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Glossary

Symbol Definition

a Scattering length

M Atomic mass

m Chemical potential

N0 Average number of condensate atoms

U0 Effective two-body interaction strength

R(2)(N0) Two-body spin-flip collisional loss rate

r = { r , f , z} Cylindrical coordinate system

vr , vz Trap radial and axial harmonic oscilla-
tor angular frequencies

1. Introduction

The recent production of trapped atomic vapors of
87Rb [1], 7Li [2], and 23Na [3] at the phase space densi-

ties necessary to generate Bose-Einstein condensation
(BEC) in the ground state of magnetic traps has gener-
ated significant interest in this area of physics. Previ-
ously, BEC has only been encountered in the He II phase
of liquid 4He, and there has also been accumulating
evidence for BEC of an exciton gas in cuprous oxide [4].
However, it now seems that the fraction of atoms that
participate in BEC in He II is of the order of 10 %,
because of the presence of strong atomic interactions
[5, 6]. In the dilute alkali gas BECs, such interactions
are much weaker, and experimental techniques have
been used to produce samples in which the condensate
fraction is very close to unity. This makes the alkali
systems most attractive for the study of the essential
phenomena of BEC, especially since the condensate
density and temperature, and perhaps even the intrinsic
atomic interactions [7], are subject to external experi-
mental control.

However, the alkali condensates are always produced
in particle traps, and this endows them with an
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essentially inhomogeneous character quite distinct from
the homogensous nature of4He II. Detailed understand-
ing of the properties of these systems requires [8–16]
that this inhomogeneity be taken into account. The pur-
pose of this paper is to present simple analytical meth-
ods which have been found to give results that are in
good qualitative agreement with those of extensive nu-
merical calculations based on mean-field theory, i.e., the
basis-set methods of Refs. [12, 16]. These methods are
thus expected to be useful to experimentalists who wish
to explore alternative trap designs, or to modellers who
wish to analyze large-scale numerical results.

2. Overview of Dilute Gas Bose-Einstein
Condensates

For87Rb and23Na the scattering lengths,a, are known
to be positive [3,17,18]. In standard mean-field theory,
this leads to a stable condensate wave function which is
larger than the noninteracting ground state of the trap,
and which can be modeled well by a mean field equation
[8–16]. For 7Li, a is known to be negative [2], which
produces a net effective attractive interaction between
the particles. A homogeneous condensate witha < 0 is
predicted to be unstable [19]. However, a spatially con-
fined condensate has been shown to be metastable [9];
and, when the average number of atoms in the conden-
sate,N0, is sufficiently small, the condensate lifetime
can be quite long. The potential energy of the confined
system acts as a barrier to the collapse of the condensate
[9, 11]. Other discussions of the negative scattering
length case have addressed the general issues of en-
ergetic stability and the possibility of a transition to a
denser phase [20–22]. Theoretical predictions of the
sizes and lifetimes of Bose condensed gases can now be
compared directly with experiments, as will be dis-
cussed below. The effect of vortex formation [11–14]
may also be examined in the present framework.

In this paper, I examine the general cases of the two
approximate methods which have been most used to
study Bose condensed systems, i.e., the Thomas-Fermi
model [8, 11], and the variational method [11]. While
the ground state properties of such Bose condensed
gases have been studied in some detail [8–16], most of
the methods used have been computationally intensive.
I show here that approximate methods give good quanti-
tative results for the ground state properties of these
gases, and also for vortex solutions of the equations of
motion.

3. Basic Results of Mean-Field Theory

For the low atomic energies and densities achieved in
the experiments of Refs. [1–3] the basic structure of

a BEC should be well approximated by mean field
theory, i.e., the Ginzburg-Pitaevskii-Gross (GPG)
energy functional [23], described in Eq. (1). In such
cases the atom-atom interaction is dominated by the
effects of s-wave collisions. The interaction potential
may thus be encapsulated in the formV(r , r ') = U0d
(r –r '), whereU0 = 4p"2a/M . Solutions of the resulting
many-particle mean-field Schro¨dinger equation provide
information about the size, density, chemical potential,
and lifetime of the condensate as a function ofN0. The
evolution of a condensate, after release from the weak
trap of Ref. [1] for time of flight studies, has been
described using the time-dependent solutions of the
Gross-Pitaevskii (GP) equation in Ref. [10]. Here I con-
sider the condensates formed in the tight trap [1], which
should be adequately represented by a time-independent
formalism. The Gross-Pitaevskii-Gross (GPG) energy
functional [23] for this system may be written

