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A kinetic theory of glasses is developed us-
ing equilibrium theory as a foundation. Af-
ter establishing basic criteria for glass for-
mation and the capability of the equili-
brium entropy theory to describe the equi-
librium aspects of glass formation, a mini-
mal model for the glass kinetics is pro-
posed. Our kinetic model is based on a
trapping description of particle motion in
which escapes from deep wells provide the
rate-determining steps for motion. The for-
mula derived for the zero frequency viscos-
ity 7(0,T) is logn(0,T) = B—AF(T)KT
whereF is the free energy ant the tem-
perature. Contrast this to the Vogel-Fulcher
law log (0,T) = B + A/(T —T,). A notable
feature of our description is that even
though the location of the equilibrium sec-
ond-order transition in temperature-pressure
space is given by the break in the entropy
or volume curves the viscosity and its
derivative are continuous through the transi-

tion. The new expression fa§(0,T) has no
singularity at a critical temperaturg as in
the Vogel-Fulcher law and the behavior
reduces to the Arrhenius form in the glass
region. Our formula fom(0,T) is discussed
in the context of the concepts of strong and
fragile glasses, and the experimentally
observed connection of specific heat to
relaxation response in a hatogous series

of polydimethylsiloxane is explained. The
frequency and temperature dependencies of
the complex viscosityy(w, T), the diffu-

sion coefficientD (w, T), and the dielectric
responses(w, T) are also obtained for our
kinetic model and found to be consistent
with stretched exponential behavior.
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1. Introduction

In this paper we first critically review the entropy

criterion, while Sec. 1.8 makes the observation that the

theory of glasses. After defining a glass in Sec. 1.1 we fluctuation-dissipation theorem provides quantitative in-
show in Sec. 1.2 the need for an equilibrium thermody- sights into the connection between the equilibrium and
namic theory of those materials that form glasses. Sec.kinetic properties of glasses.

1.3 gives our reasons for believing that the vanishing of
the configurational entropg, or at least the entropy

The kinetic theory is developed in Sec. 2. In Sec. 2.1
we pass from phase space to configuration space and

reaching a critically small value, is associated with glass gain an insight into the tagogy of configuration space.

formation. Sec. 1.4 describes briefly the many experi- In Sec. 2.2 we use the principle of detailed balance to
ments that support the entropy theory of glass forma- evaluate the transition rate constants of the master equa-
tion. Sec. 1.5 offers a critique of equilibrium theories. In tion describing minimal models of glass formation. In
Sec. 1.6 the suggestion is made that$ge 0O criterion Sec. 2.3 using a trapping model for the phase point we
can be replaced bg = S,. S, is a small critical value  define these minimal models and derive their associated
of the entropy which is dependent on the time scale of (master) equations. Sec. 2.4 contains derivations of the
the experiment but is positive even for infinitely long zero frequency diffusion coefficiei? (0,T) and com-
time scale. Sec. 1.7 contains qualitative insights into the plex viscosity (0,T), while in Sec. 2.5 frequency
kinetics of glass formation arising from th& - O dependenb (w, T), n(w, T) and the dielectric response
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¢(w,T) are obtained. These quantities each depend onallows us to extrapolate equilibrium quantities through

the distribution of well depthdV(E). This quantity the glass transition to see how the “negative entropy”
W(E) = exp(&/k) is discussed in Sec. 2.6 where viscos- and “volume less than crystal volume” catastrophes are
ity is shown to be a function of free energy. Finally, avoided even when the experimental relaxation times are
Sec. 3.1 discusses our results while Section 3.2 offersprojected to be infinite. For polymer glasses the sharp

some conclusions. leveling off of the experimental thermodynamic quanti-
ties must also occur in a correct equilibrium theory. This
1.1 Operational Definition of a Glass either is a second-order transition or it approximates

one. Either case allows us to calculat&do which the

We define a glass to be a material which is an ordi- T, tends in very long time-scale experiments.
nary liquid at high temperatures and whose thermody-
namic extensive quantities, volumé& and entropys,
fall out of equilibrium as we lower the temperature past
some temperaturg, which depends on the rate of cool-
ing. AboveT, the relaxation times associated with vis-
cosity are less than the time scale of the experiment,
while below T, they are greater. The above definition
describes the formation of a crystal as well as a glass so

we augment our definition by requiring that the exten- . i .
. ) . . simply evaluates the partition function and then the two
sive thermodynamic quantities be continuou§ aand . . )
. equations of stat¥ (T, P) andS(T, P). It is required, of
that there be no change of spatial symmetry as we cross

. X A . course, that the important characteristics of the
T,. This operational definition immediately suggests a . o .y
. . A molecules be taken into account, at least within a mini
number of questions which must be answered if we are A .
to understand glasses. 1) What are W@ ,P) and mal model. This minimal model (the simplest model
S(T.P) e uatior?s of sta{te on the hiah tem ’erature side which retains the essence of the problem) must have
of 'I:'? z)q For a given rate of coolgi]n WE does the both intermolecular energy to allow for volume changes
9 - 9 g. why and intramolecular energy to allow for temperature de-
glass transition occur at one temperatdigrather than pendent shape changes of the molecules. The lattice
some other te_mperature? 3) What are the ther.mOdy_model of Gibbs and Di Marzio [3-5] (GD) is a minimal
namic propertlgs well belowly where the relaxation model for polymers which incorporates an intermolecu-
times for diffusion of molecules are so long that some .
. lar bond energ¥, which regulates the number of empty
degrees of freedom are frozen out and only oscillatory lattice sites (volume) and an intramolecular stiffness
i ? Experimentally the glass is known to :
motions occur p \ g
. . : . . .~ energyAe, which controls the temperature dependent
behave like an elastic solid. 4) What is the viscosity : o
) . shape changes. When this was done within the frame-
1n(w,T,P), wherew is frequency? The first three ques-

k . . L work of the Flory-Huggins (F-H) approximation it was
tions are concerned exclusively with the equilibrium . o

. discovered that a second-order transition in the Ehren-
properties of glasses.

fest sense was obtained and thatTi{e) line separating
the liquid state and the glassy state was given by the
vanishing of the configurational entropy

4) An equilibrium theory is a necessary prerequisite
for an understanding of the kinetics [7].

1.3 Vanishing of Configurational Entropy is the
Thermodynamic Criterion of Glass Formation

Once one is convinced that the equilibrium proper-
ties of glassy materials exist there are no options. One

1.2 Necessity for an Equilibrium Theory of Those
Materials That Form Glasses

There are four bona fide reasons to formulate an S(T2, P2) = 0. @)

equilibrium theory of glasses [1, 2]. They are:
The basic physics behind glass formation in polymers is

1) Glasses have equilibrium properties abdy@and  as follows. At high temperatures, because of the (semi-)
well below T It is sensible to ask what they are. flexibility of the polymers and the large numbers of
holes, there are many ways to pack the molecules
tion was proved in Ref. [2]. Therefore, an equilibrium together in space. At these temperatures the _interfer-
theory is needed for the low temperature phase which €NC€S among the molecules are not of the kind that
we know is not a crystalline phase. Of course, thermo- Préevent the molecules from taking up their preferred
dynamics is also needed to describe the low temperatureShapes; if the internal energy associated with shape

metastable phase of those materials that can crystallize.E: then the probability of observing shapés propor-
tional to exp(-BE). As we lower the temperature the

3) An equilibrium theory is needed [3-5] to resolve  configurational entropy approaches zero. The individual
Kauzmann's paradox [6, 7]: An equilibrium theory molecules now can no longer continue to achieve their

2) The crystal phase is not ubiquitous. This proposi-
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Boltzman shapes (the shapes implied by the Boltzman Instead the molecules are stuck in their zero or low
distribution of internal energies) for as the mathematics entropy contorted “random walk” unaligned state [2].
show this would imply tha& = 0, which is an impossi-

bility. Instead the molecules are frustrated [8] by their A Critical Entropy for Glass Formation

neighbors from achieving their individual Boltzmann

shape distributions and at lower temperatufes=(T,) The configurational entrop for polymers is easily
characteristic of the glassy region the distribution of evaluated in the F-H approximation [3-5]. More gener-

shapes of the molecules is given by the Boltzmann dis- ally, for non-polymer as well as polymer systefsis
tribution atT,. defined as the total entropy minus the (proper extrapola-

tion of) vibrational entropy. The volume on thg(P)

line determined from Eq. (1) is not constant; neither is

the number of holes in the lattice model. In fact, the
d- configurational entropy can be expressed as a function,

ing of the isotropic to nematic phase transition occur- (f:No), of the fraction of flexed bonds, and the num-
ring in a system of rigid-rod molecules. At low concen- P€r of holesno. This can be seen clearly from the ex-

trations of an isotropic distribution of rigid-rods the ~Pression for the partition functioQa

entropy is large because the rigid-rods have both orien-

tational and translational freedom. However, as the Qu = 2 Q(f,no) exp(-BE(f, no) - BPV) (2)
rigid-rod concentration increases these freedoms begin fno

to disappear until at a critical concentration there is no where the volume i¥ = C(xn, + no), C being the volume
longer any freedom for the rigid-rods to rotate or trans- of a lattice sitex the D. P., andh, the number of polymer
late provided only that the distribution of orientations is molecules. The sum is over dln, such that2(f, no)
random. This is the point where the configurational en- = 1. Since the use of the maximum term is legitimate
tropy approaches zero (there may be small pockets [4, 5] for this system we havg(f, no) = kin Q(f,no). The
where a trapped rigid-rod can partially rotate or trans- condition S(f,n;) = 0, or alternatively2(f,ny) = 1,
late slightly). One can gain much insight into this prob-  dividesf,n, parameter space into the larfye, region

lem by packing pencils or soda-straws at random on a for which there are large numbers of configurations
table-top (this is the two dimensional problem) or piling whose numbet2(f,no) is given by exp&(f,ny)/k) for
together rigid sticks obtained from pruning one’s garden each set of value§,n, and the smalff,n, region for
(this is the three-dimensional problem). It immediately \which there are very few configurations becaGse 0
becomes obvious that there is a critical density above in this region. Bottf andn, vary along theT (P) transi-
which one can not go if the rods are to remain isotrop- tion line which separates the liquid from the glass phase.
ically distributed in space. This critical density is given Below T, the values of ,n, are those which obtain b,
approximately byw = C/x, wherex is the asymmetry  p, when we cool at constant pressure.

ratio of the rods and is the volume fraction of rods. If we vary pressure below the glass temperattie t
The constan€ is about 4 for one lattice model [9] and equi“brium values of bothf and n, Change to those

8 for another [10]. For straight rigid-rods the system has values appropriate to the neW o, P, pair. Although

a way out of the packing difficulty; the rods can align the entropy is zero in the glassy region this only means
and do so forming the nematic phase [IThe ordered that lim(&/N) = 0 as thesize of the systenN — .
phase has a larger entropy than the disordered phase There can be many allowed configurations bel@yv
because as the reader can readily verify by a simple consistent with this condition and this means that there
table top experiment (partially) ordered rods gain both s sufficient mobility to allown, andf to approach their

Liquid Crystal Frustration

This interpretation is strengthened by our understan

translational and rotational freedom! new equilibrium values when pressure is changed. It is
important to realize that, is not a constant in the glassy
Packing of Semi-Flexible Polymers region. Therefore, critical volume cannot be a criterion

for glass formation.

