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The high frequency end of the relaxation
spectrum for polymer molecules involves
the rotation of the segmental bonds. This
fast relaxation process, however, cannot
take place easily in the condensed state
crowded by the densely packed conformers,
necessitating the slower cooperatively syn-
chronous relaxation. As the temperature is
lowered, the domain of cooperativity grows
towards the infinite size at the Kauzmann
zero entropy temperature, though actually
the system deviates from the equilibrium as
the glass transition intervenes typically at
50 K above that temperature. The excess
enthalpy and entropy drop faster than pre-
dicted by the rotational isomeric states
which would reach zero only at 0 K. The
real DCP is greater than that of the RIS
value. The actual volume in excess of the
crystalline lattice volume, however, points
towards zero at 0 K. Thus, a polymer with
higherTg typically exhibits a lower density

and modulus in the glassy state. Since the
configurational entropy associated with the
free volume is proportional to thelogarithm
of the latter, the Kauzmann temperature
can be scaled by lnM , whereM is the al-
gebraic average of the conformer molecular
weight. The temperature dependence of the
most dominant, i.e., the largest equilibrium
domain size will result in the Adam-Gibbs
and Vogel equations for the characteristic
relaxation time. The cooperative domain
distribution leads to the relaxation spectrum
that follows a power law. The relationship
between the characteristic relaxation time
and the rate of physical aging is derived.
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1. Introduction

Is it the relaxation or retardation spectrum that would
better reflect molecular motions?

There are two clearly different types of viscoelastic
experiments. One is to control the strain (deformation)
and the other is to control the stress. Data of the first
type include the relaxation modulusG(t ), the secant
modulus under the constant rate of strain, the dynamic
modulusG*(v ), and the dynamic viscosityh*(v ). The
relaxation spectrum describes the intensity of each
mode of relaxation with a unique rate of dissipating the
energy. It is considered to be proportional to the number

1 Address correspondence to: 161 Thackeray Drive, Basking Ridge,
NJ 07920.

of relaxing units. The strain energy is closely related to
the change of molecular configuration in polymers.

The scheme of relating the relaxation spectrum to
molecular relaxation seems justified by the apparent
success of the Takayanagi model [1] for predicting the
dynamic moduli for heterogeneous structures, such as
composites, block copolymers and semicrystalline
polymers, from the moduli of individual components
weighted according to their volume fractions.

The second type, or the stress-controlled type, in-
cludes the creep complianceJ(t ), the secant compliance
under the constant rate of stress increase, the dynamic
complianceJ*(v ), and the dynamic fluidityf*(v ).
Unlike the strain energy, a new approach will have to be
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devised which will relate the stress energy to molecular
strains, and this has not been done. More assumptions
are needed to interpret a retardation spectrum in molec-
ular terms than a relaxation spectrum. However, these
data can be converted to the first type mathematically.

Because the dynamic complianceJ*(v ) is simply the
reciprocal of the dynamic modulusG*(v ) in one and
the same experiment,J*(v ) can be included in the first
group, provided the data are analyzed in terms of the
relaxation, not retardation, spectrum, and its signifi-
cance can be analyzed in molecular terms.

In linear viscoelasticity, the creep complianceJ(t ) is
not simply the reciprocal of the relaxation modulus
G(t ), but it can be exactly related toG(t ) by the equa-
tion below from the fact that the complex dynamic mod-
ulus G* = G' + iG " is the reciprocal of the complex
dynamic complianceJ* = J'–iJ " :

E
t

0

G(t –x)J(x)dx = t (1)

together with three other similar convolution integrals.
If the relaxation modulus can in fact be represented by
the sum ofGi exp(–t/ti ) terms, then it can be seen that
the creep compliance cannot be in the form of the sum
of the Ji (1–exp(–t /ti )) terms. All models utilizing any
numbers of springs and dashpots fail to satisfy Eq. (1).
Springs and dashpots are not suitable in describing lin-
ear viscoelastic behavior of a given material. If the rate
process is assumed for the decay of strain energy under
the constant macroscopic strain, the relaxation modulus
can be the sum ofGi exp(–t /ti ) terms, and all other
viscoelastic functions must be consistent with this as-
sumption. In such a case the relaxation spectrum, but
not the retardation spectrum, would reflect the struc-
ture-property relationship.

The relaxation spectrumH (ln) is approximately:

H (lnt ) = –
dG(t )
dlnt

, t = t . (2)

It will be shown later that the intensity of relaxation
H (lnt ) is proportional to the number of participating
conformers, andH (lnt ) ≅ G"(lnv ), particularly when
|dlogG"/dlogv |<<1.

The relaxation spectrum may be “normalized” by the
absolute value of the modulus, and

H (lnt )
G*(v )

ø G"(v )
G*(v )

=
J"(v )
J*(v )

. (3)

This quantity is approximately equal to the slope of the
double logarithmic relaxation modulus curve when
G*(v ) ≅ G(t ), such as in the solid-like state. The dielec-
tric loss factor« "(v ) is similar toJ"(v ), and it too can
be a basis of molecular interpretation.

2. The Conformer

Theodorou and Suter [2] have demonstrated with
computer simulation that an overwhelming proportion
of elastic deformation in amorphous polymers is taken
up by partial rotation of the main chain bonds. This is
not a surprising conclusion, and it can be carried further
by suggesting that the irreversible bond rotation from
one stable configuration to another in the presence of a
force field is the basic mode of relaxation. The rotation
of one single bond from a gauche to a trans configura-
tion is the fastest mode of relaxation involving the
smallest unit, called conformer. In a vinyl polymer, a
monomeric repeat unit consists of at least two conform-
ers.

