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We report a preliminary value for the zero
magnetic field N&S@F=1, m= — 1) +

Na S(f= 1, m= — 1) scattering length,

&, —1. This parameter describes the low-
energy elastic two-body processes in a di-
lute gas of composite bosons and deter-
mines, to a large extent, the macroscopic
wavefunction of a Bose condensate in a
trap. Our scattering length is obtained from
photoassociative spectroscopy with sam-
ples of uncondensed atoms. The tempera-
ture of the atoms is sufficiently low that
contributions from the three lowest partial
waves dominate the spectrum. The ob-
served lineshapes for the purely long-range
0y molecular state enable us to establish

key features of the ground state scattering
wavefunction. The fortuitous occurrence
of ap-wave node near the deepest point
(Re= 72 &) of the @ potential curve is
instrumental in determining, -, = (52 = 5)
ap anda,, = (85 * 3) ap, where the latter

is for a collision of two N&’S(f = 2, m= 2)
atoms.
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1. Introduction

Last year two groups reported the observation of

One of the fundamental parameters required to under-

Bose-Einstein Condensation (BEC) in dilute gasses of stand the approach to BEC and the properties of the
ultra-cold ®Rb and®Na [1,2], and another reported condensate is the-wave scattering length. This scatter-
evidence for reaching the quantum degenerate regime ining length determines the low energy elastic scattering
"Li [3] but without observing BEC [4]. The observation rate and thus the evaporative cooling rate as well as the
of BEC in a weakly-interacting gas opens up a whole nonlinear coupling parameter in the Gross-Pitaevski
range of possibilities, from fundamental studies of the equation [5] for the condensate wavefunction. It is not
coherent atomic samples produced, to the constructionnecessary to produce a condensate to measurs-the
of the atom-analog of a laser. Theoretical descriptions wave scattering length: temperatures in a magneto-optic
of the weakly interacting Bose condensate are only now trap (MOT) are sufficiently low£ 1 mK) to limit scat-
being developed and experimental techniques to probetering to a few partial waves and thus permit a determi-
the condensate are just beginning to be explored. nation of thes-wave scattering length.
I We probe the scattering wavefunction using the tech-
! Permanent address: James Franck Institute, University of Chicago, nique of photoassociation spectroscopy [6—10]. Two Na
Chicago, IL 60637. . atoms colliding along the ground staté&s3+ $S poten-
Permanent address: Williams College, Williamstown, MA 01267. .
tial can absorb a photon to produce a bound molecule,
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in our case to vibrational levels with energy near the long range forces between atoms and the magnitude of
3°S + 3P, asymptote. We detect the formation of the atomic spin-orbit splitting, and thus may be calcu-
molecules by sending in a second photon which excites lated to high precision. The transition rate depends on
the molecule to an autoionizing state, thereby producing the overlap between the ground state wavefunction for a
an easily detected Né#n. The relative intensities of the  low energy collision and the excited bound state wave-
molecular photoassociation lines carry information function. It is a fortuitous coincidence that there is a
about the ground state wavefunction. In particular, we node in the p-wave scattering wavefunction that is
find that two specific rovibrational lines that arise from nearly centered on the minimum of thg @otential.
p-wave scattering are significantly weaker than the cor- This leads to an almost complete cancellation of the
responding lines for other nearby vibrational levels. This overlap integral between the N&f=1, m=—1) +
indicates that the former rovibrational state is centered at Na 2S(f = 1, m= — 1) p-wave scattering wavefunction
an internuclear separation near a node in pheave and the symmetri = 0 vibrational wavefunction, re-
ground state wavefunction. With the location of this sulting in a striking and characteristic absence of
node established, the intensities and lineshapes of othelp-wave features in the spectrum of the 0 level of the
rovibrational lines allow us to constrain the location of 0y state in our experiments. We are able to construct a
the corresponding-wave node, and thus to determine family of ground state potentials consistent with the

the scattering length. known spectroscopy of the molecular ground states that
The transitions which we use are from two colliding also reproduce thp-wave node near the minimum of
Na FS(f = 1) atoms to the N&0; “purely long range” the @ state. We obtain further constraints on the accept-

molecular state which asymptotically correlates t6% 3  able potentials from the width and the relative heights of
and a 3P, atom [11-15]. The wavefunctions of the the rotational features in the spectrum. This, in turn,
lowest vibrational levels in this potential are localized at places constraints on the position of the corresponding
distances between 53 and 100a,, as shown in Fig. 1.  s-wave node. Finally, we relate treewave nodal posi-
(The Bohr radiusa, = 0.0529177 nm.) This molecular tion to the scattering length.

potential is determined almost entirely by the known

+ 2. Experimental Spectra and Lineshapes

Na 5
ionization continuum

77/

The experiments are performed by loading Na atoms
into a “dark spot” MOT [16]. The trapping lasers are
turned off for brief periods £ 10 ws) and a tunable
probe laser is introduced during this time. For selected
frequencies of the probe laser, red of the atomic reso-
nance, pairs of atoms undergoing collisions are excited
to molecular states. These molecules are then detected
by ionization with a second probe laser. The ionization
laser is tuned to be non-resonant with any photoassoci-
ating transition but to allow ionization of the molecular
states of interest. Measurements such as these have been
described before [8,15], and here we review only those
features important for the understanding of the analysis

below.
The MOT captures Na atoms using the
} } } - 3’S(f = 2) — 3%Py(f = 3) atomic transition. This transi-
25 50 75 R (a0) tion is not a closed cycling transition because occasion-

ally atoms get excited to théRy,(f = 2) state which can
Fig. 1. Sketch of the two-step photoassociation/molecular ionization decay to the Bf= l) state, requiring the “repumping”
process used to obtain the spectrum of thestate. Two colliding of atoms that fall into the S(f = 1) ground state. The
atoms approach along the ground state molecular potential and aredark spot MOT has this repumping frequency missing
excited to a bound molecular state by a laser photon (solid arrow). The from the central volume of the trap and consequently

excited molecules thus created are then excited to an autoionizing the atoms are almost completel ticall moed int
continuum by the second laser (dashed arrow). ptveave ground € aloms are almost completely optically pumpe 0

state scattering wavefunction is shown with a node directly underneath the §S(f_: 1) ground state. A” of the transitions we
theR. of the @, potential. This leads to an absencepefiave features discuss in this paper begin from the’SE=1) +

(odd rotational lines) in the experimental spectrum ofitlve0 vibra- 325(f =1) ground state. When the photoassociating
tional level.

