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Boehm and Martire have shown that the
Flory-Huggins (FH) lattice model applied
to mixtures of squares and rigid rods in sol-
vent on a two dimensional lattice gives dif-
ferent results depending on whether rods or
squares are placed first onto the lattice.
This correct derivation places the validity
of the FH model itself into question since
the final result should be independent of
the order of placement. An analysis of the
FH model in terms of Poisson statistics
suggests an alternative formula for the
probability of successfully placing a rectan-
gle into an area partially filled with other
rectangles, which when incorporated into
the FH counting procedure gives the exact
thermodynamic result for the tiling of
squares (i.e., no solvent and no rods). An
attempt to solve the order of placement
problem is made by solving the problem of
one square plus any number of rods and
then generalizing the statistics so that they

are consistent with this result. Equations are
given for squares plus rods plus solvent in
both two and three dimensions. For plates
plus solvent in three dimensions a purely
entropy driven phase transition between an
anisotropic layered phase and an isotropic
phase is obtained. This transition is
analogous to the isotropic to nematic liquid
crystal phase transition in rigid rods. Our
equations, when augmented by energy con-
siderations, are useful for calculating the
equilibrium properties of discotic systems,
polymer-layered silicate composites, and the
adsorption of plate like molecules onto sur-
faces.

Key words: discotic phase; Flory-Huggins;
layered silicates; liquid crystals; plate-rod
transition; rod-rod transition.

Accepted: November 15, 1994

1. Introduction

Commercial blends of polymer and layered silicates
exist and have properties that are enhanced compared to
those of pure polymer [1]. The economic potential of
blends of polymers with inexpensive layered silicates
(clays) requires us to attempt to understand the thermo-
dynamic properties of such materials. These materials
can be modeled as mixtures of plate-like molecules of
nanometer thickness with flexible polymers. The dis-
cotic phase also consists of plate-like or disk-like
molecules [2]. Boehm and Martire have modeled the
adsorption of square plate-like molecules onto a plane
surface as a mixture of plates (corresponding to
molecules adsorbed face-on), rods (corresponding to

1 Armstrong World Industries, 2500 Columbia Ave., Lancaster, PA
17603

edge on adsorption), and solvent on a two-dimensional
lattice [3]. These three examples each require that we
understand how plate-like molecules pack together in
both two and three dimensions. More generally we need
to know the packing statistics for mixtures of rigid
plates, rods, semiflexible molecules, and solvent.

A generalization of the Flory-Huggins proceedure
which can treat such systems is needed. The extension of
the Flory-Huggins lattice model, which originally
treated flexible molecules plus solvent, to include rigid
rods and semiflexible molecules has been rather suc-
cessful. First, Flory adapted his version of lattice statis-
tics, which uses the volume fraction rather than the site
fraction, to treat solutions of rigid rods of any concen-
tration [4]. This verified the basic insight of Onsager [5]
that rigid rods cannot pack at random except at very low
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densities (according to Flory the interference becomes
appreciable at a volume fraction,Vx, given byxVx = 8,
x being the rod length). Additionally Flory’s statistics
were a distinct improvement over the virial expansion
approach of Onsager [5] in that they were applicable to
the whole concentration range rather than only in the
dilute solution range. The limitations inherent in the use
of the volume fraction (for the expectation that an adja-
cent site is empty) were removed in a lattice treatment
by Di Marzio [6]. Monte Carlo calculations have shown
this expression to be accurate to within several percent
over a wide range of parameters [7]. Recently Freed has
given an exact expansion technique which can in princi-
ple give us results to any level of accuracy [8].

Shih and Alben [9], Herzfeld [10], and Boehm and
Martire [3] have extended the statistics to plate-like ob-
jects (Shih and Alben), to arbitrary rectangular paral-
lelepipeds (Herzfeld), and to mixtures of squares and
rods on a two-dimensional lattice (Boehm and Martire).
Boehm and Martire have observed that the end result for
the configurational entropy of a mixture of rods and
squares depends on whether the rods or squares are
placed first onto the lattice in the FH counting procee-
dure. The answer, of course, should be independent of
the order of placement. Thus, the calculation of Boehm
and Martire, which was definitely done correctly, throws
doubt on the validity of the Flory-Huggins procedure
itself for plate-like molecules. One has always known
that the FH calculation is an approximation, but the
results are sufficiently divergent in this case that a reex-
amination of the method is demanded. Another reason
for this paper is that even within the FH approximation,
the results for mixtures of rods and squares in three
dimensions is a useful addition to the literature.

Here we reexamine the problem of packing squares,
rods and solvent on a lattice in both two and three
dimensions. We begin by discussing (Sec. 2.1) the exact
tiling results for the covering of a two-dimensional lat-
tice by squares and a three-dimensional lattice by cubes.
These results provide benchmarks for our final esti-
mates. These results should be incorporated into our
general formulas. A complete listing of problems for
which exact results exist is small: (1) Monomers on
any lattice of any dimension. (2) Space filling dimers
on a two-dimensional square lattice [11]. (3) Rigid rods
aligned parallel to one another, plus solvent on a hyper-
cubic lattice of any dimension [6]. (4) The one-dimen-
sional (d = 1) andd = ` cases [6]. (5) The tiling results
(this paper). (6) The limit of extremely dilute solution.
All of our results incorporate 1, 3 and 4: some of our
results additionally incorporate 5 and 6.

Secondly, we show (Sec. 2.2) how the FH procedure
can be viewed as an exercise in Poisson statistics. Pois-
son statistics are then used to calculate the probabilities

of empty lattice sites in a field of arbitrarily distributed
rigid rods. Specifically, we calculate the probability that
x contiguous segments lying along a straight line in an
arbritrary direction are empty. The procedure is then
extended to square plates. In Sec. 2.3 we use these
results to solve in 2-d the problem of calculating the
entropy of a collection of rigid rods and solvent, and of
plates and solvent. We then treat a mixture of rods,
plates and solvent. Three kinds of results are obtained:
(1) A result which reduces to the exact result for tiling
when there are no rods or solvent, and which reduces to
the rigid rod result when there are no squares; (2) The
Boehm-Martire result, and (3) A modification of the
Boehm-Martire result which is independent of the order
of placement when many rods plus one square is placed
onto the lattice. In addition, we show how to incorporate
the high dilution limit exactly. In Sec. 2.4 the entropy of
mixtures of squares plus rods plus solvent on a cubic
lattice is obtained. It is shown that squares plus solvent
undergo an entropy driven phase transition between an
isotropic phase and a layered phase which is very similar
to the entropy driven isotropic to nematic phase transi-
tion in rigid rod systems. For completeness, in section
2.5 the formula for the entropy of cubes in 3-d is dis-
played. In Sec. 3 we discuss our results.