When a conformer changes the configuration, it must
pass an intermediate stage that has a much higher free
energy level, amounting to 12.6 kJ/mol to 15.1 kJ/mol of
conformer. If molecular weight of the conformer is 50
and the density is 1 g/cm3, this means 33 109 ergs,
which is 10 times greater than the strain energy spent at
the yield for a typical glassy polymer. Since the me-
chanically imposed strain energy is so small as com-
pared to this barrier energy, the probability for a suc-
cessful rotation, i.e., relaxation, can be considered as
controlled by the probability of these thermally excited
conformers reaching this energy barrier. It becomes the
bottle neck for the irreversible transition in configura-
tion, and its relative population determines the rate
constant for the process. The relative population is
proportional to the exponential function of negative en-
ergy difference overkT, according to the Maxwell-
Boltzmann equipartition principle, so that the rate of
transition is obtained from the equation:

p~expS–
Dm
kTD , (4)

wherep is the probability that the gauche configuration
will spontaneously transit to the trans state, andDm is
the highest free energy level the bond angle must pass,
relative to the stable state in equilibrium.k is
Boltzmann’s constant andT is the absolute temperature.
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As is well known, this is the classical theory of rate
processes [3], and the rate constant is proportional to the
probabilityp. The time constant for this transition is the
relaxation time for a conformer and it is proportional to
p–1, or exp(Dm /kT).

This relaxation time is of the order of 10–10 s at room
temperature [4], and withDmof 12.6~15.1 kJ, it is
estimated to be 10–12 s at 5008C. This, then, comprises
the shortest time end of the vast spectrum of many
modes of relaxation a polymer molecule is capable of
undergoing. The dominant “characteristic relaxation
time” of polymers is many orders of magnitude slower
even at 50 K aboveTg. In the dense liquid with crowded
conformers, relaxation requires a simultaneous rotation
among several neighboring molecules, and this can in-
crease the relaxation time by many orders of magnitude.
Such cooperativity is not unique to polymers, but gen-
eral to most glass-forming liquids.

Polymers are unique, on the other hand, in their capa-
bility for exhibiting an extremely slow relaxation pro-
cess well above their glass transition temperature, and
this behavior too has been described by the same word
“cooperativity.” The context for this latter usage is dif-
ferent from the former, as the latter involves a large
overall configurational change of strings of conformers
which make up a polymer chain. Their individual mo-
tions add up to a net movement of a large segment of a
chain. Coordinated motions among strings or “strands”
of a polymer molecule can be slower by orders of mag-
nitude than the cooperative relaxation among the indi-
vidual conformers described above, though all relax-
ation modes in the latter context are coupled to ones in
the former context. The former governs the time-tem-
perature shift of the entire spectrum including the latter.
The elastic modulus for the latter arises from a decrease
in molecular conformational entropy accompanying the
deformation, a typical rubber, whereas the elastic mod-
ulus for the former arises from the increase in internal
energy, a typical solid.

3. Intermolecular Cooperativity

Our discussion will be limited to the “cooperativity”
in the first context, i.e., the relaxation process in which
a number of conformers relax simultaneously. At a high
enough temperature, the volume is expanded to allow
most conformers to relax individually. In the actual
polymers this may be well above the degradation tem-
perature, but the extrapolated value will be an important
parameter. This temperature is defined asT*. At this
temperature, the frequency and the magnitude of oscil-
lation are such that a change to a new bond angle can be
reversed in negligible time, and the theoretical meaning

of the relaxation process as we understand it, begins to
be lost aboveT*. We arrived at the value of 5008C for
T* after analyzing data for more than a hundred poly-
mers [1].

If conformers were able to rotate without being inter-
fered with by their neighbors, the activation energy bar-
rier would remain constant atDm , ca. 12.6 kJ, and the
temperature dependence of the relaxation timet (which
is very short) would follow the Arrhenius relationship:

lnt = lnt* +
Dm
kT

–
Dm
kT*

, (5)

wheret* denotes the relaxation time atT*.
Because of the neighboring interference, however, the

relaxation time grows at a faster rate with temperature
change than shown by Eq. (5). The degree of coopera-
tivity is characterized by defining the domains of coop-
erativity, in which all conformers must relax simulta-
neously. The domain size,z, then becomes the exponent
for the probability for simultaneous relaxation of other-
wise independent conformers. We now obtain, instead of
Eq. (5):

lnt = lnt* +
Dmz
kT

–
Dm
kT*

. (6)

Equation 6 is no longer an Arrhenius equation because
z changes with the temperature. The concept of the
temperature dependent domain size,z, is the center
piece of the theory by Adam and Gibbs [5], although
their further treatment of it seems to imply the in-
tramolecular, rather than intermolecular, cooperativity.

The property ofz is such thatz = 1 atT*, andz→`
at T0, where the domain size has grown so large that all
conformers are locked together. Such a temperature de-
pendence ofz can be met with the equation:

z =
T

T –T0
?

T*– T0

T*
. (7)

A real liquid vitrifies at about 50 K aboveT0, but
amorphous glassy polymers are far from the state of
zero configurational entropy [6]. Extrapolation from
above Tg to 50 K below Tg will hardly increase the
molecular order, and it is safe to say that configurational
entropy is unlikely to extrapolate to 0 atT0. The config-
urational entropySc should be estimated from the statis-
tics of the rotational isomeric state, and this entropy
would reach 0 at 0 K. So, what kind of entropy is it that
Kauzmann [7] observed heading toward 0 atT0? To
clarify this question, one needs to examine how the
configurational entropy per mole of conformer changes
as the domain size grows.
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The configurational entropySc is calculated from the
concentration dependence of the gauche and trans con-
figurations, where the concentrationf for the gauche
state depends on the difference in the energy level from
the trans state,DG :

f = 2exp(–DG /kT)/[1 + 2 exp(–DG /kT)] . (8)

The factor 2 is placed in the formula because there
are three possible angles that a conformer can assume
per bond. In some polymers, the third position is forbid-
den by the geometrical interference; in such a case this
factor 2 is replaced by unity. The entropy of mixing
between the trans and gauche configurations is obtained
through an approximation:

Sc ≅ –6k[f lnf + (1 –f )ln(1 – f )] . (9)

The factor 6 is placed in the equation because each of
the two conformers (trans or gauche) has a choice of
three bond angles.