506



Volume 101, Number 4, July—August 1996
Journal of Research of the National Institute of Standards and olgyn

probe is introduced there are no excited state atomsto some uncertainty in the relative intensities of the
present. The ionizing laser present during the probe experimental peaks.
periods is tuned blue of the atomic resonance frequency Figure 2 shows spectra of severgl @brational lev-
and does not affect the atoms in the MOT. The ionizing els. Several observations can immediately be made. The
laser frequency is chosen and kept fixed while the pho- spectra show a rotational progression of lines at posi-
toassociating laser is scanned over thd GHz fre- tions given byB,J'(J' + 1), where only the lowest fivd'
quency range spanned by the rotational structure of afeatures are visibleJ(= 0 — 4), andB, is the rotational
given @ vibrational level. We check that the laser pow- constant for vibrational level. TheJ' = 2 peak is always
ers are low enough that the signal heights are linear andmuch larger than the other rotational lines. Forile0
that the linewidths are independent of power. vibrational level the odd's are nearly absent, while for
The frequency of the ionizing laser is chosen to take v =1 these odd' peaks are clearly visible. In fact the
the molecules formed in the photoassociation step into odd J' peaks are larger than tl#¢= 0 and 4 lines. The
the ionization continuum (see Fig. 1) just above the v =75 spectrum is typical for the > 2 levels. Moreover,
3%Py, + 3PP5, asymptote. This continuum has structure for v =0 the ratio of the heights of th& =4 and the
[8] which complicates the interpretation of the spectra J'=2 peaks is of the order of 0.2. Changing the fre-
presented here. If the sum of the two laser frequencies quency of the ionizing laser can change this ratio by
(photoassociating plus ionizing) coincides with a nar- approximately a factor of two. Finally, for all the vibra-
row feature in the continuum for some particular fre- tional levels examined up to= 8 theJ' = 2 peak, with
quency range of the photoassociating laser then the rel-a width of = 30 MHz, is narrower than th& = 4 peak
ative intensities of the rotational lines will not be and is more symmetric as well.
proportional to the transition strengths in the photoasso- The observed lineshapes are understood as a
ciation step. Since these relative transition strengths areLorentzian profile convolved with the thermal distribu-
important for our analysis, we work in a region where tion of the ground state collision energies [6]. The
there are no sharp resonances and the ionization contindineshape for a given vibrational-rotational level ¢')
uum is not rapidly varying. Nonetheless, this does lead is proportional to the following lineshape factor:
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Fig. 2. Experimental rotational progressions for the 0, 1, and 5 vibrational levels

of the @ state. Each panel spans 900 MHz except for the lower right which is an
expanded comparison of the= 0 andv =1, J=2 peaks, showing that the=0
feature has a larger width. The fitted curves suwave [see Eq. (2)] fod =0 and 2,
p-wave forJ=1 and 3, andd-wave forJ =4, except for thev=0, J=2 peak for
which there is a strond-wave contribution. The temperature is fixedkgT/h =9

MHz and the natural line width is set to 20 MHz fo= 0 and 22 MHz foiv = 1 and

5 (to allow for unresolved hyperfine structure).
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SwTvd)= S n(F+1) the I(r;zlfﬁl collision wavefunctionWg4,) is proportional
Fpp o toE . For example, fos-wave scattering the wave-
function is proportional t6¥E. Due to this Wigner-law
J ) dE e Erer Yol Dp RS | WEA. P 1) variation in the (Franck-Condon) matrix element, Eq.
o (E+ Fw — E¥fyp)® + (nl2) (1) leads to asymmetric lineshapes [6] where the blue
side is dominated by the Lorentzian in Eq. (1) and the
wherew is the laser frequency; is the temperature of  red side is predominantly determined by the Maxwell-
the sampleE#hs, |déhs), and y, are the excited state  Boltzmann distribution of kinetic energies. The ob-
energy, wavefunction, and natural linewidth respectively. served position of the peak is always red shifted with
The excited state wavefunction is labeled by the total respect to the actual bound state endegy: This shift

angular momentum quantum numi€r, the parityp' is on the order oksT, the linewidth is on the order of
and the remaining hyperfine and electronic degrees of kT + y,, and both increase with.

freedom labeled3. In addition, it is labeled with the For eachJ' we fit the line to

vibrational quantum number and rotational quantum

numberJ', whereJ' =F' — | andl is the total nuclear Si(w,Tv,J") = Ay

spin angular momentum quantum number [13]. The

summation oveF'p'8 in Eq. (1) for a ¢,J') level is due r JE e-EheT E@eDr2 @
to the (unresolved) hyperfine structure of the Sate. 0 (E+ 7w — Eyy)? + (Wl2)

The ground collisional wavefunction represented by

| WEG, ) is energy normalized, the subscripts denote the The coefficientA,; is the overall amplitudeg, ; is the
spin channelAp#fa) in which the collision starts, and  transition threshold energy, is the linewidth andr the
the + indicates the proper scattering boundary condi- temperature. The results of our fits are shown in Fig. 2.
tions [17]. F is the ground state total angular momen- We use a single value dffor all of the data, determined
tum, p is the parity, andk is the asymptotic kinetic  from the fits to be (450 50) pK (ks T/h = 9 MHz). For
energy. The total angular momentum of the system can reasons discussed below, we fit the ddfibatures to Eq.
be written ag- = ¢ +f, +f, = €+ f, wheref, andf, are (2) with ¢ =1 (p-wave) only. Thel)'= 0 and 2 peaks are
the asymptotic total angular momenta of the two atoms, fit to £=0 (s-wave), except fow = 0 where we find it
Cis the mechanical rotatiofi—the vector sum of, and necessary to use a sum®#£ 0 and¢ = 2 contributions.
fr—is a generalized spin label, anduniquely labels the  The J' =4 peak is fitted with just’ =2 (d-wave). The
remaining degrees of freedom of the asymptotic atomic natural linewidth of the D states is 20 MHz, which is

scattering states for the?S(f,= 1) + ¥S@, = 1) colli- twice the atomic linewidth [20,21]. For= 0 we expect
sion. The quantityn, is the population of the collision  the unresolved hyperfine structure to broaden the line by
channel labeled by. To avoid confusion between the =2 MHz. To fit thev=0, J'=2 peak with a single
atomic and molecular labels we will hereafter label indi- s-wave lineshape requires an unrealistically large (30
vidual atomic hyperfine states Wyor f, while f will be MHz) linewidth, whereas fov = 1, where the hyperfine

used solely to denote the vector sunfaindf,. Finally, splitting is slightly larger, a linewidth of only 22 MHz is

0EYE is the electronic optical transition matrix element required to fit the data. We return to these points in Secs.

between the ground state labeled Fyy¢fa and the ex- 3 and 4.

cited state labeled bly'p'B. The ratey /7 is the rate at

which the excitedvJ' level produces observable prod-

ucts, in this case, the photoionization rate by the second3. General Theory

laser. Here the photoionization contributes negligibly to

the total width:y, < . The theory which underlies our calculation of the
We assume that the absorption of the second photonspectrum involves three major pieces: the ground state

does not modify the shape of the spectra. From chang-wavefunctions, the excited state wavefunctions and the

ing the color of the second photon we have seen that thismolecular Rabi matrix which gives the optical coupling

is not always a valid assumption. Nevertheless, the mea-between them. These determine the transition amplitude

surements indicate that, over a large range of frequen-matrix element(¢eys|AQENE | WESH, ), from which we

cies of the second laser, the relative intensities of the calculate synthetic spectra to compare to experiment.

