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A kinetic theory of glasses is developed us-
ing equilibrium theory as a foundation. Af-
ter establishing basic criteria for glass for-
mation and the capability of the equili-
brium entropy theory to describe the equi-
librium aspects of glass formation, a mini-
mal model for the glass kinetics is pro-
posed. Our kinetic model is based on a
trapping description of particle motion in
which escapes from deep wells provide the
rate-determining steps for motion. The for-
mula derived for the zero frequency viscos-
ity h (0,T) is logh (0,T) = B –AF(T)kT
whereF is the free energy andT the tem-
perature. Contrast this to the Vogel-Fulcher
law log h (0,T) = B + A/(T –Tc). A notable
feature of our description is that even
though the location of the equilibrium sec-
ond-order transition in temperature-pressure
space is given by the break in the entropy
or volume curves the viscosity and its
derivative are continuous through the transi-

tion. The new expression forh (0,T) has no
singularity at a critical temperatureTc as in
the Vogel-Fulcher law and the behavior
reduces to the Arrhenius form in the glass
region. Our formula forh (0,T) is discussed
in the context of the concepts of strong and
fragile glasses, and the experimentally
observed connection of specific heat to
relaxation response in a homologous series
of polydimethylsiloxane is explained. The
frequency and temperature dependencies of
the complex viscosityh (v ,T), the diffu-
sion coefficientD (v ,T), and the dielectric
response« (v ,T) are also obtained for our
kinetic model and found to be consistent
with stretched exponential behavior.
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1. Introduction

In this paper we first critically review the entropy
theory of glasses. After defining a glass in Sec. 1.1 we
show in Sec. 1.2 the need for an equilibrium thermody-
namic theory of those materials that form glasses. Sec.
1.3 gives our reasons for believing that the vanishing of
the configurational entropySc, or at least the entropy
reaching a critically small value, is associated with glass
formation. Sec. 1.4 describes briefly the many experi-
ments that support the entropy theory of glass forma-
tion. Sec. 1.5 offers a critique of equilibrium theories. In
Sec. 1.6 the suggestion is made that theSc = 0 criterion
can be replaced bySc = Sco. Sco is a small critical value
of the entropy which is dependent on the time scale of
the experiment but is positive even for infinitely long
time scale. Sec. 1.7 contains qualitative insights into the
kinetics of glass formation arising from theSc → 0

criterion, while Sec. 1.8 makes the observation that the
fluctuation-dissipation theorem provides quantitative in-
sights into the connection between the equilibrium and
kinetic properties of glasses.

The kinetic theory is developed in Sec. 2. In Sec. 2.1
we pass from phase space to configuration space and
gain an insight into the topology of configuration space.
In Sec. 2.2 we use the principle of detailed balance to
evaluate the transition rate constants of the master equa-
tion describing minimal models of glass formation. In
Sec. 2.3 using a trapping model for the phase point we
define these minimal models and derive their associated
(master) equations. Sec. 2.4 contains derivations of the
zero frequency diffusion coefficientD (0,T) and com-
plex viscosity h (0,T), while in Sec. 2.5 frequency
dependentD (v ,T), h (v ,T) and the dielectric response
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« (v ,T) are obtained. These quantities each depend on
the distribution of well depthsW(E). This quantity
W(E) = exp(Sc /k) is discussed in Sec. 2.6 where viscos-
ity is shown to be a function of free energy. Finally,
Sec. 3.1 discusses our results while Section 3.2 offers
some conclusions.

1.1 Operational Definition of a Glass

We define a glass to be a material which is an ordi-
nary liquid at high temperatures and whose thermody-
namic extensive quantities, volumeV, and entropyS,
fall out of equilibrium as we lower the temperature past
some temperatureTg which depends on the rate of cool-
ing. AboveTg the relaxation times associated with vis-
cosity are less than the time scale of the experiment,
while below Tg they are greater. The above definition
describes the formation of a crystal as well as a glass so
we augment our definition by requiring that the exten-
sive thermodynamic quantities be continuous atTg and
that there be no change of spatial symmetry as we cross
Tg. This operational definition immediately suggests a
number of questions which must be answered if we are
to understand glasses. 1) What are theV(T,P) and
S(T,P) equations of state on the high temperature side
of Tg? 2) For a given rate of cooling, why does the
glass transition occur at one temperature,Tg, rather than
some other temperature? 3) What are the thermody-
namic properties well belowTg where the relaxation
times for diffusion of molecules are so long that some
degrees of freedom are frozen out and only oscillatory
motions occur? Experimentally the glass is known to
behave like an elastic solid. 4) What is the viscosity
h (v ,T,P), wherev is frequency? The first three ques-
tions are concerned exclusively with the equilibrium
properties of glasses.

1.2 Necessity for an Equilibrium Theory of Those
Materials That Form Glasses

There are four bona fide reasons to formulate an
equilibrium theory of glasses [1, 2]. They are:

1) Glasses have equilibrium properties aboveTg and
well below Tg. It is sensible to ask what they are.

2) The crystal phase is not ubiquitous. This proposi-
tion was proved in Ref. [2]. Therefore, an equilibrium
theory is needed for the low temperature phase which
we know is not a crystalline phase. Of course, thermo-
dynamics is also needed to describe the low temperature
metastable phase of those materials that can crystallize.

3) An equilibrium theory is needed [3–5] to resolve
Kauzmann’s paradox [6, 7]: An equilibrium theory

allows us to extrapolate equilibrium quantities through
the glass transition to see how the “negative entropy”
and “volume less than crystal volume” catastrophes are
avoided even when the experimental relaxation times are
projected to be infinite. For polymer glasses the sharp
leveling off of the experimental thermodynamic quanti-
ties must also occur in a correct equilibrium theory. This
either is a second-order transition or it approximates
one. Either case allows us to calculate aT2 to which the
Tg tends in very long time-scale experiments.

4) An equilibrium theory is a necessary prerequisite
for an understanding of the kinetics [7].

1.3 Vanishing of Configurational Entropy is the
Thermodynamic Criterion of Glass Formation

Once one is convinced that the equilibrium proper-
ties of glassy materials exist there are no options. One
simply evaluates the partition function and then the two
equations of stateV(T, P) andS(T, P). It is required, of
course, that the important characteristics of the
molecules be taken into account, at least within a mini-
mal model. This minimal model (the simplest model
which retains the essence of the problem) must have
both intermolecular energy to allow for volume changes
and intramolecular energy to allow for temperature de-
pendent shape changes of the molecules. The lattice
model of Gibbs and Di Marzio [3–5] (GD) is a minimal
model for polymers which incorporates an intermolecu-
lar bond energyEh which regulates the number of empty
lattice sites (volume) and an intramolecular stiffness
energyD« , which controls the temperature dependent
shape changes. When this was done within the frame-
work of the Flory-Huggins (F-H) approximation it was
discovered that a second-order transition in the Ehren-
fest sense was obtained and that theT(P) line separating
the liquid state and the glassy state was given by the
vanishing of the configurational entropy

Sc(T2, P2) = 0. (1)

The basic physics behind glass formation in polymers is
as follows. At high temperatures, because of the (semi-)
flexibility of the polymers and the large numbers of
holes, there are many ways to pack the molecules
together in space. At these temperatures the interfer-
ences among the molecules are not of the kind that
prevent the molecules from taking up their preferred
shapes; if the internal energy associated with shapei is
Ei then the probability of observing shapei is propor-
tional to exp(–bEi ). As we lower the temperature the
configurational entropy approaches zero. The individual
molecules now can no longer continue to achieve their
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Boltzman shapes (the shapes implied by the Boltzman
distribution of internal energies) for as the mathematics
show this would imply thatSc # 0, which is an impossi-
bility. Instead the molecules are frustrated [8] by their
neighbors from achieving their individual Boltzmann
shape distributions and at lower temperatures (T # T2)
characteristic of the glassy region the distribution of
shapes of the molecules is given by the Boltzmann dis-
tribution atT2.

Liquid Crystal Frustration

This interpretation is strengthened by our understand-
ing of the isotropic to nematic phase transition occur-
ring in a system of rigid-rod molecules. At low concen-
trations of an isotropic distribution of rigid-rods the
entropy is large because the rigid-rods have both orien-
tational and translational freedom. However, as the
rigid-rod concentration increases these freedoms begin
to disappear until at a critical concentration there is no
longer any freedom for the rigid-rods to rotate or trans-
late provided only that the distribution of orientations is
random. This is the point where the configurational en-
tropy approaches zero (there may be small pockets
where a trapped rigid-rod can partially rotate or trans-
late slightly). One can gain much insight into this prob-
lem by packing pencils or soda-straws at random on a
table-top (this is the two dimensional problem) or piling
together rigid sticks obtained from pruning one’s garden
(this is the three-dimensional problem). It immediately
becomes obvious that there is a critical density above
which one can not go if the rods are to remain isotrop-
ically distributed in space. This critical density is given
approximately byvx = C/x, wherex is the asymmetry
ratio of the rods andvx is the volume fraction of rods.
The constantC is about 4 for one lattice model [9] and
8 for another [10]. For straight rigid-rods the system has
a way out of the packing difficulty; the rods can align
and do so forming the nematic phase [11].The ordered
phase has a larger entropy than the disordered phase
because as the reader can readily verify by a simple
table top experiment (partially) ordered rods gain both
translational and rotational freedom!

Packing of Semi-Flexible Polymers

Semi-flexible molecules also have the option of align-
ing. There are two cases. The first easily understood
case is when the straight shapes are also the low energy
shapes. In this case we form either crystals or liquid
crystals. The second case is where the low energy shape
is some contorted “random walk” shape. Then straight-
ening the molecules in order to pack them in parallel
array would raise the energy and not be preferred.

Instead the molecules are stuck in their zero or low
entropy contorted “random walk” unaligned state [2].