Semi-flexible molecules also have the option of align-  Since two independent equations of state (i.e., the
ing. There are two cases. The first easily understood PVTand theSVTequations) completely characterize the
case is when the straight shapes are also the low energythermodynamics, within the accuracy of the lattice
shapes. In this case we form either crystals or liquid model calculatiorthere can be no other thermodynamic
crystals. The second case is where the low energy shapecriteria of glass formation other than the vanishing
is some contorted “random walk” shape. Then straight- of the configurational entropy,.$ 0. This important
ening the molecules in order to pack them in parallel conclusion is supported by arguments for a relation
array would raise the energy and not be preferred. betweenS and the viscosityn (T,P) [3,12]. The
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physical idea for this connection is very clear. If the wheremis the total mole fraction of diluent expressed
number of configurations becomes smaller and smaller in terms of mole fraction of monomers, andis the
as we approach the glass temperature from above,number of flexible bonds per monomer. One notices the
flow—which is a moving or jumping from one allowed universal character of the prediction. Item 5) predicts
configuration to another—becomes more and more dif- thatT, vs pressure curves have horizontal asymptotes at
ficult and consequently the viscosity becomes larger and high pressure. On the other hand, the free volume
larger. This suggests that the configurational entropy theory which assumes that the glass transition occurs
approaching zero is the universal criterion for glass for- when the hole fraction reaches a critically small value
mation We now quantify the implications of the above (usually 0.025) predicts a vertical asymptote.
statements. In 8) the specific heat change®tfor a large molec-
ular weight polymers is given to within 10 % by [21]
1.4 Evaluation of T, for Polymers from the S =0
Condition AC, = Rf(1-f)(Ae/kTy)* RTyAa(4-TyAa/0.06)

If we identify the glass temperature as the point at + 0.05TyAaC,(Ty), (5)
which the configurational entropy equals zero then
whereR is the universal gas constahts the fraction of
S(T,P)=0 (3) flexed bonds afly, A« is the change in the thermal
expansion coefficient as we pass through the glass tran-
sition, andC,(Ty) is the specific heat just belowg.
Notice that this is a no parameter prediction sifge
Aa, Cy(Ty) are known from experimentde/kTy is
1) T, vs molecular weight for linear polymers [1, 3]. determined from the condition th&(Ty) = 0, andf is
a known function of onlyAe/kT, (f = 2exp(-Ae/KTy)/
[1+2exp(-Ae/kTy)]. In 2) the glass temperature is pre-
3) Tqvs copolymer composition [15]. dicted to rise as wdower molecular weight of rings in
4) T, vs blend composition [16, 17]. accordance with experiment. This is purely an entropy
effect [13, 14] arising from the observation that a ring
5) Tgvs pressure [18, 19]. of molecular weighk has more entropy than two rings
6) Ty vs cross-links in rubber [20]. each of molecular weight/2. Thus a bulk system of the
7) T, vs strain in rubber [20]. larger rings, since it has the larger entropy, must be
cooled further to reach th& = 0 condition which
definesT,. It should be noted that the fits of theory to
9) Ty vs plasticizer (diluent) content [22, 23]. experiment have all been made with the original Gibbs-
Di Marzio theory [4, 5]. We have not needed to adjust
In all cases we obtain reasonable fits to the experi- the theory to account for new experimental data.
mental data. There are several interesting aspects to Finally, we should remark that a perfect fit to exper-
these comparisons. First, there are essentially noiment would require that a) the F-H calculation is
parameter fits to experiment since the model parametersperfect. It is not, because the statistics are approximate
are determined by other independent measurements. Inand because the molecules are modeled imperfectly; b)
item 1) of the above list we fit to the glass temperature that the experimental data is excellent, including the use
at infinite molecular weight in order to determine the of well characterized polymer material; ¢) that kinetics
stiffness energy e (one parameter). In 5) we need to have no sensible effect on the comparison with experi-
assume how the volume of a lattice site varies with ment. We would argue that since kinetics are important,
pressure (one parameter). the remaining theoretical pre-perfect accord with experiments would be proving too
dictions involve no parameter fits to experiment. much. We are predicting the underlying transition tem-
Each class of experiment illustrates a feature of poly- peratureT,, and the relation betweén and the experi-
mer glasses. Item 9) illustrates the colligative-like prop- mentalT, requires further elucidation. We should note
erties of glasses. The initial glass temperature depres-that our theory predictd, and notT, Since in our
sion by low molecular weight diluent is predicted [23] equationsT, appears only in the dimensionalless forms
to obey the equation AelKT, andE/KT,, if the predictions are correct far,
and if T/Ty depends only on the rate of cooling, then the
predictions forT, will also be correct. Our good fits to
ydTN,/dm = —3T, 4 experiments suggest thay/T, is a constant off, and

can be used to determifig. We have done this for nine
separate classes of experiments on polymers:

2) Ty vs molecular weight for ring polymers [13, 14].

8) AC,atT,for large molecular weight polymers [21].
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Ty are not very different; or some combination of the of equilibrium with loss of ergodic behavior. There is a
two. A question we have not examined is “If the criterion sense in which a system is never ergodic, even at high
for glass formation i§. - S, how well does it predict  temperatures. To see this for the case of polymers
glass temperatures?” It may suffice f&y, to be small consider a polymer dfl monomers which we model as
(see below). Mention should also be made of the a self-avoiding walk (SAV). An estimate of the number
attempts to predict the glass temperature of a material of configurations of one polymer molecule, assuming a
by simply noting the chemical structure. Figure 10 of cubic lattice is given [25] by 4.8V >> 4N = 102N,

Ref. [17] and Fig. 6 of Ref. [24] are remarkable and For N = 1000 which is a small molecule for polymers,
suggest that further progress can be made. In both ofthe total number of configurations that can be sampled

these predictions an entropy criterion is used. during the lifetime of the universe which is about
10" years is 1& moves/sx 1000 monomers< 3.6 X
1.5 Critique of the Correct Equilibrium Theory of 10's/yr X 10 yr = 3.6 X 10, This number is so much
Glasses smaller than 1%° that we see immediately that no sys-

tem is ever ergodic. Obviously, effective ergodic behav-

An equilibrium theory must satisfy the following ior over some time interval is the relevant concept. By
criteria: falling out of equilibrium we mean nothing more than
that there are certain correlated motions of the
molecules that occur with less frequency as we cool the
system. At the glass temperature and below they are so

2) It must explain the ubiquitous nature of glass rare as to be not measureable. In general one expects
formation. that the glass temperature depends on the particular
correllated motion being used to monitor it as well as
the rate of cooling.

Under 4) above we have the happy circumstance that
the same F-H lattice model that was used for glasses
4) All predictions must be correct. Since the lattice also predicts the formation of liquid crystals. As On-
statistics used for glasses are applicable without changesager originally observed [11], the nematic phase of
to rigid rod molecules, if the theory is applied to liquid liquid crystals occurs because of the increased difficulty
crystals the predictions for this class of materials must of packing rigid rod molecules together in space as we
also be in accord with experiment. increase their concentration. Thus, the isotropic to
nematic transition in liquid crystals occurs because it is

entropy driven—configurational entropy driven. The
nematic liquid crystal phase occurs for the same reason
We believe we have done reasonably well with regard as glasses and the correctness of the F-H calculations for
to criterion 1) as the previous section indicates. |iquid crystals argues for their correctness for glasses,
Criterion 2) may be met by first defining the config- and conversely. The transition from random order to
urational entropy for all materials as the total entropy parallel alignment for a system of plate-like molecules is
minus the extrapolation of the vibrational entropy. Any also entropy driven [9] A|though the decrease in con-
method of evaluating the partition function from first figurational entropy drives the transition in all three
principles which gives the proper equilibrium behavior cases the results are somewhat different. Rods and
aboveTy is viable. One would then identify the glass plates have a way out of the packing difficulty; they can
transition as the place whefg becomes smaller than  align, therebyincreasingthe configurational entropy.
some critical value as we cool the system. The following Rods lying in parallel with some freedom about the
systems need to be examined for their glassy behav-director have a higher configurational entropy than a
ior: (a) Polymer glasses, (b) low molecular weight random packing of rods that is up against its dense
glasses, (c) The classic inorganic glasses, (d) liquid packing limit. The molecules forming a glassy material
crystals, (e) systems composed of plate-like molecules, may not have this option. To see this, suppose the lowest
(f) spin glasses, (g) plastic crystals, (h) metallic glasses, energy shape is chosen to be such that the molecules, if
and (i) gels and thixotropic materials. A common fea- they each have this shape (and if we specify that the
ture of these diverse materials is that they each show packing leaves no lattice sites unoccupied), cannot pack
frustration-the molecules, or spins, are each preventedjn regular array on a lattice; the majority of polymer
from achieving their preferred low energy shape by the shapes are of this type [2]. Then alignment at low tem-

interferences of their neighbors. See below. peratures is not favored and the material is stuck in its
Under 3) we must be careful not to equate falling out glassy phase.