main features that we are concerned with in the spectra The first piece is the ground state wavefunction

are insensitive to this. | WESH, ), which is obtained from an exact solution of the
For ultracold atom-atom collisions the matrix element Schralinger equation for the ground state Hamiltonian

of the dipole moment has a kinetic energy dependence Hgh,afor a given set of adiabatic Born-Oppenheimer

governed by the Wigner-threshold law [18,19], that is, (ABO) potentials which are derived from experimental
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Rydberg-Klein-Rees (RKR) potentials. The ground state be intuitive and they have been verified within the con-
HamiltonianHgf.nqis set up for a given value of the total  text of two colliding Na atoms where possible. However,
angular momentum and parity and includes electrostatic we note that the final results are based on the full
interactionsV(R) (the adiabatic Born-Oppenheimer po- Hamiltonian, the exactly calculated ground and excited
tentials), the mechanical rotation operatéf2uR?, the state wavefunctions, and the hyperfine labeled electronic
radial kinetic energy operator, the spin-spin dipole inter- transition dipole moment between the initial and final
action, and the atomic hyperfine Hamiltonians. Most of hyperfine labeled electronic states.
our discussion will use a simpler model Bff,.«and
PER ) since this provides greatly improved insight. We .
Lotpe that although the discussions may be based upon?"1 Ground State Dynamics
simpler, intuitive models the final calculations use the  Although we have set up a complete quantum scatter-
full Hfuaand WESH.). ing calculation for two ground state atoms with hyper-
The next piece of the theory required to model the fine structure, as described in the previous section, a
photoassociation spectra is to calculate the excited rovi- sufficiently accurate model ofS +2S collisions is ob-
brational-hyperfine wavefunctionggy ) and energies  tained with the atomic hyperfine Hamiltonian for each
E¥ps. Once again, these are obtained from an exact atom, the grounK'3; anda®s; molecular potentials,
treatment of the excited state Hamiltonid§®.qwhich the mechanical rotational kinetic energy, and the
includes the same interactions for the excited state as—#%2%2u - ddR? radial kinetic energy (where the re-
were contained irH&5.nq plus a spin-orbit interaction  duced masw equals half the atomi€Na mass). This
that results from the presence of the excited NB 3 approximate model ignores the very weak magnetic
atom, and retardation of the excited resonance dipole spin-spin interactions and the second-order spin-orbit
interaction. A discussion df52sand methods for find-  interaction with distant electronic states. In the absence
ing its bound state solutions are found in Refs. [13] and of these weak spin-dependent terms in the Hamiltonian,
[14]. Once again, most of our discussion will be based the mechanical rotatiofiis a conserved quantum num-
on a simple one channel adiabatic picture of tige 0 ber. This does not imply that-changing collisions are
bound states although the exact bound state wavefunc-always irrelevant. In fact, in experiments aiming at Bose
tions and energies are used in the calculations. condensation, atom loss is in a large part due to such
Finally, we need the molecular Rabi matrix elements processes, which can always be treated using a weak
0ERE between the initial ground electronic state labeled interaction picture [22,23]. However, spin interactions
by &fa and the excited electronic state labeled By play a negligible role in the description of the spectra
Dipole selection rules require thap'=-—p, and obtained with photoassociative spectroscopy.
AF=F — F={0, * 1}, except thatAF # 0 for F = 0. The electrostatiX '3, anda®s; potentials over part
The 2£5€ are calculated from the known atomic transi- of the range of their attractive wells have been derived
tion dipole moment between a ground N&s Zitom and from conventional spectroscopy [24]. We extrapolate
an excited 3 atom using the basic approach described these RKR potentials by joining them smoothly to the
in Ref. [21] but generalized here to include hyperfine familiar long-range dispersion forMys, = — 256 Co/R"
structure. The molecular Rabi matrix elements depend using the coefficients of Ref. [25]. Note that f&>
on the excited rovibrational-hyperfine state quantum 30 a, these two adiabatic Born-Oppenheimer potentials
numbersF'p'BvJ’, and the ground state hyperfine levels are essentially identical and are, at 20, about
f, andfy, of the two colliding atoms. Vasdks = — 0.7 K deep. These potentials predict that
These three pieces of theory are integrated togetherthe X' state has 65-wave vibrational levels while the
using Eqg. (1) to yield a theoretical spectra which can be a®3; potential has 15-wave levels [24,26]. The scatter-
compared to the experimental spectra. We know that we ing length associated with each potential is sensitive to
can calculate the excited statgfound state energiesto the precise phase of the wavefunction at zero energy,
an accuracy of a few MHz [13] and have used this which is related to the binding energy of the last bound
capability to determine a precision value of the NB&;3 state. Uncertainty in the extrapolation of the RKR re-
lifetime and to provide the first experimental verifica- gion of the potential leads to uncertainty in the exact
tion of retardation of the interaction between two atoms position of the last ground state vibrational level, and
[14]. consequently uncertainty in the scattering length. It is
Below we will briefly describe each of these three the sensitivity of the photoassociation spectra to the
theoretical parts while emphasizing those portions rele- phase of the low energy ground state wavefunction (i.e.,
vant to the current problem of extracting ground state to the position of the nodes in the wavefunction) that
scattering lengths. Many arguments will take advantage allows us to obtain the scattering lengths associated with
of simple physical pictures. These pictures are meant to the collision of particular hyperfine states. In order to
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reproduce the experimentaj Oneshapes we will allow
the shape of the inner wall of the electrosta¢i& and
a®3; potentials to vary in order to adjust for short and
long range extrapolation uncertainties, but we restrict

electron spirsS, allowing Sto be substituted for). In
the atomic basis the restriction is—(L)*" =1,
An important consequence is that the Sl =1) +
Na?S(f, = 1) spin state couples to ever 0 or 2 for even

the changes to conserve the number of levels in thesepartial waves and to odfi=1 for odd ¢'s. This latter

two potentials. In practice, the inner walls of the two
RKR curves are allowed to vary independently.

In the dark spot MOT the sodium atoms are in the
atomic f,= 1 hyperfine state and are assumed to be
distributed equally over the three magnetiblsuelsm_.
Since the MOT has a nearly-zero magnetic field (< 0.1
mT and spatially-varying in magnitude and direction),
collisions are independent of the orientation of the
molecule in the laboratory frame. We may view the
collision as starting when the atoms are infinitely far
apart with a definite value for the relative angular mo-
mentum¢ and retaining this value throughout the colli-

sion. We can therefore evaluate the ground state Hamil-

tonian in the atomic hyperfine basBpi¢fa) for fixed
values of the total angular momentulm= ¢ +f and
parity p, where herex designatesf{f,}. The parityp is
the symmetry of théS +2S Hamiltonian under inver-

statement is true whether or not we neglect the weak
spin-spin interactions.

The fact that¢ andf are good approximate quantum
numbers lets us develop a relatively simple picture of
photoassociation spectra due to collisioné3ff, = 1) +
2S(f, = 1) atoms. There are only two possidevave
contributions, corresponding to= 0 andf =2. These
haveF = 0 andF = 2 respectively. For thp-wave there
is only one possible contribution, corresponding tol
andF =0, 1, or 2. Finally, there are two possilolevave
contributions, wher& =2 forf=0andF =0, 1, 2, 3, or
4 for f = 2. Within our approximation of neglecting weak
spin-spin interactions a givdn ¢ subspace contained in
Hamiltonians labeled by differeft’s are identical, with
identical wavefunctions. Thus, the three valuesFof
which contain thef =1, ¢=1 subspace have identical
p-waves and thus identical nodes. Therefore, we can

sion through the center of mass of all the electron and represent the collision in terms of twe&waves, one

nuclear coordinates. Since the angular momentlim
conserved during the collision, coupling ¥ is not

p-wave, and twad-waves. For brevity we will refer to
these five wavefunctions ag{? and thus asP§), v&,

really necessary but is useful in setting up the molecular ¥, ¥, and V.