A Critical Entropy for Glass Formation

The configurational entropySc for polymers is easily
evaluated in the F-H approximation [3–5]. More gener-
ally, for non-polymer as well as polymer systemsSc is
defined as the total entropy minus the (proper extrapola-
tion of) vibrational entropy. The volume on theT(P)
line determined from Eq. (1) is not constant; neither is
the number of holes in the lattice model. In fact, the
configurational entropy can be expressed as a function,
Sc(f ,n0), of the fraction of flexed bonds,f , and the num-
ber of holes,n0. This can be seen clearly from the ex-
pression for the partition functionQA

QA = O
f,n 0

V(f ,n0)exp(–bE(f ,n0)–bPV) (2)

where the volume isV = C(xnx + n0), C being the volume
of a lattice site,x the D.P., andnx the number of polymer
molecules. The sum is over allf ,n0 such thatV (f ,n0)
$ 1. Since the use of the maximum term is legitimate
[4, 5] for this system we haveS(f ,n0) = klnV (f ,n0). The
condition Sc(f ,n0) = 0, or alternativelyV (f ,n0) = 1,
divides f ,n0 parameter space into the largef ,n0 region
for which there are large numbers of configurations
whose numberV (f ,n0) is given by exp(Sc(f ,n0)/k) for
each set of valuesf ,n0 and the smallf ,n0 region for
which there are very few configurations becauseSc = 0
in this region. Bothf andn0 vary along theT(P) transi-
tion line which separates the liquid from the glass phase.
BelowT2 the values off ,n0 are those which obtain atT2,
P2 when we cool at constant pressure.

If we vary pressure below the glass temperature the
equilibrium values of bothf and n0 change to those
values appropriate to the newT2,0, P2,0 pair. Although
the entropy is zero in the glassy region this only means
that lim(Sc/N) = 0 as thesize of the systemN → `.
There can be many allowed configurations belowTg

consistent with this condition and this means that there
is sufficient mobility to allown0 andf to approach their
new equilibrium values when pressure is changed. It is
important to realize thatn0 is not a constant in the glassy
region. Therefore, critical volume cannot be a criterion
for glass formation.

Since two independent equations of state (i.e., the
PVTand theSVTequations) completely characterize the
thermodynamics, within the accuracy of the lattice
model calculationthere can be no other thermodynamic
criteria of glass formation other than the vanishing
of the configurational entropy, Sc = 0. This important
conclusion is supported by arguments for a relation
betweenSc and the viscosityh (T,P) [3, 12]. The
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physical idea for this connection is very clear. If the
number of configurations becomes smaller and smaller
as we approach the glass temperature from above,
flow—which is a moving or jumping from one allowed
configuration to another—becomes more and more dif-
ficult and consequently the viscosity becomes larger and
larger. This suggests that the configurational entropy
approaching zero is the universal criterion for glass for-
mation We now quantify the implications of the above
statements.

1.4 Evaluation of Tg for Polymers from the Sc = 0
Condition

If we identify the glass temperature as the point at
which the configurational entropy equals zero then

Sc(Tg,P) = 0 (3)

can be used to determineTg. We have done this for nine
separate classes of experiments on polymers:

1) Tg vs molecular weight for linear polymers [1, 3].

2) Tg vs molecular weight for ring polymers [13, 14].

3) Tg vs copolymer composition [15].

4) Tg vs blend composition [16, 17].

5) Tg vs pressure [18, 19].

6) Tg vs cross-links in rubber [20].

7) Tg vs strain in rubber [20].

8) DCp atTg for large molecular weight polymers [21].

9) Tg vs plasticizer (diluent) content [22, 23].

In all cases we obtain reasonable fits to the experi-
mental data. There are several interesting aspects to
these comparisons. First, there are essentially no
parameter fits to experiment since the model parameters
are determined by other independent measurements. In
item 1) of the above list we fit to the glass temperature
at infinite molecular weight in order to determine the
stiffness energyD« (one parameter). In 5) we need to
assume how the volume of a lattice site varies with
pressure (one parameter). the remaining theoretical pre-
dictions involve no parameter fits to experiment.

Each class of experiment illustrates a feature of poly-
mer glasses. Item 9) illustrates the colligative-like prop-
erties of glasses. The initial glass temperature depres-
sion by low molecular weight diluent is predicted [23]
to obey the equation

gdTNg/dm = –3Tg (4)

wherem is the total mole fraction of diluent expressed
in terms of mole fraction of monomers, andg is the
number of flexible bonds per monomer. One notices the
universal character of the prediction. Item 5) predicts
thatTg vs pressure curves have horizontal asymptotes at
high pressure. On the other hand, the free volume
theory which assumes that the glass transition occurs
when the hole fraction reaches a critically small value
(usually 0.025) predicts a vertical asymptote.

In 8) the specific heat change atTg for a large molec-
ular weight polymers is given to within 10 % by [21]

DCp = Rf(1–f )(D« /kTg)2 RTgDa (4–TgDa /0.06)

+ 0.05TgDaCp(Tg
–), (5)

whereR is the universal gas constant,f is the fraction of
flexed bonds atTg, Da is the change in the thermal
expansion coefficient as we pass through the glass tran-
sition, andCp(Tg

–) is the specific heat just belowTg.
Notice that this is a no parameter prediction sinceTg,
Da , Cp(Tg

–) are known from experiment,D« /kTg is
determined from the condition thatSc(Tg) = 0, andf is
a known function of onlyD« /kTg (f = 2exp(–D« /kTg)/
[1+2exp(–D« /kTg)]. In 2) the glass temperature is pre-
dicted to rise as welower molecular weight of rings in
accordance with experiment. This is purely an entropy
effect [13, 14] arising from the observation that a ring
of molecular weightx has more entropy than two rings
each of molecular weightx/2. Thus a bulk system of the
larger rings, since it has the larger entropy, must be
cooled further to reach theSc = 0 condition which
definesTg. It should be noted that the fits of theory to
experiment have all been made with the original Gibbs-
Di Marzio theory [4, 5]. We have not needed to adjust
the theory to account for new experimental data.

Finally, we should remark that a perfect fit to exper-
iment would require that a) the F-H calculation is
perfect. It is not, because the statistics are approximate
and because the molecules are modeled imperfectly; b)
that the experimental data is excellent, including the use
of well characterized polymer material; c) that kinetics
have no sensible effect on the comparison with experi-
ment. We would argue that since kinetics are important,
perfect accord with experiments would be proving too
much. We are predicting the underlying transition tem-
peratureT2, and the relation betweenT2 and the experi-
mentalTg requires further elucidation. We should note
that our theory predictsT2 and notTg. Since in our
equationsT2 appears only in the dimensionalless forms
D« /kT2 andEh/kT2, if the predictions are correct forT2

and ifT/Tg depends only on the rate of cooling, then the
predictions forTg will also be correct. Our good fits to
experiments suggest thatT2/Tg is a constant orT2 and
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Tg are not very different; or some combination of the
two. A question we have not examined is “If the criterion
for glass formation isSc → Sc,o how well does it predict
glass temperatures?” It may suffice forSc,0 to be small
(see below). Mention should also be made of the
attempts to predict the glass temperature of a material
by simply noting the chemical structure. Figure 10 of
Ref. [17] and Fig. 6 of Ref. [24] are remarkable and
suggest that further progress can be made. In both of
these predictions an entropy criterion is used.

1.5 Critique of the Correct Equilibrium Theory of
Glasses

An equilibrium theory must satisfy the following
criteria:

1) Accurate predictions of thermodynamic quanti-
ties without multiplication of parameters.

2) It must explain the ubiquitous nature of glass
formation.

3) It must explain why glasses fall out of equi-
librium as the glass temperature is approached from
above.

4) All predictions must be correct. Since the lattice
statistics used for glasses are applicable without change
to rigid rod molecules, if the theory is applied to liquid
crystals the predictions for this class of materials must
also be in accord with experiment.

5) It must provide a foundation for kinetic theory.

We believe we have done reasonably well with regard
to criterion 1) as the previous section indicates.

Criterion 2) may be met by first defining the config-
urational entropy for all materials as the total entropy
minus the extrapolation of the vibrational entropy. Any
method of evaluating the partition function from first
principles which gives the proper equilibrium behavior
aboveTg is viable. One would then identify the glass
transition as the place whereSc becomes smaller than
some critical value as we cool the system. The following
systems need to be examined for their glassy behav-
ior: (a) Polymer glasses, (b) low molecular weight
glasses, (c) The classic inorganic glasses, (d) liquid
crystals, (e) systems composed of plate-like molecules,
(f) spin glasses, (g) plastic crystals, (h) metallic glasses,
and (i) gels and thixotropic materials. A common fea-
ture of these diverse materials is that they each show
frustration-the molecules, or spins, are each prevented
from achieving their preferred low energy shape by the
interferences of their neighbors. See below.

Under 3) we must be careful not to equate falling out

of equilibrium with loss of ergodic behavior. There is a
sense in which a system is never ergodic, even at high
temperatures. To see this for the case of polymers
consider a polymer ofN monomers which we model as
a self-avoiding walk (SAW). An estimate of the number
of configurations of one polymer molecule, assuming a
cubic lattice is given [25] by 4.86NN1/6 >> 4N ≈ 10.0.6N.
For N = 1000 which is a small molecule for polymers,
the total number of configurations that can be sampled
during the lifetime of the universe which is about
1010 years is 1015 moves/s3 1000 monomers3 3.6 3
107s/yr 3 1010 yr = 3.63 1035. This number is so much
smaller than 10600 that we see immediately that no sys-
tem is ever ergodic. Obviously, effective ergodic behav-
ior over some time interval is the relevant concept. By
falling out of equilibrium we mean nothing more than
that there are certain correlated motions of the
molecules that occur with less frequency as we cool the
system. At the glass temperature and below they are so
rare as to be not measureable. In general one expects
that the glass temperature depends on the particular
correllated motion being used to monitor it as well as
the rate of cooling.