« [c ] = Edr c* ( r )

S–
"2

2M
,2 + Vtrap(r ) +

1
2

N0U0c (r )2Dc (r ), (1)

wherec (r ) is the common wavefunction for each atom
in the condensate, and« [c ] is the energy per particle
in the system. Minimizing« [c ] with respect to varia-
tions in the wavefunctionc (r ), while enforcing the
normalization condition,edr |c (r )|2 = 1, gives the time-
independent GPG equation [23].

S–
"2

2M
,2 + Vtrap(r ) + N0U0c (r )2D
c (r ) = mc (r ), (2)

whereVtrap(r ) is usually an anisotropic harmonic oscil-
lator potential [1, 2]. Baym and Pethick [11] have iden-
tified the dimensionless parameter for a cylindrically
symmetric harmonic system as

z = (8paN0atrap)1/5, (3)

where atrap = (Mvr /" )1/2, and Vtrap(r ) = M (vr
2 r2 +

vz
2 z2)/2. I use Eq. (1) to model a condensate using a

variational trial wave function, and in the limit of suffi-
ciently largez we will also examine the Thomas-Fermi
model, using Eq. (2), where the kinetic energy of the
condensate atoms is neglected.

An important property, of both current and future
experimental interest, is the lifetime of the condensate
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with respect to population loss from the trapped state.
Such losses derive from spin-flip collisions that force
the spin-flipped atoms out of the trap. These collisions
are considered here to be extrinsic to the kinetics of
BEC formation, and are treated by a simple rate-
equation approach. The two-body population loss rate
for a condensate is given by Eq. (20) in Ref. [24]:

R(2)(N0) = 2aEdr

S1
2

n2
0 (r ) + 2n0 (r )n' (r ) + n'2 (r )D, (4)

wheren0(r ) andn' (r ) are the respective condensate and
noncondensate number densities, anda is the two-body
loss rate coefficient associated with spin-flip collisions.
Since, by the use of forced evaporative cooling, the
noncondensate atoms may be “cut” away [1], forcing
n'(r ) ~ 0, Eq. [4] reduces to

R(2)(N0) = aEdr n0
2 (r ) = a N0

2 Edr |c (r ) |4. (5)

Finding a solution of the GP equation, or minimum of
the GPG energy functional, together with the loss-rate
expression, enables one to estimate the condensate life-
time in units ofa [16, 25].

While the ground-state properties of BECs are of
primary interest, the possibility of vortex formation has
also been considered [11–14]. A steady-state vortex
wave function may be written as [26]

c (r ) = r1/2(r ) eiS(r), (6)

wherer (r ) is the density of the system. Here,S(r ), the
velocity potential, changes by 2pm along any closed
loop around the vortex, withmbeing the vortex winding
number. For the cylindrically symmetric harmonic traps
of Refs. [1, 2], a wavefunction of the form in Eq. (6),
with thez-axis as the vortex line, is related to states of
definite z-component of the total angular momentum.
The corresponding eigenfunction may be written as

c (r ) = fnrnzm(r ) eimf, (7)

where {nr ,nz,m} are the radial, axial, and angular
momentum (z-component) quantum numbers. Equation
(7) is equivalent to a winding numberm vortex state.
However, for an interacting system, the functionfnrnzm(r )
will also be a function ofN0. As pointed out in Refs.
[11–14], a rotating system should cause the formation of
a vortex line or ring with critical rotation frequency,ncrit.
In a homogeneous rotating system, the critical

frequency is given by [26]

ncrit =
"

2pMR2 lnSR
jD, (8)

whereR is the radius of the system, andj the radius of
the vortex core. The critical frequency may be calcu-
lated directly from the equationDE – L ?v = 0, where
DE is the energy gap between ground and vortex states,
L is the vortex angular momentum, andv is the rota-
tional angular velocity of the system [26]. In the case of
a cylindrically symmetric harmonic system,L = N0m" ,
andDE = N0(«m – «0), where«m is the energy per particle
in the mth vortex state, and it is a function ofN0. This
gives a critical frequency of

ncrit =
«m – «0

2pm"
(9)

Solving the GPG equation, and finding the energy per
particle of the condensate, one may calculate the critical
frequency for formation of such vortices in the system.