Rabi matrix below. The rotational and hyperfine Hamil-

tonian terms are diagonal in this atomic hyperfine basis,

BEC experiments can magnetically trap the alkali-
metal atoms in one of the magnetidaiels. There are

although the electrostatic terms are not, since the basistwo relevant states. One is the doubly polarized state

does not form states with good electron sBin s, + ..
However, when we neglect the weak spin-spin coupling

where all atoms are in the atonfic= 2 andm, = 2 state.
Two of these atoms have a projection of = my_ +

terms, there is a diagonal representation in a molecularm, = 4 which impliesf = 4. The second trappable spin

basis withS and ¢ as good quantum numbers:

[FpASI) o« > V(2S+ 1)(2 + 1) (A + 1)(2, + 1)

fafp

|

where {...} is a nine} symbol; the exact equation has

S ia fa
S ip fo P FPEfafy)
S1If

3)

phase and normalization factors resulting from nuclear
symmetrization. Since the Born-Oppenheimer curves

do not depend onit is a conserved gquantity. There is

state, used by the MIT group [2], is thg=1 and
m,= — 1 state. This implies that a collision between
two such states couple to K 1f, = 1)f=2,m = — 2)
state. The zero-field scattering length of the latter state
is extracted from our experiment; in fact, it is related to
¥Y). Because the magnetic fields used in the sodium
traps of Ref. [2] are weak, the Zeeman shifts of the
atomic hyperfine states are small compared to the hy-
perfine structure and thus have little effect on the colli-
sion dynamics. Hence the zero-field scattering length is
the relevant parameter in those experiments.

The 2S +2S collisional wavefunction is inherently
multichannel. In Fig. 3 we show the three components
of an exact close-coupling wavefunction [22,23,27], for

also a restriction on the permissible quantum numbers an incomings-wave in thef,=1, f,=1 channel with
due to the homonuclear nature of the dimer since the f=F =2 and a kinetic energy dt/kg = 500 wK. The

basis states must be antisymmetric with respect to ex-figure also shows the three potential curves (dashed
change of the two nuclei. This leads to the restriction lines) for each of the three spin channels. The horizontal
(— 1)%* = 1 with o = 0(1) for gerade (ungerade) states line indicates the total collision energy. The plane wave
(for 2S +2S caollisions there also exists a one-to-one cor- scatters into the two otherwaves withf = F = 2; they
respondence between gerade/ungerade and the totahavef,=1, f, =2 andf,= 2, f, = 2 respectively. These

510



Volume 101, Number 4, July—August 1996

Journal of Research of the National

Institute of Standards and olgyn
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60
R (units of ao)

80 100

Fig. 3. The multichannel S + S collisional wavefunction as a function
of internuclear separation. The wavefunction describeS/&gn= 500

rK s-wave collision of twof, =1 atoms coupled to &=f,+f, =2
state. Two of the three spin componetftsf the wavefunction decay

exponentially because those states are asymptotically unaccessible.
The dashed lines denote the attractive long-range dispersion potential

for each of the three spin channels. The horizontal line denotes the
total energy in the collision.

other channels are closed asymptoticallyHil; = + 85

mK and + 170 mK, respectively. Therefore, they are
only populated at short internuclear separation, where
the attractive potential is larger than the asymptotic sep-

|WEH ) = 2 HARIF=2,p=+1,=0,f=2(f))
f

db

2 1
A \Vk

IF=2p=+1¢=0,f=2(f=1"f=1)),

sink(R — a,-1))

R~ = (4)

with k the asymptotic wavenumber aagd-; the scatter-
ing length.

Most notable about the wavefunction in Fig. 3 is the
node around 6@, and the absence of appreciable prob-
ability in the two asymptotically closed channels for
internuclear separations larger than&0In the rest of
this paper we adopt the convention of calling this node
the last node in the wavefunction, even though the wave-
function keeps oscillating with a wavelength corre-
sponding to a kinetic energy of 500K. The E=0
wavefunction will always have a last node associated
with the number of bound states in the potential (see
Appendix A), and this nodal position does not change
significantly for wavefunctions with kinetic energies be-
low 1 mK. A more general expression for the asymptotic
wavefunction in Eq. (4) replaces sk{R — a; 1)) with
sinkR+ 6(k)) where the phase shifthas as a limiting
behaviour— a; —;k for small collision energies. The an-
swer to the question “what is small?” is system-depen-
dent, but for Na the answer is about 1 mK or less.
Moreover, for these collision energies and for internu-
clear separationR at which the long-range dispersion
potential has died off sufficiently compared to the ki-
netic energy, the produdR is still small compared to

aration and where the electrostatic exchange interactionone and the wavefunction in Eq. (4) can be approxi-

(the difference between thé'>, and a3, potentials)
can mix these three spin channels. The mixing occurs
around 25a,, where the exchange splitting is compara-
ble to the hyperfine splitting. Inside 2 the wavefunc-
tion oscillates rapidly due to the high kinetic energy in

the deep potentials and shows striking interference pat-

terns due to the strong electrostatic interaction. In this
region the “molecular” basis would be more appropri-
ate than the atomic hyperfine one. FRr> 30 &, the

mated as being proportional te** R — a, ;). The
wavefunction for higher-order plane waves is propor-
tional to k@®“*'2, This analytic variation wittk defines
the Wigner threshold regime [18,19].

In Fig. 4 we show the radial density of three ground
state wavefunctions as a function of internuclear separa-
tion. All wavefunctions correspond with a collision start-
ing in af,=1, f, = 1 channel with 50Q.K kinetic en-
ergy. The density is obtained from the multichannel

three channels are decoupled and the dynamics is gov-wavefunction W& ¢,» by summing the squares of the

erned by the common long-range potential and the ki-
netic energy. The wavefunction components for the up-

&%, (R) at eachR. In particular, the graph shows the
P9, ¥, and W& waves. Moreover, Fig. 4 shows the

per two channels decay to zero since these channels arg-, andd-wave potentials of thg = 1,f, = 1 component

closed, while thes-wave in thef,= 1 +f, =1 entrance
channel extends tB = « with long wavelength oscilla-
tions. At largeR this low-energy wavefunction (except
for an R independent phase factor) is given by
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of the potential matrix. In the radial region that is impor-
tant for the photoassociation spectroscopy of tge O
state this diagonal element of the multichannel potential
matrix is given by— C¢/R® + (4%/2u) ¢ (£ + 1)/IR? This

is a consequence of the fact that for these internuclear
separations the two ABO potentials are identical and
given by their dispersion form. Moreover, the density for
R > 504 is solely due td, = 1, f, = 1 component of the
wavefunction.
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Fig. 4. a) Thes, p, andd-wave potential barriers as a function of internuclear separa-
tion. b) The probability densities for the three wavefunctions, corresponding to a 500

wK collision starting from the, = 1, f, = 1 spin channel.

For Na the height of thd-wave barrier maximum at The above is in contrast to the case®®b where a
75 &, is 5.4 mK. This is much higher than the tempera- d-wave shape resonance dominates the spectrum ob-
ture (~ 500 wK) of the atoms in the MOT. Therefore, tained from samples of doubly polarized atoms [28]. In
the penetration of thd-wave into the region near 7 Rb, thed-wave barrier is comparable to the most proba-
is greatly reduced by the centrifugal barrier. In fact, full ble collision energyksT) and as a result there is signif-
close-coupled calculations show that, for Na MOT tem- icant barrier penetration by the wavefunction. A similar
peratures¢ > 1-wave wavefunctions outside of the bar- effect could occur in the current Na experiments for the
rier are almost independent of the shape of the electro- p-wave; however, this is in contradiction with the obser-
static potentials inside the centrifugal barrier. Therefore, vation of ap-wave node near the minimum of thg O
the d-wave wavefunction is mainly determined by the state. Because that-wave barrier height in Na is large
well-known long-range form of the potential while compared to the most probable collision energy, any
higher partial waves do not contribute significantly to d-wave resonance that might occur will be narrow. No
the lineshapes. As a result, we find th&§) and also experimental evidence exists for such a resonance.

