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1. Introduction

The potential and current distributions within quantum distributions using a laser beam and the electro-optic
Hall samples are important aspects of the integer quan-Pockels effect. They observed major fractions of the

tum Hall effect [1-3]. In this effect the Hall resistance,
Ry, of theith plateau of a fully quantized two-dimen-
sional electron gas (2DEG) has the vaRigi )=h/(e%),
where h is the Planck constang is the elementary
charge, and is an integer. Early attempts to measure

results.

quantum Hall voltage occurring near the sides of the
sample, but also significant contributions within the
interior. Valid predictions of the potential distribution
across quantum Hall samples should agree with their

potential distributions across samples [4—7] used electri- In this paper we calculate the potential distributions
cal contacts to the two-dimensional gas that were placed across the sample for applied curreltsbetween QuA
within the sample interior. The potentials were found to and 225uA by: (a) assuming a parabolic confining
vary throughout the entire sample. There was concern, potential for the charge carriers and using parameters of
however, that the electrical contacts themselves signifi- the parabola obtained experimentally by Choi, Tsui, and
cantly altered the potential distributions. Fontein et al. Alavi [9]; (b) assuming an applied current-indudeda-

[8] have made contactless measurements of potentialrithmic charge-redistribution potential for the charge
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carriers that is similar to that of Balaban, Meirav, and  The Lorentz forceF. = ev X B is in the positivey
Shtrikman [10], but with very different cut-off values direction. This force deflects the electrons slightly to the
for the spatial extent of the potential; (c) assuming that right until it is matched by the Coulomb repulsive force
the width of the conducting region varies with applied Fc=-€E [12]. A charge-redistribution of the 2DEG
current because a Lorentz force deflects the conductingresults from this deflection. Also because of the Lorentz
electrons slightly towards one side of the sample; (d) and Coulomb forces, the electrons enter the corner of the
using the maximum electric field deduced by Cage and source ay = —w/2 for this magnetic field direction and
Lavine [11] from a breakdown experiment at high cur- exit at the corner w/2 of the drain—in agreement with
rents to determine the cut-off value for the spatial extent the experiment of Klass et al. [13]. We assume that the
on one side of the sample; and (e) using the quantum electrons spread out across the sample interior in agree-
Hall voltage to determine the cut-off value of the spatial ment with the experiment of Fontein et al. [8]. Potential
extent on the other side of the sample. The calculated probes 4 and 6 are near the potential of the source.
potential distributions are in excellent agreement with Probes 3 and 5 are near the potential of the drain, and
the measurements of Fontein et al. [8]. have a positive potential relative to the source for these
current and magnetic field directions. The chemical po-
tential o = Va is therefore positive relative to the chem-
2. Coordinate System ical potentialps = Vs on the opposite side of the sample.

The coordinate system is shown in Fig. 1. For conve-
nience in writing the equations, the origin is located at
the source S and is halfway across the sample width
The sample labeling is chosen to be consistent with  We begin the calculations with a confining potential
previous work [11]. Potential probes 1 and 2, and the to prevent the 2DEG from spilling out the sides of sam-
drain D, are not shown. The positixexis points along ples. Choi, Tsui, and Alavi [9] performed an experiment
the sample in the general direction of the externally on mesa-etched GaAs/AlGaAs heterostructure samples
applied currentisp. The positivey axis is chosen as in zero magnetic field. They then used one-dimensional
indicated. Therefore the positizeaxis points downward  localization theory to deduce the charge-depletion
for a right-handed coordinate system. The magnetic widths, A, of the confining potentials, and found that
field B also points downward, simply to be consistent was (0.5+ 0.2) um for a 2DEG of surface number
with results from the breakdown experiment [11] that densityn,=i(eB/h) = 1.5 X 10™/cn?. We will use their
will be used in Secs. 4 and 5. results to define the depletion width of the confining

Note that the conducting charges alectronswith potential for a mesa-etched sample.
chargeq = —e. This is taken into account throughout the
paper; it is necessary to do so because the signs of both3.1 Charge-Depletion Region
the confining potential and the charge-redistribution
potential depend on the sign of the charge carriers.

3. Confining Potential

Figure 2 (a) shows a schematic of the charge distribu-
tion in the GaAs/AlGaAs interface region near one side
of the mesa when there is no applied magnetic field. The

S 3 GaAs layer of our sample [11] has a residual donor
/ density of about X 10"/cn?, while the donor concen-
tration in the AlGaAs layer is about X 10*¥cm® and
i ns = 5.94x 10"Ycn?. There is an ionized donor atom in

the AlGaAs layer for every electron in the 2DEG but,
unlike Choi, Tsui, and Alavi [9], we assume the ionized
donor atoms are distributed over a volume rather than in
a surface sheet with density. The confining potential

is generated from electron surface charges on the side of
the mesa, as indicated in the figure. There is an ionized
donor atom or ionized impurity site in the charge-deple-
Fig. 1. The coordinate system used in this paper. Only part of the tion region for every surface charge.

sample is shown. The origin is located at the source S, halfway across  \We assume a homogeneous charge-depletion region

the sample WidtWV. The _dotte_d cqrves_ indicate the electron flow in Fig. 2 (b) The depletion width for a homogeneous
pattern for this magnetic field directioR, is the Lorentz force on the . . ..
three-dimensional material is [14]

conducting electrons arfe. is the Coulomb forceB is the magnetic
field, v is the electron velocity, anf, and Vg are the potentials on
either side of the sample.