2. Theory

For concreteness we discuss the problem in the con-
text of the problem of packing squares and rods (and
solvent) on a 2-d square lattice. The extension to the
d-dimensional case, to rectangles, to the flexible poly-
mer case and to the continuum case will be seen to
present no additional problems of principle. ConsiderM
squares occupyingr 2 sites each,N0 monomers,N1 rods
of lengthx, andN2 rods of lengthx lying in orthogonal
directions 1 and 2, respectively. The total number of
lattice sites isN = N0 + r 2M + x(N1 + N2). We seek to
evaluate the entropyS= klnV where V = V (M,r ;
N1,N2,x;N0) is the number of distinguishable configura-
tions. Ideally we should require that this expression re-
duce to the exact limits wherever they are known (see
the Introduction) and be independent of the manner of
placing the squares and rods. We achieve these aims
only partially.

2.1 Exact Results for Squares

First, we wish to establish the relation

V (M,r;O,O,x;O) = 2r ÏM d = 2 . (1)

From tiling theory [12] we know from Minkowski’s
conjecture that there is at least one pair of hypercubes
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which share a complete (d–1)-dimensional face [13].
For squares this means that they share a complete edge.
A little thought shows that the tiling must consist of
infinitely long rows of squares. Each row can be trans-
lated one stepr times to giver different configurations
for the whole lattice. Since there areÏM rows each of
lengthÏM , there arer ÏM different configurations re-
sulting from sliding theÏM rows relative to each other.
The factor of 2 arises because the files can lie in either
the x or y orientations. Edge effects are neglected.

In one dimension there are onlyr ways to cover the
line with r -mers. There arer ways rather than one way
because we can shift the whole close-packed row of rods
one monomer at a time for a total of r times before we
repeat a configuration. So, ford = 1 we obtain
V (M ,r ;0,0,x;0) = r . The question naturally arises as
to how many ways we can tile a three dimensional cubic
lattice with cubes that are of sizer 3. The answer is
essentially 3r M2/3. To see this, first tile a two dimensional
floor with cubes. There are 2r M1/3 ways to do this. Next,
imagine rows of cubes stacked perpendicularly to the
floor. By moving these rows up and down r steps we
obtain r M2/3

configurations. So in three dimensions

V = 3(2r M1/3) (r M2/3) d = 3, (2)

These formulas suggest the general expression

V = K (d)r M(d–1)/d
for all d, (3)

where K (d) is of an order lower thanr M(d–1)/d, as the
formula for tiling hypercubic lattice with hypercubes.
The entropy per hypercube is then

S/k = (lnV )/M = lnK (d)/M + M–1/dlnr , (4)

which vanishes asM → `. ThusS= 0 for the tiling of
squares, or of cubes (the effectiveV is 1). This is an
exact result.

2.2 Connection Between Flory-Huggins Lattice
Statistics and the Poisson Distribution

2.2.1 Exact Results for Rods Plus Solvent in
d = 1 Consider first the number of ways,V , to place
N0 monomers andNx rigid rods of lengthX (x-mers) on
a one-dimensional lattice.V is obviously the same as the
number of ways to permuteNx objects of one kind with
N0 objects of another kind:

V = (N0 + Nx)! / N0! Nx ! . (5)

As we now show, this formula can also be obtained
using the FH approach by calculating

V = (Pnj ) /Nx!, (6)

wherenj+1 is the number of ways to randomly place the
(j +1)th rod (x-mer), given that the previousj molecules
have been randomly placed. After the rods are all
placed, the monomers can be placed in only one way.
For nj+1 we write

nj+1 = (N–xj ) (S0)x–1, S0 = (N–xj) / (N–xj+ j ). (7)

N–xj is the number of ways to place the first segment of
the (n+1)th rod onto the lattice (it can go onto any of the
N–xj empty sites) andS0

x–1 is the probability that the
x–1 consecutive neighboring sites are empty.S0 is the
probability that a neighboring site is empty. To calculate
S0, we write

S0 + Sx = 1, S0/Sx = (N–xj )/j , (8)

whereSx is the probability that the neighboring site is
filled. Obviously S0 + Sx = 1. Since a step will be suc-
cessful if one is a neighbor to a hole, and since a step
will be unsuccessful if one is a neighbor to a rod, the
ratio is equal to the ratio of the number of neighbors to
holes (N–xj ) to the number of neighbors to rods (j ).
Using Eq. (7) in Eq. (6) we obtain Eq. (5).

There are several useful observations at this juncture.
First, ford = 1 the FH scheme gives the exact result. But
one needs to use the surface fractionS0 rather than the
more approximate volume fractionV0(V0 = (N–xj )/N).
Second, sinceS0

x–1 = exp(2l (x–1)) with l = –lnS0 we
have a Poisson distribution [14] for the probability that
a line segment of lengthx–1 is empty. As far as the
statistics for placement of the (n+1) th rod are con-
cerned, the previousn rigid rods are all shrunk to points,
so that we are dealing with Poisson statistics for points
randomly sprinkled on a line. As we shall now see, these
two features—the use of the surface fraction rather than
the volume fraction, and the use of Poisson statistics—
allow us to solve the two-dimensional problem.

2.2.2 Extension of Poisson Statistics to Rods Plus
Solvent in d = 2 Randomly placeN1 horizontal thin
lines of lengthL1 on a plane of areaA (ÏA on a side).
We now determine the probability that a line of length
x, whose center of mass is located at random in the area
and whose orientation is perpendicular to the previously
placed lines, does not touch any of the lines. A perpen-
dicular line of lengthÏA which spans the area will on
average intersectN1L1/ÏA horizontal lines so that the
average separation between horizontal lines is
< x > = ÏA/(N1L1/ÏA) = A/N1L1. The Poisson distri-
bution is obviously by exp (–x/< x >) = exp (–xN1L1/A).
For the general case of a line of lengthx making an
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angle u with the horizontal lines, we have exp
(–xN1L1sinu /A. Thus, the probability,p(u ), that the line
can be placed without contacting any horizontal line is

p(u ) = exp(–lx) , l = N1L1sinu /A. (9)

Notice that foru = 0, p(u ) = 1 as expected, even for
x → ` since the lines are infinitely thin.

