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We report a preliminary value for the zero
magnetic field Na2S(f = 1, m = 2 1) +
Na 2S(f = 1, m = 2 1) scattering length,
a1,21. This parameter describes the low-
energy elastic two-body processes in a di-
lute gas of composite bosons and deter-
mines, to a large extent, the macroscopic
wavefunction of a Bose condensate in a
trap. Our scattering length is obtained from
photoassociative spectroscopy with sam-
ples of uncondensed atoms. The tempera-
ture of the atoms is sufficiently low that
contributions from the three lowest partial
waves dominate the spectrum. The ob-
served lineshapes for the purely long-range
0g

2 molecular state enable us to establish

key features of the ground state scattering
wavefunction. The fortuitous occurrence
of a p-wave node near the deepest point
(Re = 72 a0) of the 0g

2 potential curve is
instrumental in determininga1,21 = (526 5)
a0 anda2,2 = (856 3) a0, where the latter
is for a collision of two Na2S(f = 2, m = 2)
atoms.
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1. Introduction

Last year two groups reported the observation of
Bose-Einstein Condensation (BEC) in dilute gasses of
ultra-cold 87Rb and 23Na [1,2], and another reported
evidence for reaching the quantum degenerate regime in
7Li [3] but without observing BEC [4]. The observation
of BEC in a weakly-interacting gas opens up a whole
range of possibilities, from fundamental studies of the
coherent atomic samples produced, to the construction
of the atom-analog of a laser. Theoretical descriptions
of the weakly interacting Bose condensate are only now
being developed and experimental techniques to probe
the condensate are just beginning to be explored.

1 Permanent address: James Franck Institute, University of Chicago,
Chicago, IL 60637.
2 Permanent address: Williams College, Williamstown, MA 01267.

One of the fundamental parameters required to under-
stand the approach to BEC and the properties of the
condensate is thes-wave scattering length. This scatter-
ing length determines the low energy elastic scattering
rate and thus the evaporative cooling rate as well as the
nonlinear coupling parameter in the Gross-Pitaevski
equation [5] for the condensate wavefunction. It is not
necessary to produce a condensate to measure thes-
wave scattering length: temperatures in a magneto-optic
trap (MOT) are sufficiently low (ø 1 mK) to limit scat-
tering to a few partial waves and thus permit a determi-
nation of thes-wave scattering length.

We probe the scattering wavefunction using the tech-
nique of photoassociation spectroscopy [6–10]. Two Na
atoms colliding along the ground state 32S + 32S poten-
tial can absorb a photon to produce a bound molecule,
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in our case to vibrational levels with energy near the
32S + 32P3/2 asymptote. We detect the formation of
molecules by sending in a second photon which excites
the molecule to an autoionizing state, thereby producing
an easily detected Na2

+ ion. The relative intensities of the
molecular photoassociation lines carry information
about the ground state wavefunction. In particular, we
find that two specific rovibrational lines that arise from
p-wave scattering are significantly weaker than the cor-
responding lines for other nearby vibrational levels. This
indicates that the former rovibrational state is centered at
an internuclear separation near a node in thep-wave
ground state wavefunction. With the location of this
node established, the intensities and lineshapes of other
rovibrational lines allow us to constrain the location of
the correspondings-wave node, and thus to determine
the scattering length.

The transitions which we use are from two colliding
Na 32S(f = 1) atoms to the Na2 0g

2 ‘‘purely long range’’
molecular state which asymptotically correlates to a 32S
and a 32P3/2 atom [11–15]. The wavefunctions of the
lowest vibrational levels in this potential are localized at
distances between 50a0 and 100a0, as shown in Fig. 1.
(The Bohr radiusa0 = 0.0529177 nm.) This molecular
potential is determined almost entirely by the known

Fig. 1. Sketch of the two-step photoassociation/molecular ionization
process used to obtain the spectrum of the 0g

2 state. Two colliding
atoms approach along the ground state molecular potential and are
excited to a bound molecular state by a laser photon (solid arrow). The
excited molecules thus created are then excited to an autoionizing
continuum by the second laser (dashed arrow). Thep-wave ground
state scattering wavefunction is shown with a node directly underneath
theRe of the 0g

2 potential. This leads to an absence ofp-wave features
(odd rotational lines) in the experimental spectrum of thev = 0 vibra-
tional level.

long range forces between atoms and the magnitude of
the atomic spin-orbit splitting, and thus may be calcu-
lated to high precision. The transition rate depends on
the overlap between the ground state wavefunction for a
low energy collision and the excited bound state wave-
function. It is a fortuitous coincidence that there is a
node in thep-wave scattering wavefunction that is
nearly centered on the minimum of the 0g

2 potential.
This leads to an almost complete cancellation of the
overlap integral between the Na2S(f = 1, m = 2 1) +
Na 2S(f = 1, m = 2 1) p-wave scattering wavefunction
and the symmetricv = 0 vibrational wavefunction, re-
sulting in a striking and characteristic absence of
p-wave features in the spectrum of thev = 0 level of the
0g

2 state in our experiments. We are able to construct a
family of ground state potentials consistent with the
known spectroscopy of the molecular ground states that
also reproduce thep-wave node near the minimum of
the 0g

2 state. We obtain further constraints on the accept-
able potentials from the width and the relative heights of
the rotational features in the spectrum. This, in turn,
places constraints on the position of the corresponding
s-wave node. Finally, we relate thes-wave nodal posi-
tion to the scattering length.

2. Experimental Spectra and Lineshapes

The experiments are performed by loading Na atoms
into a ‘‘dark spot’’ MOT [16]. The trapping lasers are
turned off for brief periods (, 10 ms) and a tunable
probe laser is introduced during this time. For selected
frequencies of the probe laser, red of the atomic reso-
nance, pairs of atoms undergoing collisions are excited
to molecular states. These molecules are then detected
by ionization with a second probe laser. The ionization
laser is tuned to be non-resonant with any photoassoci-
ating transition but to allow ionization of the molecular
states of interest. Measurements such as these have been
described before [8,15], and here we review only those
features important for the understanding of the analysis
below.

The MOT captures Na atoms using the
32S(f = 2) → 32P3/2(f = 3) atomic transition. This transi-
tion is not a closed cycling transition because occasion-
ally atoms get excited to the 32P3/2(f = 2) state which can
decay to the 32S(f = 1) state, requiring the ‘‘repumping’’
of atoms that fall into the 32S(f = 1) ground state. The
dark spot MOT has this repumping frequency missing
from the central volume of the trap and, consequently,
the atoms are almost completely optically pumped into
the 32S(f = 1) ground state. All of the transitions we
discuss in this paper begin from the 32S(f = 1) +
32S(f = 1) ground state. When the photoassociating
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probe is introduced there are no excited state atoms
present. The ionizing laser present during the probe
periods is tuned blue of the atomic resonance frequency
and does not affect the atoms in the MOT. The ionizing
laser frequency is chosen and kept fixed while the pho-
toassociating laser is scanned over theø 1 GHz fre-
quency range spanned by the rotational structure of a
given 0g

2 vibrational level. We check that the laser pow-
ers are low enough that the signal heights are linear and
that the linewidths are independent of power.

The frequency of the ionizing laser is chosen to take
the molecules formed in the photoassociation step into
the ionization continuum (see Fig. 1) just above the
32P3/2 + 32P3/2 asymptote. This continuum has structure
[8] which complicates the interpretation of the spectra
presented here. If the sum of the two laser frequencies
(photoassociating plus ionizing) coincides with a nar-
row feature in the continuum for some particular fre-
quency range of the photoassociating laser then the rel-
ative intensities of the rotational lines will not be
proportional to the transition strengths in the photoasso-
ciation step. Since these relative transition strengths are
important for our analysis, we work in a region where
there are no sharp resonances and the ionization contin-
uum is not rapidly varying. Nonetheless, this does lead

to some uncertainty in the relative intensities of the
experimental peaks.

