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Extreme Value Theory and Applications

Proceedings of the Conference on Extreme Value
Theory and Applications, Volume I1

Gaithersburg, MD
May 1993

Preface

It appears that we live in an age of disasters: the Mississippi and the Missouri rivers flood millions of acres,
earthquakes hit Tokyo and California, airplanes crash due to mechanical failure, and powerful windstorms cause
increasingly costly damage. While these may seem to be unexpected phenomena to the man in the street, they are
actually happening according to well defined rules of science known as extreme value theory. For many phenomena
records must be broken in the future, so if a design is based on the worst case of the past then we are not really prepared
for the future. Materials will fail due to fatigue: even if the body of an aircraft looks fine to the naked eye, it might
suddenly fail if the aircraft has been in operation over an extended period of time. Extreme value theory has by now
penetrated the social sciences, the medical profession, economics and even astronomy. We believe this field has come
of age. To utilize and stimulate progress in the theory of extremes and promote its application, an international
conference was organized in which equal weight was given to theory and practice.

The Proceedings are published in three Volumes. Volume I, published by Kluwer Academic Publishers, contains
papers of general interest in extreme value theory and practice. Volume I1, this Special Issue of the NIST Journal of
Research, contains papers deemed by the Committee to be most directly relevant to NIST's mission. Volume III, NIST
Special Publication 866, contains papers selected for their important contribution to a number of specialized topics.
All papers have been refereed and we are grateful to the many engineers and scientists from all over the world who
served as referees.

The conference was held in May 1993 on the campus of the National Institute of Standards and Technology (NIST)
in Gaithersburg, Maryland, with its Statistical Engineering Division (SED) acting as host. It was organized by Temple
University, Philadelphia, Pennsylvania, and NIST.

The conference had no external funding, and NIST’s support was fundamental to its success. We are particularly
grateful to Dr. Lundegard, Chief of SED, whose support was the single most important factor in making the
conference happen. The support of NIST’s Building and Fire Research Laboratory is also acknowledged with thanks,

The Organizing Commitiee consisted of Janos Galambos (Chairman), James Lechner, Stefan Leigh (Director of
Local Arrangements), James Pickands III, Emil Simiu, and Grace Yang. Stefan’s enthusiasm and tireless work was
essential for the success of the Conference. The Conference included three special sessions:

The Centennial Session for Emil Gumbel. Churchill Eisenhart introduced the Session. His personal recollections
of Gumbel are included in Volume I of the Proceedings. Emil Simiu then spoke on Gumbel’s life and work.

The Memorial Session for Josef Tiago de Oliveira. Janos Galambos remembered Tiago, a close friend to many
Conference participants, who was on the initial list of invited speakers. M. Ivette Gomes gave a detailed account of
his work.

The 80th Birthday Session for B. V. Gnedenko. Janos Galambos summarized the work of Gnedenko as the founder
of modern extreme value theory and his contributions to the central limit problem, limit theorems with random sample
size, and renewal theory.

The Conference was opened by Dr. Robert Lundegard who emphasized extreme value theory’s role in scveral
scientific and engineering ficlds. It ended with a panel discussion on the future of extreme vaiue theory and its
applications. The Panel was chaired by Janos Galambos, and its members were Enrique Castillo, Laurens de Haan,
Lucien Le Cam, and Richard L. Smith.

We sincerely thank Julian M. Ives of the NIST Publications Production Program for his invaluable assistance in
editing and producing this Volume.

Janos Galambos

James Lechner

Emil Simiu
Editors

Charles Hagwood
Technical Editor
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In the context of corrosion engineer-
ing it is often natural to be concerned
with extreme events. This is because,
firstly, it is these cxtreme cvents that
often lead to failure and, secondly, it
may only be possible to measure the
extremes, with much of the underlying
measurements by their very naturc un-
observable. Statistical methods relating
to extreme value theory can be used to
model and predict the statistical be-
haviour of extremes such as the largest
pit, thinnest wall, maximum penetration
or similar asscssment of a corrosion
phenomenon. These techniques can be
applied to the singlc largest value, or
to a given number of the largest values,

measured over individual areas or cou-
pons; or to all values cxceeding a given
threshold. The data can be modeled to
account for dependence on environ-
mental conditions, surface area exam-
ined, and the duration of exposure or
of experimentation, The application of
a sclection of these techniques is
demonstrated on data from industry
and from laboratory experiments.

Key words: corrosion; exccedances; ex-
treme values; extreme value distribu-
tions; generalized Parcto distribution.

Accepted: March 22, 1994

1. Introduction

Extremes are typically defined in two ways. Ei-
ther by selecting a suitable threshold and then
recording every observation above that threshold;
or by sorting the data, according to some a priori
sampling scheme, so as to select the one, two, or
three, etc., largest value(s). The nature by which
the extremes are defined and hence measured is
then indicative of the techniques appropriate for
modeling and prediction. Most of the statistical
methods relating to extreme values are based, in
the first instance, on the assumption of an underly-
ing large sample of possible measurements, all
nominally arising from a single population of such
possible measurements. For extreme value theory
to be used, it is then only necessary for the actual
extremes to be measured. The other possible mea-
surements can be ignored and may even be unob-
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servable with the equipment used to measure the
extremes. The nature of the extreme may be that
of a maximum value or a minimum value. In this
paper we will assume that maximum values are of
interest. In applications concerned with minima,
negating the variable of interest will transform the
problem into one concerned with maxima.

The generalized Pareto distribution (GPD) is
the standard family of statistical distributions to be
used as a basis for modeling data which arise as
exceedances over some threshold. Applications of
this approach for the first of the above extreme
value definitions is examined in the following sec-
tion. Methods to ensure the validity of the standard
statistical assumptions while accumulating such
data are discussed. The generalized extreme value
(GEV) distribution can be shown to be the natural
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one to use for single extremes. Data can arise as
the largest value from each of a set of coupons (in-
dividual specimens), or from partitioning an area
into equal smaller areas and selecting one maxi-
mum from each smaller area. The application of
methods considering such single extremes is also
considered. The joint generalized extreme value
distribution (JGEV) is the appropriate distribution
family to use when the r (say) largest values are
extracted, instead of just the single largest value.
This provides a useful extension to the classical
theory in such a way as to match up with the com-
mon practice of measuring the few largest pits at
any one location undergoing pitting. Using the r
extreme order statistics in this way can increase the
precision of the estimates in the model and hence
improve predictions.

Dependence on time and area can be incorpo-
rated for prediction and extrapolation purposes
when applying these distributions, and methods for
modeling the dependence on environmental condi-
tions, say, through covariates are indicated.

2. Exceedances Above a Threshold

These are data collected on the basis of all val-
ues exceeding a specified threshold, taken suffi-
ciently “high” to imply that certain limiting
statistical results will hold. The data in Table 1, on
pit depths in two stainless steel roofs, were col-
lected with just such a threshold, namely 6 wm, in
operation. This threshold qualifies as “high” on the
basis that a much lower one, such as 0.06 um for
example, would have produced a very much larger
sample of nascent pits. This is consistent with theo-
ries of pitting in steel and other metals. See further
argument supporting this approach in Ref. [1]. This
type of data censoring can arise through built in
limits on measurement capabilities or else through
deliberate censoring of a given data set, typically a
dense time series, so as to isolate the important

Table L. Pit depths above 6 pm in stainless steel sheet college
roofs (area 500 m?; samples 10 cm?; thickness 400 um)

Roof 1 (50 months)
131106 352626 25232020 18 18 18 17 16 16 15 15 15 14 14
141414 1414141412 121212121010888888 888

Roof 2 (29 months)
140 106 95 77 72 55 55 53 52 36 33 32 32 30 28 28 26 26 25 24
242422222018 18 16 16 16 16 14 14 12 12 12888
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events. When such data are extracted from a regu-
lar grid of values rather than through the engineer
visually identifying isolated corrosion phenomena
and taking one measurement on each, it may be
necessary to edit the values so as to extract only
local cluster maxima rather than using all nearby
points. This is needed to “decouple” the recorded
values and so validate the usual assumption of
statistical independence or exchangeability. A care-
ful combination of grid size (to match the scale of
the phenomena being studied) and threshold (to
select for significant phenomena) may be all that is
necessary.

With this form of data set, both the number, n,
of observations and their observed values {y;} are
necessarily random variables. It can be shown, see
for example Ref. [2], that, for sufficiently high
thresholds, and for a wide variety of initial distribu-
tions, this number, n, of the exceedances, has
asymptotically a Poisson distribution (with parame-
ter A, say) and their sizes, y, have a generalized
Pareto distribution:

Go)=1-(1+&la) "%, o
valid for 1+ & /o >0, with o >0 and — o <{< o,
In particular, if these distributional results hold ex-
actly for some particular threshold, u say, then the
maximum of this set of values has a generalized
extreme value distribution (see next section) ex-
actly, and this will be true for all higher thresholds.
A check that the distribution, Eq. (1), holds can be
made by graphing the mean excess plot, in which
the mean exceedances in the data are plotted
against increasing threshold values. This plot
should follow a straight line with slope &/(1—¢)
and intercept o/(1— £); with a horizontal plot cor-
responding to £ =0 and a simple exponential distri-
bution for the tail. For extrapolation over larger
areas, for extremes derived from random sampling
over a large structure, often the quantity of interest
is the N'th return level

gy =u = [1LON)T,

where N is either the number of “coupon multi-
ples” as a measure of structure size, or ¢lse the
number of time intervals into the future. The Nth
return level is interpreted as that level which would
be exceeded on average once every N units of area
(or time).
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The data in Fig. 1(a) are 1024 values of “current
noise” collected during a study of the electrochem-
ical nature of pitting. This series was “declustered”
using a moving window of width 40 to give the iso-
lated maxima in Fig. 1(b). A mean excess plot for
the isolated maxima of the current noise data is
given in Fig. 1(c). Consideration of this plot sug-
gests that either a large threshold is required or
that the exceedances arise from a mixture of the
tails of underlying distributions. For an electro-
chemical interpretation of this latter phenomenon,
it can be noted that large narrow current spikes
have been described as being typical of intermit-
tent pitting corrosion, while steady broader based
but less variable current noise has been associated
with general corrosion, see for example Ref. [3].
Intermediate conditions can be associated with
persistent pitting, widely recognized as the most
threatening scenario for metal structures.

1400 —

800 1000 1200

Fig. 1(a). Current noisc measurements (sample size = 1024).

|

Fig. 1(b). Isolated peaks in currcnt noise measurements.
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Fig. 1(c). Mcan excess plot for current noise measurements,

The main difficulty which can arise with the
threshold method is the choice of an appropriate
threshold, especially when there is no a priori rea-
son for choosing one particular threshold over an-
other. In an experiment to consider the prediction
of extreme corrosion rates for carbon steel in a
simulated basalt groundwater [4], a number of 200
mm X 200 mm coupons were exposed for varying
lengths of time. These coupons, having been first
cleaned to remove all corrosion products, were
profiled with spot heights taken at the nodes of a 1
mm lattice. This then gave, after making an adjust-
ment for the original coupon surface, a 196 x 196
array of corrosion measurements. False-color his-
togram-equalization techniques, displayed on com-
puter monitors, were used to validate and inspect
the digitized spot heights from these coupons. A
mean excess plot for a typical coupon exposed for
26 weeks is shown in Fig. 2(a). Note that this plot
was drawn for both the raw exceedances and also
for declustered exceedances. The process of
declustering essentially amounted to identifying all
those “pits” or clusters exceeding a particular
threshold and calculating the maximum ex-
ceedance for each “pit.” The mean excess plot in-
dicates that a range of possible thresholds (300
pm-550 wm) would be appropriate for model fit-
ting. Table 2 gives the results for such model fitting
using maximum likelihood for a range of values of
threshold. Here A is the mean exceedance rate per
m’, o, and £ are the parameter estimates for the
GPD, and g5 and g are those levels that would
be exceeded once on average every m? and every 10
m? respectively. Standard errors are given in brack-
ets. If the gss is considered, we see that its esti-
mated value decreases as the threshold increases,
its value being highly sensitive to the value of .
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Table 2. Summary of model fitting and prediction using maximum likelihood for the generalized Pareto distribu-

tion for a typical 26 week basalt groundwater coupon profile

Mean cluster

excccdance Number of
Threshold (m) clusters A o £ gas 50
300 99 177 4425 98.0 0.01 1158 1406
(333) (1) (0.08) (260) (430)
350 92 146 3650 99.0 0.04 1205 1500
(302) (11) (0.09) (300) (527)
400 97 9% 2400 104.3 -0.08 1004 1102
(245) (16) (0.11) (214) (322)
450 83 76 1900 834 -0.01 1057 1233
(218) (11) (0.13) (241) (405)
500 %0 50 1250 102.6 -0.14 963 1037
(177) (23) ©.17) (213) (309)
550 87 29 725 108.5 -0.23 918 961
(135) (12) (0.31) (250) (339)
For higher thresholds the large negative value of £
is indicative of a tail distribution which is shorter 600 ;
than exponential so implying lower return values. %
For lower thresholds the tail appears to be expo- O 500 |{ o
nential implying relatively higher return values. %
This effect can be seen further in an exponential T 400
probability plot of the exceedances above 300 wm, gJ)
Fig. 2(b). As the threshold increases more weight is O
given to the extreme observations, which are them- x 300
selves smaller than would be expected for an expo- o
nential tail. The lack of an objective method for T 200 |
determining the correct threshold therefore leads 8
to difficulties in prediction. @
o 100 ¢
C
O
120 0
c 100 | 0 1 2 3 4 5 6
= ; -
3 el plotting position
_§ 40 Fig. 2(b). Exponential probability plot of declustered ex-
§ ceedances above 300 pm.
= 40
c
E 20 | 3. Extreme Value Distributions
0 Data suitable for this type of analysis can arise as
200 400 400 800 the large_st. value from hcach of a set of coupons, or
from dividing an area into equal smaller areas and
threshold/pm selecting one maximum from each smaller area,

Fig. 2(a). Mean excess plot for typical 26 week basalt ground-
water coupon profile: O—mean declustered exceedances; O—
mean of all exceedances.
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provided the scale of division and corrosion pat-
terns are compatible in the sense described above
for the generalized Pareto distribution. For a sam-
ple of independent identically distributed random
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variables, xi,...,x:, the distribution of xma, the data
maximum, depends on n. Suppose however that
there exist location and scale factors, a, and b, say,
so that the rescaled variate, y =a, +b,x(,), has a dis-
tribution which is independent of . This is the so-
called “stability postulate,” and leads immediately
to the following functional equation (to be solved
for F). F(x)'=F(a,+bux). The solution to this
equation is the generalized extreme value (GEV)
distribution, which can be written in the following
3-parameter form:

Fe)=exp{—[1+£(x —u)y] ™"}

Ex>fn—=£0, >0 (2)
See for example Ref. [5]. Note also that if the as-
sumption of independence is relaxed, under gen-
eral conditions the distribution, Eq. (2), is still the
appropriate one for maxima. It turns out that al-
most all standard distributions satisfy the stability
postulate asymptotically, although it is only exactly
true for the GEV distribution itself. This is exactly
analogous to the Central Limit Theorem for aver-
ages, which is satisfied asymptotically by almost all
standard distributions, but only holds exactly for an
initial Normal distribution. As with averages, which
are assumed Normal, by the Central Limit Theo-
rem, and then fitted accordingly, so with maxima, it
is reasonable to assume a GEV distribution and fit
accordingly. Since the dependence of the stability
coefficients, a,, b,, on n is typically logarithmic, or
slower, we can extract maxima from samples which
are roughly the same size. In engineering practice
this is often almost unverifiable, but nevertheless a
plausible assumption, since the bulk of the data,
“too small to be seen,” may be uncounted, let
alone observed. The physical size of components
and common conditions may be the only justifica-
tion.

For extrapolation over larger areas (for extremes
derived from random sampling over a large struc-
ture) or over longer time periods (for extremes
derived from sampling at regular intervals of time),
the Nth return level can be defined by solving
F(x)=1-1/N. Again N is interpreted as in the
previous section. Alternatively, after fitting the dis-
tribution to the given data, the implied distribution
of extreme values from future samples over larger
areas and longer lengths of time (with equal base
populations) can be deduced and properties such
as the mean extreme, etc., inferred from this more
fundamental approach. For a full discussion see
Ref. [1]. However, the return period method is par-
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ticularly easy to implement for type I extreme value
probability plots. For examples of these plots ap-
plied to pit depths in steels exposed to marine envi-
ronments se¢ Refs. [6,7]. The parameters can also
be regressed on covariates as appropriate, to allow
for dependence on measured environment vari-
ables and/or time, see for example Ref. [8]. A more
subtle approach for modeling covariates would use
an extreme value regression model of the sort con-
sidered in the context of the Weibull distribution
[9].

In Ref. [10] each of five circular coupons were
exposed to a corrosive medium for each of four
different exposure times: 1000 h, 3000 h, 5000 h,
and 8000 h. The maximum pit depth was measured
in each of six equal sectors on each specimen.
Nominally this gave 120 pit depths in all, however,
for many coupons, pits overlapped into a number
of sectors and so the number of independent max-
ima was significantly reduced. Figure 3 shows a
plot of maximum pit depth against exposure time
for resulting data. The plotted mean function and
upper bound are based on the fitting of a 4-
parameter time dependent GEV distribution for
which w, =w? Y=y’ and ¢ is constant. This
model gives

pe=0912(£0.063)% 4 =0.293(+0.037)#

B =0.298(*0.051)

£=—0.216(=0.121).

2.0
E
F
S
£
8 1.5
[ ]
#)
»
{2
g 1.0
=3
E
x
1]
E 0.5

0.0 4

0.0 0.2 0.4 0.6 0.8 1.0
years

Fig. 3. Maximum pit depths against time for carbon steel in
alkaline conditions along with fitted mean function (---), up-
per bound { ) and confidence curves for the upper bound

=
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The corresponding mean function is =

™
[6 +-'£,F(] — E)JA=nt®, which agrees with the com-

mon assumption made in the corrosion literature
of a power law growth of the mean maximum pit
depth with time [8,11,12]. The implied upper
bound is then 6 =6f=(u —y/E)?. Such means
and bounds can be extrapolated out to larger areas
of exposed metal and to longer time periods using
the methods described in Ref, [1]. Standard errors
on the upper bound were calculated by reparame-
terizing the problem and constructing a profile
likelihood for & as in Ref. [2]. The negative value
for the shape parameter £ has been observed by the
authors of this paper consistently for corrosion
phenomena of many types and in many environ-
ments, This has important consequences for ex-
trapolation since, in corrosion engineering return
levels are often very large (e.g., it may only be pos-
sible to inspect a small number of one meter sec-
tions of a buried pipeline which may be hundreds
of kilometers in length), and so for the range of
values of £ encountered by the authors, the maxi-
mum will be very close to the upper bound or end
point of the distribution. This should be contrasted
with the commonly used £ =0, type I extreme value
distribution, [6-8,11] for which there is no upper
bound.

