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The potential and current distributions are
calculated across the width of a quantum
Hall effect sample for applied currents be-
tween 0mA and 225mA. For the first
time, both a confining potential and a cur-
rent-induced charge-redistribution potential
are used. The confining potential has a
parabolic shape, and the charge-redistribu-
tion potential islogarithmic. The solution
for the sum of the two types of potentials
is unique at each current, with no free
parameters. For example, the charge-deple-
tion width of the confining potential is de-
termined from a localization experiment by
Choi, Tsui, and Alavi, and the spatial extent
of the conducting two-dimensional electron
gas across the sample width is obtained
from the maximum electric field deduced
from a high-current breakdown experiment
by Cage and Lavine, and from the quantum

Hall voltage. The spatial extent has realistic
cut-off values at the sample sides; e.g., no
current flows within 55 magnetic lengths of
the sides for currents less than 215mA.
The calculated potential distributions are in
excellent agreement with contactless elec-
tro-optic effect laser beam measurements of
Fontein et al.
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1. Introduction

The potential and current distributions within quantum
Hall samples are important aspects of the integer quan-
tum Hall effect [1–3]. In this effect the Hall resistance,
RH, of the i th plateau of a fully quantized two-dimen-
sional electron gas (2DEG) has the valueRH(i )=h/(e2i ),
where h is the Planck constant,e is the elementary
charge, andi is an integer. Early attempts to measure
potential distributions across samples [4–7] used electri-
cal contacts to the two-dimensional gas that were placed
within the sample interior. The potentials were found to
vary throughout the entire sample. There was concern,
however, that the electrical contacts themselves signifi-
cantly altered the potential distributions. Fontein et al.
[8] have made contactless measurements of potential

distributions using a laser beam and the electro-optic
Pockels effect. They observed major fractions of the
quantum Hall voltage occurring near the sides of the
sample, but also significant contributions within the
interior. Valid predictions of the potential distribution
across quantum Hall samples should agree with their
results.
In this paper we calculate the potential distributions

across the sample for applied currentsISD between 0mA
and 225mA by: (a) assuming a parabolic confining
potential for the charge carriers and using parameters of
the parabola obtained experimentally by Choi, Tsui, and
Alavi [9]; (b) assuming an applied current-inducedloga-
rithmic charge-redistribution potential for the charge
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carriers that is similar to that of Balaban, Meirav, and
Shtrikman [10], but with very different cut-off values
for the spatial extent of the potential; (c) assuming that
the width of the conducting region varies with applied
current because a Lorentz force deflects the conducting
electrons slightly towards one side of the sample; (d)
using the maximum electric field deduced by Cage and
Lavine [11] from a breakdown experiment at high cur-
rents to determine the cut-off value for the spatial extent
on one side of the sample; and (e) using the quantum
Hall voltage to determine the cut-off value of the spatial
extent on the other side of the sample. The calculated
potential distributions are in excellent agreement with
the measurements of Fontein et al. [8].

2. Coordinate System

The coordinate system is shown in Fig. 1. For conve-
nience in writing the equations, the origin is located at
the source S and is halfway across the sample widthw.
The sample labeling is chosen to be consistent with
previous work [11]. Potential probes 1 and 2, and the
drain D, are not shown. The positivex axis points along
the sample in the general direction of the externally
applied currentISD. The positivey axis is chosen as
indicated. Therefore the positivezaxis points downward
for a right-handed coordinate system. The magnetic
field B also points downward, simply to be consistent
with results from the breakdown experiment [11] that
will be used in Secs. 4 and 5.

Note that the conducting charges areelectronswith
chargeq = – e. This is taken into account throughout the
paper; it is necessary to do so because the signs of both
the confining potential and the charge-redistribution
potential depend on the sign of the charge carriers.

Fig. 1. The coordinate system used in this paper. Only part of the
sample is shown. The origin is located at the source S, halfway across
the sample widthw. The dotted curves indicate the electron flow
pattern for this magnetic field direction.FL is the Lorentz force on the
conducting electrons andFC is the Coulomb force.B is the magnetic
field, v is the electron velocity, andVA andVB are the potentials on
either side of the sample.

The Lorentz forceFL = ev 3 B is in the positivey
direction. This force deflects the electrons slightly to the
right until it is matched by the Coulomb repulsive force
FC = –eE [12]. A charge-redistribution of the 2DEG
results from this deflection. Also because of the Lorentz
and Coulomb forces, the electrons enter the corner of the
source aty = – w/2 for this magnetic field direction and
exit at the corner +w/2 of the drain—in agreement with
the experiment of Klass et al. [13]. We assume that the
electrons spread out across the sample interior in agree-
ment with the experiment of Fontein et al. [8]. Potential
probes 4 and 6 are near the potential of the source.
Probes 3 and 5 are near the potential of the drain, and
have a positive potential relative to the source for these
current and magnetic field directions. The chemical po-
tentialfA = VA is therefore positive relative to the chem-
ical potentialfB = VB on the opposite side of the sample.

