [14] shows that the off-diagonal elements of
X are often large in lossy quasiTEM multiconductor
transmission lines near modal degeneracies. The diago-
nal elements ofX are equal to 1 as a result of the
normalization of (3), not used in Refs. [13], [16], [17],
or [18].

Equation (24) becomes

p = ic
T (M i

–1)T X Mv
–1 vc (26)

in the conductor representation.

5. Circuit Design

It is not our intention to determine the best choice of
conductor voltages and currents for all situations: we
have already argued that this choice is application
dependent. However, we will formalize some of these
choices here and in the next section and explore their
implications.

5.1 Voltage

Thekth row of Mv determines the conductor voltage
vck. TheMvkj can be chosen to set the conductor voltages
vck equal to the integral of the total electric fieldEt along
any given pathlk. The condition is

Mvkj =
–1
v0j

E
lk

etj ? d l ;j ➾ v0k = – E
lk

Et ? dl , (27)

where the symbol➾ means implies. Fixing all of the
conductor voltages with Eq. (27) completely determines
Mv. This voltage normalization is equivalent to that em-
ployed in Refs.[13], [16], [17], and [18].

5.2 Current

Likewise, we can force the conductor currentick to
correspond to the integral of the total magnetic field
strengthH t around a closed pathck by fixing thekth row
of M i. The condition is

Mikj =
1
i0j

R
ck

htj ? dl ;j ➾ ick = R
ck

H t ? dl . (28)

Again, fixing all of the conductor currents with (28)
completely determinesM i. This current normalization is
equivalent to that employed in Refs. [13], [16], [17],
and [18].
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5.3 Complex Power

As we discussed in the introduction, one way to
choose the conductor voltages and currents is to fix both
Mv andM i with Eqs. (27) and (28) for various choices of
pathslk andck and then to determine the complex power
p from Eq. (26). However, Eq. (26) takes a form not
found in the low-frequency nodal equivalent-circuit
theory we want to emulate. This is because in conven-
tional nodal analysis, which is used by all of the com-
mercial circuit simulators of which these authors are
aware, the power flowing into a circuit element is deter-
mined aso

k
vnk ink*, wherevnk is the nodal voltage at the

kth node,ink is the nodal current flowing from that node
into the circuit element, and the sum spans all of the
nodes connected to the element. If we assign a node to
each pair of conductor voltages and currents with the
substitutionsvnk = vck andink = ick, this simple expression
does not agree with Eq. (26).

The expression for the powerp in the conductor
representation can be simplified by imposing the
restrictionM i

T Mv = X :

M i
T Mv = X ➾ p = ic

T vc. (29)

This form for p, which is also that of Refs. [13], [16],
and [17], is useful because it mimics that of the low-fre-
quency nodal equivalent-circuit theory. If we now assign
a node to each pair of conductor voltages and currents
and make the substitutionsvnk = vck andink = ick, we find
that the powerp flowing into any circuit element corre-
sponds exactly to that in the equivalent-circuit analogy;
circuit simulators and computer aided design tools that
determine power in the conventional way (i.e.,p = inT vn)
can be used without modification. We will show later
that when this is done at all ports, it leads to some other
conventional results, many of which are summarized in
Table 1. Reference [15] shows that device modeling is

simplified as well. We will call representations for
which M i

T Mv = X “power-normalized” conductor rep-
resentations.

The restriction of Eq. (29) leaves open the determina-
tion of eitherMv or M i (but not both) by Eqs. (27) or
(28). We could fix the conductor voltages, for example,
to correspond to the integral of the total electric fields
between the conductors to which we connect circuit
elements by choosing the elements ofMv with Eq. (27).
ThenM i would be given byM i = (X Mv

–1)T = (Mv
T)–1 XT.

This is the multimode analogy of selecting the voltage-
power normalization of characteristic impedance [1].

Alternatively, we could use Eq. (28) to fix the conduc-
tor currents. Then we would determineMv from
Mv = (M i

T)–1 X . This is the multimode analogy of select-
ing the current-power normalization of characteristic
impedance. Either of these power normalizations results
in the conductor voltages and currents of Ref. [13].

6. Determination of Modal Quantities
from Zc and Yc

The matrices of impedance and admittance parame-
tersZc andYc in the power-normalized conductor repre-
sentation can be used to determineMv andM i, matrices
which relate any modal quantity to its corresponding
quantity in the conductor representation: we only need a
single additional relation between each modal voltage
and the conductor voltages or between each modal cur-
rent and the conductor currents to fix the modal voltage
or current paths. For example, since the columns ofMv

are proportional to the eigenvectors ofZcYc, we can fix
them to within a constant. A single additional relation
between one of the modal voltages and one of the con-
ductor voltages then completely determines the corre-
sponding columns ofMv. If the paths definingv0j andvck

are equal, for example,Mvkj must be equal to one,
completely defining thekth column ofMv.