Under 4) above we have the happy circumstance that
the same F-H lattice model that was used for glasses
also predicts the formation of liquid crystals. As On-
sager originally observed [11], the nematic phase of
liquid crystals occurs because of the increased difficulty
of packing rigid rod molecules together in space as we
increase their concentration. Thus, the isotropic to
nematic transition in liquid crystals occurs because it is
entropy driven—configurational entropy driven. The
nematic liquid crystal phase occurs for the same reason
as glasses and the correctness of the F-H calculations for
liquid crystals argues for their correctness for glasses,
and conversely. The transition from random order to
parallel alignment for a system of plate-like molecules is
also entropy driven [9]. Although the decrease in con-
figurational entropy drives the transition in all three
cases the results are somewhat different. Rods and
plates have a way out of the packing difficulty; they can
align, therebyincreasing the configurational entropy.
Rods lying in parallel with some freedom about the
director have a higher configurational entropy than a
random packing of rods that is up against its dense
packing limit. The molecules forming a glassy material
may not have this option. To see this, suppose the lowest
energy shape is chosen to be such that the molecules, if
they each have this shape (and if we specify that the
packing leaves no lattice sites unoccupied), cannot pack
in regular array on a lattice; the majority of polymer
shapes are of this type [2]. Then alignment at low tem-
peratures is not favored and the material is stuck in its
glassy phase.
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Other Entropy Theories

It is important to improve on theoretical predictions
of the equilibrium properties of glass forming materials.
One can not expect that the Gibbs-Di Marzio theory
which is an elaboration of the Flory-Huggins lattice
model is the final word. Improved equations of state
would permit more critical tests of the entropy hypothe-
sis to be made. An improved theory should derive the
P-V-T andS-V-T equations of state to equal accuracy.
A theory that gives a poorS-V-T equation of state is sure
to give undue stress to imagined implications of the
P-V-T equation of state. The theory must allow the
molecules to have shape dependent energies, since these
are undoubtedly very important to glassification in poly-
mers. We stress that an improved theory may not show
an actual underlying second-order transition as ours
does (there may be a rounding), but it should approxi-
mate one.

Two theories that include the effects of stiffness en-
ergy are those of Gujrati and Goldstein [26] and of
Milchev [27]. We accept that Gujrati has calculated a
rigorous lower bound to the entropy for a two dimen-
sional square lattice. This means that we must modify
our criterion of glassification, viz.Sc → 0, to something
else.

We do not accept the Milchev criticism [27] because
his formula does not show the phenomenon of frustra-
tion which we take to be an essential feature of glassifi-
cation and, for rigid rods, an essential feature driving the
isotropic phase towards the nematic phase. Specifically,
in the Milchev theory individual polymer chains are
never prevented from achieving their Boltzmann
distribution of shapes which are given in the simple
nearest neighbor model byf = (z–2)exp(– /kT)/[1 +
(z –2)exp(–D«/kT)] wherez is the coordination number
of the lattice. In the Gibbs-Di Marzio model this distri-
bution is realized aboveT2, but at lower temperatures
each chain is frustrated by its neighbors from achieving
its Boltzmann distribution of shapes. Instead, the distri-
bution that existed atT2, P2 persists as we lower the
temperature at constantP2. The number of holes also
remains constant belowT2 while in the Milchev theory
it continues to decrease. The fact that experimentally the
volume versus temperature curve for a glass parallels the
volume versus temperature curve for a crystal supports
the view that the number of holes is constant belowTg.
It must be mentioned however that some computer cal-
culations exist that support the Milchev formula [28].

1.6 Modification of the Sc = 0 Criterion to Sc = Sc,0

One reason for the configurational entropy to be
somewhat greater than zero at the glass transition has to

do with the concept of “percolation of frustration” as a
criterion of glass formation. As an entree to this problem
we express the configurational entropy as a function
Sc(f ,n0) of the two order parametersf (the fraction of
flexed bonds) andn0 (the number of empty lattice sites).
The equation

Sc(f ,n0) = klnV(f ,n0) = 0 (6)

dividesf ,n0 parameter space into two regions, the large
f ,n0 region being the liquid region and the line defined
by Eq. 6 givesf ,n0 values appropriate to the glass.
Because there are spatio-temporal fluctuations inf and
n0, if we are in the liquid region just above the glass
region there will be “clusters” of polymer for which the
f ,n0 values are appropriate to the glassy state, and clus-
ters for which thef ,n0 values are appropriate to the
liquid state. As we lower the temperature these glass-
like clusters grow until they span the space or percolate.
However, as is characteristic for percolation [29] there
will be pockets of liquid-like clusters (regions of mate-
rial for which the f,n0 values are appropriate to the
liquid phase). The glass temperature would be defined
as the highest temperature for which there is percolation
of the glass-like structures. Because of the existence of
the liquid-like pockets thisTg would correspond to a
configurational entropy somewhat greater than zero.
This percolation view of glasses receives support from
experiments which show anomalously high mobility as
the temperature is decreased through the glass transition
[30]. The unexpectedly high mobility seems to arise
from pockets of fluid dispersed in a glassy matrix.

The percolation argument can be quantified by allow-
ing f and n0 to vary in space. Consider the following
diagram (see also Fig. 1).

Here the numbers indicate positions in space (cells)
and the dashes above a given number denote values of
f (r ),n0(r ). The line connecting the 10 places is one
particular enumeration off ,n0 in space. Each cell
containsn lattice sites and there areN/n cells whereN
is the total number of sites on the lattice. To obtain the
total partition function we take the product of the
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partition functions for each cell. Thus,

Q = Pq(r ) (7)

where the product is over space, and

q(r ) = Sv (f (r ), n0)exp(–bu(f (r ),n0)) (8)

where the summation is over allpermittedvalues off ,n0

at the cell labeled byr values on the high side of the line
S(f ,n0) = 0) in f ,n0 parameter space. It is evident that all
possiblef (r ), n0(r ) values are thereby accommodated. It
is easy to see that the value of entropy calculated from
this procedure is larger than that calculated from Eq. (2)
for the simple reason thatQ includes a sum over many
paths whileQA does not include such a sum. This argu-
ment suggests that we should replace theSc → 0 crite-
rion for the occurrence of the glass transition by the less
stringent criterion

Sc(T2, P2) → Sc,0 (9)

whereSc,0 is some critical value of the configurational
entropy. This is in accord both with the ideas of perco-
lation [29] and with the experimental observation that
small pockets of polymer within the glassy region can

show kinetic behavior that is not simply vibrational
behavior (crankshaft motion [31], for example).Sc,0

would be that value of entropy for which the glassy
regions first percolate as the temperature is lowered.

1.7 Qualitative Insights Into the Kinetics of Glass
Formation Arising From the Sc → 0 Criterion

We wish to determine how the kinetics relates to the
configurational entropySc as we cool our system. Now,
how one speaks about entropy depends on the kind of
ensemble one is working with. We have used [4, 5] the
Canonical Ensemble for whichSc(T)/k = Sfi lnfi but
because the system size is large we can also writeSc(T)/
k = lnW(T) whereW(T) is the number of configurations
whose energy is the average energyE(T) determined
from the Canonical ensemble. This enables us to speak
in terms of the microcanonical ensemble.

Thus, as we lower the temperature the number of
configurationsWdecreases so that they are farther apart
in phase space [that part of phase space for which the
total energy isE(T)]. The process of diffusion as well
as the process of flow can be viewed as a jumping out
of a deep well, a subsequent wandering about the phase
space between deep wells and a dropping into a deep
well different from that from which it had exited. The
process then repeats itself. Obviously this process be-
comes more infrequent at lower temperatures resulting
in increased viscosity and decreased diffusion. There
are several reasons for this. First, the deeper the well the
longer the time to escape it—wells are effectively
deeper as we lower temperature; second, the further
apart the wells are the more time it takes for a phase
point to wander from one well to another; third, the
further apart the wells the larger the probability that the
wandering phase point will fall back into the well it has
just escaped resulting in no net flow. See Appendix A
for a discussion of this effect. The picture we are using
is a variant of the trapping model with the difference
that instead of an atom or an electron being trapped we
are trapping the phase point (or configuration point
[32]). In Sec. 2 we shall quantify these ideas.

1.8 An Insight From the Fluctuation Dissipation
Theorem

Whenever there is a thermodynamic phase transition
the fluctuation-dissipation (F-D) theorem [33] suggests
that dissipative quantities have the same discontinuities
as the underlying thermodynamic phase transition: A
simple example of a F-D theorem is the Green-Kubo
[34] relation

D = (1/3)E`

kv(0) ? v(t ) l dt (10a)

Fig. 1. In the lattice model version of the entropy theory of glasses
there are two global order parameters:f , the fraction of bonds flexed
andV0, the fraction of empty lattice sites. The glass transition occurs
when these quantities which decrease with decreasing temperature
and increasing pressure have values which make the configurational
entropySc(f , V0) equal to zero. However, sincef andV0 have spatial
and temporal fluctuations we know that as we approach the glass from
above there will form pockets of material for which the order parame-
ters are appropriate to the glass imbedded in a sea of liquid with
regions off andV0 appropriate to the liquid state. Percolation theory
tells us that when these pockets connect up into an infinite cluster
there will remain pockets of liquid. If we define the thermodynamic
glass transition as the percolation point then the configurational
entropy will be greater than zero at the transition temperature.
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which relates the diffusion coefficientD to the autocor-
relation function of the particle velocityv. More gener-
ally the F-D theorem relatesx (defined as the response
of a material at (r , t ) arising from an impulsive force at
(0,0)) to the correlation in fluctuation at these two
space-time points [25]. Since the fluctuations of a sys-
tem at equilibrium show a discontinuity of the same
character as the thermodynamic extensive variables, so
do also the dissipative quantities. Thus, for a system
undergoing a first-order liquid to crystal transition the
viscosity h (v , T, P) will show a discontinuity as a
function of T, P since the volume and entropy do.
Similarly, for a system undergoing a second-order tran-
sition we can expect that the viscosity will show discon-
tinuities in slope since the volume and entropy do (see
later in this paper however). There are many examples in
the literature of dissipative quantities such as viscosity,
diffusion coefficient, electrical conductivity, particle
conductivity and thermal conductivity which show
breaks as a function of temperature as we pass through
the glass transition. However, it is also true that a
genuine falling out of equilibrium will also cause the
same kind of behavior. It is uncertain how one distin-
guishes between the two effects. Movement of the tran-
sition point as a function of the time-scale of the exper-
iment seems not to be a distinguishing characteristic
since this happens also for systems known to have
genuine first-order transitions-supercooling being an
obvious example.