Figure 2 shows spectra of several 0g
2 vibrational lev-

els. Several observations can immediately be made. The
spectra show a rotational progression of lines at posi-
tions given byBvJ'(J' + 1), where only the lowest fiveJ'
features are visible (J' = 0 2 4), andBv is the rotational
constant for vibrational levelv. TheJ' = 2 peak is always
much larger than the other rotational lines. For thev = 0
vibrational level the oddJ's are nearly absent, while for
v = 1 these oddJ' peaks are clearly visible. In fact the
odd J' peaks are larger than theJ' = 0 and 4 lines. The
v = 5 spectrum is typical for thev > 2 levels. Moreover,
for v = 0 the ratio of the heights of theJ' = 4 and the
J' = 2 peaks is of the order of 0.2. Changing the fre-
quency of the ionizing laser can change this ratio by
approximately a factor of two. Finally, for all the vibra-
tional levels examined up tov = 8 theJ' = 2 peak, with
a width of ø 30 MHz, is narrower than theJ' = 4 peak
and is more symmetric as well.

The observed lineshapes are understood as a
Lorentzian profile convolved with the thermal distribu-
tion of the ground state collision energies [6]. The
lineshape for a given vibrational-rotational level (v, J')
is proportional to the following lineshape factor:

Fig. 2. Experimental rotational progressions for thev = 0, 1, and 5 vibrational levels
of the 0g

2 state. Each panel spans 900 MHz except for the lower right which is an
expanded comparison of thev = 0 andv = 1, J = 2 peaks, showing that thev = 0
feature has a larger width. The fitted curves ares-wave [see Eq. (2)] forJ = 0 and 2,
p-wave for J = 1 and 3, andd-wave for J = 4, except for thev = 0, J = 2 peak for
which there is a strongd-wave contribution. The temperature is fixed atkBT/h = 9
MHz and the natural line width is set to 20 MHz forv = 0 and 22 MHz forv = 1 and
5 (to allow for unresolved hyperfine structure).
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S(v ,T,v,J') = O
F'p'b,Fp,fa

na (2F' + 1)

E`

0

dEe2E/kBT go|kf vJ'
F'p'b |"VF'p'b

Fp,fa |CE(+)
Fp,fa l|2

(E + "v 2 EvJ'
F'p'b )2 + (gv/2)2

(1)

wherev is the laser frequency,T is the temperature of
the sample,EvJ'

F'p'b , |f vJ'
F'p'b l, and gv are the excited state

energy, wavefunction, and natural linewidth respectively.
The excited state wavefunction is labeled by the total
angular momentum quantum numberF' , the parityp'
and the remaining hyperfine and electronic degrees of
freedom labeledb . In addition, it is labeled with the
vibrational quantum numberv and rotational quantum
numberJ', whereJ' = F' 2 I and I is the total nuclear
spin angular momentum quantum number [13]. The
summation overF'p'b in Eq. (1) for a (v,J') level is due
to the (unresolved) hyperfine structure of the 0g

2 state.
The ground collisional wavefunction represented by
|CE(+)

Fp,fa l is energy normalized, the subscripts denote the
spin channel |Fp,fa l in which the collision starts, and
the + indicates the proper scattering boundary condi-
tions [17]. F is the ground state total angular momen-
tum, p is the parity, andE is the asymptotic kinetic
energy. The total angular momentum of the system can
be written asF = < + fa + fb = < + f , wherefa andfb are
the asymptotic total angular momenta of the two atoms,
< is the mechanical rotation,f —the vector sum offa and
fb—is a generalized spin label, anda uniquely labels the
remaining degrees of freedom of the asymptotic atomic
scattering states for the 32S(fa = 1) + 32S(fb = 1) colli-
sion. The quantityna is the population of the collision
channel labeled bya . To avoid confusion between the
atomic and molecular labels we will hereafter label indi-
vidual atomic hyperfine states byfa or fb while f will be
used solely to denote the vector sum offa andfb. Finally,
VF'p'b

Fp,fa is the electronic optical transition matrix element
between the ground state labeled byFp,fa and the ex-
cited state labeled byF'p'b . The ratego/" is the rate at
which the excitedvJ' level produces observable prod-
ucts, in this case, the photoionization rate by the second
laser. Here the photoionization contributes negligibly to
the total width:go << gv.

We assume that the absorption of the second photon
does not modify the shape of the spectra. From chang-
ing the color of the second photon we have seen that this
is not always a valid assumption. Nevertheless, the mea-
surements indicate that, over a large range of frequen-
cies of the second laser, the relative intensities of the
main features that we are concerned with in the spectra
are insensitive to this.

For ultracold atom-atom collisions the matrix element
of the dipole moment has a kinetic energy dependence
governed by the Wigner-threshold law [18,19], that is,

the initial collision wavefunction |CFp,fa
E(+) l is proportional

to E(2,+1)/4. For example, fors-wave scattering the wave-
function is proportional to4ÏE. Due to this Wigner-law
variation in the (Franck-Condon) matrix element, Eq.
(1) leads to asymmetric lineshapes [6] where the blue
side is dominated by the Lorentzian in Eq. (1) and the
red side is predominantly determined by the Maxwell-
Boltzmann distribution of kinetic energies. The ob-
served position of the peak is always red shifted with
respect to the actual bound state energyEvJ'. This shift
is on the order ofkBT, the linewidth is on the order of
kBT + gv, and both increase with, .

For eachJ' we fit the line to

Sfit(v ,T,v,J') = AvJ'

E`

0

dEe2E/kBT E(2,+1)/2

(E + "v 2 Ev,J')2 + (gv/2)2
. (2)

The coefficientAvJ' is the overall amplitude,Ev,J' is the
transition threshold energy,gv is the linewidth andT the
temperature. The results of our fits are shown in Fig. 2.
We use a single value ofT for all of the data, determined
from the fits to be (4506 50)mK (kBT/h = 9 MHz). For
reasons discussed below, we fit the oddJ' features to Eq.
(2) with , = 1 (p-wave) only. TheJ' = 0 and 2 peaks are
fit to , = 0 (s-wave), except forv = 0 where we find it
necessary to use a sum of, = 0 and, = 2 contributions.
The J' = 4 peak is fitted with just, = 2 (d-wave). The
natural linewidth of the 0g2 states is 20 MHz, which is
twice the atomic linewidth [20,21]. Forv = 0 we expect
the unresolved hyperfine structure to broaden the line by
ø 2 MHz. To fit the v = 0, J' = 2 peak with a single
s-wave lineshape requires an unrealistically large (30
MHz) linewidth, whereas forv = 1, where the hyperfine
splitting is slightly larger, a linewidth of only 22 MHz is
required to fit the data. We return to these points in Secs.
3 and 4.

3. General Theory

The theory which underlies our calculation of the
spectrum involves three major pieces: the ground state
wavefunctions, the excited state wavefunctions and the
molecular Rabi matrix which gives the optical coupling
between them. These determine the transition amplitude
matrix elementkf vJ'

F'p'b |"VFp,fa
F'p'b |CFp,fa

E(+) l, from which we
calculate synthetic spectra to compare to experiment.

The first piece is the ground state wavefunction
|CE(+)

Fp,fa l, which is obtained from an exact solution of the
Schrödinger equation for the ground state Hamiltonian
Hground

Fp for a given set of adiabatic Born-Oppenheimer
(ABO) potentials which are derived from experimental
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Rydberg-Klein-Rees (RKR) potentials. The ground state
HamiltonianHground

Fp is set up for a given value of the total
angular momentum and parity and includes electrostatic
interactionsV(R) (the adiabatic Born-Oppenheimer po-
tentials), the mechanical rotation operator,̂2/2mR2, the
radial kinetic energy operator, the spin-spin dipole inter-
action, and the atomic hyperfine Hamiltonians. Most of
our discussion will use a simpler model ofHground

Fp and
|CFpf,a

E(+) l since this provides greatly improved insight. We
note that although the discussions may be based upon
simpler, intuitive models the final calculations use the
full Hground

Fp and |CFp,fa
E(+) l.