Now considerN1 horizontal lines of lengthL1 andN2

vertical lines of lengthL2. The horizontal lines will
cross a line of lengthÏA, inclined at angleu , N1L1

sinu /ÏA times. This line also intersects the vertical
linesN2L2cosu /ÏA times. Then, by calculating the av-
erage separation distance along the inclined line be-
tween the crossings, we obtain (< x > = 1/l )

p(u ) = exp(–lx), l = N1L1sinu /A + N2L2cosu /A.

(10)

In the more general case where the number of lines
N(f ) of lengthL (f ) are randomly placed with regard to
their centers but inclined at an anglef , we have

p(u ) = exp(–lx), l = e A–1N(f )L (f )sin(u–f )df .

(11)

Notice thatp(u ) is a product of thep(f )’s arising from
each anglef . Equation (9) is exact, and Eqs. (10) and
(11) are exact if the lines are allowed to cross. If cross-
ing is not allowed, then correlations are induced among
the locations of the lines and the formulas are not exact.

2.3.3 Results for Rectangles Plus Solvent ind = 2
Now instead of lines let us placeM rectangles of

dimensionsa andb on the area, oriented so thata is the
horizontal dimension. What is the interference encoun-
tered by a line of lengthx when it is placed in this field
of rectangles? It is suggested that if we use anA' given
by A' = A–abM, then all the above formulas hold. Just
as ind = 1 where we shrunk the rigid rods to points, in
d = 2 we shrink each rectangle to two lines— a horizon-
tal line of dimensiona and a vertical line of dimension
b. In particular,

p(h) = exp(–xMb/A'), p(v) = exp(–xMa/A') ,

A' = A–abM, (12)

for lines placed horizontally or vertically. For a line
placed at angleu , we obtain Eq. (10), but withA'
replacingA.

Our final step is to calculate the probability for plac-
ing a rectangle in the unoccupied areaA'. We use the

hypothesis that this probability is equal to that for plac-
ing a line whose length and orientation is that of the
diagonal to the rectangle. We have

p = exp(– (Ïa2+b2) (Masinu + Mbcosu )/A')

= exp(–2abM/(A–abM)), (13)

where we have used sinu = b/(Ïa2+b2) and A' = A–
abM. Let us compare this to the expression obtained
from FH lattice statistics. After placing the corner site
onto the lattice, we can place the column of vertical sites
and the row of horizontal sites with a probabilityp (we
useA = N)

p = [(N–abM)/(N–abM+aM)]b

[(N–abM)/(N–abM+bM)]a . (14)

If we now write p as exp(lnp) and expand theloga-
rithms we obtain Eq. (13) to first order in the argument
of the exponential.Thus we get concordance with Pois-
son statistics if, in the Flory-Huggins counting proce-
dure when calculating the probability of placing down
the (M+1)th rectangle, we ignore all sites other than the
sites belonging to the two edges! This is a surprising
result which we now show leads to formulas for the
entropy which reduce to the tiling results in the absence
of solvent.

2.3 Entropy of a Mixture of Squares, Rods, and
Solvent in d = 2

The implementation of the Flory-Huggins approach
to the calculations of entropies for the general case is
straightfoward but tedious. We will illustrate the essen-
tial features of the method by calculating separately in
d = 2 the number of configurations for both a system of
rigid rods plus solvent and for a system of squares plus
solvent. The entropy for a two-dimensional system of
rods plus squares plus solvent will be displayed and
compared with the results of Boehm and Martire. Also,
we propose a modification of the BM treatment which
is less dependent on the order of placement.

2.3.1 Rods Plus Solvent To calculate the number
of ways to placeN1 rigid rods in thex orientation andN2

rigid rods in they orientation on a square lattice of
N = x(N1+N2)+N0 sites, we begin by placing theN1

molecules one at a time until they are all placed. This
can be done in

V1 = (1/N1!) PN1–1

j=0

(nj ) ,

nj+1 = (N–xj ) [(N–xj )/(N–xj + j )]x–1 (15)
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ways. Herenj+1 is the number of ways to place the (j+1)th
molecule in a field of j previously placed molecules. The
first segment of this molecule, which we take to be the
end segment, can be placed onto any of (N–xj ) lattice
sites. The probability of placing the second segment
when the two segments lie in thex direction depends on
the number of neighbors to holes in this direction com-
pared to neighbors to rods in this direction. Using the
ideas of Eq. (8), we calculate the probability that the
second site is empty given that the first site is occupied
to be (N–xj )/(N–xj+j ). Proceeding in this way segment
by segment, we obtainV1. We now calculateV1,2, the
number of ways to place theN2 rods in they direction
given that theN1 molecules have been previously placed
on the lattice:

V1,2 = (1/N2!) PN2–1

j=0

(nj ), nj+1 = (N–xN1–xj )

[(N–xN1–xj )/ (N–xj + j )]x–1. (16)

The only new feature in this part of the calculation is
that when determining the probability of successfully
stepping in they direction, each rod lying perpendicular
to the direction of step contributesx sites, while each
rod lying parallel contributes one site.In the general
case, a molecule contributes only those sites that are not
shielded by other sites of the same molecule(this state-
ment is true for arbitrary dimension, arbitrary lattice
type, arbitrary direction of stepping, and arbitrary stiff-
ness). The total number of configurations isVr = V1V1,2.
To evaluateVr , one can either rewrite the factors in
terms of factorials and use Stirling’s formula, or convert
the product to a sum by takinglogarithms and use the
formula for the integral of alogarithm [15]. Either way,
we obtain

lnVr = – O2

k=1

[Nk ln(Nk/N) + (N–(x–1)Nk)

ln (1– (x–1)Nk /N)] –N0ln(N0/N). (17)

This result isindependentof the order in which the
rods are counted, as it should be if the FH procedure is
self-consistent. Moreover, if we replace the upper limit
on the summation byd and defineNk to be the number
of rods in orientationk, then Eq. (17) is valid for all
dimensions [6].

