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Analytic solutions are obtained for the in-
ternal capacitances, kinetic inductances, and
magnetic inductances of quantum Hall
effect devices to investigate whether or not
the quantized Hall resistance is the only
intrinsic impedance of importance in mea-
surements of the ac quantum Hall effect.
The internal capacitances and inductances
are obtained by using the results of Cage
and Lavine, who determined the current
and potential distributions across the widths
of quantum Hall effect devices. These
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resistance and to the in-phase longitudinal
resistance.
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1. Introduction

The integer quantum Hall effect [1–3] requires a fully
quantized two-dimensional electron gas (2DEG). At low
currents there is negligible dissipation within the interior
of the 2DEG in the quantum Hall plateau regions of
high-quality devices, and the longitudinal resistance
Rx along the device is very small. Within these plateau
regions the quantized Hall resistanceRH across the
device has the valueRH(i ) = h/(e2i ) for the i th plateau,
where h is the Planck constant,e is the elementary
charge, andi is an integer. We assume here that the
quantity iRH(i ) has the value of the von Klitzing
constantRK = 25 812.807V.

The quantum Hall effect has been used to realize a
device-independent resistance standard of high accuracy
for dc currents [4, 5] and for very low frequency currents
below 4 Hz [6]. An ac quantum Hall effect impedance
standard is now being developed for alternating currents
having frequencies of order 103 Hz and angular frequen-
cies of order 104 rad/s [7–10].

Impedances are complex quantities, and can therefore
have both real and imaginary components. If it is to be
a useful absolute or intrinsic ac resistance standard, the
impedanceacrossthe device must be dominated by the
real component, which is the quantized Hall resistance
RH(i ), and the impedancealong the device must be
small and again dominated by the real component,
which is the longitudinal resistanceRx. The imaginary
components (theinternalor intrinsic impedances due to
capacitances and inductances of the quantum Hall effect
device itself) must provide small contributions in order
to avoid a significant out-of-phase or quadrature signal.

There are, of course,externalcapacitances and induc-
tances in the sample probe arising from the sample
holder, bonding wires, and coaxial cables. We do not
consider the external impedances here, but they must
also be accounted for. Signals that are in-phase with
RH(i ) andRx, due to products of external and internal
capacitances and inductances, can also be present.
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These second-order effects must also be small if the
device is to be a useful intrinsic standard.

Seppa, Satrapinski, Varpula, and Saari [11] have esti-
mated that the kinetic inductance contribution to the
imaginary (j ) component of the impedance can be of
order 1V, which is very large compared withRx. We
therefore calculate the internal kinetic inductance, as
well as the magnetic inductance, along the device to see
if the imaginary components are indeed significant
compared with the longitudinal resistanceRx. We also
calculate the internal capacitance across quantum Hall
effect devices to see if it provides a significant out-of-
phase contribution to the quantized Hall resistance
RH(i ). (We will find that there are no contributions from
the internal capacitance along the device or from the
kinetic and magnetic inductances across the device.)

The calculations have analytic solutions which utilize
results from the work of Cage and Lavine [12, 13], who
calculated potential, electric field, current, and current
density distributions across the 400mm width of a quan-
tum Hall effect device for applied currents between
0 mA and 225mA. The potential distributions of Cage
and Lavine [12] are in excellent agreement with the
experimental measurements of Fontein et al. [14], who
used a laser beam and the electro-optic Pockels effect as
a contactless probe of the 2DEG.

2. Potential and Current Distributions

A currentISD, externally applied between the source S
and the drain D of a mesa-etched quantum Hall effect
device, is confined to flow with a current sheet density
Jt within the 2DEG layer of the device. This applied
current induces a potential distribution across the device
in the presence of a perpendicular external magnetic
flux densityB. The total potential difference across the
device width w is the quantum Hall voltage
VH(i ) = RH(i ) ISD.

Cage and Lavine [12] have calculated the potential
distributions for applied currents between 0mA and
225 mA. Their potential distributions are composed of
parabolically shaped confining potentials (due to homo-
geneous charge-depletion regions) located on either side
of the device, and alogarithmically shaped charge-
redistribution potential (due to the Lorentz force exerted
on the conducting electrons in the 2DEG causing devia-
tions from the average surface charge density) extending
across the device interior.