More generally the frequncy dependent diffusion
coefficient is given by

D(v, T) = E`

0

exp(+ivt ) kv(0) v(t ) l dt . (10b)

2. Kinetic Theory of Glasses

2.1 A Remark on the Topology of Phase Space

The potential energy surface of a liquid
E'(. . qj . . ) appears in the partition functionQ

Q = E
{. .qj , pj . .}

exp(2(K ({. . qj , pj . .})

+ E'(. .qj . .))/kT) Pdqj Pdpj

= L3N E
{. . qj . .}

exp(2E({. . qj . .})/kT) Pdqj , (11)

whereqj, pj are the generalized position and momentum
coordinates of theN particles,K is the kinetic energy,E'
is the potential energy andL the thermal wavelength.

Since the kinetic energy is quadratic inpi the integration
overpi is straightfoward. In polymers, even ifE' is pair-
wise additive,E is not [35] because the coefficients of
the quadratic terms inK are in general dependent onqi .
The simplification of Eq. (11) allows us to work exclu-
sively in configuration space. This is generally repre-
sented as a multi-well potential energy surface. As one
approachesTg from above the wells effectively become
very deep because of the 1/kT term. One then talks
about flow as a motion from one deep well to another
deep well via the higher energy continuum.

Here, however, we wish to emphasize a different
aspect of the phase space topology.Consider the config-
uration space ofN identical noninteracting hard point
particles on a line of lengthL . The partition function is
given by

Q = LN/N! . (12)

The volume of configuration space for this system is
given byLN. Now consider the case where the particles
each have a diameterd. The partition function is

Qd = (L – Nd)N/N! (13)

The ratio of the two phase space volumes is given by

Qd/Q = (1 –Nd/L )N # exp(–N2d/L )

= exp(–fN) , (14)

where f , being the volume fraction occupied by the
particles, is on the order of 1. SinceN is on the order of
Avogadro’s number we see that the fraction of the
volume of phase space occupied by the extended parti-
cles is infinitesimally small relative to the unconstrained
particles. Based on this picture a point in configuration
space wanders on the finest of gossamer threads [36]
which pervade theN-dimensional hypercube of phase
space as a fine network whose total volume is an
infinitesimal fraction ofLN. The application to glasses is
in the observation that as we lowerT the effective value
of d increases, resulting in even fewer and finer
gossamer threads for the phase point to travel on. Thus,
not only are the number of paths (threads) between two
phase points fewer as we decreaseT but also as one
traverses a given thread the potential energy minima are
effectively deeper and the barriers effectively higher.

The above discussion serves to show how important it
is to know how the deep wells are connected to other
wells. In order to solve this problem we need to con-
struct a model of the topology of configuration space
and to calculate the transition rates for jumping from
well to well within this model.
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2.2 Detailed Balance Makes A Significant State-
ment Concerning the Kinetics of Glasses

Boltzmann’s law gives exp(–Ei /kT) as the fraction of
time that a system spends in statei but it does not say
how often the system jumps from statei to statej . To
determine this we use the principle of detailed balance
in the form

Niaij = Njaji , aij /aji = Nj /Ni

= exp(– [Ej – Ei ]/kT) , (15)

whereaij is the rate of jumping from statei to j andNi

is the fraction of time a system spends in statei . In using
Eq. (15) one must first decide how the energy is appor-
tioned into forward and backward transitions. For deep
wells it is sensible to assume that all of the barrier is in
preventing the phase point from jumping out of the well.
It does this at a rate given by 1/t wheret is the average
time to exit the well. If we also recognize that the prob-
ability of jumping out of the well is exponential in time
[37] we have

P(t , t ) = t–1exp(–t /t ) and

t–1 = bij exp(– [Ej –Ei ]/kT), (16)

whereP is the probability density of exiting the well at
time t . It is imagined that once the phase point has
escaped the well it wanders around in the configura-
tional sea of the high energy region of phase space until
it falls into a low lying well, starting the flow process all
over again. This configurational sea consists of many
shallow energy wells, so it is expected that jumping out
of the deep wells are the rate determining steps.

2.3 Diagrams for Our Minimal Models and Their
Associated Equations

The diagram for our primary minimal model is dis-
played in Fig. 2. This diagram is a contraction of a vastly
more complicated diagram but we believe it retains the
essential features of glassy behavior. The points on the
upper line represent the multitude of shallow wells
while the horizontal lines connecting these points repre-
sent the transition rates between these wells. This set of
horizontal lines and points represent the vastly more
complicated diagram of Fig. 3. At high temperatures
this “configurational sea” of shallow wells is where all
the action is; The configuration point jumps rapidly
from well to well. The occupation numberNj for well j
in Fig. 2 is really the sum of the occupation numbers
vertically above it in Fig. 3, and the transition rate for the

horizontal bonds of Fig. 2 is compounded from those of
Fig. 3.

Fig. 2. Our minimal model for describing the kinetics of glasses. The
points are points in configuration space and the connecting lines
represent allowed transitions between points. The horizontal lines
with ratesaj for traveling to the right andbj + 1 for traveling to the left
represent travel of the configuration point among the “configurational
sea” of shallow wells. The vertical lines connect the “configurational
sea” to the deep wells, the length of the vertical line being propor-
tional to the potential energy depth of the well. The rate of escape
from the deep wells isAj and rate of capture isb. When the configu-
ration point is in a deep well there is no motion; motion occurs only
when the configuration point is cruising the configurational sea of
shallow wells. This trapping model allows us to infer an important
contribution to the complex viscosityh*(v , T), the diffusion coeffi-
cient D (v,T) and dielectric response« (v , T).

Fig. 3. The set of horizontal lines and their connecting points in Fig.
2 really represent the vastly more complicated diagram of Fig. 3. The
occupation probabilityNj of Fig. 2 is really the sumSNj,i of Fig. 3 and
the a and b of Fig. 2 are compounded from the rate constants of
Fig. 3. The net result is that thea andb are much larger thanb and
A in Fig. 2.

The lower points represent the deep wells. Our view
of what happens is as follows. At low temperatures the
configuration point is in one of the lower wells. After a
long period of time it jumps out and wanders about the
configurational sea of upper wells until it falls into a
low lying well. It then stays in this well for another long
period of time until it jumps out repeating the process,
and so on. The situation at high temperatures as
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described in the preceding paragraph is very different.
There are so few deep wells relative to the number of
upper wells that they are unimportant; all the motion is
jumping among the upper wells. The rate constants for
jumping out of these lower wells are much much smaller
than that for jumping back down into the well and than
those for traveling horizontally. By adjusting the ratio of
the rate constant for falling back into the deep well to
that for traveling horizontally we can control the
accessibility that the configuration point in the configu-
rational sea has for the deep wells.

The length of the vertical line connecting the deep
well to the upper well(s) is proportional to the well
depth. These vertical lines represent many possible
paths in configuration space leading to the deep well. In
Fig. 4 we have listed some of the possibilities. Figs. 4c,
4d, 4e can each be shown to be equivalent to Fig. 4b. To
see this, one writes down by the methods of Ref. [38]
the set of equations corresponding to a given figure and
then one shows that they can be transformed to the set
of equations describing Fig. 4b. The rate constants in the
transformed set of equations are such that the occupa-
tion probabilities at each level are the same as those in
the untransformed figure.

However, Fig. 4f has a different structure entirely. In
a descent of the configuration point from the configura-
tional sea into this structure it can get hung up in a
branch so that it may take a long time for it to reach
equilibrium. The other figures all equilibrate rather
quickly.

The results of this paper will allow us to conclude
that although Fig. 3 is rather simple it does catch the
essential features of glassification.

The Master Equations describing the minimal model
of Fig. 2 are given by the simple set of equations

dN1/dt = – (a1N1 – b2N2) – b1N1 + A1M1

dNj /dt = (aj –1Nj –1 – bjNj ) – (ajNj – bj +1Nj +1)

–bjNj + AjMj (17a)

dMj /dt = + bjNj – AjMj (17b)

where the Greek symbol rate constants denote stepping
to the right (a ) or left (b ) and the Roman symbol rate
constants denote stepping down (b) or up (A).

2.3.1 Going from Phase Space to Configuration
Space to Real Space We have already shown in Sec.
2.1 that one can integrate over all the momentum vari-
ables of phase space so that we deal only with position
variables (configuration space). We would like to go
further and deal with the smallest number of position
variables possible. We begin by supposing that there are
two separate noninteracting regions of space each with
their own master equations

dfj /dt = Sfrarj – Sfjajr (18a)

df 'k/dt = Sf 'sa 'sk – Sf 'ka 'ks (18b)

wherefj is the fraction of systems in statej andajr is the
rate of jumping from statej to r . Multiplying the first
equation byf 'k and the second byfj we obtain

d(f 'kfj )/dt = Sf 'k frarj – Sf 'kfjajr + Sfj f 'sa 'sk – Sfj f 'ka 'ks

= S S fr f 's(arj dsk + a 'skdrj ) – S S fj f 'k(ajrdsk + a 'ksdrj )

= S S (fr f 's)Ars; jk – S S (fj f 'k)Ajk;rs . (19)

Fig. 4. The vertical lines in Fig. 2 represent many possible paths in
configuration space leading to the deep wells. In Fig. 4 we have listed
five possible paths to deep wells, or equivalently ways to decorate
each of the vertical lines of Fig. 2. It can be shown that diagrams b,
c, d, and e are equivalent to a. Thus, the diagram of Fig. 2 really
represents vastly more complicated diagrams formed by decorating
Fig. 2 by the diagrams of Figs. 3 and 4. Thus, the equations in the text
describing Fig. 2 have a wider applicability. However incorporation
of Fig. 4f would require us to replaceAj by a memory kernel in the
equations describing the diagram. See text.

