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1. Introduction

The integer quantum Hall effect [1-3] requires a fully
gquantized two-dimensional electron gas (2DEG). At low
currents there is negligible dissipation within the interior
of the 2DEG in the quantum Hall plateau regions of
high-quality devices, and the longitudinal resistance
R. along the device is very small. Within these plateau
regions the quantized Hall resistan& across the
device has the valuB,(i) = h/(e?) for theith plateau,
where h is the Planck constang is the elementary
charge, and is an integer. We assume here that the
quantity iRy(i) has the value of the von Kilitzing
constantR¢ = 25 812.807).

Impedances are complex quantities, and can therefore
have both real and imaginary components. If it is to be
a useful absolute or intrinsic ac resistance standard, the
impedanceacrossthe device must be dominated by the
real component, which is the quantized Hall resistance
Ra(i), and the impedancalong the device must be
small and again dominated by the real component,
which is the longitudinal resistand®. The imaginary
components (thaternal or intrinsic impedances due to
capacitances and inductances of the quantum Hall effect
device itself) must provide small contributions in order
to avoid a significant out-of-phase or quadrature signal.

The quantum Hall effect has been used to realize a There are, of coursexternalcapacitances and induc-
device-independent resistance standard of high accuracytances in the sample probe arising from the sample
for dc currents [4, 5] and for very low frequency currents holder, bonding wires, and coaxial cables. We do not
below 4 Hz [6]. An ac quantum Hall effect impedance consider the external impedances here, but they must
standard is now being developed for alternating currents also be accounted for. Signals that are in-phase with

having frequencies of order 1Bz and angular frequen-
cies of order 10rad/s [7-10].
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R.(i) andR,, due to products of external and internal
capacitances and inductances, can also be present.
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These second-order effects must also be small if the
device is to be a useful intrinsic standard.

Seppa, Satrapinski, Varpula, and Saari [11] have esti-
mated that the kinetic inductance contribution to the
imaginary {) component of the impedance can be of
order 10, which is very large compared witR,. We
therefore calculate the internal kinetic inductance, as
well as the magnetic inductance, along the device to see
if the imaginary components are indeed significant
compared with the longitudinal resistanRge We also _w
calculate the internal capacitance across guantum Hall f P

Va

Ve

effect devices to see if it provides a significant out-of- 9 — Z o
phase contribution to the quantized Hall resistance t: t
R4(i). (We will find that there are no contributions from g ;é‘

the internal capacitance along the device or from the /
kinetic and magnetic inductances across the device.)

The calculations have analytic solutions which utilize
results from the work of Cage and Lavine [12, 13], who
calculated potential, electric field, current, and current F9-1. A 2DEG conducting sheet, with the origin of the coordinate
density distributions across the 4@ width of a quan- system I_ocated at the source S halfway across the _dewce width

. ) The device length id, and D is the drain. Conducting electrons

tum Hall effect device for applied currents between extend across the device frofin to Yma. B is the external magnetic
0 A and 225pA. The potential distributions of Cage  flux density, Vi the quantum Hall voltagd,sp the applied current,
and Lavine [12] are in excellent agreement with the andJ(y’) the total current density at point, y", 0 in the 2DEG.
experimental measurements of Fontein et al. [14], who
used a laser beam and the electro-optic Pockels effect as
a contactless probe of the 2DEG.

ISD

The spatial extent of the conducting electrons lies
2. Potential and Current Distributions within the device widttw, and between the coordinates
VYmin @Nd Ymax We are interested in effects within the
A currentlsp, externally applied between the source S device interior, so we will neglect the fact that the
and the drain D of a mesa-etched quantum Hall effect applied currentsp enters and exits opposite corners of
device, is confined to flow with a current sheet density the device. The electrons are therefore flowing only in
J, within the 2DEG layer of the device. This applied the positivex direction at this instant of time. This
current induces a potential distribution across the device corresponds to a current of positive charges moving in
in the presence of a perpendicular external magnetic the negativex direction. The potential on the left hand
flux densityB. The total potential difference across the side of the device is positive relative to the potential on
device width w is the quantum Hall voltage theright hand side for these particular current and mag-

V(i) = Ry(i) Isp. netic flux density directions.
Cage and Lavine [12] have calculated the potential _
distributions for applied currents betweenu® and 2.1 Results of Cage and Lavine

225 pA. Their potential distributions are composed of

parabolically shaped confining potentials (due to homo- ~ For convenience, we repeat those results of Cage and
geneous charge-depletion regions) located on either sideLavine [12] that are used as the starting points of our
of the device, and dogaithmically shaped charge- calculations. The equations for the confining potential
redistribution potential (due to the Lorentz force exerted Ve at any pointy’ across the 2DEG are

on the conducting electrons in the 2DEG causing devia-
tions from the average surface charge density) extending
across the device interior.