Figure 1 is a schematic drawing of the 2DEG, with
the origin of the coordinate system located at the source
S and halfway across the 2DEG. On a quantum Hall
plateau, the conducting electrons within the 2DEG
occupy all the allowed states of filled Landau levels.

Fig. 1. A 2DEG conducting sheet, with the origin of the coordinate
system located at the source S, halfway across the device widthw.
The device length isLx, and D is the drain. Conducting electrons
extend across the device fromymin to ymax. B is the external magnetic
flux density,VH the quantum Hall voltage,ISD the applied current,
and Jt(y') the total current density at pointx', y', 0 in the 2DEG.

The spatial extent of the conducting electrons lies
within the device widthw, and between the coordinates
ymin and ymax. We are interested in effects within the
device interior, so we will neglect the fact that the
applied currentISD enters and exits opposite corners of
the device. The electrons are therefore flowing only in
the positivex direction at this instant of time. This
corresponds to a current of positive charges moving in
the negativex direction. The potential on the left hand
side of the device is positive relative to the potential on
the right hand side for these particular current and mag-
netic flux density directions.

2.1 Results of Cage and Lavine

For convenience, we repeat those results of Cage and
Lavine [12] that are used as the starting points of our
calculations. The equations for the confining potential
Vc at any pointy' across the 2DEG are

Vc(y') = –a(y' –l )2 for l # y' #
w
2

(1a)

Vc(y') = 0 for –l < y' < l (1b)

Vc(y') = –a(y' + l )2 for –
w
2

# –y' # –l , (1c)
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where

l =
w
2

– D , (2)

a = 3.0 3 1012 V/m2, and the charge-depletion widthD
is 0.5 mm [15]. The confining potential and magnetic
flux density produce an electron current that circulates
around the periphery of the device in a counterclockwise
direction. This is equivalent to an edge current of posi-
tive charges in a clockwise direction.

The charge-redistribution potentialVr(y') is

Vr(y') = –
IrRH

2
GlnUy' + w/2

y' – w/2U , (3)

whereIr is that part of the total currentISD due to the
charge-redistribution potential. The value of the geome-
try factor G is 0.147 [12].

The total potentialVt(y') is

Vt(y') = Vc(y') + Vr (y') . (4)

The electric field equations are

Ec(y') = 2a(y' – l ) for l # y' #
w
2

(5a)

Ec(y') = 0 for – l < y' < l (5b)

Ec(y') = 2a(y' + l ) for –
w
2

# – y' # – l , (5c)

and

Er(y') =
IrRH

2
G

w
[(w/2)2 – (y')2]

, (6)

and

Et(y') = Ec(y') + Er(y') . (7)

The total current densityJt(y') is

Jt(y') = Jc(y') + Jr(y') =
1
RH

Et(y') , (8)

and the applied currentISD is

ISD = E
ymax

ymin

Jt (y') dy' . (9)

Figure 2 shows schematic diagrams ofVc(y') and
Vr(y') for ISD = 0 andISD > 0. For clarity, the confining
potentials Vc(y') have been stretched out over wide
regions of the device. The thick curves are those parts of
the potentials where electrons of the 2DEG occupy
Landau states and contribute to the current. Refer to
Figs. 7 and 9 of Ref. [12] for actual plots ofVt(y') and
Jt(y') versusy' at ISD = 25 mA.

ISD is an alternating current for impedance measure-
ments. The filled states and thick lines of Fig. 2 shift to
the right with increasing current. WhenISD < 0, Vr (y')
has the opposite sign,Vc(y') does not change sign, and
the occupied states shift to the left. We will choose an
instant in time for the calculations whenISD has the
root-mean-square (rms) value and is in the negativex
direction, as shown in Fig. 1.