A = (2eVnleNo)Y?, 1)
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(a) . mesaside —»] Ve(y) = —a(y-A)* andEc(y) = 2a(y-A) (2a)
O O O O O o o
z O o O O ® ® _ @7 w
) ©) Q O~ 0 - fora=sy= ER
AlGaAs @ @ @ C+) ® ® @ |
T P — Ve(y) = 0 andE.(y) =0 (2b)
0 ¥e) ®
Gahs - for—A<y<a,
O O : -
' Ve(y) = —a(y+A)? andE(y) = 2a(y+A)  (20)
(b) N surface charge —t
O donor D : W
atem Coceelelee) for-5 =-y=-4,
@ ionized y o
donor :
) ) : charge
[ impurity ‘,’ee;iloer?c’" wherea = V,,/A?= 3.0 X 10 V/m?for A= 0.5um and
ionized B Vm=0.75V, and
impurity H W
(c) A=5-4 3)
3.3 Confining Potential atlsp = 0 pA

Given the values oft andV,, there is a surprising
amount that can be deduced about the electron states of
Fig. 2. (a) Schematic diagram of the GaAs/AlGaAs interface region the confining potential when the magnetic field is ad-
near one side of the mesa. See Sec. 3.1 for further explanation. (b) Thejusted to be at the center of the= 2 quantum Hall
ionized donor charge-depletion density distributids (c) The con- plateau andsp = 0 wA. Since there is no applied current
fining potentialV, for negatively charged surface states. sD : . . '

and therefore no Hall voltage, the Fermi enetgyis

constant across the sample width and is located halfway
wheres, = ke, is the dielectric permittivity of the semi- between Landau levels. Under these conditions, states of
conductor, x is the dielectric constant(= 13.1 for  the lowest Nl = 0) Landau level are occupied up to the
GaAs),s, is the permittivity of vacuumy,, is the value ~ F€rMi energyer = Zwc/2, no states are occupied in the
of the confining potential atw/2 andN, is the average ~ Sécond K=1) Landau Ie\ie_l , wc=eB/nt is the
density of ionized donors and impurity sites in the Ccyclotronangular frequency* is the reduced mass of
charge-depletion region. We selected the value of the the electron (0.068 times the free electron mass in
charge-depletion width to ba = 0.5 um [15]. This GaAs), andZz = h/2r. Refereljces [11,16—18] describe
value is consistent with the results of Choi, Tsui, and oW these states can be defined in the Landau gauge.
Alavi [9]. We chose the value of,, to be one-half the Figure 3 shows a schematic drawing of the energy of
1.50 V separation between the valence and conductiont® confining potential folsp = 0 pA, with greatly
bands of GaAstaL K [14], or Vi, = 0.75 V. The value of exaggerated values df andZw,, and only a small frac-
the average charge-depletion density from Eq. (1) is thus tion of allowed states. The occupied/unoccupied states

Np = 4.3 X 10%/cn, which seems quite reasonable. are indicated as solid/open circles, and the occupied
’ (filled) states lie betweemax and Ymin = —Ymax 1IN the

3.2 Confining Potential Equation presence of the magnetic field, electrons of the 2DEG
occupy Landau level states that penetrate into the
A homogeneous charge-depletion region results in a charge-depletion regions near the mesa edge, and cur-
parabolic confining potentiaV,, with the origin at rent ql_rculates around the sample periphery. Under these
y = A=w/2-A, as indicated schematically in Fig. 2 (c). conditions
The confining potential imegativebecause the charges ec(Yma) = fi;uc = — eVi(Yma) = €a(YmaA)?
on the side of the mesa are electrons.
The equations for the confining potentidl and its _ e\in (Yae— A)2 4)
electric fieldE. = — VV, are A? T ;
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wherel = w/2 —A.
The occupied states of the right-hand side (rhs) con-
fining potential generate a total currdgt(rhs) that is

Ymax Ymax

1019 = [ 3w dy= [ omEnay =
1 - = _ Ve(Yma)
- Ry [Vc(ymax) Vc(/\)]v =¥ J (5)

whereJ.(y) is the current densityr,, is the off-diagonal
conductivity tensor componen¥/c(Ymay = —a(Ymax—
A)?, andV,(A) = 0. In the absence of significant dissipa-
tive scattering on the quantum Hall plateat), = 1/R,
[12]. Similarly,