4, Extreme Order Statistics

There is a corresponding asymptotic result con-
cerning the joint distribution of the r largest values,
Xmax =X() = ... ZX(y, from a sample of independent
identically distributed random variables. Data will
in general then consist of m sets of such largest
values. The joint generalized extreme value distri-
bution (JGEV) has density

Flrsye) = rexpl{=[1+5 (5 = )]

~GnSlogdi+in -l @)
j=1 ¥
valid for &x; > &u — ¢ =£6, ¢ >0( =1,..,r). See for
example Ref. [13]. This is the appropriate distribu-
tion to use when the r (say) largest values are ex-
tracted from coupons or sampled areas, instead of
just the single largest value. This provides a useful
extension to the classical theory in such a way as to
match up with the common practice of measuring
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the few largest pits at any one location undergoing
pitting. Using all this information rather than just
the single largest extreme enables smaller confi-
dence bands to be drawn around predicted values.
However care is needed to ensure that r is not
taken so large as to invalidate the choice of the
asymptotic distribution, Eq. (3).

When £=0, this model reduces to the Gumbel
form of the JGEV with density

Flrun ) =~ expl —expl 5 i — )]

-3 %(x,- - )} @)
A useful diagnostic here is the joint Gumbel plot.
When xny=...2x, have density, Eq. (4),
E(xy)=p—¢¢(i) (all 1=i=<r) [14], where ¢(-) is
the digamma function. Thus a plot of the order
statistics x() against — ¢ (i) will give a straight line
with slope ¢ and intercept w if the Gumbel form of
the JGEV distribution is appropriate. Such a plot
is shown in Fig. 4 for each of the pitted college
roofs data in Table 1. This plot indicates that these
extremes arise from perhaps a mixture of two tail
distributions. However it was assumed that £=0
for both roofs and that for roof 1, the two largest
values were to be outliers from the model, Eq. (4).
These two values were removed for the purpose of
analysis, and the slopes and intercepts resulting

150 +
0
o]
120 4
/]
o oo
ey
2 901 =
4
L] u]
ey [m]
? 60
& oo
-
<
G
30 +
0 } ; {
-5 -4 3 2 - 0 1

pletting position

Fig. 4. Joint Gumbel plot for the college roof data: O—roof 1;
O—roof 2.
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used as starting values for determining the maxi-
mum likelihood estimates of the parameters in Eq.
(4). The fitted values, with their standard errors,
were

p=542(£79) =125 (=2.1), roof 1,

u=103.2 (=15.8) ¥ =26.0 (x£4.2), roof 2.
These values are then available for the implied
Gumbel distribution of the maximum value, which
has mean p +0.57724. This gives 61.4 pm for roof
1 and 118.2 um for roof 2. Extrapolation could now
proceed according to the method described in the
previous section, noting however that the mean of
the maximum for roof 1 is considerably out of line
with the observed maximum of 131 pm.

Reference [15] reports on an experiment where
15 low alloy steel specimens were suspended in a
deionized warm water bath under free corrosion
conditions. Specimens were removed at varying in-
‘tervals up to 71 days, then after cleaning, pit
depths and diameters were measured optically, A
4-parameter JGEV distribution incorporating a
power law dependence on time [16] was fitted to
these pit-depths, utilizing the two largest pits from
each side of the specimens giving parameter values;

p=7.041(£0.710)f ¢ =0.467( =0.066)¢",

B =0.609(+0.016) £=-—-0.513(%0.126).
These are the maximum likelihood estimates for
their data, for which they were only, at that time,
able to report initial probability weighted moment
and regression estimates. Figure 5 shows a plot of
this data along with the fitted mean function and
upper bound, and confidence curves for the upper
bound calculated using the profile likelihood
method discussed in the previous section.

5. Discussion

A number of statistical techniques relating to ex-
treme value theory have been described and
demonstrated on selected sets of corrosion data.
Noting that much corrosion data are inherently of
an extreme nature, purely statistical considerations
along the lines described in this paper may be the
only means of determining numerical values for
prediction of the maximum pit depth in an area 4
at time ¢, for example, along with some estimate of
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Fig. 5. First and second largest pit depths against time for low
alloy steel in dcionized warm water, along with fitted mean
function (—--), upper bound (——) and confidence curves for
the upper bound (-~ -).

precision or possible error. There is much evidence
in the literature that £ <0 for the GEV distribution
in the context of extremes of corrosion phenomena.
Return levels are often very large and so, for the
range of values of £ encountered, predicted max-
ima will often be very close to the implied upper
bound or end point of the distribution.

It should be noted however, that with all the
methods described here, there are pitfalls. When
modeling exceedances, for example, it is difficult to
choose the threshold objectively, and different
thresholds can lead to different predictions. Similar
problems exist in the use of the r largest order
statistics and also the maximum itself. How many
largest order statistics should be used? When
recording single maxima, how large should the
sampled area be? While some theoretical resulis
are available to answer such questions (e.g., Ref.
[17]) these are not very helpful in a practical con-
text.
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1. Introduction

Modern large buildings in the Tokyo metropoli-
tan area usually have a centralized hot-water sup-
ply operating 24 h a day. Copper pipe is widely
used in such systems because of its relatively high
resistance to corrosion, coupled with additional
pragmatic merits: it is easy to work with, easy to
install, and relatively cheap.

The seriousness of Type-1I pitting corrosion,
however, has increasingly received high recognition
in such hot-water supply systems [1,2,3]. The need
to obtain information regarding the degree of pit-
ting corrosion has increased over the last decade
because considerable pipe damage may require
maintenance, and even replacement, and in that
case, proper life prediction is essential to pass rea-
sonable engineering judgements and thereby to
perform proper maintenance.

The life prediction of such copper plumbing tub-
ing can first be performed by coupling adequate
nondestructive and/or, though less favorable, de-
structive inspection techniques with reliable statis-
tical analysis. It has been shown that the most
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promising statistical analysis methods for such a
purpose include extreme value statistical analysis
[3.4].

Although such tools have become widespread, a
general method for evaluating the localized corro-
sion propensity on existing engineering structures
from limited inspection data, and concrete crite-
rion for the number and size of samples required
to obtain a reasonable extreme value prediction is
still not available.

In the present study, a set of pitting corrosion
depth data obtained from 7 year old copper plumb-
ing pipe, one third of which was removed from a
centralized hot-water supply system, was examined
by extreme value statistics. Emphasis was placed on
the effect of the total number and size of maximum
pit depths on the accuracy of pit growth prediction.
A concept was ultimately proposed to obtain a rea-
sonable prediction of maximum pit depths while
minimizing the total sampling area (or, length) for
analysis.
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2. Test Procedures
2.1 Test Specimens

Copper pipes totaling 8.88 m in length were re-
moved from various parts of the centralized hot-
water supply system in an 1l-story multi-family
dwelling in Tokyo. The system consisted of one
stainless steel storage tank (1.8 m®) and copper
plumbing pipe having an overall length of about 28
m. The plumbing material was JIS C 1220T type
25AM (outside diameter 28.58 mm and wall thick-
ness 0.89 mm) copper pipe for building use. The
system had been operating for about 2600 d before
test piping was removed. In the system, water at a
nominal temperature of 60°C circulated con-
stantly. Average flow (i.e., hot-water consumption)
was around 8 m%/d, the storage tank being supplied
automatically with tap water.

The copper piping removed was cut into parts
100 mm long, which were then cut in half to give
half-ring specimens. Each half-ring specimen was
then completely cleaned ultrasonically in dilute sul-
furic acid, followed by marking-off to divide it into
10 virtual half-ring specimens of 10 mm unit length,
after which the pit depths were measured by using
an optical microscope of 1 wm precision. By cou-
pling two opposite virtual half-ring specimens, a 10
mm long full ring specimen was reassembled, and
the area thus surveyed should be representative of
the pipe at that particular location. Then, by taking
several adjoining full-rings of 10 mm length, for
each unit sample sizes of maximum pit depths
(hereinafter, s: unit length) in the interval 20 mm
up to 200 mm were obtained.

2.2 Extreme Value Statistical Analysis

The extreme value statistical analysis was per-
formed by using a commercial available personal
computer software package, EVANS [5].

The basic concept of the present extreme value
analysis is briefly reviewed in the following sec-
tions.

2.2.1 Extreme Value Probability Plots The
first step of the extreme value analysis included the
preparation of extreme value probability plots, that
is, plots of maximum pit depth data on extreme
value probability paper of the cumulative relative
frequency (F(y)) vs maximum pit depth (x). Maxi-
mum pit depths data were arranged in order from
largest to smallest and assigned a rank number,
The vertical plotting position F(y) for each pit
depth value was calculated by the averaged rank
method as follows:
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F)=1—i/(N+1) (1)

where i =rank number,

N =total number.

Several sets of plots were obtained depending on
the combinations of N and s. In an exemplifying
case of s =100 mm and N =7, a total of 10 sets of
plots was subjected to regression analysis.

2.2.2 Regression for the Best Fit Line Re-
gression analysis based on the MVLUE (Minimum
Variance Linear Unbiased Estimator) method was
made for each data set to determine a straight line
of best fit to the plotted extreme values. The equa-
tion of a straight line is given as follows:

x=A+ay (2)

where  x =expected maximum pit depth,
y =standardized variable,
A =location parameter,

a =scale parameter.

The straight line is drawn in Fig. 1 on extreme
value probability paper. In the present analysis,
emphasis was placed on the optimum combinations
of N and s for obtaining a reasonable estimate of
the extreme value. Such an analysis becomes feasi-
ble through a thorough investigation of all the sam-
ples where the depth of the actually detected
deepest pit could be regarded as the probable max-
imum pit depth, that is, the extreme value.
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Fig. 1. Extreme valuc probability paper of double-exponential
distribution.
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3. Results and Discussion
3.1 Distribution of Pit Depths

Figure 2 is a histogram showing the relationship
between the pit depths and the total frequency. In
the figure, a total of 970 depth data for all pits
found in one 10 mm long full-ring, removed from
the 7th floor in the building, was grouped over the
pit depth ranges, 0 mm~0.019 mm, 0.020 mm-0.039
mm, etc. As is evident from the figure, the shape of
the pit depth distribution is a bell-shaped curve
starting at zero, rising to a maximum at around
0.05 mm and thereafter decreasing rapidly with in-
creasing pit depths. The lack of “J”-shaped portion
bending to the right in the pit depth range from 0
mm to 0.02 mm, together with the trailing extreme
portion of the tail of the curve up to 0.34 mm, indi-
cated that most of the small pits had already had
ceased to grow while only a small number of
deeper pits continued to grow.

=
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0 0.2 0.04 0.06 0.08 0.70 0.12 0.14 0,16 0.18 0.20 0.22 0.24 0.26 0.25 0.30 0.32 0.340.3%
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=
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Pit depth (mm)

Fig. 2. Pit depths distribution histogram for 10 mm long copper
pipe used for 2600 d in a hot-water supply system opcrated at
60 °C.

In Fig. 3, all the pit depth data represented in
Fig. 2 were plotted on a logarithmic-normal distri-
bution diagram. The apparent linearity of the plot
indicates that this distribution applies to the loga-
rithmic-normal; and hence the maximum pit depth
data obtained in the present pit depth survey were
sampled from the parent populations with a loga-
rithmic-normal distribution.

Figure 4 shows the distribution at every floor of
the maximum pit depth detected in each 100 mm
unit length. Though the maximum pit depths
seemed to have a slight tendency to become shal-
lower at upper floors, the distribution of pit depths
was regarded as being uniform throughout the
building. The actual maximum pit depth value in
the present survey was 0.452 mm which was de-
tected at 6th. floor.
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Fig. 3. Plot on a logarithmic-normal distribution diagram of all
data presented in Fig. 2,

In Figure 5, the maximum pit depth data for unit
lenghs of 20 mm, 100 mm, and 200 mm were evalu-
ated from extreme value analysis on the basis of
Gumbel’s double-exponential distribution; the lin-
earity of each plot shows that this distribution ap-
plies to the maximum pit depth data obtained at
the unit lengths between 20 mm and 200 mm.

3.2 Minimum Required N and s

In the practical application of extreme value
statistics, the number and the size of unit samples
for the pit depths survey are to be decided prior to
the destructive (or nondestructive) inspection of
the existing structures.

Reliability of the extreme value prediction de-
pends on the following three equations:

y=InT 3)
T=S/s 4)
Va)=aAN )Y +B(NaY +C(Na)]  (5)
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where y =standardized variable,
9 T=return period,

S =total length,

s =unit length,

value,

coefficients,
a=scale parameter.

Floor number

increase of N and s for the extreme value survey.

F creased reliability, hence for a minimized V(x), it is
6 and/or to increase N. In the interest of economy,

F ﬁ expected to be:
1 1 1 I |
A=
0 01 02 03 04 05 e
Maximum pit depth (mm) where A =location parameter,
o=standard deviation of the estimated
Fig. 4. Distribution at cach floor in the building of the maxi- extreme value,
mum pit depth detected in each 100 mm unit length. m =assumed number (1, 2, 3, etc.)

V(x) =variance of the estimated extreme

A(N,n), B(N,n), C(N,n)=MVLUE

It is obvious from these equations that for in-
required to increase s (therefore to decrease T)
however, there must be a natural limitation to the

In theory, the optimum combinations of N and s
can be determined from Egs. (3) to (5) once the
distribution parameter (that is, a ratio of the loca-
tion parameter to the scale parameter, a/A) is
reasonably assumed (that is, empirically or experi-
mentally), and the extent of the standard deviation
of the error of extreme value estimates, o, may be

That is, the decision may be made to reduce o to

I/m of A [6].
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Fig. 5. Double-exponential distribution type of extreme value probability plots for s =20 mm, 100 mm, and 200 mm.
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Table 1 shows the result of extreme value analy-
sis to obtain the relationship between unit length
and distribution parameter. In the analysis, all pit
depth data obtained from the whole lengths were
brought into consideration. It can be seen in the
table that the distribution parameter, a/A, de-
creased with increasing unit length, ultimately ap-
proaching to a definite level of 0.15.

Table 1. Location, scale, and distribution parameters deter-
mined from all maximum pit depth data obtained in the survey

Unit length T N xme A a alA
(mm) (mm) (mm)  (mm)
50 1776 172 0575 028415 0.05621 0.198
100 888 86 0528 030446 0.04986 0.16
200 444 43 0506 03221 0.04866 0.151

Optimum combinations of N and T (hence, s5)
required for controlling o down to 1/m of A were
obtained as shown in Fig. 6 corresponding to a/A of
0.15 and 0.20. It stands to reason, that the number
of unit lengths, N, can markedly be reduced by
loosening the requirement for the reliability, that
is, by decreasing m. N may also be reduced by de-
creasing a/A. Though N may be reduced by in-
creasing s (hence decreasing T), it should be noted
that the total length required for a pit depths sur-
vey can increase on the contrary.
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Fig. 6. Optimum combinations of N and T to control o at levels
of 1/2, 1/3, 1/4, or 1/5 of A under the limitation of a/A =0.2,
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3.3 Maximum Pit Depths Prediction Based on the
Optimized N and s

Figure 7 shows the results of the maximum pit
depths prediction by using the combinations of N
and s from Fig. 6. Unit lengths for this evaluation
were not sampled at random locations, but were
ordered from one end of the lower floors upward.
Thus the results were represented by correlating to
the locations wherefrom those unit lengths used in
the prediction were removed. It can be seen that
the scatter of estimated extreme values decreased
with increasing s. As would be expected, the scat-
ter was narrower at m =35 as compared with m =3.

To determine the general tendency in the reli-
ability of the present extreme value prediction,
Table 2 was developed from data on Fig. 7 by tak-
ing an average for each item. The results indicate
the following:

1) The assumptions for a/A and m, that were
made prior to the analysis, have conservatively
been met.

Increased m did not always result in increased
reliability which indicated that m =3 might be
reasonable in the interest of economy.

Except for the cases of s = 10 mm, the maximum
detected pit depth value of 0.452 mm fell closely
between the average of estimates * 1.
Although the level of s is to be kept as low as
possible, because the total sampling length (ie.,
N Xs) may increase with increasing s, at least
2.5% of the whole structure is to be subjected to
extreme value evaluation at a return period of
500 or the less,

2)
3)

4)

4. Concluding Remarks

Based on this analysis, the following conclusions
can be drawn concerning the optimum conditions
for obtaining a reasonable extreme value predic-
tion.

1) The number and the size of unit samples for the
extreme values survey may be determined so
that the variance of the extreme value estimates
is to be minimized under a definite distribution
parameter, wherein the standard deviation of
the estimates is expected to be 1/3 of the mode
of distribution,

A return period of 500 with a total sampling
length amounting to 2.5% of the entire parts
may be desirable for an increased reliability of
extreme value prediction,

2)
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Table 2. Summary of the extreme value prediction

Estimated

Unit length Return Sample Location Scale maximum o _A—“"
s period number parameter parameter pit depth Prmax
(mm) T N A . Tman
10 888 14 0.241 0.043 0.534 0.069 3.50
A=30 20 444 12 0.269 0.034 0.478 0.054 4.98
40 222 9 0.288 0.035 0.467 0.058 4.98
100 88.8 7 0.313 0.028 0.428 0.045 6.94
10 888 33 0.218 0.046 0.559 0.047 4.63
A=5c 20 444 28 0.266 0.040 0.491 0.040 6.67
40 222 23 0.282 0.039 0.487 0.039 7.25
100 88.8 18 0.312 0.034 0.463 0.032 9.7
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Application of extreme value statistics
to corrosion is reviewed. It is empha-
sized that the concept of corrosion
probability is important for a quantita-
tive evaluation of corrosion failure and
its prediction, especially for localized
corrosion. Extreme value statistics is
quite useful for assessing the maximum
pit depth and/or the minimum time for
crack generation. The maximum pit
depth dcpending on the surface arca
can be evaluated by using the Gumbel-
distribution with the concept of rcturn
period. A standardized procedure is
proposcd for estimating the maximum
pit depth. Examples of corrosion failure

analysis using extreme value statistics,
which were reported mainly in Japan,
arc shown. Accumulated experiences
suggest that an appropriate classifica-
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mechanism is requircd before applying
extreme value analysis, )
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1. Introduction

Development of extreme value statistics and its
application to various fields, including corrosion,
has been described by Gumbel in Ref. [1] and [2].
Evans is one of the pioneers of modern corrosion
science, and first established the concept of corro-
sion probability [3, 4]. Eldredge [5] used extreme
value statistics to obtain the maximum value of pit
depth on an oil well tube wall as a function of tube
surface area. Scott [6] found a logarithmic depen-
dence of the maximum pit depth on surface area,
and explained that dependence by referring to Trip-
pet [7]. Aziz [8] and Eledredge [5] discussed almost
all important points to be considered for the analy-
sis of corrosion pit data and made use of the return
period concept. This concept, originally introduced
in the fields of hydrology or meteorology, is now
used to obtain a size factor which makes it possible
to estimate the maximum pit depth in a large sur-
face area based on the distribution of a small num-
ber of pit depth data from the small surface area
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samples. In Japan, early review papers on corrosion
probability and extreme value statistics by Masuko
[9] and Shibata [10, 11] contributed to the study of
the extreme value statistics as applied to corrosion
problems. Ishikawa [12,13,14] and Imagawa
[15,16,17] applied extreme value statistics to ana-
lyze engineering data. Kase [18,19] reviewed
Lieblein’s paper [20], introducing MVLUE (mini-
mum variance linear unbiased estimator) method
for estimating the distribution parameters, Lieblein
had given the coefficient of MVLUE up to N =6.
Recently, Tsuge [21] had calculated the coefficients
up to N =45, and confirmed that the parameters es-
timated by the MVLUE method are unbiased and
efficient and are consistent with values estimated by
the method of moments or maximum likelihood
when the sample size exceeds more than 20. The
committee of Japan Society of Corrosion Engineer-
ing (JSCE) proposed a standard procedure [22] to
estimate the maximum pit depth from the small
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sample size data by using the MVLUE method, and
a computer program named EVAN [23] was devel-
oped. Recently Laycock et al. [24] reported that a
generalized extreme value distribution is more con-
venient for corrosion depth analysis, because no
preliminary assumption on the type of distribution
is needed. An introductory book [25] by Kowaka et
al. helped to differentiate extreme value analysis
among corrosion workers in Japan. General back-
ground on extreme value statistics is provided by
Ang and Tang [26], and Kinnison [27].