2.2 Parameters Used in the Calculations

A typical ac quantized Hall resistance device is
400 mm wide, has a rms current of about 25mA, and
operates on thei = 2 plateau. The following set of values
found by Cage and Lavine [12] can therefore be used
in our calculations:ISD = 25 mA, RH = 12 906.4035V,
VH = RHISD = 0.3227 V, B = 12.3 T, w = 400 mm,
a = 3.03 1012 V/m2, D = 0.5 mm, l = 199.500mm,
Ir = 24.74mA, G = 0.147,ymax = 199.564mm, ymin =
–199.554 mm, Vc(ymax) = – 0.0122 V, Vc(ymin)
= – 0.0088 V,Vr(ymax) = –0.1599 V,Vr(ymin) = 0.1594 V,
Ec(ymax) = 3.8213 105 V/m, Ec(ymin) = –3.2553 105

V/m, Er(ymax) = 5.3803 104 V/m, Er(0) = 2.3453 102

V/m, and Er(ymin) = 5.266 3 104 V/m. Their device
length Lx was 4.6 mm. The reduced massm* of the
electron in GaAs is 0.068 times the free electron mass,
or 6.1943 10–32 kg.

We will also use the valuesymax0 = – ymin0 = 199.559
mm, andEc(ymax0) = – Ec(ymin0) = 3.543 105 V/m from
Cage and Levine [12] whenISD = 0 mA.

3. Internal Capacitance

The quantum Hall voltageVH(i ) = RH(i )ISD arises
because the conducting electrons are shifted slightly
towards one side of the device such that the Lorentz
forceev 3 B equals the Coulomb repulsive force –eEt

everywhere within the 2DEG [16], wherev is the veloc-
ity of a conducting electron located at coordinatesx', y'.
This shift in position with applied currentISD causes a
deviation, –ed s(y '), or charge-redistribution of the
electrons in the 2DEG from the average electron surface
charge densityenS, where –ds is the surface density
deviation at coordinatesx', y' andnS = i(eB/h) is the
average surface number density, e.g., 5.943 1011/cm2
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Fig. 2. Schematic drawings of the confining potentialsVc(y') and the charge-redistribution potentialVr(y')
across the device width forISD = 0 andISD > 0, wherel and –l are the locations where the confining potentials
begin to deviate from zero. The thick lines betweenymin0 andymax0 for ISD = 0, and betweenymin andymax for
ISD > 0 are the regions where the 2DEG electrons are conducting. For clarity, the confining potentials extend far
into the device interior, as do the values ofymin0, ymax0, ymin andymax.

for the i = 2 plateau at 12.3 T. The charge-redistribution
gives rise to separated charges and an internal capaci-
tance across the device width.

3.1 Calculations

There is an excess of electrons, with total charge –Q,
on the right hand side of Fig. 1 and a depletion of
electrons, with total charge +Q, on the left hand side,
where

– Q = E
Lx

0

E
w/2

0

eds (y') dy'dx' , (10a)

Q = E
Lx

0

E
0

–w/2

eds (y')dy'dx' , (10b)

and Lx is the length of the device (neglecting corner
effects). Appendix A of Ref. [12] showed that the
surface charge-redistribution is

ds (y') =
im*
hB

d2

dy'2
Vt(y') , (11)

wherem* is the reduced mass of the electron in GaAs
(0.068 times the free electron mass).

Note that only those parts of the total potentialVt(y')
whichchangewith applied currentISD should be used in
Eqs. (10) and (11) to calculate charge separations within
a capacitor. Thus the entire charge-redistribution poten-
tial Vr(y') contributes to Eq. (11), and the limits
of integration in Eqs. (10) are betweenymin and 0 and
between 0 andymax. However, only those parts of
the confining potentialVc(y') which differ from the
ISD = 0 mA case contribute, i.e., the parts between
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ymin0 andymin and betweenymax0 andymax. The parts of
Vc(y') betweenymin andymax0 do not contribute because
there is no difference from theISD = 0 mA case of
Fig. 2.

The total charges –Q and +Q, defined by Eqs. (10)
and (11), are

–Q = –eSim*
hBD

3 Lx{[ Ec(ymax) – Ec(ymax0)] + [Er(ymax) –Er(0)]} (12a)

Q = eSim*
hBD

3 Lx{[ Ec(ymin) – Ec(ymin0)] + [Er(ymin) – Er(0)]} . (12b)

Using the values from Sec. 2.2, Eqs. (12) predict values
of –Q and +Q of –9.363 10–16 C and 9.233 10–16 C,
respectively for the right and left hand sides of the
4.6 mm long device atISD = 25mA andB = 12.3 T. The
confining potential contributes 36 % to the chargeQ.