-\

I (Ihs) = f Jedy =

Ymin

f owEc(y) dy =

Ymin

i — — . - _ Vc(ymin)
_RH [VC( A) Vc(ymln)], —RH , (6)

whereVe(Ymin) = —a(Ymn+A)%

It follows from Egs. (2) to (6) for the 12 906.2,
i = 2 plateau at 12.3 T, for the 4Q0m wide sample of
Ref. [11], and forlsp = 0 pA that

_fo. _ ie’B _ B
I (rhs) =%eR, - dmm* - 0.81pA =—1.(lhs), (7)
Ymax = — Ymin = 199.559um , (8)
and

W
5 = Yax = 0441, 9)

Thus, a rather large 0.81A current circulates around
the sample at 12.3 T whdig, = 0 pA, A = 0.5um and

Vi = 0.75 V. The maximum extent of this current is 60
times farther from the sides of the sample than that
produced by skipping orbits bouncing off of a hard wall
with a cyclotron radius or magnet length= (%/eB)?

of 7.3 nm.
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Fig. 3. Schematic drawing of the energy of the confining potential
V. across the sample whégh = 0 wA. Values of the charge-depletion
width A and the Landau energy level spacifg. are greatly exagger-
ated. The occupied/unoccupied states of the first two Landau levels are
shown as solid/open circles. The occupied (filled) states lie between
the locationSymax = — Ymin-

4. Charge-Redistribution Potential

Section 2 noted that the Lorentz force exerted on the
conducting electrons causes deviationsde(y) from
the average surface charge densitgox.=—en=
—ie?B/h of the 2DEG charge-redistribution across the
sample width. The resulting charge-redistribution
potential,V,(y), arising from applied currents would be
a linear function ofy if the mobile electrons occupied a
three-dimensional volume. They occupy a two-dimen-
sional sheet, however, and MacDonald, Rice, and
Brinkman [19] expressed this charge-redistribution self-
consistently in terms of a charge-redistribution potential
as

w/2

[ sotym[2 |y -y ]ov. a0

—w/2

Vily) = -

2TK &y

where

ie o

heo, dy? Vi(y), (11)

br(y) = 1y gz Vi) =

as shown in Appendix A. Riess [20] extended this po-
tential to a 2DEG with finite thickness. Thouless [21]
then found an analytilbgaiithmic approximation of this
potential far from the sample sides, and Beenakker and
van Houten [22] then approximated the near-edge be-
havior by introducing a cut-off at a distanédrom the
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sample side, and a linear extrapolation for

w/2

V) ==¢ | v in| 2y -yl oy

-w/2

12)

from ly| =w/2 — £ to |y| =w/2. The characteristic length
&is £=ilg/ma* = ie*/(2mkehw,) wherelg = (% /eB)*?
is the magnetic length aral* = 4mke,sm*e? is the
effective Bohr radius in Sl units. Our values &f g ,
anda* for thei = 2 plateauat 12.3 T are 3.3 nm, 7.3 nm,
and 10.2 nm, respectively.

Balaban, Meirav, and Shtrikman [10] used a nonlin-

ear (quadratic) extrapolation near the sample sides and

obtained the charge-redistribution potential

ISDRH w §+5]—1 y+w/2
Vily) = [ ns*t e | N ‘y—W/Z
(13)
for ly| <w/2 -8, whereé = | for thei = 2 plateau, and

6 is not the differentiab of Eq. (10). They successfully

used this potential to describe the sample-width depen-

dence for breakdown at small currents, but could not
account for the larger breakdown currents observed in
other experiments [11, 23—-28]. Their geometry factor is

|

for our values of¢ and 6 at w = 400 pm.

w 0
In§+

&+
2§

]'1 = 0.08 (14)

4.1 Charge-Redistribution Potential Equation

The charge-redistribution potential described by
Eqg. (13) was calculated for an infinite square-well con-
fining potential, and must be modified for use with a
more realistic confining potential. To do this correctly
would require a numerical solution of Eq. (12), with the
confining potential included, as is discussed in
Appendix A. We approximated this numerical solution
(and then tested the approximation) by using the form of
the potential in Eq. (13) but introducing two parameters,
Ymin @NdYmax, that alter the charge-redistribution poten-
tial due to the presence of the quadratic confining
potential.

It was necessary to do this because the potential
distribution of Eq. (13), with a cut-off distana®= Iz,
gave the correct quantum Hall voltayg = Rylsp across
the sample, but the electric field, =—-VV, did not
increase quickly enough for increasing current to satisfy
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the Isp = O A conditions of Sec. 3.3 and then reach
the electric field values necessary for quasi-elastic inter-
Landau level scattering (QUILLS) transitions [11, 16—
18,25-28] at high currents.