3. Confining Potential

We begin the calculations with a confining potential
to prevent the 2DEG from spilling out the sides of sam-
ples. Choi, Tsui, and Alavi [9] performed an experiment
on mesa-etched GaAs/AlGaAs heterostructure samples
in zero magnetic field. They then used one-dimensional
localization theory to deduce the charge-depletion
widths,D , of the confining potentials, and found thatD
was (0.56 0.2) mm for a 2DEG of surface number
densityns = i (eB/h) = 1.53 1011/cm2. We will use their
results to define the depletion width of the confining
potential for a mesa-etched sample.

3.1 Charge-Depletion Region

Figure 2 (a) shows a schematic of the charge distribu-
tion in the GaAs/AlGaAs interface region near one side
of the mesa when there is no applied magnetic field. The
GaAs layer of our sample [11] has a residual donor
density of about 13 1014/cm3, while the donor concen-
tration in the AlGaAs layer is about 13 1018/cm3 and
ns = 5.943 1011/cm2. There is an ionized donor atom in
the AlGaAs layer for every electron in the 2DEG but,
unlike Choi, Tsui, and Alavi [9], we assume the ionized
donor atoms are distributed over a volume rather than in
a surface sheet with densityns. The confining potential
is generated from electron surface charges on the side of
the mesa, as indicated in the figure. There is an ionized
donor atom or ionized impurity site in the charge-deple-
tion region for every surface charge.

We assume a homogeneous charge-depletion region
in Fig. 2 (b). The depletion widthD for a homogeneous
three-dimensional material is [14]

D = (2«sVm/eND)1/2, (1)
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Fig. 2. (a) Schematic diagram of the GaAs/AlGaAs interface region
near one side of the mesa. See Sec. 3.1 for further explanation. (b) The
ionized donor charge-depletion density distributionND. (c) The con-
fining potentialVc for negatively charged surface states.

where«s = k«0 is the dielectric permittivity of the semi-
conductor,k is the dielectric constant (k = 13.1 for
GaAs),«0 is the permittivity of vacuum,Vm is the value
of the confining potential at6w/2 andND is the average
density of ionized donors and impurity sites in the
charge-depletion region. We selected the value of the
charge-depletion width to beD = 0.5 mm [15]. This
value is consistent with the results of Choi, Tsui, and
Alavi [9]. We chose the value ofVm to be one-half the
1.50 V separation between the valence and conduction
bands of GaAs at 1 K [14], or Vm = 0.75 V. The value of
the average charge-depletion density from Eq. (1) is thus
ND = 4.33 1015/cm3, which seems quite reasonable.

3.2 Confining Potential Equation

A homogeneous charge-depletion region results in a
parabolic confining potentialVc, with the origin at
y = l = w /2–D , as indicated schematically in Fig. 2 (c).
The confining potential isnegativebecause the charges
on the side of the mesa are electrons.

The equations for the confining potentialVc and its
electric fieldEc = – =Vc are

Vc(y) = – a(y–l )2 andEc(y) = 2a(y–l ) (2a)

for l # y #
w
2

,

Vc(y) = 0 andEc(y) = 0 (2b)

for – l < y < l ,

Vc(y) = – a(y+l )2 andEc(y) = 2a(y+l ) (2c)

for –
w
2

# – y # – l ,

wherea = Vm/D2 = 3.03 1012 V/m2 for D = 0.5mm and
Vm = 0.75 V, and

l =
w
2

– D . (3)

3.3 Confining Potential at I SD = 0 mA

Given the values ofD and Vm, there is a surprising
amount that can be deduced about the electron states of
the confining potential when the magnetic field is ad-
justed to be at the center of thei = 2 quantum Hall
plateau andISD = 0mA. Since there is no applied current,
and therefore no Hall voltage, the Fermi energy«F is
constant across the sample width and is located halfway
between Landau levels. Under these conditions, states of
the lowest (N = 0) Landau level are occupied up to the
Fermi energy«F = "vc/2, no states are occupied in the
second (N = 1) Landau level, vc = eB/m* is the
cyclotron angular frequency,m* is the reduced mass of
the electron (0.068 times the free electron mass in
GaAs), and" ≡ h/2p . References [11,16–18] describe
how these states can be defined in the Landau gauge.