There is a 0.7 % difference in the values ofQ between
the two sides of the device, but that does not violate
charge conservation. The solutions of Cage and Lavine
[12] are self-consistent because charges on both sides of
the device are transferred between donor sites in the
AlGaAs layer and the 2DEG in the GaAs layer in order
to maintain zero net charge within the device volume. It
is this charge transferbetweenlayers that gives rise to
the charge separation +Q and –Q in the 2DEG.

The separated total charges +Q and –Q within the
2DEG generate a potential differenceVH across the
device width, producing an internal capacitanceCH

across the device, whereCH is defined as

Q = CH VH , (13)

or

CH = S e
VH
D Sim*

hBD

3 Lx{[ Ec(ymax) – Ec(ymax0)] – [Er(ymax) – Er(0)]} . (14)

Using the electric field values listed in Sec. 2.2, the
capacitance per length is 0.63 pF/m for 400mm wide

devices. The capacitanceCH is thus about 0.0029 pF for
the 4.6 mm long GaAs/AlGaAs device of Ref. [12], and
about 0.0014 pF for the widely-used, 2.2 mm long
and 400mm wide, GaAs/AlGaAs BIPM/EUROMET
devices [17].

Two frequenciesf often used in ac quantized Hall
resistance measurements are 1233 Hz and 1592 Hz.
These correspond to angular frequenciesv = 2pf of
7747 rad/s and 10 000 rad/s, respectively, or about 104

rad/s. The impedancej/(vCH) due to the Hall capaci-
tanceCH is about 731010 for BIPM/EUROMET devices,
yielding a correction toRH of 2 3 10–7 RH for the i = 2
plateau. This quadrature component correction to the
Hall impedance is small, but not insignificant.

We thus predict an internal capacitanceCH acrossthe
device width in parallel with the Hall resistanceRH.
There is no internal capacitance Cx along the device
length within the nearly dissipationless conduction
region because the potential difference betweenVx

probes is negligible and there is no charge separation
along the sample length. A potential difference slightly
greater thanVH does occur between the source and drain
due to the current entering and exiting at opposite device
corners, but this voltage arises from resistive heating
rather than charge separation. So the impedance due to
Cx along the device length is negligible compared with
Rx = Vx / ISD.

3.2 Line Charges Approximation

The total charges +Q and –Q are concentrated near
the positionsymin and ymax because that is where the
surface charge-redistributionseds (y') are largest. (See
Fig. 11 of Ref. [12] for an example of the charge-
redistributions atISD = 215 mA.) One can closely ap-
proximate the charge-redistributions as two line charges
+Q /Lx and –Q /Lx, with radii r that are about one-half
the probability distribution thickness of the 2DEG [2],
and are separated by the device widthw. It can
be shown using Gauss’s law,«eE ? dS = Q, and the
definitions of potential,V = –eE ? dl , and capacitance,
C = Q /V, that the capacitance between two line charges
of radii r is p«Lx /ln[(w–r )/r ], where« is the permit-
tivity of GaAs (which is 13.1 times larger than the
permittivity of a vacuum),r is about 2.5 nm, dS is an
elemental area of the integration surface, and dl is an
incremental length along the integration path. The ca-
pacitance between two line charges is 48 times larger
than that predicted by Eq. (14) for the 2DEG.

Two line charges are not a good approximation of a
quantum Hall device, however, because it neglects the
large screening effects in the nearby AlGaAs layer of
the heterostructure. Charges of opposite sign to the line
charges occur in the two regions of the AlGaAs layer
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near the device sides because the 2DEG arises from
electrons tunneling from the AlGaAs layer. There are
really four line charges to consider, with charge densi-
ties 6Q /Lx and 7Q /Lx located on either side of the
device. This greatly reduces the electric fields within the
2DEG, and thereby decreases the capacitance across the
device. The capacitance predicted by Eq. (14) accounts
for these screening effects because it uses electric fields
derived from experimental results.

4. Kinetic Inductance

The conducting electrons have an inertial massm*,
which gives rise to a kinetic inductance [18] when the
current is reversed. Seppa, Satrapinski, Varpula, and
Saari [11] predict that this yields a large impedance
along the device length. We will examine their results in
Sec. 4.2 after deriving our equations for the kinetic
inductance.