2.3.2 Squares Plus Solvent For M squares, each
of which coverr 2 sites, we need to evaluate

Vs = (1/M !) Pnj ,

nj+1 = (N–r 2j ) [(N–r 2j )/(N–r2j+rj )]2(r–1) . (18)

The factor on the left is simply the number of empty
sites available to the first segment of the (j+1)th square.
The term within the square brackets is the probability of
successfully making a step along an edge of the square.
This quantity, taken to the 2(r –1) power, is the probabil-
ity that we can successfully complete two perpendicular
edges. Equation (18) is the complete expression. The
reason we do not add a factor for each of the remaining
(r –1)2 monomers, as Boehm and Martire (following
Herzfeld) do, is our hypothesis that the probability of
placing a rectangle is equal to the probability of placing
its diagonal line, which in turn is equivalent to placing
two of its orthogonal edges. Equation (18) gives, after
some algebra and integration,

lnVs = –M ln(M/N) – ((2r –1)/r 2)N0 lnV0 +

(2/r ) (N0 + rM ) ln[(N0 + rM )/N] . (19)

We notice immediately that for no solvent the entropy
is zero in the thermodynamic limit, which accords
nicely with Eq. (4). Thus, our answer is exact in the
N0→0 limit. Had we used a probability factor less than
one for each of the (r –1)2 monomers in the interior of
each square, the entropy for the case ofN0 = 0 would
have been negative. This supports our ansatz that in this
problem a rectangle can indeed be represented by just
two orthogonal edges. We will return to this point when
we discuss the possibility of a close-packed amorphous
glass of squares.

The only other exact result which is known for
squares is the extremely dilute solution limit. In the
absence of interaction energies, the mutual excluded
volume between two particles is given by the second
virial coefficient. To adapt this idea to our lattice model
calculation, we must [in Eq. (18)] replace therj term by
urj , and chooseu so that forj = 1 we obtain the correct
number of ways to place the second molecule,

n1 = (N–r 2) [N–r 2)/(N–r 2 + ur )]2(r–1) = N–(2r –1). (20)

The RHS is obtained by subtracting fromN the num-
ber of ways that the second molecule can overlap the
first molecule. This equation yieldsu = (3r –1)/2r, which
varies from 1 to 1.5 asr varies from 1 tò . If we now
use Eq. (18) with theurj term replacingrj , we obtain

lnVs = –M ln[M /N] – [(2r -1)/r 2] N0 lnV0 +

[2 (r –1) (N0 + urM ) / (r 2–ur )] ln[V0 + uVr /r ] , (21)

where
u = u0–Vr (u0–1) (22)
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and
u0 = (3r –1)/2r . (23)

Equation (21) gives the known exact results for both
small Vr and forVr = 1. The linear interpolation of Eq.
(22) is a reasonable assumption sinceu varies between
1 and 1.5. One could easily improve upon Eq. (22) if the
result for an intermediateVr were known through Monte
Carlo simulation. In the equations that follow we will set
u0 = 1, but we note here that improvement of the lattice
results through the virial approach is always possible.

2.3.3 Rods, Squares, and SolventWe now can
solve the problem of mixtures of rods plus squares plus
solvent (or holes). The algebra is considerable: we quote
the results. If we place the rods first and then the
squares, we obtain

lnVr,s (M,r ; N1, N2; N0) =

+o[(r –1)/r ] [N–(x–1)Ni ] ln[1–(x–1)Ni ]

+ (1/r ) o [N–(x–1)Ni –(r 2–r )M ]

ln[1–((x–1)Ni + (r 2–r )M )/N]

–[(r –1)/r ]2 [N–xNx] ln[1–xNx/N]

–[(2r –1)/r 2] [N–xNx–r 2M ] ln[1–(xNx + r 2M )/N]

–oNi ln[Ni /N] –M ln [M /N] ,
(24)

where the summation is over both orientations and
Nx = oNi . If we place the squares first and then the rods,
we obtain

lnVs,r (M, r; N1, N2; N0) =

+o [N–(x–1)Ni –(r 2–r )M ]

ln[1–((x–1)Ni –(r 2–r )M )/N]

– [2(r –1)/r ] [N–(r 2–r )M] ln [1–(r 2–r )M /N]

– [(r –1)/r ]2 [N–r 2M ] ln[1–r 2M/N] –N0 ln [N0/N]

–oNi ln[Ni /N] –M ln[M /N]. (25)

Each of these equations reduces to the rigid rod case,
Eq. (17), when there are no squares, and reduces to the
square case, Eq. (19), when there are no rods. Addition-
ally, each reduces to the exact results obtained from
tiling theory, lnV = 0, when there are no rods or solvent.
Also, if we wished, we could introduceu ’s as above
which would give us the exact results for dilute solution.
However, the results do depend on the order of place-
ment, and this is a defect in the FH procedure. The
crucial question is, how different?

We attempt to resolve this discrepancy by placing one
square in a field ofN1 rods parallel to thex direction, and
N2 rods parallel to they direction, andN0 solvent
molecules. This should give the same statistics as plac-
ing the square first and then adding the rods. Since we
are confident that we know the statistics for adding the
rods into a field containing one square, we can use this
result for the statistics of placing one square after all the
rods are placed. We obtain

ns, N1, N 2 = nN 1, N 2,s =

(N–xN1–xN2) [(N–xN1–xN2)/(N–(x–1)N1)](r–1)

[(N–xN1–xN2)/(N–(x–1)N2)](r–1)

[(N–xN1–xN2)N /(N–(x–1)N1)(N–(x–1)N2)](r–1)2.

(26)

Boehm and Martire [3] would use the same first three
terms, but instead of our last term they would have

[(N–xN1–xN2)/(N–(x–1)(N1 + N2)] (r–1)2. (27)

The two expressions account for the probability of
filling in the (r –1) segments after the corner segment
and the two edges are first placed. They are the same
only when the rods are all aligned in one direction. Still,
in both cases the value of the last term is much less than
the value 1 which we used above in deriving Eqs. (24)
and (25). The general expression for filling in the (r –1)
segments of the (j+1)th square in a field consisting of
N1, N2 rods andj squares on a lattice ofN sites, is given
by BM as

[(N–x(N1+N2)–jr 2)/(N–x(N1+N2)–j (r 2–1))]( r–1)2. (28)

A natural generalization of our fill-in term is

[(N–x(N1+N2)–jr 2)/(N–x(N1+N2)–j (r 2–1))

+ (x–1)2N1N2/N] (r–1)2. (29)

which differs from the BM term only by the (x–1)2

N1N2/N term in the denominator.
Using these expressions, we can derive alternative

formulas for the entropy of mixtures of squares, rods,
and solvent. For the Boehm-Martire version we simply
add the factors obtained from Eq. (28) for the fill-in
process, and append the result to Eq. (24) to obtain
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lnVr,s (BM) = lnVr,s + [(r –1)/r ]2 (N–xNx)

ln (1–xNx/N) –[(r–1)/(r + 1)] (N–(x–1)Nx)

ln (1–(x–1)Nx/N)

–[(r–1)/r ]2 (N–xNx–r 2M ) ln (1–(xNx + r 2M )/N)