It can also be shown using the methods developed
previously [38] that Fig. 4b is equivalent to Fig. 4a.
Specifically, one can choose rate constants for the up-
ward and downward steps in Fig. 4a that are com-
pounded from those of Fig. 4b in such a way that the
occupation of the bottom well in Fig. 4a equals the sum
of those in Fig. 4b in both the equilibrium and the flux
determined [38] steady state solutions.
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Or, if we relabel the indices so that, ≡ (r ,s) and i ≡
(j ,k) then we obtain

dNi /dt = SN, A,i – SNiAi, (20)

which is the master equation for the composite system.
Notice that the complexion,Ni , of the composite system
is the product of the complexions,fj , of the individual
systems, but the composite transition coefficients are
sums of the individual transition coefficients. These re-
sults are readily generalized by the process of induction
to a system consisting of any number of subsystems, the
only condition being that the subsystems do not interact
with each other. We again see that the complexion of the
composite system is the product of the complexions of
the individual systems, but the composite transition
coefficients are sums of the individual transition coeffi-
cients.

Thus, if we could find a smallest set of independently
interacting molecules we will have simplified our prob-
lem considerably. Fortunately there is a confluence of
intuition and experiment that suggest that this can be
done. First, what is happening at point a cannot be
influenced by what is happening at point b provided that
the two points are sufficiently far apart. So, there is a
smallest size. Second, this size seems to be very small
indeed. Stillinger, on the basis of computer modeling
and other considerations has concluded [39] that the
number of molecules involved in the basic diffusion step
is on the order of several molecules for simple van der
Waals systems. Perhaps a local density decrease allows
a molecule to jump out of a cage, or perhaps two
molecules interchange, resulting in a net flow.

As a result of these considerations we can maintain
that theNi , Mi of Eqs. (17) refer not only to configura-
tion space, but also to particles or quasiparticles in our
3-d space. A connection is thus made between the
trapping model of Di Marzio and Sanchez [32] who
trapped the configuration point and the trapping model
of Odagaki et al. [40] who trapped atoms. Of course
trapping atoms implies trapping the configuration point
and conversely. The context of the discussion easily de-
termines what kind of particle or quasiparticle is being
trapped.

Equations (17) can be transformed into a continuum
version by using

Nj (t ) → N(t ,x), Nj +1(t ) → N(t ,x + Dx), Mj → M (t ,x),
etc.

aj → a (x), bj → b (x), aj+1 → a (x + Dx), etc. (21)

we obtain

­N/­t = ­2(DN)/­x2 – ­(vN)/­x – bN + AN (22a)

­M /­t = + bN – AM, (22b)

where

D = (Dx)2(a + b )/2 andv = (Dx)(a –b ). (23)

D , v, b, andA can all be position dependent.
The rate constants are determined as follows. From

Eq. (15) we have

Aj = bj exp(–uEj u/kT) , bj = b, (24)

whereEj is the depth of the well. We argue that the
energy appears only as a barrier restricting the escape
from the wells-there is no attraction of the phase point
into a well. Thebj are also all chosen to be equal be-
cause we can think of nothing that distinguishes them
from each other. Allowing theaj to be different from
thebj accounts for a drifting of the phase point towards
a region of phase space. This should be useful if we
impose an external field. If we assume nox dependence
for a andb thenD andv are constants and the­2DN/­x2

term is the ordinary diffusion term. Our Equations now
read

­N(t ,x)/­t = D­2N(t ,x)/­x2

– v­N(t ,x)/­x – bN(t ,x) + A(x)N(t ,x) (25a)

­M (t ,x)/­t = bN(t ,x) – A(x)M (t ,x), (25b)

where we have written allt , x dependencies explicitly.
Sincea andb are much greater than b we know that

after jumping out of a low lying well the phase point
will travel extensively horizontally before being cap-
tured by a deep well. Sinceb does not depend onx and
is not a function of well depth the rate of filling the
wells is random. Thus the horizontal distribution of well
depths which we assume to be random along the chain
(see Fig. 2) is unimportant. IfW(E) is the number of
wells of depthE then they are filled with a rate propor-
tional toW(E). Over a large period of time the escaping
from wells is determined by bothW(E) and the rate of
escape (exp(2 b uE u)) from individual wells. This
allows us to replace the distribution of wells by wells of
one depth. In this case Fig. 2 becomes simplified even
further so that the vertical lines have the same length.
The equations now can be simply solved sinceA now
has nox dependence. Using the method of moments on
Eqs. (25) we find
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d kN l/dt = – b kN l + A kM l

d kM l/dt = b kN l –A kM l (26a)

d kxN l/dt = v kN l – b kxN l + A kxN l

d kxM l/dt = b kxN l – A kxM l (26b)

dkx2N l/dt = 2D kN l + 2v kxN l

– b kx2N l + A kx2M l

d kx2M l/dt = b kx2N l – A kx2M l . (26c)

The nice thing about these equations is that we can
solve thenth pair of equations for the nth order mo-
ments in terms of the lower order sets. We will exploit
this fact in the next section.

Finally, considering only the sequence in time of the
occupation of the deep wells by the configuration point,
with bj = b, SNj = nN, and assuming that horizontal
motion is so fast thatNj = N, the sum over theNj in
Eq. (17a) yields,

ndN/dt = –nbN +SAjMj (27a)

dMj /dt = bN – AjMj (27b)

Here the total number of shallow wells is n. Figure 5
displays the diagram associated with these equations.

One notes that Eqs. (17), (22), and (25) are very
similar to equations arising in modeling chromatogra-
phy [41]. In that case the diffusion and drift terms
model the behavior of the eluting material as it travels
along in the mobile phase,N(t , x) being the amount of
material in the mobile phase, whileM (t , x) is the
amount of material adsorbed on the adjacent surface or
in pores [42].

Our minimal models are all now well defined and
deriving their implications is merely a matter of mathe-
matics, albeit sometimes very difficult mathematics.
The remaining conceptual problem, to which we now
turn, is to relate the solution of these minimal models to
the frequency and temperture dependent complex vis-
cosity h *(v , T), diffusion coefficient D (v , T) and
dielectric response« (v ,T).

2.4 Insights From Our Minimal Models: Deriva-
tion of D (0, T ) And h (0, T )

2.4.1 The Diffusion Coefficient D (0,T ) When
All Wells Have the Same Depth Equations 26 are
easily solved for the moments. After some labor, with

obvious assumptions on the initial conditions we obtain
to first order in the drift velocity

kx l ≡ kx(N + M ) l /k (N + M ) l = (A/(b + A))vt (28)

k (x – kx l)2l ≡ k (x – kx l)2(N + M )l/k (N + M ) l

= (A/(b + A))2Dt . (29)

Fig. 5. If the a andb of Fig. 2 are very much larger than theb and
A then we can argue that the configuration point running about in the
“configurational sea” sees an unbiased statistical sample of the wells
before falling out of the “configurational sea” into any one of them.
Thus if we are interested only in the sequence in time of occupation
of the wells by the configuration point the diagram of Fig. 5 suffices.
In the text the simplified equations describing Fig. 5 are obtained.

Notice that the diffusion coefficient is diminished by
the factor A / (b + A ) (because from Eq. (24),
A/b = exp(– |Ej |/kT) and the wells are deep we will
ignore theA in the denominator ofA/(b + A)). These
equations have the obvious interpretation that every-
thing, both drift and diffusion, is being slowed down by
the factorA/b which is the ratio of jump rates. As long
as the particle is in a deep well there is no activity. Any
resulting activity is proportional to the rate of escape,
exp(– |Ej |/kT), from the deep wells.

We now seek to further interpret this result.
The ordinary diffusion equation without sinks (­N/­t =
D­2N/­x2) has as its Green’s function the Gaussian
distribution (4pDt )1/2exp(–x2/4Dt ). In the probabilistic
formulation of the diffusion equation this Green’s
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function has the physical interpretation of representing a
random walk as in Fig. 6a. There is no pausing between
steps of the random walk. However, the equations of our
minimal models have the interpretation that when the
particle is in a deep well there is no motion until, after
a long time the particle escapes the well. Thus, in the
probabilistic interpretation of our minimal models our
physical process is represented by a random walk with
a pausing time between steps. The steps themselves
correspond to the horizontal motion characterized by
the diffusion constantD while the pausing corresponds
to the time spent in the deep wells. Thus, the effective
diffusion coefficient is

Deff(0,T) = (Dx)2/2(Dt )eff

= (A/b)D = ((A/b)(Dx)2/2Dt

= exp(–uEj u/kT)(Dx)2/2Dt . (30)

2.4.2 The Viscosityh (0,T ) When All Wells Are
of the Same Depth In Eq. (30) we have taken the view
that the paths traversed in configuration space are the
same for both the case of pure diffusion and that of
diffusion with traps (See Fig. 6). This means that the
only difference between the two cases is the time to take
each step. For diffusion with traps we write

Dteff = Dt + Dtwell, Dt << Dtwell. (31)

where Dtwell is the time spent in the traps between
jumps, whileDt is the time spent traversing the path in
the configurational sea (the time spent between jumping
out of one well and falling into the next well). Since
viscosity is inverse to diffusion we will assume that the
viscosity is proportional to the average time spent in the
deep wells. This notion is verified in Appendix B. Thus,

h (0,T)/B ~ k t l = E`

0

tP(t ,T)dt (32)

whereP(t ,T) is the normalized probability density that
the configuration point escapes the well at timet .

When all the wells are of the same depthP(t ,T) is
easily calculated. The probabilityC (t ,T) of the particle
being in the well at timet is

C (t ,T) = exp(–btexp(|E |/kT))

= exp(–t /t ); t = b–1exp(+ |E |/kT) (33)

and the probability densityP(t , T) for exiting the well
at time t is

P(t , T) = ­C /­t = t–1exp(–t /t ) . (34)

The exponential approximation forC is a good one.
To see why consider the configuration point in a well.
It decays exponentially initially. This can be seen by
solving the generic matrix equation to which the set 27
belongs

dN/dt = AN (35)

whereN is the set (Nj , Mj ) andA is the matrix of Eqs.
(27). We obtain [43]

Fig. 6. a) In the probabilistic interpretation of the diffusion equation
­C/­t = D=2C the Green’s function represents a random walk with

no pausing time between steps of the random walk. b) In the
probabilistic interpretation of the equations describing our minimal
model the trapping in deep wells corresponds to a pausing time
between steps of the random walk. The spatial aspects of the walks are
identical in both cases.
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N = exp(+At)N(0) (36)

and if we begin with one particle in one well we see that
for small t we have our exponential decay. But when the
particle jumps out of this well the chance that it comes
back into the same well is very small since there are so
many other wells. Thus, we are confident of our as-
sumed form [(Eq. 34)]. However, it is stressed that Eqs.
(27) should be solved rigorously to bolster the argument.