We use the same form for the charge-redistribution
potential as Balaban et al. [10], but with a different
geometrical factor and very different cut-off valugs,
andyma, Which vary with applied current. Our charge-
redistribution potential is

_ LRy [\ Ymax + le]‘l y + w/2
Vi(y) = 2 [In W/2 — Yimax y—w/2 |’
(15)
w w
for _E < ymm == y ymax E
where I, = Isp — I (rhs) I (Ihs). (16)

I(rhs) andl.(lhs) are defined by Egs. (5) and (6), and
the geometry facto6 in Eq. (15) is

wi2 ™

Yimax + ] a7

G, you) = | In Yt W2
We assumeG is current-independent, and assign the
value

G = 0.147 (18)
to Eq. (17) by using the value of.x = 199.559um
found in Sec. 3.3 folsp = 0 wA and w = 400 pm.
Our value ofG is thus somewhat larger than the value
G = 0.08 that would be used by Balaban et al. [10]. The
cut-off values

Smax= W /2 —Ymax @and Smin = W/2 + Yin (29)
will be determined in Sec. 5. Appendix B discusses the
agreement between our Eq. (15) and the self-consistent
Egs. (10) and (11).

The electric fieldg, = —VV, due to redistribution of
the 2DEG with applied current is

IR

2

w

Er(y) = [(W/2)2

7 - 20)

We now have nearly all the information necessary to
determine the potential and current distributions.
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5. Calculations of ymax fOr a particular type of experiment, and we
believe that the results are representative of most other
Figure 4 shows the confining potentiaMy) and experiments since our calculations agree with the ex-

the charge-redistribution potential\&(y) across the perimental data of Fontein et al. [8]. We first note that
sample for greatly exaggerated valuesf 6ya and E(y) = — VWVW(y). Therefore

Smin, @and for an arbitrary value df, wherel, is defined

by Eg. (16).V, becomes infinite at-w/2, but that is of Ei(Ymax) = Ec(Ymay) + Er(Ymay - (23)

no concern because it is only tbecupied statew/hich

contribute to the Hall voltage, and those states occur In an experiment described in Ref. [11] we measured
only betweerym.x andymin. The potentials are therefore the quantized longitudinal voltage drops along a GaAs/
finite and well-behaved in the region of interest. AlGaAs sample between potential probes 4 and 6 of
Fig. 1 at high currents, and deduced the maximum elec-
tric field En. from a quasi-elastic inter-Landau level
scattering model. The results were

Emax= 1LIX10PVIM @ lsp = 215pA  (24a)

=)
and
8 AN
E ! : Emax = 4.2X10° VIm @ lsp = 225pA.  (24b)
[o] : :
- ‘ A A
By ’ : The valueE, .= 1.1xX10° V/m atlsp = 215 pA was just
2 0 2 sufficient to excite the lowestyl = 1, QUILLS transi-

tions [11,25-28]. It is clear from Fig. 4 th&a. will
Fig. 4. The confining potential ;(y) and the charge-redistribution OCCUr alymax SO
potential -V,(y) across the sample for greatly exaggerated values of

A, Smax = W/2 —Ymax @Nd 8min = W/2 + Yinin. Ei(Ymay = Emax (25)

We can therefore use Eqgs. (23) and (24) to determine
5.1 Total Potential Ymax and then Eq. (22) to obtai,, for the sample of
Ref. [11]. Note that changing the valuesyafx andymin
Of course the electrical transport properties depend also alters the values of(rhs), I.(lhs), and thereby the
on thetotal potentialV;(y), but we can unambiguously  value ofl, in Egs. (5), (6), and (16). Thus there are
separatd/,(y) into the confining and charge-redistribu- free parametersand one can obtain unigue solutions to

tion potential components the total potential and other transport properties.
Vi(y) = Ve(y) + Vi(y) . (21) 5.2 Results
We have uniquely defined the potentiglgy) andV,(y) Relevant values for the solution &3, = 0 pA are

in Egs. (2) and (3) of Sec. 3.2 and Egs. (15) to (18) in shown in Table 1. Most were calculated in Sec. 3.3; the
Sec. 4.1, plus Egs. (5) and (6) in Sec. 3.3. The current- remainder were found from Eqgs. (2), (3), and (15) to
independent parameters for the confining potential and (22). Note thaym., andymi, are predicted to be about 60

the charge-redistribution potential ard: = 0.5 um, magnetic lengths from the sides of the sample.
Vin=0.75V, ands = 0.147. For a given sample we know We calculate the values shown in Table 1 at
the applied currerigp and the sample widt, but there Isp = 215 pA by increasing the value Ofmax until
are still two free parametersimax and Ymin. Ei(Ymay = 1.1X10C° V/m, adjusting the value of, to