Table 1. Relations for the power-normalized conductor representation

Complex power p = imT X vm p = icT vc

Mv – Mv = (M i
T)–1 X

M i – M i = (X Mv
–1)T = (Mv

T)–1 X T

Reciprocal junction Zm
t = Wm Zm Wm

–1 Zc
t = WcZ c(Wc

t)–1

Passive circuit X Zm + (X Zm)T pos. semidef. Zc + Zc
T pos. semidef.

Lossless circuit X Zm + (X Zm)T = 0 Zc + Zc
T = 0
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The columns ofM i are proportional to the eigenvec-
tors ofYcZc, which also fixes them to within a constant:
the columns ofM i could also be fixed to within a con-
stant from Eqs. (19) or (20). Equation (29) adds the
additional constraint required to completely determine
the columns ofM i, since it implies that the product of
each column ofMv and the complex conjugate of the
corresponding column ofM i must be equal to a diagonal
element ofX , all of which are equal to 1.

Finally, the propagation constantsgj are the eigenval-
ues ofZcYc, completing the modal description.

Relations between the modal and conductor voltages
can be used in place of relations between the modal and
conductor currents in this procedure. This procedure
forms the basis for the calibration and measurement
algorithms described in [15], [21], and [22].

7. Impedance Matrix

Figure 3 shows a linear network connecting two mul-
timode transmission lines. We define the modal voltage
vectorvm and current vectorim by

vm ≡ 3vm1

vm24 ; im ≡ 3 im1

im24 , (30)

wherevmk and imk are the modal voltage and current
vectors at portk. They are related by the network’s
modal impedance matrixZm:

vm = Zm im . (31)

We define the network’s conductor impedance matrix
Zc as

Zc ≡ Mv Zm M i
–1 , (32)

whereMv andM i are the block diagonal matrices

Mv ≡ 3Mv1

Mv2 . . .
4 ; M i ≡ 3M i1

M i2 . . .4 , (33)

and the matricesMvk andM ik are theMv andM i, respec-
tively, for the transmission line at portk. These defini-
tions imply that

vc = Zc ic , (34)

wherevc and ic are defined analogously tovm and im.

Fig. 3. Linear network connecting two multimode transmission
lines.

8. Impedance Matrix of a Multimode
Transmission Line

The modal impedance matrixZmt of a section of mul-
timode transmission line of lengthl0 is

Z mt = 3 Z0 coth(gl0)

Z0sinh(g l0)–1

Z0sinh(gl0)–1

Z0coth(gl0) 4 , (35)

whereZ0 ≡ diag(Z0j ), coth(gl0) ≡ diag(coth(gj l0)), and
sinh(gl0)–1 ≡ diag(1/sinh(gj l0)) are diagonal because
each mode propagates independently down the line.

Equation (32) shows that the conductor impedance
matrixZct of a section of multimode transmission line of
length l0 is

Zct = 3Mv Z0 coth(gl0)M i
–1

Mv Z0sinh(g l0)–1M i
–1

Mv Z0sinh(gl0)–1 M i
–1

Mv Z0coth(gl0) M i
–1 4 .

. (36)

We have already seen that the matrices of impedance
and admittance parametersZc andYc, in addition to a
single relation between each modal voltage and the
conductor voltages or between each modal current and
the conductor currents, can be used to determineg , Mv,
andM i. It is then possible to findZm andYm, and thus
Z0 andZct, from Zc andYc.

...
...
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Unlike Z0coth(gl0) and Z0sinh(gl0)–1, the matrices
Mv Z0coth(g0)M i

–1 and MvZ 0sinh(gl0)–1 M i
–1 are not

diagonal; here again we see that the modal description
will provide the simplest view of multimode transmis-
sion line behavior. Nevertheless, Eq. (36), which is
useful in frequency-domain circuit simulations, pro-
vides a straightforward way to incorporate multimode
transmission lines in the power-normalized conductor
representation whenZc andYc are asymmetric.