Figure 3 shows a schematic drawing of the energy of
the confining potential forISD = 0 mA, with greatly
exaggerated values ofD and"vc, and only a small frac-
tion of allowed states. The occupied/unoccupied states
are indicated as solid/open circles, and the occupied
(filled) states lie betweenymax and ymin = –ymax. In the
presence of the magnetic field, electrons of the 2DEG
occupy Landau level states that penetrate into the
charge-depletion regions near the mesa edge, and cur-
rent circulates around the sample periphery. Under these
conditions

«c(ymax) =
"vc

2
= – eVc(ymax) = ea(ymax–l )2

= e
Vm

D2 (ymax – l )2 , (4)
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wherel = w/2 – D.
The occupied states of the right-hand side (rhs) con-

fining potential generate a total currentIc (rhs) that is

Ic(rhs) = E
ymax

l

Jc(y) dy = E
ymax

l

sxyEc(y)dy =

–
1
RH

[Vc(ymax) – Vc(l )], = –
Vc(ymax)

RH
, (5)

whereJc(y) is the current density,sxy is the off-diagonal
conductivity tensor component,Vc(ymax) = –a(ymax –
l )2, andVc(l ) = 0. In the absence of significant dissipa-
tive scattering on the quantum Hall plateau,sxy = 1/RH

[12]. Similarly,

Ic (lhs) = E
–l

y min

Jcdy = E
–l

y min

sxyEc(y) dy =

–
1
RH

[Vc(–l ) – Vc(ymin)], = –
Vc(ymin)

RH
, (6)

whereVc(ymin) = – a(ymin+l )2.
It follows from Eqs. (2) to (6) for the 12 906.4V,

i = 2 plateau at 12.3 T, for the 400mm wide sample of
Ref. [11], and forISD = 0 mA that

Ic (rhs) =
"vc

2eRH
=

ie2B
4pm*

= 0.81mA = – Ic (lhs) , (7)

ymax = – ymin = 199.559mm , (8)

and

w
2

– ymax = 0.441mm. (9)

Thus, a rather large 0.81mA current circulates around
the sample at 12.3 T whenISD = 0 mA, D = 0.5mm and
Vm = 0.75 V. The maximum extent of this current is 60
times farther from the sides of the sample than that
produced by skipping orbits bouncing off of a hard wall
with a cyclotron radius or magnet lengthlB = ("/eB)1/2

of 7.3 nm.

Fig. 3. Schematic drawing of the energy of the confining potential
Vc across the sample whenISD = 0 mA. Values of the charge-depletion
width D and the Landau energy level spacing"vc are greatly exagger-
ated. The occupied/unoccupied states of the first two Landau levels are
shown as solid/open circles. The occupied (filled) states lie between
the locationsymax = – ymin.

4. Charge-Redistribution Potential

Section 2 noted that the Lorentz force exerted on the
conducting electrons causes deviations –eds (y) from
the average surface charge density –esave = – ens =
– ie2B/h of the 2DEG charge-redistribution across the
sample width. The resulting charge-redistribution
potential,Vr(y), arising from applied currents would be
a linear function ofy if the mobile electrons occupied a
three-dimensional volume. They occupy a two-dimen-
sional sheet, however, and MacDonald, Rice, and
Brinkman [19] expressed this charge-redistribution self-
consistently in terms of a charge-redistribution potential
as

Vr(y) = –
e

2pk«0
E
w/2

–w/2

ds (y') ln F2
w Uy' – yUGdy' , (10)

where

ds (y) =
im*
hB

d2

dy2 Vr(y) =
ie

hvc

d2

dy2 Vr(y), (11)

as shown in Appendix A. Riess [20] extended this po-
tential to a 2DEG with finite thickness. Thouless [21]
then found an analyticlogarithmic approximation of this
potential far from the sample sides, and Beenakker and
van Houten [22] then approximated the near-edge be-
havior by introducing a cut-off at a distancej from the
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sample side, and a linear extrapolation for

Vr(y) = – j E
w/2

–w/2

d2

dy'2
Vr(y') lnF2

w
|y' – y|Gdy' (12)

from |y| =w/2 – j to |y| =w/2. The characteristic length
j is j = il B

2/pa* = ie2/(2pk«0hvc) , wherelB = (" /eB)1/2

is the magnetic length anda* = 4pk«0"2/m*e2 is the
effect ive Bohr radius in SI units. Our values ofj , lB ,
anda* for thei = 2 plateau at 12.3 T are 3.3 nm, 7.3 nm,
and 10.2 nm, respectively.

Balaban, Meirav, and Shtrikman [10] used a nonlin-
ear (quadratic) extrapolation near the sample sides and
obtained the charge-redistribution potential

Vr(y) = –
ISDRH

2 Fln
w
d

+
j + d

2j G–1

ln Uy + w/2
y – w/2U

(13)

for |y| < w/2 – d , whered = lB for the i = 2 plateau, and
d is not the differentiald of Eq. (10). They successfully
used this potential to describe the sample-width depen-
dence for breakdown at small currents, but could not
account for the larger breakdown currents observed in
other experiments [11, 23–28]. Their geometry factor is

Fln
w
d

+
j + d

2j G–1

= 0.08 (14)

for our values ofj andd at w = 400 mm.

4.1 Charge-Redistribution Potential Equation

The charge-redistribution potential described by
Eq. (13) was calculated for an infinite square-well con-
fining potential, and must be modified for use with a
more realistic confining potential. To do this correctly
would require a numerical solution of Eq. (12), with the
confining potential included, as is discussed in
Appendix A. We approximated this numerical solution
(and then tested the approximation) by using the form of
the potential in Eq. (13) but introducing two parameters,
ymin andymax, that alter the charge-redistribution poten-
tial due to the presence of the quadratic confining
potential.