Figure 1 is a schematic drawing of the 2DEG, with
the origin of the coordinate system located at the source Vo(y’) =0 for—A<y' <A (1b)
S and halfway across the 2DEG. On a quantum Hall
plateau, the conducting electrons within the 2DEG
occupy all the allowed states of filled Landau levels. Ve(y') = —a(y' + A)? for _v_;/ =-y'=-A, (1o

Ve(y)=-a(y'-A)? forA=sy' = (1a)

NS
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where

)

a=3.0 X 10 vV/m? and the charge-depletion width
is 0.5 um [15]. The confining potential and magnetic
flux density produce an electron current that circulates
around the periphery of the device in a counterclockwise
direction. This is equivalent to an edge current of posi-
tive charges in a clockwise direction.

The charge-redistribution potentig(y') is

wherel, is that part of the total currenty due to the
charge-redistribution potential. The value of the geome-
try factor G is 0.147 [12].

The total potentiaV,(y") is

RH

. I "+w/2
Vily) =-—" Y

y' —w/2

Gm‘ 3)

Vi(y') = Ve(y') + Vi (y) - 4)
The electric field equations are
w
E(y)=2a(y'—A)fora =y' = > (5a)
E:(y)=0for—A<y'<A (5b)
E.(y') = 2a(y' + A) for —V—; =-y =-2A, (5¢)
and
y = Ry w
Er(y) - 2 G [(W/2)2 _ (y-)Z] ’ (6)
and
E(y) = E(y) + E(Y) (7
The total current density(y') is
1
Iy = dly) + I(y) = 5~ B 8
and the applied curret; is
Ymax
o= [ 3¢)dy ©

Ymin
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Figure 2 shows schematic diagrams \&f(y") and
V,(y") for Isp = 0 andlsp > 0. For clarity, the confining
potentials V.(y") have been stretched out over wide
regions of the device. The thick curves are those parts of
the potentials where electrons of the 2DEG occupy
Landau states and contribute to the current. Refer to
Figs. 7 and 9 of Ref. [12] for actual plots df(y") and
Ji(y") versusy' atlsp = 25 pA.

Isp is an alternating current for impedance measure-
ments. The filled states and thick lines of Fig. 2 shift to
the right with increasing current. Wheg, < 0, V,(y")
has the opposite sigiv.(y") does not change sign, and
the occupied states shift to the left. We will choose an
instant in time for the calculations whdgy has the
root-mean-square (rms) value and is in the negative
direction, as shown in Fig. 1.

2.2 Parameters Used in the Calculations

A typical ac quantized Hall resistance device is
400 p.m wide, has a rms current of about g3\, and
operates on thie= 2 plateau. The following set of values
found by Cage and Lavine [12] can therefore be used
in our calculations:lsp = 25 pA, Ry = 12 906.4034,

Vu = Rulsp = 0.3227 V,B = 12.3 T,w = 400 pm,
a=3.0x10%V/m?% A =0.5um, A = 199.500pm,
I, = 24.74pA, G = 0.147,Ymax = 199.564uMm, Yin =
—199.554 pm, Ve(Yman -0.0122 V, V(Ymin)
=—0.0088 V.V (Ymax) =—0.1599 V.V, (Ymin) = 0.1594 V,
Ec(Yma) = 3.821X 10° V/m, E¢(Ymin) = —3.255X% 10°
VIm, E.(Yma) = 5.380% 10 V/m, E(0) = 2.345% 1@
V/m, and E (Ymn) = 5.266 X 10* V/m. Their device
length L, was 4.6 mm. The reduced masg of the
electron in GaAs is 0.068 times the free electron mass,
or 6.194x 10 kg.

We will also use the valuegnaxo = — Ymino = 199.559
M, andEc(Ymaxo) = — Ec(Yming) = 3.54 X 10° V/m from
Cage and Levine [12] whehyp = 0 pA.