4. Simplified Variational Model

For a noninteracting cylindrically symmetric har-
monic system, the eigenfunctions of the Schro¨dinger
equation (Eq. (2) withU0 = 0) are

cnrnzm(r ) = F az

p1/22nznz!
G1/2

e–a z
2z2/2Hnz(azz)

3 F ar
2nr !

p (nr + m)!G
1/2

eimf (ar r )m e–ar
2r2/2 L nr

(m) (ar
2r2), (10)

where ar,z = (MVr, z/" )1/2, Hn(x) is the n-th order
Hermite polynomial, andLn

(m) (x) is them-th associated
Laguerre polynomial of ordern [27]. In the noninteract-
ing case (i.e.,U0 = 0) Vr = vr and Vz = vz, however,
using Eqs. (10) as variational trial wavefunctions for the
interacting system, withVr andVz treated as arbitrary
variational parameters, we find the GPG energy func-
tional,

« [Vr , Vz] =
"
2 F(2nr + m + 1) SVr +

vr
2

Vr
D +

Snz +
1
2D SVz +

vz
2

Vz
D +

pz5

(2p )5/2

Vr

v r
1/2 V z

1/2 bnr nzmG,

(11)
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where

bnrnzm = 2Î2
p F nr !

2nznz!(nr+m)! G2

E`

–`

dv e–2n2  Hnz(v)4 E`

0

du e22uu2mL nr

(m) (u) 4,

(12)

is a dimensionless constant depending on the state being
considered, normalized sob000 = 1, and

b0 0m =
(2m)!

22m(m!)2 (13)

is important for analysis of vortex states. While Eq. (11)
is simple to analyze numerically, as I show later, it may
also be used to give approximate solutions in the limit of
z >> 1. While it is easy to examine the perturbative limit,
|z l << 1, it is of little experimental interest, since |z | $
1 in all experiments to date [1].

I minimize Eq. (11) with respect to the variational
parameters,Vr andVz, to find,

2(2p )5/2(nz + 1/2)V z
1/2v r

1/2(Vz
2–vz

2)

+ pbnrnzmz5Vr Vz
2 = 0, (14)

givenVr = vr /D , found from­« /­Vr = 0, where one has

D = F1 +
z 5

(32p3)1/2 SVz

vr
D1/2 bnrn zm

(2nr +m+ 1)G
1/2

. (15)

WhenN0 is sufficiently large,Vr << vr andVz << vz, so
one needs only to examine terms of highest-order invr

and vz. This is directly equivalent to neglecting the
kinetic-energy terms in Eq. (11). This approximation
then gives

Vz = vzF (2nz + 1)4

(2nr + m + 1)2
vz

3

vr
3

(2p )3

z10bnrnzm
2 G1/5

(16)

= F (2nz + 1)4

(2nr + m + 1)2
vz

8

vr
4

p"
8Ma2N0

2bnrnzm
2 G1/5

(17)

and

Vr = vrF(2nr + m + 1)3

(2nz + 1)
vr

2

vz
2

(2p )3

z10bnrnzm
G1/5

(18)

= F(2nr + m + 1)3

(2nz + 1)
vr

6

vz
2

p"
8Ma2N0

2 b2
nrnzm

G1/5
. (19)

These expressions may be substituted back into Eq. (11)
in order to evaluate the energy per particle of the system,
and one may then calculate the critical frequency for
vortex formation. Fora > 0, the lowest vortex critical
frequency occurs for the ground state to {nr = 0, nz = 0,
m = 1} transition, giving

ncrit =
3

4p
Vr

{ nr = 0, nz = 0, m = 0} ~Svz
2

vr
D4/5

z–2,

=
3"

4pMr2
1/e

, (20)

wherer1/e is the radius of the 1/e population density of
the ground-state condensate in thez = 0 plane. Unlike
the homogeneous case of4He II, wherencrit ~ ln(R/j )/R2

from Eq. (8), the trapped condensate hasncrit ~ 1/R2 in
the largeN0 limit, whereR = r1/e is a characteristic size
of the condensate in the plane of rotation.