Equation (34) when substituted into Eq. (32) gives

h (0,T)/B ~ k t l = E`

0

tP(t , T)dt

= E`

0

tt–1 exp(–t /t )dt = t (37)

which was to be expected.
2.4.3 h (0, T ) When the Wells Are of Different

Depths However, solving the problem where the deep
wells are all the same depth is not the same as solving
the problem for glasses since glasses have a distribution
of well depths. We need to evaluateP(t , T) for this latter
case and also calculate a new effective diffusion coeffi-
cient.P(t , T) is exactly calculable from Eqs. (27) since
in the probabilistic interpretation the configuration point
jumps from well to well, and there is noDx involved in
Eqs. (27). A configuration point in a well of depthE
sees only the barrier and therefore the probability that it
be in the well at timet is given by Eq. (33). LetW(E)
be the weight distribution for wells of depthE. Notice
from Eq. (37) thateW(E)P(t , T)dt = b–1W(E)exp(|Ej /
kT) which states that the time spent in wells of levelE
is given by the Boltzmann factor weighted by the degen-
eracy factorW(E). This is in perfect accord with the
ergodic theorem. An estimate of the relaxation function
p(t , T) describing the exiting from wells can now be
made by weighting the distribution functionP(t ,T) (see
Eq. (34)) for the occupation of the well of depthE by the
weighting functionW(E).

p(t , T) = eW(E)P(t , T)dE/eW(E)dE,

= eW'(E)P(t , E)dE (38)

W'(E) = W(E)/eW(E)dE (39)

The viscosity becomes

h (0,T) ~ kt l = b–1 eW'(E)exp(+ |E |/kT)dE

= eW'(E)t (E)dE (40a)

The right-hand-side of Eq. (40a) is closely related to
the partition function. We develop the consequences of
this in Sec. 2.6.

In Secs. 2.4.2 and 2.4.3 we presumed that the process
of flow could occur if only one particle jumped out of
its well. But suppose it is required that within a space of
a given volume there needs to beM particles that have
simultaneously jumped out of their wells in order to
have flow. It is shown in Appendix C that Eq. (40a) is
generalized to

h (0,T) a kt lM = [b–1 eW'(E)exp(+ |E |/kT)dE]M

= [eW'(E)t (E)dE]M . (40b)

This allows us to express the temperature dependence
of h as

logh (0,T) = B + M log[eW'(E)exp(+ |E |/kT)dE]

(40c)

whereB andM are considered to be constants.
2.4.4 D (0, T ) When the Wells Are of Different

Depths We now seek to calculate the diffusion coeffi-
cient when we have a distribution in well depths. The
answer to this can be obtained by solving Eqs. (27) or
(17), but we are unable to do this presently. Instead, we
argue that the diagram of Fig. 2 which is our model for
real glasses can be approximated under certain circum-
stances by the simpler diagram with all wells being of
equal depth provided we choose an effective well depth.
We choose for this effective well an effective rate con-
stantAeff given by

(SWi )/Aeff = SWi /Ai . (41)

The form of Eq. (41) reduces to the proper limiting
form when there is only one well depth and additionally
allows the escape from very deep wells to be the rate
determining steps. TheWi appear as shown because the
number of times a particle falls into a well of depthEi

is given byWi . The argument for this is that as soon as
a configuration point escapes its well, because of the
large value ofD while running about in the upper wells
it has exposed itself to the other wells, and becauseb is
independent ofx it falls into each well with equal
probability. If the number of wells of depthj is Wj the
configuration point falls into a well of energyEj with a
probabilityWj and then tries to escape with a probabil-
ity proportional toAj . Thus, we know thatWj is propor-
tional to the number of well of typej and the effective
diffusion coefficient for Fig. 2 is then given by

Deff = AeffD /b . (42)

148



Volume 102, Number 2, March–April 1997
Journal of Research of the National Institute of Standards and Technology

2.5 Evaluation of the Frequency Dependent
h (v , T ), « (v , T ) and D (v , T )

2.5.1 Evaluation of h (v , T ) Equation (10b) has
its analogue in polymer physics The complex viscosity
is

h*(v ,T) = G(v ,T) = E`

0

exp(–ivt )g(t ,T)dt (43)

and the frequency dependent shear modulus is defined
as

G*(v ,T) = ivh*(v ,T) . (44)

At zero frequency we showed that

h*(0,T) ~ kt l = E`

0

(tt–1)exp(–t /t )dt = t . (45)

But it would be wrong to identifyg(t ,T) with the inte-
grand of Eq. (45). In fact since

E`

0

(1/n!)(tt–1)nexp(–t /t )dt = t (46)

any value ofn would be permitted if the sole criterion
were that the integral equalt . Formulated in this way it
is obvious thatn = 0 gives the correctg(t ,T) since it
corresponds to a Maxwell element. Thusg(t ,T) is pro-

portional toEt

0

tP(t ,T)dt and since the value ofg(0,T) is

G0 we have

g(t ,T) = G0 exp(–t /t ) . (47)

This gives immediately

h*(v ,T) = G(v ,T) = G0t /(1 + ivt ) (48)

h* = h ' – ih " , (49)

h ' = G0t /(1 + v2t2) (50a)

h " = G0vt2/(1 + v2t2) (50b)

while for a distributionW'(E) of well depths we obtain

h*(v ,T) = eW'(E)G0t /(1 + ivt )dE (51)

g(t ,T) = eW'(E)G0exp(–t /t )dE (52)

h ' = eW'(E)G0 t (1 + v2t2)dE (53a)

h " = eW'(E)/(1 + v2t2)dE . (53b)

These relationships show clearly that non-Debye
frequency behavior occurs because there is a distribution
of relaxation times.

2.5.2 Evaluation of Dielectric Response
« (v , T ) Granted the calculation of the complex vis-
cosity, the dielectric constant« (v ,T) can also be ob-
tained. Debye showed that if the dipoles are each imag-
ined to be imbedded in the center of spheres (one dipole
per sphere) that are in turn imbedded in a viscous fluid
of viscosityh then the dielectric response is easily cal-
culated [44]. Based on this result Di Marzio and Bishop
showed [45] that if the viscous fluid has a complex
viscosityh*(v ,T) then the formula is a simple general-
ization of the Debye formula, the only change being that
h*(v ,T) replacesh (0, T). Thus,

[« (v ,T) –« (`,T)]/[« (0,T)–« (`,T)]

= (1 + ivh*(v ,T)A)–1 (54)

whereA is a dimensional constant. The plus sign occurs
in Eq. (54) because of our choice of the convention for
the Fourier transform as in Eq. (43). This is consistent
with Ferry’s [46] development of viscoelasticity for
polymers.

2.5.3 Evaluation of D (v , T ) Equation (25a)
shows that the diffusion coefficientD is a constant. In
order for it to have a frequency dependence we would
have to have hadeD (t–t)­2N/­x2dt for the first term
on the right hand side of Eq. (25a). But, this is not the
case. Equivalently we could have used thefolding opera-
tion and writtenD (t –t ) = Dd(t –t ). Further, from Eq.
(29b) we see that the effective diffusion coefficient also
has no frequency dependence at least to the quadratic
approximation. Therefore, for our model we expect no
frequency dependence in the diffusion coefficient.

D (v ,T) = b–1 exp(–b|E |)D (55)

For a distribution of well depths we have as before

D (v ,T) = D eW(E)dE/[eW(E)exp(+ b|E |)dE] .

(56)

2.6 Evaluation of W(E )

The above relationships are quite remarkable for they
state that long time relaxations-viscosity, diffusion and
dielectric response depend only on the well depths and
the distribution of well depths. The only thing remain-
ing is for us to evaluateW(E). Notice that if this can be
done then our kinetics of glasses will depend only on the
equilibrium statistical mechanics. For glasses statistical
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mechanics plus the principle of detailed balance is
everything provided we are looking only at the long time
behavior.

The classical and quantum mechanical partition func-
tions are given by (we ignore the thermal wavelength)

Qclassical= eexp(–bE(. .qj . .))pdqj (57a)

QQ.M. = eexp(–bEj )dj (57b)

where the integral signs represent discrete sums and/or
continuum integrals. By grouping together all states
with the same energy we obtain

Qclassical= eexp(–bE)W(E)dE (58a)

QQ.M. = eexp(–bE)W(E)dE (58b)

which are identical in form to the argument of the
logarithm on the RHS of Eq. (40c). Using the formula
Fc = –kTlnQ which connects the configurational part of
the Helmholtz free energyFc to the partition functionQ
we have immediately

logh (0,T) = B – M 'Fc/kT . (59)

This remarkable formula which relates viscosity to free
energy is very different from the Vogel-Fulcher-
Tammann-Hesse form [47], the Bendler-Shlesinger
form [48], the Avramov form [49], the Adam-Gibbs
form [12] or the mode coupling theory result [50]. We
discuss it in Sec. 3.1.

The frequency dependent viscosity, given by
Eqs. (53), cannot be expressed as a function of free
energy. Rather, we first must determineW(E) sepa-
rately before we can evaluateh (v ,T). If in Eq. (58a) we
choose the lowest energy as our zero of energy, then
exp(– bF (b )) is the Laplace transform ofW(E) and
W(E) is the inverse transform of exp(–bF (b )).

Another approach is to use the results of Stillinger
who suggests thatW(E) is given by [51, 52]

W(E) = exp(–u (E–E0)2). (60)

With this substitution the time dependent shear mod-
ulus, Eq. (52), reads

g(t ,T) = e exp(–u (E –E0)2)

exp(–btexp(–b|E |)dE / eexp(–u (E –E0)2)dE . (61)

The time dependent behavior of Eq. (61) is closely
related to that of the “after-effect function” tabulated by
Janke and Emde [53]. As shown previously the after-

effect function has a time dependence which looks very
much like the stretched exponential function [23]. In
fact, Stillinger, starting from the empirically observed
stretched exponential form for relaxation shows that the
Gaussian form forW(E) is implied [52].