It was necessary to do this because the potential
distribution of Eq. (13), with a cut-off distanced = lB,
gave the correct quantum Hall voltageVH = RHISD across
the sample, but the electric fieldEr = – =Vr did not
increase quickly enough for increasing current to satisfy

the ISD = 0 mA conditions of Sec. 3.3 and then reach
the electric field values necessary for quasi-elastic inter-
Landau level scattering (QUILLS) transitions [11, 16–
18,25–28] at high currents.

We use the same form for the charge-redistribution
potential as Balaban et al. [10], but with a different
geometrical factor and very different cut-off values,ymin

andymax, which vary with applied current. Our charge-
redistribution potential is

Vr(y) = –
IrRH

2 Fln
ymax + w/2
w/2 – ymax

G–1

ln Uy + w/2
y – w/2 U,

(15)

for –
w
2

< ymin # y # ymax <
w
2

where Ir = ISD – Ic (rhs) – Ic (lhs). (16)

Ic(rhs) andIc(lhs) are defined by Eqs. (5) and (6), and
the geometry factorG in Eq. (15) is

G(w, ymax) = Fln
ymax + w/2
w/2 – ymax

G–1

. (17)

We assumeG is current-independent, and assign the
value

G = 0.147 (18)

to Eq. (17) by using the value ofymax = 199.559mm
found in Sec. 3.3 forISD = 0 mA and w = 400 mm.
Our value ofG is thus somewhat larger than the value
G = 0.08 that would be used by Balaban et al. [10]. The
cut-off values

dmax= w /2 –ymax anddmin = w/2 + ymin (19)

will be determined in Sec. 5. Appendix B discusses the
agreement between our Eq. (15) and the self-consistent
Eqs. (10) and (11).

The electric fieldEr = – =Vr due to redistribution of
the 2DEG with applied current is

Er(y) =
IrRH

2
G

w
[(w/2)2 – y2]

. (20)

We now have nearly all the information necessary to
determine the potential and current distributions.
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5. Calculations

Figure 4 shows the confining potential –Vc(y) and
the charge-redistribution potential –Vr(y) across the
sample for greatly exaggerated values ofD , dmax, and
dmin, and for an arbitrary value ofIr, whereIr is defined
by Eq. (16).Vr becomes infinite at6w/2, but that is of
no concern because it is only theoccupied stateswhich
contribute to the Hall voltage, and those states occur
only betweenymax andymin. The potentials are therefore
finite and well-behaved in the region of interest.

Fig. 4. The confining potential –Vc(y) and the charge-redistribution
potential –Vr(y) across the sample for greatly exaggerated values of
D, dmax = w /2 –ymax, anddmin = w/2 + ymin.

5.1 Total Potential

Of course the electrical transport properties depend
on thetotal potentialVt(y), but we can unambiguously
separateVt(y) into the confining and charge-redistribu-
tion potential components

Vt(y) = Vc(y) + Vr(y) . (21)

We have uniquely defined the potentialsVc(y) andVr(y)
in Eqs. (2) and (3) of Sec. 3.2 and Eqs. (15) to (18) in
Sec. 4.1, plus Eqs. (5) and (6) in Sec. 3.3. The current-
independent parameters for the confining potential and
the charge-redistribution potential are:D = 0.5 mm,
Vm = 0.75 V, andG = 0.147. For a given sample we know
the applied currentISD and the sample widthw, but there
are still two free parameters:ymax andymin.

Ordinarily, it would not be possible to uniquely deter-
mine the values ofymaxandymin since the only other piece
of information is that the quantum Hall voltageVH is

VH = RHISD = Vt(ymin) – Vt(ymax), (22)

and there is a range of values forymax that satisfies this
equation. Itis possible, however, to determine the value

of ymax for a particular type of experiment, and we
believe that the results are representative of most other
experiments since our calculations agree with the ex-
perimental data of Fontein et al. [8]. We first note that
E (y) = – =V(y). Therefore

Et(ymax) = Ec(ymax) + Er(ymax) . (23)

In an experiment described in Ref. [11] we measured
the quantized longitudinal voltage drops along a GaAs/
AlGaAs sample between potential probes 4 and 6 of
Fig. 1 at high currents, and deduced the maximum elec-
tric field Emax from a quasi-elastic inter-Landau level
scattering model. The results were

Emax = 1.13106 V/m @ ISD = 215 mA (24a)

and

Emax = 4.23106 V/m @ ISD = 225 mA. (24b)

The valueEmax = 1.13106 V/m at ISD = 215mA was just
sufficient to excite the lowest,M = 1, QUILLS transi-
tions [11,25–28]. It is clear from Fig. 4 thatEmax will
occur atymax, so

Et(ymax) = Emax. (25)

We can therefore use Eqs. (23) and (24) to determine
ymax, and then Eq. (22) to obtainymin for the sample of
Ref. [11]. Note that changing the values ofymax andymin

also alters the values ofIc(rhs), Ic(lhs), and thereby the
value ofIr in Eqs. (5), (6), and (16). Thus there areno
free parameters, and one can obtain unique solutions to
the total potential and other transport properties.