4.1 Calculations

The conducting electrons of Figs. 1 and 2 have a
velocity vx (y') = Ey (y')/Bz = Et(y')/Bz and a kinetic
energy1

2m*vx
2(y'). Neglecting corner effects, the total

kinetic energyK within the 2DEG of a device of length
Lx is

K =
1
2 E

Lx

0

E
w/2

–w/2

m*vx
2(y')nsdy'dx' . (15)

Noting thatJt(y') = Jx (y') = nSevx (y'), nS = i (eB/h),
RH = h /(e2i ), and Jt(y') = Et(y')/RH, Eq. (15) can be
rewritten as

K =
1
2 FSm*RH

eBISD
2 DLx E

w/2

–w/2

Jt
2(y')dy'G ISD

2

=
1
2

Lk ISD
2 , (16)

where the kinetic inductanceLk is

Lk = Sm*RH

eBISD
2 DLx E

w/2

–w/2

[Jt(y')]2dy'

= S m*
eBRHI SD

2 DLx E
w/2

–w/2

[Er(y') + Ec(y')] 2dy' . (17)

Please note thatLk is the kinetic inductance andLx is the
device length.

Eqs. (5) and (6) can be used in Eq. (17), remembering
that only those parts of the electric fields whichchange
with applied currentISD should be included. This means
all of the charge-redistribution electric fieldEr(y'), inte-
grated between the limitsymin andymax, but only those
parts of the confining fieldEc(y') which differ from the
ISD = 0 mA case, i.e., those parts betweenymin0 andymin

and betweenymax0 andymax. The parts betweenymin and
–l and betweenl and ymax0 do not contribute toLk

because they result from an internal dc current which
circulates around the device periphery and is indepen-
dent of ISD.

The integrals of Eq. (17) are analytic, and have the
solution

Lk = A (B + C + D + E) (18a)

where

A = S m*
eBRHI SD

2 DLx (18b)

B =
IrRHG

w

3 [ymaxEr(ymax) – yminEr(ymin)–Vr(ymax) + Vr(ymin)]

(18c)

C = 4a2

3 F1
3

(ymax
3 + ymin

3 ) –l (ymax
2 – ymin

2 ) +l2(ymax + ymin)G
(18d)

D = aIrRHGw

3 Hln
[(w/2)2 – ymin0

2 ]

[(w/2)2 – ymin
2 ]

+ ln
[(w/2)2 – ymax0

2 ]

[(w/2)2 – ymax
2 ] J

(18e)

E = 4al

3 {[ Vr(ymax) – Vr(ymax0)] – [Vr(ymin) –Vr(ymin0)]} .

(18f)

The kinetic inductance can be evaluated from Eqs.
(18) using the values listed in Sec. 2.2, except for term
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E where the values ofVr(y') need to be calculated to
more significant figures using Eq. (3). The kinetic in-
ductance per length is about 15mH/m for 400mm wide
devices withi = 2 plateaus at 12.3 T. The terms involv-
ing the confining potential (C, D , and E) contribute
33 % of this value. The kinetic inductanceLk is thus
about 0.07mH for the 4.6 mm long GaAs/AlGaAs
device of Ref. [12], and about 0.04mH for 2.2 mm long
GaAs/AlGaAs BIPM/EUROMET devices [17], where
the i = 2 plateau occurs at about 10 T. These values are
for ISD = 25 mA. Lk is somewhat current dependent in
this model becauseEr(y') scales linearly withISD but
Ec(y') does not; soLk decreases from 0.07mH to 0.05
mH between 25mA and 215mA. This difference over
such a wide current range is small enough to ignore.

The impedancejvLk due to the kinetic inductanceLk

is about 0.4 mV for BIPM/EUROMET devices at
v = 104 rad/s andISD = 25 mA, or only about 3 parts in
108 of RH for the i = 2 plateau. This out-of-phase
impedance component is along the device length, and is
comparable in magnitude to the longitudinal resistance
Rx = Vx /ISD.