2. Application of the Extreme Value
Analysis to Corrosion

In the early 1980s, meetings and symposia
[28,29,30,31] were held in Japan for discussing the
basic principles of extreme value statistics as well as
difficulties and problems in their application to cor-
rosion. In Table 1, several topics for which the
Gumbel distribution is applied are listed. Table 2
includes cases analyzed using the Weibull distribu-
tion, including the exponential distribution. Before
discussing case histories, the standard procedure
[22] proposed by the commiittee is briefly explained;
details are available elsewhere [22, 32].

Table 1. Examples of the extreme value analysis for corrosion
using the Gumbel distribution

Example Ref.
1. Life prediction of super heater tubes of the power [49]
plant
2. Application of the extreme value analysis to [37]
heating tubes of the boiler
3. Estimation of the maximum amount of impurity [42]
segregation in steel
4. Failure life estimation of SCC for Ni base alloys [41]
5. Extreme value analysis of the corrosion depth of [35]
the oil tank plate [36]
[50]
6. Life prediction of heat exchanger tubes [51]

7. Eddy current examination system for hcat exchanger [43]
tubes with the extreme value analysis

8. Extreme value analysis of pitting corrosion of heat  [52]
exchanger tubes

9. Methods for the parameter estimation of the pit [16]
distribution in plants

10. Ultrasonic method for heat exchanger tubes with [44]
the extreme value analysis

11. Maintcnance system for coated heat exchanger tubes [45]

12. Corrosion of stecls in sea water [53]

13. Analysis of perforation of zinc plating steels by [54]
extreme value statistics

14. Fatigue crack behavior of high strength steel in [55]

artificial sea water
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Table 2, Examples of the extreme value analysis for corrosion
using the Weibull (exponential) distribution

Example Ref.

1. Failure life analysis of stress corrosion [56)
cracking of stainless stecl heat exchanger tubes

2. Failure life distribution of stainless steels [57]
in high temperature and high pressure water

3. Effect of CaCl; concentration on SCC life time [58]
distributions of stainless steels

4. Evaluation of SCC failure life of stainless steel [59]

in high temperature water

2.1 The Gumbel Distribution

The procedure is proposed mainly for analyzing
pit depth distribution by using the Gumbel distribu-
tion and the return period in order to estimate the
maximum depth of the larger surface area from
which small area specimens are sampled. The Gum-
bel distribution is expressed as

F(r)=exp (—exp (- x=A)a), (1)
where F(x) is the cumulative probability of pit
depth, x, and A and « are the location and scale
parameters. The reduced variate, y,

y=x—A)la (2)
is introduced, and then
y=—In(—In (F(y))) 3)

is used for constructing the Gumbel probability pa-
per. Plotting position for the cumulative probability
can be calculated simply by
F(y)=1-i/(1+N), @)

where { is the ith of the ordered value, x, in de-
scending order and N is the total number of sample.
Plotting y as a function of x yields a best-fitting
straight line; its slope provides 1/a and its intercept
(aty =0) yields A. Instead of this graphical estima-
tion of the parameters, more reliable estimates of a
and A can be obtained by using the MVLUE (min-
imum variance unbiased estimator) method, the
maximum likelihood and the method of moments.
Among them the MVLUE method which is dis-
cussed by Lieblein [20] is found to be more efficient
and unbiased for small size samples. The MVLUE
estimator can be calculated by
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A=3a; (N, n)x

a=2b; (N, n)x;, (5)
where a; (N, n) and b; (N, n) are weights for each
sample depending on the sample size, N, and trun-
cated number, n, which are tabulated in the table
given by Tsuge [21, 23] up to N =45. The weights,
A, B, C, of variance, V,

V=a® (4 (N,n)y*+B(N.n)y +C(N,n)) (6)
are also found in the table given by Tsuge [21, 23].
For the pit depth distribution, the return period, T,
is defined as

T=S/s, (7
where § is the surface object (e.g., a tank plate) to
be examined and s is the area of the small speci-
mens which are sampled randomly from the objec-
tive. The return period, T, is in effect a size factor.
The mode, A, of the pit depth distribution for the
small specimen is simply obtained by the MVLUE
estimators mentioned above, and the mode for the
T times larger surface, Xma, is given by

Xoa=A+aln (T). (8)
The perforation probability, P, of the maximum pit
through the wall thickness, d, is given by

P=1—exp (—exp(— (d - (A+aln (T)a)). (9)

Finally, the procedure [22] requires reporting the
surface area of the object, §, with the small sample
area, s, providing the return period, 7 (=S/s), and
the number of samples, N, with data number, n, ac-
tually obtained. Tn addition, the original thickness
of the plate, d, and the perforation probability, P,
if needed are to be stated. The above procedure
does not request to check a goodness of fit of the
distribution obtained to the Gumbel distribution,
but recommends to examine the fitness by the Kol-
mogorov-Smirnov or chi-square test if needed.

2.2 The Weibull Distribution

The third type for the smallest value called the
Weibull distribution

(10)

can be fitted to the failure life distribution of stress
corrosion cracking [33, 34] as shown in Table 2,

F(t)y=1—exp (—((t —y)m)™)
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where ¥, 7 and m are the location, scale and shape
parameter, respectively. This third type of asymp-
totic distribution for the smallest value can be trans-
formed to the first type for the largest value, that is,
Eq. (1), by changing 1-F () to F(z) and by intro-
ducing the following reduced variate

X=In(t—v), z=(X—A)/e. (11
The same MVLUE method used for Eq. (1) can be
utilized for parameter estimation, because the fol-
lowing relations exist between the parameters of
both distributions;

A=In(n), a=1/m. (12)
The above unified procedure for estimating
parameters of the Gumbel and Weibull distribution
was coded in the computer program EVAN [23].

3. Examples

Several examples are provided to demonstrate
the usefulness of extreme value statistics for analyz-
ing corrosion problems.

3.1 Maximum Pit Depth of Oil Tank Plate

Through the 1960s and 1970s a number of oil
tanks were built in Japan. In the late 1970s there
occurred frequent oil leakages from tanks due to
corrosion failure. Qil refinery or petrochemical in-
dustries were located along the seacoast and oil
leakage caused serious environmental damages. In
1976, the fire service law was revised to enforce in-
spection of the thickness of the base and annular
plates of oil tanks every time oil was evacuated. On
these occasions extreme value analysis was applied
and found to be a powerful tool for estimating the
maximum pit depth. It is emphasized that data for
the base plate and the annular plate should be con-
sidered separately because they are characterized
by different corrosion damage and mechanisms.

The law requests that plate thickness has to be
measured at the corners of every 10 em square on
the whole surface of the plate. This inspection pro-
cedure contributed greatly to reducing corrosion
leakage, but was time-consuming and costly. The
extreme value analysis was then studied intensively
in this field [35][36]. Pit depth distribution sampled
from the whole base plate was found to obey the
Poisson distribution.
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Araki et al. [36] found that the largest value from
each small square (s =1 m?) being randomly sam-
pled obeys the Gumbel distribution as shown in
Fig. 1 [36]. The slope and intersect of the line
(@=0.694 and A =1.41) were estimated by the
MVLUE estimators of Eq. (5). In this case, the sur-
face area of the base plate, S, was 1535 m” and the
return period or size factor was calculated to be
T =S/5s =1535. The maximum depth, Xme, Was cal-
culated by Eq. (8):

Xoae=1.41+0.694 X In (1535)=6.50 mm

which is shown also in Fig. 1. These data were ob-
tained for a base plate which was exposed for 12.6
years, Data for both annular and base plate exposed
for 7.7 years were plotted in Fig. 2 [36], from which
the first leak due to the maximum pit is to be ex-
pected after 17.6 years for the base plate and 23.5
years for the annular plate, respectively. The effect
of N, s, on the estimates was examined and it was
concluded that the MVLUE method is optimal for
N <20 and the maximum likelihood method is reli-
able for N >20.

3.2 Rupture of Heat Exchanger Tubes of the
Boiler

Super heater and economizer tubes of boilers are
exposed to high temperature gases with salt de-
posits which cause severe corrosion attack. Corro-
sion attack is not uniform, but localized at several
sites, wall thinning at the localized site resulting in
burst. Regular inspection is needed to predict time
for replacement of the tube before burst. All tubes
have to be examined for predicting exact time with
high confidence, but cost of inspection being high,
that Fukuda et al. [37] introduced the use of
extreme value analysis to supplement the inspection
of a small number of tubes. In Fig. 3, the largest val-
ues of wall thinning observed for 14 tubes are plot-
ted on Gumbel probability paper. The distribution
of wall thinning at every inspection time is seen to
obey the Gumbel distribution and the maximum
thickness determined by the return period (40
tubes) increases with operation time as shown in
Fig. 4. A criterion for a proper replacement time
has been proposed, which requires replacement
when the wall thickness reaches half of the design
thickness, f,,. Risk of burst could be avoided by
estimating the depth and noting the proposed crite-
rion.
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Fig. 1. The Gumbel plot of the maximum pits on the bottom
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3.3 The Pit Depth Distribution of Steel Piles in
Sea Water

Since the 1970s, steel pipes and piles have been
used extensively in Japan for harbor construction,
because lead time for construction could be
reduced compared with using concrete. Recently,
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Fig. 3.  The Gumbel plots of the maximum thickness loss of
bailer tubes used for different operation times.
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Fig. 4. Thickness loss of boiler tubes as a function of operation
time and estimation of rupture time.
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corrosion of steel pipes and piles was found to cause
the collapse of harbor structures. Then corrosion
damage of steel structures exposed in sea water has
been inspected and analyzed by using extreme value
analysis. Itoh et al. [38] reported that three differ-
ent fypes of depth distribution were found for steel
piles and plates depending on exposure time and
exposure location such as water level and deep sea
(Fig. 5). The type A distribution which exhibits a
nearly straight line, was found for uniform corro-
sion loss, its mean value being below 1.0-1.2 mm
thickness. The type C distribution obeying the
Gumbel distribution was observed for heavily local-
ized specimens. The type B distribution is a mixed
type of A and C distributions. The estimated depth
using the return period was consistent with observa-
tions.
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Fig. 5. Various types of the distribution observed for stecl piles
and pipes exposed in sca water.

3.4 Classification of Data Based on Corrosion
Knowledge

In any of the cases mentioned earlier, measured
sets of data is fitted by two or three distributions
and must be separated from each other before the
analysis in order to obtain the maximum value,
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Imagawa et al. [15,16,17,39] presented many cases
which require classification of data. For example,
data for the heat exchanger tubes had to be classi-
fied into the inlet and outlet side samples because
corrosion form and its degree of damage were dif-
ferent at the two locations owing to exposure to dif-
ferent temperatures. For the oil tank, Imagawa
observed that more deep pits were formed on the
welding line compared with other parts. He ob-
tained the different estimated value of the pit depth
for each classified sample. At the present time, the
classification was done on corrosion knowledge and
experience, but it is required to establish a proce-
dure based on a common criterion.

3.5 Crack Depth Distribution of Stress Corrosion
Cracking

Stress corrosion cracking is one of the most dan-
gerous corrosion failure and shows random occur-

....Alll... A @ A

rence which is a very specific and common feature
of materials fracture. The Weibull distribution has
been known to be quite useful to analyze the distri-
bution of fracture strength of various materials [40]
and also has been found to be applicable for analyz-
ing failure life distribution due to stress corrosion
cracking [33, 34].

An interesting application of the Gumbel distri-
bution for analyzing the crack depth distribution
has been reported by Tsuge [41]. The laboratory ex-
periment for evaluating the susceptibility of stress
corrosion cracking of Type 304 stainless steel was
done by using a bent specimen of u-shape. Bending
gives stress to the specimen and the environmental
condition of high pressure water causes many
cracks, which can be revealed by sectioning the
specimen after the test as shown in Fig. 6. Distribu-
tion of the crack depth plotted in the Gumbel prob-
ability paper showed two lines with an inflection
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Fig. 6. The distribution of intergranular corrosion attacks and cracks observed for scnsitized
type 304 stainless steel exposed to the BWR simulated water (DO 8 ppm, 250 °C).
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point as can be seen in Fig. 7. This inflection point
was found to correspond just to a depth for initiat-
ing the intergranular crack. Thus the initiation of
the intergranular crack growth could be separated
from the initial process of purely chemical inter-
granular corrosion.

3.6 Estimation of the Maximum Segregation of
Impurities in Steel

Continuous casting of steel is one of the innova-
tive technologies achieved by the steel industry.
Segregation and its band which are formed during
solidification at the center of slab remain after
rolling and work as initiation sites for fracture phe-
nomena such as lamellar tear and hydrogen induced
cracking (HIC). The maximum amount of segrega-
tion was found to be related to the above fracture

phenomena, so that extreme value analysis was ap-
plied for estimating the maximum amount of segre-
gation in steel plate from small area samples [42],
the concentration of impurities being measured by
using EPMA, The maximum amount of segregation
thus determined can be used to predict the suscep-
tibility to lamellar tear. It should be emphasized
that the statistical procedure for the chemical anal-
ysis is mainly concerned with the mean and stan-
dard deviation which assesses the reliability of the
measurement, but not with extreme values. In re-
cent years, highly sensitive analytical methods have
been developed, but it is not clear how to correlate
the data of small area samples to that of the total or
bulk specimen. The ratio of the analytical area to
the bulk specimen reaches almost to 10~°, and ex-
treme value statistics is expected to be useful.
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Fig. 7. Distributions changing with exposure time, the initial distribution corre-
sponding to intergranular corrosion and the second to intergranular cracking.
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3.7 Non-Destructive Methods With the Extreme
Value Analysis

Various types of nondestructive methods are
used for inspecting and examining corrosion dam-
age in order to prevent failure. High sensitivity and
resolution in time or in space are required for the
measurement. In addition, a computer-aided opera-
tion becomes popular, because huge amounts of
data must be evaluated. For the heat exchanger, a
thousand tubes must be checked and the number of
data easily exceeds 10°. An eddy current sensor [43]
and ultrasonic sensor probe [44] to steel tubes, and
an impedance sensor probe [45] for coating tubes
have been developed with the data logger and the
extreme value analysis soffware.

4. Discussion

The size effect on the maximum pit depth is
found to be estimated with confidence by introduc-
ing the concept of the return period. Theoretical
bases of the procedure have been provided by ex-
treme value theory [1]. Our experience shows that
the pit depth distribution obeys the normal or expo-
nential distribution, which belong to the exponen-
tial distribution family. Thus the maximum values of
pit depth extracted from the exponential family dis-
tribution may reasonably be expected to obey the
Gumbel distribution. Thus the size effect could be
rationally predicted by using the concept of return
period.

Evans [46] pointed out, however, that some cases
as observed by Wormwell et al. [47] does not obey
a normal or exponential type distribution, but that
the tail of the distribution is limited at a certain
depth. Evans emphasized that such a limit is rea-
sonable for the case of anodic reaction control situ-
ation and this limited depth gives a rough indication
of the greatest pit depth to be expected on a much
larger area. Evans, however, did not check another
possibility using the type III distribution which has
an upper limit. Recently Laycock et al. [24] dis-
cussed that usefulness of the generalized extreme
value (GEV) distribution:

F(x)=exp (—(1—k(x —u)/a)* kx < =a +uk,

(13)

because the distribution subsumes all three types
with the sign of a shape parameter, k. When k is
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zero, negative or positive, the distribution changes
to type 1, type II, and type 1II, respectively. They
found that the pit distribution on stainless steels in
acidified chloride solution fits the GEV distribution
with k positive, indicating that the type III for the
largest value could be fitted. The type 1II distribu-
tion has a bound or a limit with increasing area, as
suggested by Evans.

What sample size, or what size of specimen area
should be used are questions from non-specialists in
statistics, For this question, we proposed a proce-
dure or criterion for choosing s, N and T based on
the variance given by Eq. (6). The surface area, §,
of the object is given, and the sampling area, s, s
selected so as to include at least one pit. Then
T(=S/s) is obtained. Accumulated data of the
parameters of « and A suggest [32] that the ratio of
a/A for localized corrosion is below, or not much
larger than, 0.3. Kinnison [48] states that the asymp-
totic theory predicts a constant ratio of 0.313 for all
extreme value distributions. Then it can be assumed
that the ratio o/A, is 0.3. If we wish to control vari-
ance within (1/3)%, the following relation can be de-
duced from Eq. (6)

(AMa3)*=AN,n)y*+B(N,n)y +C. (14)

Equation (14) can be solved for y or T as a function
of N and a/A, as plotted in Fig. 8. When the ratio
of a/A can be equated to 0.3 as discussed before, a
suitable number of samples can be found for a given
return period, 7. From this figure, the required size
of samples is N =30 for T=1200, or N =20 for
T =274 and so on. This figure is approximately the
same as what was observed empirically.

5. Conclusions

Extreme value statistics has been found to be a
powerful tool for estimating the maximum value of
localized corrosion depending on the surface area.
Accumulation of data and experience, however, re-
veals that statistics is less important than corrosion
experience and knowledge for obtaining a reason-
able estimation; measured data must be classified
based on the form of corrosion damage and its de-
gree before the analysis. Properly classified data is
found to provide a very reasonable value. Nonde-
structive methods for measuring wall thickness with
various types of sensors, combined with extreme
value analysis, have been developed in recent years.
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Fig. 8, Calculated curves of the optimum condition to choose T
and N at various value of a/A.
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Simple models play a key role in the
microstructural analysis of mechanical
failurc in composites and other materi-
als with complex and often disordered
microstructures, Although cqual load-
sharing-models arc amenable to rigor-
ous statistical analysis, problems with
local load enhancements ncar failed re-
gions of the material have so far re-
sisted cxact analysis. Here we show for
the first time, that some of the simpler
of these local-load-sharing models can
be solved exactly using a sub-stochastic
matrix method. For diluted fiber bun-
dles with local load sharing, it is possi-
ble to find a compact expression for
the characteristic equation of the sub-
stochastic matrix, and from it obtain an
asymptotic expansion for the largest ci-
genvalue of the matrix. This in turn
gives the asymptotic behavior of the

size effect and statistics of the fiber-
bundle models. We summarize these
results, and show that the important
features of the exact result can be ob-
tained from a single scaling analysis we
had developed previously. We also
compare the statistics of fracturc with
the appropriate limiting extreme-value
survival distribution (a Gumbel distribu-
tion), and, as previously indicated by
Harlow and Phoenix, note that the
Gumbel distribution performs quite
poorly in this problem. We comment
on the physical origin of this dis-
crepancy.