1) Accurate predictions of thermodynamic quanti-
ties without multiplication of parameters.

3) It must explain why glasses fall out of equi-
librium as the glass temperature is approached from
above.

5) It must provide a foundation for kinetic theory.
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Other Entropy Theories

It is important to improve on theoretical predictions
of the equilibrium properties of glass forming materials.
One can not expect that the Gibbs-Di Marzio theory
which is an elaboration of the Flory-Huggins lattice
model is the final word. Improved equations of state
would permit more critical tests of the entropy hypothe-
sis to be made. An improved theory should derive the
P-V-T andS-V-T equations of state to equal accuracy.
Atheory that gives a po@-V-T equation of state is sure
to give undue stress to imagined implications of the
P-V-T equation of state. The theory must allow the

do with the concept of “percolation of frustration” as a
criterion of glass formation. As an entree to this problem
we express the configurational entropy as a function
S(f,ny) of the two order parametefs(the fraction of
flexed bonds) and, (the number of empty lattice sites).
The equation

S(f,no) = kinQ(f,ng) =0 (6)
dividesf, n, parameter space into two regions, the large
f,no region being the liquid region and the line defined
by Eq. 6 givesf,n, values appropriate to the glass.
Because there are spatio-temporal fluctuationsand

molecules to have shape dependent energies, since thesm, if we are in the liquid region just above the glass

are undoubtedly very important to glassification in poly-
mers. We stress that an improved theory may not show
an actual underlying second-order transition as ours
does (there may be a rounding), but it should approxi-
mate one.

Two theories that include the effects of stiffness en-
ergy are those of Gujrati and Goldstein [26] and of
Milchev [27]. We accept that Gujrati has calculated a
rigorous lower bound to the entropy for a two dimen-
sional square lattice. This means that we must modify
our criterion of glassification, vizSc — 0, to something
else.

We do not accept the Milchev criticism [27] because
his formula does not show the phenomenon of frustra-
tion which we take to be an essential feature of glassifi-
cation and, for rigid rods, an essential feature driving the
isotropic phase towards the nematic phase. Specifically,
in the Milchev theory individual polymer chains are
never prevented from achieving their Boltzmann
distribution of shapes which are given in the simple
nearest neighbor model by= (z—2)exp(—kT)/[1 +
(z —2) exp(-A&/kT)] wherezis the coordination number
of the lattice. In the Gibbs-Di Marzio model this distri-
bution is realized abov@,, but at lower temperatures
each chain is frustrated by its neighbors from achieving
its Boltzmann distribution of shapes. Instead, the distri-
bution that existed af,, P, persists as we lower the
temperature at constaf. The number of holes also
remains constant below, while in the Milchev theory
it continues to decrease. The fact that experimentally the
volume versus temperature curve for a glass parallels the
volume versus temperature curve for a crystal supports
the view that the number of holes is constant belayy
It must be mentioned however that some computer cal-
culations exist that support the Milchev formula [28].

1.6 Modification of the S, = 0 Criterionto S.=S;0

One reason for the configurational entropy to be

region there will be “clusters” of polymer for which the
f,ny values are appropriate to the glassy state, and clus-
ters for which thef,n, values are appropriate to the
liquid state. As we lower the temperature these glass-
like clusters grow until they span the space or percolate.
However, as is characteristic for percolation [29] there
will be pockets of liquid-like clusters (regions of mate-
rial for which the fn, values are appropriate to the
liquid phase). The glass temperature would be defined
as the highest temperature for which there is percolation
of the glass-like structures. Because of the existence of
the liquid-like pockets thisTy would correspond to a
configurational entropy somewhat greater than zero.
This percolation view of glasses receives support from
experiments which show anomalously high mobility as
the temperature is decreased through the glass transition
[30]. The unexpectedly high mobility seems to arise
from pockets of fluid dispersed in a glassy matrix.

The percolation argument can be quantified by allow-
ing f and n, to vary in space. Consider the following
diagram (see also Fig. 1).

10

Here the numbers indicate positions in space (cells)
and the dashes above a given number denote values of
f(r),no(r). The line connecting the 10 places is one
particular enumeration of,n, in space. Each cell
containsn lattice sites and there ai/n cells whereN
is the total number of sites on the lattice. To obtain the

somewhat greater than zero at the glass transition has taotal partition function we take the product of the
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partition functions for each cell. Thus, show kinetic behavior that is not simply vibrational
behavior (crankshaft motion [31], for example},o
Q= IIq(r) (7 would be that value of entropy for which the glassy

regions first percolate as the temperature is lowered.
where the product is over space, and
1.7 Qualitative Insights Into the Kinetics of Glass
q(r) = e (f(r), no) exp(-Bu(f(r),noy)) (8) Formation Arising From the S — O Criterion

where the summation is over akrmittedvalues off, ng We wish to determine how the kinetics relates to the
at the cell labeled byvalues on the high side of the line  configurational entrops as we cool our system. Now,
S(f,ng) = 0) inf, ny parameter space. Itis evidentthatall how one speaks about entropy depends on the kind of
possiblef(r), no(r) values are thereby accommodated. It ensemble one is working with. We have used [4, 5] the
is easy to see that the value of entropy calculated from Canonical Ensemble for whic&(T)/k = Xf;Inf; but

this procedure is larger than that calculated from Eq. (2) because the system size is large we can also &(ite/

for the simple reason th& includes a sum over many  k=InW(T) whereW(T) is the number of configurations
paths whileQ, does not include such a sum. This argu- whose energy is the average enekffl) determined

ment suggests that we should replace $he. O crite- from the Canonical ensemble. This enables us to speak
rion for the occurrence of the glass transition by the less in terms of the microcanonical ensemble.
stringent criterion Thus, as we lower the temperature the number of
configurationdV decreases so that they are farther apart
S(To,Py) - So 9) in phase space [that part of phase space for which the

total energy isE(T)]. The process of diffusion as well

where S, is some critical value of the configurational as the process of flow can be viewed as a jumping out
entropy. This is in accord both with the ideas of perco- of a deep well, a subsequent wandering about the phase
lation [29] and with the experimental observation that space between deep wells and a dropping into a deep
small pockets of polymer within the glassy region can well different from that from which it had exited. The
process then repeats itself. Obviously this process be-
comes more infrequent at lower temperatures resulting
S\(f \Y )>0 in increased viscosity and decreased diffusion. There

cAt» 70 are several reasons for this. First, the deeper the well the
longer the time to escape it—wells are effectively
deeper as we lower temperature; second, the further
apart the wells are the more time it takes for a phase
point to wander from one well to another; third, the
further apart the wells the larger the probability that the
wandering phase point will fall back into the well it has
just escaped resulting in no net flow. See Appendix A
for a discussion of this effect. The picture we are using
is a variant of the trapping model with the difference
that instead of an atom or an electron being trapped we
are trapping the phase point (or configuration point
[32]). In Sec. 2 we shall quantify these ideas.

Fig. 1. In the lattice model version of the entropy theory of glasses

there are two global order parametefrsthe fraction of bonds flexed 1.8  An Insight From the Fluctuation Dissipation
andV,, the fraction of empty lattice sites. The glass transition occurs Theorem

when these quantities which decrease with decreasing temperature

and increasing pressure have values which make the configurational Whenever there i thermodvnamic oh transition
entropyS(f, Vo) equal to zero. However, sindeandV, have spatial eneve ere Is a thermodynamic phase transitio

and temporal fluctuations we know that as we approach the glass from the fluctuation-dissipation (F-D) theorem [33] suggests
above there will form pockets of material for which the order parame- that dissipative quantities have the same discontinuities
ters are appropriate to the glass imbedded in a sea of liquid with gs the underlying thermodynamic phase transition: A

regions off andV, appropriate to the liquid state. Percolation theory simple example of a F-D theorem is the Green-Kubo
tells us that when these pockets connect up into an infinite cluster [34] relation

there will remain pockets of liquid. If we define the thermodynamic
glass transition as the percolation point then the configurational *
entropy will be greater than zero at the transition temperature. D= (1/3) <V(O) : V(t)> dt (103-)
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which relates the diffusion coefficieft to the autocor- Since the kinetic energy is quadraticgrthe integration
relation function of the particle velocity. More gener- overp is straightfoward. In polymers, evenH is pair-
ally the F-D theorem relateg (defined as the response  wise additive E is not [35] because the coefficients of
of a material at(,t) arising from an impulsive force at  the quadratic terms iK are in general dependent gn
(0,0)) to the correlation in fluctuation at these two The simplification of Eq. (11) allows us to work exclu-
space-time points [25]. Since the fluctuations of a sys- sively in configuration space. This is generally repre-
tem at equilibrium show a discontinuity of the same sented as a multi-well potential energy surface. As one
character as the thermodynamic extensive variables, soapproached, from above the wells effectively become
do also the dissipative quantities. Thus, for a system very deep because of thekI/term. One then talks
undergoing a first-order liquid to crystal transition the about flow as a motion from one deep well to another
viscosity n(w,T,P) will show a discontinuity as a  deep well via the higher energy continuum.