Now, in a domain that consists ofz conformers, all
configurational changes must occur together, and that
means the degree of freedom inside the domain is the
same as that of one free conformer. The configurational
entropySc is reduced toSz = Sc/zbecause of the cooper-
ative restrictions. In other words, the entropySc is
reduced at all temperatures but still headed toward zero
at 0 K, whileSz = Sc/z decreases rapidly toward zero at

T0. This is illustrated in Fig. 1, showingSc, Sc/3, Sc/6,
andSz.

Although the celebrated theory of Gibbs and Di-
Marzio [8] is a theory that leads to zero entropy atT0,
it is different from the cooperative domain model pre-
sented here. Gibbs and DiMarzio modified Flory’s lat-
tice model, but by including holes that are temperature
dependent, the conformational entropy is made to reach
zero at T0. Still, their theory requires that polymer
molecules be sufficiently ordered nearT0, whereas with
the model presented here the configurational entropy is
reduced by virtue of the increasing cell size of the
microstates as the domain grows at lower temperatures.
Since the glass transition is not unique to polymers, a
model must be easily adaptable to nonpolymers. The
Gibbs free energy can be calculated from the tempera-
ture dependence ofSz, and from it the enthalpyHz can
be, also. Figure 2 is an illustration of the temperature
dependence ofTSz, Hz, and the (negative) Gibbs free
energy; Hz < TSz for T0 < T < T*. The plot of TSz is
nearly a straight line starting at zero atT0, which is
useful in scaling among polymers with different values
of T0.

The specific heat,DCp, i.e., the difference between
the liquid and the solid (glass) state, is of interest, and
is shown in Fig. 3, together with that which corresponds
to theSc. Both values are per mole of conformers, and
they must be divided by the molecular weight of con-
former to obtain the value per g. The peak for dHc/dT

Fig. 1. The conformational entropy per conformers, per domains of sizez= 3,z= 6, andz that depends
on temperature (the dotted line).T0 = 370 K is chosen. (Note that the units of entropy are in moles of
conformer.)
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Fig. 2. Enthalpy Hz, the productTSz, and the Gibbs free energy (negative value), all per mole of
conformers, calculated from theSz = Sc/z(T) shown in Fig. 1.

Fig. 3. The specific heatDCP per gram has been calculated since the molecular weight of the
conformer can be calculated fromT0. This result agrees with the data for polycarbonate.

appears as the consequence of the increased order at
lower temperature, and the greater the energy difference
DG between the trans and the gauche configuration, the
greater this peak appearing at a higher temperature, but
this should not be confused with the glass transition.

DCp depends on temperature more strongly thanDCp

~ 1/T, a prediction by Scherer [9]. It will be shown later

that the specific heat per mole is proportional to the
ratioT*/(T*–T0), and to lnM , whereM is the molecular
weight of a conformer.DCp per mole of conformer is
thus greater for a polymer with a larger conformer,
which has a higherTg, butCp per gram is smaller for the
same with the larger conformer, following the formula
(lnM )/M , with higherTg.
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The relationship betweenSz andSc can also be found
parallel to nonpolymeric liquids that are capable of ex-
hibiting internal configurational changes, known as
Kneser liquids [10]. Domains of cooperativity among
the molecules can be considered, within which the
molecular relaxation can only occur together simulta-
neously. By the same token,Sz = Sc/z decreases toward
zero atT0. Herzfeld and Litovitz [11] find the absorption
of sound waves in these Kneser liquids to be many times
greater than the estimated “classical” values. A sound
wave consists of the adiabatic compression and expan-
sion, and dissipation of free energy occurs when heat
conduction irreversibly equalizes the temperature differ-
ences between the crest and the trough.

The “fragile liquids,” according to the well-known
classification of liquids by Angell [12], are also those
which can exhibit internal degrees of freedom when
free from the neighboring interference. In almost all
“fragile” cases, |dz/dT| is large, i.e.,T0 is closer toT*,
andT*/(T*–T0) is large, and the relaxation time follows
the Vogel equation. The other class of liquids termed
“strong” by Angell is presumably that for which the
domain size either does not grow or grows little over the
temperature span, and typically exhibit Arrhenius
behavior. A “strong” glass has less free volume than a
“fragile” one.

Substituting the temperature dependentz, (Eq. 7),
into the Adam-Gibbs equation [Eq. (6)] will immedi-
ately give the Vogel equation [13]:

lnt = lnt* +
Dm*

k(T –T0)
–

Dm*
k(T*– T0)

(10)

where the relationship between andDm and Dm* are
related by the formula:

Dm = Dm*
T*

T*– T0
. (11)

The ratio T*/(T*–T0) above has appeared already,
and is an important empirical material parameter.
Recalling that the productTSz in Fig. 2 is a straight line
which reaches zero atT0, the ratio {TSC/TSz} = T*/
(T*–T0) can be scaled for all materials with differentT0

values. The physical significance of the ratioT*/
(T*–T0) is the conversion of the configurational proba-
bility from without intermolecular cooperativity to with
intermolecular cooperativity. All thermodynamic ex-
tensive quantities are scaled by this ratio, includingDCp

and free energy such asDm . The true rotational barrier
of a bond isDm* when it is free from the neighbor
interference, henceDm* is a universal constant for con-
formers that involve a C–C bond rotation with the value
of a little more than 12.6 kJ/mol. Conveniently,Dm* for

paraphenylene linkage has about the same value. The
ether linkage, on the other hand, has only 4.8 kJ, so an
adjustment should be made when estimatingTg from
polymers that include it in the repeat unit, as will be
discussed later.