3. Internal Capacitance

The quantum Hall voltag&/y(i) = Ru(i)lsp arises
because the conducting electrons are shifted slightly
towards one side of the device such that the Lorentz
forceev X B equals the Coulomb repulsive forcesk
everywhere within the 2DEG [16], whevas the veloc-

ity of a conducting electron located at coordinatey'.

This shift in position with applied currentp causes a
deviation, -eda(y"), or charge-redistribution of the
electrons in the 2DEG from the average electron surface
charge densityers, where 6o is the surface density
deviation at coordinates', y' andns = i(eB/h) is the
average surface number density, e.g., 540" cn?
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Fig. 2. Schematic drawings of the confining potentidlgy') and the charge-redistribution potent\(y")

across the device width fogp = 0 andlsp > 0, whereA and -\ are the locations where the confining potentials
begin to deviate from zero. The thick lines betwsgimo and ymaxo for Isp = 0, and betweeymin and ymax for

Isp > O are the regions where the 2DEG electrons are conducting. For clarity, the confining potentials extend far
into the device interior, as do the valuesyafio, Ymaxo Ymin aNdYmasx

for thei = 2 plateau at 12.3 T. The charge-redistribution and Ly is the length of the device (neglecting corner
gives rise to separated charges and an internal capacieffects). Appendix A of Ref. [12] showed that the
tance across the device width. surface charge-redistribution is

. e

3.1 Calculations S (y') = % % Vi) | (11)
There is an excess of electrons, with total char@e —

on the right hand side of Fig. 1 and a depletion of wherem* is the reduced mass of the electron in GaAs

electrons, with total charge@, on the left hand side, (0.068 times the free electron mass).

where Note that only those parts of the total potentigly")
Ly wi2 which changewith applied currentsp should be used in
_ N o Egs. (10) and (11) to calculate charge separations within
-Q= f J eda (y)dy'dx’, (102) a capacitor. Thus the entire charge-redistribution poten-
00 tial V,(y") contributes to Eq. (11), and the limits
Lo of integration in Eqs. (10) are betwegni, and 0 and
between 0 andy... However, only those parts of
Q =j f edo (y')dy'dx’, (10b)  the confining potentiaV.(y') which differ from the
0 -w2 Iso = OpA case contribute, i.e., the parts between
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Ymino &nd Ymin and betweerymayo and yma. The parts of devices. The capacitan€, is thus about 0.0029 pF for
V.(y') betweenymin andymaxo do not contribute because  the 4.6 mm long GaAs/AlGaAs device of Ref. [12], and
there is no difference from thésp =0 pA case of about 0.0014 pF for the widely-used, 2.2 mm long

Fig. 2. and 400pum wide, GaAs/AlGaAs BIPM/EUROMET
The total charges @ and +Q, defined by Eqgs. (10)  devices [17].
and (11), are Two frequencied often used in ac quantized Hall
resistance measurements are 1233 Hz and 1592 Hz.
Q= _e<im_*> These correspond to angular frequenadies 2#f of
- hB 7747 rad/s and 10 000 rad/s, respectively, or abofit 10

rad/s. The impedangg(»C,) due to the Hall capaci-
tanceCy is about 2 10" for BIPM/EUROMET devices,

X Ll E(Yma) — Ee(Ymaxg] + [E(Ymay —E:(0)]} (12a) yielding a correction t&R; of 2 X 107 R for thei = 2

plateau. This quadrature component correction to the
Hall impedance is small, but not insignificant.

im*) We thus predict an internal capacitar@gacrossthe

device width in parallel with the Hall resistand®,.

There is no internal capacitance @long the device

length within the nearly dissipationless conduction

X L[ EdYmin) — EYming)] + [E:(Ymin) — E-(0)]}. (12b) region because the potential difference betwdgn
probes is negligible and there is no charge separation
along the sample length. A potential difference slightly

Using the values from Sec. 2.2, Eqgs. (12) predict values greater thai/, does occur between the source and drain

of —Q and +Q of —9.36x 107 C and 9.23x 10'¢C, due to the current entering and exiting at opposite device

respectively for the right and left hand sides of the corners, but this voltage arises from resistive heating

4.6 mm long device dp=25pA andB = 12.3 T. The rather than charge separation. So the impedance due to

confining potential contributes 36 % to the cha@e C, along the device length is negligible compared with

There is a 0.7 % difference in the values@between R = V,/lsp.