9. Reciprocal Junctions

References [1] and [3] develop a symmetry relation
for the impedance matrix of a reciprocal junction (a
passive junction that is composed only of materials with
linear symmetric permittivity and permeability tensors)
connecting transmission lines, each of which supports a
single mode of propagation. This relation can be ex-
tended easily to the impedance matrix of a reciprocal
junction connecting multimode transmission lines
within the context of this theory. When none of the
modes at any given port of a closed guide are degener-
ate (gj

2 Þ gk
2 for j Þ k), then the basis fields at that port

satisfy the orthogonality condition [19]

E
S

etj 3 htk ? z dS = 0 (j Þ k) . (37)

In open guides, a similar orthogonality condition is
satisfied by the continuous spectrum of radiation modes
[20], [23]. These orthogonality conditions allow the
arguments of Refs. [1] and [3] to be applied directly,
with the result that, for reciprocal junctions,

Z m
t = Wm Z m Wm

–1 , (38)

where the diagonal matrixWm is defined by

Wm ≡ 3Wm1

Wm2. . .
4 , (39)

and where theWmk, defined by

Wmk ≡ diagS 1
v0j i0j

E
Sk

et j 3 ht j ? z dSD , (40)

are diagonal matrices of the reciprocity factors of
Appendix D of Ref. [1] for the modes at portk.

References [3] and [24] calculate elements ofWm for
some waveguides and Appendix B gives some cases for
which Wm is the identity matrixI .

Substituting Eq. (32) into Eq. (38) gives the symme-
try condition

Zc
t = Wc Zc (W c

t)–1 (41)

for a reciprocal junction in the conductor representa-
tion, where

Wc ≡ (M i
t)–1 Wm M v

–1 . (42)

The symmetry conditions for the impedance matrices of
one-port terminations can be derived as special cases of
Eq. (38) and (41).

10. Symmetric Impedance and Admit-
tance Matrices

Olyslager, De Zutter, and de Hoop in Ref. [18]
present conductor representations in whichZc and Yc

are always symmetric, in which case the equivalent-
circuit description per unit length transmission line of
Fig. 4 applies. There is, in fact, a hierarchy of symmetry
conditions, which are sometimes treated as being equiv-
alent in the literature.

Appendix C examines the weakest of these condi-
tions, which simply ensures that, in the absence of de-
generate modes (g j

2 Þ gk
2 for j Þ k), Zc and Yc are

symmetric. The requirement is thatM v
t M i is diagonal:

M v
t M i diagonal⇔ Zc = Z c

t ; Yc = Yc
t , (43)

Fig. 4. Conductor equivalent-circuit model per unit length for a
two-mode transmission line withZc andYc symmetric.
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where the symbol⇔ means equivalent.
Appendix D examines two stronger conditions that

ensure that the impedance matrices of passive junctions
composed entirely of reciprocal materials are symmet-
ric; it shows that the condition ensuring symmetry of all
passive junctions embedded in a given line is

M v
t M i = a Wm ⇔ Wc = a I ⇔ Zc = Z c

t , (44)

wherea is a scalar andZc is the impedance matrix of
any passive reciprocal junction embedded in the line.
Appendix D also shows that there is a stronger condition
that not only ensures that these impedance matrices are
symmetric, but that the impedance matrices of junctions
connecting the lines other lines satisfying the same con-
dition are symmetric as well. It is

M v
t M i = Wm ⇔ Wc = I ⇔ Zc = Z c

t , (45)

whereZc is the impedance matrix ofanypassive recip-
rocal junction embedded in the line or connecting it to
any other line withWc = I . This condition is particularly
interesting because it is the analog of the condition of
Eq. (29): choosing either the conductor voltages or cur-
rents with Eq. (27) or Eq. (28) and applying the condi-
tion in Eq. (29) completely determines bothMv andM i.
It is also a natural choice forWc in lossless lines.

All of these conditions require at leastM v
t M i diago-

nal, which is not always compatible with the condition
M i

T Mv = X of the power-normalized conductor repre-
sentation [18]. Thus enforcing any of these symmetry
conditions will, at least in some cases, require abandon-
ing the analogy with low-frequency nodal equivalent-
circuit theory, in whichp = in

T vn.
At first glance a lack of these conventional symmetry

conditions in the power-normalized conductor represen-
tation may seem problematic. However, in all lossless
lines, for which the cross-power matrixX and modal
reciprocity matrixWm are the identity, the conditions of
Eqs. (29) and (45) are compatible (see Appendix B). We
will also show that for the lossy quasi-TEM lines we
examine in Secs. 14 and 15 thatWc is almost exactly
equal to the identity matrix in the power-normalized
conductor representation and so nearly satisfy the
strongest of these symmetry conditions.

If in the power-normalized conductor representation
we cannot achieve even the weakest condition repre-
sented by Eq. (43), with the result thatZc and Yc are
asymmetric, we can still include a section of line in the
power-normalized conductor representation by way of
its conductor impedance matrix, concisely expressed by
Eq. (36).

11. Passive and Lossless Junctions

The real powerP flowing into a passive junction must
always be zero or positive for any external excitation.
That is, for any passive junction,

P = Re(p) = Re(i m
T Xvm) = Re(i m

T X Zm im)

=
1
2

i m
T (X Zm + (X Zm)T) im $ 0 ;im, (46)

which is equivalent to the Hermitian matrixX Zm +
(X Z m)T being positive semidefinite [25]. For a lossless
junction P = 0, which implies thatX Zm + (X Zm)T = 0
[4].