Key words: extreme-value distributions;
scaling analysis; size effcct in fracture.
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1. Introduction

It has been known since the pioneering work of
Chaplin [1] and well known since the classic work
of Griffith [2] that randomly occurring flaws or
weak links effectively determine the observed ten-
sile strength of materials. Early on it was realized
that the dependence of failure upon the weakest
part of a material structure gives rise to non-Gaus-
sian statistics for fracture stress and strain. These
developments lead to the classical period of the de-
velopment of the statistics of extremes by mathe-
maticians such as Dodd [3], Frechet [4], Fisher and
Tippett [5], von Mises [6], Gnedenko [7], and
Gumbel [8].

Following the work of Duxbury et al. [9-11],
there have been many attempts to use random net-
work models to determine the statistics and size
dependence of material breakdown [12-16]. These
calculations have in many cases clucidated the gen-
eral behavior and size dependence of breakdown,
but few exact results have been produced.

Perhaps the simplest model that shows the statis-
tics of brittle failure has been the pure-flaw, chain-
of-bundles model of Harlow and Phoenix [17]
which has been studied by Harlow [18] and more
recently by Harlow and Phoenix [19]. In this model
there is a series or chain of m structurally and
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statistically independent bundles of n elements
each as shown in Fig. 1, where the vertically ap-
plied uniaxial stress is shared by the surviving verti-
cal fibers (bonds). Each element or fiber is
independently present with probability p and ab-
sent with probability f=1—p. The survival proba-
bility of the chain of bundles is then the survival
probability of a single bundle raised to the power
m. The main difficulty in this analysis is calculating
the survival probability of a single bundle. The ex-
tension of this theory to the survival of two-dimen-
sional networks is straightforward and amounts to
the approximation that cracks or flaws only exist
and break along the direction transverse to the di-
rection of the applied stress. Following Harlow and
Phoenix, we assume the local-load-sharing model
for a flaw (crack) of length n to be

aip=o(1+n/2), 1)
which is to say that the entire force applied to the
cluster is concentrated at the tip (on the fibers ad-
jacent to each end of the flaw or vacancy cluster).
Failure of any surviving bond (all of which have the
same strength) leads to a rip which causes failure
of the entire bundle. Solution of this model re-
quires finding the bond (weakest link) which expe-
riences the largest stress enhancement and that
stress which would break this most stressed bond.

|l...l.l..|.]

Fig. 1. A one dimensional array of intact bonds (fibers) and
flaws (vacancics). The tensile stress o, is applied vertically.

Duxbury, Leath, and Beale [11] showed how a
one-dimensional model such as this could be used
as a simple model for fracture or breakdown of a
two-dimensional network. If one considers that
cracks or flaws only exist and break horizontally,
then the two-dimensional model becomes that il-
lustrated in Fig, 2 (i.e., no horizontal bonds break).
Then if we impose spiral boundary conditions,
where the last site in a row is connected to the first
site of the previous row on the other side of the
sample, then the N XN network problem is re-
duced to a one-dimensional chain of N? fibers (or
bonds) in parallel like that in Fig. 1.
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Fig. 2. A two dimensional lattice with only horizontal cracks.
Spiral boundary conditions identify each site on the right edge
with the sitc on the left edge of the previous row.

2. Single-Cluster Calculation: The Sub-
Stochastic Transition-Matrix Method

In this calculation one assumes that the weakest
link is the pure flaw or cluster of vacancies of the
largest size that exists in the sample. The survival
probability is then closely related to the probability
that in a sample of length L (=N?) that there are
no clusters of vacant bonds (flaws) of size greater
than some prescribed value n. Using a generating-
function technique Duxbury, Leath, and Beale [11]
calculated exactly the asymptotic form of the prob-
ability to be

Cr(n)=[1—pf'Y @)

in the limit of large L. It is now possible to rederive
this result while introducing the sub-stochastic
transition-matrix method. Following Harlow [18]
we define all possible endings of a fiber bundle of
length L +1 and the way in which-those endings
may be generated from a bundle of length L and
the probabilities of those endings. Since there are
no allowed clusters larger than n, the allowed bun-
dle endings or distinctive endings at a particular
site are an occupied site (1) followed by 0sr<n
vacancies (0) so that these distinct endings
are spanned by the basis vector ¢.'=
((,ﬁ(1),¢(m),¢(lm)....,¢(|n,.,n));, where the last element
contains n zeros.



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

Then the probability increment for going from a
cluster of size 7 to a cluster of size ' on the next
site is included in the matrix product

Pp - pll dn b
00 ... 0| dag b
Mg =10 f . . : =( i ,  (3a)
w00 : :
00 ... f 0f|buo.o i dao..0) i +1

which is the same as the matrix M operating j times
on the probability vector ¢y for the starting site, or

My =M+ ¢y, (3b)
The probability C.(n) that there are only clusters

up to size n in the entire bundle (or network) of
size L is thus

4)

where the sum is over all the elements of ¢,.. The
simplest and most natural boundary conditions are
periodic ones where C; (n) becomes the trace

Ci(n) =2{: (de),

(&)

since the 1st and L th sites must be the same, where
A are the eigenvalues of M. We find the eigenval-
ues of M via its characteristic equation

Cr(n)=tr(M") =§ A,

(@-1) a .. a a
b -10 0
D,=detM/A-I|=| 0 b . - i ]=0,
: o =10
0 0 b -1 (6

where a =p/A and b=f/A=(1-p)/A. A cofactor
expansion of the determinant D, about its last row,
gives immediately the recursion relation

D,=—=D,_+(—1)"ab", (7a)

where D,_, is the n X n determinant for clusters up
to size (n —1). With Dy=(a — 1), the solution, upon
iteration of Eq. (7a), is the characteristic equation

(=1 Dy =(a~1)+ab +ab*+~+ab"=0. (7b)

Summing this geometric series we obtain

An+2__)\n+]+pfw+l=0. (8)

This equation is the characteristic equation of M
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times (A —f), so there is an additional spurious
root at f (since we are interested in the largest root,
this does not affect the analysis). Since M is primi-
tive and non-negative, its largest eigenvalue is real
and distinct and it can easily be seen that all the
eigenvalues are less than 1 and Am. approaches 1
for large n. Thus we set Anu=1—€and expand Eq.
(8) to lowest order in € and f", which gives us

Amax=1=pf"* 1+ O (f). )
Then, we obtain
Cr(n)=Ana=(1—-pf ), (10)

which confirms the result Eq. (2) by the sub-
stochastic transition-matix method.

In order to find the failure probability as a func-
tion of applied stress, we use the load-sharing rule
Eq. (1), coupled with the fact that the failure of the
bond carrying the largest local stress nucleates
catastrophic failure, and thereby use the relation

au'a':l-l-%,

1n
where o, is the breaking strength of a single fiber.
Note that we could have used a variety of other
load-sharing rules here, and for example the same
expression with n raised to an arbitrary power is
also of physical interest. This result combined with
Eq. (10) yields the probability S(o) that a fiber
bundle will survive at stress ¢

S(e)=(1—pf*s Y.

For large n and L, this becomes the modified
Gumbel form, introduced previously [10,11] in the
analysis of the random fuse network. Although
Ci(n) in Eq. (10) becomes a Gumbel distribution
in n, the substitution of (o) from Eq. (11) pro-
duces a modified Gumbel distribution that is signif-
icantly different from a Gumbel form in & in the
high-reliability tail of the distribution. This modifi-
cation is discussed further in Sec. 4.

(12)

3. Double-Cluster Calculation

Several authors [12,16,19,20] have suggested that
the most critical defect is not a single cluster of »
vacancies, but rather a double cluster (double co-
linear crack) of n vacancies separated by a single
occupied site located anywhere within the n +1
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adjacent sites. Such a double crack is shown in Fig.
3a. This candidate for the most critical crack is ap-
pealing because the stress enhancement at the in-
terior occupied site grows as n in network models
rather than as n'? (as for the edges of a single
crack in a two-dimensional network) and because
the increased entropy of the (n + 1) locations of the
occupied site makes it more probable. Thus, fol-
lowing Harlow and Phoenix [19], we consider the
probability of bundles of length L with repeated
double cracks (and single cracks when the occupied
site is at either end) not exceeding n vacant sites in
any two adjacent cracks separated by a single site.
These repeated double cracks are shown in Fig. 3b.

b)

Fig. 3. a) A double cluster of <n total vacancies plus anc iso-
lated occupied bond. b) Repeated, overlapping double clusters;
each pair of clusters as indicated by the brackets contains <n
total vacancies plus one isolated bond.

Harlow [18] showed that this problem is
amenable to analysis by the sub-stochastic transi-
tion-matrix method. The load-sharing rule is still
given by Eq. (1) as before but now n is the sum of
the number of vacant sites immediately on the left
and right of any isolated intact bond or fiber. Thus
it is necessary to keep track of not only the number
of vacancies in the cluster being considered but
also those in the previous vacant cluster. There are
now (n +1)(n +2)/2 distinct endings that must be
considered at a site (or bundle ending); these are
given by the basis vector ¢ = bq),dao...buo.oy;
G101y P010)--- P1010..0y; P1001)--- P10010..0%- -3 Pro..o1y Where
there are no more than n total vacancies in any
element. With this ordering of states the n =4 sub-
stochastic matrix for this problem, for example, is
given by Eq. (13).

With periodic boundary conditions Eq. (5) still
holds and we again analyse the largest eigenvalue
of M,. As a technical point, note that since we are
using periodic boundary conditions, we can always
start the matrix process at a surviving bond, and so
the endings considered above include all possible
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p 000 0|p 00 O0jp 0 O0lp Olp||dn
7 0000/0000[000]00[0]|dus
07 000[0000[000[00[0}|dum
00Ff00/00CO0O0J0O0O0|00|0]]dom
0007 0/0000]000[0 0]0|lduom
0p00O0|0Op 0O0|0p 0]0p|0}dany
00000|f 000[000[00]0{|dumno
M.¢L=J00000|0f0000010 010 ]| damon |=dr+1
00000J00f 0]000[00]0 ¢(1mmmr
00pO0O0J0OCp 0]00p|00{0]]daom
00000[000O0|f 00[00]0||dume
00000[0000[07 0[00]0f|dumum
000p0|00O0pj00 0|0 0]0]|duwwm
00000[0000[00 0] 0[0]|Auom
0000 p{0000[000[00[0]|dumen| (13)

survival configurations (we don’t have to consider
configurations which start with 0’s).

A great simplification in the characteristic equa-
tion

M.b =)o, (14)

where ¢ are the eigenvectors of M,, is possible
since most of the rows of M, contain only a single
non-zero element f. This gives, for example
ftﬁu):Aq’)(m) or btﬁ(g):(ff)t)tﬁ(l}:(ﬁ{m). By such rela-
tions, we can eliminate all the rows of M, except
the rows with p’s corresponding to the reduced ba-
sis vector ¢ = ¢y Paon,Paoon),...,Pao..on. The result-
ing (n+1) equations give an (n+1)X(n+1)
matrix M, which satisfies the reduced characteris-
tics equation

(2 a a e ] [o]
ab ab ... .. ab O[] ¢ &
, b? ab® ... ab® 0
M ¢= zb3 :bS - ﬂo E ‘bj = dt! * (15)
: . 0l : :
ab” 0 0 0 0f|dner] e

where a =p/A, and b =f/A. This M' matrix can be
considered as a new transition-matrix which adds a
cluster at a time rather than a bond or fiber at a
time. Thus we have the characteristic determinant
equation.

a—1 a a T |
ab ab-1 .. .. ab 0
ab® ab® ab*-1 . . i
D" = det ab3 ﬂb3 e ... : -_-0. (16)
: .—1 0
ab” 0 0 0 -1
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For small n these determinants can be evaluated
directly. For example,

Dy=—-1+aq,Dy=1—g—a% and

D= —1+a +ab +a’h*—a’°. (17
But by expanding the determinants Eq. (16) by
rows and columns, we can show that there is an
exact recursion relation

bD,(a,b)=sD,-y(ab,b)—D._s(ab’ D), (18)
where D, (ab‘b) is Dn(a,b) with a replaced by
(ab?), and where

s=1+b—-a%"*', (19)

Note that s=s(a,b,n)=s(abbyn—2)=s(ab’bhn
—4) which is key in the solvability of the recursion
relation Eq. (18). After some detailed analysis, we
have found (see [21] for details), that this recur-
rence equation may be solved. The resulting char-
acteristic equation is given by

(-12_, (=12
Z+ —2Z- - 1
Z+(n+|y2_z_(n+1);2—s —(1+ab"* )n),

(20a)

for n 23 and odd. While for n even =4, we find,

z+ll!2—l_z_m'2—1" 1
z+u.‘°2 —z_n2 =5 1—ab™" (20[)}
In Eqgs. (20a) and (20b),
\g?—
Zoo =§£25b—4b ) (20¢)

The key quantity s is given by Eq. (19) above.
Equations (20a,b) are the exact expressions for the
characteristic equation of the original M in Egs.
(13) and (14).

Again we find that the largest eigenvalue of M is
near 1 for large n, so we set A =1—¢ and expand
Eqgs. (20a,b) and find that in both cases, to lowest
order in € and f",

e=[(n +2p*~p " +O ().

Comparing this double-cluster result to the single-
cluster result Eq. (9) we find the expected (n +2)

1)
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from the possible locations of the single bond in a
double cluster of size (n +1). The (—p) is a correc-
tion to properly handle the single-cluster cases as
well as the double-cluster case, since these are in-
cluded whenever the isolated bond is located at
one end of the double cluster. It is only important
for small n.

In order to check and better understand the
asymptotic form Eq. (21) of Amx and the impor-
tance of the other eigenvalues A; we have made sev-
eral numerical evaluations of the various
equations. First, we have numerically found the
largest eigenvalue Amax Of the original, full, sub-
stochastic transition-matrix M as given by Eq. (13).
Using the unit vector as a starting vector we re-
peatedly apply the matrix M to it. Since the largest
eigenvalue is unique, this process converges expo-
nentially fo the largest eigenvalue. We found in
general that convergence occurred to six significant
figures with at most 50 matrix products (even for
matrices M of dimension (n +1)(n +2)/2=10,000.
The sparsity of M with this iterative procedure
eliminated matrix-storage problems. The results of
this iterative procedure for Ci(n) versus n are
shown in Fig. 4 as solid lines, and the dots give AL,
with Ame as given by the asymptotic form Eq. (21).
Good agreement is seen for all p, with a small devi-
ation in the p =0.2 data. However, a more strin-
gent test is needed in the high-reliability (large n)
tail. Thus, in Fig. 5 we plot the quantity

1—Amm_ € ~ 2
=pe [(n +2)p*~p].

(22)

1.0

0.8

, 0.6
G

0.4

0.2

ook
o

Fig. 4. A plot of the double-cluster probability C; (n) vs (n +1),
for p =0.2, 0.5, and 0.8. The dotted line is the asymptotic form
given by Eq. (24). The solid lines are found from evaluating the
largest cigenvalue numerically, and by using Cy (n)= Ak
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Fig. 5. Plots of €/f**! vs n + 1, for a) p =0.5 and b) p =0.2. The
solid lines are the asymptotic form as given by Eq. (22); the
circles arc the exact values of (1— AL, )/ *" as obtained by iter-
ating M numerically.

The solid straight line versus (n +1) is the asymp-
totic result, which is linear in n and this is com-
pared with the iterated numerical values (circular
symbols), for p =0.5 and 0.2. For large n, in all
cases the two calculations agree. But for small val-
ues of p<0.5 there appears a minimum in
(1— Amax)/f™**! versus n which corresponds to higher
order terms in f". In particular the next order term
in Akw is O (f*?) which would appear as a O (f"?)
correction in Fig. 5.

Finally, we test for the accuracy of neglecting all
but the maximum eigenvalue Af.. It is possible to
directly, numerically evaluate the trace of M" by
iteration since it only requires storage of the matrix
and one vector at any time. Using this method, we
have evaluated the quantity

(1= (er M)y, (23)

which should converge 10 (1— Ana)/f"*' when the
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largest eigenvalue is dominant. A numerical test of
this convergence is shown in Fig. 6, for L =1000,
and shows that for large lattice sizes, the most im-
portant corrections to C.(n) are the higher order
contributions to Ama, which are of O(f*"?), rather
than the neglected smaller eigenvalues of M, which
are relatively unimportant here.
Finally, we obtain the asymptotic form

Co(n)={1-[(n +2p*-p ' +O("}. (24)

Thus, following the same arguments as at the end
of Sec. 2, we find that to leading order the survival
probability of the entire network or chain-of-bun-
dles is

. 2on -
Si(@)=1-C2p?-p)f 7 F, (29
which is again of the form of a modified Gumbel

distribution with slightly different coefficients from
Eq. (12).

Jrn+1

1-(er(M)"*

||!||1|||1n

b
-

-~
=]

n+l1

Fig. 6. Plots of the exact value of [1—(::-(M"))"’"]y"‘” Vs

(n + 1) obtained numerically from M (circles); for L = 1000, for
a) p=0.5 and b) p =0.2. The solid line is the asymptotic form
Eq. (22).
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4. Extreme-Statistical Form

For large L, we can easily find the limiting form
of Cr(n) as given by Eqs. (10) and (24) respec-
tively,

Cr(n) ~ exp[—Lp exp(—n log(1f))],  (26)
and
Cu(n),~ expl—L((n +2)p*—p)exp(—n log( 1:’%)7]3

as the upper limit behavior for large n which is im-
portant in the high-surviveability tail of the distri-
bution. This is a Gumbel distribution, as is
expected from the exponential [pf* or npf] be-
havior for the probability of large clusters [Castillo,
19881

On the other hand, the surviveabilities S(o), and
§'(o), in the limit L — , are found to be modified
Gumbel forms [from Eqs. (12) and (25)],

$.(0),~ exp[—Lp exp(— (2 — Dlog(1}f))] (28a)
and,
Su(e),~ expl—L (3 p*—p) exp(- (2 ~1)
log(1/f)]-

That the dominant behavior of §.(e), and S. (o) is
exp(— LA exp(—2)) as o tends to zero is essential
to ensuring that the survival distributions have the
proper limiting approach to one when the applied
stress approaches zero. Harlow and Phoenix [19]
have numerically shown that this high-reliability
tail can not be well described by a Gumbel form for
o (such as exp(—LA exp(B(o—m)))). But this
failure is obvious since the Gumbel form doesn’t
approach one until o0— — ®, so at sufficiently small
stresses it must be inaccurate. Nevertheless the
standard texts on extreme distributions (see, for ex-
ample [8] or [22]) seem to suggest that the Gumbel
distribution is the appropriate one in such cases.
The difference clearly is in the form of the nor-
mally assumed scaling limy_ .[S (o) 1Y =S8 (ano +by),
which fits the shift and slope of the limiting func-
tion S (o) at its median, but fails near the high-reli-
ability limit o=0. It would seem that instead a
more general scaling form limy-.[S(n(0))]¥=
S (awn (o) +by) must be allowed to also include the
proper high-surviveability limit near zero stress. In
many practical material-failure problems, this mod-

(28b)
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ification of the Gumbel form is essential in order to
correctly represent the important high-reliability
tail. Note that this is not true of the Weibull distri-
bution, which as well as being a stable limiting ex-
treme-value distribution, does have the physically
correct behavior as stress approaches zero. This is
one good reason why the Weibull distribution is a
very robust form in the analysis of failure problems.
We suggest that the family of modified Gumbel
distributions of the sort Eq. (28), should be simi-
larly robust, in contrast to the conventional Gum-
bel distribution which is of limited use in the
analysis of the statistics of material failure.