the two sides of the device, but that does not violate

charge conservation. The solutions of Cage and Lavine 3.2 Line Charges Approximation

[12] are self-consistent because charges on both sides of

the device are transferred between donor sites in the The total charges @ and -Q are concentrated near

AlGaAs layer and the 2DEG in the GaAs layer in order the positionsymin and ymax because that is where the

to maintain zero net charge within the device volume. It surface charge-redistributioe§o (y') are largest. (See

is this charge transfdsetweerlayers that gives rise to  Fig. 11 of Ref. [12] for an example of the charge-

the charge separationGrand -Q in the 2DEG. redistributions atisp = 215 wA.) One can closely ap-

The separated total charge€+and -Q within the proximate the charge-redistributions as two line charges
2DEG generate a potential differensg across the  +Q/Ls and -Q/Ly, with radii p that are about one-half

device width, producing an internal capacitanCe the probability distribution thickness of the 2DEG [2],

across the device, whef®, is defined as and are separated by the device width It can

be shown using Gauss’s law/E - dS = Q, and the
definitions of potentialy = —fE - dI, and capacitance,
Q=CuVy, (13) C=Q/V, that the capacitance between two line charges
of radii p is wely/In[(w—p)/p], wheree is the permit-
tivity of GaAs (which is 13.1 times larger than the
permittivity of a vacuum)p is about 2.5 nm, 8 is an

Cu= ( € ) (E) elemental area of the integration surface, ahdsdan

Vu/ \ hB incremental length along the integration path. The ca-
pacitance between two line charges is 48 times larger
than that predicted by Eq. (14) for the 2DEG.

X Ld[ Ec(Yma) — Ec(Ymaxd] — [Er(Ymay — E(O)]} . (14) Two line charges are not a good approximation of a
guantum Hall device, however, because it neglects the
large screening effects in the nearby AlGaAs layer of

Using the electric field values listed in Sec. 2.2, the the heterostructure. Charges of opposite sign to the line
capacitance per length is 0.63 pF/m for 40t wide charges occur in the two regions of the AlGaAs layer

or

737



Volume 101, Number 6, November—December 1996
Journal of Research of the National Institute of Standards and dEgyn

near the device sides because the 2DEG arises fromPlease note thaf, is the kinetic inductance and is the
electrons tunneling from the AlGaAs layer. There are device length.

really four line charges to consider, with charge densi-  Eqgs. (5) and (6) can be used in Eqg. (17), remembering
ties +Q/Lx and * Q/Ly located on either side of the that only those parts of the electric fields whidiange
device. This greatly reduces the electric fields within the with applied currentsp should be included. This means
2DEG, and thereby decreases the capacitance across thall of the charge-redistribution electric fiefgl(y"), inte-
device. The capacitance predicted by Eq. (14) accountsgrated between the limitg,i, andyma, but only those

for these screening effects because it uses electric fieldsparts of the confining fieldE.(y') which differ from the
derived from experimental results. Isp = 0 WA case, i.e., those parts betwegho andymin

and betweely .o andym.. The parts betweew,, and

—A and betweem and ynaxo do not contribute tal,
because they result from an internal dc current which
circulates around the device periphery and is indepen-

4. Kinetic Inductance

The conducting electrons have an inertial mags

) . ) S dent ofIsp.
which gives rise to a kinetic mductance .[18] when the The integrals of Eqg. (17) are analytic, and have the
current is reversed. Seppa, Satrapinski, Varpula, andSolution
Saari [11] predict that this yields a large impedance
along the device length. We will examine their results in Lk=A(B+C+D+E) (18a)
Sec. 4.2 after deriving our equations for the kinetic
; where
inductance.
4.1 Calculations A :<m_*2> L (18b)
eBRilsp
The conducting electrons of Figs. 1 and 2 have a
velocity v (y") = E/(y)/B, = E(y")/B, and a kinetic
energysm*VvZ(y"). Neglecting corner effects, the total _IIRG
kinetic energyK within the 2DEG of a device of length w
Ly is
Ly w/2 X [ymaxEr(ymax) _yminEr(ymin) _Vr(ymax) + Vr(ymin)]
1 . Ayt
K=3 f f m*VvZ(y")ndy'dx’ . (15) (18¢)
0 —-w/i2
C =4a?