P49 are almost identical to a pujgkR) spherical Bes-

sel function in the region where _the Franck-Co_ndon 32 Excited Bound States
factors are nonzero (i.e., in the region of the centrifugal
barrier) with their normalization determined by asymp-  The long-range P potential results from a spin-orbit
totic boundary conditions. This implies that we will have avoided crossing betweer’®, and a1, potential [11—

no freedom in modifying thed-wave features of the  13]. These two non-relativistic electronic curves plus six
spectra. There is much more penetration of shend additional potentials dissociate to the atomg+2P
p-wave wavefunctions to small internuclear separations asymptote [11]. The notatidii*A, reflects the underly-
and therefore they will display a significant dependence ing symmetries in the nonrelativistic electronic Hamil-

on the shape of the inner wall of the two ABO poten- tonian, for which the total electron sptis conserved
since the electrostatic interactions are independent of

tials.
spin. The absolute value of the projection of the total

512



Volume 101, Number 4, July—August 1996
Journal of Research of the National Institute of Standards and olgyn

electronic orbital angular momentum on the body-fixed
symmetry axis {l) is conserved due to the cylindrical
symmetry of the electronic Hamiltonian. The labeling
of the molecular states witt, which is either gerade (g)
or ungerade (u), is a result of the inversion symmetry of
all electrons through the center of mass of the molecule.
Movre and Pichler [11] showed that if one constructs
a Hamiltonian based on both electrostatic interactions
and the relativistic spin-orbit interaction that results
from the P atom, then the resulting Hamiltonian mixes
electronic states labeled I8A 3o (whereX is the body-
fixed projection ofS) with states labeled b$A'S' o
such that2=A + 3= A"+ 3'is conserved and = ¢'.
In addition, for{(2 = 0 states the Hamiltonian also sepa-
rates into two subspaces which have definite symmetry
under reflection of the electronic wavefunction through
an arbitrary plane containing the internuclear axis. This
reflection symmetry is denoted by a superscript +or
The complete notation for the spin-orbit mixed Hund’s
case(c) states i€;. The purely long rangegOpotential
is obtained within this two-state Movre-Pichler model
by incorporating only the spin orbit and resonant dipole
interactions which are the dominant forces at long range
between an alkalfS atom and &P atom. The two
adiabatic @ potentials are found by diagonalizing the
potential matrix:

I 3
Cs 24 V24
v 3 =\ -
MP — @ 72C37é 21
3 R 3

whereA is the atomic spin-orbit splitting and we have
taken the zero of energy to be tF® +2P;, asymptote.
Within this simple model the well depth i&/9, indepen-
dent of the resonant dipole interaction strength and the
potential minimum is aR. = (9C:/24)*2. For Na(3 P),
A=515.520 GHzC;=4.018 zJ nrh(6.219 a.u.) [14]
andR. = 72 a,.

Figure 5 shows the purely long range adiabatjc O
potential along with the three lowest adiabatic vibra-
tional wavefunctions in this potential. This is a purely

0
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Fig. 5. The purely long-range [0 adiabatic potential and selected
adiabatic vibrational wavefunctions versus the internuclear separation.
Thev =0 and 2 wavefunctions are nearly symmetric with respect to
the minimum of the well, while the = 1 level is antisymmetric.

bound states of the fully rotatingS + P Hamiltonian
including hyperfine structure. For a given total angular
momentunt' and parityp', the full Hamiltonian matrix

will include up to 96 coupled-spin basis states. Although
the multichannel wavefunctions in principle can be dis-
tributed over as many as 96 spin channels, an appropri-
ate transformation can usually be found that will con-
strain the nonzero amplitude to at most a few channels.
Moreover, the nonzero components of such a wavefunc-
tion have a common radial dependence, as depicted in
Fig. 5. In other words, thegOlevels forv < 9 are essen-

long range potential in the sense that the electron cloudstjally adiabatic [13] and thus can béewed assingle-

of the two atoms do not overlap in the vicinity of the
potential well and it is therefore completely determined

by atomic parameters. In the region where these wave-

functions are nonzero, the (potential is nearly a har-
monic potential and hence, the= 0 and 2 wavefunc-
tions are nearly symmetric with respecRowhilev=1
is antisymmetric.

In Ref. [13], three of the present authors discussed the
rotational and hyperfine structure of thg @ibrational
levels. There, we showed that we could obtain the exact
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channel wavefunctions. Note, that the actual spin struc-
ture is essential for calculating the transition matrix
elements which are labeled Byp'S.

For the purely long range,Ostates, it turns out that
the hyperfine and Coriolis interactions are absent in first
order. Therefore, in addition to the quantum numbérs
andp’, the quantityJ'=F' — | is approximately good.
Moreover,J'= S+ L + ¢, where the electron orbital an-
gular momentumL = 1. General symmetry relations
show that p'=(—1)** for homonuclear *S +2P
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molecules, i.e., odd’ corresponds to even parity and
vice versa, and 1)*" = — 1 whereo = 0(1) for ger-
ade (ungerade) states. For thedtates wher&=L =1
additional selection rules are appropriate. We fihd |

is odd or, equivalently, eved' correspond with odd
parity and vice versa. Some of these selection rules
slowly break down with increasing vibrational quantum

chanical rotation of the two atoms about their
center-of-mass. In the above descriptigistands for all
other quantum labels needed to uniquely specify the
atomic hyperfine state—i.e., for a ground state Na atom
¢, = 3*S while for the first excited state of N@, = 3°P.
Beginning with an initial set of atomic scattering
states fu,c, = 3*Sf.m, ¢, = 3*Sfymy,) and a second set

number as second order coupling to nearby states withof atomic scattering stateg' ' ,ca= 3P fany,, ¢, = 3°S

different £2; symmetry becomes stronger.

This description of the Pvibrational levels leads to
the following picture of the level structure. The energy
level distribution is in first order given by a rotational
progression in)'. EachJ' consists of a group of nearly
degenerate levels. Tié= 0 level is twofold degenerate
with | =1 or 3, while thel' =1, 2, 3, and 4 levels are 4,
8, 6, and 10-folddegenerate, respectively. From Ref.
[13] we know that for the lowest three vibrational levels
the hyperfine degeneracy is lifted by no more than 5
MHz, which is still small compared with the natural
width and the rotational constant.

Even thoughl' is a good approximate quantum num-

fum,), where we arbitrarily assume that atom “a” is
excited, then it is obvious that we can derive the Rabi
matrix elements between these two states from the
known atomic transition dipole. In such a picture
the Rabi matrix element will be zero unless
8¢,08c,c,0r,1,0m, m, = 1, @and the hyperfine selection
rules for the optically excited-atom are obeyed. These
selection rules insure that only one atom absorbs the
photon when the two atoms are at infinite internuclear
separation. The real situation is slightly more compli-
cated since we must symmetrize the asymptotic basis
with respect to exchange of the identical nuclei.