Ordinarily, it would not be possible to uniquely deter- obtain the correct Hall voltage, and remembering that
mine the values of..xandymi, since the only other piece  changing the values of...x and yni» also changes the

of information is that the quantum Hall voltay& is values ofl(rhs), I.(Ihs), andl,. The solution is unique,
with no free parameters. The same procedure is done at
Vi = Ralsp = Vi(Ymin) — Vi(Ymay), (22) Isp = 225 uA, except that the value of. is increased

until E;(Yma) = 4.2X10° V/m. Note in Table 1 thaymax
and there is a range of values . that satisfies this s still about 13 magnetic lengths away from the side of
equation. ltis possible, however, to determine the value the sample atsp = 225 pA.
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Table 1. Values of some quantities obtained from the calculations in Sec.l5fer0 pA, 25pA, 215pA, and 2250.A. The quantities
common to all the calculations are 2,B=12.3 T,k = 13.1,w = 400pm, A = 0.5um, Vy, = 0.75 V,a = 3.0x 10 V/m?, A = 199.500
pm, G = 0.147, andg = 7.3 nm. See Secs. 2-5 for the definitions of these symbols

Isp Ic(rhs) le(Ihs) Ie Ymax Ymin Ve(mad  ViYmad  Ec(Ymad — Er(Ymay E(Yma)  Omalls
A (kA (nA) (nA) (m) (om) V) V)  (MVIm)  (MVIm) (MV/m)
0 0.81 -0.81 0.00 199.559 —199.559 -0.010 0.000 0.354 0.000 0.354 60.3

25 0.94 —0.68 24.74 199.564 —199.554 -0.012 -0.160 0.382 0.054 0.436 59.6
215 2.30 —-0.05 212.75 199.599 —199.515 -0.030 -1.392 0.596 0.504 1.100 54.8
225 37.36 —-0.00 187.64 199.901 —198.044 -0.482  -1.477 2.405 1.795 4.200 135

We also calculate the relevant quantitied @at= 25 this current. Table 1 shows that the confining potential
pA, which is a current often used in precision quantized also provides the dominant contribution E(ym.) at
Hall resistance measurements. In this case, however, weother currents.
do not know the value oE;(yna), SO We use a linear
interpolation of the value ofin.x between its values for
Isp = 0 pA and 215pA. The quantities shown in Table 1

for Isp = 25 pA are relatively insensitive to this choice 3 ‘ ‘ '
for Ymax o | .
Vily) @ 215pA

5.3 Plots 3 1 %

We now plot the potentials, using Egs. (2), (3), (15) 0 —
to (19), and (21). Figure 5 shows(y) andV,(y) for the & gL \ \
parameters used in Table 1las = 215pA, except that > Voiy) @ 215 pA
the plot is between=0.99999 w/2 (+199.998 um) 2 1
rather thanymax andynmin in order to show the sharpness . . 1
of the confining potential and the extent of the charge- '_3200 100 0 100 200
redistribution potential at these extreme valuesyof v o)

Figure 6 shows/,(y) plotted betweegax andymi, using
the parameters.m Table 1 b = 2].'5 wA and 225p.A. ., Fig. 5. Vc(y) and Vi(y) plotted between+0.99999w/2 for the
Other than moving farther to the right, the total potential ,;2meters used in Table 11gs = 215uA. The parameters common
does not significantly change shape with increasing to all plots in Figs. 5-11 are= 2 (12 906.402), B = 12.3 T,w = 400
current. pm, k = 13.1,4 = 0.5 um, Vi = 0.75 V, andG = 0.147.
Figure 7 show¥/,(y) atlsp = 25 nA. The shape of this
predicted potential is in excellent agreement with the
experimental measurements shown in Fig. 6 of Fontein ~ The locationymax, Of the last-filled state on the right-
et al. [8]. It is this agreement which provides the best hand side of the sample increases with applied current
verification of our results. The “linear” part of the po- lsp. We can use Eq. (A-3) and Table 1 to determine what
tential distribution within the sample interior, attributed part of this increase i is due to the increase in the
in Ref. [8] to heating effects which causg= V,/Isp to total electric field at/ma. The percentage contributions,
increase, is accounted for by our charge-redistribution relative to the values Ofina aNdE;(Ymay) atlsp = 0 pA,
potential in a sample which has minimal heating at these are 4 %, 5 %, and 3 %, fdkp = 25 pA, 215 pA, and
currents [24]. 225 1A, respectively. Therefore, most of the increase in
The electric fieldsE.(y) = —VV.(y) and E,(y) = — Ymax IS due to the Lorentz force pushing the electrons
VV,(y) are shown in Fig. 8 folsp = 215uA; they were closer to the side of the sample.
determined from Egs. (2), (3), (18), and (20). The value  The current density(y) for electrons moving in the
Of Ymax=199.599um is such thatE;(yma) = 1.1X10° positive x direction is
V/m in equation (23). The contribution to the total elec- ,
tric field at ymax is slightly more for the confining _ _ie?
potential than for the charge-redistribution potential at H) = oy Bly) =7 [EL) + EW)] (26)

535



Volume 100, Number 5, September—October 1995
Journal of Research of the National Institute of Standards and dEgyn

2 T T T

V() @ 225A i

/ Vt(y) @ 215 pA

200
y (um)

Fig. 6. Vi(y) plotted betweelymax andymin, USing the parameters in
Table 1 forlsp = 215wA and 225uA. The values Offmax andymi, are
199.599um and —199.515m, and 199.90um and —198.044m for
Isp = 215 pA and 225p.A, respectively.