3. Discussion and Conclusions

3.1 Discussion of Results

Equation (59) which connects viscosity to free energy
is remarkable in several respects. First, it states that the
viscosityand its temperature derivativeare continuous
as we proceed through the transition. We had, in Sec.
1.8, used the argument that the dissipative quantities
should have the same transition behavior as the thermo-
dynamic variables. So, for a first-order transition the
viscosity is discontinuous through the transition because
the entropy and volume are. But we have now obtained
the result that for a second-order transition the viscosity
does not show a break as we traverse the transition point.
In the past various groups have argued that the volume
[54] is the controlling quantity, or the enthalpy [55], or
the entropy [1-5]. We are claiming that the entropy
theory of glass formation, which is merely a theory that
locates the transition in temperature and pressure space
as a function of the molecular parameters such as chain
length, intermolecular energies and intramolecular stiff-
ness energies etc. (see Sec. 1.4) can be extended to
include slow motion kinetics. When this is done theonly
determinate of the kinetic aspects of glass formation in
the limit of zero frequency is the thermodynamic free
energy! See Eq. 62e. However, as Eqs. (51–54) show
this is not true for the frequency dependent dissipative
quantities.

The Vogel-Fulcher-Tammann-Hesse form [47] from
which the WLF equation [56] is easily derived is

logh = B + A/(T –T0). (62a)

The Bendler-Shlesinger form [48] is

logh = B + A/(T –T0)1.5 (62b)

The Avramov form [49] is

logh = B + 0.434(A/T)a (62c)

and the Adam-Gibbs form [12] is

logh = B + A/TSc . (62d)

These forms should be compared to our form which
is

logh = B – AFc/kT. (62e)
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We will not discuss the mode coupling form for viscos-
ity since we accept the argument [57] that the implied
singularity is considerably higher thanTg.

Although each of the first four forms has some theo-
retical underpinning it is probably true that the reason
they fit experimental data well is that they (the first
three) are three-parameter fits and the viscosity curves
are rather structureless to begin with. To see that it is not
terribly significant to fit a curve of relatively little struc-
ture with three parameters imagineB to locate the curve
vertically, another of the parameters stretches the curve
so that there is a fit at both high and low temperatures.
Finally the third parameter gives the curve the proper
amount of curvature. Viewed in this way we seethat the
fact that formulas of different construction give decent
fits to the data is not surprising. A real test of the
theories is whether they can determine the values of the
three parameters from theory.

Viewedfrom this perspective the last two Eqs. (62d),
and (62e) are more significant because they contain one
less parameter. The original GD lattice theory can be
used to obtainFc. A real theory should contain no
parameters. Schroedinger’s equation plus the laws of
statistical mechanics should be sufficient. The authors
intend to examine the meaning of theB andA parame-
ters of Eq. (62e) in a subsequent paper. For now we will
merely comment on the implication of the form of our
equation, assumingA andB to be temperature indepen-
dent.

Angell’s classification [7] of glasses into strong and
fragile receives an easy interpretation from Eq. (62e).
First, we need to use the experimental value of the free
energy in Eq. (62e). There is a general consensus that
the specific heat break at the glass transition,Cp,c, varies
inversely with temperature [58]. We therefore use the
form Cp,c = a /T.

Cp,c = a /T → Sc = a (1/T2 – 1/T) → (63)

Fc = –C –a (T/T2 –1) + a ln(T/T2), T2 # T (64a)

Fc = –C, T # T2 (64b)

where the constant of integrationC is (part of) the
energy of activation.

To obtain these equations we integratedCp,c = T­Sc/
­T, Sc = ­Fc/­T and ignored any pressure dependence.
Below The transition temperatureT2 the configurational
entropy is zero according to the simple version of the
GD theory so that we have only energy of activation
while aboveT2 the specific heat is assumed to decrease
inversely with temperature in accord with experiment.

Using Eq. (62e) we can eliminateB by choosing a
reference temperatureT* for which the viscosity equals

1013 poise. A little algebra results in

logh =13 + zxlnx + (1–x)

3 (z [1 + ln(T*/T2)] –u ) (65a)

­logh /­x = u –z ln(T*/T2) + z lnx (65b)

­2logh /­x2 = z /x, T2 # T* # T,

T2 # T # T* (65c)

logh = 13 + u (x –1)–z [(T*/T2 – 1)

+ ln(T*/T2)] (66a)

logh /­x = u (66b)

­2logh /­x '2 = 0, T # T2 # T* (66c)

logh = 13 + u (x – 1) + z [(T*/T2 – x)

+ xln(xT2/T*)] (67a)

­logh /­x = u –z ln(T*/T2) + z lnx (67b)

­2logh /­x2 = z /x, T* # T2 # T (67c)

logh =13 + u (x – 1) (68a)

­logh /­x = u (68b)

­2logh /­x2 = 0, T # T* # T2,

T* # T # T2 (68c)

whereu = CA/kT*, z = aA/kT*, x = T*/T. T* is the
temperature for whichh = 1013 poise. If we had picked
10y as the reference viscosity then the above equations
would be the same withy replacing 13 andT* being the
temperature at which the viscosity is 10y poise.

Equations (65c,) and (67c) show that the curvature is
positive (curve is concave up) and that the curvature is
greater the larger the specific heat. Also, as the value of
T*/T decreases the curvature is larger. Below the glass
temperature we predict pure Ahrennius behavior. These
features are also features of Angell’s classification of
glasses into strong and fragile varieties. An interesting
prediction is that ifT*/T2 = 1 then the initial slope at
T*/T = 1 is independent of specific heat. It does however
depend onC.
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We can test these predictions for polymers using data
for polydimethylsiloxane of varying molecular weight.
Roland and Ngai [59] using dielectric relaxation data of
Kirst et al. [60] and specific heat data of Bershstein and
Egorov [61] created fragility plots of thelogarithm of
relaxation time versusTg/T whereTg was defined as the
temperature for which the relaxation time was one sec-
ond. These curves which are reproduced in Fig. 7 show,
as Roland and Ngai observed, 1) that the slope of the
curves atT*/T = 1 are independent of specific heat—we
predict this, 2) The curvature is larger the smaller the
value ofTg/T—we predict this, and 3) the curves flare
out for low Tg/T with the higher specific heat (low
molecular weight) material flaring up and the low
specific heat (high molecular weight) material flaring
down—we predict this. The filled circles are our numer-

ical predictions. We choseA and B to fit the center
curve. We then scaledz by the ratio of the specific heats
for the low and high molecular weight polymers to ob-
tain the upper and lower points at each temperature. Our
fits assume thatC is independent of molecular weight.

We also give the formulas for the case that the config-
urational specific heat is constant aboveT2. Our reason
for doing this is that although the GD lattice model
predicts that the configurational specific heat ap-
proaches zero as the temperature increases it does not
do so with purely inverse temperature dependence. So,
a combination of the two specific heat variations may
better fit the experimental data.

Cp,c = a ' (69)

Fig. 7. An attempt to explain the fragility plots of Angell. Using for the configurational free
energy a form derived by assuming that the specific heat is proportional toT–1, which is in
accord with experiment, we obtain a fit to the plots of log relaxation time versusTg/T. The
curves are experimental data for polydimethylsiloxane of varying molecular weight, and the
circles are predicted values. That 1) the curves all start with the same slope atT*/T = 1; 2) the
curvature increases with decreasingT*/T; 3) the curvature increases with increasing specific
heat are all predicted by our equation. See text.
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Sc = a 'ln(T/T2), T2 # T (70a)

Sc = 0, T # T2 (70b)

Fc = – a 'Tln(T/T2) + a '(T –T2) – C, T2 # T (70a)

Fc = –C, T # T2 (70b)

If we again defineT* as the temperature for which
the viscosity equals 1013 poise we obtain

logh = 13 –z 'ln(x) + (z 'T2/T* + u )(x – 1) (71a)

­logh /­x = z 'T2/T* + u –z 'x–1, (72b)

­2logh /­x2 = + z 'x –2,

T2 # T* # T, T2 # T # T* (72c)

logh = 13 – z 'ln(T*/T2) + u (x – 1)

+ z '(1 – T2/T*), (73a)

­logh /­x = u , (73b)

­2logh /­x2 = 0, T # T2 # T* (73c)

logh = 13 + z 'ln(T/T2) + u (x – 1)

+ z '(T2/T*)(x – T*/T2) (74a)

­logh /­x = z 'T/T* + u – a 'x–1, (74b)

­2logh/­x2 = + z'x2 , T* # T2 # T (74c)

logh = 13 + u (x – 1), (75a)

logh /­x = u , (75b)

­2logh /­x2 = 0, T* # T # T2, T # T* # T2

(75c)

wherez = a 'A/k andu = CA/kT*. These curves again
show the features of the strong-fragility plots discussed
by Angell.

It should be noted that if either of the above forms for
the entropy is substituted into the Adam-Gibbs form
[Eq. (62d)] one obtains a decreasing slope with
increasing specific heat atT*/T = 1. Also the curvature
of the logh vs T*/T curve becomes smaller asT*/T

decreases which is contrary to the sense of virtually all
experimental results.

CanT* ever be less thanT2? Under the paradigm of
the Vogel-Fulcher equation this is a foolish question.
However, since the viscosity and its derivative are,
according to Eq. (62a), continuous through the second-
order transition and since the viscosity is never infinite
T2 can not be located accurately by measurements of
viscosity; we see no reason why it can not be greater
thanT*. The possibility thatT2 corresponds to a finite
viscosity may well be masked by the process of falling
out of equilibrium which can be discussed only by
examining the time or frequency dependent viscosity.

The new formulas for viscosity suggests several new
directions. First, an examination of the way whichC/T*
varies with material should be made.