5.2 Results

Relevant values for the solution atISD = 0 mA are
shown in Table 1. Most were calculated in Sec. 3.3; the
remainder were found from Eqs. (2), (3), and (15) to
(22). Note thatymax andymin are predicted to be about 60
magnetic lengths from the sides of the sample.

We calculate the values shown in Table 1 at
ISD = 215 mA by increasing the value ofymax until
Et(ymax) = 1.13106 V/m, adjusting the value ofymin to
obtain the correct Hall voltage, and remembering that
changing the values ofymax and ymin also changes the
values ofIc(rhs), Ic(lhs), andIr. The solution is unique,
with no free parameters. The same procedure is done at
ISD = 225mA, except that the value ofymax is increased
until Et(ymax) = 4.23106 V/m. Note in Table 1 thatymax

is still about 13 magnetic lengths away from the side of
the sample atISD = 225 mA.
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Table 1. Values of some quantities obtained from the calculations in Sec. 5 forISD = 0 mA, 25mA, 215mA, and 225mA. The quantities
common to all the calculations arei = 2, B = 12.3 T,k = 13.1,w = 400mm, D = 0.5mm, Vm = 0.75 V,a = 3.031012 V/m2, l = 199.500
mm, G = 0.147, andlB = 7.3 nm. See Secs. 2–5 for the definitions of these symbols

ISD Ic(rhs) Ic(lhs) Ir ymax ymin Vc(ymax) Vr(ymax) Ec(ymax) Er(ymax) Et(ymax) dmax/lB
(mA) (mA) (mA) (mA) (mm) (mm) (V) (V) (MV/m) (MV/m) (MV/m)

0 0.81 –0.81 0.00 199.559 –199.559 –0.010 0.000 0.354 0.000 0.354 60.3

25 0.94 –0.68 24.74 199.564 –199.554 –0.012 –0.160 0.382 0.054 0.436 59.6

215 2.30 –0.05 212.75 199.599 –199.515 –0.030 –1.392 0.596 0.504 1.100 54.8

225 37.36 –0.00 187.64 199.901 –198.044 –0.482 –1.477 2.405 1.795 4.200 13.5

We also calculate the relevant quantities atISD = 25
mA, which is a current often used in precision quantized
Hall resistance measurements. In this case, however, we
do not know the value ofEt(ymax), so we use a linear
interpolation of the value ofymax between its values for
ISD = 0 mA and 215mA. The quantities shown in Table 1
for ISD = 25 mA are relatively insensitive to this choice
for ymax.

5.3 Plots

We now plot the potentials, using Eqs. (2), (3), (15)
to (19), and (21). Figure 5 showsVc(y) andVr(y) for the
parameters used in Table 1 atISD = 215mA, except that
the plot is between60.99999 w/2 (6199.998 mm)
rather thanymax andymin in order to show the sharpness
of the confining potential and the extent of the charge-
redistribution potential at these extreme values ofy.
Figure 6 showsVt(y) plotted betweenymax andymin using
the parameters in Table 1 atISD = 215mA and 225mA.
Other than moving farther to the right, the total potential
does not significantly change shape with increasing
current.

Figure 7 showsVt(y) at ISD = 25mA. The shape of this
predicted potential is in excellent agreement with the
experimental measurements shown in Fig. 6 of Fontein
et al. [8]. It is this agreement which provides the best
verification of our results. The “linear” part of the po-
tential distribution within the sample interior, attributed
in Ref. [8] to heating effects which causeRx = Vx/ISD to
increase, is accounted for by our charge-redistribution
potential in a sample which has minimal heating at these
currents [24].

The electric fieldsEc(y) = – =Vc(y) and Er(y) = –
=Vr(y) are shown in Fig. 8 forISD = 215mA; they were
determined from Eqs. (2), (3), (18), and (20). The value
of ymax = 199.599mm is such thatEt(ymax) = 1.13106

V/m in equation (23). The contribution to the total elec-
tric field at ymax is slightly more for the confining
potential than for the charge-redistribution potential at

this current. Table 1 shows that the confining potential
also provides the dominant contribution toEt(ymax) at
other currents.

Fig. 5. Vc(y) and Vr(y) plotted between60.99999 w/2 for the
parameters used in Table 1 atISD = 215mA. The parameters common
to all plots in Figs. 5–11 arei = 2 (12 906.4V), B = 12.3 T,w = 400
mm, k = 13.1,D = 0.5 mm, Vm = 0.75 V, andG = 0.147.