0.2 T T T
0.1
=
0.0
-~
-0.1
0.2 | 1 1
-200 -100 0 100 200
y (um)

Fig. 7. Vi(y) atlsp = 25 pA. This potential is in excellent agreement
with the experimental measurements shown in Fig. 6 of Fontein et al.

(8l.

6x10° T T T
/V
Ecly) @ 215 pA
. 4x10° } .
£
=3 T E(y) @ 215pA
_ 0% F 1
w
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Fig. 8. Electric fieldsEc(y) = —VV.(y) and E.(y) = —VVi(y) for
ISD =215 MA.
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Figure 9 showsk(y) for Isp = 25 nA, 215 pA, and 225
pA. The maximum two-dimensional current density is
at Ymax and is 85 A/m and 325 A/m, respectivelylap
=215pA and 225p.A. There is current in the negative
x direction in the vicinity ofy, at small currents due to
the dominance of the confining potential. When
Isp=215pA and 225pA, however E;(Ymin) > |Ec(Ymin) |
and no current flows in thexdirection anywhere across
the sample.

350 , : :

300
250
200
150
100 4

/ Ji(y) @ 225 uA
/Jt(}’) @ 215uA

_— Ji(y) @ 25 A

-50 | | |
-200 -100 0 100

y (um)

50

(A/m)

J

LA\
T\

100

200

Fig. 9. Current density(y) for Isp = 25 nA, 215 pA, and 225u.A.

The current (y) for electrons moving in the positive
x direction is

) = f 30y dy = -4, (27)
where 0
150 = fx M)A = 1 Omad + 1), (29
and "
A= 10910, (29
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We divide the sample width into 20 equal segments in
Fig. 10 and determine the percentage of current flowing
through each segment fogp = 25 A, 215pA, and 225

wA. We do not show a plot folisp = 0 WA, but Al would

be —0.81pA and +0.81p.A for the left-hand side and
right-hand side segments, respectively, and zero for the
other 18 segments becausghs) = -.(lhs) = 0.81u.A.

50
40
30 225 pA

20

Al/lgy (%)

10

0

-200 -100 100 200

y (um)
50

40
30 25 nA & 215 A

20

Al/Igy (%)

10

0

-200 -100 0

y (um)

100 200

Fig. 10. Percentage of current flowing through 20 equal segments
across the sample width fbgp = 25 pA, 215 pA, and 225pA.

The current distributions in Fig. 10 are virtually iden-
tical between 251A and 215uA, even though large
numbers of electrons are being excited into higher
Landau levels at 215.A. The left and right side distri-

butions are nearly symmetric. There is, however, a sig- ©

nificant transfer of current from the left-hand side seg-
ment to the right-hand side segment at 22% We saw

in Sec. 5.2 that no current flows within 60, 55, and 13
magnetic lengths of the sample side fgs = 25 pA,

215 pA, and 225pA, respectively. Also, 68 %, 70 %,
and 51 % of the current is in the 19 segments to the left
of the right-hand side segment where the edge channel
current would flow for these three applied currents. The
current density was negative in the left-hand side of
Fig. 9 atlsp = 25 pA because electrons were flowing in
the—xdirection atymin —199.554um, but that contribu-
tion to Al in the left-hand side segment of Fig. 10 is so
small that the net current is positive.
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Finally, we investigate the charge-redistribution
—edo (y) of the electrons in the 2DEG in terms of the
deviation 3o (y) in the number of electrons/énfrom
the average numbet, = 5.94x10"/cn? on thei = 2
plateau at 12.3 T, where

br() = i 2 Vi) (30)

from Eqg. (A-5). Figure 11 is dogaithmic plot of
[8a (y)| versugy for Isp = 215uA. There is an excess of
electrons on the yside of the sample, and a depletion
on the -y side.

An assumption made in deriving Eq. (A-5) was that
the charge density varies slowly across the sample, i.e.,
thatp (y) = p (y+dy), or do(y) << ns. This assumption
is valid here because the largest valuedof(y) occurs
at Ymax, and is 2 %, 2 %, and 6 % of, at Isp = 25 pA,

215 pA, and 225p.A, respectively.