Our asymptotic derivation of the molecular Rabi ma-

ber and behaves as an effective rotation, this does nottrix is strictly valid for the purely long rangeyOstate,

imply that states with a definite value of the mechanical
rotation are formed. In fact, evelt's represent positive

since the electronic clouds of the two atoms never over-
lap and distort the atomic dipoles. As a check on the

parity states and therefore contain even partial waves transition dipole moment and a confirmation of our code

and oddJ'’s contain odd partial waves. For example a
J' = 2 state will have¢ =0, 2, and 4 contributions. The
low temperatures in the present experiments lifhio
values of 2 or less.

3.3 Molecular Rabi Matrix

The molecular Rabi matrix element3f})f, are ob-
tained by first considering the allowed optical excitation
of a pair of atoms by a single photon at large internu-
clear separation. The Rabi matrix in the atomic hyper-
fine basis is then transformed into the molecular basis.
The basic approach is an extension of that originally
used in Ref. [21] where we have incorporated the atomic
hyperfine structure. In simple terms, we know the
atomic transition dipole moment and the atomic hyper-
fine selection rules for optical transitions, which are
Af,={0, = 1}, Al,=1, As,=0, andAi, =0, where we

have assumed that the atom labeled “a” has been ex-

cited. These selection rules insure that only the orbital
angular momentunh, changes for the optically dipole
allowed?s - ? P transition.

At large internuclear separation we can define a set of
atomic scattering states

(6)

which are products of magnetically resolved atomic hy-
perfine state|f,m ) for atomsa = {a,b} and a spher-
ical harmonic wavefunctiol,, which describes the me-
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[€p ,Cfamy , Cofomy,) = Yo [Cafamy ) |Coforry )

we can calculate the natural lifetime of an arbitrary
molecular state; e.g., the'X; state or the purely long
range @ state. This involves summing over all ground
state hyperfine components and, as expected, yields
~ 20 MHz for the purely long range,Ostate and~ 10
MHz for the A'Y; state.

3.4 Evaluation of the Molecular Transition
Strength

The absorption of a photon excites the colliding
atoms from a ground state scattering wave into a bound
excited state molecule. Although our analysis is based on
exact numerical calculations of the molecular Rabi ma-
trix and the ground and excited state multichannel quan-
tum wavefunctions, much physical insight for interpret-
ing our result can be obtained from considering the
molecular transition strength labeled by the approxi-
mately good quantum numbers discussed abdivet,
andf. This transition strength is determined from the
Franck-Condon overlap matrix elements:

FRE)= 2 (penpliERE |

aBFF

VERP. (1)
The sum overx only involves channels where the two
atoms havéd, = f, = 1. The summations ovgrandp' are
absent ag’ uniquely defines the parity of the ground
state ang' = — p from the selection rules of the transi-
tion dipole moment.
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The discussion in Sec. 3.1, when combined with the terms of thes, p, andd wavefunctions. As explained in

above equation, shows that there are only two possible
s-wave contributions, corresponding fe= F =0 and
f=F =2. These are designated B$(E) and FZ(E),
respectively. For the purely long rangg Btate, the
s-waves contributes predominantly to thie= 2 and to a
lesser extent to thd' = O feature. For th@-wave there
is only one possible contributior;i(E). The p-wave
contributes ta)' = 1 and 3 features only. Finally, there
are two possibled-wave contributions,F{(E) and
F2(E). Thed-waves contribute to thg' =0, 2, and 4
features.

One important aspect of our argument below is that
FZ(E) > FZ(E). Therefore, the analysis of the
lineshapes is primarily sensitive to the 2 s-wave and
not thef = 0 one. One reason for this is that the phase
space factor ' + 1 is much larger for thé= 2 s-wave.
However, there is no reason why the scattering length
a-o should be the same as the scattering leregth
since the differentf values lead to slightly different
Hamiltonians. Both of these scattering lengths are dif-
ferent from those for the electrostatic potentials for the
34 and %) states without hyperfine structure, because
of the strong mixing of these states in thavave colli-
sion for a giverf. Our complete close coupling calcula-
tions show: 1) tha# is actually neag-,, crossing it as
the inner ABO potentials are varied, and 2) that
FJ(E) > FZ(E) is valid for the transitions we study.

Finally, we make a more quantitative argument that
near R. the harmonic nature of the,Opotential for
v =0 — 2 (Fig. 5) helps explain the relative intensities of
thep-wave features for these levels. Consider the follow-
ing one-dimensional spinless Franck-Condon factor:

* 2
| cromur| ®

0
In this equation,g,(R) is the adiabatic P vibrational
wavefunction and, as discussed abo¥&) is the single
p-wave forf,=1 +f, =1 collisions. We neglect ani-
variation in the Rabi matrix elements for different hy-
perfine components of the upper level. The 0 func-
tion, and to a lesser extent the= 2 function, is nearly
symmetric about the minimum neBg = 72 ay, whereas
the v=1 function is antisymmetric. Since thpwave
has a node so close Ry, it also is nearly antisymmetric
aboutR.. Therefore, the molecular transition strength for
p-waves is very small fov =0 and 2, but much larger
for v=1.

4. Obtaining the Scattering Length

Having developed these theoretical tools, we now re-
turn to the interpretation of the experimental spectra in
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Sec. 3, there are three theoretical elements which are
needed in order to simulate the experimental spectrum
using Eqg. (1). These are the ground state wavefunctions
| WESL,), the excited state wavefunctiong¥}s), and the
molecular Rabi matrix element@5£,. Because of the
checks on the transition dipole moment described in
Sec. 3.3 we can be confident in the determination of the
latter. Refs. [13,14] on the rovibrational-hyperfine states
of the Na O state provide compelling evidence that we
can calculate the excited states accurately. Thus, the
uncertainty in our ability to simulate the experimental
spectra is mainly associated with inaccuracies of the
X35 anda®s; RKR potentials, and thus in generating
the ground state wavefunctions.

In Fig. 6, we show ther = 0 simulated spectrum for
our original fit of the ground state N&KR potentials
[24]. The ground state collision wavefunctions are com-
puted exactly given thes¢'S§ anda®s;; potentials. The
three elements of the theory are then substituted into Eq.
(1) and the thermal lineshape is calculated assuming a
temperaturel = 450 pK. Note that unlike the experi-
mental spectrum (Fig. 2) the simulated spectrum has
very largeJ=1 and 3 peaks and a rather weak 2
feature. The reason for this is that our fit of the,Na3;
and a®3{ RKR potentials caused®® to have aa;
scattering length of 73, with a corresponding-wave
node at 78. This results in a nearly zero Franck-Con-
don factor for thes-waveJ = 2 feature. For these poten-
tials thep-wave node for? was at 95, far fromR..

This is inconsistent with the experiment and indicates
that the RKR potentials must be altered.