The location,ymax, of the last-filled state on the right-
hand side of the sample increases with applied current
ISD. We can use Eq. (A-3) and Table 1 to determine what
part of this increase inymax is due to the increase in the
total electric field atymax. The percentage contributions,
relative to the values ofymax andEt(ymax) at ISD = 0 mA,
are 4 %, 5 %, and 3 %, forISD = 25 mA, 215 mA, and
225mA, respectively. Therefore, most of the increase in
ymax is due to the Lorentz force pushing the electrons
closer to the side of the sample.

The current densityJt(y) for electrons moving in the
positivex direction is

Jt(y) = sxy Et(y) =
ie2

h
[Ec(y) + Er(y)]. (26)
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Fig. 6. Vt(y) plotted betweenymax andymin, using the parameters in
Table 1 forISD = 215mA and 225mA. The values ofymax andymin are
199.599mm and –199.515mm, and 199.901mm and –198.044mm for
ISD = 215 mA and 225mA, respectively.

Fig. 7. Vt(y) at ISD = 25mA. This potential is in excellent agreement
with the experimental measurements shown in Fig. 6 of Fontein et al.
[8].

Fig. 8. Electric fieldsEc(y) = – =Vc(y) and Er(y) = – =Vr(y) for
ISD = 215 mA.

Figure 9 showsJt(y) for ISD = 25 mA, 215 mA, and 225
mA. The maximum two-dimensional current density is
at ymax, and is 85 A/m and 325 A/m, respectively atISD

= 215mA and 225mA. There is current in the negative
x direction in the vicinity ofymin at small currents due to
the dominance of the confining potential. When
ISD = 215mA and 225mA, however,Er(ymin) > |Ec(ymin)|
and no current flows in the –x direction anywhere across
the sample.

Fig. 9. Current densityJt(y) for ISD = 25mA, 215mA, and 225mA.

The currentI (y) for electrons moving in the positive
x direction is

I (y) = E
y

0

Jt(y) dy = –
Vt(y)
RH

, (27)

where

ISD = E
ymax

y min

Jt(y)dy = I (ymax) + I (ymin) , (28)

and

DI = I (y2) – I (y1) . (29)

536



Volume 100, Number 5, September–October 1995
Journal of Research of the National Institute of Standards and Technology

We divide the sample width into 20 equal segments in
Fig. 10 and determine the percentage of current flowing
through each segment forISD = 25mA, 215mA, and 225
mA. We do not show a plot forISD = 0 mA, but DI would
be –0.81mA and +0.81mA for the left-hand side and
right-hand side segments, respectively, and zero for the
other 18 segments becauseIc(rhs) = –Ic(lhs) = 0.81mA.

Fig. 10. Percentage of current flowing through 20 equal segments
across the sample width forISD = 25 mA, 215 mA, and 225mA.

The current distributions in Fig. 10 are virtually iden-
tical between 25mA and 215mA, even though large
numbers of electrons are being excited into higher
Landau levels at 215mA. The left and right side distri-
butions are nearly symmetric. There is, however, a sig-
nificant transfer of current from the left-hand side seg-
ment to the right-hand side segment at 225mA. We saw
in Sec. 5.2 that no current flows within 60, 55, and 13
magnetic lengths of the sample side forISD = 25 mA,
215 mA, and 225mA, respectively. Also, 68 %, 70 %,
and 51 % of the current is in the 19 segments to the left
of the right-hand side segment where the edge channel
current would flow for these three applied currents. The
current density was negative in the left-hand side of
Fig. 9 atISD = 25mA because electrons were flowing in
the–x direction atymin –199.554mm, but that contribu-
tion to DI in the left-hand side segment of Fig. 10 is so
small that the net current is positive.

Finally, we investigate the charge-redistribution
–eds (y) of the electrons in the 2DEG in terms of the
deviation ds (y) in the number of electrons/cm2 from
the average numberns = 5.9431011/cm2 on the i = 2
plateau at 12.3 T, where

ds (y) =
im*
hB

d2

dy2 Vt(y) (30)

from Eq. (A-5). Figure 11 is alogarithmic plot of
|ds (y) | versusy for ISD = 215mA. There is an excess of
electrons on the +y side of the sample, and a depletion
on the –y side.

An assumption made in deriving Eq. (A-5) was that
the charge density varies slowly across the sample, i.e.,
that r (y) ≈ r (y+dy), or ds (y) << n s. This assumption
is valid here because the largest value ofds (y) occurs
at ymax , and is 2 %, 2 %, and 6 % ofns at ISD = 25 mA,
215 mA, and 225mA, respectively.

One of the consequences of our approximate form of
the charge-redistribution potential is that the net charge
does not vanish when the charge-redistribution –eds (y)
is integrated across the sample width. The area under
the curves in Fig. 11 is 4 % larger for the +y side than
for the –y side. Therefore, there is an unaccounted
excess of electrons; so this is not quite the actual shape
of the charge-redistribution function. However, it is the
potential and current distributions that are of primary
importance to the transport properties—not the charge-
redistribution. The charge was certainly conserved in
the experiment of Fontein et al. [8], and yet their mea-
sured potential distributions are symmetrical. This fact
demonstrates that the slight charge asymmetry does not
significantly affect the potential and current distribu-
tions.