5. General Scaling Behavior

The size dependence and general form of the
limiting distribution can usually be found from a
back-of-the-envelope scaling calculation which we
introduced previously [9,11]. First, for the single-
cluster calculation, consider the probability P, (n)
of finding a cluster of size n in a sample of size L.
The order of magnitude of this probability is

Pi(n) = Lp*f'jp =Lpf", (32)
since, for normalization, X p?f"=p, and since
there are L different locations in the sample where
a cluster could be located. For the maximum clus-
ter size to be expected in a sample of size L we set

Pr(n)~Lpfrm==1, (33)
and obtain the size dependence
. logl
Nmax = ]()g(lf}') » (34)

or, from the load-sharing rule Eq. (1), the break-
down stress o

) 1 1
GRS W Y (33)
2In(1/f)

scales to zero logarithmically in the thermodynamic
limit. A similar argument for double clusters gives

Pr(n)yxL(n+1)p*f, (36)
since there are (n +1) places to put an isolated

bond in the n-double-clusters. We then obtain the
same limiting form Eq. (35) for o.(L), although
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there are additive (log(logl)) corrections in the
double-cluster case. The logarithmic scaling law in
turn implies that the failure statistics is of the dou-
ble-exponential form given in Eq. (28). The
Weibull and Frechet distributions always give
power-law size scaling. These qualitative argu-
ments are very powerful and are confirmed by the
rather elaborate, exact calculation described here.
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1. Introduction

With the increase in cleanliness of steels, con-
ventional inclusion rating methods are no longer as
useful as before, because conventional inclusion
rating methods cannot determine the cleanliness of
new clean steels. Although the cleanliness of steels
has been markedly improved in the last two
decades, the fatigue strength of recent clean high
strength steels cannot attain the ideal value ex-
pected from their high static strength, Nonmetallic
inclusions are predominantly the cause of lower fa-
tigue strength even for such clean high strength
steels. Thus, in order to predict the fatigue strength
behavior and to evaluate guality, we need a new
inclusion rating method relevant to recent super-
clean steels. The inclusion rating method based on
statistics of extreme [1] is most relevant for this
purpose. In the following, we call this method In-
clusion Rating Method by Statistics of Extreme
(IRMSE).

In this study, we shall first show that if we choose
an appropriate size parameter for inclusions, the
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size of inclusions obey the statistics of extreme
value theory. The appropriate size parameter is the
square root of projected area of the maximum in-
clusion contained in a standard inspection area or
volume, \/aream.. Second, we predict the size of
the maximum inclusion which may be contained in
a larger area or volume than the standard inspec-
tion area and, lastly, we use the size parameter,
Vareams, to predict the scatter band of fatigue
strength of hard steels.

The merits of IRMSE, in comparison with con-
ventional methods, are (1) to distinctly discrimi-
nate the cleanliness of recent super-clean steels,
and (2) to predict the size of larger inclusions con-
tained in a domain larger than the inspection do-
main. This method is useful for quality control of
materials and for improvement of the steel making
processes. It also enables one to predict the scatter
of the fatigue strength of a large number of mass
production products.
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2. Nonmetallic Inclusions as a Fatigue
‘Fracture Origin

Figure 1 shows an example of the nonmetallic
inclusion which was observed at fatigue origin of a
bearing steel under a rotating bending fatigue test.
If this inclusion did not exist in this specimen, the
fatigue strength of this specimen should have been
higher than the applied stress, o, =1078 MPa.
Since the size and location of nonmetallic inclu-
sions scatter randomly, the fatigue strength of high
strength steels naturally scatters. Although there
has been a firm opinion that the chemical composi-
tion and shape of nonmetallic inclusions substan-
tially influences the fatigue limit, Murakami et al.
[2-5] have shown the incorrectness of the conven-
tional opinion by their detailed experiments and
analyses, and reported distinct experimental evi-
dence that the size of inclusions (defined by
Varea) is the most crucial geometrical parameter.
It is empirically known that the intrinsic fatigue
strength of steels is determined by the hardness
{Hv) of its microstructure. For steels with Hy <400,
nonmetallic inclusions contained in current com-
mercial steels are not detrimental and we have the
following empirical formula

on=1.6 Hy 1)

Vickers hardness Hy =745 kgf/mm®

Applied stress at surface o, = 1078 MPa

Cycles to faiture Ne=7.94 x 10° L

Square root of projection area of inclusion Varea =9.8 pm
Distance from surface & =158 pm

Applied stress at inclusion o' =1034 MPa

Chemical composition of inclusion: Al-Mn-8-O

Fig. 1. A typical example of inclusion observed at the center of
fatigue fracture origin [super-clean bearing steel, SUI2(N)].

where @, is the fatigue limit (MPa) and Hv is the
Vickers hardness (kgf/mm?). However, for steels
with Hy > 400, the effect of inclusions reveals itself
and the intrinsic or ideal fatigue limit given by Eq.
(1) cannot be attained. The fatigue strength de-
pends on the size (\/area ) and location of the fatal
inclusion and Hy of the matrix. Murakami et al.’s
[6-9] fatigue limit prediction equations are classi-
fied into three categories depending on the loca-
tion of fatal inclusions (see Fig. 2):
Fatigue limit for a surface inclusion [Fig. 2(a)]

0w = 1.43 (Hy+120)/(\/area )"* ()

Fatigue limit for an inclusion in touch with free
surface [Fig. 2(b)]

a, =1.41 (Hy+120)/(\/area }"*. 3)
Fatigue limit for an internal inclusion [Fig. 2(c)]
o, =1.56 (Hy+120)/(\/area )", (4)

where the units are o.: MPa, Varea: wm, and Hy:
kgf/mm?,

Free surface Free surface Free surface
Z Z
%{ @ Inclusion
Inclusion AN /
Inclusion
{a) Surface inclusion {b) Inclusion just {c) Interior
below surface inclusion

Fig. 2. Various locations of inclusions causing fatigue fracture.

Since for a constant value of area, an inclusion is
most detrimental when it exists just in touch with
the free surface of a specimen, we can use Eq. (3)
in combination with the maximum size \/areama
obtained by IRMSE to predict the lower bound
(owe) of scattered fatigue strength of many speci-
mens or machine elements.

3. Inclusion Rating of Various High
Strength Steels by Statistics of
Extreme

Figure 3 explains the practical procedure to im-
plement the inclusion rating by statistics of extreme
values. The details of this method are reported in
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N\
So(mm?)

Fig. 3. Practical procedure of the inclusion rating by statistics of
extreme values.

Murakami et al.’s papers [3,5,9-11]. The procedure
is briefly explained in the following, see [11].

(1) A section perpendicular to the maximum
principal stress is cut from the specimen. After pol-
ishing with a n°2000 emery paper, the test surface
is mirror-finished with buff.

(2) A standard inspection area S, (mm?) is fixed.
Generally, it is advisable to take a microscope pic-
ture for an area approximately equivalent to Sy. In
the area So, the inclusion of maximum size is se-
lected. Then, the square root of the projected area
Vaream,x of this selected inclusion is calculated.
This operation is repeated n times (in n areas Sy)
(see Fig. 2). o

(3) The values of \/aream.; are classified, start-
ing from the smallest, and indexed: (withj =1...n).
We then have the following relation:

Vareamn, < \/aredmu < ... < \/areana,.

The cumulative distribution function F; and the
reduced variates y; are then calculated from the
equations.

F;=j x100/(n +1)
yi=—In[=In(/(n +1)].

(4) The data are then plotted on probability pa-
per. The point j has an abscissa coordinate of
\/aream.; while the ordinate axis represents either
F;j ory;. An example of the curve is shown in Fig. 4.

Figure 4 shows the inclusion ratings by IRMSE
for two kinds of super-clean bearing steels,
SUJ2(N) and SUJ2 (H). The total oxygen con-
tained in these steels is 8 ppm for SUJ2(N) and
5 ppm for SUJ2(H). This kind of information

347
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Fig. 4. Cumulative frequency of the extreme values of inclusions
[Super-clean bearing steels, SUI2(N) and SUJ2(H)].

enables one to discriminate quantitatively the dif-
ference among the cleanliness levels of the same
kind of materials produced by different companies
or produced by a company at different periods.
Thus, this information will be useful for the quality
control of materials and the improvement of the
steel making process.

It is not a priori evident to what extent the ex-
treme values \/areams Of inclusions contained in
various steels follow extreme statistics value, How-
ever, Murakami et al. [3,5-11] have shown many
examples of measurements which obey the statis-
tics of extreme value theory. Uemura and Mu-
rakami [12] carried out a three-dimensional
numerical simulation to find the statistical distribu-
tion of the extreme values \/aream. of inclusions
which were distributed in a constant volume with
the size (D) distribution of the type,

$(D) = exp (-2,

where m is the mean value, and they confirmed the
validity of IRMSE (Fig. 5). In addition, they indi-
cated the quantitative difference between two-di-
mensional and three-dimensional measurements,
though the difference virtually vanishes with in-
creasing inspection domains.
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L 200m

(a-1) Inclusion distribution on
inspection section of the
material with m=1 pm.

R

e 2o
(b-1) Inclusion distribution on
inspection section of the
material with m=2 pm.

(c)__" JEEN

| zuomf;r

(c-1) Inclusion distribution on
inspection section of the
material with m=3 pm.
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(a-2) Statistical distribution of
true(3-D) and apparent(2-D)
extreme values of inclusions
for material with m=1 pm

(So=0.25 mm?Z, number of
inspections = 40).

(b-2) Statistical distribution of
true(3-D) and apparent(2-D)
extreme values of inclusions
for material with m=2 pm
(S0=0.25 mmZ, number of

inspections = 40).

T~1/(1-F)
1

s
500r T=253.6, for 1 mmj volume

D um

(c-2) Statistical distribution of
true(3-D) and apparent(2-D)
extreme values of inclusions
for material with m=3 pm
(So=0.25 mmZ, number of

inspections = 40).

Fig, 5. Numerical simulation of the inclusion rating by statistics of extreme values on the materi-

D
als with the inclusion size distribution of the type ¢(D)=—exp (——).
m m
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4. Application to Prediction of Scatter
Band of Fatigue Strength

Figure 6 illustrates the shape and dimension of a
tension-compression fatigue specimen [13]. The
material used is tool steel, SKH51. The chemical
composition is shown in Table 1. Table 2 shows the
mechanical properties.

.ol
O}h = & (PJ'-}‘
H A=Y
= = N =] A 38
h:d By h:Y b2
13 20 12| S
43
150

Fig. 6. Shape and dimension of tension-compression fatigue
specimen (mm) (Tool steel, SKH51).

Figure 7 shows the extreme value distribution of
Varea of the inclusions found at the fracture origin
of 34 specimens. The data in Fig. 7 are the extreme
values obtained by the fatigue test but not by the
two-dimensional metallographic method described
in Sec. 3. Figure 8 indicates the location of these
inclusions on the fracture surface. If the tension-
compression fatigue test is not performed correctly,
that is, specimens are subject to a bending moment
due to a bad alignment or the curving of the speci-
men axis, nonmetallic inclusions existing near the

Table 1. Chemical composition in wt% of material (Tool Steel,
SKH51)

C Si Mn P ] Cr W Mo

081 031 029 0018 0002 392 6.10 4.85

v Co Cu Ca Al Mg o

181 046 007 0004 0035 00005 00018

o a9 T=VO=P
| 99.5} 200r..
099.0F 100 T'=100, for 100 specimens
~4F 0gt 50 |
ol e
E3r>est 20 |
Lyl g 90t & !
S 15 8F 4 H
1+ E
£l / { _—
O0Frz f |
—1t3 10t ) |
Y (.S) 11- '/' L L L L L )
=279 016736730 60 80 100 120 140 160 180
varea um '

Fig. 7. Statistical distribution of the extreme values, the maxi-
mum size of inclusion at the center of fracture origin (Tool
steel, SKH51).

150 o
B o om= 0 MPa, Spec.dia.=9mm
a om=784MPa, Spec.diz.=9%mm
a om=-784MPa, Spec.dia.=6mm
&
g oo © g
g L [= Y
E AOQ ° - nQ %ﬂ A °
o o o
50 o
& ., 00 © o
oo o ry

1 1 1 L i3 1 i 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.5 0.9 1.0
Distance from surface/Radius of specimen

Fig. 8. Relationship between the size (\/area) and location of
inclusions at the center of fracture origin (Tool steel, SKH51).

free surface are likely to appear as the fracture
origin on the fracture surface [14]. In such a case,
unusually low fatigue strength is likely to be ob-
tained. Since the fatigue fracture origins shown in
Fig. 8 are distributed randomly on the section of
specimen, these data may be valid for the statistical
analysis. However, it should be noted that when

Table 2. Mechanical propertics of quenched and tempered test material (Tool steel,

SKH51)
Vickers
Heat 0.2% Tensile Reduction  hardness
treatment Proof stress  strength  Elongation of arca H,
(MPa)  (MPa) (%) (%) (kgf/mm?)
Heat treat. 1 1820 2110 29 3.7 615
Heat treat. 3 2270 2560 2.0 0 654
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the surface inclusions became the fracture origins,
the data were not plotted on Fig. 7, because such
inclusions are more detrimental than an inclusion
having the same size and existing internally and ac-
cordingly they may be a little smaller than the exact
maximum inclusion.

In the case of the data of Fig. 7, the volume of
the test part of one specimen (Fig. 6) corresponds
to one inspection domain and there are 34 extreme
values in Fig. 7. Therefore, Fig. 7 can be used for
predicting the expected maximum size of the inclu-
sion which may be contained in more specimens
than those used in fatigue tests. For example, an
inclusion having \/aream,=138 pm is expected to
be contained in_ 100 specimens (N =100).
Combining this \/areama (=138 pm) and Eq. (3),
the lower bound (a..) of fatigue strength of 100
specimens can be predicted.

Figure 9 compares the scatter observed in exper-
iments and the predicted lower bound o of the
scatter band. The prediction is in good agreement
with experiments. The prediction of the lower
bound of fatigue strength explained above can be
used for the quality control of machine elements
which are produced by mass-production and can-
not be tested individually.

The data as shown in Fig. 7 offer us reliable in-
formation on inclusions expected to be contained
in other specimens. However, obtaining the data
shown in Fig. 7 requires preparation of many pre-
cise specimens and time consuming fatigue tests.
To avoid this inconvenience, the author has pro-
posed an alternative two-dimensional method as

1300 upper limit
}igg:  fish-eye(2 specimens) //__6""‘ =1.6Hy
& fish-eye(l specimen)x a0
1000F # broken o W
S 900} /
B 900 o not broken 5 WOR(
= 800r s X o
o 700} pid %x x
600 e 2 } lower limit
500F " Number of N=11) o
. specimens
4001 - —
3001 =100
2001
100F 6, =1.41(Hy +120) / (V areams.) 1®

0‘200 300 400 500 600 700 800 900 1000
Hy  kgf/mm?

Fig. 9. Comparison between the experimental results and the
lower bound of fatigue strength which was predicted on the ba-
sis of Eq. (3) and the maximum size of inclusion (Tool steel,

SKHS1).

explained in Sec. 3. A sufficient number (N) of in-
spection domains (inspection areas) necessary to
predict reliably \/aream. for more specimens or
larger areas should depend on the materials to be
inspected and on the inspection area §, observed
by the image processor combined with an optical
microscope. From the author’s experience, it is rec-
ommended that N be larger than 40 for So=0.031
mm?,

Several Japanese industries have already put the
method proposed in this study in practice [15].

5. Conclusions

(1) If we define the size of nonmetallic inclu-
sions contained in commercial steels by the square
root of the projected area, \/area, the maximum
values, \/aream., in a definite inspection domain
obey the statistics of extreme value theory.

(2) The inclusion rating method by the statistics
of extreme values (IRMSE) based on \/area., can
be used for a new inclusion rating method. IRMSE
enables one to discriminate distinctly between re-
cent super-clean steels, while conventional inclu-
sion rating methods are no longer valid as the
method to evaluate the cleanliness of new clean
steels.

(3) IRMSE is useful not only for a relative eval-
uation of materials but also for the prediction of
the expected maximum size of inclusions to be con-
tained in a domain larger than the inspection do-
main. The value of \/areamx can be used with the
fatigue strength prediction equation to predict a
scatter band of fatigue strength of high strength
steels.
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The critical level for ozone, above
which it has a detectable effect on bio-
logical targets, is potentially to be set
by the United Nations Economic Com-
mission for Europe at 300 nL-h/L
hours per annum over 40 nL/L. It is
therefore important to determine the
aggregate exceedance over 40 nL/L
throughout the United Kingdom. Over
most of the UK, ozone concentrations
are unknown so we rely on our under-
standing of the atmospheric processes
and on the statistical propertics of
ozone concentrations to interpolate
between monitoring sites, This paper
describes the application of statistical
models derived for storm severity data

Kingdom. Aggregate excess distributions
were fitted to data from all rural moni-
toring sites using a Weibull model with
a 40 nL/L threshold. At this threshold
the scale parameter has a spatial inter-
pretation, but, with higher thresholds,
there were problems with missing data
and small scale spatial cffects were not
detected. The approach appcars suc-
cessful for all except very large aggre-
gate excecdances which deviate from
the Weibull predictions.

Key words: aggregate excess distribu-
tion; critical level; mapping; ozone.

and
D. Fowler

Institute Terrestrial Ecology,
Edinburgh Research Station,
Bush Estate, Penicuik,
Midlothian EH26 0QB,
Scotland

to the ozone data for the United

Accepted: March 22, 1994

1. Introduction

The major public concern with ozone, O, in
Europe has focused recently on the existence of
“ozone holes” in the stratosphere caused by the de-
pletion of ozone as a consequence of chlorofluoro-
carbon emissions., Ozone is also present in the
troposphere and in the planetary boundary layer at
concentrations, i.e., volume fractions between 10
and 200 nL/L (i.e., parts per billion, ppb=10"°). In
the second half of the last century European mean
concentrations ranged between 10 ppb and 15 ppb
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[8]. Current mean concentrations are about twice
these values and ozone episodes with peak concen-
trations between 100 ppb and 200 ppb occur, a level
known to cause damage to many plant species.
Episodes happen if the precursor gases for photo-
chemical ozone production (oxides of nitrogen, NO
and NO,, and volatile organic compounds, VOCs)
are present in suitable meteorological conditions
for the chemical reactions to occur (ideally hot sum-
mer days with clear skies and low wind speeds).
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The description of spatial patterns in exposure of
vegetation to ozone over Europe has been ham-
pered by the limited availability of monitoring data,
the very large spatial variability in ozone concentra-
tions and a poor understanding of the underlying
mechanisms regulating the ozone exposure of ter-
restrial ecosystems. Defining a threshold for phyto-
toxicity is not simple. However, at 60 ppb of ozone
there is little doubt that there is a clear contribution
from photochemical production in polluted air and
a map of hours over 60 ppb for Europe (Fig. 1) is a
guide to some broad trends [4]. In a large area
north of the Alps, covering most of Germany and
parts of neighbouring countries, 200 hours per year
above 60 ppb is common. North and west of this
area the annual duration of exposure declines but
to the east there is so little information available
that mapping is uncertain. The Mediterranean zone
of high ozone exposure reflects recent work
showing that ozone episodes are common events in
this region but the levels have not yet been well
quantified.