The next piece of the theory required to model the
photoassociation spectra is to calculate the excited rovi-
brational-hyperfine wavefunctions |f vJ'

F'p'b l and energies
EvJ'

F'p'b . Once again, these are obtained from an exact
treatment of the excited state HamiltonianHF'p'

excitedwhich
includes the same interactions for the excited state as
were contained inHF,p

ground plus a spin-orbit interaction
that results from the presence of the excited Na 32P
atom, and retardation of the excited resonance dipole
interaction. A discussion ofHF'p'

excitedand methods for find-
ing its bound state solutions are found in Refs. [13] and
[14]. Once again, most of our discussion will be based
on a simple one channel adiabatic picture of the 0g

2

bound states although the exact bound state wavefunc-
tions and energies are used in the calculations.

Finally, we need the molecular Rabi matrix elements
VF'p'b

Fp,fa between the initial ground electronic state labeled
by ,fa and the excited electronic state labeled byb .
Dipole selection rules require thatp' = 2 p, and
DF = F' 2 F = {0, 6 1}, except thatDF Þ 0 for F = 0.
TheVF'p'b

Fp,fa are calculated from the known atomic transi-
tion dipole moment between a ground Na 32S atom and
an excited 32P atom using the basic approach described
in Ref. [21] but generalized here to include hyperfine
structure. The molecular Rabi matrix elements depend
on the excited rovibrational-hyperfine state quantum
numbers,F'p'bvJ', and the ground state hyperfine levels
fa and fb of the two colliding atoms.

These three pieces of theory are integrated together
using Eq. (1) to yield a theoretical spectra which can be
compared to the experimental spectra. We know that we
can calculate the excited state 0g

2 bound state energies to
an accuracy of a few MHz [13] and have used this
capability to determine a precision value of the Na 32P3/2

lifetime and to provide the first experimental verifica-
tion of retardation of the interaction between two atoms
[14].

Below we will briefly describe each of these three
theoretical parts while emphasizing those portions rele-
vant to the current problem of extracting ground state
scattering lengths. Many arguments will take advantage
of simple physical pictures. These pictures are meant to

be intuitive and they have been verified within the con-
text of two colliding Na atoms where possible. However,
we note that the final results are based on the full
Hamiltonian, the exactly calculated ground and excited
state wavefunctions, and the hyperfine labeled electronic
transition dipole moment between the initial and final
hyperfine labeled electronic states.

3.1 Ground State Dynamics

Although we have set up a complete quantum scatter-
ing calculation for two ground state atoms with hyper-
fine structure, as described in the previous section, a
sufficiently accurate model of2S + 2S collisions is ob-
tained with the atomic hyperfine Hamiltonian for each
atom, the groundX1Sg

+ and a3Su
+ molecular potentials,

the mechanical rotational kinetic energy, and the
2"2/2m ? d2/dR2 radial kinetic energy (where the re-
duced massm equals half the atomic23Na mass). This
approximate model ignores the very weak magnetic
spin-spin interactions and the second-order spin-orbit
interaction with distant electronic states. In the absence
of these weak spin-dependent terms in the Hamiltonian,
the mechanical rotation, is a conserved quantum num-
ber. This does not imply that, -changing collisions are
always irrelevant. In fact, in experiments aiming at Bose
condensation, atom loss is in a large part due to such
processes, which can always be treated using a weak
interaction picture [22,23]. However, spin interactions
play a negligible role in the description of the spectra
obtained with photoassociative spectroscopy.

The electrostaticX1Sg
+ anda3Su

+ potentials over part
of the range of their attractive wells have been derived
from conventional spectroscopy [24]. We extrapolate
these RKR potentials by joining them smoothly to the
familiar long-range dispersion formVdisp = 2 S`

n=6 Cn/Rn

using the coefficients of Ref. [25]. Note that forR>
30 a0 these two adiabatic Born-Oppenheimer potentials
are essentially identical and are, at 30a0, about
Vdisp/kB = 2 0.7 K deep. These potentials predict that
theX1Sg

+ state has 65s-wave vibrational levels while the
a3Su

+ potential has 15s-wave levels [24,26]. The scatter-
ing length associated with each potential is sensitive to
the precise phase of the wavefunction at zero energy,
which is related to the binding energy of the last bound
state. Uncertainty in the extrapolation of the RKR re-
gion of the potential leads to uncertainty in the exact
position of the last ground state vibrational level, and
consequently uncertainty in the scattering length. It is
the sensitivity of the photoassociation spectra to the
phase of the low energy ground state wavefunction (i.e.,
to the position of the nodes in the wavefunction) that
allows us to obtain the scattering lengths associated with
the collision of particular hyperfine states. In order to
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reproduce the experimental 0g
2 lineshapes we will allow

the shape of the inner wall of the electrostaticX1Sg
+ and

a3Su
+ potentials to vary in order to adjust for short and

long range extrapolation uncertainties, but we restrict
the changes to conserve the number of levels in these
two potentials. In practice, the inner walls of the two
RKR curves are allowed to vary independently.

In the dark spot MOT the sodium atoms are in the
atomic fa = 1 hyperfine state and are assumed to be
distributed equally over the three magnetic sublevelsmf a.
Since the MOT has a nearly-zero magnetic field (< 0.1
mT and spatially-varying in magnitude and direction),
collisions are independent of the orientation of the
molecule in the laboratory frame. We may view the
collision as starting when the atoms are infinitely far
apart with a definite value for the relative angular mo-
mentum, and retaining this value throughout the colli-
sion. We can therefore evaluate the ground state Hamil-
tonian in the atomic hyperfine basis |Fp,fa l for fixed
values of the total angular momentumF = < + f and
parity p, where herea designates {fafb}. The parityp is
the symmetry of the2S + 2S Hamiltonian under inver-
sion through the center of mass of all the electron and
nuclear coordinates. Since the angular momentum< is
conserved during the collision, coupling toF is not
really necessary but is useful in setting up the molecular
Rabi matrix below. The rotational and hyperfine Hamil-
tonian terms are diagonal in this atomic hyperfine basis,
although the electrostatic terms are not, since the basis
does not form states with good electron spinS = sa + sb.
However, when we neglect the weak spin-spin coupling
terms, there is a diagonal representation in a molecular
basis withS and, as good quantum numbers:

|Fp,fSIl ~ O
f af b

Ï(2S+ 1)(2I + 1)(2fa + 1)(2fb + 1)

sa ia fa

35 sb ib fb6|Fp,ffafbl (3)
S I f

where {...} is a nine-j symbol; the exact equation has
phase and normalization factors resulting from nuclear
symmetrization. Since the Born-Oppenheimer curves
do not depend onf it is a conserved quantity. There is
also a restriction on the permissible quantum numbers
due to the homonuclear nature of the dimer since the
basis states must be antisymmetric with respect to ex-
change of the two nuclei. This leads to the restriction
(2 1),+s+I = 1 with s = 0(1) for gerade (ungerade) states
(for 2S + 2S collisions there also exists a one-to-one cor-
respondence between gerade/ungerade and the total

electron spinS, allowing S to be substituted fors ). In
the atomic basis the restriction is (2 1),+f2fa2fb = 1.
An important consequence is that the Na2S(fa = 1) +
Na2S(fb = 1) spin state couples to evenf = 0 or 2 for even
partial waves and to oddf = 1 for odd, ’s. This latter
statement is true whether or not we neglect the weak
spin-spin interactions.