In the power-normalized conductor representation we
obtain the conventional results:Zc + Zc

T is positive
semidefinite for passive circuits andZc + Zc

T = 0 for
lossless circuits.

12. Thevenin-Equivalent Voltage Sources

The vectorv̂mof modal Thevenin-equivalent voltage
sources of a linear network with impedance matrixZ m

is defined by

vm = Zm im + v̂m . (47)

While the vectorv̂m is general enough to describe elec-
trically any linear sources within the network, the ma-
trix v̂m v̂m

T conveniently expresses the essential proper-
ties of the sources from an external point of view when
their absolute phases are not of importance. Here thej th
diagonal element ofv̂m v̂m

T is uv̂mj u2 and itsjk th off-diag-
onal element isv̂mj v̂mk*. These off-diagonal elements
contain the relative phases of the sources inv̂m.

The Thevenin-equivalent sources in the conductor
representation arev̂c ≡ Mv v̂m and satisfy

vc = Zc ic + v̂c . (48)

The matrixv̂c v̂c
T is related tov̂m v̂m

T by

v̂c v̂c
T = Mv v̂m v̂m

T Mv
T . (49)

13. Thermal Noise

The thermal noise properties of a network are conve-
niently expressed in the modal representation by the
matrix < v̂m v̂m

T > [4], where the brackets indicate that
we have taken the spectral density. Thej th diagonal
element of <v̂m v̂m

T > is < uv̂mj u2 >, the Fourier transform
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of the auto-correlation ofv̂mj , while thejk th off-diago-
nal element is <v̂mj v̂mk* >, the Fourier transform of the
cross-correlation ofv̂mj and v̂mk [26], [27]. These fre-
quency-domain quantities may be used to determine
noise power in a circuit from straightforward ac analyses
in which the noise sources are replace with nonrandom
sinusoidal sources [26].

Reference [4] gives an expression for <v̂m v̂m
T > for

a passive network embedded deeply enough in a closed
waveguide so that all but the dominant modes have de-
cayed at the reference planes where we define the
voltages and currents. The expression is

< v̂m v̂m
T > = 2

hf
ehf/kT–1

[ZmQ + (ZmQ )T], (50)

wherevm contains all of the dominant modal voltages,f
is the frequency,k is the Boltzmann constant,h is the
Planck constant,T is the absolute temperature of the
system, andQ = Wm

–1 X t (Wm
T)–1. Reference [4] presents

practical lines in whichQ differs significantly from the
identity, which we will study further in Sec. 15.

Equation (50) in the conductor representation is

< v̂c v̂c
T > = 2

hf
ehf/kT–1

[Zc Mi QMv
T + (Zc Mi QMv

T) T].

(51)

Equation (51) takes the conventional form whenWc is
the identity matrix. In that case,Mi

t Mv = Mv
t Mi = Wm

and in the power-normalized conductor representaiotn
we haveQ = Mi

–1 (M v
T)–1, and Eq. (51) gives the conven-

tional result

Wc = I andMi
T Mv = X ⇒

< v̂cv̂c
T > = 2

hf
ehf/kT–1

[Zc + Zc
T]. (52)

14. Symmetric Coupled Microstrip Lines

Table 2 illustrates the application of this theory to the
coupled symmetric microstrip lines of Fig. 1, for which
cross-power matrixX is the identity due to symmetry
(see Appendix B). The first row of the table lists theMv

obtained by applying Eq. (27) to the paths appropriate
to the three connection methods of Fig. 1. For the first

Table 2. Circuit parameters for symmetric coupled lines of Fig. 1 in the power-normalized conductor representation specified by
Eqs. (27) and (29). HereX = I anda, which is plotted in Fig. 5, is approximately equal to 1/2 at low frequencies.