4.2 Uniform Current Density Approximation

Seppa, Satrapinski, Varpula, and Saari [11] consid-
ered the case of auniform current densityJt = ISD/w
across the device widthw. A uniform current density in
Eq. (17) yieldsLk = (m* RHLx ) /(eBw) = (m* Lx ) /
(nse2w), where ns = i (eB/h). For BIPM/EUROMET
devices withi = 2 plateaus at 10 T we find thatLk =
0.003mH for a uniform current density approximation,
or about 13 times smaller than the more realistic predic-
tion in Sec. 4.1.

Seppa et al. [11] predicted a much larger value of
Lk = 40mH for this example than we have because they
assumed free electrons with massme, rather than elec-
trons with reduced massm* in the 2DEG, and a con-
ducting electron number density that was 1000 times
smaller thanns. This last assumption is inconsistent
with the requirement that the average surface density is
ns = i (eB/h) on a quantum Hall plateau.

Using our Eqs. (11), (1), and (3), the deviation
–ds (y') in the density of electrons from the average
surface densityns is

–ds (y') = Sim*
hBDH2a+

IrRHGwy'
[(w/2)2– (y')2]2J . (19)

The largest deviation in the 2DEG occurs aty' = ymax,
and has the value –ds (y') = 9.30 3 109/cm2 for the
i = 2 plateau at 12.3 T andISD = 25 mA. This is only

1.6 % ofns = 5.943 1011/cm2, and satisfies the further
requirement in the model of Cage and Lavine [12] that
the charge density varies slowly across the device
width.

5. Magnetic Inductance

Determining the magnetic inductanceLm of a quan-
tum Hall effect device is not quite as straightforward as
determining the Hall capacitanceCH or the kinetic in-
ductanceLk. The device can be treated as an isolated
object when calculating values forCH andLk. The mag-
netic inductance, however, can only be evaluated when
the device is part of a complete current-carrying circuit.
Therefore,Lm depends on the circuit geometry.

We chose a geometry in which the device is repre-
sented as a current sheet, with a return wire located
below the middle of the sheet because this geometry
approximates the source-drain leads of a typical sample
probe. The integral equations forLm have analytic solu-
tions for this geometry, and values ofLm can be com-
pared with the values for two parallel wires carrying
currents in opposite directions.

We consider only the magnetic inductanceoutside
the sheet and the wire. The self-inductance per length
insidea long, nonpermeable, cylindrically-shaped wire
is m0/(8p ) [19], where m0 = 4p 3 10–7 H/m is the
permeability of free space.

5.1 Calculations

Figure 3 shows the circuit geometry. The current-
carrying 2DEG sheet and parallel return wire each
extend to6` along thex axis. The current density is
Jt(y') = Et(y')/RH within the conducting sheet, where
Et(y') is given by Eqs. (5) and (6). The return wire has
a radiusr , and is separated from the sheet by a distance
d from the origin. The wire carries a current

ISD = E
w/2

–w/2

Jt(y')dy' (20)

in the opposite direction to that in the sheet.
The magnetic fluxfm and magnetic inductanceLm

are defined by

fm = EBm ? dS = RA ? dl = LmISD , (21)

whereBm is the magnetic flux density generated by both
the conducting sheet and the return wire, dS is an
elemental area of the enclosed current-carrying circuit,
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Fig. 3. A sketch of the 2DEG conducting sheet and a parallel current return
wire of radiusr , located a distanced from the middle of the sheet.Bs(z) and
Bw(z) are magnetic flux densities generated by the conducting sheet and wire.
dS= dxdz is an elemental area in thex–z plane located between the conducting
sheet and the wire.

A is the vector potential, dl is an incremental length
along the path around the circuit just outside the conduc-
tors, andI SD is the applied current [19].