The Vogel equation, Eq. (10), is exactly the same as
the Williams-Landel-Ferry equation [14] with appropri-
ate substitution of the parameters, and also the same as
the Doolittle free volume Eq. (15) when the thermal
expansion coefficient of the fractional free volume (an
empirical parameter different from the van der Waals
free volume) is equated tok/Dm* in the Vogel equation.
This will be shown later. For the “universal” WLF
equation,c2

g = Tg 2 T0 ≈ 50 K, andc1
g = 17.4 [16]. The

latter is related to the universalDm*, while the former
is an indication that a typical glass transition occurs at
50 K aboveT0. All these equations pertain to the condi-
tion for thermodynamic equilibrium, i.e., aboveTg.

To summarize the relationship among these quanti-
ties and limiting temperatures, the following equation
may be written:

z =
Sc

Sz
=

TSc

TSz
=

T*– T0

T*
T

T –T0
. (12)

Substitution of Eq. (12) into the Adam-Gibbs equa-
tion, Eq. (6), results in another, more widely known
form of the Adam-Gibbs formula:

lnt = lnt* +
Dm
kT

?
Sc

Sz
–

Dm
kT*

. (13)

4. Free Volume and Entropy

Equation (10) is a special Vogel equation for the shift
factor from T*. If Tg is chosen instead ofT* as the
reference temperature, Eq. (10) is changed to:

lnt = lntg +
Dm*

k(T –T0)
–

Dm*
k(Tg–T0)

. (14)

The above equation can be written in the form of the
Doolittle’s free volume equation,

lnt = lntg +
1

af (T –T0)
–

1
af (Tg–T0)

(15)

whereaf is the thermal expansion coefficient of the free
volume fraction f = (V – V0)/V , where V0 is the
“occupied volume”V at T0.
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We have already pointed out thataf is really a parame-
ter, k/Dm*, arising from the energy barrier for bond
rotation,Dm*. The smaller theDm*, e.g., for the ether
linkage, the greater the empiricalaf , irrespective of the
thermal coefficient for the van der Waals (real) free
volume,Da , the difference ina between the liquid and
the solid (a glass or the crystal). Whereas the Doolittle
free volume vanishes atT0 like Sz, the “real” free volume
vanishes at 0 K like Sc. In order to be consistent, the
following relationship should hold:

Da
a f

=
T*– T0

T0
(16)

and here again we find the familiar ratio. The empirical
value foraf ~ R/Dm* obtained from viscoelastic data is
about 63 10–4 K–1 if Dm* is a little more than 12.6 kJ,
whereas the values ofDa andaf for many amorphous
polymers vary around 4 and 63 10–4 K–1, respectively
[16]. The ratioDa /af ought to be 0.5 ifTg = 1508C, and
0.85 forTg = –1108C. For polyethylene, takinga for the
crystalline lattice fora of the solid, the value forDa =
a1–as is 5.7 3 10–4 K–1 [17]. Furthermore, if one as-
sumesDm* to be 16.7 kJ, Doolittle’sfg of 0.025 is
obtained.

The “real” van der Waals free volume with the ther-
mal expansion coefficient of ca. 63 10–4 K–1 will attain
50 % of the van der Waals volume atT*. Thus a true
excess volume is comparable to the true occupied vol-
ume of a conformer in the state free from the neighbors.
A greater amount of free volume will be trapped in the
glassy state if theTg is higher, as has been found for
crosslinked polymers with different degrees of
crosslinking density [18]. Such a trapped free volume is
a genuine unoccupied site that can be observed by the
positron annihilation analysis. As a rule, the glassy mod-
ulus of a higherTg polymer tends to exhibit a lower
value, which is further evidence for the less dense glassy
state for the highTg polymers [19].

Now, the configurational entropySf of the molar free
volumeVf can be considered to be equal to the configu-
rational entropy of the ideal gas with the molar volume
of Vf , i.e.,

Sf = –klnVf . (17)

The absolute value of the molar free volume scales
with molecular weight of conformerM divided by the
density. Since the value of the excess entropy atT* is
the same for all polymers, the product (T* – T0)ln Vf is
constant for all polymers. When polymers with different
conformer sizes are compared, their values ofT*– T0

are inversely proportional to ln(M /r ), whereM is the

molecular weight of the conformer and is the density
extrapolated toT*, or

T*
T* – T0

~
lnM

r
. (18)

Here again, we find the same ratioT*/(T* – T0) for
scaling the extensive quantity.

Ignoring the density variations among the amorphous
polymers, (in comparison to the molecular weight varia-
tions among different conformers), the constant
C = (T* – T0) ln M has been evaluated through the intro-
duction of a virtual polymer with molecular weight of
M0, such that itsT0 is at 0 K, i.e.,z = 1 andSz = Sc for
all temperatures from 0 K toT*. We obtain the formula:

(T* – T0) lnM = T*ln M0 = C . (19)

This relationship is shown in Fig. 4.
The empirically derived value forC is 1750 for many

polymers, which meansM0 = 9.6, too small for a
methylene unit and not even as large as one carbon
atom. For the methylene unit as a conformer,Tg of
– 1108C is obtained from Eq. (19). Because this is near
the g transition temperature of branched (low density)
polyethylene, it is often regarded as the sameb -type
relaxation. Their temperature coefficients are substan-
tially different [20], suggesting that the glass transition
for the linear polyethylene and theg transition for the
branched polyethylene overlap in the kHz range. Theg
transition for branched polyethylene is definitely a local
relaxation process involving a fixed number of
intramolecular cooperative conformers, exhibiting a
constant activation energy, just as in the case of theb
transition in amorphous homopolymers, as will be
discussed subsequently.