Parameter First method Second method Third method

Mv F1
0

0
1G F1

1
–a
aG F1

0
–a
1 G

M i F1
0

0
1G

1
2 3 1

–1
a*

1
1

a*
4 F 1

a*
0
1G

Zc FZme

0
0

Zmo
G FZme+ ua u2Zmo Zme– ua u2Zmo

Zme– ua u2Zmo Zme+ ua u2Zmo
G FZme+ ua u2Zmo

–a*Zmo

–aZmo

Zmo
G

Yc FYme

0
0

Ymo
G 1

43Yme+
1

ua u2Ymo

Yme–
1

ua u2
Ymo

Yme –
1

ua u2Ymo

Yme+
1

ua u2Ymo
4 F Yme

a*Yme

aYme

Ymo + ua u 2Yme
G

Wc FWme

0
0

Wmo
G 1

23Wme+
a*
a

Wmo

Wme–
a*
a

Wmo

Wme –
a*
a

Wmo

Wme+
a*
a

Wmo
4 FWme

0
aWme–a*Wmo

Wmo
G

M i Q Mv
t FuWmeu–2

0
0

uWmou–2G 1
23uWmeu–2 + uWmou–2

uWmeu–2 – uWmou–2

uWmeu–2 – uWmou–2

uWmeu–2 + uWmou–24 F uWmeu–2

a*( uWmeu–2 – uWmou–2)
0

uWmou–2G
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connection method,Mv is simply the identity matrix and
the conductor voltages are equal to the modal voltages.

Mv for the second connection method of Fig. 1
reflects the fact that both modes impress voltages on the
device connection paths. Here the even mode impresses
the same voltage across the two connection paths. Since
the path defining the even mode voltage corresponds to
that over which the devices are connected, 1’s appear in
the first column ofMv. The odd mode, on the other
hand, impresses voltages of opposite phase on the two
connection paths, and the odd mode voltage path does
not correspond to the device connection path. We
defineda to be the ratio of the voltage impressed by the
odd mode between the ground plane and the right signal
conductor and the modal voltagevmo of the odd mode,
which is defined as the total voltage between the two
signal conductors. This accounts for the factors of6a in
the second column ofMv. Figure 5 plots the magnitude
and phase ofa calculated by the full-wave mode-match-
ing method of Ref. [28] for a typical symmetric line and
shows that in the low-frequency limita is about one-
half.

Mv for the third connection method is defined
analogously. The values in the first row ofMv are the
same as those of the second method because the first
connection path is the same in both cases. However,
Mv21 = 0 because the even mode does not impress any
voltage between the two signal conductors where the

second device is connected, andMv22 = 1 because the
even mode and second connection paths coincide.

The table also lists theM i, Zc, Yc, andWc obtained in
the power-normalized conductor representation. Here
Mv andM i are dimensionless, have only a slight depen-
dence on frequency, and are easily determined from
straightforward arguments. This simplifies the determi-
nation of the conductor parameters from the standard
modal parameters, which may often be found from con-
ventional measurement methods or simple models. This
convenient form ofMv andM i is a result of beginning
with the conventionally normalized modal voltages and
currents of Ref. [1]. Note that the matrices correspond-
ing to Mv andM i in Ref. [13] carry the dimensions of
voltage and current and, even in this symmetric example,
will be highly frequency dependent (see Appendix A).

15. Asymmetric Coupled Microstrip
Lines

Williams and Olyslager [14] show that the off-diago-
nal elements ofX are large in lossy quasi-TEM multi-
conductor transmission lines near modal degeneracies.
Figure 6 shows the asymmetric lines used in Ref. [14] to
illustrate this phenomena. These asymmetric coupled
lines support two quasi-TEM dominant modes conven-
tionally labeled the c andp modes. The c andp modes

Fig. 5. Modal parameters for the symmetric microstrip line of Fig. 1 with two 73mm wide and 0.25mm
thick signal conductors separated by a gap of 50mm. The 100mm thick substrate has a relative dielectric
constant of 12.9 and the substrate ground plane is 5mm thick. The metal conductivities are 3.6023 107

V–1 ? m–1. Our calculations show that the magnitudes ofWme and Wmo depart from 1 by less than 10–4.
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correspond to the even mode and the odd mode of the
symmetric case, respectively.

Appendix F gives a special form forX andWm appro-
priate for the c andp modes of the structure of Fig. 6.
That form is

X = 3 1

+j uXpcuej(uc–up )/2

–j uXcp ue–j (uc–up )/2

1 4 (53)

and

Wm = Ï1–uXcp Xpcu Fejuc

0
0

ejupG , (54)

where we have chosen the appropriate signs in the gen-
eral expressions given in the appendix for this example.
Figure 7 plots the terms which appear in Eqs. (53) and
(54) and shows that, despite the quasi-TEM nature of
the lines and the lossless dielectric, the modal represen-
tation is quite complicated. Reference [14] shows that
this can be attributed to a near degeneracy in the modal
propagation constants. The complicated behavior of the
modal representation is also reflected in variations of the
modal capacitancesCmc and Cmp, which Fig. 8 shows
change significantly with frequency.

The lines of Fig. 6 are simply described in the power-
normalized conductor representation. Figure 8 shows
that the elements ofCc are approximately constant, as
would be expected given the lossless substrate. Unlike
Cmc andCmp, the elements ofCc are only weakly depen-
dent on the metal loss.