function of T,P since the volume and entropy do. Here, however, we wish to emphasize a different
Similarly, for a system undergoing a second-order tran- aspect of the phase spacedtmgy. Consider the config-
sition we can expect that the viscosity will show discon- uration space oN identical noninteracting hard point
tinuities in slope since the volume and entropy do (see particles on a line of length. The partition function is
later in this paper however). There are many examples in given by

the literature of dissipative quantities such as viscosity,

diffusion coefficient, electrical conductivity, particle Q=LYN!. (12)
conductivity and thermal conductivity which show

breaks as a function of temperature as we pass through The volume of configuration space for this system is
the glass transition. However, it is also true that a given byL". Now consider the case where the particles
genuine falling out of equilibrium will also cause the each have a diametel. The partition function is

same kind of behavior. It is uncertain how one distin-

guishes between the two effects. Movement of the tran- Qqu = (L —Nd)Y/N! (13)
sition point as a function of the time-scale of the exper-

iment seems not to be a distinguishing characteristic The ratio of the two phase space volumes is given by
since this happens also for systems known to have

genuine first-order transitions-supercooling being an Qu/Q = (1 =Nd/L)V = exp(-NZ2d/L)
obvious example.
More generally the frequncy dependent diffusion = exp(-¢N) , (14)

coefficient is given by
where ¢, being the volume fraction occupied by the
particles, is on the order of 1. Sinkis on the order of
Avogadro’s number we see that the fraction of the
volume of phase space occupied by the extended parti-
cles is infinitesimally small relative to the unconstrained
2. Kinetic Theory of Glasses particles. Based on this picture a point in configuration
space wanders on the finest of gossamer threads [36]
which pervade théN-dimensional hypercube of phase
space as a fine network whose total volume is an
infinitesimal fraction ofL". The application to glasses is
in the observation that as we low€the effective value
of d increases, resulting in even fewer and finer
Q= exp(—(K{ .qg,p- -} gossamer threads for the phase point to travel on. Thus,
{g.p-} not only are the number of paths (threads) between two
phase points fewer as we decredséut also as one
+ E'(. .q. .))KT) IIdg; I1dp traverses a given thread the potential energy minima are
effectively deeper and the barriers effectively higher.
— AN _ _ _ The above discussion serves to show how important it
=4 f{ 4.1 expC-E(.. g . D/KT) [1dg, (1) is to know how the deep wells are connected to other
wells. In order to solve this problem we need to con-
whereq, p; are the generalized position and momentum struct a model of the tapogy of configuration space
coordinates of th&l particles K is the kinetic energyg' and to calculate the transition rates for jumping from
is the potential energy and the thermal wavelength.  well to well within this model.

D(w, T) = fo w exp (+iwt) (V(O)v(t)) dt.  (10b)

2.1 A Remark on the Topology of Phase Space

The potential energy surface of a liquid
E'(..q..) appears in the partition functia@
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2.2 Detailed Balance Makes A Significant State-  horizontal bonds of Fig. 2 is compounded from those of

ment Concerning the Kinetics of Glasses Fig. 3.
Boltzmann’s law gives exp(E /kT) as the fraction of
time that a system spends in stateut it does not say Nj\ o
how often the system jumps from statéo statej. To —--- O o O -
determine this we use the principle of detailed balance 1 ﬁl
in the form
Niaij = NjO[ji , aij/aji = Nj/Ni b_]\L TAJ
= exp(-E —EJKT), (15) 4
M

whereg; is the rate of jumping from stateto j andN;
is the fraction of time a system spends in stat@a using
Eq. (15) one must first decide how the energy is appor- Fig. 2. Our minimal model for describing the kinetics of glasses. The
. . f d and back dt it For d points are points in configuration space and the connecting lines
tloned_ II.’ltO Orwar an ackward fransiuons. C_Jr _ee_:p represent allowed transitions between points. The horizontal lines
wells it is sensible to assume that all of the barrier is in ratesq; for traveling to the right ang; . ; for traveling to the left
preventing the phase point from jumping out of the well. represent travel of the configuration point among the “configurational
It does this at a rate given by#Awherer is the average sea” of shallow wells. The vertical lines connect the “configurational
time to exit the well. If we also recognize that the prob- sea” to the deep wells, the length of the vertical line being propor-

bility of i . t of th i tial in ti tional to the potential energy depth of the well. The rate of escape
abllity of jumping out ot the well IS exponenual in ime from the deep wells igy and rate of capture is. When the configu-

[37] we have ration point is in a deep well there is no motion; motion occurs only
when the configuration point is cruising the configurational sea of
P(t,7) = 1-—1exp(_t/7-) and shallow wells. This trapping model allows us to infer an important

contribution to the complex viscosityy*(w, T), the diffusion coeffi-

l=b exp(= [ —EJ/KT) (16) cientD(w, T) and dielectric response(w, T).
— M —BHTH )

whereP is the probability density of exiting the well at

time t. It is imagined that once the phase point has
escaped the well it wanders around in the configura- >
tional sea of the high energy region of phase space until _
it falls into a low lying well, starting the flow processall ™ _ .,
over again. This configurational sea consists of many , "~
shallow energy wells, so it is expected that jumping out ~—

of the deep wells are the rate determining steps. Pl

2.3 Diagrams for Our Minimal Models and Their
Associated Equations Fig. 3. The set of horizontal lines and their connecting points in Fig.
2 really represent the vastly more complicated diagram of Fig. 3. The
The diagram for our primary minimal model is dis- occupation probabilityy; of Fig. 2 is really the surN;; of Fig. 3 and
played in Fig. 2. This diagram is a contraction of a vastly the «a and B of Fig. 2 are compounded from the rate constants of
. . . . . Fig. 3. The net result is that theand 8 are much larger thah and
more complicated diagram but we believe it retains the ,7 Fig. 2.
essential features of glassy behavior. The points on the
upper line represent the multitude of shallow wells
while the horizontal lines connecting these points repre-
sent the transition rates between these wells. This set of The lower points represent the deep wells. Our view
horizontal lines and points represent the vastly more of what happens is as follows. At low temperatures the
complicated diagram of Fig. 3. At high temperatures configuration point is in one of the lower wells. After a
this “configurational sea” of shallow wells is where all long period of time it jumps out and wanders about the
the action is; The configuration point jumps rapidly configurational sea of upper wells until it falls into a
from well to well. The occupation numbét for well j low lying well. It then stays in this well for another long
in Fig. 2 is really the sum of the occupation numbers period of time until it jumps out repeating the process,
vertically above it in Fig. 3, and the transition rate forthe and so on. The situation at high temperatures as
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described in the preceding paragraph is very different.  However, Fig. 4f has a different structure entirely. In

There are so few deep wells relative to the number of a descent of the configuration point from the configura-
upper wells that they are unimportant; all the motion is tional sea into this structure it can get hung up in a
jumping among the upper wells. The rate constants for branch so that it may take a long time for it to reach
jumping out of these lower wells are much much smaller equilibrium. The other figures all equilibrate rather

than that for jumping back down into the well and than quickly.

those for traveling horizontally. By adjusting the ratio of The results of this paper will allow us to conclude

the rate constant for falling back into the deep well to that although Fig. 3 is rather simple it does catch the
that for traveling horizontally we can control the essential features of glassification.

accessibility that the configuration point in the configu- The Master Equations describing the minimal model

rational sea has for the deep wells. of Fig. 2 are given by the simple set of equations
The length of the vertical line connecting the deep
well to the upper well(s) is proportional to the well dN,/dt = — (aN; — B2N2) — biN; + AjM;

depth. These vertical lines represent many possible

paths in configuration space leading to the deep well. In

Fig. 4 we have listed some of the possibilities. Figs. 4c,

4d, 4e can each be shown to be equivalent to Fig. 4b. To

see this, one writes down by the methods of Ref. [38] —bN, + AM; (17a)

the set of equations corresponding to a given figure and

then one shows that they can be transformed to the set

of equations describing Fig. 4b. The rate constants in the dM;/dt = + N, — A M, (17b)

transformed set of equations are such that the occupa-

tion probabilities at each level are the same as those in

the untransformed figure. where the Greek symbol rate constants denote stepping
to the right @) or left (8) and the Roman symbol rate
constants denote stepping dows) or up A).

2.3.1 Going from Phase Space to Configuration

Space to Real Space We have already shown in Sec.

= % 2.1 that one can integrate over all the momentum vari-
c( ables of phase space so that we deal only with position

O/ variables (configuration space). We would like to go

further and deal with the smallest number of position

(o}
d e f

dN;/dt = (@-1Ni-1 = BiN)) = (N, — B+1Nj+1)

variables possible. We begin by supposing that there are
two separate noninteracting regions of space each with

a b Cc their own master equations

Fig. 4. The vertical lines in Fig. 2 represent many possible paths in dfj [dt = 2fro‘rj - 2fjo‘ir (183)
configuration space leading to the deep wells. In Fig. 4 we have listed

five possible paths to deep wells, or equivalently ways to decorate

each of the vertical lines of Fig. 2. It can be shown that diagrams b, ! — o S

¢, d, and e are equivalent to a. Thus, the diagram of Fig. 2 really df'/dt = 3’ — 3l (18b)
represents vastly more complicated diagrams formed by decorating

Fig. 2 by the diagrams of Figs. 3 and 4. Thus, the equations in the text

describing Fig. 2 have a wider applicability. However incorporation Wheref; is the fraction of systems in stgtande, is the

of Fig. 4f would require us to replaok; by a memory kernelinthe  rate of jumping from statg to r. Multiplying the first
equations describing the diagram. See text. equation byf ' and the second bﬁ{ we obtain

It can also be shown using the methods developed
previously [38] that Fig. 4b is equivalent to Fig. 4a.
Specifically, one can choose rate constants for the up-
ward and downward steps in Fig. 4a that are com- . ' . '
pounded from those of Fig. 4b in such a way that the = 2 3 f s (o B+ @'ady) — 2 ZFiF k(g B + @'y )
occupation of the bottom well in Fig. 4a equals the sum
of those in Fig. 4b in both the equilibrium and the flux . ,
determined [38] steady state solutions. = 23 Asi =2 2 (F)AKrs - (19)

d(flkfj )/dt = Ef'kfra,,- - Ef'kfjajr + Efjf'sa'sk— Efjf'ka'ks
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Or, if we relabel the indices so thét= (r,s) andi = aN/at = 92(DN)/ax? — 9(VN)/ax — bN + AN (22a)
(j,k) then we obtain
dNi/dt = SN; A — 2NiA, (20) oM/ot = + bN - AM, (22b)
where

which is the master equation for the composite system.
Notice that the complexiorN;, of the composite system

is the product of the complexion§, of the individual
systems, but the composite transition coefficients are
sums of the individual transition coefficients. These re-
sults are readily generalized by the process of induction
to a system consisting of any number of subsystems, the
only condition being that the subsystems do not interact
with each other. We again see that the complexion of the
composite system is the product of the complexions of
the individual systems, but the composite transition
coefficients are sums of the individual transition coeffi-
cients.