The fact that, and f are good approximate quantum
numbers lets us develop a relatively simple picture of
photoassociation spectra due to collisions of2S(fa = 1) +
2S(fb = 1) atoms. There are only two possibles-wave
contributions, corresponding tof = 0 and f = 2. These
haveF = 0 andF = 2 respectively. For thep-wave there
is only one possible contribution, corresponding tof = 1
andF = 0, 1, or 2. Finally, there are two possibled-wave
contributions, whereF = 2 for f = 0 andF = 0, 1, 2, 3, or
4 for f = 2. Within our approximation of neglecting weak
spin-spin interactions a givenf , , subspace contained in
Hamiltonians labeled by differentF ’s are identical, with
identical wavefunctions. Thus, the three values ofF
which contain thef = 1, , = 1 subspace have identical
p-waves and thus identical nodes. Therefore, we can
represent the collision in terms of twos-waves, one
p-wave, and twod-waves. For brevity we will refer to
these five wavefunctions asC,f

(+) and thus asCs0
(+), Cs2

(+),
Cp1

(+), Cd0
(+), andCd2

(+).
BEC experiments can magnetically trap the alkali-

metal atoms in one of the magnetic sublevels. There are
two relevant states. One is the doubly polarized state
where all atoms are in the atomicfa = 2 andmf a = 2 state.
Two of these atoms have a projection ofmf = mf a +
mf b = 4 which impliesf = 4. The second trappable spin
state, used by the MIT group [2], is thefa = 1 and
mf a = 2 1 state. This implies that a collision between
two such states couple to a |(fa = 1,fb = 1)f = 2,mf = 2 2l
state. The zero-field scattering length of the latter state
is extracted from our experiment; in fact, it is related to
Cs2

(+). Because the magnetic fields used in the sodium
traps of Ref. [2] are weak, the Zeeman shifts of the
atomic hyperfine states are small compared to the hy-
perfine structure and thus have little effect on the colli-
sion dynamics. Hence the zero-field scattering length is
the relevant parameter in those experiments.

The 2S + 2S collisional wavefunction is inherently
multichannel. In Fig. 3 we show the three components
of an exact close-coupling wavefunction [22,23,27], for
an incomings-wave in thefa = 1, fb = 1 channel with
f = F = 2 and a kinetic energy ofE/kB = 500 mK. The
figure also shows the three potential curves (dashed
lines) for each of the three spin channels. The horizontal
line indicates the total collision energy. The plane wave
scatters into the two others-waves withf = F = 2; they
have fa = 1, fb = 2 and fa = 2, fb = 2 respectively. These
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Fig. 3. The multichannel S + S collisional wavefunction as a function
of internuclear separation. The wavefunction describes anE/kB = 500
mK s-wave collision of twofa = 1 atoms coupled to af = fa + fb = 2
state. Two of the three spin componentsc of the wavefunction decay
exponentially because those states are asymptotically unaccessible.
The dashed lines denote the attractive long-range dispersion potential
for each of the three spin channels. The horizontal line denotes the
total energy in the collision.

other channels are closed asymptotically byE/kB = + 85
mK and + 170 mK, respectively. Therefore, they are
only populated at short internuclear separation, where
the attractive potential is larger than the asymptotic sep-
aration and where the electrostatic exchange interaction
(the difference between theX1Sg and a3Su potentials)
can mix these three spin channels. The mixing occurs
around 25a0, where the exchange splitting is compara-
ble to the hyperfine splitting. Inside 20a0 the wavefunc-
tion oscillates rapidly due to the high kinetic energy in
the deep potentials and shows striking interference pat-
terns due to the strong electrostatic interaction. In this
region the ‘‘molecular’’ basis would be more appropri-
ate than the atomic hyperfine one. ForR> 30 a0 the
three channels are decoupled and the dynamics is gov-
erned by the common long-range potential and the ki-
netic energy. The wavefunction components for the up-
per two channels decay to zero since these channels are
closed, while thes-wave in thefa = 1 + fb = 1 entrance
channel extends toR= ` with long wavelength oscilla-
tions. At largeR this low-energy wavefunction (except
for an R independent phase factor) is given by

|CE(+)
Fp,ff af bl = O

f af b

f (+)
f af b(R)|F = 2, p = + 1,, = 0, f = 2(fa,fb)l

→ Î 2m
"2p

1

Ïk
sin(k(R 2 a1,21))

|F = 2, p = + 1,, = 0, f = 2(fa = 1, fb = 1)l, R → ` (4)

with k the asymptotic wavenumber anda1,21 the scatter-
ing length.

Most notable about the wavefunction in Fig. 3 is the
node around 60a0 and the absence of appreciable prob-
ability in the two asymptotically closed channels for
internuclear separations larger than 50a0. In the rest of
this paper we adopt the convention of calling this node
the last node in the wavefunction, even though the wave-
function keeps oscillating with a wavelength corre-
sponding to a kinetic energy of 500mK. The E = 0
wavefunction will always have a last node associated
with the number of bound states in the potential (see
Appendix A), and this nodal position does not change
significantly for wavefunctions with kinetic energies be-
low 1 mK. A more general expression for the asymptotic
wavefunction in Eq. (4) replaces sin(k(R 2 a1,21)) with
sin(kR+ d (k)) where the phase shiftd has as a limiting
behaviour2 a1,21k for small collision energies. The an-
swer to the question ‘‘what is small?’’ is system-depen-
dent, but for Na the answer is about 1 mK or less.
Moreover, for these collision energies and for internu-
clear separationsR at which the long-range dispersion
potential has died off sufficiently compared to the ki-
netic energy, the productkR is still small compared to
one and the wavefunction in Eq. (4) can be approxi-
mated as being proportional tok1/2(R 2 a1,21). The
wavefunction for higher-order plane waves is propor-
tional to k(2,+1)/2. This analytic variation withk defines
the Wigner threshold regime [18,19].

In Fig. 4 we show the radial density of three ground
state wavefunctions as a function of internuclear separa-
tion. All wavefunctions correspond with a collision start-
ing in a fa = 1, fb = 1 channel with 500mK kinetic en-
ergy. The density is obtained from the multichannel
wavefunction |CE(+)

Fp,ff af bl by summing the squares of the
f (+)

f af b (R) at eachR. In particular, the graph shows the
Cs2

(+), Cp1
(+), andCd2

(+) waves. Moreover, Fig. 4 shows thes-,
p-, andd-wave potentials of thefa = 1, fb = 1 component
of the potential matrix. In the radial region that is impor-
tant for the photoassociation spectroscopy of the 0g

2

state this diagonal element of the multichannel potential
matrix is given by2 C6/R6 + ("2/2m ), (, + 1)/R2. This
is a consequence of the fact that for these internuclear
separations the two ABO potentials are identical and
given by their dispersion form. Moreover, the density for
R> 50a0 is solely due tofa = 1, fb = 1 component of the
wavefunction.
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Fig. 4. a) Thes, p, andd-wave potential barriers as a function of internuclear separa-
tion. b) The probability densities for the three wavefunctions, corresponding to a 500
mK collision starting from thefa = 1, fb = 1 spin channel.

For Na the height of thed-wave barrier maximum at
75 a0 is 5.4 mK. This is much higher than the tempera-
ture (, 500 mK) of the atoms in the MOT. Therefore,
the penetration of thed-wave into the region near 75a0

is greatly reduced by the centrifugal barrier. In fact, full
close-coupled calculations show that, for Na MOT tem-
peratures,, > 1-wave wavefunctions outside of the bar-
rier are almost independent of the shape of the electro-
static potentials inside the centrifugal barrier. Therefore,
the d-wave wavefunction is mainly determined by the
well-known long-range form of the potential while
higher partial waves do not contribute significantly to
the lineshapes. As a result, we find thatCd2

(+) and also
Cd0

(+) are almost identical to a purej2(kR) spherical Bes-
sel function in the region where the Franck-Condon
factors are nonzero (i.e., in the region of the centrifugal
barrier) with their normalization determined by asymp-
totic boundary conditions. This implies that we will have
no freedom in modifying thed-wave features of the
spectra. There is much more penetration of thes- and
p-wave wavefunctions to small internuclear separations
and therefore they will display a significant dependence
on the shape of the inner wall of the two ABO poten-
tials.