We remark that these questions are equilibrium ther-
modynamic and statistical mechanical questions so that
their investigation should not be difficult. For systems
with constantC the initial slope of the curve atT*/T = 1
would be inverse toT*. Also systems for which the
motion is highly cooperative would show a higherC.
Systems which have the same scaled potential energy
surface, i.e.,hE(. . qi . .) whereh is any constant, should
display superposed fragility plots. Such systems which
have no specific heat break atTg should all superpose
with the form of a straight line. Finally how the specific
heata relates toC/T* should be examined.

Another possibility that deserves serious consider-
ation is that the parametersB andA have a temperature
dependence which must be added to that of the free
energy. This thought is consistent with the view ex-
pressed by some that the temperature dependence of
viscosity and diffusion at higher temperatures is ade-
quately addressed by mode coupling theory and that the
behavior over the full temperature range can be obtained
by a cross-over treatment that combines the high tem-
perature mode coupling theory with a theory of low
temperatures such as has been presented here.

We leave such a development to the future.

3.2 Conclusions

This paragraph describes the logic of our develop-
ment. We first observed that there must exist at low
temperatures an equilibrium glass phase because the
crystal phase is not ubiquitous. It is only for systems that
can crystallize that the glass phase can be considered
to be a metastable phase. We next showed that the
Gibbs-Di Marzio (GD) theory [1–5] which postulates
that the glass transition occurs when the configurational
entropy approaches zero locates the glass transition cor-
rectly in temperature-pressure space for a wide variety
of experiments. It also resolves the Kauzmann paradox

153



Volume 102, Number 2, March–April 1997
Journal of Research of the National Institute of Standards and Technology

[6]. We next observed that the correct equilibrium the-
ory of those materials that form glasses, whatever it may
be, must be used as a groundform onto which a proper
kinetic theory of glasses is constructed. The connection
between kinetics and equilibrium was then made via the
principle of detailed balance which relates the ratio of
the rates for jumping to and from a pair of states to the
free energy difference between the states. This law when
combined with the observation that the configuration
point of a glass system spends most of its time in deep
potential energy minima allows us to construct a mini-
mal model (a trapping model) which can be solved in
some limiting cases. We thereby obtained formulas for
the complex viscosityh*(v , T) and shear relaxation
modulus g(t , T), the diffusion coefficientD (v , T) =
D (0,T) and the dielectric response« (v , T).

Our relaxation modulus has the form of the after-ef-
fect function tabulated by Jahnke and Emde [53] which
we had obtained previously [32]. Its behavior is very
close to the stretched exponential form.

More surprising is our formula relating the zero fre-
quency viscosityh to the configurational part of the
thermodynamic Helmholtz [62] free energyFc

logh = B – AFc/kT

It is surprising that the viscosity is continuous
through the transition. If this conclusion holds, viscosity
or other dynamical measurements may be the worst way
to locate glass temperatures. The use of thermodynamic
quantities which show breaks in slope should be pre-
ferred. Initially we had expected (naively in retrospect)
that there should be a break in slope ofh (T) vs T.
Below the transition the behavior is Arrhenius corre-
sponding to the fact that there is energy but not entropy
of activation below the transition. Above the glass tran-
sition entropy of activation kicks in.

When sensible approximations forFc are used this
formula displays the main features of the strong-fragile
glass classification scheme proposed by Angell [7].
Glasses with small specific heat breaks at the glass
transition show little curvature on logh versus inverse
temperature plots while glasses with large specific heat
breaks show positive curvature. See Sec. 3.1.

We have not yet examined the temperature depen-
dence ofB andA in the above equation. An approach to
this problem is to excise from phase space those phase
points corresponding to deep potential energy minima
and solve the kinetics of such a circumscribed space.
Since the resulting equations should be applicable to the
high temperature side of the glass transition it may be
that mode-coupling theory can be used for this part of
the problem. A theory of glasses that is valid over a wide

range of temperatures undoubtedly requires incorpora-
tion of vibrational properties.

4. Appendix A: A Particle Falling Back
into a Well From Which It Is Trying to
Escape Retains Its Exponential Dis-
tribution

Let a particle have a normalized probability distribu-
tion p(t ) for escaping from a well. But after it has left
the well let there be a probability 1 –f that it fall back
into the well andf that it escape permanently on that
attempt. Then the particle can escape permanently after
it left for the first time, or the second time or the third
time, etc. The true distribution function for escape is

ptrue = p(t )f + e p(t1)(1–f )p(t2)dt1dt2f
t1 + t2 = t

+ e p(t1)p(t2)(1 –f )2p(t3)dt1dt2dt3f
t1 + t2 + t3 = t

+ . . .

(A1)

The integrals are recognized to be folding operations.
Denoting the Laplace transform ofp by P and taking
the Laplace transform of Eq. (A1) we obtain

Ptrue = Pf + P2(1 –f )f + P3(1 –f )2 f

+ P4(1 –f )3f + . . .

= Pf /(1 – (1 –f )P) (A2)

This equation states that ifp is normalized, so that
P(0) = e p(t )dt = 1), thenptrue is also normalized.

For the special case wherep is exponential int we
have

p(t ) = t–1 exp(–t /t ), P = P(s) = t–1/s + t–1) . (A3)

Using Eq. (3) in Eq. (2) we obtain

Ptrue = Ptrue(s) = ft–1/(s + ft–1) (A4)

which on transforming back to the time domain gives

Ptrue = ft–1 exp(–ft /t ) (A5)

Thus, the final distribution remains exponential and
is normalized but the time constant for exiting the well
is increased by the factorf–1.
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5. Appendix B. Calculation of the Shear
Viscosity h (0,T )

To calculate the shear viscosity consider a material
between two parallel plates one of which is fixed and
one of which moves under a shear force

s /kvl = h (0,T) (B1)

But

kvl = x/tf = V(tf – ti)/tf = VDt /tf (B2)

whereV is the velocity that the plate has for the time
interval tf – t i = Dt during which the system is flowing
in the configurational sea. From time zero toti there
was no motion because the particle was in one of the
deep wells. We obtain

h (0,T) = (s (0,T)/V)tf /Dt = hctf /Dt

= hc(ti + Dt )/Dt = hc(1 + ti /Dt ) . (B3)

This process of sticking and slipping is imageined to
happen over and over again. The distribution function
P(ti, T) for jumping out of a well at timeti when all the
deep wells have the same depth is given by

P(ti,T) = t–1 exp(–t /t ), = b–1 exp(+b uE u) . (B4)

Thus over a period of time sufficiently large to allow
for many visits to the deep wells we have

h (0,T) = hc(1 + kt l /Dt ) ≈ (hc/Dt ) kt l

= (hc/Dt )t (B5)

which proves our contention that the viscosity is propor-
tional to the average residence time spent in deep wells.

Evidently, if there is a distribution of well depths,
W'(E), normalized so that thee W'(E)dE = 1, we obtain

h (0, T) ≈ (hc/Dt ) e e W'(E)tP(t , T)dEdt =

(hc/Dt ) e e W(E)b–1exp(+ b uE u)dE/ e W(E)dE .

(B6)

Given the exponential character ofP(t , E) we have
succeeded in relating the zero frequency viscosity
h (0, T) to the two integrals which are purely equi-
librium quantities.

6. Appendix C. What if Flow Requires
Several Particles to Be Out of Their
Wells Simultaneously

It may be unreasonable to suppose that flow can occur
in the region between two parallel plates when one
particle only is out of its well. Certainly, as the amount
of the material between the plates is increased it is more
reasonable to expect that flow requires that the number
of particles simulaneously out of their wells be propor-
tional to the volume of material. We propose that the
number required per unit volume be some large number
M .

Let us begin by considering the case where there is
flow only if two particles have simultaneously escaped
the wells. Consider one particle jumping out of a well at
time ti, cruising the configurational sea for a time inter-
val Dt = tf –ti, falling into a well, and then starting the
process all over again. One can imagine these time inter-
vals placed stochastically on the positive infinite half
line. Obviously flow for the system will occur only when
there is an overlapping of theDt ’s of one particle with
theDt ’s of the other. The fraction of time that these time
intervals overlap is obviously given by (nDt /S(ti + Dt ))2.
We imagine the particles to have jumped out of the wells
n times, wheren is very large. Refering to appendix B
we calcuate the average velocity to bekvl to be

kvl = V(nDt /(S(ti + Dt ))2 . (C1)

The viscosity is

h = s /kvl = (s /V) ? [(Sti + nDt )/nDt ]2

= hc [1 + Sti /nDt ]2 . (C2)

Now if we requireM particles to be simultaneously
out of the wells in order to have flow we need only
realize that the probability for this is

[nDt /S(ti + Dt )]M . (C3)

Thus
h = hc[1 + Sti /nDt ]M . (C3)

Now if M or more particles are needed to be out of the
wells simultaneously we have for the probability (frac-
tion of time) for this to occur

[1 + Sti /nDt ]M + [1 + Sti /nDt ]M+1

+ [1 + Sti /nDt ]M+2 + . . . (C4)
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which leads to

h = hc [1 + Sti /nDt ]M [1 + nDt /Sti]

≈ hc [1 + Sti /nDt ]M . (C4)

We now need to evaluate

Sti = ne tt–1exp(–t/t )dt = nt . (C5)

But if there is a distribution of well depths then

Sti = n
eW(E)tt–1exp(–t /t )dtdE

e W(E)dE

= n
eW(E)t (E)dE

e W(E)dE
= n kt l

= n
e W(E)b –1 exp (+ b uE u)dE

e W(E)dE
. (C6)

Therefore

h =
hc [1 + e W(E)b –1 exp (+ b uE u)dE]M

e W(E)dEDt

≈ hc (e W(E)b–1exp (+ b uE u)dE)M

e W(E)dEDt
. (C7)

By taking thelogarithm of this equation we can cast
it into a form usually used to compare with experiments
and those equations created to explain experiments such
as The Vogel-Fulcher law [47], the Bendler-Shlesinger
law [48], and the Avramov law [49].

logh = B + M log(e W(E)exp (+ b uE u)dE) (C8)

B = loghc – M log(b e W(E)dEDt ) . (C9)

In this paper we treatB as a constant in order to focus
on the temperature dependence of the second term on
the RHS of Eq. (C8). Discussion of the temperature
dependence ofB is reserved for future work.
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