T=450uK p—wave 95

Relative Transition Amplitude

U
-538

T T
-542 -54 -536

Energy(GHz)

T
-546 -544

Fig. 6. Simulatedv = 0 spectra for the original RKR potentials. The
J =2 peak is completely dominated by tHewave scattering, as can
be inferred from its relatively large width of 60 MHz and the
“slow” onset of the red side of the line.
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Changing the inner wall of th¥'S; anda®3; RKR

potentials changes the accumulated phase of the wave- a) T=450pK p-wave a, ,
function or, equivalently, changes the position of the last 1 7 gé
node. In Fig. 7, we show how varying the inner walls of
the potentials modifies various properties which depend 0.8
on the ground state scattering wavefunction. The two
axes represent independent, adjustable parameters g
which cause a smooth change in the inner wall of the .§
X35 anda®3; potentials respectively. The precise form é‘ 044
of the adjustable parameter is irrelevant [29] since we 3,
are only sensitive to the accumulated phase up to thefi1 024
Franck-Condon regiorR> 50 ay), where the potentials o
are completely determined by atomic properties. The .8 0
plotted lines forming two distinct bands correspond to ‘%
lines of constant position of the laptwave node and § '
constant ratio of thd =2 andJ = 4 peak heights. The =
intersection of the bands in Fig. 7 determines the al- .g 08-
lowed range of the scattering length. g '

& 0.6

5
0.4
o 0.2 i
/ / ,"'/\"\.
larger a,_, 0 A | | EEANS
: -546 -544  -54.2 -54 -538  -536

Energy(GHz)

Fig. 8. Simulatedv = 0, G; spectrum for various potentials. The exact
transition dipole moment is used: a) shows the effects of moving the
p-wave node whilea; —; is held nearly constant and b) shows the
effects of movinga; -1 while the p-wave node is fixed at 73,.

Eg parameter
I
(9]
1

1

_10d peak ratio

In the discussion of the optimal position of the last
p-wave node we used the wavefunctions with 3K
'15_10 5 0 5 10 kinetic energy in the incoming spin channel. Unlike for
3y parameter s-wave scattering, where in the Wigner threshold regime
u the nodal positions are independent of the collision en-
Fig. 7. Parameter space plot for variation)ofs anda’®s,; potentials. ergY’ .the position of the-wave node always shifts Wlth
Note that smaller values of the parameters imply a deeper potential. collision energy. "_1 fact, the zero _en_ergy wavefunction
The arrow indicates the direction in which the ; scattering length has a node which is abougto 3, inside the reported
increases. p-wave node. The 50Q.K collision energy is close to
the most probable collision energy in a MOT, and there-
Fig. 8a shows how the simulated spectrum changesfore the spectra are most sensitive to the position of this
when thep-wave node moves to small& for nearly node.
constanta; —; scattering length. The spectra have been  Having determined the position of the lgstwave
normalized with respect to the = 2 peak. Notice that  node, we now argue that the correspondir s-wave
a relatively small change in the-wave node position  node lies at smalleR. This has been confirmed by
has a marked effect on the oddpeaks in the spectra. independent full close coupled calculations, by the theo-
Hence to have very weak= 0, J'=1 andJ' = 3 peaks, retical arguments presented in appendix A, as well as
consistent with the experimental data, we find thg? being supported the widths of the observed lines. Ap-
must have a node close Ry. The calculations strongly  pendix A also gives an analytical one-to-one correspon-
constrain thep-wave node to 73, = 3 a,. This defines dence between ths-wave nodes and the scattering
the p-wave band in Fig. 7. Note that there is a range of length. For now it is sufficient to keep in mind that for
X35 anda®) potentials which satisfy this constraint.
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Na the value of the scattering length is always a &w
smaller than the position of the last node.

In Fig. 8b the simulated spectra for several trial
ground state potentials are shown, keeping tHg d
p-wave node fixed. Once again, the spectra have been S
normalized with respect to th# = 2 peak. The figure
shows that the' = 4 to J' = 2 peak ratio varies dramati- where we use th& — 0 expression of,(kR,)/Vk for
cally with thea, _; scattering length. If this were the sole thed-wave andq(k(R, — a))/\/R for the s-wave, anda
difference we could not be as confident about our final is the scattering length. We can conveniently t&&é¢o
values since experimentally we have seen as much as &e the outer turning point of thg & level. An improve-

spectral lines can be made based on the approximate
wavefunctions for thes- andd-waves and is given by:

a)>2 - (Rf iRja)Z !

kS/ZRVZ
-~ (kllz(Rv —

©)

factor of two change in thé = 4 toJ' = 2 peak ratios by
varying the frequency of the ionization laser. In the
simulations, changing tha; _; scattering length while
keeping thep-wave node fixed also causes a large
change in the width of the =0 J' = 2 feature. This is
because the width is determined from a mixturesof
andd-wave contributions: an increasedwave contri-
bution implies a larger width. Thd'=2 width de-

ment of the model of the peak ratios involves replacing
a with the position of the lagt-wave node. This follows
from the modification of the-wave wavefunction due to
the long range— C¢/R® potential and is discussed in
Appendix A. Thek dependence shows that, as expected,
the J' = 4 peaks will disappear for lower temperatures.
TheJ' = 2 peak is the dominant feature in the experi-
mental spectra of the = 12 vibrational levels. The

creases with decreasing scattering length because theouter turning points of these levels are betweenay0
d-wave contribution becomes less and less important asand 200a,. By Eq. (9) ans-wave node at these internu-
the s-wave Franck-Condon factor increases. Thus, the clear separations would imply a much strondéer 4

width of the J=2, v=0 feature can also be used in
constraining the scattering length.

As explained in Sec. 3.1, thbwave wavefunction is
given by a spherical Bessel functiojkR)/VK —

peak relative to thd' = 2 peak than observed. We thus
conclude that there is rm@wave node between &3 and
200a,. Since we have already shown that a node too far
away fromR, leads to an unacceptably smaHwave

k®2R? ask - 0, independent of the shape of the poten- contribution to thes = 0 spectrum, we can also immedi-
tial because the centrifugal barrier inhibits penetration ately rule out a node larger than 289 Furthermore, a
of the wavefunction into the region of interest, as seen in small value for the location of the node is also unaccept-
Fig. 4. Thus, the intensities of tliewave featuresin our  able as it leads to d-wave feature that is unacceptably
simulated spectrum are fixed. This has been confirmed weak and ar = 0, J' = 2 level that is unacceptable nar-
computationally for all the various potentials used in this row. Numerical calculations of the peak ratio as a func-
modeling. However, changing the-wave node and tion of the shape of the potentials confirm these simple
thereby thea; _; scattering length changes the ampli- arguments.
tude of thes-wave scattering wavefunction in the vicin- Plotting theJ' = 2 to J' = 4 peak ratio as a function of
ity of the minimum of the @ potential, and thus the the shape of the potentials gives the band labeled “peak
strength of thes-wave features. Moreover, as thavave ratio” in Fig. 7. The shape of the potentials at which the
character of thev=0, J' =2 peak increases, the two bands intersectis the optimal form. Fig. 9 compares
linewidth of the feature becomes narrower. Therefore if the theoretical spectra calculated using the best ground
the s-wave node lies too far fromR. the J' = 2 feature state potentials with the experiment. The only adjustable
becomes larger and narrower, as is seen clearly in Fig.parameters are the overall height, which is adjusted to fit
8b. A comparison with the experimental width of the the observed)'=2 peak and the absolute frequency
J'=2,v=0 peak leads us to conclude that a consider- which is adjusted by~ 2 MHz. The relative peak posi-
abled-wave contribution is present and thus theave tions and heights are determined from the theory.
node cannot lie to far frorR.. This reasoning, however, From our final potentials we find, = 60a, *+ 3 ay,
does not tell us on which side & the s-wave node is z=73 ag = 3 a for the positions of the lass- and
situated. p-wave nodes, respectively aral_; =52 ay = 5 ap.