For a < 0, the kinetic energy is never negligible, and
becomes more important as the condensate population
approaches the point of collapse. Since the kinetic en-
ergy may not be neglected in comparison with the self-
interaction energy, and the potential energy is of roughly
the same order as the kinetic, the shrinkage of the con-
densate spatial distribution is not severe enough to make
the potential energy much smaller than the kinetic en-
ergy. Hence, Eq. (14) must be solved numerically. Fig-
ure 1 shows plots, for the parameters appropriate to the
experiment of Ref. [2], of the vortex critical rotation
frequency calculated from numerical solution of Eq.
(14) for transitions,m = 0 to m = 1 (long-dashed line),
m = 0 to m = 2 (medium-dashed line),m = 0 to m = 3
(short-dashed line). Also shown is the frequency for an
m = 0 to m = 1 transition (solid line), calculated by the
basis-set method. As can be seen, the lowest critical
frequency, and therefore the first transition to occur
when the system is rotated, should be them = 0 to
m = ` transition. The maximum stable population for a
condensate with negative scattering length is given by
D = 0 from Eq. (15). AssumingVz ≈ vz, this would give

N max
nrnzm = H2nr + m + 1

bnrnzm
J S p"

2Mvz
D1/2 1

|a |
(21)

= H2nr + m + 1
bnrnzm

J Nmax
000. (22)
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Fig. 1. A plot of the vortex transition frequency, in a trap of frequen-
ciesnr = 163 Hz andnz = 117 Hz. The frequencies, calculated by the
variational method, form = 0 to m = 1 (long-dashed line),m = 0 to
m = 2 (medium-dashed line), andm = 0 to m = 3 (short-dashed line)
transitions to occur. The frequency for am = 0 to m = 1 transition
calculated from the basis-set expansion (solid line).

Fig. 2. A plot of the maximum vortex population (nr = 0,nz = 0), the
approximate analytic solutionN{0,0,m}

max = 1453 (m + 1)!m!22m/(2m)!
(solid line), numerical solution of the minimized Ginzburg-Pitaevskii-
Gross energy functional (squares), and results from [F. Dalfovo and
S. Stringari, Phys. Rev. A53, 2477 (1996)] (circles).

Equation (21) givesNmax
000 ~ 3000 for parameters appro-

priate to the experiment of Ref. [2]. However, one finds
Nmax

000 ~ 1500 by numerical solution of Eq. (14), close to
the value found in Refs. [9, 12–14]. Figure 2 shows the
maximum population of a vortex state in the trap of Ref.
[2], comparing the results of Eq. (22) (solid line),
numerical solution of Eq. (14) (squares), and results
from Ref. [13] (circles). AsN0 approaches the maxi-
mum stable level, many of the properties exhibit
extreme behavior, i.e., the two-body loss rate has been
shown to increase rapidly as the condensate population
approaches the point of collapse [16].

The two-body loss rate is given, subtituting Eq. (10)
into Eq. (5) by

R(2)
nr nzm (N0) = aN0

2 S M
2p"D3/2

bnrnzmVr Vz
1/2. (23)

This shows, becauseR(2)
nr nzm (N0) <R(2)

nrnz(m+1)(N0), that
vortex states have longer lifetimes than those states
without, or with less, angular momentum. Figure 3
shows a plot of the loss rate from a7Li condensate in the
experimental configuration of Ref. [2], the total loss rate
[including three-body recombination (which was found
to be negligible except very close to the point of col-
lapse)] from Ref. [16] (solid line), and the two-body loss
rate calculated from Eq. (23) (broken line). While the
variational approach clearly does not show as rapid a
growth in the loss rate as the critical population, it does
demonstrate qualitatively the same behavior.