The above discussion, including tables ofTg for a
hundred polymers, has been included in Chap. 2 of Ref.
[20], but it has been further elaborated here to make the
present discussion complete. Equation (19) is useful in
predicting theT0, and thereforeTg , T0 + 50 K from the
chemical structure of an amorphous polymer. The gen-
eral rules for estimating the conformer size from chem-
ical structure is elaborated below:

1. A conformer with a branch.

(a) When another conformer is attached as a
branch to a conformer in the main chain, the
new combination attains the combined size as
one conformer. When a methyl group is at-
tached to a carbon in the main chain, this
combined conformer consists of CHCH3 and
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Fig. 4. The glass transition temperature,Tg = T0 + 50 8C, vs segmental or
conformer molecular weight, according to Eq. (19).

its molecular weight is 28. However,
polypropylene has a methylene unit as the other
conformer along the main chain. Averaging the
two, (28 + 14)/2 = 21 is obtained, andT0 of
–758C, or Tg of –258C is obtained from Eq.
(19).

(b) When the branch contains more than one con-
former so the branch itself can undergo its own
configurational relaxation, the number of con-
formers per monomeric unit increases and the
average conformer size decreases again. For
polyvinyl acetate, the monomeric unit consists
of three conformers instead of two. The average
conformer molecular weightM is 86/3 = 28.7,
and from Eq. (19),Tg of 29 8C is obtained.
Whether a further addition of conformers will
raise or reduce theTg depends on the size of a
conformer to be added. Simply, if it is larger
than the present average size, theTg will rise,
but if smallerTg will fall.

2. The end group in a polymer chain has a higher
enthalpy and entropy than a similar conformer inside
the chain. The end group lowersTg as would the
solvent molecules. The contribution of the chain
ends to the overall enthalpy can be estimated by
mixing them with those conformers along the chain,
and the averageTg can be obtained.

3. When compatible polymers are mixed, a value ofTg

between the two individual values is found. One
approach for estimating theTg from the individual
concentrations of the two polymers is to invoke the
principle of isentropic state atTg = T0 + 50 K. The
entropySg for cooperative relaxation determines the
domain sizez at Tg, so the same value forSg means
the samez value atTg for all polymers and their
mixtures. The entropySg can be derived by the
formula:

Sg ≅ dSz

dT
(Tg – T0) (20)
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but Tg – T0 is 50 K, and dS/dT at Tg is DCp per mole of
conformer, so we have:

Sg ≈ 50DCp

Tg
(21)

andD Cp per mole is proportional toT*/(T* –T0) or to
lnM , hence

Sg ~
lnM
Tg

(22)

is obtained. A mixture containingx mole fraction of
conformer A and 1 –x mole fraction of conformer B
will exhibit the averageTg:

lnM
Tg

= x
lnMA

TgA
+ (1–x)

lnMB

TgB
(23)

which reduces to the Fox-Flory formula [21] when the
variations in lnM are negligible.

5. The Relaxation Spectrum

The discussion so far has been with a single value of
z that depended on the temperature. There no doubt is,
however, a dynamic distribution of domain sizes at any
temperature. The domain size as discussed up to this
point is the most dominant size, which from this point
on will be called the “characteristic size”zc, and the
characteristic relaxation timetc corresponds to thiszc. tc

is the relaxation time in the Kohlrausch-Williams-Watts
formula [22], exp{–(t /t )b}. In the high temperature
range, e.g., more than 100 K aboveTg, zc is small and
the spectrum is narrow. At moderate temperatures, e.g.,
50 ~ 100 K aboveTg, the spectrum broadens and the
Cole-Cole parameterb [23] is typically 0.6 to 0.9. At
even lower temperatures (but in equilibrium aboveTg),
the spectrum broadens particularly on the high fre-
quency side, signifying the increase in domains that are
smaller thanzc, primarily becausezc has become larger.
Cole-Davidson [24], KWW, and Havriliak-Negami
[25] formulas are all for “nonsymmetrical” distributions
around the characteristic relaxation time for the loss
peak. (Empirically, Ngai’s [26] stretched exponential
function is equivalent to the KWW formula.) When
plotted in a doubly logarithmic scale, all three becomes
a straight line in the high frequency side, while only
H-N gives a straight line on the low frequency side with
an additional adjustable parameter. Polymers exhibit an
additional weak but broad extension of the relaxation

spectrum on the low frequency side that follows a
power law, with a value between 0.5 and 0.8 for the
exponent, which is due to the slow rearrangement of
molecular chains known as the Rouse-Zimm type distri-
bution, as briefly mentioned in Introduction; the spec-
trum being discussed here arises from density fluctua-
tions causing a dynamic distribution in domain size.

Ngai et al. [26] assume that the relaxation spectrum
is homogeneously broadened by coupling to low energy
excitations. Chamberlin et al. [27], on the other hand,
consider a heterogeneous distribution of exponentially
relaxing domains, similar to the domain size distribu-
tion discussed here. Chamberlin’s model assumes a
Gaussian distribution of domains, which results in re-
ducing the slope of log« " vs logV at very high fre-
quencies. The domains we consider are from the hetero-
geneity born of density fluctuations. Those domains
with sizes that are far different from the equilibrium
size,zc, have higher free energy, and are more scarce at
both extremes. We apply the equipartition principle to
estimate the distribution of the numbernz of conformers
that belong to domains of sizez:

nz

nc
= expF–

DC
kT

(zc –z)G (24)

wherenc is the number of conformers in a domain of
sizezc, andD C is the Gibbs free energy increase when
the domain size is disturbed fromzc by D z = 1.

From the Adam-Gibbs formula, Eq. (6), the formula
for the perturbation inz from the most dominant sizezc

can be obtained:

tz

tc
= expF–

Dm
kT

(zc–z)G (25)

wheretc is the characteristic relaxation time, andtz is
the relaxation time corresponding to sizez.