The above is in contrast to the case of87Rb where a
d-wave shape resonance dominates the spectrum ob-
tained from samples of doubly polarized atoms [28]. In
Rb, thed-wave barrier is comparable to the most proba-
ble collision energy (kBT) and as a result there is signif-
icant barrier penetration by the wavefunction. A similar
effect could occur in the current Na experiments for the
p-wave; however, this is in contradiction with the obser-
vation of ap-wave node near the minimum of the 0g

2

state. Because thed-wave barrier height in Na is large
compared to the most probable collision energy, any
d-wave resonance that might occur will be narrow. No
experimental evidence exists for such a resonance.

3.2 Excited Bound States

The long-range 0g2 potential results from a spin-orbit
avoided crossing between a3Sg and a3Pg potential [11–
13]. These two non-relativistic electronic curves plus six
additional potentials dissociate to the atomic2S + 2P
asymptote [11]. The notation2S+1Ls reflects the underly-
ing symmetries in the nonrelativistic electronic Hamil-
tonian, for which the total electron spinS is conserved
since the electrostatic interactions are independent of
spin. The absolute value of the projection of the total
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electronic orbital angular momentum on the body-fixed
symmetry axis (L ) is conserved due to the cylindrical
symmetry of the electronic Hamiltonian. The labeling
of the molecular states withs , which is either gerade (g)
or ungerade (u), is a result of the inversion symmetry of
all electrons through the center of mass of the molecule.

Movre and Pichler [11] showed that if one constructs
a Hamiltonian based on both electrostatic interactions
and the relativistic spin-orbit interaction that results
from theP atom, then the resulting Hamiltonian mixes
electronic states labeled bySLSs (whereS is the body-
fixed projection ofS) with states labeled byS'L'S's'
such thatV = L + S = L' + S' is conserved ands = s' .
In addition, forV = 0 states the Hamiltonian also sepa-
rates into two subspaces which have definite symmetry
under reflection of the electronic wavefunction through
an arbitrary plane containing the internuclear axis. This
reflection symmetry is denoted by a superscript + or2.
The complete notation for the spin-orbit mixed Hund’s
case(c) states isVs

6. The purely long range 0g
2 potential

is obtained within this two-state Movre-Pichler model
by incorporating only the spin orbit and resonant dipole
interactions which are the dominant forces at long range
between an alkali2S atom and a2P atom. The two
adiabatic 0g2 potentials are found by diagonalizing the
potential matrix:

P S

VMP = 1
C3

R3 2
2D
3

Ï2D
3 2

P
, (5)

Ï2D
3

2
2C3

R3 2
D
3

S

whereD is the atomic spin-orbit splitting and we have
taken the zero of energy to be the2S + 2P3/2 asymptote.
Within this simple model the well depth isD /9, indepen-
dent of the resonant dipole interaction strength and the
potential minimum is atRe = (9C3/2D )1/3. For Na(32 P),
D = 515.520 GHz,C3 = 4.018 zJ nm3 (6.219 a.u.) [14]
andRe ø 72 a0.

Figure 5 shows the purely long range adiabatic 0g
2

potential along with the three lowest adiabatic vibra-
tional wavefunctions in this potential. This is a purely
long range potential in the sense that the electron clouds
of the two atoms do not overlap in the vicinity of the
potential well and it is therefore completely determined
by atomic parameters. In the region where these wave-
functions are nonzero, the 0g

2 potential is nearly a har-
monic potential and hence, thev = 0 and 2 wavefunc-
tions are nearly symmetric with respect toRe while v = 1
is antisymmetric.

In Ref. [13], three of the present authors discussed the
rotational and hyperfine structure of the 0g

2 vibrational
levels. There, we showed that we could obtain the exact

Fig. 5. The purely long-range 0g
2 adiabatic potential and selected

adiabatic vibrational wavefunctions versus the internuclear separation.
The v = 0 and 2 wavefunctions are nearly symmetric with respect to
the minimum of the well, while thev = 1 level is antisymmetric.

bound states of the fully rotating 32S + 32P Hamiltonian
including hyperfine structure. For a given total angular
momentumF' and parityp', the full Hamiltonian matrix
will include up to 96 coupled-spin basis states. Although
the multichannel wavefunctions in principle can be dis-
tributed over as many as 96 spin channels, an appropri-
ate transformation can usually be found that will con-
strain the nonzero amplitude to at most a few channels.
Moreover, the nonzero components of such a wavefunc-
tion have a common radial dependence, as depicted in
Fig. 5. In other words, the 0g

2 levels forv < 9 are essen-
tially adiabatic [13] and thus can be viewed assingle-
channel wavefunctions. Note, that the actual spin struc-
ture is essential for calculating the transition matrix
elements which are labeled byF'p'b .

For the purely long range 0g
2 states, it turns out that

the hyperfine and Coriolis interactions are absent in first
order. Therefore, in addition to the quantum numbersF'
andp', the quantityJ' = F' 2 I is approximately good.
Moreover,J' = S+ L + , , where the electron orbital an-
gular momentumL = 1. General symmetry relations
show that p' = (2 1),+1 for homonuclear 2S + 2P
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molecules, i.e., odd, corresponds to even parity and
vice versa, and (2 1),+s+I = 2 1 wheres = 0(1) for ger-
ade (ungerade) states. For the 0g

2 states whereS= L = 1
additional selection rules are appropriate. We findJ' + I
is odd or, equivalently, evenJ' correspond with odd
parity and vice versa. Some of these selection rules
slowly break down with increasing vibrational quantum
number as second order coupling to nearby states with
different Vs

6 symmetry becomes stronger.
This description of the 0g2 vibrational levels leads to

the following picture of the level structure. The energy
level distribution is in first order given by a rotational
progression inJ'. EachJ' consists of a group of nearly
degenerate levels. TheJ' = 0 level is two-fold degenerate
with I = 1 or 3, while theJ' = 1, 2, 3, and 4 levels are 4,
8, 6, and 10-folddegenerate, respectively. From Ref.
[13] we know that for the lowest three vibrational levels
the hyperfine degeneracy is lifted by no more than 5
MHz, which is still small compared with the natural
width and the rotational constant.

Even thoughJ' is a good approximate quantum num-
ber and behaves as an effective rotation, this does not
imply that states with a definite value of the mechanical
rotation are formed. In fact, evenJ' ’s represent positive
parity states and therefore contain even partial waves
and oddJ' ’s contain odd partial waves. For example a
J' = 2 state will have, = 0, 2, and 4 contributions. The
low temperatures in the present experiments limit, to
values of 2 or less.

3.3 Molecular Rabi Matrix

The molecular Rabi matrix elementsVF'p'b
Fp,fa are ob-

tained by first considering the allowed optical excitation
of a pair of atoms by a single photon at large internu-
clear separation. The Rabi matrix in the atomic hyper-
fine basis is then transformed into the molecular basis.
The basic approach is an extension of that originally
used in Ref. [21] where we have incorporated the atomic
hyperfine structure. In simple terms, we know the
atomic transition dipole moment and the atomic hyper-
fine selection rules for optical transitions, which are
Dfa = {0, 6 1}, Dla = 1, Dsa = 0, andDia = 0, where we
have assumed that the atom labeled ‘‘a’’ has been ex-
cited. These selection rules insure that only the orbital
angular momentumla changes for the optically dipole
allowed2S → 2 P transition.