Thus, if we could find a smallest set of independently
interacting molecules we will have simplified our prob-
lem considerably. Fortunately there is a confluence of
intuition and experiment that suggest that this can be
done. First, what is happening at point a cannot be
influenced by what is happening at point b provided that
the two points are sufficiently far apart. So, there is a
smallest size. Second, this size seems to be very small
indeed. Stillinger, on the basis of computer modeling
and other considerations has concluded [39] that the
number of molecules involved in the basic diffusion step
is on the order of several molecules for simple van der
Waals systems. Perhaps a local density decrease allows  — vaN(t,x)/ox — bN(t,x) + A(X)N(t,x) (25a)

a molecule to jump out of a cage, or perhaps two
molecules interchange, resulting in a net flow.

As a result of these considerations we can maintain OM(t,x)/at = bN(t,x) — A(X)M(t,x), (25b)
that theN;, M; of Egs. (17) refer not only to configura-
tion space, but also to particles or quasiparticles in our where we have written atl, x dependencies explicitly.
3-d space. A connection is thus made between the Sincea andp are much greater than b we know that
trapping model of Di Marzio and Sanchez [32] who after jumping out of a low lying well the phase point
trapped the configuration point and the trapping model will travel extensively horizontally before being cap-
of Odagaki et al. [40] who trapped atoms. Of course tured by a deep well. Sindedoes not depend anand
trapping atoms implies trapping the configuration point is not a function of well depth the rate of filling the
and conversely. The context of the discussion easily de- wells is random. Thus the horizontal distribution of well
termines what kind of particle or quasiparticle is being depths which we assume to be random along the chain

D = (AX)¥a + B)/2 andv = (AX)(a—B).  (23)

D, v, b, andA can all be position dependent.
The rate constants are determined as follows. From
Eq. (15) we have

A =Dy exp(HE|KT), by = b, (24)

whereE; is the depth of the well. We argue that the
energy appears only as a barrier restricting the escape
from the wells-there is no attraction of the phase point
into a well. Thely are also all chosen to be equal be-
cause we can think of nothing that distinguishes them
from each other. Allowing they to be different from
the B, accounts for a drifting of the phase point towards
a region of phase space. This should be useful if we
impose an external field. If we assumexdependence
for « andB thenD andyv are constants and tl#éDN/gx?
term is the ordinary diffusion term. Our Equations now
ead

AN(t,x)/at = Do*N(t,x)/9x?

trapped. (see Fig. 2) is unimportant. WV(E) is the number of
Equations (17) can be transformed into a continuum wells of depthE then they are filled with a rate propor-
version by using tional toW(E). Over a large period of time the escaping

from wells is determined by botW(E) and the rate of
N () — N(t,X), Niaa () — N(tx+ AX), M, — M(t,X), escape (exp{ B |E|)) from individual wells. This
etc. allows us to replace the distribution of wells by wells of
one depth. In this case Fig. 2 becomes simplified even
a — aX), B — BX), a1 — a(x+ Ax), etc.  (21) further so .that the vertical Iinfes have the same length.
The equations now can be simply solved sidcaow
) has nox dependence. Using the method of moments on
we obtain Egs. (25) we find
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d{(N)dt==b(N)+A(M) obvious assumptions on the initial conditions we obtain
to first order in the drift velocity
d(M)dt=b{(N)-A(M) (26a)
(X) =(X(N+M))/((N+M)) = (A/(b+A)vt (28)
0 (XN =V AN) =D () + AN (= 00D = ((x = YN+ MY+ M))

= (A/(b + A))2Dt . (29)

?

d(xM)dt =b (xN) —A(xM) (26b)

d(x2N)/dt = 2D (N ) + 2v{xXN)
—b (XN) + A(X°M)
d{(x®M )dt = b (x?N) —A(x2M) . (26¢)

The nice thing about these equations is that we can
solve thenth pair of equations for the nth order mo-
ments in terms of the lower order sets. We will exploit
this fact in the next section.

Finally, considering only the sequence in time of the
occupation of the deep wells by the configuration point,
with bj=b, 3N, = nN, and assuming that horizontal
motion is so fast thalN, = N, the sum over thé\; in
Eq. (17a) yields,

ndN/dt = nbN +2AM, (27a)

dM;/dt = bN — A M, (27b)

Here the total number of shallow wells is n. Figure 5

displays the diagram associated with these equations. Fig. 5. I the « andg of Fig. 2 are very much larger than theand
One notes that Egs. (17), (22), and (25) are very Athen we can argue that the configuration point running about in the

similar to equations arising in modeling chromatogra- “configurational sea” sees an unbiased statistical sample of the wells

phy [41]. In that case the diffusion and drift terms before falling out of the “configurational sea” into any one of them.

model the behavior of the eluting material as it travels Thus if we are interested only in the sequence in time of occupation
Vi uting ! ! v of the wells by the configuration point the diagram of Fig. 5 suffices.

along in the mobile phasé(t, x) being the amount of |, the text the simplified equations describing Fig. 5 are obtained.
material in the mobile phase, whilsl(t, x) is the

amount of material adsorbed on the adjacent surface or
in pores [42].

Our minimal models are all now well defined and Notice that the diffusion coefficient is diminished by
deriving their implications is merely a matter of mathe- the factor A/(b+ A) (because from Eq. (24),
matics, albeit sometimes very difficult mathematics. A/b = exp(—IE;I/kT) and the wells are deep we will
The remaining conceptual problem, to which we now ignore theA in the denominator ofA/(b + A)). These
turn, is to relate the solution of these minimal models to equations have the obvious interpretation that every-
the frequency and temperture dependent complex vis-thing, both drift and diffusion, is being slowed down by
cosity n*(w, T), diffusion coefficientD(w,T) and the factorA/b which is the ratio of jump rates. As long

dielectric response(w,T). as the particle is in a deep well there is no activity. Any
resulting activity is proportional to the rate of escape,

2.4 Insights From Our Minimal Models: Deriva- exp(—IEI/KT), from the deep wells.
tion of D(0, T) And »(0, T) We now seek to further interpret this result.

The ordinary diffusion equation without sink&N/ot =
2.4.1 The Diffusion CoefficientD(0,T) When Dd°N/ox?) has as its Green's function the Gaussian
All Wells Have the Same Depth Equations 26 are  distribution (47Dt)Y?exp(—x%4Dt). In the probabilistic
easily solved for the moments. After some labor, with formulation of the diffusion equation this Green’s
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function has the physical interpretation of representing a Deit(0, T) = (AX)¥2(At)est

random walk as in Fig. 6a. There is no pausing between

steps of the random walk. However, the equations of our = (A/b)D = ((A/b)(Ax)%2At

minimal models have the interpretation that when the

particle is in a deep well there is no motion until, after = exp(4E; |/KT)(Ax)%/2At . (30)

a long time the particle escapes the well. Thus, in the

probabilistic interpretation of our minimal models our

physical process is represented by a random walk with 2.4.2 The Viscosityn(0,T) When All Wells Are

a pausing time between steps. The steps themselvefthe Same Depth In Eq. (30) we have taken the view

correspond to the horizontal motion characterized by that the paths traversed in configuration space are the

the diffusion constand while the pausing corresponds same for both the case of pure diffusion and that of

to the time spent in the deep wells. Thus, the effective diffusion with traps (See Fig. 6). This means that the

diffusion coefficient is only difference between the two cases is the time to take
each step. For diffusion with traps we write

Ateff = At + Atwe”, At << Atwe”. (31)

where At is the time spent in the traps between
jumps, whileAt is the time spent traversing the path in
the configurational sea (the time spent between jumping
out of one well and falling into the next well). Since
viscosity is inverse to diffusion we will assume that the
viscosity is proportional to the average time spent in the
deep wells. This notion is verified in Appendix B. Thus,

1n(0,T)/B o (t) = f tP(t, T)dt (32)
0
— 2 2
aN(t’X)/at Do"N/ox whereP(t,T) is the normalized probability density that
the configuration point escapes the well at time

bDN(t.X) +AX)N(t X When all the wells are of the same defR(t,T) is
( ’ ) ( ) ( ? ) easily calculated. The probabilityf (t,T) of the particle

IM(t,x)/at = bN(t,x) ~AX)M(t,x) being in the well at time is
V(t,T) = exp(-btexp(EI/KT))
= exp(-t/7); 7= b~lexp(+ EI/KT) (33)

f ° and the probability densiti?(t, T) for exiting the well
at timet is

P(t,T) = 0W/at = 7 'exp(-t/7) . (34)

The exponential approximation faF is a good one.
To see why consider the configuration point in a well.
It decays exponentially initially. This can be seen by

Iving th neric matrix ion to which th 27
Fig. 6. a) In the probabilistic interpretation of the diffusion equation S0 g the generic matrix equation to ch the set

aClat = DVZC the Green’s function represents a random walk with belongs

no pau_s_in_g t_ime betwm_een steps of th(_e random _w_alk. b) _In_ the dN/dt = AN (35)
probabilistic interpretation of the equations describing our minimal

model the trapping in deep wells corresponds to a pausing time . . .

between steps of the random walk. The spatial aspects of the walks areWhereN is the set K, M;) andA is the matrix of Egs.
identical in both cases. (27). We obtain [43]
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N = exp(+At)N(0) (36) The right-hand-side of Eq. (40a) is closely related to
the partition function. We develop the consequences of
and if we begin with one particle in one well we see that this in Sec. 2.6.

for small t we have our exponential decay. But when the  In Secs. 2.4.2 and 2.4.3 we presumed that the process
particle jumps out of this well the chance that it comes of flow could occur if only one particle jumped out of
back into the same well is very small since there are so its well. But suppose it is required that within a space of
many other wells. Thus, we are confident of our as- a given volume there needs to beparticles that have
sumed form [(Eqg. 34)]. However, it is stressed that Egs. simultaneously jumped out of their wells in order to

(27) should be solved rigorously to bolster the argument. have flow. It is shown in Appendix C that Eq. (40a) is

Equation (34) when substituted into Eq. (32) gives

n(0,T)/B o (t) = FtP(t,T)dt

= J' trtexp(-t/7)dt = 7 37)
0
which was to be expected.