Noting thatJ(y") = Jk(y") = nsew(y"), ns = i(eB/h), 1
Ry = h/(e?), and J(y') = E(y')/Ry, Eq. (15) can be X [5 (Yinax Yinin) —A (Ynax— Ynin) +A2(ymax+ymm)]
rewritten as

wi2 (18d)
1 ,
“s §[<EB'2> sz(y)dy] D =alRGw
—_ 1 2 [(W/2)2 ymmO] [(W/2)2 ymaxd
=g bl (16) x{ (Wi2P—yzd " [(wi2f = ymma}
S . (18e)
where the kinetic inductands, is
E =4a\x
L = (;”BIF:;;) L. f [y’ X ALVi¥mad) = ViYmard] = [ViYiie) = VeYmino) T}

-w/2

(18f)

w/2
The kinetic inductance can be evaluated from Egs.

(eBRﬂ ) J [E(y) + E(y)%dy' . (17) (18) using the values listed in Sec. 2.2, except for term

-w/2
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E where the values of.(y") need to be calculated to
more significant figures using Eq. (3). The kinetic in-
ductance per length is about Wb/m for 400 um wide
devices withi = 2 plateaus at 12.3 T. The terms involv-
ing the confining potential@, D, and E) contribute
33 % of this value. The kinetic inductandg is thus
about 0.07wH for the 4.6 mm long GaAs/AlGaAs
device of Ref. [12], and about 0.QH for 2.2 mm long
GaAs/AlGaAs BIPM/EUROMET devices [17], where

thei = 2 plateau occurs at about 10 T. These values are

for Isp = 25 wA. L« is somewhat current dependent in
this model becausg,(y") scales linearly withlsp but
E.(y") does not; sd« decreases from 0.0ZH to 0.05
pH between 25.A and 215p.A. This difference over
such a wide current range is small enough to ignore.
The impedancewl, due to the kinetic inductands,
is about 0.4 ) for BIPM/EUROMET devices at
o = 10* rad/s andsp = 25 pA, or only about 3 parts in
1¢° of Ry for the i = 2 plateau. This out-of-phase

impedance component is along the device length, and is

comparable in magnitude to the longitudinal resistance
RX = Vx/|SD-

4.2 Uniform Current Density Approximation

Seppa, Satrapinski, Varpula, and Saari [11] consid-
ered the case of aniform current densityJ; = lsp/W
across the device widtl. A uniform current density in
Eq. (17) yieldsLy = (m*RyLy)/(eBw) = (m*Ly)/
(ne®w), wherens = i(eB/h). For BIPM/EUROMET
devices withi = 2 plateaus at 10 T we find that =
0.003H for a uniform current density approximation,
or about 13 times smaller than the more realistic predic-
tion in Sec. 4.1.

Seppa et al. [11] predicted a much larger value of
Lx = 40 wH for this example than we have because they
assumed free electrons with mass rather than elec-
trons with reduced mags* in the 2DEG, and a con-
ducting electron number density that was 1000 times
smaller thanns. This last assumption is inconsistent

with the requirement that the average surface density is

ns = i(eB/h) on a quantum Hall plateau.

Using our Egs. (11), (1), and (3), the deviation
—éa(y') in the density of electrons from the average
surface density is

The largest deviation in the 2DEG occurs/at Ymax
and has the valuede(y') = 9.30 X 10%cn? for the
i = 2 plateau at 12.3 T anldp = 25 pA. This is only
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1.6 % ofny = 5.94 X 10"/cn, and satisfies the further
requirement in the model of Cage and Lavine [12] that
the charge density varies slowly across the device
width.

5. Magnetic Inductance

Determining the magnetic inductantg of a quan-
tum Hall effect device is not quite as straightforward as
determining the Hall capacitan€®,; or the kinetic in-
ductancely. The device can be treated as an isolated
object when calculating values f@; andL,. The mag-
netic inductance, however, can only be evaluated when
the device is part of a complete current-carrying circuit.
Therefore L, depends on the circuit geometry.

We chose a geometry in which the device is repre-
sented as a current sheet, with a return wire located
below the middle of the sheet because this geometry
approximates the source-drain leads of a typical sample
probe. The integral equations fioy, have analytic solu-
tions for this geometry, and values bf, can be com-
pared with the values for two parallel wires carrying
currents in opposite directions.

We consider only the magnetic inductanaetside
the sheet and the wire. The self-inductance per length
insidea long, nonpermeable, cylindrically-shaped wire
is wo/(87) [19], where uo = 47 X 107 H/m is the
permeability of free space.