Fig. 6. The asymmetric microstrip line and the method of connect-
ing devices between the conductors studied here. The 30mm wide
signal conductor on the left is separated from the 200mm wide signal
conductor on the right by a 50mm wide gap. The 100mm thick
substrate has a relative dielectric constant of 12.9. The 0.5mm thick
signal conductors and 5mm thick ground plane have a conductivity
of 3.6023 107 V–1 ? m–1.

Fig. 7. Modal parameters for the asymmetric coupled lines of Fig. 6. the frequencies at which
Im(gc–gp ) = 0 and at whichugc–gp u /b0 reaches a minimum define the frequency range labeled
gc ø gp in the figure.
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Fig. 8. The elements of the capacitance matricesCm and Cc for the coupled lines of
Fig. 6. The calculations show that the elements ofGm andGc are small and thatuCc12 –Cc21u
# 2.0 3 10–4 pF/cm.

Figure 9 shows the elementsRc andLc in the power-
normalized conductor representation. They display the
behavior typical of conductors at microwave frequen-
cies: the elements ofRc increase slowly with frequency
as the fields are expelled from the metals and depend
strongly on the metal loss while the elements ofLc

increase slightly at very low frequencies where the fields
penetrate deeply into the metals.

Our numerical calculations based on the full-wave
analysis method of Ref. [28] show that the elements of
Wc in this case differed from those of the identity matrix
by less than 53 10–4 below 40 GHz. This implies that
the impedance matrix of passive reciprocal devices em-
bedded in these transmission lines are very nearly sym-
metric and the transmission-line equivalent-circuit
model of Fig. 4 is appropriate in the power-normalized
conductor representation.

Although Ref. [4] showed thatQ for this structure
differs significantly from the identity, complicating the
calculation of thermal noise in the modal representation,
our calculations show that the matrixM i Q M v

T of Eq.
(51) is also almost exactly equal to the identity matrixI .
Thus in the power-normalized conductor representation
the conventional Eq. (52) for the thermal noise of a
passive termination embedded in these lines applies, as

we would anticipate from the fact thatWc is nearly equal
to the identity matrixI in this case. Reference [15]
shows that the power-normalized conductor representa-
tion also simplifies device models. These results illus-
trate the advantages of using the conductor rather than
the modal description when the off-diagonal elements
of X are large.

16. Conclusion

We have investigated a power-normalized multimode
equivalent-circuit theory based on the normalized
modal voltages and currents of Ref. [1]. Its conductor
representation allows the construction of a nodal equiva-
lent-
circuit analogy suitable for electrical design. The theory
incorporates all of the elements required for design with
multimode transmission lines, including symmetry
conditions for reciprocal terminations and junctions,
explicit expressions for the impedance matrix of multi-
mode transmission lines, source representations, and
expressions for the thermal noise of passive multiports.
We illustrated the theory with examples of both
symmetric and asymmetric coupled lines.
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Fig. 9. The elements ofRc andLc for the coupled lines of Fig. 6. The calculations show thatuRc12 – Rc21u
# 0.1 V/cm anduLc12 – Lc21u # 10–3 nH/cm.

17. Appendix A. Unnormalized Modal
Voltages and Currents

Reference [13] forms conductor voltages and currents
from linear combinations of unnormalized modal
voltagesvm' and currentsi m' . In those works thevm' andi m'
are defined by

Et = O
k

vmk' etk ; H t = O
k

imk htk . (55)

Thevm' andi m' can be obtained fromvm andim by setting
the n0k and i0k of this theory equal to 1, rather than
applying the power conditionP = v0k i0k* of Brews [2] and
normalizations of Ref. [1]. Table 3 shows how this
changes the various modal parameters and relations pre-
sented in this work. For example, the first line of the
table shows thatvm' = (n0)–1 vm. The elementsP given in

the table arePjk ≡ E
S

etj 3 h tk* ? zdS.

Reference [13] defines either the conductor voltages
vc' by

vck' = – E
lk

Et ? dl (56)

or the conductor currentsi c' by

i ck' = R
ck

H t ? dl , (57)

definitions that correspond to those of Eqs. (27) and
(28) used here. Either of these definitions, in conjunc-
tion with the constraintp = i c'T vc', results invc' = vc and
ic' = ic. Thus we see that, although the modal parameters
of the two systems are quite different, their conductor
parameters are equivalent.