By combining Eqs. (24) and (25), we obtain the for-
mula for the relative number of conformers with relax-
ation timetz, which is the relaxation spectrumH (lnt ):

H (lnt ) = S t
tc
DDC

Dm (26)

which is a “power law” type formula, i.e., the plot of log
G"or log « " vs log V is a straight line with the slope
–D C /Dm . D C is the amount of free energy increase
when the domain size is decreased by 1, and its value
should be close to the difference between the gauche
and the trans configurations, typically 4.8 kJ, so the
slope is around 1/3. Dielectric data on polycarbonate
obtained in the temperature range from 1558C to
2008C is shown in Fig. 5. This curve was constructed
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Fig. 5. The master curve of dielectric loss spectrum for polycarbonate, obtained by shifting isothermal
data.

by shifting the individual isotherms so the loss peak is
located at the origin. The slope on the high frequency
side is 0.3, which would be obtained ifD c is 4.8 kJ and
Dm 14.6 kJ. The slope of similar value is observed in
polyvinyl acetate anda -glucose. The low frequency
side of the plot in Fig. 5 is steeper, about 0.5, as it is the
beginning of the Rouse-Zimm spectrum. We believe,
however, that the Rouse-Zimm model should apply only
to polymer solutions, and that the relaxation in bulk is
remote from such a model. A more appropriate model
for the polymer bulk can be constructed from the distri-
bution of strands that are dynamically active [20]. Since
the shorter strands are more numerous, their contribu-
tion to the elastic energy is greater, whereas the longer
strands will cause the viscosity to be greater, in propor-
tion to the strand’ length. This results in the relationship
that the relaxation time increases as the square of the
strand length, while the modulus intensity is inversely
proportional to the strand length, and the value of 0.5 is
obtained for the slope of the spectrum on the log-log
plot. Another model has been proposed by Tobolsky
[28] who assumed the normal distribution for the transi-
tion zone, similar in concept to Chamberlin’s model,
and obtained the slope of 0.5 for styrene-butadiene rub-
bers of various compositions. Tobolsky notes that stiffer
chains would affect the elastic constant more severely,
so that the slope could be greater. A value as high as
0.75 was found for some systems; this scheme therefore
can include the Zimm value as well.

In Fig. 6, the Vogel frequency [= 1/2ptc from Eq.
(10)] is plotted for the polymer withDm* of 14.6 kJ and

T0 of 97 8C (dotted line) together with the Arrhenius
plot by fixing domain sizes in the Adam-Gibbs equation
for z, Eq. (6). Often, the slope of the Vogel line (multi-
plied by 2.3R) is quoted erroneously as the “activation
energy” with values amounting to 480 kJ or more, ex-
ceeding the energy for chain scission. The derivative of
the Vogel equation with respect to 1/RT is really the
sum of the correct activation energyDm ?zand the term
Dm? [dz/d(1/RT)]. The latter is the rate of change of the
domain size with temperature; this can be a substantial
quantity. A physically meaningful activation energy is
the first termz, and this is about 96.2 kJ at 1658C. At
1478C, it is about 12.6 kJ, which is about the right value
for viscoelastic behavior of glassy polycarbonate. The
spectrum shown in Fig. 5 is a snap shot at 1658C, and
denotes the relative intensity of these Arrhenius lines at
1000/T ~ 2.28. The intensity for smaller domains de-
creases with decreasing temperature, at the expense of
newly created larger domains. Below the glass transi-
tion, the sizezc becomes fixed, and the characteristic
relaxation time now follows the Arrhenius line for that
z, such as a straight line marked as 3.36,zc at Tg. The
shape of the spectrum becomes markedly broader below
Tg as the activation energy is different for each domain
size.

6. The b Relaxation

The conformers within the repeat unit of a chain are
typically of different sizes. When larger conformers
become pinned by the neighbors (belonging to other
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Fig. 6. log frequency from the Vogel equation, Eq. (10), in dotted line. Five straight lines are from
the Adam-Gibbs formula Eq. (6) with fixedz. At Tg, it is estimated thatz = 3.36.

chains) at the glass transition, there still remains a pos-
sibility for local relaxation by the smaller conformers in
the same chain. As a rule theb relaxation requires the
intramolecular cooperation among adjacent conformers
in the same chain. The number of cooperating conform-
ers corresponds to the number of conformers between
the pinned ones. It is usually the number of conformers
per repeat unit. The domain sizezb for theb relaxation
does not vary with temperature, and it is equal to the
ratio of the molecular weight of the repeat unit over the
average molecular weight of all conformers. This is
shown in Fig. 7 for polycarbonate. The number of con-
formers per repeat unit is 3.3, for whichTg of 1478C is
obtained from Eq. (19). (The fraction is a result of
polycarbonate containing ether linkages which requires
considerably smaller activation energy.) The predicted
value of zb is thus also 3.3. The activation energy,
Dm* ? zb , is 46 kJ from our dielectric data, which sup-
ports the value of 3.3 forzb [20]. The formula for theb
relaxation is given by:

lntb = lnt* +
Dm* zb

k S1
T

–
1

T*D . (27)

HereDm* is used as it is simply the energy barrier
without need to adjust for the density that affects the
intermolecular cooperativity. The intensity of theb
relaxation is affected by the temperature and the

frequency, as it depends on the population of conform-
ers pinned in the domains. In the high temperature/fre-
quency region where thea andb lines meet, theb will
take over because the highest possible frequency is lim-
ited by the intramolecular cooperation even after the
intermolecular relaxation has become easy. This is
shown in Fig. 8 by enlarging the range of temperature/
frequency where thea andb peaks merge, for polyvinyl
acetate. The repeat unit in the polyvinyl acetate
molecule consists of three conformers, one of which is
in the branch. In this case,zb is clearly that of the
number of conformers in the repeat unit, asDm*zb is
, 40.6 kJ andDm* is 13.8 kJ.