Fig. 11. Logarithmic plot of the charge-redistribution |ds (y)| across
the sample forISD = 215mA, whereds (y) is the deviation from the
average number densityns. The “–” region represents an excess of
electrons, the “+” region a depletion of electrons.
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We could conserve the charge by adjusting the origin
slightly to the right until the area under the curves are
equal for6y in Fig. 11, and then self-consistently recal-
culating the potentials with the new coordinates. This
would greatly complicate the calculations however, and
with all the approximations that have been made in this
paper, and with the excellent agreement with experiment
[8], it seems unnecessary. It may be a consequence of
this charge nonconservation problem that the value of
ymin is inside the confining potential for the case in
Table 1 whenISD = 225mA.

5.4 Sample-Width Dependence of the Critical
Current

Balaban, Meirav, and Shtrikman [10] have found that
the critical current for breakdown of the quantum Hall
effect, Icr, scaleslogarithmically with the sample width
w for all Landau levels. We verify this dependence by:
(a) using the result in Sec. 3.3 thatIc(rhs) = –Ic(lhs) =
0.81mA for the i = 2 plateau at 12.3 T whenISD = 0 mA;
(b) calculating the value ofymax from Eqs. (2) and (5) for
each value ofw at ISD = 0 mA; (c) calculating the value
of G from Eq. (17) for each value ofw; (d) definingIcr

as the applied currentISD sufficient to excite the lowest,
M = 1, QUILLS transitions [11,25–28]; (e) assuming
the value ofEc(ymax) is the same for all values ofISD that
excite M = 1 QUILLS transitions (The value used is
Ec(ymax) = 5.963105 V/m, obtained from Table 1 at
ISD = 215mA, w = 400mm, andEt(ymax) = 1.13106 V/m.
This is equivalent to fixing the value ofIc(rhs) to be 2.30
mA for each value ofIcr); (f) calculating the value ofymax

from Eq. (2) for each value ofw; (g) adjusting the value
of Ir so thatEt(ymax) = 1.13106 V/m in Eqs. (2), (17),
(20), and (23); and (h) adjusting the value ofymin to give
the correct Hall voltage for each current by using Eqs.
(2), (15), (17), (21), and (22).

The results ofIcr versusw are plotted in Fig. 12. The
shape of the curve is identical to the experimental data
of Balaban et al. [10]. The scaling is very different,
however because their critical currents are about two
orders of magnitude smaller than ours. We note that the
experiment of Haug, von Klitzing, and Plog [29] tends
to agree with the experimental curve shapes of Balaban
et al. [10], but the experiment of Kawaji, Hirakawa, and
Nagata [30] found a linear, rather than a logoarithmic,
dependence ofIcr with w. Perhaps this difference is due
to nonuniformities in the values of the charge-depletion
width D along the sides of the samples, e.g., we have
observed different values ofIcr along the lengths of some
of our samples. If we assume that the value ofVm

remains constant along a sample edge, allowD to vary
by changing the average ionized donor densityND, and
assume the ratioEc(ymax)/Et(ymax) remains constant, then

we find that the critical current required to exciteM = 1
QUILLS transitions with Et(ymax) = 1.13106 V/m
decreases whenD decreases andND increases, i.e., the
steeper the confining potential, the smaller the critical
current.

Fig. 12. The critical currentIcr versus sample widthw. Refer to Sec.
5.4 for details of the calculation.

6. Conclusions

We have calculated potential and current distributions
across the width of a GaAs/AlGaAs heterostructure
sample for applied currents between 0mA and 225mA,
using: (a) a quadratic confining potentialVc(y) arising
from charge-depletion regions along the sides of the
sample; (b) parameters for that potential obtained from
a localization experiment [9]; (c) alogarithmic charge-
redistribution potentialVr(y) of the 2DEG; and (d) a
maximum electric fieldEt(ymax) calculated from break-
down measurements and a QUILLS model [11]. Our
predictions are in excellent agreement with experiments
[8,10].

Referring to Table 1, the confining potential compo-
nent Ec(ymax) of the electric field atymax contributes
88 %, 54 %, and 57 % toEt(ymax) at 25mA, 215mA, and
225 mA, respectively. The maximum current density
Jt(ymax) is 34 A/m, 85 A/m, and 325 A/m, respectively at
these three currents. A significant amount of current is
distributed within the sample interior. For example,Ir is
99 %, 99 %, and 83 % ofISD, respectively at these three
currents. We predict the current to be much farther from
the sides of the sample than in other models, e.g., no
current flows within 60, 55, and 13 magnetic lengths of
the sample side for these currents. It would require a
lateral resolution of about 0.1mm, rather than the 70mm
resolution of Fontein et al. [8], to verify this result.
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7. Appendix A. Derivation of Eqs. (10)
and (11)