One of the consequences of our approximate form of
the charge-redistribution potential is that the net charge
does not vanish when the charge-redistributiefe~(y)
is integrated across the sample width. The area under
the curves in Fig. 11si4 % larger for the y side than
for the -y side. Therefore, there is an unaccounted
excess of electrons; so this is not quite the actual shape
of the charge-redistribution function. However, it is the
potential and current distributions that are of primary
importance to the transport properties—not the charge-
redistribution. The charge was certainly conserved in
the experiment of Fontein et al. [8], and yet their mea-
sured potential distributions are symmetrical. This fact
demonstrates that the slight charge asymmetry does not
significantly affect the potential and current distribu-
tions.

[

(cm™)

[3o]

200

y (um)

Fig. 11. Logarithmic plot of the charge-redistributiddui(y)| across
the sample fotsp = 215 A, wheredo (y) is the deviation from the
average number density. The “~” region represents an excess of
electrons, the “+” region a depletion of electrons.
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We could conserve the charge by adjusting the origin we find that the critical current required to excie= 1
slightly to the right until the area under the curves are QUILLS transitions with E(Yma) = 1.1X1¢F V/m
equal for+yin Fig. 11, and then self-consistently recal- decreases whefA decreases anid, increases, i.e., the
culating the potentials with the new coordinates. This steeper the confining potential, the smaller the critical
would greatly complicate the calculations however, and current.
with all the approximations that have been made in this
paper, and with the excellent agreement with experiment
[8], it seems unnecessary. It may be a consequence of
this charge nonconservation problem that the value of
Ymin IS inside the confining potential for the case in
Table 1 when sp — 225LA

250 T T T

150

(nA)

5.4 Sample-Width Dependence of the Ciritical
Current

ICI’
-
Q
o

T

M =1 Transitions -

Balaban, Meirav, and Shtrikman [10] have found that 50 4
the critical current for breakdown of the quantum Hall
effect, |, scaledogarthmically with the sample width 0 | ! I
w for all Landau levels. We verify this dependence by: 0 100 200 300 400
(a) using the result in Sec. 3.3 tHafrhs) = —I.(lhs) = w o (um)
0.81pA for thei =2 plateau at 12.3 T whedgp = 0 pA;

(b) calculating the value gfnaxfrom Egs. (2) and (5) for  Fig. 12, The critical current,, versus sample widti. Refer to Sec.
each value ofv atlsp = 0 pA; (c) calculating the value 5.4 for details of the calculation.

of G from Eq. (17) for each value af; (d) definingl,,

as the applied curret, sufficient to excite the lowest,

M = 1, QUILLS transitions [11,25-28]; (e) assuming

the value ofE.(Yma) is the same for all values o, that 6. Conclusions

excite M = 1 QUILLS transitions (The value used is

E.(Yma) = 5.96x10° V/m, obtained from Table 1 at We have calculated potential and current distributions
lsp=215pA, W= 400pm, andE(Yma) = 1.1X1C° V/m. across the width of a GaAs/AlGaAs heterostructure
This is equivalent to fixing the value &f(rhs) to be 2.30  sample for applied currents betweep8 and 225uA,

pA for each value of,); (f) calculating the value Ofax using: (a) a quadratic confining potenti(y) arising
from Eq. (2) for each value afr; (g) adjusting the value  from charge-depletion regions along the sides of the
of I, so thatE(Yma) = 1.1X10° V/Im in Egs. (2), (17), sample; (b) parameters for that potential obtained from
(20), and (23); and (h) adjusting the valueygf, to give a localization experiment [9]; (c) lagaiithmic charge-
the correct Hall voltage for each current by using Eqgs. redistribution potentiaV,(y) of the 2DEG; and (d) a
(2), (15), (17), (21), and (22). maximum electric fieldE:(Ymay calculated from break-

The results of; versusw are plotted in Fig. 12. The  down measurements and a QUILLS model [11]. Our
shape of the curve is identical to the experimental data predictions are in excellent agreement with experiments
of Balaban et al. [10]. The scaling is very different, [8,10].
however because their critical currents are about two  Referring to Table 1, the confining potential compo-
orders of magnitude smaller than ours. We note that the nent Ec(ymay Of the electric field atym.x contributes
experiment of Haug, von Klitzing, and Plog [29] tends 88 %, 54 %, and 57 % tB:(Ymay) at 25p.A, 215p.A, and
to agree with the experimental curve shapes of Balaban225 pA, respectively. The maximum current density
et al. [10], but the experiment of Kawaiji, Hirakawa, and  Ji(Ymay is 34 A/m, 85 A/m, and 325 A/m, respectively at
Nagata [30] found a linear, rather than a logoarithmic, these three currents. A significant amount of current is
dependence df, with w. Perhaps this difference is due distributed within the sample interior. For examplds
to nonuniformities in the values of the charge-depletion 99 %, 99 %, and 83 % dfp, respectively at these three
width A along the sides of the samples, e.g., we have currents. We predict the current to be much farther from
observed different values &f along the lengths of some  the sides of the sample than in other models, e.g., no
of our samples. If we assume that the value\&f current flows within 60, 55, and 13 magnetic lengths of
remains constant along a sample edge, allote vary the sample side for these currents. It would require a
by changing the average ionized donor denbity and lateral resolution of about 04dm, rather than the 7@m
assume the ratiB. (Ymax)/ Ei(Ymay) remains constant, then  resolution of Fontein et al. [8], to verify this result.
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7. Appendix A. Derivation of Egs. (10)
and (11)