5.1 Calculations

Figure 3 shows the circuit geometry. The current-
carrying 2DEG sheet and parallel return wire each
extend to* along thex axis. The current density is
J(y") = E(y")/Ry within the conducting sheet, where
E(y") is given by Egs. (5) and (6). The return wire has
aradiusp, and is separated from the sheet by a distance
d from the origin. The wire carries a current

wi2

o= [ 300y

-w/2

(20)

in the opposite direction to that in the sheet.
The magnetic flux¢, and magnetic inductande,,
are defined by

¢m:f5m.ds:3§A-d|:Lm|sD. (21)

whereB,, is the magnetic flux density generated by both
the conducting sheet and the return wirés & an
elemental area of the enclosed current-carrying circuit,
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Fig. 3. A sketch of the 2DEG conducting sheet and a parallel current return
wire of radiusp, located a distancd from the middle of the sheeBy(z) and

Bw(z) are magnetic flux densities generated by the conducting sheet and wire.
dS= dxdzis an elemental area in the-z plane located between the conducting
sheet and the wire.

A is the vector potential, Idis an incremental length
along the path around the circuit just outside the conduc-
tors, andl sp is the applied current [19].

We chose 8 to be located in Fig. 3 in the—z plane
between the conducting sheet and the wirg at0; so
dS = dxdz. Therefore, only they-components oB,,
perpendicular to 8 are needed to evaluate the surface
integral in Eqg. (21). Thesg-components oB,, are

— Mo 1
Bu(z) = o |som . (23)

B«(z) is found by considering the conducting sheet as a
series of wires carrying currendgy")dy’

_ Mo 5o Y z
st(z)C039 iy Jt(y) \/(y.)z + 72 \/(y-)z + 72

Bm(z) = By(z) + By(z)co = B,(z) + B/(z) + Bc(2),

24
e (24)
whereB,(z) is due to the return wireBy(z)cod is due eZ " 1)
to the conducting sheet, and is composed of charge- BJ{(2)cosf=B(2) +Bi(z) =5~ [(y)tz—+zz] dy".
redistribution and confining part8,(z) and B.(z), -wi2
respectivelyB,(z) is easily obtained from Ampere’s law (25)
wa -dl = Molsp
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This gives

Bi(z) = 5—7‘; [,Gwz

and
B(z) = c—W
(5)+2]
2
X {arctar(yﬂx> - arctar(m>}
z z
o z
+ 47TIrG—[<W>2+ 2]
E z
V_£/+ ymax + ymln
X 91n W —In W
2 ymax ymln

for the charge-redistribution term, and

Ymin

_ Moa Sy +A)
B(2) = ? | P+ d
T y-a

ud y =)
YR | v

Ymax0

and

Bi(z) = ,uoa z {In[—y’z“ax+zz] +1In [.ernin*'z2

)

yzmaxO + 22

Yaino + Z

(26)

(27)

(28)

+ B A{arctan(ym'”> arctar(y"“”o)}
TRy z z

_ R {arctan(yﬂx> - arctar(y’"—aw)}
Ry z z

for the confining term. The integrals in Eq. (28) extend
only betweenymino and ymin and betweerymaxo and Ymax
because we are interested in the partsBgk) that
changewhenlsp changes. The parts betwegt, and A
and betweem and ymaxo provide a constant magnetic
flux density that does not contribute to the magnetic
inductance.

If the quantum mechanical probability distribution of
the 2DEG extends over a distance, 4f the device
length isLy, and if we neglect the corner effects, then
Egs. (21) and (22) yield

(29)

Lm=Lw+L +L

Ly d-p

- ng J J [Bu(z) + B(2) + B(2)]dzdx . (30)

Using Egs. (23), (27), and (29) in Eqg. (30), we find that

= Mo d—p
LW_27T Lx In[ p ] (31a)

and

= St o [meat3)) [ etz ) )

v_v+ymax +ymin
pho gy Lol 2 _in| 2
87T|SD W_y w_y .

2 max 2 min

(31b)
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and
L, = kA
¢ 4aRilsp

4 o2
4Ryl sp

{07 nl G

] Vo [yrznaxo*' d- P)

max P

|

Mod
AmRylsp

| -pm| =t

o}

Mo Yain + (d—p)?