&

\]

F] uptosoony™

Fig. 1. Hours when ozone exceeds 60 ppb.

Although the meteorological conditions leading
to ozone episodes are similar in a general sense at
all sites, the climates of northern and southern Eu-
rope lead to very different patterns of events. In
northern Europe, typical episodes occur when a sta-
tionary spring or summer anticyclone provides the
conditions for ozone production from the emitted
precursor gases to add appreciably to the back-
ground concentration of about 30 ppb. Typical pro-
duction rates give net increases of 10 ppb to 20 ppb
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per day and a succession of 8 to 10 such days leads
to peak concentrations of 150 ppb to 200 ppb. Often
in northern Scandinavia, Britain, Ireland and west-
ern France the ideal meteorology exists but in the
absence of upwind precursors. In Germany and
central Europe almost all wind directions provide
the precursors and hence the NW-SE gradient in
episodes. In southern Europe, the meteorological
conditions are more stable and episodes can occur
every day for long periods. However the effects of
both sea breezes and the development of intense
thermal low pressure areas on the air circulation
causes very variable patterns of ozone exposure.

Superimposed on this two dimensional surface
there is a daily cycle in ozone concentration which
is a very important and variable feature. At low al-
titude inland sites a marked diurnal variation (of
the order of 30 ppb) is observed but at high eleva-
tion the amplitude of the diurnal cycle gradually re-
duces to less than 5 ppb at mountain tops. Figure 2
shows data for 1 day at both Great Dun Fell (847 m
above sea level) and Wharleycroft (206 m above sea
level), two sites which are less than 10 km apart.
Hill tops are generally windy sites at which the ter-
restrial surfaces are well connected to the free tro-
posphere and where the downward supply of ozone
to the surface exceeds the rate of deposition. At low
level sites the thermal stratification of the atmo-
sphere with the development of a nocturnal inver-
sion restricts the supply of ozone from above during
the night and morning. In these conditions both de-
position to the surface and the nocturnal atmo-
spheric chemical titration of ozone with nitric oxide
causes the surface concentrations of ozone to de-
cline, potentially to negligible levels. At coastal sites
the effects of land and sea breezes strongly modify
the ozone exposure of the ground.
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Fig. 2. Typical altitude effect on the diurnal cycles of ozonc
concentration.
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The main concern with rural ground level ozone
concentrations is the damage which can be caused
to plants and to human and animal health.

For vegetation, some sensitive species show visi-
ble or physiological effects following exposure to 40
ppb or 50 ppb [3]. However, the effect of exposure
can be modified by the presence of other
atmospheric pollutants and, since ozone causes
damage to vegetation through stomatal uptake, by
nutritional status, light, temperature and humidity.
There is genetic variability in the ozone response
within species as well as between species and, al-
though considerable attention has focused on crops
and forests, little is known about the impact on
semi-natural vegetation. Timing of the exposure
within the life of the plant can be important as can
be the time for recovery between exposures [6]. The
United Nations Economic Commission for Europe
is considering a tentative proposed critical level of
300 ppb - h above 40 ppb during daylight hours for
the growing season of the vegetation. A critical level
is defined as one below which ozone has no de-
tectable effect. However, there are a number of out-
standing issues which it is hoped to resolve by the
end of 1993 and the adopted critical level may well
be different. The proposed critical level would
probably be exceeded in most of Europe at present.

Concern for human health in the UK at the cur-
rent levels of ozone is growing but better assess-
ments of population and individual exposure are
thought necessary [6). This aspect may in time be
the main argument for emission controls of the ma-
jor precursor gases.

It is important to differentiate between the dose
which a plant or human receives, that is incorpo-
rated into the individual’s system by some method,
and its exposure, that is the level in the atmosphere
around the individual. In this paper current meth-
ods for determining plant exposure in the UK are
described and then the potential application of ex-
treme value theory is explored.

2. Ozone Exposure Maps of the UK

Ozone exposure has recently been mapped for
the UK at three concentration thresholds: 40 ppb,
60 ppb and 90 ppb [5]. There were about 17 rural or
semi-rural monitoring stations between 1987 and
1991 which recorded hourly mean concentrations in
Britain and Ireland (Fig. 3). As the differences be-
tween sites which were geographically close was as
large as the differences between geographically dis-
tant sites, a straight spatial interpolation between
sites gave a map similar to that in Fig. 4.
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In the summer months, taken as April to Septem-
ber, during the part of the day when the atmo-
spheric boundary layer was well mixed by
turbulence, ozone concentrations at neighbouring
sites were very similar. For each threshold, an em-
pirical relationship was derived between the hours
over the threshold for the whole day and the hours
over the threshold for the well mixed period, taken
to be 1200 to 1800 GMT. For the threshold at 60
ppb, the relationship was

hso=(1.3+0.0021 z)t4, 1)
where he was the total hours over 60 ppb, #s, was the
hours over 60 ppb between 1200 and 1800 GMT
and z was the altitude of the location in meters. This
relationship was applied to the spatial interpolation
of hours over 60 ppb for 1200 to 1800 GMT to
provide a map (Fig. 5) with clear topographical in-
fluence. The coastal effect, which can extend for 5
km to 20 km inland depending on meteorological
conditions, was ignored; typically coastal ratios
were around 2 rather than 1.3. The maps are only
for the summer months, April to September, but
ozone levels very rarely exceed 40 ppb during the
remainder of the year,

This approach emphasizes the spatial variability
of ozone exposure within small areas. The relation-
ships for the different thresholds are empirical and
must be recalculated for each threshold and they do
not provide a general description of high concentra-
tion events. Direct estimates of exposure in terms of
a dose measurement like ppb.hours are not avail-
able although a minimum estimate could be made.
If the decision were made to set different windows
to match the growing seasons of different vegeta-
tion types, the whole procedure could be difficult to
implement.

3. Modelling Aggregate Excess

In work on flood levels for the River Thames, An-
derson and Dancy [2] modelled the aggregate ex-
cess, that is the sum of the exceedances over a
threshold, within a cluster using a Weibull distribu-
tion. There are similarities between ozone data and
flood level data. A Pareto distribution has been
shown to predict the peak excesses of ozone con-
centrations at a rural site using a threshold of 40
ppb [7]. There is a seasonal component in the data,
since high concentrations rarely occur over the win-
ter period, but this has not been modelled at
present. Also ignored was the probable increase in
mean values of ozone concentration over the time
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Fig. 3. Locations of 15 monitoring sitcs on the UK mainland
(2 sites, Lough Navar and Mace Head, are on Ireland).

period of data collection, as this increase was small
compared to both the diurnal fluctuations and the
accuracy of the recording methods.

Anderson [1] has looked at ozone data for one
site, Stevenage, for a longer time period. There was
evidence of nonstationarity in that data set and he
shows that there is a need for temperature, or some
similar measure, as a covariate. This problem is still
under investigation but for the time period consid-
ered in this paper, 1986 to 1991, no covariate has
been used. Anderson also derived a method of
extrapolating to higher thresholds than those used
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Fig. 4. Interpolated map of the number of hours when ozone
exceeds 60 ppb.

in fitting the models, a very useful tool for deter-
mining exposures to plants with different sensitivi-
ties to ozone.

The data for the 17 sites have been fitted using a
single threshold of 40 nL/L and a Weibull distribu-
tion for the aggregate excess. The data were declus-
tered using a minimum time separation of 48 hours.
There were about 100 clusters for the sites with
relatively complete data sets. Some sites were not
operational in the earlier period of collection and
one site had only 3 years data.
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Fig. 5. Altitude adjusted interpolated map of the number of
hours when ozone excceds 60 ppb.

The two parameter Weibull model
P(§>s)=exp(—a-s’ 2)

was fitted. The shape parameter, 8, varied between
0.4 and 0.6 for all sites. When 8 was constrained to
the value 0.5, there were only slight increases in the
values of the likelihood function. The spatial varia-
tion was therefore explored using only the scale
parameter a.

The Q-Q plots showed that, as expected, the fit of
the Weibull model varied from site to site. There
were some very straight line plots but there were

also shapes typically illustrated by the plot for Lady-
bower (Fig. 6). Most of the data were on a reason-
ably straight line but the Weibull distribution
underpredicted a few data points, usually no more
than five, at the higher values.

The shape parameter, a, from the fitted Weibull
model was clearly related to a SE-NW trend across
the country. To investigate this further, the a values
were regressed on other available data.
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Fig. 6. Q-Q plot for Weibull model (40 ppb threshold, 48 hour
scparation) fitted to data from Ladybower,

The sites were referenced to a line from Lulling-
ton Heath, a site on the south-east coast of
England, to Strathvaigh in the north of Scotland
using two variables, n,04, the distance north-west
along the transect, and emod, the perpendicular dis-
tance from the transect with positive values being to
the east. The actual distances were divided by the
length of the transect to give manageable numerical
values. The relationship between a and nmes was
non-linear and the simplest function of nmes which
fitted well was nne’. A linear function of epeg im-
proved the fit. One site, Bottesford, had a high
residual. This site has peculiar local features which
can give it the characteristics of an urban site and
was removed from the data. The subsequent regres-
sion equation

@=0,091+0.083 fpog® — 0.023 €mos 3)
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explained about 85% of the variation and produced
an acceptable residual pattern. The 2 remote sites,
Strathvaigh and Mace Head (on the west coast of
Ireland) had the most influence on the fit.

When a threshold of 60 ppb was used, there were
problems in fitting the model to the data. Each site
had only about four independent clusters per year
and fitting a Weibull model was very difficult since
the likelihood surface was quite flat. Results were
obtained by assuming @ was the same for a 60 ppb
threshold as for a 40 ppb threshold. However, it
became apparent that there were potentially two
difference sources for the higher exceedances and
that separation of these sources was critical with the
increased threshold level.

4. Discussion

The results of these fits are encouraging although
a number of problems have occurred. The Weibull
distribution with a threshold of 40 ppb and # fixed
at 0.5 gives an interpretable underlying pattern for
the whole country. The SE-NW gradient would be
expected. Areas to the east of the chosen transect
are more influenced by air masses from continental
Europe and would be expected to have more ozone
episodes. The lack of detection of an altitude effect
at this threshold is not entirely surprising as high al-
titude sites can have mean ozone concentrations
quite close to this threshold. However an altitude
effect would be expected at a higher threshold.

At the 60 ppb threshold two main problems oc-
cur. The first, and possibly the most important, is
lack of data. The declustering algorithm which has
been used takes the rather simple approach of re-
moving clusters with missing data. When monitor-
ing stations are running continuously, usually
recording several times per minute, there are a
whole series of glitches which can occur in the data
for reasons wholly unconnected with the concentra-
tion values. In particular there may well be a series
of instrumentation tests which usually occur during
the working day and often at least once per week.
Data capture rates of over 90 % on hourly values
are regarded as good but not all sites on the net-
work are achieving these rates. Therefore, careful
decisions on the treatment of missing data are likely
to give more information for analysis.

The second problem is one of determining
whether there are two distinct distributions re-
quired to model threshold exceedances or whether
the Weibull model is the wrong approach. If a mete-
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orological covariate is introduced 1], it is not clear
where it should be measured. Rapid ozone produc-
tion can be occurring 50 km or 100 km downwind in
good sunny conditions but the monitoring site may
be sitting in quite a different climate. Clearly, fur-
ther investigation of the peak and close to peak val-
ues will be required.

Although large exposure to ozone can be accu-
mulated by a plant at concentrations over 100 ppb,
these are relatively rare occurrences in the UK and
are often, if not always, associated with very dry
conditions. How much of the ozone will enter the
plant’s system, given that the plant is probably
under considerable water stress by the afternoon
period, is not clear. Even if the models do not per-
form very well at the highest exceedances, if they
can perform reasonably well for the remainder of
the exceedances they could be of considerable ben-
efit when critical levels for vegetation are consid-
ered. For human health problems, of course, a
different perspective is required.

This approach, when combined with a model of
time between clusters, has the potential of produc-
ing valuable information for the assessment and
mapping of critical levels for vegetation. However,
some further progress is required with models for
the 60 ppb threshold and with identification of local
scale variability in concentration levels.
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This work examines the potential con-
nections between extreme value statis-
tics, problems in aerosol science, and a
recent technique of solving ill-posed in-
version problems, called EVE (Extreme
Value Estimation). EVE estimates
functionals of the unknown solution by
searching the extreme (maximum and
minimum) values of that functional
within a set of acceptable solutions.
The statistics of occurrence of extreme
values in real life were not considered
when this method was developed. The
results of this technique are morc con-
servative than thosc of the other meth-
ods used to solve the problem of
aerosol size distribution estimation like
non-linear least squares, expectation-
maximization, regularization, etc. The
utilization of the customary methods of
deconvolution may lead to an underes-
timation of the possibility of occurrence

of extreme values in real life. It is sug-

gested that consideration of extreme value

statistics might aid in better defining
the limits to be placed on the physically
acceptable solutions in the EVE decon-
volution. Other problems could also
bencfit from the application of extreme
value statistics including the estimation
of the second highest value of mea-
sured airborne particle mass in the con-
text of the ambient air quality standard
for particulate matter less than 10 um
and the detcrmination of the Maximally
Exposed Individual as required under
the 1990 revisions to the Clean Air Act.

Key words: acrosol mass concentra-
tions; aerosol size distributions; decon-
volution algorithms; maximally exposed
individual; particulate matter 10 pm.
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1. Introduction

Although extreme value statistics has been ap-
plied to environmental phenomena such as maxi-
mum wind speed and wave heights, it has not been
applied to air pollution regulations, concentration
estimation, or other related problems. Since many
of the problems related to the effects of pollution
on public health and welfare are dependent on the
high end of the distribution of concentrations and/
or exposures, there appears to be an opportunity to
bring the developments in extreme value statistics
to an area that could make good use of such meth-
ods. In this paper, three possible applications of
extreme value statistics will be presented with the
hope of sparking interest in bringing these tools to
bear on some difficult but interesting problems.
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2. Aerosol Size Distribution Estimation

One common problem in aerosol science is the
estimation of the aerosol particles size distribution
from measurements of their aerodynamic behavior
(penetration or deposition) through a separation
device. For small particles (<300 nm), the pene-
tration through a device is governed by the parti-
cle’s diffusivity while for large particles (> 300 nm),
inertial impaction is the usual separation mecha-
nism. The response of the device is known either by
calculation or measurement using particles of
known size. For the unknown aerosol, the penetra-
tion is measured through a series of stages that
sequentially remove additional particles. From the
known characteristics and a limited number of mea-
surements, the size distribution of the aerosol is
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estimated. In general there are fewer measure-
ments than parameters to be estimated and there
can be collinearity problems in the penetration ma-
trix describing the instrument to complicate the
problem further. There are a number of conven-
tional approaches to providing a solution, but since
the problem is underdetermined, one cannot insure
that they will provide the true solution. It is also dif-
ficult to estimate error bounds for these solutions.

2.1 Conventional Methods

The observed sequence of particle concentrations
penetrating through each stage of a size segregating
device contains information on the size distribution
of that aerosol. In general, the number of particles
penetrating through a given stage of the system can
be expressed by

N,—=NuL P(@, dy) f(dp)dd, + & 1)
where N: is the concentration penetrating through
the ith stage, P(i,d,) is the known particle size pen-
etration characteristics for particles of diameter d,
through stage i, f(dp) is the size distribution func-
tion to be estimated, and ¢ is the error in fitting the
measurement.

The normal approach to solving this equation is
to express it as a series of linear, simultaneous
equations relating the particle penetration fraction
to discrete values of the size distribution and the
stage penetration functions.

Nf:ipﬁ *fi

j=1

i=1,...,1 V)

where [ is the number of stages in the device, J is the
number of size interval midpoints in the distribu-
tion, P; is the penetration of the jth particle size,
d,(j), through the ith stage, and N; is the number of
particles penetrating the ith stage. The f; values
must be nonnegative. However, there is generally
no other objective a priori information on the nature
of the distributions. The size distribution is not nor-
malized so that
J

No=Z fi ©
where N is the total airborne concentration_that is
being partitioned into the various size intervals.
Equation 2 can be rewritten in matrix form.

N=P-f+E. (4)
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If I is greater than or equal toJ, then the problem
is overdetermined and can be solved for a unique
solution using methods such as least squares. How-
ever, because the size distributions typically cover
several orders of magnitude in particle diameter, it
is normally necessary to estimate more midpoint
values than measurements (I <J). There is then no
unique solution to the problem.

Because collection by diffusion varies slowly with
particle size, the penetration values for adjacent
size ranges are often quite similar to one another.
The penetration functions for a screen diffusion
battery used for separating particles in the 0.5 nm to
500 nm range generally have substantial collinearity
and thus, the problem is ill-conditioned as well as
underdetermined [1]. Phillips [2] concluded that di-
rect inversion of theses equations rarely produces
physically acceptable solutions.

Two techniques for solving the ill-posed set of
cquations have been developed by Twomey [3] and
by Maher and Laird [4]. There is limited theoretical
justification for these methods. In practice, how-
ever, they have been widely used in the aerosol field
with satisfactory results in many cases. Different
variations of the Twomey algorithm have been pro-
posed (e.g., [5]).

Other approaches have sought specific solutions
within the feasible solution space by incorporating
additional constraints on the problem. For example,
Wolfenbarger and Seinfeld [6] assume that the dis-
tribution is fully smooth from one interval to an-
other. However, it is certainly possible to have
aerosol sources that produce particles with a very
narrow initial distribution and thus, the overall
aerosol size distribution may not be truly smooth.
Thus, in all of these solution methods, a solution,
but not necessarily the solution will be obtained.

2.2 Extreme Value Estimation

Replogle et al. [7] initially suggested the concept
that the primary “solution” is the set of all those
points that could produce the observed values.
Paatero [8,9] recognized that this approach could
be applied to the aerosol inversion problem by
considering a one-to-many mapping of the mea-
sured N onto f such that there is the set D(N) of
possible solutions corresponding to each possible
measured N. The set D(N) is defined as the collec-
tion of all such solutions f that allow the reproduc-
tion of the measured N by Eq. (4) when reasonable
values are used for £. Then the true unknown solu-
tion f is a member of the set D (N) with a high prob-
ability. D(N) is then the set of acceptable solutions.
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To initiate the analysis a best fit, f;, is calculated
such that the nonnegative constraints are satisfied.
Additional solutions are calculated that are suffi-
ciently close to the best fit estimation that they fall
within a criterion for acceptable solutions. For each
of the estimated quantities, the largest and smallest
values within the set D(N) are taken as the bounds
of the confidence interval in which the true solution
will fall at some high probability.