7. Physical Aging

It is well known that the glass transition is not a
thermodynamic transition between two equilibrium
states, and that a glassy state is a nonequilibrium state
born of too slow a rate in rearranging the molecules to
reach the equilibrium state. Physical aging is a process
for such a glassy state to further shift toward a state of
lower enthalpy, entropy and free volume. The most
curious but practically important question is the quanti-
tative estimation of the characteristic relaxation timetc

after the aging periodta at a temperatureT below the
glass transition temperature.
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Fig. 7. log frequency for theb process which follows an Arrhenius equation, Eq. (27). The dotted line
is from the Vogel equation for the process as shown in Fig. 6.

Fig. 8. A detail of the log frequency vs 1/T for polyvinyl acetate in the frequency-temperature region
where thea andb processes meet. Above the merging point, the process, an intramolecular cooperative
relaxation process, takes over.
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Assuming that the aging is a slow process as com-
pared to the temperature equilibration by thermal con-
duction, the intensive quantities such as pressure and
temperature are considered to equilibrate quickly, say in
seconds, while the domain sizez takes a much longer
time to equilibrate. Consequently, all those extensive
quantities that depend onz will be slow to equilibrate.
Thus, in the Adam-Gibbs equation,z and Sz are time
dependent while the temperatureT is not. This makes
the relaxation timetc also time dependent.

If the liquid is vitrified at temperatureTf , the domain
size thereafter becomes fixed aszf , which was the
equilibrium value ofz at Tf , i.e.,

zf = ST* – T0

T* D S Tf

Tf –T0
D . (28)

Upon further cooling,zf first remains unchanged but
will slowly increase with physical aging.Tf is the fictive
temperature which characterizes such a glassy state.Tf

is equal to the temperature at the intercept of the volume
curve for the glassy state and the liquid state.

Substitution ofzf in Eq. (28) into the first Adam-
Gibbs equation, Eq. (6), will result in the equation for
the nonequilibrium state:

lntf,T = lntf,T* +
Dm*
kT

Tf

Tf –T0
–

Dm*
k(T*– T0)

(29)

andtf,T is the characteristic relaxation timetc with Tf at
T, and is time-dependent throughTf . This expression has
essentially been proposed by Hodge in 1986 [29], who
was able to reproduceDCp data for polycarbonate sub-
jected to various thermal histories. This equation obvi-
ously reduces to the Vogel equation, whenTf is equated
to T, which is the condition for equilibrium. The Vogel
equation is good only for the equilibrium condition,
because the extensive and intensive thermodynamic
quantities in it cannot be separated. The Doolittle free
volume equation is also good only for the equilibrium
condition, as bothT andTf are imbedded inseparably in
its empirical free volume parameterf .

Let us now introduce, for convenience, a thermody-
namic variableXf,T,

Xf,T =
kT

Dm*
Tf –T0

Tf
(30)

such that Eq. (29) can be written as:

lnt =
1

Xf,T
+ lnt* –

Dm*
k(T*– T0)

. (31)

Unlike the Doolittle free volumef , this Xf,T is a physi-
cally acceptable form of a function inTf andT. Struik’s
[30] modified free volume is essentially thisXf,T.

In Kovacs’ [31] well-known isothermal aging experi-
ment the sample was initially made to equilibrate atTini

aboveTg, then suddenly brought to a bath maintained at
the aging temperatureTa, and the volume was measured
with aging timeta. Most of his experiments were con-
ducted nearTg, and the initial relaxation time is in the
range of (equilibrium)tg, on the order of tens of sec-
onds. Not much will happen toXf,T even after 10 seconds
has passed, however. There seems to be yet another
induction period beforeXf,T begins to change. As we
shall see, this is because the rate of rearranging domains
is slower (by more than an order of magnitude) than the
rate of viscoelastic relaxation.

Now, in all linear viscoelastic functions, in whicht
andt always appear together as a single reduced variable
t /t , the relationship shown below is true:

dlnt
dlnt

= 1 . (32)

The steady state for the aging process is reached when
the viscoelastic relaxation timetf,T and aging timeta can
qualify ast andt in Eq. (32), which can also be written
as:

dt
dt

=
t
t

. (33)

At the beginningta is zero, whiletf,T has the initial
value, so the initial rate of increase fort would have to
be `; ta cannot be equal tot above.t initially waits
without changing much untilta increases enough to
satisfy Eq. (33). This is the induction period mentioned
above, and it is to be distinguished from the period of
temperature equilibration. If a linear viscoelastic exper-
iments were conducted during the induction period, the
data will not show the shift according to Eq. (32), i.e.,
one decade of elapsed time resulting in the shift of the
viscoelastic data by one decade. Rather, the shift would
be much less than one decade.

The induction period starts withta<tf,T, and dlnt /dlnt
< 1, until the proper ratio oft /t as dictated byXf,T is
arrived, whereupon the ratiotf,T/ta is maintained. For
example, if the sample is subjected to an initial deep
quenching, the initialt is very large. Nothing will hap-
pen at first as the rearrangement of structure is
extremely slow. After a long wait,ta has elapsed suffi-
ciently to the point Eq. (32) is satisfied withta ast . At
this point,Xf,T, tf,T , ta, and the rate of change ofXf,T all
become consistent among themselves. The steady state

225



Volume 102, Number 2, March–April 1997
Journal of Research of the National Institute of Standards and Technology

has now been reached, and it will continue indefinitely
if the aging temperature has been chosen to be belowT0.
If the aging temperature has instead been chosen to be
aboveT0, then Xf,T will eventually arrive at an equi-
librium value whereTf = Ta. tf,T will not increase further
while ta continues to increase, and Eq. (32) is again not
applicable. The steady state condition exists between
these two extremes, and here the nonequilibrium Adam-
Gibbs formula can be applied. The kinetics of the steady
state aging process can be derived by utilizing these
relationships amongXf,T, ln t , ln t , etc.:

1
Xf,T

dXf,T

dta
=

1
Xf,T

dXf,T

dtf,T

dtf,T

dta
=

– Xf,T
dlntf,T

dtf,T

dtf,T

dta
= –

Xf,T

ta
. (34)

In deriving Eq. (34), no assumption was made to let
tf,T

–1 be the “reaction rate constant,” i.e., we made no
assumption that the apparent aging rate is the same as
the rate of configurational relaxation, and in fact it is
not. The solution of this differential equation is an expo-
nential integral, and the plot ofXf,T has the appearance
of a stretched exponential even though a single relax-
ation time was assumed for the viscoelastic relaxation.