At large internuclear separation we can define a set of
atomic scattering states

|,m ,cafamf a,cbfbmf bl = Y,m |cafamf al|cbfbmf bl (6)

which are products of magnetically resolved atomic hy-
perfine states |cafamfa l for atomsa = {a,b} and a spher-
ical harmonic wavefunctionY,m which describes the me-

chanical rotation of the two atoms about their
center-of-mass. In the above descriptionca stands for all
other quantum labels needed to uniquely specify the
atomic hyperfine state—i.e., for a ground state Na atom
ca = 32S while for the first excited state of Naca = 32P.

Beginning with an initial set of atomic scattering
states |,m ,ca = 32S famf a, cb = 32S fbmf bl and a second set
of atomic scattering states |, 'm' ,c'a = 32P f 'am'f a, c'b = 32S
f 'bm'f bl, where we arbitrarily assume that atom ‘‘a’’ is
excited, then it is obvious that we can derive the Rabi
matrix elements between these two states from the
known atomic transition dipole. In such a picture
the Rabi matrix element will be zero unless
d,,, 'dc b,c'bdf b,f 'bdmf b,m''f b

= 1, and the hyperfine selection
rules for the optically exciteda-atom are obeyed. These
selection rules insure that only one atom absorbs the
photon when the two atoms are at infinite internuclear
separation. The real situation is slightly more compli-
cated since we must symmetrize the asymptotic basis
with respect to exchange of the identical nuclei.

Our asymptotic derivation of the molecular Rabi ma-
trix is strictly valid for the purely long range 0g

2 state,
since the electronic clouds of the two atoms never over-
lap and distort the atomic dipoles. As a check on the
transition dipole moment and a confirmation of our code
we can calculate the natural lifetime of an arbitrary
molecular state; e.g., theA1Su

+ state or the purely long
range 0g2 state. This involves summing over all ground
state hyperfine components and, as expected, yields
, 20 MHz for the purely long range 0g

2 state and, 10
MHz for the A1Su

+ state.

3.4 Evaluation of the Molecular Transition
Strength

The absorption of a photon excites the colliding
atoms from a ground state scattering wave into a bound
excited state molecule. Although our analysis is based on
exact numerical calculations of the molecular Rabi ma-
trix and the ground and excited state multichannel quan-
tum wavefunctions, much physical insight for interpret-
ing our result can be obtained from considering the
molecular transition strength labeled by the approxi-
mately good quantum numbers discussed above:J', , ,
and f . This transition strength is determined from the
Franck-Condon overlap matrix elements:

F,f
vJ'(E) = O

abF'F

|kf vJ'
F'p'b |"VF'p'b

Fp,fa |CE(+)
Fp,fa l|2. (7)

The sum overa only involves channels where the two
atoms havefa = fb = 1. The summations overp andp' are
absent as, uniquely defines the parity of the ground
state andp' = 2 p from the selection rules of the transi-
tion dipole moment.
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The discussion in Sec. 3.1, when combined with the
above equation, shows that there are only two possible
s-wave contributions, corresponding tof = F = 0 and
f = F = 2. These are designated asFs0

vJ'(E) andFs2
vJ'(E),

respectively. For the purely long range 0g
2 state, the

s-waves contributes predominantly to theJ' = 2 and to a
lesser extent to theJ' = 0 feature. For thep-wave there
is only one possible contribution,Fp1

vJ'(E). The p-wave
contributes toJ' = 1 and 3 features only. Finally, there
are two possibled-wave contributions,Fd0

vJ'(E) and
Fd2

vJ'(E). The d-waves contribute to theJ' = 0, 2, and 4
features.

One important aspect of our argument below is that
Fs2

vJ'(E) >> Fs0
vJ'(E). Therefore, the analysis of the

lineshapes is primarily sensitive to thef = 2 s-wave and
not thef = 0 one. One reason for this is that the phase
space factor 2F' + 1 is much larger for thef = 2 s-wave.
However, there is no reason why the scattering length
af=0 should be the same as the scattering lengthaf=2,
since the differentf values lead to slightly different
Hamiltonians. Both of these scattering lengths are dif-
ferent from those for the electrostatic potentials for the
1Sg

+ and3Su
+ states without hyperfine structure, because

of the strong mixing of these states in thes-wave colli-
sion for a givenf . Our complete close coupling calcula-
tions show: 1) thataf=0 is actually nearaf=2, crossing it as
the inner ABO potentials are varied, and 2) that
Fs2

vJ'(E) >> Fs0
vJ'(E) is valid for the transitions we study.

Finally, we make a more quantitative argument that
near Re the harmonic nature of the 0g

2 potential for
v = 0 2 2 (Fig. 5) helps explain the relative intensities of
thep-wave features for these levels. Consider the follow-
ing one-dimensional spinless Franck-Condon factor:

UE`

0

dRfv(R)Cp1
(+)(R)U2

. (8)

In this equation,fv(R) is the adiabatic 0g2 vibrational
wavefunction and, as discussed above,Cp1

(+) is the single
p-wave for fa = 1 + fb = 1 collisions. We neglect anyR-
variation in the Rabi matrix elements for different hy-
perfine components of the upper level. Thev = 0 func-
tion, and to a lesser extent thev = 2 function, is nearly
symmetric about the minimum nearRe = 72a0, whereas
the v = 1 function is antisymmetric. Since thep-wave
has a node so close toRe, it also is nearly antisymmetric
aboutRe. Therefore, the molecular transition strength for
p-waves is very small forv = 0 and 2, but much larger
for v = 1.

4. Obtaining the Scattering Length

Having developed these theoretical tools, we now re-
turn to the interpretation of the experimental spectra in

terms of thes, p, andd wavefunctions. As explained in
Sec. 3, there are three theoretical elements which are
needed in order to simulate the experimental spectrum
using Eq. (1). These are the ground state wavefunctions
|CE(+)

Fp,fa l, the excited state wavefunctions |f vJ'
F'p'b l, and the

molecular Rabi matrix elementsVF'p'b
Fp,fa . Because of the

checks on the transition dipole moment described in
Sec. 3.3 we can be confident in the determination of the
latter. Refs. [13,14] on the rovibrational-hyperfine states
of the Na2 0g

2 state provide compelling evidence that we
can calculate the excited states accurately. Thus, the
uncertainty in our ability to simulate the experimental
spectra is mainly associated with inaccuracies of the
X1Sg

+ anda3Su
+ RKR potentials, and thus in generating

the ground state wavefunctions.
In Fig. 6, we show thev = 0 simulated spectrum for

our original fit of the ground state Na2 RKR potentials
[24]. The ground state collision wavefunctions are com-
puted exactly given theseX1Sg

+ anda3Su
+ potentials. The

three elements of the theory are then substituted into Eq.
(1) and the thermal lineshape is calculated assuming a
temperatureT = 450 mK. Note that unlike the experi-
mental spectrum (Fig. 2) the simulated spectrum has
very largeJ = 1 and 3 peaks and a rather weakJ = 2
feature. The reason for this is that our fit of the Na2 X1Sg

+

and a3Su
+ RKR potentials causedCs2

(+) to have aa1,21

scattering length of 73a0, with a correspondings-wave
node at 78a0. This results in a nearly zero Franck-Con-
don factor for thes-waveJ = 2 feature. For these poten-
tials thep-wave node forCp1

(+) was at 95a0, far fromRe.
This is inconsistent with the experiment and indicates
that the RKR potentials must be altered.