2.4.3 n(0,T) When the Wells Are of Different
Depths However, solving the problem where the deep

generalized to
7(0,T) a (t™ = [b™ [W'(E)exp(+ |E /KT)dE]™
= [fW'E)7(E)dE]" . (40b)

This allows us to express the temperature dependence
of nas

logn(0,T) = B + Mlog[Jf W'(E)exp(+ |E I/KT)dE]
(40c)

wells are all the same depth is not the same as solvingwhereB andM are considered to be constants.
the problem for glasses since glasses have a distribution 2.4.4 D(0,T) When the Wells Are of Different

of well depths. We need to evaludét, T) for this latter
case and also calculate a new effective diffusion coeffi-
cient. P(t, T) is exactly calculable from Egs. (27) since
in the probabilistic interpretation the configuration point
jumps from well to well, and there is néox involved in
Egs. (27). A configuration point in a well of depth
sees only the barrier and therefore the probability that it
be in the well at timd is given by Eg. (33). LeW(E)

be the weight distribution for wells of depth. Notice
from Eq. (37) thatf W(E)P(t, T)dt = b™*W(E)exp(E/

kT) which states that the time spent in wells of leizel

is given by the Boltzmann factor weighted by the degen-
eracy factorW(E). This is in perfect accord with the
ergodic theorem. An estimate of the relaxation function
p(t,T) describing the exiting from wells can now be
made by weighting the distribution functiét(t,T) (see
Eq. (34)) for the occupation of the well of defiby the
weighting functionW(E).

p(t, T) = JW(E)P(t, T)dE/f W(E)dE,

= [W'(E)P(t, E)dE (38)
W'(E) = W(E)/fW(E)dE (39)
The viscosity becomes
1(0,T) = {t) = b f[W'(E)exp(+ |EI/KT)dE
= [W'(E)r(E)dE (40a)
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Depths We now seek to calculate the diffusion coeffi-
cient when we have a distribution in well depths. The
answer to this can be obtained by solving Eqgs. (27) or
(17), but we are unable to do this presently. Instead, we
argue that the diagram of Fig. 2 which is our model for
real glasses can be approximated under certain circum-
stances by the simpler diagram with all wells being of
equal depth provided we choose an effective well depth.
We choose for this effective well an effective rate con-
stantAe« given by
CEW)/Aer = EWHA . (41)

The form of Eq. (41) reduces to the proper limiting
form when there is only one well depth and additionally
allows the escape from very deep wells to be the rate
determining steps. Thé/ appear as shown because the
number of times a particle falls into a well of def#h
is given byW,. The argument for this is that as soon as
a configuration point escapes its well, because of the
large value oD while running about in the upper wells
it has exposed itself to the other wells, and becduise
independent ofx it falls into each well with equal
probability. If the number of wells of depthis W, the
configuration point falls into a well of enerdy, with a
probability W, and then tries to escape with a probabil-
ity proportional toA;. Thus, we know that\j is propor-
tional to the number of well of typgand the effective
diffusion coefficient for Fig. 2 is then given by

Deit = AeiD/b . (42)
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2.5 Evaluation of the Frequency Dependent
N(w,T), e(w, T) and D(w, T)

2.5.1 Evaluation of n(w,T) Equation (10b) has
its analogue in polymer physics The complex viscosity
is

(0, T) = G(w,T) = J

0

0

exp(Hwt)g(t,T)dt (43)

These relationships show clearly that non-Debye
frequency behavior occurs because there is a distribution
of relaxation times.

2.5.2 Evaluation of Dielectric Response
e(w, T) Granted the calculation of the complex vis-
cosity, the dielectric constant(w,T) can also be ob-
tained. Debye showed that if the dipoles are each imag-
ined to be imbedded in the center of spheres (one dipole
per sphere) that are in turn imbedded in a viscous fluid

and the frequency dependent shear modulus is definedof viscosity n then the dielectric response is easily cal-

as

G*w,T) =ion*(w,T) . (44)
At zero frequency we showed that
7n*(0,T) o (t) = J (trHexp(=t/r)dt=7.  (45)
0

But it would be wrong to identifyg(t,T) with the inte-
grand of Eq. (45). In fact since

f(lln D(tr ™) exp(—t/7)dt = 7 (46)

any value ofn would be permitted if the sole criterion
were that the integral equal Formulated in this way it
is obvious thatn = 0 gives the correcg(t,T) since it
correspondstto a Maxwell element. Thy&,T) is pro-

portional tof tP(t,T)dt and since the value @f(0,T) is
0

Gy we have

g(t,T) = Gy exp(-t/7) . 47)

This gives immediately
n*(w,T) = G(w,T) = Ger/(1 + iwT) (48)
n*=mn'-in", (49)
7' = Gor/(1 + 0?7 (50a)
n" = Gowrd (1 + w?r?) (50Db)

while for a distributionW'(E) of well depths we obtain

n*(0,T) = [W(E)Gor/(1 + iwr)dE (51)
g(t,T) = SW'(E)Goexp(~t/r)dE (52)
n' = [W(E)Go 7(1 + w?*r)dE (53a)
n" = [W(EN(L + w?r?)dE . (53b)
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culated [44]. Based on this result Di Marzio and Bishop
showed [45] that if the viscous fluid has a complex
viscosityn*(w,T) then the formula is a simple general-
ization of the Debye formula, the only change being that
n*(w,T) replacesn (0, T). Thus,

[e(0,T) —&(=T)[&(0,T)—&(,T)]

=1 +ion*(w,T)A)™? (54)
whereA is a dimensional constant. The plus sign occurs
in Eq. (54) because of our choice of the convention for
the Fourier transform as in Eq. (43). This is consistent
with Ferry’s [46] development of viscoelasticity for
polymers.

2.5.3 Evaluation of D(w,T) Equation (25a)
shows that the diffusion coefficie is a constant. In
order for it to have a frequency dependence we would
have to have had D (t—7) 9N/oxdr for the first term
on the right hand side of Eq. (25a). But, this is not the
case. Equivalently we could have usedfitlding opera-
tion and writtenD (t —7) = D3(t —7). Further, from Eq.
(29b) we see that the effective diffusion coefficient also
has no frequency dependence at least to the quadratic
approximation. Therefore, for our model we expect no
frequency dependence in the diffusion coefficient.

D(w,T) = bt exp(-BIEI)D (55)

For a distribution of well depths we have as before
D(w,T) =D fW(E)JE/[fW(E)exp(+ BIEI)dE] .
(56)
2.6 Evaluation of W(E)

The above relationships are quite remarkable for they
state that long time relaxations-viscosity, diffusion and
dielectric response depend only on the well depths and
the distribution of well depths. The only thing remain-
ing is for us to evaluat®/(E). Notice that if this can be
done then our kinetics of glasses will depend only on the
equilibrium statistical mechanics. For glasses statistical
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mechanics plus the principle of detailed balance is
everything provided we are looking only at the long time
behavior.

The classical and qguantum mechanical partition func-
tions are given by (we ignore the thermal wavelength)

chassicaI: fexp(—BE(. ql ))qu

Qaom. = J exp(-BE)d

(57a)

(57b)

where the integral signs represent discrete sums and/or.

continuum integrals. By grouping together all states
with the same energy we obtain

chassicaI: f eXp(—BE)W(E)dE (58a)

Qom. = Jexp(-BE)W(E)dE (58b)
which are identical in form to the argument of the
logaiithm on the RHS of Eq. (40c). Using the formula
F. =—kTInQ which connects the configurational part of
the Helmholtz free energdy. to the partition functiorQ
we have immediately

logn(0,T) = B— M'F./KT . (59)
This remarkable formula which relates viscosity to free
energy is very different from the Vogel-Fulcher-
Tammann-Hesse form [47], the Bendler-Shlesinger
form [48], the Avramov form [49], the Adam-Gibbs
form [12] or the mode coupling theory result [50]. We
discuss it in Sec. 3.1.

The frequency dependent viscosity, given by
Egs. (53), cannot be expressed as a function of free
energy. Rather, we first must determilé(E) sepa-
rately before we can evaluatdw,T). If in Eq. (58a) we

choose the lowest energy as our zero of energy, then

exp(— BF(B)) is the Laplace transform ofN(E) and
W(E) is the inverse transform of expgF (B)).
Another approach is to use the results of Stillinger
who suggests tha/(E) is given by [51, 52]
W(E) = exp(-60(E-E)?). (60)

With this substitution the time dependent shear mod-
ulus, Eq. (52), reads

9(t.T) = J exp(-0 (E-E0)?)
exp(-btexp(-BIE)IE / [exp(— (E—-Ey))dE . (61)
The time dependent behavior of Eq. (61) is closely

related to that of the “after-effect function” tabulated by
Janke and Emde [53]. As shown previously the after-
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effect function has a time dependence which looks very
much like the stretched exponential function [23]. In
fact, Stillinger, starting from the empirically observed
stretched exponential form for relaxation shows that the
Gaussian form foW(E) is implied [52].

3. Discussion and Conclusions

3.1 Discussion of Results

Equation (59) which connects viscosity to free energy
is remarkable in several respects. First, it states that the
viscosityand its temperature derivativare continuous
as we proceed through the transition. We had, in Sec.
1.8, used the argument that the dissipative quantities
should have the same transition behavior as the thermo-
dynamic variables. So, for a first-order transition the
viscosity is discontinuous through the transition because
the entropy and volume are. But we have now obtained
the result that for a second-order transition the viscosity
does not show a break as we traverse the transition point.
In the past various groups have argued that the volume
[54] is the controlling quantity, or the enthalpy [55], or
the entropy [1-5]. We are claiming that the entropy
theory of glass formation, which is merely a theory that
locates the transition in temperature and pressure space
as a function of the molecular parameters such as chain
length, intermolecular energies and intramolecular stiff-
ness energies etc. (see Sec. 1.4) can be extended to
include slow motion kinetics. When this is done tihrdy
determinate of the kinetic aspects of glass formation in
the limit of zero frequency is the thermodynamic free
energy! See Eq. 62e. However, as Eqgs. (51-54) show
this is not true for the frequency dependent dissipative
quantities.