We chose dS to be located in Fig. 3 in thex –z plane
between the conducting sheet and the wire aty = 0; so
dS = dxdz. Therefore, only they-components ofBm

perpendicular to dS are needed to evaluate the surface
integral in Eq. (21). Thesey-components ofBm are

Bm(z) = Bw(z) + Bs(z)cosu = Bw(z) + Br(z) + Bc(z),

(22)

whereBw(z) is due to the return wire.Bs(z)cosu is due
to the conducting sheet, and is composed of charge-
redistribution and confining partsBr(z) and Bc(z),
respectively.Bw(z) is easily obtained from Ampere’s law
eBw ? dl = m0ISD

Bw(z) =
m0

2p
ISD

1
(d – z)

. (23)

Bs(z) is found by considering the conducting sheet as a
series of wires carrying currentsJt(y')dy'

dBs(z)cosu =
m0

2p
Jt(y')

dy'

Ï(y')2 + z2

z

Ï(y')2 + z2

(24)
or

Bs(z)cosu = Br(z) + Bc(z) =
m0z
2p E

w/2

–w/2

Jt(y')
[(y')2 + z2]

dy'.

(25)
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This gives

Br(z) =
m0

4p
IrGwz

3 E
ymax

ymin

1

FSw
2D2

– Sy'D2GFSy'D2
+ z2G dy' , (26)

and

Br(z) =
m0

4p
IrG

w

FSw
2D2

+ z2G

3 HarctanSymax

z D – arctanSymin

z DJ

+
m0

4p
IrG

z

FSw
2D2

+ z2G

3 5ln3
w
2

+ ymax

w
2

– ymax4 – ln3
w
2

+ ymin

w
2

– ymin46 (27)

for the charge-redistribution term, and

Bc(z) =
m0a
pRH

z E
ymin

ymin0

(y' + l )
[(y')2 + z2]

dy'

+
m0a
pRH

z E
ymax

ymax0

(y' – l )
[(y')2 + z2]

dy' , (28)

and

Bc(z) =
m0a
pRH

z
2 HlnF ymax

2 + z2

ymax0
2 + z2G + ln F ymin

2 + z2

ymin0
2 + z2GJ

+
m0a
pRH

lHarctanSymin

z D – arctanSymin0

z DJ

–
m0a
pRH

lHarctanSymax

z D – arctanSymax0

z DJ (29)

for the confining term. The integrals in Eq. (28) extend
only betweenymin0 and ymin and betweenymax0 and ymax

because we are interested in the parts ofBc(z) that
changewhenISD changes. The parts betweenymin and –l
and betweenl and ymax0 provide a constant magnetic
flux density that does not contribute to the magnetic
inductance.

If the quantum mechanical probability distribution of
the 2DEG extends over a distance 2r , if the device
length isLx, and if we neglect the corner effects, then
Eqs. (21) and (22) yield

Lm = LW + Lr + Lc

=
1

ISD
E
Lx

0

E
d–r

r

[BW(z) + Br(z) + Bc(z)]dzdx . (30)

Using Eqs. (23), (27), and (29) in Eq. (30), we find that

LW =
m0

2p
Lx lnFd – r

r G , (31a)