18. Appendix B. Symmetric and Power-
Orthogonal Modes (X = I )

We can put the elements of the cross-power matrixX
in the form

Xkj =
n0k

n0j

E
S

«* etj ? e*tk dS – E
S

mhzjhzk*dS

E
S

«* uetk u 2dS – E
S

m uhzk u2dS

=

Si0j

i0k
D*

E
S

mhtj ?h*tk dS – E
S

«*ezjezk* dS

E
S

m uh tj u2dS – E
S

«* uezj u2dS

(58)
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Table 3. Renormalization table for unnormalized modal parameters

This work Corresponding quantity in
Modal parameters (normalized system) Ref. [13]

Voltages and currents vm, im (v0)
–1 vm, (i0)–1 im

Normalization condition p0k = v0k i 0k* v0' = i 0' = (1, 1, . . .)t

Characteristic impedance Z0k ≡ v0k

i0k
=

uv0k u2

p0k*
=

p0k

ui0k u2
1

Transmission line parameters Rm + j vLm g

per unit length Gm + j vCm g

Cross-power matrix X i0
T X v0 ≡ Pt

Transformation matrices Mv, M i Mvv0, M i i0

Reciprocity matrix Wm v0 i0 Wm

Impedance matrix Zm v0
–1 Zm i0

Noise matrixQ Q i0
–1 Q (v0

T)–1

Conductor parameters vc, ic, Wc, Zc, . . . vc, ic, Wc, Zc, . . .
(equivalent in both systems)

by following the arguments of Appendix B of Ref. [1].
Equation (58) shows thatXkk = Xjj = 1 and that
Xkj = Xj k = 0 if the kth and j th modes have opposite
electric or magnetic field symmetries. For the symmet-
ric coupled microstrip lines of Fig. 1, for example,
X = I .

We call thekth mode of a closed guide power orthog-
onal if Xkj = Xjk = 0 for all of the other modesj in the
transmission line. If thekth mode is power orthogonal,
then Ref. [4] shows thatWmk Wmk* = 1, andWmk can be
set equal to 1 by suitable normalization of the phase of
then0k or thei0k [1]. Lossless modes are power orthogo-
nal.

WhenX = I , the conditions represented by Eqs. (29)
and (43) are compatible, so symmetricZc andYc can be
achieved in the power-normalized conductor representa-
tion. However it is possible to show that simultaneous
satisfaction of conditions represented by Eqs. (29) and
(43) then requires that all of the elements in any given
column of Mv and in the same column ofM i have
the same phase. It is also possible to show that setting
Wc = I requires that the magnitudes of the diagonal
elements ofWm equal one and that the phase of the
elements in the columns ofMv andM i be set to one half
the phase of the corresponding diagonal element ofWm.

19. Appendix C. Diagonality ofM v
t M i and

Symmetry of Zc and Yc

If Zc, the transmission line impedance matrix per unit
length, is symmetric then

Zc = Mv Zm M i
–1 = (M i

–1)t Zm M v
t , (59)

and

M i
t Mv Zm = Zm M v

t M i = (M i
t Mv Zm)t . (60)

ThusZc is symmetric if and only ifM i
t Mv Zm is symmet-

ric. Likewise,Yc is symmetric if and only ifM v
t M i Ym

is symmetric. Clearly, ifM i
t Mv is diagonal, then so are

M i
t Mv Zm andM v

t M i Ym, and soZc andYc are symmet-
ric.

The reverse is true for nondegenerate modes (modes
for which gj

2 Þ gk
2). First,Zc andYc symmetric implies

that bothM i
t Mv Zm andM v

t M i Ym are symmetric. The
jk th element ofM i

t Mv Zm is

(M i
t Mv Zm)jk = (M i

t Mv)jk Zmk . (61)
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Thus M i
t Mv Zm symmetric implies that (M i

t Mv)jk

Zmk = (M i Mv)kj Zmj . Likewise, M v
t M i Ym symmetric

implies (M i
t Mv)kj Ymk = (M i

t Mv)jk Ymj . Taking the
product of these two equations and usingZmk Ymk = gk

2

gives (M i
t Mv)jk (M i

t Mv)kj (gj
2 – gk

2) = 0, which leads to
either (M i

t Mv)jk = 0 or (M i
t Mv)kj = 0. Assume that

(M i
t Mv)jk = 0. Then, from Eq. (60),

(M i
t Mv Zm)kj = (M i

t Mv)kj Zmj

= (M i
t Mv Zm)jk = (M i

t Mv)jk Zmk = 0 , (62)

and so (M i
t Mv)kj = 0 as well. A similar argument applies

if we assume that it was (M i
t Mv)kj that was 0. Thus

M i
t Mv is diagonal.

20. Appendix D. Symmetry of the
Impedance Matrices of Reciprocal
Junctions and ScalarWc

If Wc is scalar, then Eq. (41) shows that the conductor
impedance matricesZc of all passive junctions con-
structed entirely of reciprocal materials embedded in it
are symmetric.