The question is then how to define what solutions
are acceptable. The likelihood function, L (N,f) is
the probability of observing N when f is given, It will
be assumed that

i E; 2
—In(L)=const - 21 IE‘I =const - Q(f), (5)

so that Q(f) is the sum-of-squares for the case in
which fand N are substituted into Eq. (1). The op-
timum solution would then be the one that maxi-
mizes L or minimizes Q. The minimum Q value is
denoted Qp corresponding to f;. Maintaining the
non-negativity constraints, the members of accept-
able solution set, D, must be such that

In[L(f}]=In[L (fo)] —const - K (6)

or alternatively,

QU)SQ" + K, (7)
where K is a confidence parameter with a typical
value of 3. In this way, the set of acceptable solu-
tions of the original equation that fit sufficiently
well are determined. In estimating the effects of ex-
posure to this airborne activity, it may be of interest
to estimate a function of the distribution. The dose
to cells in the bronchial epithelium could be calcu-
lated by

b
sU@) = Gnr@a,,  ®
where G (d,) is the dose per unit airborne alpha ac-
tivity in the size range d, to d, + dd, [10]. To exam-
ine the original distribution, the cumulative sums
are estimated as represented by the following se-
quence of functionals:

A=1ifdy=d

)
F=2 4 oitd>d,

j=1

®

where the F(d) is the cumulative size distribution
for the aerosol. The EVE(P) approach estimates
such functionals by determining their confidence in-
tervals.
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2.3  Activity-Weighted Size Distributions

Activity-weighted size distribution have been
measured in a number of normally occupied houses
[11-13] using an automated, semi-continuous
graded screen array (ASC-GSA) described by Ra-
mamurthi [14] and Ramamurthi and Hopke [15].
The ASC-GSA measurement system is a diffusion
battery that uses a combination of six sampler-de-
tector units operated in parallel. Each sampler-de-
tector unit couples wire screen penetration, filter
collection, and activity detection with a solid state
detector in a way as to minimize depositional losses.
The system samples air simultaneously in all of the
units, with a flow of about 15 Ipm through the sam-
pler slit between the detector and filter holder sec-
tion in each unit. The sampled air is drawn through
a filter. Complete details of the sampler are pro-
vided by Ramamurthi and Hopke [15].

Computer control of sampling, counting, and
analysis permits automated, semi-continuous oper-
ation of the system with sampling every 1.5h to 3 h.
The activities of each radon progeny are estimated
from alpha spectra collected during two counting
intervals: the first one during sampling and the sec-
ond 20 min after end of sampling. The observed
concentrations of 2®Po, 2*Pb, and 2“Bi are used to
reconstruct the corresponding activity-weighted
size distributions using the Expectation-Maximiza-
tion algorithms [4] in six inferred size intervals in
geometric progression within the 0.5 nm-500 nm
size range. In addition to the individual size distri-
bution for each decay product, the total airborne
activity concentration can be characterized by the
Potential Alpha Energy Concentration (PAEC).
The PAEC can be calculated from the individual
progeny concentrations by

PAEC (mIm)™*=5.79%10"" - ¢,

+2.86x107% ¢, 4+2.10% 1075 - ¢3, (10)
where ¢, ¢z, and ¢; are the activity concentrations of
the three radon decay products in Bq m >,

2.4 Results

Measurements have been made in a number of
houses in Northeastern North America. To illus-
trate the use of the EVE(P) algorithm for deconvo-
luting the activity size distributions, samples taken
in houses in Arnprior, Ontario and Parishville, NY
will be presented. In each home, radon and the size
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distributions of each of the three decay products
and the PAEC were determined at 2 h intervals.
The details of the experiments in Arnprior are
given by Hopke et al. [11]. In this home, radon con-
centrations were relatively low (<100 Bq m™) and
generally in the range of 25 Bq m™ to 45 Bqm™>.
The cumulative probability distribution for PAEC is
shown in Fig. 1. The outer boundary lines are the
EVE(P) results for the 95% and 99% confidence in-
tervals. The solid central line is the EM deconvolu-
tion result. Although the specific solution obtained
by the EM algorithm should fall within the EVE
bounds, it may lie anywhere within the feasible re-
gion. The confidence band will not necessarily be
symmetrically distributed about the specific solu-
tion obtained by any particular algorithm.
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Fig. 1. Cumulative distribution for PAEC for a sample taken

in an occupied home in Arnprior, Ontario.

Another analysis was performed on samples from
a home in Parishville, NY with much higher radon
concentrations (500 Bq m~® to 600 Bq m~) and
thus, the bounds on the feasible region might be
smaller [16)]. The comparison of the EM size distri-
bution with the EVE(P) distribution for PAEC is
shown in Fig. 2. The EM-derived distribution does
not appear to fully fit within the EVE(P) bounds.
The question is then whether the current EVE(P)
approach is the best description of the bounds on
the feasible region.

Consideration of extreme value statistics could

lead to the following suggestion: it might be possible.

to define some statistical properties for the extreme
members of the set of acceptable solutions, even
when there exists no general information about the
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probability distribution of the solution. Such prop-
erties might help in better defining the limits of the
set of acceptable solutions. This could help in re-
ducing the confidence intervals of the EVE decon-
volution technique without sacrificing the reliability
of estimation.

Curnulative Probability

1 il N PR i FESa |

1 10 100
Particle Diameter (nm)

Fig. 2. Cumulative distribution for PAEC for a sample taken in
an occupied home in Parishville, NY.

3. Other Applications
3.1 Ambient Air Quality Standard for PMe

In 1987, the U.S. Environmental Protection
Agency promulgated a new National Ambient Air
Quality Standard (NAAQS) for airborne particu-
late matter [17] which defined a size-selected por-
tion of the ambient aerosol, particulate matter less
than 10 pm or PM,, as important for protection hu-
man health and a new way of the determining when
the standard had been violated. It is the form of the
24 h standard that involves extreme values. The
standard requires that samples taken over 24 h in-
tervals not show more than 1 “expected ex-
ceedance” of 150 ug m~ per year averaged over a
3 year period. Particle samples are not usually taken
daily because of the manpower requirements
needed to manually weigh unexposed filters, change
them in the field, and weigh the exposed filters
again. A minimum sampling regime would collect
samples every 6th day. Thus, over a year approxi-
mately 61 samples might be collected. It is assumed
that these samples are IID and thus, the number of
“expected exceedances” can be estimated as

EE;=OE; - -, (11)
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where for a given year i, EE; is the number of esti-
mated exceedances, OF; is the number of observed
exceedances, m; is the number of samples taken,
and #; is the number of days in the year. Thus, if 61
samples are taken in a 365 day year, then 1 observed
exceedance becomes 6 expected exceedances. If
this observed exceedance is the only one that occurs
during a 3 year interval, then the 6 expected ex-
ceedances are divided by 3 years to yield an average
number of expected exceedances of 2 which is
greater than 1 and hence the area is in non-attain-
ment of the standard. In other words, the average
number of expected exceedances in any 3 year pe-
riod is given by

k]
- Y EE; .

i=]

(12)

b-‘lli-'

Davidson and Hopke [18] examined some of the
problems that arise as a result of the application of
such a standard given incomplete sampling. To il-
lustrate the difficulties, the upper tail of the distri-
bution of airborne mass concentrations will be
represented by the following exponential distribu-
tion:

1
P(c=L) =1_ﬁ =1—exp(—y +2.0) (13)

or

P(c>L)=exp (2.0—7.90 %) , (14)

where ¢ is the mass concentration of airborne par-
ticulate matter and L is the maximum concentration
allowable under the standard. The probability of an
average number of exceedances being greater than
1 will be examined by examining P(E > 1.05).

P(E=1.05)=P (S EE:/3 = 1.05)

—P(Z EE; =z 3.15)

=1-P(S EE; < 3.15)

=1-P (3 OF; < 3.15-n/m)
15)
Thus, the probability of nonattainment classifica-
tion is dependent on the number of measurements
per year.

P(E=105)=1-P(3 OE,=0) m< "=

2

=1-P(% OE; 1) 35 <ms3 s

365

=1—P(Z OFE; <2) 3 Tz <m_33'i'5

—<msn

=1-P(X OE:<3) 575

(16)

The probabilities of observing 0 to 3 exceedances in
any 1 year given the chosen sampling frequency can
be estimated using the exponential distribution
given in Eq. (17).

P(S OFE; =0) =P
P(S OE; =1)=3P¢2P,

. P2 OE; =2)=3PiP,+ 3PP

P(3 OE =3) = PP +3P¢Ps+ 6PoPiP2  (16)

A plot of the probability of declaring an area in
nonattainment as a function of the number of sam-
ples taken per year is shown in Fig. 3. Forc¢ <1.0L,
classification as nonattainment is a Type I error.
For ¢ >1.0L, probability of proper classification
represents the power of the approach. The disconti-
nuities occur because of the change in the integer
values of the number of expected exceedances that
occur at different n/m values. It can be seen that for
an area that is exactly in attainment (¢ =1.0L),
there is a probability of up to 60% that it will be
misclassified as nonattainment depending on the
number of samples taken per year. This form of the
standard, therefore, has a high probability of a type
1 error in order to attain a reasonable power to
identify real nonattainment areas.

T _..--“’—FE '1/#___4.- o T
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4 -—-o0.9L
gorr  / —— 10 T
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30.5 5 !_; / Y /ll o /'1 J
o4r i / 'l/./ :
- - —ll ]

——
———

183
NO. OF SAM PLES/YEAR

Fig. 3. Probability of classifying an area as being in nonattain-
ment of the 24 h NAAQS for PM,, based on an exponential dis-
tribution model of the tail.
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The goal of this standard is to have the second
highest actual value whether measured or not, be at
or below the prescribed concentration. Thus, alter-
native approaches that can more accurately esti-
mate the second highest value in the tail of an
extreme valued distribution would potentially
provide equal or greater power while lowering the
probability of making a misclassification error. Such
an estimation process would make the standard
more efficient while maintaining or possibly im-
proving its effectiveness.

3.2 Most Exposed Individual

Under the Clean Air Act Amendment of 1990,
the Congress has mandated that major emission
sources of hazardous air pollutants, defined as ma-
terials on a list of 189 substances given in the Act,
must install emission control systems. After these
systems are in place, the residual risk to the most
exposed individual must be assessed. If the risk is
found to be >10"*% the EPA Administrator must
decide what additional steps, if any, are to be taken
to reduce this risk. Previously the most exposed in-
dividual (MEI) has been defined as a person living
continuously at the fence line of the facility 200 m
from the emission source for 70 years. The idea of
a 24 h per day, 70 year lifetime exposure for this in-
dividual is obviously an overestimate of the real
maximally exposed individual. Recently EPA has
revised its guidelines for exposure assessment to
support the development of a distribution of expo-
sures that an individual might encounter. However,
extreme value statistics is never mentioned in any of
the discussions of the use of the upper tail of the
distribution to examine exposure and thus risk to
the most exposed individual. Since the inaccurate
estimation of the residual risk could result in sub-
stantial costs for no health benefit if the maximum
exposure is overestimated or result in death or ad-
verse health effects if underestimated, the best
statistical methodologies should be applied to this
important estimation problem. This situation ap-
pears ideally suited for extreme value statistics and
thus should simultaneously provide interesting
statistical problems to solve and value to the society
by solving them properly,

4. Conclusions

There appear to be a number of areas in the air
pollution field in which rigorous application of ex-
treme value methods could provide useful contribu-
tions to solving important environmental problems.
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The better estimation of the bounds for aerosol size
distributions, the determination of attainment or
nonattainment of the NAAQS for PMy,, and expo-
sure and risk assessments at the high end of the
range of possible exposures all could benefit from
substantial involvement of extreme value statistical
expertise. [t is hoped that this report will spark in-
terest in one or more of these problem areas.
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1. Introduction

Flood frequency analysis has been carried out by
using univariate distribution functions, the extreme
value distributions being an important set of distri-
butions used in this field of study. Generally,
parameters of such distributions are estimated
from a short record of flows. The variability of
these estimates has prompted exploration of joint
estimation models which use information from
streamflow records of neighboring gauging stations.

In pioneering papers Finkelstein [1], Tiago de
Oliveira [2], and Gumbel [3] gave the foundations
for the multivariate approach to extreme value dis-
tributions. Following this work, several bivariate
extreme value models began to appear in the liter-
ature. Rueda [4] explored the logistic and mixed
models for bivariate extreme value distributions
when both marginals are extreme value type I
(EVI) distributions. He reported improvements in
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the estimation of parameters when the bivariate
approach is used. Raynal [5] developed and ap-
plied three bivariate options from the logistic
model of bivariate extreme value distribution for
flood frequency analysis. He found that there exists
an improvement in the parameter estimation
phase, even in the case when both samples have
the same record lengths,

Herein, the trivariate approach of multivariate
extreme value distribution is presented with a view
to its application to flood frequency analysis.

General characteristics, the procedure for
estimation, and reliability of parameters of the
trivariate extreme value distributions will be de-
scribed in the following sections. An actual applica-
tion of the proposed model to six gauging stations
in Northern Mexico is presented in the paper.
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2. Characteristics of the Trivariate Logis-
tic Model

From the multivariate extension of the logistic
model for bivariate extreme value distribution [3],
the trivariate approach is:

F(x, y, z, 8)=exp{~[(In F(x))"

+(=In F@)"+(=In FE)"}'", 6]

where m is the association parameter (m =1) and
F(s)=F(s, 8) is the marginal distribution function
of 5. Equation (1) must satisfy the following in-
equalities (Tiago de Oliveira [6, 7]):

F(x)F(y)F(z) <F(x y z) <min[F(x), F(y), F(z)]

@)
[F@& »)F @ 2)F0, 2)T
3 _[F& )& 2)F G, )"
R TO T

Marginals in Eq. (1) can be either EVI distribu-
tions:

F(s)=exp( —exp- (2=4) )

or GEV distributions:

F(s)=exp~(1- (5% ). ©)

The combinations have been named (Escalante

[81):

a) Trivariate extreme value distribution type 111
(TEV111) or TriGumbel distribution. All mar-
ginals are EVI distributions.

b) Trivariate extreme value distribution type 112
(TEV112) or BiGumbel-GEV distribution.

¢) Trivariate extreme value distribution type 122
(TEV122) or BiGEV-EVI distribution.

d) Trivariate extreme value distribution type 222
(TEV222) or TriGumbel distribution. All mar-
ginals are GEV distributions.

The particular form of Eq. (1), when the marginals
are GEV distributions for the maxima, is (Escalante

(8D:

F(x, y, z,u1, a1, B, U2, a2, P, U3, o, B3, my) =

ewe] - ((1-(5)8)

(-

a2

R NG

where u;, s and 3,1 =1, 2, 3, are the location, scale
and shape parameters of the marginal GEV distri-
butions for the maxima. The corresponding proba-
bility density function is (Escalante [8]):

f(x) y; Z, W, oy, Bl) iz, aa, st Us, s, ﬁ3’ m')

e (5 -5

(=52l {1 (52 (152 - (520)) ]
[ e e P R (S I
(-5 o (-5 - (5] (o)

(- 52)afome 1= (52 (- (55)8)) ) .
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3. Estimation of Parameters

The method of maximum likelihood for estimat-
ing the parameters of trivariate extreme value dis-
tributions has been chosen due to its characteristics
for consistency in large sample estimation and ap-
plicability in estimating the parameters of cumber-
some density functions.

For the case of trivariate distribution functions,
the sample arrangements could allow having either
an equal or different record length in any of the
samples to be analysed.

In order to consider all possible combinations of
data, it is required to have a sufficiently flexible for-
mulation, therefore the following general form of
the likelihood function will be used based on the
generalization obtained by Anderson [9]:

Lxyz 8)= [ii; fi, Ql)]h [E fi.qi, Qz)]rz

1y Is

L sz 0] [ 1 reus.00] [ 16n 0"

®)

where:

ni, 2 =are respectively the univariate and
bivariate record lengths before the
common period ns,

n4, ns  =are respectively the bivariate and uni-
variate record lengths after the com-
mon period n;,

D =is the variable with univariate record
before the common period,

(. q) =are the variables with bivariate record
before the common period,

(x, y, z) =are the variables with trivariate record
during the common period,

(r, ) =are the variables with bivariate record
after the common period,

r =is the variable with univariate record
after the common period,

1 =are indicator numbers such that:

Li=1ifn>0and I,=0if n, =0.

The logarithmic function will be used instead of
the likelihood function. So, Eq. (8) is transformed
into:

LLGs 3y 5 O=h[ 3 1nfpi 0]

+h [!:ZZI In f(pi, g, ﬂz)]’ffs [ij‘. Inf(xy, 2 .9.3)]

+14 [2 In f(ri, si, 94)] + Is [,2 In f(r:, Qs)].
)

The maximum likelihood estimators of parame-
ters for the trivariate extreme value distributions
are those values for which Eq. (9) is maximized.

The corresponding logarithmic likelihood func-
tion for the trigeneral extreme value (TEV222) dis-
tribution function, based on Eq. (9) from [8] is
shown in Eq. (10):

LL(x y, z, wi, a1, Bu, Uz, @z, Po, U3, a3, Bs, My, My, M) =1 {—m In a,

+Iz{"22 [—(lnq,+ln aq)+ln(l—(u

i=1

o3 [ (-2 a)mem(1- (2 0) )51 )

{1 (18]

(1= (55) o1 - (22) g )™

a

]

(1) (- 52 )+ (- (225) ) )

(5] ) (1 (222) a)os) ™)
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+13{ —n;(lnal +Ina;+In a;) + "E::; [ln(l - (u)ﬁl )m.;pl-l

o

- 25) (- (52}

a;

il (1- (8 aom (-5 o (- (58 )

[+ [£]

sl {11 (- (52 o= 52
(i (5o o) (- 52
a5 (- (52 - (- (52

a3 [ () o= (55 (- (5 )
(1= (252 - () )l )
(-5 (-2 ™) (- (252
O L

5[5 (52)e)<)

where:

m trivariate association parameter
mu, my;  bivariate association parameter before and after the common period, respectively.

ni Hs
> In f(p;, 6) and > In f(r;, 8) take the form:
i=1 im]

i=1
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(10)

(11)
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Similarly, 2 In f(pi, qi, 8;) and Z Inf(r;, s, 6:) take

the followmg form (bivariate retatlonshlp with both
GEV marginals):

[ ln o+ 1n a,,) + ln(l (ﬁ_;!!!)ﬁt)nrb’.&—l
{1

(1= (5]
O
sl (- (559
(1= () ) )
~{(1-(54)a)

(1= (22 ]

Given the complexity of the mathematical expres-
sions in Eq. (10) and their partial derivatives with
respect to the parameters, the constrained multi-
variable Rosenbrock method, Kuester and Mize
[10], was applied to obtain the maximum likelihood
estimators for the parameters by the direct maxi-
mization of Eq. (10). The required initial values of
the parameters to start the optimization of Eq. (10)
were provided by the univariate maximum likeli-
hood estimators of the parameters for the case of
the location, scale, and shape parameters. The ini-
tial values of the association parameters, bivariate
and trivariate, were set equal to 2, following the
procedure developed by Escalante [8].

im]

(12)

4. Reliability of Estimated Parameters

The indicator selected to measure the reliability
of estimated parameters when using the trivariate

3713

distribution as compared with the univariate coun-
terpart was the asymptotic relative information
ratio.