and

Lr ø m0

2p
Ir

ISD
GLxHFarctanS w

2rDG
2

–FarctanS w
2(d–r )D

2GJ

+
m0

8p
Ir

ISD
GLx5ln3

w
2

+ ymax

w
2

– ymax4 –ln3
w
2

+ ymin

w
2

– ymin46

3 5ln3S
w
2D2

+ (d – r )2

Sw
2D2

+ r2 46 , (31b)
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and

Lc =
m0a

4pRHISD
LxHymax

2 lnFymax
2 + (d– r )2

ymax
2 + r2 G – ymax0

2 lnFymax0
2 + (d – r )2

ymax
2 + r2 GJ

+
m0a

4pRHISD
LxH(d – r )2 lnF ymax

2 + (d– r )2

ymax0
2 + (d – r )2G – r2 lnF ymax

2 + r2

ymax0
2 + r2GJ +

m0a
4pRHISD

3 LxHymin
2 lnFymin

2 + (d– r )2

ymin
2 + r2 G –ymin0

2 lnFymin0
2 + (d– r )2

ymin0
2 + r2 GJ +

m0a
4pRHISD

LxH(d – r )2 lnF ymin
2 + (d– r )2

ymin0
2 + (d – r )2G

–r2 lnF ymin
2 + r2

ymin0
2 + r2GJ +

m0a
2pRHISD

lLxHymin lnFymin
2 + (d– r )2

ymin
2 + r2 G – ymin0 lnFymin0

2 + (d– r )2

ymin0
2 + r2 GJ

–
m0a

2pRHISD
lLxHymax lnFymax

2 + (d– r )2

ymax
2 + r2 G – ymax0 lnFymax0

2 + (d– r )2

ymax0
2 + r2 GJ

+
m0a

pRHISD
lLxH(d – r )FarctanS ymin

d – rD – arctanS ymin0

d – rDGJ –
m0a

pRHISD
lLxH(r )FarctanSymin

r D

– arctanSymin0

r DGJ –
m0a

pRHISD
lLxH(d – r )FarctanS ymax

d – rD – arctanS ymax0

d – rDGJ

+
m0a

pRHISD
lLxH(r )FarctanSymax

r D– arctanSymax0

r DGJ . (31c)

We made the approximationymax ≈ – ymin ≈ w/2 in the
arctan terms of Eq. (27) in order to obtain analytic
solutions for the arctan terms of Eq. (31b). These
approximate analytic solutions agree with complete
numerical integrations to within 3 parts in 104.

5.2 Comparison with Two Parallel Wires

If the conducting sheet of Fig. 3 is replaced with a
wire of radiusr located at the origin, and this wire has
an applied currentISD of positive charges flowing in the
negativex direction, then the magnetic inductanceLloop

of the current loop is

Lloop =
m0

2p
Lx E

d–r

r

F1
z

+
1

d – zGdz

=
m0

p
Lx lnFd – r

r G = 2LW. (32)

The magnetic inductances per length,Lm/Lx and
Lloop/Lx, are compared in Fig. 4 for distancesd between
0.1 mm and 10 mm, assuming thatr = 2.5 nm and using
the parameters listed in Sec. 2.2 forISD = 25 mA. Lm of
the current sheet and return wire configuration is always
less than the value ofLloop for the two parallel wires
configuration. Therefore, an over-estimate of the mag-
netic inductance of a quantum Hall device can be made
for a particular experimental arrangement by assuming
the device is replaced with a wire of radiusr and length
Lx.
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Fig. 4. A comparison of the magnetic inductances per length for a conducting sheet and return
wire, Lm/Lx, and for a conducting wire and return wire,Lloop/Lx, when using separation distances
d between 0.1 mm and 10 mm, the parameters listed in Sec. 2.2 forISD = 25 mA, and assuming
that the wire radiusr is 2.5 nm.

6. Conclusions

We predict that the capacitance per length is about
0.63 pF/m for 400mm wide devices on thei = 2 plateau,
and thus that the internal capacitanceCH across the
device width is about 0.0014 pF for 2.2 mm long BIPM/
EUROMET devices. This gives an out-of-phase
(quadrature) impedance of about 73 1010 V, which is a
correction of about 2 parts in 107 of the in-phase value
of RH for BIPM/EUROMET devices atv = 104 rad/s.
This out-of-phase impedance component correction is
small, but not insignificant.

The kinetic inductance per length is about 15mH/m
for 400mm wide devices withi = 2 plateaus at 12.3 T,
and about 18mH/m for devices withi = 2 plateaus at
10 T. The kinetic inductanceLk is thus about 0.04mH
for 2.2 mm long BIPM/EUROMET devices. The
quadrature impedance due to the kinetic inductance is
along the device length. It has a value of about 0.4 mV
for BIPM/EUROMET devices atv = 104 rad/s, or only
about a 3 parts in 108 out-of-phase correction to the
value ofRH for the i = 2 plateau. The kinetic inductance
out-of-phase impedance is comparable in value to the
in-phase longitudinal resistanceRx.

The magnetic inductance along the device length can
only be calculated for known configurations. Thus its
value depends on the experimental arrangement. We

have shown, however, that an upper-limit estimate of the
value can be obtained by replacing the device with a
wire of radiusr and lengthLx.

The internal capacitances, kinetic inductances, and
magnetic inductances calculated here result from the
quantum Hall effect device itself (although the magnetic
inductances necessarily included the effects of a return
wire placed in a particular geometrical arrangement).
There are also capacitances, inductances, and resis-
tances associated with external lead connections to the
device, with electrical shields placed around the device,
and with contact resistances to the 2DEG. The
impedances of these additional circuit elements were
not considered here, but they must also be accounted for
if the impedance standard is to have the intrinsic in-
phase value ofRH(i ).
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