+[(r –1)/(r + 1)] (N–(x–1) Nx–(r 2–1)M )

ln (1–((x–1)Nx/N–(r 2–1)M )/N),
(30)

and,

lnVs,r (BM) = lnVs,r–[(r –1)/r ] 2 (N–r 2M )

ln (1–r 2M /N) + [(r –1)/(r + 1)] (N–(r 2–1)M )

ln (1–(r 2–1)/M/N). (31)

For the modified Boehm-Martire formulas (MBM)
which use Eq. (29) we obtain

lnVr,s (MBM) =

lnVr,s + [(r –1)/r ]2(N–xNx) ln (1–xNx/N)

–[(r –1)/(r + 1)] (N–(x–1)Nx + (x–1) 2N1N2/N)

ln (1–((x–1)Nx–(x–1) 2N1N2/N)/N)

–[(r–1)/r ]2 (N–xNx–r 2M ) ln (1–(xNx + r 2M )/N)

+[(r–1)/(r + 1)] (N–(x–1) Nx + (x–1)2

N1N2/N–(r 2–1)M ) ln (1–((x–1)Nx–(x–1)2

N1N2/N + (r 2–1)M )/N), (32)

and

lnVs,r (MBM) =

lnVs,r – [(r –1)/(r + 1)] (N + (x–1)2N1N2/N)

ln (1 + (x–1) 2N1N2/N2) – [(r –1)/r ]2 (N–r 2M )

ln (1–r2M /N) + [(r –1)/(r + 1)] (N + (x–1)2

N1N2/N–(r 2–1)M ) ln (1 + ((x–1)2

N1N2/N–(r 2–1)M )/N). (33)

Let us now summarize our results. We have presented
three pairs of formulas for the entropy of a mixture of
rods, squares, and solvent. For each pair, the entropy
depends on the order of placement of the rods and
squares. Consequently, for the special cases of rods plus
solvent only, or squares plus solvent only, the entropies
are equal within each pair. Also, for rods plus solvent
only, all six equations are identical and give the usual
result. However for squares plus solvent only, the Boehm
and Martire (BM) and Modified BM (MBM) are identi-
cal while the DYG approximation gives a different re-
sult. The first pair, Eqs. (24) and (25) has the virtue of
reducing to the exact tiling result when there are only
squares. The second pair, Eqs. (30) and (31) is the
Boehm-Martire result. The third pair (MBM), Eqs. (32)
and (33) is similar to the BM result but uses Eq. (29) for
the probability of placing the (r –1)2 fill-in segments
onto the lattice after one corner segment and the two
connecting edges have been placed. The BM calculation
uses the same probability as MBM, but with the last
term of the denominator missing. It is obvious that our
two estimates of the entropy, DYG and MBM, always
bracket the Boehm-Martire entropy.

Figure 1 shows the three entropy predictions for
squares plus solvent ind = 2. The only qualitative differ-
ence between the curves is in the highVr region where
our DYG expression gives positive entropy over the
whole range of concentration, while the BM and MBM
expressions become negative. At first sight it could be
argued that the DYG expression is the more accurate one
at high density, since for a density of 1 it gives the
correct tiling result, while the BM and MBM predic-
tions of negative entropy are clearly wrong. However, in
the next paragraph we argue that the BM and MBM

Fig. 1. Comparison of the entropy of square-solvent mixtures in two
dimensions for squares of aspect ratio (edge length to thickness) 3.
The upper, DYG, curve reduces to the tiling result for no solvent. The
lower curve gives the BM and MBM results which superpose when
there are no rods. See text.
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entropies, suitably modified by replacing theS< 0 part
the curves with the lineS= 0 may give better estimates
of the entropy for amorphous systems. Moreover, the
crossing points give estimates of the close packed amor-
phous density.

Consider a system of rigid rods plus solvent. Our
rigid-rod statistics correctly predict a close-packed
amorphous state of less than unit density ford $ 2. One
simply cannot pack rods in random orientation when the
rod density is high, and our rigid rod statistics predict
this by giving zero entropy at a density less than one.
The reader can convince himself of this by trying to
pack pencils randomly at high density; it can’t be done.
This simple physics was recognized by Onsager as the
basis for the isotropic to nematic phase transition in
liquid crystals. This so called “entropy catastrophe” car-
ries over to semiflexible polymer molecules and is the
basis for the entropy theory of glasses [16], [17]. The
Kauzmann paradox was resolved along these lines [16].
The fact that our rigid rod statistics, and their modifica-
tion for semiflexible polymers predict (semiquantita-
tively) the experimental results for both liquid crystals
and polymer glasses, means that they are reasonably
accurate [17], and the fact that the entropy catastrophe
is real means that our formula for the entropy should
approach zero at a finite density [18], as our formulas

indeed do. Perhaps, then, the entropy for squares be-
coming zero, as in Fig. 1, for a density less than one is
not merely an artifact of the calculation but is an indica-
tion of a close-packed amorphous packing of squares.
So, it is possible that there is an entropy catastrophe for
squares as well as for rigid rods ind = 2 and this is
presaged by the BM and MBM estimates. One thing we
can be sure of is that ind = 3 the problem is much more
acute. A close packed amorphous phase of squares in
d = 3 resembles a house ofcards, and for this case as
well as the case of rods ind = 3 the only way we can
achieve high density is to align the squares parallel to
one another just as one needs to align the rods parallel
to one another to achieve higher density in that case. We
turn our attention to the three-dimensional problem in
the next section.

Figure 2 compares the three pairs of curves for the
entropy of a mixture of rods, squares, and solvent where
the rod lengthx equals the edge lengthr of the square,
and (excluding solvent) 30 % by volume of the material
is rods and 70 % is squares. A surprising and discourag-
ing result is that the DYG calculation depends more on
the order of placement than does the Boehm-Martire
calculation. The MBM calculation, however, does bet-
ter. Obviously, we have not yet solved the “order of
placement problem.”

Fig. 2. These figures show the extent for which the three methods of counting give different
results depending on the order of placement of rods and suares. The plot is of entropy vs volume
fraction of squaresx = r = 3. The volume fraction of rods is fixed at 0.6. The Boehm-Martire
curves are less different than those which incorporate the tiling results of this paper, but more
different than the modified version (MBM). The difference between the MBM curves is about
2/3 of that between the BM curves.
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2.4 Entropy of a Mixture of Rods, Squares and
Solvent in 3-Dimension

In this section we generalize the results of the
previous section to calculate the entropy of a mixture of
rods, squares and solvent ind = 3. In Sec. 2.3.1 we
already calculated the entropy of rods plus solvent for
arbitrary dimensiond. Thus, we begin with squares plus
solvent ind = 3, and then combine the two results as in
the previous section.