Fig. 3. A plot of the two-body loss rate for a7Li condensate in a
cylindrically symmetric trap,nr = 163 Hz andnz = 117 Hz. Basis-set
(solid line), and variational (broken line) calculations.

5. Thomas-Fermi Model

For a large condensate,z >> 1, with a > 0 we find

Kc U– "2

2M
,2Uc L << Kc UN0 U0  c (r )2 UcL,

(24)

meaning the kinetic energy term in Eq. (2) may be
neglected [8, 11] in comparison to the condensate self-
interaction energy. This of course is never true for a
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condensate witha < 0, since the kinetic energy is the
stabilizing factor in preventing the collapse of the con-
densate to a more dense phase [9, 11]. Fora > 0, how-
ever, this condition may be satified for a fairly small
condensate population [8]. Previously, this method has
been used to study ground state condensates in the large
N0 limit [8, 11], but the possibility of studying vortex
states has only been considered peripherally [12]. While
Eq. (24) may still be true in the case of a vortex, we may
not neglect the effect of the angular momentum on the
spatial distribution of the condensate, since the angular
momentum imposes a “centrifugal barrier.” This
reduces Eq. (2) to

S"2g2

2Mr2 + Vtrap(r ) + N0 U0c (r )2D
c (r ) = mc (r ), (25)

where the kinetic energy not related to the angular
momentum has been neglected, and the angular depen-
dence, i.e., the phase factor (which does not effect the
density distribution), of the wavefunction has been
ignored. For a cylindrical system one hasg2 = m2, and
for a spherical system one hasg2 = l (l+1), wherel is the
total angular momentum quantum number. This gives a
Thomas-Fermi wave function of the form

c (r ) = 5Fm–Veff(r )
N0U0

G1/2
, for Veff(r ) < m ; (26)

whereVeff(r ) = Vtrap(r ) + "2g2/ 2Mr2 is the effective trap
potential. The relationship betweenN0 andm is found by
the conventional normalization condition,edr |c |2 = 1.
Figure 4 shows a plot of the number density of a 2000
atom 87Rb condensate for parameters appropriate to
Ref. [1], the wave function calculated by basis-set
expansion as in Ref. [12, 16] (solid line), Thomas-Fermi
(brokenline), and variational (dotted line) methods. In
the simplest case, a harmonic trap withg = 0, many of
the properties of the condensate may be calculated
explicitly [8, 11], i.e., the two-body loss rate is given by

R(2)(N0) =
a
7 S450

p2 D1/5 SMvtrap
2

U0
D3/5

N0
7/5, (27)

wherev trap
3 = vxvyvz = vr

2vz. Figure 5 shows the two-
body loss rate from the ground state of the trap of

Fig. 4. The number density of a,2500 atom87Rb condensate along
the radial coordinate, in thez = 0 plane. Basis-set (solid line), varia-
tional (dotted line), and Thomas-Fermi (broken line) calculations.

Ref. [1], where I have assumed thata = 1.3 3 10–15

cm3 s–1 [25], comparing the results of the basis-set
method (solid line), numerical evaluation of Eq. (23)
(broken line), and the Thomas-Fermi expression in
Eq. (27) (dotted line). Equation (5) may be integrated to
give an expression for the lifetime of the condensate
because of two-body collisions,

t1/d (N0) =
35
2a S p2

450D1/5S U0

Mv2
trap
D3/5

(d2/5–1)N0
–2/5, (28)

0 for Veff(r ) $ m ,

Fig. 5. A plot of the two-body loss rate for a cylindrically symmetric
87Rb trap,nr = 212 Hz andnz = 75 Hz. Basis-set (solid line), varia-
tional (broken line), and Thomas-Fermi (dotted line) calculations.
Herea , the two-body loss rate coefficient, is 1.33 10215 cm3 s–1.