Fig. 6. Simulatedv = 0 spectra for the original RKR potentials. The
J = 2 peak is completely dominated by thed-wave scattering, as can
be inferred from its relatively large width ofø 60 MHz and the
‘‘slow’’ onset of the red side of the line.
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Changing the inner wall of theX1Sg
+ anda3Su

+ RKR
potentials changes the accumulated phase of the wave-
function or, equivalently, changes the position of the last
node. In Fig. 7, we show how varying the inner walls of
the potentials modifies various properties which depend
on the ground state scattering wavefunction. The two
axes represent independent, adjustable parameters
which cause a smooth change in the inner wall of the
X1Sg

+ anda3Su
+ potentials respectively. The precise form

of the adjustable parameter is irrelevant [29] since we
are only sensitive to the accumulated phase up to the
Franck-Condon region (R> 50a0), where the potentials
are completely determined by atomic properties. The
plotted lines forming two distinct bands correspond to
lines of constant position of the lastp-wave node and
constant ratio of theJ = 2 andJ = 4 peak heights. The
intersection of the bands in Fig. 7 determines the al-
lowed range of the scattering length.

Fig. 7. Parameter space plot for variation ofX1Sg
+ anda3Su

+ potentials.
Note that smaller values of the parameters imply a deeper potential.
The arrow indicates the direction in which thea1,21 scattering length
increases.

Fig. 8a shows how the simulated spectrum changes
when thep-wave node moves to smallerR for nearly
constanta1,21 scattering length. The spectra have been
normalized with respect to theJ' = 2 peak. Notice that
a relatively small change in thep-wave node position
has a marked effect on the oddJ' peaks in the spectra.
Hence to have very weakv = 0, J' = 1 andJ' = 3 peaks,
consistent with the experimental data, we find thatCp1

(+)

must have a node close toRe. The calculations strongly
constrain thep-wave node to 73a0 6 3 a0. This defines
thep-wave band in Fig. 7. Note that there is a range of
X1Sg

+ anda3Su
+ potentials which satisfy this constraint.

Fig. 8. Simulatedv = 0, 0g
2 spectrum for various potentials. The exact

transition dipole moment is used: a) shows the effects of moving the
p-wave node whilea1,21 is held nearly constant and b) shows the
effects of movinga1,21 while thep-wave node is fixed at 73a0.

In the discussion of the optimal position of the last
p-wave node we used the wavefunctions with 500mK
kinetic energy in the incoming spin channel. Unlike for
s-wave scattering, where in the Wigner threshold regime
the nodal positions are independent of the collision en-
ergy, the position of thep-wave node always shifts with
collision energy. In fact, the zero energy wavefunction
has a node which is about 2a0 to 3a0 inside the reported
p-wave node. The 500mK collision energy is close to
the most probable collision energy in a MOT, and there-
fore the spectra are most sensitive to the position of this
node.

Having determined the position of the lastp-wave
node, we now argue that the correspondingf = 2 s-wave
node lies at smallerR. This has been confirmed by
independent full close coupled calculations, by the theo-
retical arguments presented in appendix A, as well as
being supported the widths of the observed lines. Ap-
pendix A also gives an analytical one-to-one correspon-
dence between thes-wave nodes and the scattering
length. For now it is sufficient to keep in mind that for
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Na the value of the scattering length is always a fewa0

smaller than the position of the last node.
In Fig. 8b the simulated spectra for several trial

ground state potentials are shown, keeping theCp1
(+)

p-wave node fixed. Once again, the spectra have been
normalized with respect to theJ' = 2 peak. The figure
shows that theJ' = 4 to J' = 2 peak ratio varies dramati-
cally with thea1,21 scattering length. If this were the sole
difference we could not be as confident about our final
values since experimentally we have seen as much as a
factor of two change in theJ' = 4 toJ' = 2 peak ratios by
varying the frequency of the ionization laser. In the
simulations, changing thea1,21 scattering length while
keeping thep-wave node fixed also causes a large
change in the width of thev = 0 J' = 2 feature. This is
because the width is determined from a mixture ofs-
andd-wave contributions: an increasedd-wave contri-
bution implies a larger width. TheJ' = 2 width de-
creases with decreasing scattering length because the
d-wave contribution becomes less and less important as
the s-wave Franck-Condon factor increases. Thus, the
width of the J = 2, v = 0 feature can also be used in
constraining the scattering length.

As explained in Sec. 3.1, thed-wave wavefunction is
given by a spherical Bessel function,j2(kR)/Ïk →
k5/2R2 ask → 0, independent of the shape of the poten-
tial because the centrifugal barrier inhibits penetration
of the wavefunction into the region of interest, as seen in
Fig. 4. Thus, the intensities of thed-wave features in our
simulated spectrum are fixed. This has been confirmed
computationally for all the various potentials used in this
modeling. However, changing thes-wave node and
thereby thea1,21 scattering length changes the ampli-
tude of thes-wave scattering wavefunction in the vicin-
ity of the minimum of the 0g2 potential, and thus the
strength of thes-wave features. Moreover, as thes-wave
character of thev = 0, J' = 2 peak increases, the
linewidth of the feature becomes narrower. Therefore if
the s-wave node lies too far fromRe the J' = 2 feature
becomes larger and narrower, as is seen clearly in Fig.
8b. A comparison with the experimental width of the
J' = 2, v = 0 peak leads us to conclude that a consider-
abled-wave contribution is present and thus thes-wave
node cannot lie to far fromRe. This reasoning, however,
does not tell us on which side ofRe thes-wave node is
situated.

We can use the spectra of the higher vibrational levels
to further constrain the position of thes-wave. The ratio
of the purelyd-waveJ' = 4 peak to thes-wave compo-
nent of theJ' = 2 peak is proportional to the square of
the ratio of the ground state wavefunctions at a charac-
teristic distanceRv [30]. A simple estimate of the inten-
sity ratio of thes-wave andd-wave contributions to the

spectral lines can be made based on the approximate
wavefunctions for thes- andd-waves and is given by:

d
s

, S k5/2Rv
2

k1/2(Rv 2 a)D
2

=
k4Rv

4

(Rv 2 a)2 , (9)

where we use thek → 0 expression ofj2(kRv)/Ïk for
thed-wave andj0(k(Rv 2 a))/Ïk for thes-wave, anda
is the scattering length. We can conveniently takeRv to
be the outer turning point of the 0g

2 v level. An improve-
ment of the model of the peak ratios involves replacing
a with the position of the lasts-wave node. This follows
from the modification of thes-wave wavefunction due to
the long range2 C6/R6 potential and is discussed in
Appendix A. Thek dependence shows that, as expected,
the J' = 4 peaks will disappear for lower temperatures.

TheJ' = 2 peak is the dominant feature in the experi-
mental spectra of thev # 12 vibrational levels. The
outer turning points of these levels are between 70a0

and 200a0. By Eq. (9) ans-wave node at these internu-
clear separations would imply a much strongerJ' = 4
peak relative to theJ' = 2 peak than observed. We thus
conclude that there is nos-wave node between 70a0 and
200a0. Since we have already shown that a node too far
away from Re leads to an unacceptably smalld-wave
contribution to thev = 0 spectrum, we can also immedi-
ately rule out a node larger than 200a0. Furthermore, a
small value for the location of the node is also unaccept-
able as it leads to ad-wave feature that is unacceptably
weak and av = 0, J' = 2 level that is unacceptable nar-
row. Numerical calculations of the peak ratio as a func-
tion of the shape of the potentials confirm these simple
arguments.

Plotting theJ' = 2 toJ' = 4 peak ratio as a function of
the shape of the potentials gives the band labeled ‘‘peak
ratio’’ in Fig. 7. The shape of the potentials at which the
two bands intersect is the optimal form. Fig. 9 compares
the theoretical spectra calculated using the best ground
state potentials with the experiment. The only adjustable
parameters are the overall height, which is adjusted to fit
the observedJ' = 2 peak and the absolute frequency
which is adjusted by, 2 MHz. The relative peak posi-
tions and heights are determined from the theory.