2.4.1 Squares Plus Solvent ind = 3 Instead of
giving the derivation in detail, we describe only those
parts of the derivation which are unfamiliar to one who
has used only the Flory version of the FH lattice model,
or who has not used orientation dependent statistics.

As in Eqs. (10) and (11), we need to consider surface
fractions rather than volume fractions. The probability
of placing a specified object into the lattice depends
upon the orientation and shape of the object relative to
the orientations and shapes of the previously placed ob-
jects. For squares ind = 3 there are three orientations in
which to place them (six orientations for rectangles).
The number of ways to place a square is equal to the
number of ways to place one segment of the square
times the probability that the sites required to accom-
modate the remaining (r 2–1) segments of the square are
empty. To estimate this probability, we place these seg-
ments one at a time and assume that the probability is a
product of the individual probabilities of placing the
individual segments. These individual probabilities are
conditional probabilities. We must now consider the
probability of placing the kth segment, given that the
previous (k–1) segments have been placed. In building
up a square we first place down a corner in as many
ways as there are empty lattice sites, and then we build
up the two connecting edges. If the number of empty
lattice sites isN0(j ), then the probability of placing a
contiguous segment in thex direction is N0(j )/
(N0 + number of neighbors to polymer). The hypothesis
here is, as before, that the ratio of the probability of a
successful step to the probability of an unsuccessful
step equals the number of neighbors to holes divided by
the number of neighbors to polymer [(see Eqs. (10),
(11)]. Importantly, this ratio is dependent on the orienta-
tion of the step. If we are stepping against a square
which lies perpendicular to our step direction, then there
arer 2 interference sites due to that square, and if we are
stepping against a square which lies parallel to our step
direction, then there are r interference sites. The number
of neighbors to polymer in the above expression for the
number of ways to place a segment, is the sum of all the
interferences arising from the previously placed (j –1)
molecules. In the general case of a solid object of arbi-
trary shape, the interference is given by the projected
area in the direction of the step.

We now build up each edge one segment at a time
until both edges are completed. In our derivations we
stop here [(see Eqs. (28), (29)] and our accompanying
discussion. However, one could argue that we should
continue and include in our product of probabilities the
conditional probability that the corner segment diago-
nally opposite to the first placed corner segment is
empty. After this is estimated the remaining (r –1)2–1
segments can be filled with probability 1. Obviously
there is room for improving our estimate of the probabil-
ity that a particular contiguous set of lattice sites are all
simultaneously empty (see Sec. 3.).

The formula for squares plus solvent ind = 3 is
straightforward, but tediously derived. The result is

lnVs = –((2r –1)/r 2)) N0ln(N0/N) –oMi

ln (Mi /N) + o[N /r –(r –1) (M–Mi )]

ln [1–(r 2–r ) (M–Mi )/N]. (34)

A treatment parallel to our treatment of thed = 2 prob-
lem reqires us to do the analogue of the BM and MBM
treatments as well; this will be deferred to another pub-
lication.

For rigid rods, the orientation dependent lattice statis-
tics predict that an isotropic phase can exist in equi-
librium with an ordered phase ford$ 2 in the absence
of energetics. Similarly, for squares ind $ 3 an
isotropic phase can coexist in equilibrium with an or-
dered phase in the absence of energetics. The straight-
forward way to determine the phase diagram is to equate
chemical potentials, with each orientation denoting a
separate species, but when there are equal numbers of
squares in the three orientations the calculation is sim-
plified. For the isotropic phase,M1 = M2 = M3 = M /3,
and for the ordered (oriented) phaseM2 = M3 = 0,
M1 = M . By equating the chemical potentials of the two
phases obtained from Eq. (34) evaluated with these sub-
stitutions, we obtain the equilibrium volume fractions of
the two phases. Note that in the isotropic phase the three
species [19] of squares occur in equal numbers, so that
only one chemical potential is needed , and in the or-
dered phase there is only one species present, so again
only one chemical potential is needed. The conditions
for equilibrium are then

m0
isotropic = m0

ordered , (35)

and

mM
isotropic = mM

ordered . (36)
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An alternative and more accurate procedure, which is
left to future work, is to define an order parameter
M1/M , with M2 = M3, and then look for minima in the
free energy vs order parameter curves.

Figure 3 shows the results on a double-logarithmic
plot for squares ind = 3. The region beneath the curves
denotes the isotropic phase, while the region above the
curves denotes the ordered phase. The two phase region
exists between the two curves, with the amount of each
phase determined by the lever rule applied to a vertical
line connecting the two curves. The lower line gives the
concentration of the isotropic phase and the upper line
that of the ordered phase. The curves come together at
an edge length of 3.55. Below this value the phase is
always isotropic. The curve given by the formula

rVr = 3.55 (37)

whereVr is the volume fraction of squares, comes close
to bisecting the two phase region, and gives a good
estimate of the concentration at which half the material
is in each phase. One way of estimating theVr for which
interferences among randomly-oriented squares first be-
comes a problem as the concentration is increased, is to
build a house of cards in which each cube of volumer 3

Fig. 3. Entropy alone is sufficient to cause a phase transition for a
plate plus solvent system in three dimensions. The region below the
lower curve of a pair indicates a pure isotropic phase, while the region
above the upper curve indicates a pure layered phase. Between the two
curves lies the two-phase region. The amount of each phase is deter-
mined by the lever rule. The inability to pack at random at high density
forces the plates to become parallel as we increase the density past the
close-packed amorphous density. An equation which bisects the two-
phase region isrVr = 3.55. For comparison, the equation for rigid rods
is approximated byxVx = 3.8. See Fig. 4.

is made by lining the six sides with squares. This gives
the formularVr = 3, which reproduces the bottom curve
of Fig. 3 to within 12 % (this statement is valid forr $ 5,
and the equation is exact forr = 8).

For comparison purposes, in Fig. 4 we have plotted
the analogous curves for rigid rods (of lengthx) for three
dimensions. Remarkably, the pair of curves ford = 3
almost superpose those for squares. Except for lowx and
r the lower curve is coincident to within 1/4 %, while the
upper curve is 1 % higher than the corresponding curve
for squares. The curves meet at a critical concentration
of unity and a critical rod length,xc, below which on
the isotropic phase exists. We have also calculated the
phase diagrams for other dimensions. Forxc values
given by x = 3.4, 3.8, 4.1, 4.35, 4.55, 4.85, 5.1, 5.3
corresponding to d values given byd = 2, 3, 4, 5, 6, 8,
10, 12. The value ofxc below which only the isotropic
phase exists is well represented by the following equa-
tion

xc = 2.9d1/4. (38)

Fig. 4. Entropy alone is sufficient to cause a phase transition for
rigid-rod plus solvent systems ind $ 2 dimensions. The curves for
d = 3 are shown. The curves ford $ 3 (not shown are displaced to the
right. The location of the critical molecular weight,xc below which
there is no transition is given byxc = 2.9d1/4. The bisector of each pair
of curves is given byxVx = xc.