We can use the spectra of the higher vibrational levels Quoted uncertainties are one estimated standard devia-

to further constrain the position of tisewave. The ratio
of the purelyd-wave J' = 4 peak to thes-wave compo-
nent of theJ' = 2 peak is proportional to the square of

the ratio of the ground state wavefunctions at a charac-

teristic distanceR, [30]. A simple estimate of the inten-
sity ratio of thes-wave andd-wave contributions to the
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tion (combined standard uncertainty). Other scattering
properties can be evaluated as well. For example, the
scattering lengtla, , of two atoms withf, =2, m =2, is

85 a, = 3 a. This is the scattering length relevant in
experiments aiming at Bose condensation in doubly po-
larized samples of Na atoms.



Volume 101, Number 4, July—August 1996
Journal of Research of the National Institute of Standards and olgyn

250 —— — — potentials which produce scattering phase shifts consis-
tent with our observed spectra. From the potentials we
200 calculate thes-wave scattering lengths needed as input
é for theories describing Bose condensates.
2 150 Our results reported here are preliminary in that they
% are based on a small data set which limits our ability to
2 100 quantify the effects of the ionizing laser. In future exper-
ﬁ iments we plan to acquire a larger data set and also
S s investigate spectra in which one or both of the colliding
atoms are in the?$(f = 2) state. We predict that these
0 . spectra will be dramatically different from the ones
0 200 400 600 800 reported here and their observation will provide an im-
Photoassociation Frequency (MHz) portant cross check on the potentials we have derived.
¥ T T T T M T T T T T T
800 [ v=1l -
_ [ 6. Appendix A. From Nodes to a
g 600 | ] Scattering Length
g . This Appendix aims to give an intuitive understanding
2 400 ] of why for N& the lasif = 1, p-wave nodez of the zero
ﬁ: [ ] energy wavefunction lies outside the corresponding
S 200 . node of thef=2 or f=0, s-wave. We also relate the
] s-wave node to a scattering length.
0 If we ignore the hyperfine contribution in the multi-

A " 9
0 - 200 400 600 800 channelf = 1 andf = 2 Hamiltonians the sole difference
otoassociation Frequency (MHz) between the two Hamiltonians is the centrifugal barrier

(¢ + 1)12uR? where¢ = 1 or 0, respectively. Decreas-

Fig. 9. Comparison of theoretical and experimental rotational spectra ing Zfrom one to zero in a continuous fashion makes the

forv=0andv = 1. The theory is scaled to agree with the experimental . t ti lightl ttracti d h .

J' = 2 peak height and shifted slightly-(2 MHz) in frequency. Intéraction shightly more aftractive and, enge, Increases

the phase that the zero energy wavefunction accumu-

The Naas -, scattering length has been discussed in lates when integrating frolR = 0, where the wavefunc-

the literature before. An experimental measurement of 0N i zero, to the position of the lagtwave node.
an_1= 928, * 25a, [31] was based on the thermaliza- Therefore, ars-wave node lies just inside. However

tion time of a sample with a temperature of 208. A this does pot prove that it is the lastwave node. T_he
theoretical treatment based on improving on the semi- Wavefunction could accumulate enough phase in the

classical RKR potentials with an inverted perturbation 'arger R region that it has one more node, i.e., the
approach obtained 8% a, (Ref. [26]). These values are ~ S"Wave potential could have one more bound level than
consistently larger than our value, although in agreement theP-wave potential. The Na hyperfine interaction adds

within two sigma if the uncertainties are taken to be one Small corrections to this picture. This nodal pattern is
sigma. Even without our detailed numerical calcula- confirmed by full multi-channel close coupling calcula-

tions, the observed spectra show that the flas, s- tions for a variety of realistiX's,, anda®s, potentials.
wave node cannot lie between @Qand 200a,. For heavier alkali-metal atoms, however, such a conclu-
sion need not apply as the hyperfine interaction is larger
and the centrifugal barrier much lower. We will assume
5. Conclusion that z, stands for the node i&)(R). The node of the
f = 0 s-wave wavefunction?{(R), is closely related to

An analysis of the rotational lineshapes in photoasso- %
ciation spectra of the purely long-range ;N& state,
particularly the lowest vibrational level, places con-

straints on the possible positions of nodes in the ! : > e
PSF=1)+FSF=1) scattering wavefunctions. By allows us to ignore multi-channel complications. The
combining this information with the known spec- connection between the last node and the scattering

troscopy of the Naground states we generate a set of €ngth for the collision between twh=1, m,=—1

From Sec. 3.3 we know that the wavefunction for
R > 304, is described in terms of a single potential and
the exact wavefunction has a node in this region. This
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atoms is, therefore, far more tractable. If the atom-atom
interaction were zero beyond the position of this zero the
connection is trivial withe; _; = 7. The attractive long-
range dispersion interaction however is still important.
In first order the correction to the scattering length due
to the van der Waals interaction has the form [17,32]
Zy = lim ﬁZT’ﬁZ

a1 — \m

E) dRsink(R — Zo)){_ %}sin(k(R -2) (10)

» o2
__ZQSGJ dR (R 620) -

R

_2uCe 1
#7303

(11)

<0.

For example, if we take the view that=z, = 70a, Eq.

(10) impliesa; -1 =7 — 6 =64 a,. A more elaborate
theory is constructed starting from a zero-energy scat-
tering wavefunction/4?(R) as an asymptotic expansion
in 1/R. The first terms in this expansion can be shown
to be

1 a1

4 2
AR =R~ a0+ 2 O - e 2o

2 1
+ o<(ﬁ—’§ Co)’ ﬁ) (12)
wherea,; _; is the scattering length. This wavefunction
must be zero at, leading to

a = 71— C/(122)

=2 Fm with Ce = 2/.LC6/ﬁZ

(13)

From this expression it follows that fap = 42 a, the
scattering length goes to infinity, or equivalently an ex-
tra bound level appears. According to Ref. [32] for a
pure 1R® potential the exactf?(R) is known analyti-
cally as a linear combination of\rJy(x) and
V'r3_14(x) with x = V2uCel#%/(2R? which leads to a
scattering length in terms of a zero of the wavefunction
given by

_ VCos 1) I['(3/4) . _V2uCdl%?
a1 =5 3 ) T(e) %=z
(14)

whereJ,(x) is the Bessel function. The scattering length
as defined in Eq. (14) again has poles, i.e., goes to,
as a function of the position of a node in the zero-energy

s-wave node is ak, = 37.6 a, the scattering length is
infinite or, alternatively, a bound state at threshold has
appeared. Far, smaller than this critical value another
node much further out appears. In Fig. 10 the scattering
length as defined in Eq. (14) as a function of the last
node in the zero-energy wavefunction is shown. gor
around 7Gg, to 80a, the effects of the- C¢/R° are small
and a; —; = z,. Near z, =45 the scattering length be-
comes negative and for 37& will become infinitely
large.

80
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~

o
1
T

N
o
L

o

scattering length (units of a )

=20

-40 T
40 50

60 70
zy (units of ao)

80

Fig. 10. The scattering length versus the last naglan the zero-en-
ergy scattering wavefunction. The figure shows the scattering length
for two assumptions regarding the long-range behaviour of the poten-
tial. The dashed line corresponds to a zero potentidRfeiz, and the

full line corresponds to a— C¢/R® potential for R>2z. The two
parameters in the model are tk%k coefficient and the atomic Na
mass.

The long-range potential is not a purdRipotential.
The Cg and higher order terms in the polarization inter-
action must be included. However, they are small for
internuclear separations larger than &0 In fact, the
size of the corrections fall inside the 5 % uncertainty of
Cs quoted by Ref. [25] and from Eq. (11) it follows that
this adds at most &, to 2 g, to the final uncertainty in
the scattering length.
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