If a viscoelastic relaxation experiment is started at
which point it has been aging forta, G(ta) will decrease
to G(ta)/e in tf,T seconds. Reduction ofXf,T at ta to 1/eof
this value will take much longer, approximatelytf,T/Xf,T.
Xf,T is a small number, ca. 0.1 to 0.01.

We know the condition at the beginning of steady
state. The initial value ofXf,T requires tedious calcula-
tions, but it is not far fromXg(T/Tg), and the ratio oftf,T

to the aging timeta is given by the formula:

tf,T

ta
≈ Xg

T
Tg

≈ T
Tg

k(Tg – T0)
Dm

. (35)

Equation (35) is applicable even to the case when the
initial temperature is belowTg as in the “memory effect”
experiment and also most of annealing experiments
where the polymer is heated to below but not too far
from Tg. The value of the last term is numerically close
to the Doolittle free volume fractionfg , which is about
0.025. More detailed approximation yields values rang-
ing from 0.1 to 0.01, depending on the interplay of the
initial X andt . Experimental stress relaxation data sup-
porting t /ta, fg can be found in Ref. [20].

Dielectric data for tand during isothermal aging, as
measured at 1 kHz, are shown in Fig. 9. The experiment
followed the procedure that: the sample is kept at 808C

Fig. 9. The dielectric tand for polystyrene as measured at 1 kHz at 808C while isother-
mally aged. The abscissa is the time starting at each measurement. The “days” in the figure
means the aging time at 808C, and the number in brackets is the log(aging time in
seconds).
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while measurements were started from time to time at
various stages of aging. The time on the abscissa is the
time spent for each dielectric measurement starting at
the specified aging time, so the abscissa is comparable
to –ln V . The dielectric tand peak is usually located at
a higher frequency than for the loss peak« ", so the
difference between the time the peak appears and the
aging timeta should be greater than the difference be-
tween logt and log ta. It is about two decades. The
dielectric loss peak appears atTg when measured at
100 Hz, and 1 kHz measurement would make little dif-
ference, ca. less than 28C in the temperature of the loss
peak. The curve for the longest aging period (120 d)
suggests that the equilibrium is approached. The relax-
ation time begins to stay constant while the aging time
is increased indefinitely. The shortest period of 0.25 d,
on the other hand, indicates the quenched condition
which requires some aging time before the relaxation
time begins to shift. Between these two extremes, the
ratio in Eq. (32) remains nearly 1.

Another caveat for Eq. (32) has not been mentioned,
and this concerns the distribution of domain sizes,
which will “stretch” the spectrum. The aging process is
a doubly stretched function, one due to the continuously
increasing relaxation time with time, and the other due
to the spreading of the spectrum due to the heterogene-
ity in domain sizes. The heterogeneity will cause the
shape of the relaxation spectrum to change with temper-
ature, as the apparent activation energy is proportional
to the domain size. The shape will become flatter at
lower temperatures. Viscoplastic data from the stress-
strain curves of glassy polymers support the reduction
of the power law exponent in the high frequency range
as the temperature is lowered well belowTg [20].

8. Summary

The Vogel equation can be derived from the tempera-
ture dependence of the domain size for intermolecular
cooperativity from the Adam-Gibbs formula in equi-
librium. The measured entropy approaches zero at a
temperatureT0 that depends on the conformer size,
though the molecules are still in the highly amorphous
disordered state, i.e., high configurational entropy. In
the cooperativity model, all conformers within a do-
main are allowed to relax in unison. The internal degree
of freedom within a domain is reduced to that of one
conformer. As the measurable entropy is the configura-
tional entropy per mole of conformers, it decreases
more rapidly as the domain grows, than the conforma-
tional entropy that describes disorder in polymer
molecules.

The heterogeneity of domain sizes are considered to
be responsible for the distribution of relaxation times, as
manifest in Kovacs’ memory effect and Hodge’s sub-Tg

relaxation. A power lawt–n is derived for the relaxation
spectrum based on the free energy of domain size fluc-
tuations.

The van der Waals excess free volume is much greater
than the Doolittle free volume. The latter is evaluated
from the relaxation data, and its expansion coefficient,
af is not equal toD a , but consistently differs depending
on the molecular size. From the size of the conformer,
Tg can be estimated. For a single conformer to be able
to relax free of the neighbors interference, it needs the
free volume comparable to the occupied volume. It has
been shown that the coefficient of thermal expansion for
the free volume fraction is approximately equal to the
ratio between thekT andDm*, the latter being the en-
ergy barrier for the bond rotation. The amount of free
volume trapped atTg is greater for the glass vitrified at
a higher temperature, while its glassy modulus is lower.
This is true for crosslinked polymers as well.

A relationship has been derived relating the ongoing
relaxation time to the aging time. The ratio of the char-
acteristic relaxation time to the elapsed aging time is
equal to the quantitykT/Dmz, which is in the range of
0.1 to 0.01 depending on the temperature and thermal
history of the glassy state being aged.
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