Figure 5 displays this equation along with the data
points. Nemirovski, Huston, Graham, and Freed [20],
using more accurate statistics, give anxc value of 4.036
for d = 3. This suggests that perhaps the coefficient in
Eq. (38) is 3 rather than 2.9 since this would result in an
xc value of 3.95.
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Fig. 5. A comparison of the relationxc = 2.9d1/4, which is the dis-
played curve, with the actual calculated points.

2.4.2 Squares Plus Rods Plus Solvent in 3-dFor
squares placed first, then rods ind = 3, we obtain

lnVs,r = [(r –1)/r ]2 (N–r 2M ) ln(1–r 2M /N)

– N0 ln(N0/N) –oMi ln(Mi/N) – oNi ln(Ni /N)

+o (N–(r 2–r )(M–Mi )–(x–1)Ni) ln (1–((r 2–r )(M–Mi )

+ (x–1)Ni )/N) –o[N(r –1)/r –(r –1)2 (M–Mi ]

ln (1–(r 2–r ) (M–Mi )/N) . (39)

For rods placed first, then squares, we obtain

lnVr, s = –[(r –1)/r ]2 (N–xNx) ln(1–xNx /N)

–oMi ln (Mi /N) –oNi ln (Ni /N) – [(2r –1)/r 2]

N0 ln (N0/N) + [(r–1)/r ] o (N–(x–1)Ni )

ln (1–(x–1)Ni /N) + r –1 o[N–(r 2–r ) (M–Mi )

– (x–1)Ni ] ln(1–((r 2–r ) (M–Mi ) + (x–1)Ni)/N). (40)

These formulas reduce to the correct limits forM = 0
or for N1 = N2 = 0. They have been written in a form that
suggests that for higher dimension we merely replace
the upper limit on the summation byd; however, we
have not proved this.

2.5 Cubes Plus Solvent ind = 3

For completeness, we display the result for cubes in
d = 3:

lnVc,3 /N = –([(r –1)3 + 1]/r 3)V0 lnV0

–[Vr /r 3] ln[Vr /r 3] + [(r –1)/r ]2 [1–(r –1)Vr /r ]

ln[1–(r –1)Vr /r ] . (41)

Thus we now have formulas for rods in one, two, and
three dimensions, squares in two and three dimensions,
and cubes in three dimensions, as well as rods plus
squares in two and three dimensions.

3. Discussion of Results

We have tried to develop a logical procedure for the
generalization of the ideas of Flory-Huggins to treat
molecules other than flexible polymers. Some time ago,
Flory adapted the FH methods to rigid rods in order to
treat liquid crystals [4, 21]. His treatment was a mix of
lattice and continuum methods. Di Marzio, using the
more accurate surface of Huggins fraction rather than
the Flory volume fraction, obtained a quantitative im-
provement of the statistics [6]. Shih and Alben [9] (SA),
Herzfeld [10], and Boehm and Martire [3] generalized
the treatment to include plate like molecules, rectangu-
lar parallelepipeds and mixtures of plate-like molecules
and rods.

The treatment of mixtures of rods and squares by
Boehm and Martire shows that the FH procedure itself
is breaking down since different sequences of placing
the molecules give different results. This paper is an
attempt to put the FH procedure on a firmer foundation
while maintaining the simplicity of the method. It is
useful to have a method of such wide applicability as is
displayed in this work, and especially in the work of
Herzfeld [10], if in fact we can believe the results. More
accurate counting schemes are available [8] but they are
not simple and involve considerable mathematical so-
phistication.

Since the FH scheme is approximate, it is appropriate
to try to adjust the scheme so that it gives the correct
results for those few cases for which we know the results
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exactly. Tiling theory [12] gives exact results for squares
(no solvent or rods) and cubes. Also, we know the exact
results for the (extremely) dilute solution range. Some
of our final results incorporate these exact limits. Eq.
(21) provides an example for the case of squares plus
solvent.

It was also appropriate to examine the approxima-
tions of the FH model to see if they could be improved.
The lattice theory gives exact results for the case of rods
oriented in one direction, so we examined that case.
There seem to be two critical assumptions. The first
assumption is that in estimating the probability that a
length of x contiguous segments be simultaneously
empty we use the Poisson distribution. In one dimension
it is not really an assumption since points randomly
sprinkled on a line obey Poisson statistics, and conse-
quently the probability of finding a free run of lengthx
is given by the exponential distribution. This distribution
is automatically obtained if we assume that the probabil-
ity for placingx contiguous sites is given by the product
of the probabilities for placing one site, as is assumed in
the lattice model. The second assumption is that we use
the Huggins surface fraction rather than the Flory vol-
ume fraction. This assumption is justified in the text.

It was then shown how, for rigid rods in higher di-
mensions, the use of a Poisson distribution is quite nat-
ural. The probability of placing a line of lengthx at
random in a field of oriented rods is itself orientation
dependent [see Eqs. (9)–(14)]. As shown previously, the
probabilityp of succesfully taking one step is given by
an orientation dependent surface fraction.p is called a
surface fraction because only the sites on the surfaces of
previously placed molecules interfere with the place-
ment of segments (all but the first segment) of then th
molecule (see text). An understanding of why the FH
statistics and their orientation-dependent generalizations
are so accurate for linear polymers is thereby obtained.

In an important paper [10], Herzfeld applied orienta-
tion dependent lattice statistics to treat parallelepipeds
which include plates as well as fat rods. Boehm and
Martire applied the method to a mixture of square plates
and rods to solve a two dimensional adsorption problem
[3]. They discovered that the result depended on the
order of placement of the rods and squares. This is
disconcerting because then one does not know which
result to believe. So we have examined the problem anew
for the case of a mixture of non-energetic plates, rods
and solvent, which is perhaps the simplest case in which
the problem of order-dependence presents itself.