From our final potentials we findz0 = 60a0 6 3 a0,
z1 = 73 a0 6 3 a0 for the positions of the lasts- and
p-wave nodes, respectively anda1,21 = 52 a0 6 5 a0.
Quoted uncertainties are one estimated standard devia-
tion (combined standard uncertainty). Other scattering
properties can be evaluated as well. For example, the
scattering lengtha2,2 of two atoms withfa = 2, mf = 2, is
85 a0 6 3 a0. This is the scattering length relevant in
experiments aiming at Bose condensation in doubly po-
larized samples of Na atoms.
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Fig. 9. Comparison of theoretical and experimental rotational spectra
for v = 0 andv = 1. The theory is scaled to agree with the experimental
J' = 2 peak height and shifted slightly (, 2 MHz) in frequency.

The Naa1,21 scattering length has been discussed in
the literature before. An experimental measurement of
a1,21 = 92 a0 6 25 a0 [31] was based on the thermaliza-
tion time of a sample with a temperature of 200mK. A
theoretical treatment based on improving on the semi-
classical RKR potentials with an inverted perturbation
approach obtained 86+66

223 a0 (Ref. [26]). These values are
consistently larger than our value, although in agreement
within two sigma if the uncertainties are taken to be one
sigma. Even without our detailed numerical calcula-
tions, the observed spectra show that the lastf = 2, s-
wave node cannot lie between 70a0 and 200a0.

5. Conclusion

An analysis of the rotational lineshapes in photoasso-
ciation spectra of the purely long-range Na2 0g

2 state,
particularly the lowest vibrational level, places con-
straints on the possible positions of nodes in the
32S(f = 1) + 32S(f = 1) scattering wavefunctions. By
combining this information with the known spec-
troscopy of the Na2 ground states we generate a set of

potentials which produce scattering phase shifts consis-
tent with our observed spectra. From the potentials we
calculate thes-wave scattering lengths needed as input
for theories describing Bose condensates.

Our results reported here are preliminary in that they
are based on a small data set which limits our ability to
quantify the effects of the ionizing laser. In future exper-
iments we plan to acquire a larger data set and also
investigate spectra in which one or both of the colliding
atoms are in the 32S(f = 2) state. We predict that these
spectra will be dramatically different from the ones
reported here and their observation will provide an im-
portant cross check on the potentials we have derived.

6. Appendix A. From Nodes to a
Scattering Length

This Appendix aims to give an intuitive understanding
of why for Na2 the lastf = 1, p-wave nodez1 of the zero
energy wavefunction lies outside the corresponding
node of thef = 2 or f = 0, s-wave. We also relate the
s-wave node to a scattering length.

If we ignore the hyperfine contribution in the multi-
channelf = 1 andf = 2 Hamiltonians the sole difference
between the two Hamiltonians is the centrifugal barrier
, (, + 1)/2mR2 where, = 1 or 0, respectively. Decreas-
ing , from one to zero in a continuous fashion makes the
interaction slightly more attractive and, hence, increases
the phase that the zero energy wavefunction accumu-
lates when integrating fromR= 0, where the wavefunc-
tion is zero, to the position of the lastp-wave node.
Therefore, ans-wave node lies just insidez1. However
this does not prove that it is the lasts-wave node. The
wavefunction could accumulate enough phase in the
larger R region that it has one more node, i.e., the
s-wave potential could have one more bound level than
thep-wave potential. The Na hyperfine interaction adds
small corrections to this picture. This nodal pattern is
confirmed by full multi-channel close coupling calcula-
tions for a variety of realisticX1Sg anda3Su potentials.
For heavier alkali-metal atoms, however, such a conclu-
sion need not apply as the hyperfine interaction is larger
and the centrifugal barrier much lower. We will assume
that z0 stands for the node inCs2

(+)(R). The node of the
f = 0 s-wave wavefunction,Cs0

(+)(R), is closely related to
z0.

From Sec. 3.3 we know that the wavefunction for
R> 30a0 is described in terms of a single potential and
the exact wavefunction has a node in this region. This
allows us to ignore multi-channel complications. The
connection between the last node and the scattering
length for the collision between twofa = 1, mf a = 2 1
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atoms is, therefore, far more tractable. If the atom-atom
interaction were zero beyond the position of this zero the
connection is trivial witha1,21 = z0. The attractive long-
range dispersion interaction however is still important.
In first order the correction to the scattering length due
to the van der Waals interaction has the form [17,32]

a1,21 2 z0 ø lim
k→0

2m
"2k2

E`

z0

dRsin(k(R 2 z0))H2
C6

R6Jsin(k(R 2 z0)) (10)

= 2
2mC6

"2 E`

z0

dR
(R 2 z0)2

R6 = 2
2mC6

"2
1

30z0
3 (11)

< 0.

For example, if we take the view thatz0 = z1 ø 70a0 Eq.
(10) implies a1,21 = z0 2 6 = 64 a0. A more elaborate
theory is constructed starting from a zero-energy scat-
tering wavefunctionc11

(+)(R) as an asymptotic expansion
in 1/R. The first terms in this expansion can be shown
to be

c11
(+)(R) = (R 2 a1,21) +

2m
"2 C6H2

1
12R3 +

a1,21

20R4J
+ OS(

2m
"2 C6)2 1

R7D (12)

wherea1,21 is the scattering length. This wavefunction
must be zero atz0 leading to

a1,21 = z0
1 2 C̃6/(12z0

4)
1 2 C̃6/(20z0

4)
with C̃6 = 2mC6/"2. (13)

From this expression it follows that forz0 ø 42 a0 the
scattering length goes to infinity, or equivalently an ex-
tra bound level appears. According to Ref. [32] for a
pure 1/R6 potential the exactc11

(+)(R) is known analyti-
cally as a linear combination ofÏrJ1/4(x) and
ÏrJ21/4(x) with x = Ï2mC6/"2/(2R2) which leads to a
scattering length in terms of a zero of the wavefunction
given by

a1,21 =
4ÏC̃6

2
J21/4(x0)
J1/4(x0)

G (3/4)
G (5/4)

with x0 =
Ï2mC6/"2

2z0
2 ,

(14)

whereJn(x) is the Bessel function. The scattering length
as defined in Eq. (14) again has poles, i.e., goes to6 `,
as a function of the position of a node in the zero-energy
s-wave wavefunction. These poles occur at the zeros of
the functionJ1/4(x0). For Na this implies that if the last

s-wave node is atz0 = 37.6 a0 the scattering length is
infinite or, alternatively, a bound state at threshold has
appeared. Forz0 smaller than this critical value another
node much further out appears. In Fig. 10 the scattering
length as defined in Eq. (14) as a function of the last
node in the zero-energy wavefunction is shown. Forz0

around 70a0 to 80a0 the effects of the2 C6/R6 are small
and a1,21 ø z0. Near z0 = 45 the scattering length be-
comes negative and for 37.6a0 will become infinitely
large.

Fig. 10. The scattering length versus the last nodez0 in the zero-en-
ergy scattering wavefunction. The figure shows the scattering length
for two assumptions regarding the long-range behaviour of the poten-
tial. The dashed line corresponds to a zero potential forR> z0 and the
full line corresponds to a2 C6/R

6 potential for R> z0. The two
parameters in the model are theC6 coefficient and the atomic Na
mass.

The long-range potential is not a pure 1/R6 potential.
TheC8 and higher order terms in the polarization inter-
action must be included. However, they are small for
internuclear separations larger than 30a0. In fact, the
size of the corrections fall inside the 5 % uncertainty of
C6 quoted by Ref. [25] and from Eq. (11) it follows that
this adds at most 1a0 to 2 a0 to the final uncertainty in
the scattering length.
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