We first derive Eq. (10) of Sec. 4. The Lorentz force
exerted on the conducting electrons causes deviations
– eds (y') from the average surface charge density
–ens = – ie2B/h of the 2DEG at each pointy' across the
sample width. Consider a strip of this redistributed
charge of width dy', located in thex–yplane at position
y' and pointing in thex direction, with a charge/length
L (y') = –eds (y')dy'. Gauss’s law is then used to obtain
the electric field dE (y) at some pointy in thex–yplane,

due to one of these line charges:k«0RE ? dS = q, and

thus k«0dE (y)2p |y'–y|Lx = L (y')Lx for a cylindrical
Gaussian surface of radius |y'–y| and lengthLx. The
potential dV (y) of this line charge is

dV(y) = – EdE (y)dy = –
L (y')
2pk«0

2
w E

y

y'–w/2

1
2|y'–y|/w

dy

=
L (y')
2pk«0

ln
2|y'–y|

w
. (A-1)

The total potential, when summed over all the line
charges, is Eq. (10)

V (y) = –
e

2pk«0
E
w/2

–w/2

ds (y') ln F2
w

|y'–y|Gdy.

(A-2)

Now we derive Eq. (11) of Sec. 4. We found in Eq. (3)
of Ref. [11] that the center of mass coordinatey0 of each
state undergoing cycloidal motion in a Landau level is

y0 =
E (y)
vcB

+
"kx

eB
; (A-3)

so the states move to the right asE (y) increases. The
total chargedQ transferred into the volumelxhdy, out-
lined with solid lines in Fig. A-1, is

dQ = drlxhdy = lxh[Dy0 (y)r (y)

–Dy0(y + dy)r (y + dy)]. (A-4)

Fig. A-1. Geometry factors for the calculations in Appendix A.

If the volume charge density is slowly varying, then
r (y) ≈ r (y + dy), whererh ≡ –es and drh ≡ – eds .
Thus, from Eqs. (A-3) and (A-4),

ds (y)dy =
s (y)
vcB

[E (y) – E (y + dy)],

or

ds (y) = –
s (y)
vcB

dE (y)
dy

=
s (y)
vcB

d2V (y)
dy2 .

But s (y) = ieB/h, so we obtain Eq. (11)

ds (y) =
ie

hvc

d2V (y)
dy2 =

im*
hB

d2V (y)
dy2 . (A-5)

Equation (11) considers the charge-redistribution
– eds (y) due to the second derivative of the charge-
redistribution potentialVr(y). The charge-redistribution
that we calculated in Sec. 5.3 depends also on the
second derivative of those regions of theconfining
potentialVc(y) which differ from theymax andymin values
at ISD = 0 mA.

8. Appendix B. Eigenvalue Equation

We saw in Eq. (12) of Sec. 4 that

Vr(y) = – j E
w/2

–w/2

d2

dy'2
[Vr(y')] ln F2

w
|y' – y|Gdy', (B-1)

where the characteristic lengthj is

j =
ie2

2pk«0hvc
. (B-2)
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MacDonald, Rice, and Brinkman [19] have pointed out
that Eq. (B-1) has the form of an eigenvalue equation
Q [F (y)] = CF(y), where

Q (y) = – E
w/2

–w/2

d2

dy'2
[ ] ln F2

w
|y' – y |Gdy'

is an operator acting on the functionF (y) = Vr (y'), and
C = 1/j is a constant.

The function F (y) = Vr(y') should have a second
derivative that satisfies Eq. (B-1). Our function, from
Eq. (15) of Sec. 4.1, is

Vr(y') = –
IrRH

2 Fln
w–dmax

dmax
G–1

ln Uy' + w/2
y' – w/2 U, (B-3)

where the cut-off isdmax =
w
2

– ymax ,

d
dy'

Vr(y') = –
IrRH

2 Fln
w–dmax

dmax
G–1 – w

[(w/2)2 – (y')2]
,

and

d2

dy'2
Vr(y') =

IrRH

2 Fln
w–dmax

dmax
G–1 2wy'

[(w/2)2 – (y')2]2 .

(B-4)

We can see if the potential given by Eq. (B-3) is a
valid solution to the eigenvalue expression Eq. (B-1) by
substituting Eq. (B-4) into Eq. (B-1) and integrating
only between the limits –dmin to dmax becauseds (y') is
zero beyond these two cut-off values. Surprisingly, we
obtain nearly exact solutions to the eigenvalue ex-
pression at all values ofy whenj is less than 2.0mm and
dmax = dmin = j . This choice ofdmax = dmin = j for the
cut-off values was used by Beenakker and van Houten
[22]. Our value ofj is 3.3 nm, so we would be well
within this exact range ifdmax = dmin = j . The values of
dmax do not equaldmin however, and are much larger than
the value ofj . Also, we have a confining potential,
Vc(y), parts of which should be included in Eq. (B-1).
It would be interesting to see how well the values of
Vt(y) obtained in Eq. (B-4) agree with the values
obtained in the eigenvalue expression Eq. (B-1) when
using the values of quantities obtained in Table 1.
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