Generalization to the placement of plates rather than
lines (into a field of like objects) was accomplished by
arguing that placing a plate can be done with the same
probability as placing selected sets of lines contained in
the plate. It was argued that placing a plate against other

like plates is equivalent to placing two of its perpendic-
ular edges, or equivalently, its diagonal (see text). The
probability of placing a line is orientation dependent. In
general, the central problem, which has not been solved,
is given that the probability of placing a straight line of
length x in orientation V is exp (–x /< x(V )), where
< x (V ) is known, what is the probability of placing a
given shaped area (volume) at a given orientation? In
Fig. 6, we show 5 figures that describe various
approaches to the problem. Figure 6a describes an adap-
tation of the SA statistics to squares by Boehm and
Martire. One first lays down the corner site, then each of
the two edges, then the remaining (r –1)2 sites. Figure 6b
describes our first approach where we lay down the
corner site and the two edges with identical probabilities
just as SA and BM do, but lay down the remaining
(r –1)2 sites with a probability equal to 1. Our justifica-
tion for this was first that it gives the correct result for
the case of complete tiling, and second our argument
that the probability for laying down a square is the same
as that for laying down a diagonal to the square (see
text). However, in the Theory Section, we argue that the
SA, BM procedure is treating the close packedamor-
phousregion more correctly, while our treatment may be
treating the high density crystalline region more cor-
rectly.

Fig. 6. Five different ways of calculating the probability of placing
a square of 52 segments into a field of like squares. One easily verifies
that in any of the figures the probability of simultaneously placing the
darkened monomers is equal the probability of placing the square. See
text.
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Figure 6c is an attempt to solve the problem by arguing
that the probability of placing the square is equal to the
probability of simultaneously placing the two edges and
the one site on the opposite diagonal. This is certainly
true since placing these sites in a field of squares implies
that one can place the square, but this is not the same as
saying that the probability is equal to the probability of
placing the two edgestimesthe probability of placing
the diagonally opposite corner site. Similarly, the prob-
abilities of simultaneously placing the perimeter sites,
Fig 6e, or the four corner sites, Fig. 6d, is equal to the
probability of placing the whole square, but this does
not mean that we get the correct answer by multiplying
independentprobabilities. So the fundamental idea that
the probability of simutaneously placing a selected set
of sites is the product of the probabilities for placing the
individual sites fails for objects other than linear chains.
This being the case, it is probably best to choose the
factor for the (r –1)2 fill-in sites to fit a Monte Carlo
calculation which is to be taken as the exact answer.

Another approach taken [see Eqs. (28), (29)] was to
use the fact that there should be no differece in results
(if we place squares first, then rods or conversely) as a
way of deciding the expression for the probability of
filling-in the last (r –1)2 sites. The results, Eqs. (32), and
(33) are always smaller than the corresponding BM ex-
pression. Thus, the BM entropy lies between our two
estimates.

We began our investigation with the confidence that
knowing the exact answer for the tiling of squares would
allow us to select which of the three possibilities was the
correct one. However, we no longer believe this. An
isotropic distribution of plates ind = 3 shows an entropy
catastrophe just like that observed for rigid rods ind = 3.
In our view, this is real and is a basis for predicting an
entropy-driven phase transition from disordered to or-
dered plates just as the entropy catastrophe for rods
(originally pointed out by Onsager) is the basis for an
entropy-driven isotropic to nematic phase transition in
rigid rod systems. Further, this entropy catastrophe is
the basis for predicting glass formation in isotropic plate
systems, in isotropic rigid rod systems, and finally in
semiflexible polymer systems [17]. Our lattice calcula-
tion is obviously picking up the amorphous close packed
state, and we cannot expect that the tiling results would
apply in the close packed amorphous region.

In discussing the differences between the different
calculations we have perhaps deemphasized the similar-
ities, which we now enumerate. First, relatively simple
calculations can be used to calculate the entropy of
collections of molecules with complex shapes. Simple
generalizations of Refs. 6, and 10 , and this paper can be
used for this purpose. Thus, the thermodynamic proper-
ties of these complicated systems can be easily obtained.

Second, for squares, the methods all use the same statis-
tics for placing the initial corner segment and the seg-
ments of the two edges connecting this corner. The
methods differ only in the assignment of probabilities
for adding the (r –1)2 segments to complete the square.
The three methods used each have a particular advan-
tage. The probability used by SA, Herzfeld, and BM is
the most intuitive. The MBM method of Eqs. (28) and
(29) combines this intuition with the requirement that
placing one square afterN1 rods in thex orientation and
N2 rods in they direction have been placed gives the
same result as placing the square first, then adding the
rods. This is the best we could do in our attempt to solve
the order of placement problem. Finally, assigning a
probability 1 for placing each of the (r–1)2 fill-in seg-
ments gives the correct tiling result for squares. The
three-dimensional results of this paper use this assign-
ment. What is needed is a Monte Carlo calculation of the
number of configurations for a density in the region of
close packed amorphous density. This would allow us to
decide among the three possible choices.

Generalization of lattice results to a continuum of
angles is of course possible along the lines of such
generalizations made previously for the rigid rod prob-
lem [6]. In the rigid rods on a lattice problem, a coordi-
nation number existed which gave the same results as a
continuum treatment [6]. We suspect the same to be true
for plates. In view of this fact, and the fact that the lattice
model is exact in bothd = 1 andd = `, we believe the
continuum treatment gains little.

Recently, Li, Freed, and Nemirovski have developed
an expansion technique for for arbitrary shaped
molecules on a lattice, and have applied it to squares
[22].

In this paper we have avoided discussing energetics in
order to focus on the entropic part of the problem. The
introduction of energetics results in many additional
phases and allows us to attempt a classification of the
possible phases of discotic type molecules along the
lines of that for liquid crystals and soaps. If we associate
the long axis of the rigid rod with the perpendicular to
the plane of the plate-like molecule, then it is obvious
that every phase for liquid crystals has its analogue for
plate-like systems. Proceeding in the other direction, we
see that the columnar phase of discotics must have its
analogue for liquid crystals. Thus, the subject of phase
transitions in plate-like systems is potentially as rich a
subject area as phase transitions in liquid crystals and
soaps. An obvious difficulty in introducing interaction
energies is the non-applicability of van der Waals forces
for large molecules; the dispersion forces are generally
of longer range than one obtains by using simple
additivity of the pair potentials [23]. This can be a large
effect. Finally, Brownian motion, which allows the
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molecules to sample space, is greatly reduced for large
molecules. Plates, which can consist of thousands of
atoms held rigidly count as very large molecules. Thus,
the rate at which phase space is being sampled by
molecular bombardment of the plates by solvent
molecules is much slower than for liquid crystals or
polymer systems; consequently, we should expect that
the attainment of true equilibrium in these systems may
be severely compromised.
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