We first derive Eq. (10) of Sec. 4. The Lorentz force

exerted on the conducting electrons causes deviationsx

—edo(y") from the average surface charge density
—en = —ie?B/h of the 2DEG at each poit across the
sample width. Consider a strip of this redistributed
charge of width g', located in thex—yplane at position

y' and pointing in thex direction, with a charge/length
A(Y') =—edo(y)dy'. Gauss’s law is then used to obtain
the electric field d& (y) at some poiny in thex—yplane,

due to one of these line chargee:oﬂgE -dS=¢q, and

thus keodE (y)27|y'-y|Lx = A (YL for a cylindrical
Gaussian surface of radiug-ly] and lengthL,. The
potential &/ (y) of this line charge is

dv(y) = - f dE(y)dy = - 27T(Xs)ovzv 2Iy‘—1yI/W el
y-
AW 2y A
- m'n wo (A

The total potential, when summed over all the line
charges, is Eq. (10)

w2

| so6yim |2 ty-yi|o.

-w/2

V(y) =

T 2mke,
(A-2)

Now we derive Eq. (11) of Sec. 4. We found in Eq. (3)
of Ref. [11] that the center of mass coordinggef each
state undergoing cycloidal motion in a Landau level is

_EW) | 7k
°T wB eB’

(A-3)

so the states move to the right Bgy) increases. The
total chargedQ transferred into the volumihdy, out-
lined with solid lines in Fig. A-1, is

3Q = dplhdy = 1,h[Ayo (y) p (¥)
—Ayo(y + dy)p (y + dy)]. (A-4)
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Fig. A-1. Geometry factors for the calculations in Appendix A.

If the volume charge density is slowly varying, then
p(y) = p(y + dy), whereph = —eo and§ph = —edo.
Thus, from Egs. (A-3) and (A-4),

sody = 20 [E@)-E+ )

a(y) dEy) _ oy) ?V(y)

da(y) =~ wB dy oB  dy?

But o (y) = ieB/h, so we obtain Eq. (11)

e dV(y) _ im* d?V (y)

80-(y) = ho. dy2 hB dy2 . (A'S)

Equation (11) considers the charge-redistribution
—edo(y) due to the second derivative of the charge-
redistribution potentiaV/;(y). The charge-redistribution
that we calculated in Sec. 5.3 depends also on the
second derivative of those regions of tlkenfining
potentialV,(y) which differ from theym.,andym, values
atlsp=0 }.LA

8. Appendix B. Eigenvalue Equation

We saw in Eq. (12) of Sec. 4 that

w2

V) =-¢ |

2

e | 21y -y oy, @)

where the characteristic lengthis
ie?

&= 2mkeohw, (B-2)
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is an operator acting on the functiéity) = V; (y"), and
C = 1/¢is a constant.

The function F(y) = V/(y") should have a second
derivative that satisfies Eq. (B-1). Our function, from 9.

Eq. (15) of Sec. 4.1, is "
1

I 1 Y I e VR
Vily) = =73 ['” amax] Ny w2 B3 g
3]
where the cut-off iSSnax = v_2v = Ymax »
[4]
LRy __@[ W-Smax]‘l —w
A i B (77 0 K
[6]
and
RG IRy S| 2wy’ &
o no=Ir W—Omax |~ Yy
a2 o =1 [ 5 e o
(B-4)

We can see if the potential given by Eq. (B-3) is a [9]
valid solution to the eigenvalue expression Eq. (B-1) by
substituting Eq. (B-4) into Eq. (B-1) and integrating
only between the limits 6mn t0 8max becausdo () is

zero beyond these two cut-off values. Surprisingly, we [1°]
obtain nearly exact solutions to the eigenvalue ex-
pression at all values gfwhenéis less than 2.Qum and [11]

Omax = Omin = &€. This choice 0fdnax = 8min = £ for the
cut-off values was used by Beenakker and van Houten
[22]. Our value of¢ is 3.3 nm, so we would be well

within this exact range ibmax = omin = &€. The values of [12]
dmax d0 Not equabni, however, and are much larger than
the value ofé¢. Also, we have a confining potential, [13]
V.(y), parts of which should be included in Eq. (B-1).
It would be interesting to see how well the values of 4]

Vi(y) obtained in Eq. (B-4) agree with the values
obtained in the eigenvalue expression Eq. (B-1) when
using the values of quantities obtained in Table 1.
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