wheret1/d (N0) is the 1/d population lifetime of a conden-
sate intially containingN0 atoms. This gives a 1/e popu-
lation lifetime for a 2000 atom87Rb condensate in the
range 32 s to 280 s, for 1.53 10–16 cm3 s–1 < a < 1.33
10215 cm3 s–1 [25]. This range is very close to the 35 s
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to 200 s reported in Ref. [12]. The longer maximum
lifetime of 280 s compared to 200 s occurs because I
have neglected three-body recombination, while it was
considered in Ref. [12]. The condensate has a lifetime,
calculated by the basis-set method, because of spin-flip
collisions in the range 39 s to 340 s. As we would expect
the Thomas-Fermi model gives a shorter lifetime than
the basis-set method, since the condensate is more
tightly confined (within a finite region of space), c.f.
Fig. 4.

I have also calculated the vortex critical frequencies
for parameters appropriate to the trap of Ref. [1] for
comparison to the results obtained earlier for the varia-
tional model, and those presented in Refs. [12–14]. Fig-
ure 6 shows plots of frequencies for them = 0 to m = 1
transition calculated from the largeN0 variational ex-
pression of Eq. (20) (dotted line), the numerical solution
of Eq. (14) (broken line), the basis-set expansion (solid
line), and the Thomas-Fermi model (dot-dashed line).
For a 10000 atom87Rb condensate, in the trap of Ref.
[1], I have foundn crit = 26 Hz (basis-set expansion), 20
Hz (Thomas-Fermi), 18 Hz (numerical solution of Eqs.
(14, 15), to minimize the GPG energy functional), and
14 Hz (Eq. (20), the largeN0 approximation), compared
to the 26 Hz reported in Ref. [13, 14]. While one would
not expect the Thomas-Fermi approximation to give
accurate results for relatively smallN0, as can be seen
from Figs. (4 and 5), there is reasonable agreement with
the basis-set calculations for as few as 2000 atoms.

6. Conclusions

I have shown that the variational method, using the
wave functions of Eq. (10), gives very good agreement

with the results found by much more computationally
intensive methods [8–10,12–14,16]. Fora > 0, it is clear
that the variational and Thomas-Fermi methods may be
used to examine the full range of condensate popula-
tions, at least when ground states and vortex states are
being considered, to provide good estimates of the con-
densate properties, i.e., lower bounds on lifetimes and
peak densities. The Thomas-Fermi approximation also
has the advantage of being analytically solvable for the
most common cases of experimental interest, i.e., har-
monic traps as in Refs. [1, 2]. It may also be solved
numerically with little difficultly for traps of more arbi-
trary geometries [3]. Fora < 0, the variational methods
do not give as good agreement to the numerical calcula-
tions [13,14,16], especially as the critical population
levels are approached. While qualitative behavior is re-
tained, i.e., maximum population levels are in good
agreement, other properties of the condensate, e.g., two-
body collisional loss rates, do not show the same
extreme behavior near the critical population levels.

The critical frequency for vortex formation in a large
condensate of repulsive atoms was found to scale as
n crit , 1/R2 in the limit of large N0, where R is the
characteristic radius of the condensate in the plane of
rotation, compared to a homogeneous system in which
ncrit , ln(R/j )/R2. The formation of vortices, and scal-
ing of the vortex critical frequency, should be examined
experimentally in the near future. While the approxi-
mate methods used here to calculate the vortex critical
frequencies give reasonable results in comparison to the
methods of Refs. [12–14], the scaling behaviour at large
N0 appears to be very similar for all the methods. In the
case of negative scattering length, the formation of vor-
tices has been considered as a mechanism for forming
condensates containing greater numbers of atoms
[13, 14]: anm = 1 vortex may contain, 4000 atoms,
compared to, 1300 atoms for the ground state in the
trap of Ref. [2]. I have shown, however, that the forma-
tion frequency for such vortices is lowest for them = `
state, so the actual formation of such structures in exper-
iments must be studied more fully. Indeed a time-depen-
dent calculation may be required to examine the conden-
sate response to rotation near the critical vortex
formation frequency. It is possible that vortices may be
formed during the evaporative cooling cycle, as high
energy atoms are “cut” away, and low energy atoms are
ejected because of the rapid increase in loss processes
[16,20–22] for lower energy states.
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