The Vogel-Fulcher-Tammann-Hesse form [47] from
which the WLF equation [56] is easily derived is

logn = B + A/(T-Ty). (62a)
The Bendler-Shlesinger form [48] is
logn = B + A/(T-Ty)*® (62h)
The Avramov form [49] is
logn = B + 0.434Q/T)* (62c)
and the Adam-Gibbs form [12] is
logn =B + A/TS . (62d)

These forms should be compared to our form which
is

logn = B — ARJ/KT. (62¢)
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We will not discuss the mode coupling form for viscos-
ity since we accept the argument [57] that the implied
singularity is considerably higher than.

Although each of the first four forms has some theo-
retical underpinning it is probably true that the reason
they fit experimental data well is that they (the first
three) are three-parameter fits and the viscosity curves
are rather structureless to begin with. To see that it is not
terribly significant to fit a curve of relatively little struc-
ture with three parameters imagiBeo locate the curve
vertically, another of the parameters stretches the curve
so that there is a fit at both high and low temperatures.
Finally the third parameter gives the curve the proper
amount of curvature. Mwed in this way we sethat the
fact that formulas of different construction give decent
fits to the data is not surprising. A real test of the
theories is whether they can determine the values of the
three parameters from theory.

Viewedfrom this perspective the last two Egs. (62d),
and (62e) are more significant because they contain one
less parameter. The original GD lattice theory can be
used to obtainF.. A real theory should contain no
parameters. Schroedinger’s equation plus the laws of
statistical mechanics should be sufficient. The authors
intend to examine the meaning of tBeand A parame-
ters of Eq. (62€) in a subsequent paper. For now we will
merely comment on the implication of the form of our
equation, assuming andB to be temperature indepen-
dent.

Angell’'s classification [7] of glasses into strong and
fragile receives an easy interpretation from Eq. (62e).
First, we need to use the experimental value of the free

10" poise. A little algebra results in

logn =13 + {xInx + (1—x)

energy in Eq. (62e). There is a general consensus that

the specific heat break at the glass transitid, varies
inversely with temperature [58]. We therefore use the
form C,c = afT.

Coc=alT -~ &= a(l/T,— 1) - (63)
Fe=-C—a(T/T,-1) +aIn(T/Ty), .= T (64a)
F.=-C, T=T, (64b)

where the constant of integratio@ is (part of) the
energy of activation.
To obtain these equations we integra@g = TaS/
dT, S = dFJ/0T and ignored any pressure dependence.
Below The transition temperatufig the configurational
entropy is zero according to the simple version of the
GD theory so that we have only energy of activation
while aboveT, the specific heat is assumed to decrease
inversely with temperature in accord with experiment.
Using Eq. (62e) we can eliminat& by choosing a
reference temperatufie’ for which the viscosity equals

151

X (L[1 + In(T*T)] - 0) (65a)
dlogn/ox = 0 —{In(T*/T,) + £Inx (65b)
lognlox? = {Ix, T,=T* =T,
T,=T=T* (65¢)
logn = 13 +0(x-1)-¢ [(T*/ T, — 1)
+ In(T*/T,)] (66a)
logn/ox = 6 (66b)
logn/ox2=0,T=T,=T* (66¢)
logn =13 +6(x — 1) + {[(T*/ T, —x)
+ XIn(XTo/T*)] (67a)
dlogn/ox = 6 = In(T*/T,) + {Inx (67b)
Plogn/ox® =X, T* =T, =T (67c)
logn =13 +6(x — 1) (68a)
dlogn/ox = 0 (68b)
logn/ox? =0, T=T* =T,
T*=T=T, (68c)

where § = CA/KT*, { = aAIKT*, x=T*/T. T* is the
temperature for which = 10" poise. If we had picked
10’ as the reference viscosity then the above equations
would be the same withreplacing 13 and * being the
temperature at which the viscosity is¥lfioise.

Equations (65c¢,) and (67c) show that the curvature is
positive (curve is concave up) and that the curvature is
greater the larger the specific heat. Also, as the value of
T*/T decreases the curvature is larger. Below the glass
temperature we predict pure Ahrennius behavior. These
features are also features of Angell’'s classification of
glasses into strong and fragile varieties. An interesting
prediction is that ifT*/T, = 1 then the initial slope at
T*/T=1is independent of specific heat. It does however
depend orC.
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We can test these predictions for polymers using dataical predictions. We chosé@ and B to fit the center
for polydimethylsiloxane of varying molecular weight. curve. We then scalegiby the ratio of the specific heats
Roland and Ngai [59] using dielectric relaxation data of for the low and high molecular weight polymers to ob-
Kirst et al. [60] and specific heat data of Bershstein and tain the upper and lower points at each temperature. Our
Egorov [61] created fragility plots of thiegarthm of fits assume thaC is independent of molecular weight.
relaxation time versu$,/T whereT, was defined as the We also give the formulas for the case that the config-
temperature for which the relaxation time was one sec- urational specific heat is constant abdye Our reason
ond. These curves which are reproduced in Fig. 7 show, for doing this is that although the GD lattice model
as Roland and Ngai observed, 1) that the slope of the predicts that the configurational specific heat ap-
curves afl*/T = 1 are independent of specific heat—we proaches zero as the temperature increases it does not
predict this, 2) The curvature is larger the smaller the do so with purely inverse temperature dependence. So,
value of T,/T—we predict this, and 3) the curves flare a combination of the two specific heat variations may
out for low Ty /T with the higher specific heat (low better fit the experimental data.
molecular weight) material flaring up and the low
specific heat (high molecular weight) material flaring

down—we predict this. The filled circles are our numer- Cpe=a’ (69)

log relaxation time

0.85 0.90 0.95 1.00

Tg/T

Fig. 7. An attempt to explain the fragility plots of Angell. Using for the configurational free
energy a form derived by assuming that the specific heat is proportiorl'tavhich is in
accord with experiment, we obtain a fit to the plots of log relaxation time vefglis The
curves are experimental data for polydimethylsiloxane of varying molecular weight, and the
circles are predicted values. That 1) the curves all start with the same slbperat 1; 2) the
curvature increases with decreasifyy T; 3) the curvature increases with increasing specific
heat are all predicted by our equation. See text.
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St = Ollln(T/Tg), T2 =T (703)

S=0, T=T, (70b)
Fe=—a'TIN(T/T) + a'(T-T) —=C, T, =T (70a)
F.=-C, T=T, (70b)

If we again defineT* as the temperature for which
the viscosity equals $®poise we obtain

logn = 13 —~'In(x) + ({'TA/T* + 0)(x — 1) (71a)
dlogn/ox = {'TIT* + 6 —'x 7, (72b)
d%logn/ox® = + I'x 2

L=T=T,TL=T=T* (72c)

logn = 13 ='In(T*/T,) + 0(x — 1)
+ (1 -TAT%), (73a)
dlogn/ox = 6, (73b)
Plogn/ox?=0,T=T,=T* (73c)

logn = 13 +'In(T/Ty) + 6(x — 1)
+ J(TATH) (X = T*T) (74a)
dlogn/ox = {'TT* + 6 —a'x?, (74b)
dlogn/ox® =+ x>, T* =T, =T (74c)
logn = 13 +0(x — 1), (75a)
logn/ax = 6, (75b)

dogn/ax* =0, T* = T=T, T=T* =T,
(75¢)

where{ = a'A/k and § = CA/KT*. These curves again
show the features of the strong-fragility plots discussed
by Angell.

It should be noted that if either of the above forms for
the entropy is substituted into the Adam-Gibbs form
[Eq. (62d)] one obtains a decreasing slope with
increasing specific heat att/T = 1. Also the curvature
of the logn vs T*/T curve becomes smaller as*/T
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decreases which is contrary to the sense of virtually all
experimental results.

CanT* ever be less thafl,? Under the paradigm of
the Vogel-Fulcher equation this is a foolish question.
However, since the viscosity and its derivative are,
according to Eg. (62a), continuous through the second-
order transition and since the viscosity is never infinite
T, can not be located accurately by measurements of
viscosity; we see no reason why it can not be greater
thanT*. The possibility thafT, corresponds to a finite
viscosity may well be masked by the process of falling
out of equilibrium which can be discussed only by
examining the time or frequency dependent viscosity.

The new formulas for viscosity suggests several new
directions. First, an examination of the way whichr*
varies with material should be made.

We remark that these questions are equilibrium ther-
modynamic and statistical mechanical questions so that
their investigation should not be difficult. For systems
with constantC the initial slope of the curve at*/T=1
would be inverse tor*. Also systems for which the
motion is highly cooperative would show a high@r
Systems which have the same scaled potential energy
surface, i.e.hE(. . g . .) wherehis any constant, should
display superposed fragility plots. Such systems which
have no specific heat break 8 should all superpose
with the form of a straight line. Finally how the specific
heata relates toC/T* should be examined.

Another possibility that deserves serious consider-
ation is that the parameteBsand A have a temperature
dependence which must be added to that of the free
energy. This thought is consistent with the view ex-
pressed by some that the temperature dependence of
viscosity and diffusion at higher temperatures is ade-
quately addressed by mode coupling theory and that the
behavior over the full temperature range can be obtained
by a cross-over treatment that combines the high tem-
perature mode coupling theory with a theory of low
temperatures such as has been presented here.

We leave such a development to the future.