If the conductor impedance matrixZc of every pas-
sive junction constructed of reciprocal materials embed-
ded in it is symmetric, then we can also show thatWc is
a scalar. From Eq. (41) we have

Zc = Z c
t = Wc Zc (Wc

t)–1 , (63)

which implies that

Zc Wc
t = Wc Zc . (64)

The ij th element ofZc Wc
t isO

k
Zcik Wcjk , while theij th

element ofWc Zc is O
k

Wcik Zckj . Equating these two

elements gives

(Wcjj – Wcii ) Zcij + O
kÞj

Wcjk Zcik

– O
kÞi

Wcik Zckj = 0, (65)

which must hold true for the conductor impedance
matrix of any junction constructed of reciprocal materi-
als. For any giveni Þ j , Eq. (65) can only be true for all
of theseZc if Wcjj – Wcii and all of the termsWcjk

(k Þ j ) are independently equal to 0, which implies that

Wc is a scalar matrix.
Finally, if Wc = aI , wherea is a scalar, then Eq. (42)

shows thatM i
t Mv = aWm.

If Wc = aI , then Eq. (41) shows that the conductor
impedance matricesZc of all junctions constructed
entirely of reciprocal materials connecting the lines to
other lines for whichWc = aI will be symmetric. Like-
wise, if the conductor impedance matrices of all junc-
tions constructed entirely of reciprocal materials con-
necting the lines to other lines for whichWc = aI are
symmetric, we must haveWc = aI . This also holds true,
of course, whenWc = I in all the lines. This is the most
convenient normalization sinceWc = I is the natural
choice in lossless lines.

21. Appendix E. Renormalization Table

We have presented relations between modal and
conductor quantities. Here we show how a renormaliza-
tion of the conductor voltages and currents that
preservesM i

T Mv = X affects the other conductor
parameters. The second column shows the effect on the
element in the first column after multiplying the voltage
eigenvector by the matrixd ≡ diag(dq).

Table 4. Renormalization table for power-normalized conductor
parameters

Before normalization After normalization

vc, ic dvc, (d*) –1 ic

Mv, M i d Mv, (d*) –1M i

Zc, Yc d Zc d*, (d*) –1 Yc d–1

Wc, Wc d* Wc d–1, d* Wc d–1

Zc d Zc d*

Mi Q Mv
T (d*) –1 Mi Q Mv

T d*

22. Appendix F. Form of X and Wm for
Two Modes WhenWc = I

Whenever it is possible to satisfy the power normal-
ization condition of Eq. (29) and setWc = I simulta-
neously we have bothM i

T Mv = X and M i
t Mv = Wm.

Thus we can writeX Wm
–1 = M i

T Mv Mv
–1(M i

t)–1 =
M i

T (M i
t)–1 and so (X Wm

–1)* X Wm
–1 = (M i

T (M i
t)–1)* M i

T

(M i
t)–1 = I .

Reference [4] shows that the condition (X Wm
–1)* X

Wm
–1 = I also holds if all the modes in the guide are

accounted for.
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If, for every modej to which we have assigned a
voltage and a current and for every modek for which we
have not, the cross-power integralseetj 3 htk* ? dS =
e etk 3 htj * ? zdS = 0, then as a corollary we have
(X Wm

–1)* X Wm
–1 = I as well.

When (X Wm
–1)* X Wm

–1 = I and there are only two
modes, which we will label thec and p modes, then
(X Wm

–1)* = (X Wm
–1)–1 and we can writeX andWm as

X = F 1
Xpc

Xcp

1 G ; Wm = FWmc

0
0

Wmp

G , (66)

which implies that

3 (Wmc*) –1

Xpc*(Wmc*) –1

Xcp *(Wmp *) –1

(Wmp *) –1 4 =

WmcWmp

1–Xcp Xpc 3 Wmp
–1

–XpcWmc
–1

–XcpWmp
–1

Wmc
–1 4 . (67)

Equating the diagonal terms in Eq. (67) implies that
uWmcu2 = uWmp u2 = 1– X cp X pc, which implies that the
productXcp Xpc is real and that we can writeWmc and
Wmp as Wmc = Ï1–XcpXpc ejuc and Wmp = Ï1–Xcp Xpc

ejup . Equating the upper-right hand off-diagonal terms
in Eq. (67) allows us to determine the phase of Xcp in
terms of uc and up to within a factor of6p , while
equating the lower-left hand off-diagonal terms in Eq.
(67) allows us to determine the phase ofXpc. These
constraints on the phase ofXcp andXpc, in addition to the
constraint that their product be real, result in the forms

X = 3 1

6j uXpcuej (uc–up )/2

6j uXcp uej (uc–up )/2

1 4 (68)

and

Wm = Ï1–Xcp Xpc Fejuc

0
0

ejupG (69)

for X andWm, respectively.
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