[

yr2n|n0 + P

Lx{yfznin In[yﬁde—zp)2

yrznin+P

a
_ |n|: Mo
P Yaino + p

AL
2mRulsp

Mod
2mRylsp AL«

yrznax+ P2

Mo Ymin

+7TRH| {(d p)[arctar< d— p) arcta
_ Ymino) 1L Hod
a“’“"’( P >]} ARilso "

x{ymin In[M

(e ] i =

1)+ ]

pry- LX{“’ —PY '”[m

1

| oo ] B 0=

yrznin + p2 yﬁnno + p

]

maxot P

Ymino Mod

d

{(d p)[arctar< d max) arcta

) - o)

=)

7Rlsp

oo ot

+ AL arcta — arcta . 31c

R b P) p . (31c)

We made the approximatiomax = — Ymn = W/2 in the - Mo In[d —p] _ (32)
arctan terms of Eq. (27) in order to obtain analytic T W

solutions for the arctan terms of Eq. (31b). These
approximate analytic solutions agree with complete
numerical integrations to within 3 parts in“0

5.2 Comparison with Two Parallel Wires

If the conducting sheet of Fig. 3 is replaced with a
wire of radiusp located at the origin, and this wire has
an applied currents of positive charges flowing in the
negativex direction, then the magnetic inductaricg,,
of the current loop is

d-p

1
I—Ioop = 5_7:_ I—x J- |:E +

P
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The magnetic inductances per length,/Ly and
Liop/Lx, are compared in Fig. 4 for distancgbetween
0.1 mm and 10 mm, assuming that 2.5 nm and using
the parameters listed in Sec. 2.2 fgg = 25 pA. L, of
the current sheet and return wire configuration is always
less than the value dfj., for the two parallel wires
configuration. Therefore, an over-estimate of the mag-
netic inductance of a quantum Hall device can be made
for a particular experimental arrangement by assuming
the device is replaced with a wire of radjipand length
L.
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Fig. 4. A comparison of the magnetic inductances per length for a conducting sheet and return
wire, Lm/Ly, and for a conducting wire and return witg,op/Lx, when using separation distances

d between 0.1 mm and 10 mm, the parameters listed in Sec. 2lgfer25 pA, and assuming

that the wire radiup is 2.5 nm.

6. Conclusions have shown, however, that an upper-limit estimate of the
value can be obtained by replacing the device with a
We predict that the capacitance per length is about wire of radiusp and lengthL,.
0.63 pF/m for 40Q.m wide devices on thie= 2 plateau, The internal capacitances, kinetic inductances, and
and thus that the internal capacitanCg across the  magnetic inductances calculated here result from the
device width is about 0.0014 pF for 2.2 mm long BIPM/ quantum Hall effect device itself (although the magnetic
EUROMET devices. This gives an out-of-phase inductances necessarily included the effects of a return
(quadrature) impedance of aboux710° (), which is a wire placed in a particular geometrical arrangement).
correction of about 2 parts in 10f the in-phase value  There are also capacitances, inductances, and resis-

of Ry for BIPM/EUROMET devices atv» = 10 rad/s. tances associated with external lead connections to the

This out-of-phase impedance component correction is device, with electrical shields placed around the device,

small, but not insignificant. and with contact resistances to the 2DEG. The
The kinetic inductance per length is about 1B/m impedances of these additional circuit elements were

for 400 wm wide devices with = 2 plateaus at 12.3 T,  not considered here, but they must also be accounted for

and about 18.H/m for devices withi = 2 plateaus at  if the impedance standard is to have the intrinsic in-

10 T. The kinetic inductancky is thus about 0.04.H phase value oR(i).

for 2.2 mm long BIPM/EUROMET devices. The

quadrature impedance due to the kinetic inductance is

along the device length. It has a value of about 04 m  Acknowledgments

for BIPM/EUROMET devices ai = 10" rad/s, or only

about a 3 parts in fOout-of-phase correction to the We thank E. R. Williams, R. E. EImquist, W. Tew,

value ofR; for thei = 2 plateau. The kinetic inductance A. F. Clark, and K. C. Lee of NIST for their useful

out-of-phase impedance is comparable in value to the discussions and comments, and F. Delahaye of the BIPM

in-phase longitudinal resistané¥. for his encouragement in doing these calculations. This
The magnetic inductance along the device length can work was supported in part by the Calibration Coordi-

only be calculated for known configurations. Thus its nation Group of the Department of Defense.

value depends on the experimental arrangement. We
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