3.2 Conclusions

This paragraph describes the logic of our develop-
ment. We first observed that there must exist at low
temperatures an equilibrium glass phase because the
crystal phase is not ubiquitous. It is only for systems that
can crystallize that the glass phase can be considered
to be a metastable phase. We next showed that the
Gibbs-Di Marzio (GD) theory [1-5] which postulates
that the glass transition occurs when the configurational
entropy approaches zero locates the glass transition cor-
rectly in temperature-pressure space for a wide variety
of experiments. It also resolves the Kauzmann paradox
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[6]. We next observed that the correct equilibrium the- range of temperatures undoubtedly requires incorpora-
ory of those materials that form glasses, whatever it may tion of vibrational properties.
be, must be used as a groundform onto which a proper
kinetic theory of glasses is constructed. The connection : . ; :
between kinetics and equilibrium was then made via the Appendlx A A Part.ICIe FaIImg_ Back
principle of detailed balance which relates the ratio of into a Well Frqm Which Itls Tryl_ng to_
the rates for jumping to and from a pair of states to the Escape Retains Its Exponential Dis-
free energy difference between the states. This law when tribution
combined with the observation that the configuration
point of a glass system spends most of its time in deep Let a particle have a normalized probability distribu-
potential energy minima allows us to construct a mini- tion p(t) for escaping from a well. But after it has left
mal model (a trapping model) which can be solved in the well let there be a probability 1¢-that it fall back
some limiting cases. We thereby obtained formulas for into the well and¢ that it escape permanently on that
the complex viscosityn*(w, T) and shear relaxation attempt. Then the particle can escape permanently after
modulus g{, T), the diffusion coefficientD (w,T) = it left for the first time, or the second time or the third
D(0,T) and the dielectric responsgw, T). time, etc. The true distribution function for escape is

Our relaxation modulus has the form of the after-ef-
fect function tabulated by Jahnke and Emde [53] which
we had obtained previously [32]. Its behavior is very Prue = p(t)¢p + J P(t1)(1-¢)p(to)dtsdtop
close to the stretched exponential form. L+ =t

More surprising is our formula relating the zero fre-
quency viscosityn to the configurational part of the + [ pt)p(t)(1 —d)?p(ts)dtydtdts + - - -
thermodynamic Helmholtz [62] free energy i+t +tz=t

(A1)

logn = B — AR JKT _ . . .
The integrals are recognized to be folding operations.

Denoting the Laplace transform pfby P and taking

It is surprising that the viscosity is continuous 1
the Laplace transform of Eq. (A1) we obtain

through the transition. If this conclusion holds, viscosity
or other dynamical measurements may be the worst way

to locate glass temperatures. The use of thermodynamic Pue = P + PA(1—-¢)¢ + P(1-0)* ¢
quantities which show breaks in slope should be pre-

ferred. Initially we had expected (naively in retrospect) +PY1-¢)d+ ...

that there should be a break in slope ¢fT) vs T.

Below the transition the behavior is Arrhenius corre- = Pol(1-(1-¢)P) (A2)

sponding to the fact that there is energy but not entropy
of activation below the transition. Above the glass tran-  Thijs equation states that fif is normalized, so that
sition entropy of activation kicks in. P(0) = [ p(t)dt = 1), thenpy. is also normalized.

When sensible approximations fé% are used this For the special case whepeis exponential it we
formula displays the main features of the strong-fragile have

glass classification scheme proposed by Angell [7].
Glasses with small specific heat breaks at the glass p(t) = 7 'exp(-t/r), P =P(s) = 7/s+ 77" . (A3)
transition show little curvature on legversus inverse
temperature plots while glasses with large specific heat Using Eq. (3) in Eqg. (2) we obtain
breaks show positive curvature. See Sec. 3.1.

We have not yet examined the temperature depen- Prue = Puwe(S) = ¢p7 (s + ¢77) (A4)
dence ofB andA in the above equation. An approach to
this problem is to excise from phase space those phasewhich on transforming back to the time domain gives
points corresponding to deep potential energy minima
and solve the kinetics of such a circumscribed space. Prue = ¢77 exp(—¢t/7) (AS5)
Since the resulting equations should be applicable to the
high temperature side of the glass transition it may be Thus, the final distribution remains exponential and
that mode-coupling theory can be used for this part of is normalized but the time constant for exiting the well
the problem. A theory of glasses that is valid over a wide is increased by the factas™.
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5. Appendix B. Calculation of the Shear
Viscosity n(0,T)

To calculate the shear viscosity consider a material
between two parallel plates one of which is fixed and
one of which moves under a shear force

olv) = n(0,T) (B1)

But

<V> = X/tf = V(tf — t|)/tf = VAt/tf (BZ)
whereV is the velocity that the plate has for the time
intervalt; — t; = At during which the system is flowing

in the configurational sea. From time zerottdhere

was no motion because the particle was in one of the
deep wells. We obtain

7(0,T) = (o(0, T)IV)t/At = ncti/At

= ne(t + At)/AL = n(1 + ti/AtL) . (B3)
This process of sticking and slipping is imageined to

happen over and over again. The distribution function

P(t;, T) for jumping out of a well at time; when all the
deep wells have the same depth is given by

P(t,T) = 7exp(-t/7), = blexp(+B|E|) . (B4)

Thus over a period of time sufficiently large to allow
for many visits to the deep wells we have

(0, T) = ne(1 + (t) IAt) = (nc/At)<t>
= (ndAt)7 (B5)

which proves our contention that the viscosity is propor-

tional to the average residence time spent in deep wells.

Evidently, if there is a distribution of well depths,
W'(E), normalized so that thEW'(E)dE = 1, we obtain

1(0, T) = (ndAt) [ [ WE)P(t, T)dEdt =

(ndAt) [ [ W(E)b*exp(+ B|E|)dE/ [ W(E)dE .
(B6)
Given the exponential character B{t, E) we have
succeeded in relating the zero frequency viscosity

7n(0,T) to the two integrals which are purely equi-
librium quantities.
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6. Appendix C. What if Flow Requires
Several Particles to Be Out of Their
Wells Simultaneously

It may be unreasonable to suppose that flow can occur
in the region between two parallel plates when one
particle only is out of its well. Certainly, as the amount
of the material between the plates is increased it is more
reasonable to expect that flow requires that the number
of particles simulaneously out of their wells be propor-
tional to the volume of material. We propose that the
number required per unit volume be some large number
M.

Let us begin by considering the case where there is
flow only if two particles have simultaneously escaped
the wells. Consider one particle jumping out of a well at
time t;, cruising the configurational sea for a time inter-
val At = t;—t;, falling into a well, and then starting the
process all over again. One can imagine these time inter-
vals placed stochastically on the positive infinite half
line. Obviously flow for the system will occur only when
there is an overlapping of th&t’s of one particle with
theAt'’s of the other. The fraction of time that these time
intervals overlap is obviously given b At/S(t; + At))%

We imagine the particles to have jumped out of the wells
n times, wheren is very large. Refering to appendix B
we calcuate the average velocity to ¢ to be

(V) = V(nAL/(S(t + At))?. (C1)
The viscosity is
n = alv) = (V) [(St + nAt)/NAL]?
= me[1 + St/nAt]?. (C2)

Now if we requireM particles to be simultaneously
out of the wells in order to have flow we need only
realize that the probability for this is

[nAt/Z(t + ADM. (C3)
Thus
n =0l + St/nAt]M . (C3)

Now if M or more particles are needed to be out of the
wells simultaneously we have for the probability (frac-
tion of time) for this to occur

[1 + 2t/MnAM + [1 + St/nAt]M+?

+ 1+ StnAM 2 + (C4)
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which leads to 8.

(1]

1 = e[l + 2t/MAY [1 + nAt/2t] 2

= ne[1 + St/nAM . (C4 -
4
We now need to evaluate “l
[5]
3t = nf trlexp(-t/7)dt = nr. (C5)

(6]

But if there is a distribution of well depths then Y

- JW(E)tr exp(-t/7)dtdE

2t

J W(E)dE [9]
(10]
_n IWEENE _ 11
JW(E)dE [12]
(13]
_ . JW(E)b—exp (+ B|E|)dE 14
=n TW(E)dE . (C6) (14]
[15]
Therefore [16]
(17]
= Tell+ [ W(E)b~"exp (+ B|E[)dE]" (18]
J W(E)dE At 9]
_ me(J WE)b~"exp (+ BIE|)dE)" cn @

- [ W(E)dEAt '
[21]
[22]
By taking thelogaiithm of this equation we can cast [23]

it into a form usually used to compare with experiments
and those equations created to explain experiments sucrgg}
as The Vogel-Fulcher law [47], the Bendler-Shlesinger

law [48], and the Avramov law [49]. [26]
[27]
logn =B+ Mlog(J W(E)exp (+B|E[)dE)  (C8)  [25]
(29]

B = logn. — Mlog(b [ W(E)dEAt) . (C9)
(30]

In this paper we tred as a constant in order to focus
on the temperature dependence of the second term on
the RHS of Eqg. (C8). Discussion of the temperature

31

dependence dB is reserved for future work. {32}
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Note added in proof:

Our diagrammatic approach allows us in Egs. (30) or
(42) to express the effective diffusion constant as the
product of a term for jumping out of the wells and the
diffusion coefficient for roaming about in the upper
wells (see Fig. 2). But suppose now that the upper wells
have the same kind of structure and that we can repre-
sentD itself as a product of a term for jumping out of
wells times a diffusion coefficient for roaming in the
upper wells of the new diagram which has the same
structure as Fig. 2. Done repeatedly we obtain a nesting
of diagrams within diagrams and the result for the effec-
tive diffusion constant is a product of exponential terms
times the finalD. Similarly the effective viscosity is a
product of a partition function times the viscosity of the
upper wells of the diagram of Fig. 2. But this latter
viscosity is again a product of a partition function and
viscosity, and so on for all subsequent nested diagrams.
This leads to a linear combination of enerfyand
entropy TS which is not however that unique linear
combination that results in free energy. Thus, the resul-
tant viscosity logy = B— JS + KU/KT is continuous
across the transition becausk and S are, but the
derivative of viscosity is discontinuous because the vis-
cosity is no longer given by a free energy as in Eq.
(62c¢). This is consistent with the fluctuation-dissipation
theorem mentioned in Sec. 1.8 which predicts that the
temperature and pressure behavior of the viscosity is
continuous across the transition but the derivatives of
viscosity are discontinuous, since the underlying ther-
modynamic transition is second order in the Ehrenfest
sense.