Table 1 shows a sample of relative information
ratios obtained by using the following set of
parameters;

U= ]5.0, (1'1=2.0, ﬁl =-0.20
=120, m=1.2, B=-0.15
u3=10.0, a=1.0, B=-0.10
Table 1. Asymptotic relative information ratios of the parame-

ters of the TEV222 distribution for the maxima n;=25; m,=2;
My =2

Parameter ns 0 25 50 75
@ 0 1088 13695 15055  1.5856
25 14460 15942  1.6823

S0 16295  1.7201
75 17408

ay 0 10141 12274 13256 13821
25 12712 13753 1.4356
50 13941  1.4555
75 1.4662

B 0 12405 13555 14041 14312
25 13864 14382 1.4671
50 14514  1.4806
75 1.4883

"2 0 10876 13722 15094  1.5903
25 10599 12263 13333
S0 10500  1.1683
75 1.0450

- 0 10135 12151 13065 13587
25 09835  1.1046  1.1788
50 09734  1.0604
75 09684

B 0 12442 13469 13901 14140
25 11324 12069  1.2507
50 1.0934  1.1507
75 10736

us 0 10882 10462 10302  1.0217
25 10604  1.0417 10313
50 1.0506  1.0390
75 10736

@ 0 10126 09553 09334 09218
25 09822 09549  0.9395
S0 09790 09542
75 09669

B 0 12437 10268 09535  0.9166
25 11314 10246 09704
50 10923 1.0223
75 10724
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5. Case Study

A region located in Northern Mexico, with a total
of six gauging stations, was selected to apply the
proposed methodology to the flood frequency anal-
ysis. Tables 2—4 show the results of the application
of the trivariate extreme value distributions for the
maxima to the data recorded in such gauging
stations.

In order to compare the goodness of fit between
the univariate and trivariate maximum likelihood
estimates of the parameters in stations considered
in the case study, the standard error of fit, as de-
fined by Kite [11], was obtained and is displayed in
Table 5.

Table 2. Correlation coefficients and relative sample sizes for
the triplets of stations for the casc study

Triplets of Correlation Relative sample sizes
stations coefficient ny na n3 ng ns
Acatitan-Sta Cruz-Ixpalino  0.926 9 22 0 0
Choix-Huites-Sn Francisco 0,969 0 14 18 7 0

Table 3. Univariate maximum likelihood estimates of the
parameters of the GEV distributions defined by the data of the
gauging stations of the casc study

Station Location Scale Shape
Acatitan 576.21 283.80 -0.62
Choix 236.69 130.15 —0.12
Huites 1564.78 978.87 —0.57
Ixpalino 772.57 473.97 -0.38
Sn Francisco 926.53 532.56 —0.65
Sta Cruz 835.74 440.23 —0.40

Table 4. Trivariate maximum likelihood estimates of the
parameters of the TEV222 distribution defined by the data of
the gauging stations of the case study

Station Location Scale Shape
Acatitan 568.93 269.44 —0.64
Choix 220.85 128.29 —-0.39
Huites 1603.30 1038.53 —0.68
Ixpalino 795.03 490.86 —0.46
Sn Francisco 943.69 540.73 —-0.67

850.97 467.74 —0.52

Sta Cruz
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Table 5. Standard errors of fit for gauging stations of case study

Standard crror of fit

Univariate Trivariate
Station (GEV) (TEV222)
Acatitan 244.40° 253.90
Choix 87.70 58.80*
Huites 1024.00 831.90°
Ixpalino 537.90 393.00¢
Sn Francisco 350.80* 401.50
Sta Cruz 497.20 259.60¢

* Minimum standard error of fit.

6. Conclusions

The logistic model for trivariate general extreme
value distribution for the maxima has been
proposed. Asymptotic and data base results suggest
that the proposed model is a suitable option to be
considered when performing flood frequency analy-
S18.
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Floods and draughts constitute extreme
values of great consequence to society.
A wide variety of statistical techniques
have been applied to the evaluation of
the flood hazard. A primary difficulty is
the relatively short time span over
which historical data are available, and
quantitative estimates for paleofloods
are generally suspect. It was in the con-
text of floods that Hurst introduced the
concept of the rescaled range. This was
subsequently extended by Mandelbrot
and his colleagucs to concepts of frac-
tional Gaussian noises and fractional
Brownian walks. These studies intro-
duced the controversial possibility that
the extremes of floods and droughts
could be fractal. An cxtensive study of
flood gauge rccords at 1200 stations in
the United States indicates a good cor-

relation with fractal statistics. It is con-
venient to introduce the parameter F
which is the ratio of the 10 year flood
to the l-year flood; for fractal statistics
F is also the ratio of the 100 year flood
to the 10 year flood and the ratio of
the 1000 year flood to the 100 year
flood. It is found that the parameter F
has strong regional variations associated
with climate. The acceptance of power-
law statistics rather than exponentially
based statistics would lead to a far
more conservative estimate of future
flood hazards.

Key words: Brownian walks; floods;
fractals; Gaussian noiscs; time series.

Accepted: March 22, 1994

1. Introduction

The flow in a river can generally be considered
a time series. The extreme values in the time series
constitute floods. Floods present a severe natural
hazard; in order to assess the hazard and to allo-
cate resources for its mitigation it is necessary to
make flood-frequency hazard assessments. The in-
tegral of the flow in a river is required for the de-
sign of reservoirs and to assess available water
supplies during periods of drought.

One estimate of the severity of a flood is the
peak discharge at a station V. The magnitude of
the peak discharge is affected by a variety of cir-
cumstances including: (1) The amount of rainfall
produced by the storm or storms in question, (2)
the upstream drainage area, (3) the saturation of
the soil in the drainage area, (4) the topography,
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soil type, and vegetation in the drainage area, and
(5) whether snow melt is involved. In addition
dams, stream channelization, and other man-made
meodifications can affect the severity of floods.

In order to estimate the severity of future floods,
historical records are used to provide flood-fre-
quency estimates. Unfortunately, this record gener-
ally covers a relatively short time span and no
general basis has been accepted for its extrapola-
tion. Quantitative estimates of peak discharges as-
sociated with paleofloods are generally not
sufficiently accurate to be of much value. A wide
variety of geostatistical distributions have been
applied to flood-frequency forecasts, often with
quite divergent predictions. Examples of distribu-
tions used include power law (fractal), log normal,
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gamma, Gumbel, log Gumbel, Hazen, and log Pear-
son. Many discussions of this work appear in the lit-
erature [1-7].

An independent approach to reservoir storage
was developed by Hurst [8, 9]. Hurst spent his life
studying the flow characteristics of the Nile and in-
troduced the rescaled range (R/S) analysis. He
found that the variations of the storage (the range)
scaled with the time period considered as a power
law. Mandelbrot and Wallis [10-13] introduced the
concepts of fractional Gaussian noises and frac-
tional Brownian walks and related these to R/S
analysis; all are recognized as fractal distributions.
They also introduced the Noah and Joseph effects.
The Noah affect is the skewness of the distribution
of flows in a river and the Joseph effect is the per-
sistence of the flows. Although the concepts intro-
duced by Hurst and Mandelbrot and Wallis have
been considered in a wide variety of applications
[14], they have not influenced approaches to flood-
frequency forecasting. This point will be a central
feature of this paper along with a general discussion
of the applicability of fractal statistics.

2, Analysis

In most cases the flow in a river is a continuous
function of time, thus it is appropriate to treat the
flow as a time series. It is straightforward to study
the spectral characteristics of the time series by de-
termining the coefficients of a Fourier expansion.
For most river flows there will be a strong annual
peak associated with seasonal variations in rainfall.
However, it is of interest to examine the longer
range trends in the data. If the Fourier coefficients
have a power-law dependence on frequency over a
significant range of frequencies a fractal depen-
dence is obtained (with some constraints on the
power).

IfV (t)is the volumetric flow in a river as a func-
tion of time, the condition that the flow is fractal
requires that

LDV Oy lopey, @)

where V(¢ + T)—V () is the difference in flow after
atime T, H is known as the Hausdorff measure, and
f(y) is a normalized cumulative probability distribu-
tion function. When f(y) is the error function and
H =1/2 this relation defines a Brownian walk. If
0<H<1 and f(y) is the error function, this relation
defines fractional Brownian walks. The fractal
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dimension of a fractional Brownian walk is related
to the Hausdorff measure by [15]

D=2-H 2)
and with 0<H < 1 we have 1<D <2,

An extension of the self-similar analysis of rivers
as a time series is to treat floods as a discrete fractal
set. In order to avoid difficulties with annual vari-
ability we hypothesize that the peak annual dis-
charge Va in a time interval T is related to the
interval by

Va(T)=C\T" 3
with T an integer number of years. Self-similar river
flows imply a power-law scaling of peak annual dis-
charges and recurrence intervals.

This scale imvariant distribution can also be ex-
pressed in terms of the ratio F of the peak discharge
over a 10 year interval to the peak discharge over a
1 year interval. With self-similarity the parameter F
is then also the ratio of the 100 year peak discharge
to the 10 year peak discharge. In terms of H and D
we have

F=10"=10%*". (4)
The parameter F is a measure of the severity of
great floods.

An alternative way of writing Eq. (3) is

N=CV-e )

where N is the number of floods per unit time with

flows that exceed V. This relation will be used to analyse

actual flood-frequency data. The quantities N in Eq.
(5) and T in Eq. (3) are related by

o1
so that we have
H=1 %)
and from Eq. (2) we have
p=2-1 ®)
o’

Data will be used to obtain a; F, H, and D will then
be found from Egs. (4), (7), and (8).

Before considering actual examples we will also
introduce rescaled range (R/S ) analysis. Hurst [8, 9]
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proposed this empirical approach to the statistics of
floods and draughts. The method is illustrated in
Fig. 1. Consider a reservoir behind a dam that never
overflows or empties, the flow into the reservoir is
V(t) and the flow out of the reservoir is V(T de-
fined by

17 =% L V(t)de. 9)

The volume of water in the reservoir V(¢) is given
by

V(t)=V(0)+ E Ve yd' -t V(T)  (10)

and the range is defined by

R(T)=Vmax— Veir (1m

where Vi is the maximum volume and Vi, the
.minimum volume stored during the interval 7. The
rescaled range is defined as R/S where § is the stan-
dard deviation of the flow during the period T

S(r)=[11, J;T (I'/(t)ml_'/)’]ln dr. (12)

Hurst et al. [16] found that for many time series the
rescaled range satisfies the empirical relation

o

where H is known as the Hurst exponent. Examples
included river discharges, rainfall, varves, tempera-
tures, sunspot numbers, and tree rings. In many
cases the value of the Hurst exponent is near 0.7.

R

S (13)

/Vmax ®

A
x\

Viy

Vimin (1 _
Vit

=

Fig. 1. Illustration of how rescaled range (R/S) analysis is car-
tied out. The flow into a reservoir is V() and the flow out is
V/ (T). The maximum volume of watcr in the reservoir during the
period T'is Viue(T) and the minimum Viio(T); the difference is
the range R(T) = Vi T) — Vaia(T).

If a Gaussian white noise sequence of numbers is
integrated or summed the result is a Brownian walk.
An R/S analysis of the white noise sequence gives a
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Hurst exponent H), thus the Hurst exponent is
equal to the Hausdorff measure of the integrated
signal, a Brownian walk with H =0.5. Mandelbrot
and Wallis [10-13] introduced the concept of frac-
tional Gaussian noises and their integrals,
fractional Brownian walks. They showed that the
Hurst exponent H, of a fractional Gaussian noise is
equal to the Hausdorff measure of the correspond-
ing fractional Brownian walk.

If 0.5 <H\ <1 the original time series is said to be
persistence; adjacent values are more strongly cor-
related than if they were random. The higher the
value of H,, the greater the persistence. If
0 <H,; <0.5 the original time series is said to be an-
tipersistent; adjacent values are less correlated than
if they were random.

3. Examples

We now turn to the analysis of flood-frequency
records. As our first example, the 10 benchmark
stations considered by Benson [2] will be studied.
Benson [2] applied a variety of geostatistical distri-
butions to the data from these stations, these will be
compared with the fractal approach discussed
above. The maximum annual floods for two stations
are given in Fig. 2. Values for station 1-1805 on the
Middle Branch of the Westfield River in Goss
Heights, Massachusetts are given in Fig. 2a for the
period 1911-1960 [17] and values for station
11-0980 in the Arroyo Seco near Pasadena, Califor-
nia are given in Fig. 2b for the period 1914-1965
[18].
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Fig. 2. Maximum annual floods for (a) station 1-1805 on the

Middle Branch of the Westficld River, Goss Heights, Massachu-
sctts and (b) station 11-0980 in the Arroyo Scco near Pasadena,
California.
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In order to assess the applicability of fractal
statistics the number of annual floods N with a peak
discharge greater than V(m®s) is divided by the
sampling period to give the mean number of floods
per year N with a peak discharge greater than the
specified value. The log N (V) is then plotted against
log V. Results for station 1-1805 are given in Fig. 3a,
the solid line is the least square fit of Eq. (5) with
the data over the range 50<V <200 m’/s; large
floods are omitted from the fit because of their
small number, The solid line corresponds to a =2.3;
from Egs. (4), (7), and (8) we have H=0.435,
F =272, and D =1.56. Results for station 11-0980
are given in Fig. 3b, the solid line is the

50 100 200 500 1000
V m¥s

0.01

Fig. 3a. Number of floods per year with a peak discharge
greater than V. Station 1-1805 in Goss Heights, Massachusetts
during the period 1911-1960.

0.0l 1 L L I [N | 1 N
10 20 50 100 200

Vm¥/s

Fig. 3b. Number of floods per year with a peak discharge
greater than V. Station 11-0980 near Pasadena, California dur-
ing the period 1914-1965.

best fit of Eq. (5) with the data over the range
10< ¥V <100 m%*s. The solid line corresponds to
a=1.1; from Egs. (4), (7), and (8) we have
H =0.909, F =8.11, and D =1.09. In both cases the
fit to the scale-invariant (fractal) relation is quite
good. The values of H and F in California are con-
siderably larger than in Massachusetts. Large floods
are relatively more probable in the arid climate
than in the temperate climate.

The values of H, D, and F are given for all ten
benchmark stations in Table 1. The correlations
with the fractal relation (5) in Fig. 3 are typical of
the ten stations. The parameter F is a measure of
the relative severity of flooding. The higher the
value of F the more likely that severe floods will oc-
cur. Our results show that there are clear regional
trends in values of F. The values in the southwest
including Nevada (F=4.13) and New Mexico
(F =4.27) as well as California (F =8.11) are sys-
tematically high. The high values can be attributed
to the arid conditions and the rare tropical (mon-
soonal) storm that causes severe flooding. Central
Texas (F =5.24) is also high and Georgia (F =3.47)
is intermediate. These areas are influenced by hur-
ricanes. The northern tier of states including Mas-
sachusetts (F=2.72), Minnesota (F=2.95),
Nebraska (F =3.47), and Wyoming (F =3.31) range
from low values in the east to intermediate values in
the west. Washington (F =2.04) has the lowest
value of the stations considered; this low value is
consistent with the maritime climate where ex-
tremes of climate are rare.

We have also determined the Hurst exponent for
the ten benchmark stations. Values of R/S for T =35,
10, 25, and 50 years (R/S =1 for T =2 by definition)
are given in Fig. 4a for station 1-1805 (Westfield,

Table 1. Values of the Hausdorff measurc H, fractal dimension
D, flood intensity factor F, and Hurst cxponent H, for the 10
benchmark stations

Station  River (State) H D F H

1-1805 Westficld (MA) 0435 156 272 067
22185 Oconce (GA) 0540 146 347 072
5-3310 Mississippi (MN) 0470 153 295 0.72
6-3440 Little Missouri (WY) 0520 148 331 072
6-8005 Elkhorn (NE) 0540 146 347 067
7-2165 Mora (NM) 0630 137 427 073
8-1500 Llano (TX) 0719 128 524 0.70
10-3275 Humboldt (NV) 0616 138 413 066
11-0980 Arroyo Scco  (CA) 0909 1.09 8.11 068
12-1570 Wenatchee (WA) 0310 169 2.4 072
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MA) and in Fig. 4b for station 11-0980 (Pasadena,
CA). Good correlations are obtained with (13) tak-
ing H,=0.67 for station 1-1805 and H,;=0.68 for
station 11-0980. Values of H, for all ten stations are
given in Table 1. The values are nearly constant
with a range from 0.66 to 0.73 indicating moderate
persistence. It is not surprising that the values of
the Hausdorff measures H differ from the values of
the Hurst exponent H, since the former refers to
the statistics of the flood events and the latter to the
statistics of the running sum.

Fig. 4a. The rescaled range (R/S) for several intervals T.
Station 1-1805. The correlations are with Eq. (13) and the Hurst
exponents H; arc given.

Fig. 4b. The rescaled range (R/S) for several intervals T.
Station 11-0980. The correlations are with Eq. (13) and the
Hurst exponents H, are given.

However, the results indicate that there is consid-
erable variation of a (H, D, and F) but very little
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variation in H,. A simple explanation is that the for-
mer is sensitive to the Noah effect while the latter
is sensitive to the Joseph effect. The relative scaling
of floods is sensitive to the skewness of the statisti-
cal distribution but is not sensitive to the persis-
tence of flows or floods. An important conclusion is
that R/S analysis is not relevant to flood-frequency
hazard assessments,

Many statistical distributions have been applied
to historical records of floods. Benson [2] has given
six statistical correlations for each of his ten bench-
mark stations. His results for the 2-parameter
gamma (Ga), Gumbel (Gu), log Gumbel (LGu), log
normal (LN), Hazen (H), and log Pearson type III
(LP) are given in Fig. 5a for station 1-1805 and in
Fig. 5b for station 11-0980. Also included in each
figure is the self-similar (fractal) estimate (F). For
large floods the fractal prediction (F) correlates
best with the log Gumbel (LGu) while the other
statistical techniques predict longer recurrence
time for very serious floods. The fractal and log
Gumbel are essentially power-law correlations
whereas the others are essentially exponential.

While the ten benchmark stations provide a basis
for comparing statistical approaches, they hardly
made a convincing case that fractal statistics are
preferable to alternatives. A principal difficulty is
the relatively short time span over which reliable
records have been collected. In order to try to over-
come this difficulty we have analysed a large num-
ber of records and superimposed the results. We
have utilized a digitized 40 year data set for 1009
stations unaffected by flood control projects [19].
The distribution of the stations over the United
States is given in Fig. 6a. We will separately con-
sider the data from the 18 hydrologic districts, these
are illustrated in Fig. 6b.

The largest floods in each of the 40 water years
are ordered, the largest annual flood is assigned a
period of 40 years, the 2nd largest annual flood a
period of 20 years, the 3rd largest annual flood a
period of 13.3 years, and so forth. The log of the
peak discharge for each flood is plotted against the
log of its assigned period and the best straight line,
i.e., from Eq. (3), is obtained. Two randomly se-
lected examples are given in Fig. 7.

Results for station 1-860 on the Warner River in
Davisville, NH, are given in Fig. 7a. The best fit
straight line gives H =0.68; from Egs. (2), (4), and
(7) we have F =4.8, D =1.32 and a =1.46. Results
for station 3-2305 on the Big Darby Creek in Dar-
byville, OH are given in Fig. 7b. The best fit straight
line gives H =0.386; from Egs. (2), (4), and (7) we
have F =243, D =1.61, and a =2.59,
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Fig. 5a. Flood frequency predictions for Station 1-1805. The peak discharge V is given as
a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com-
pared with the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga),
Gumbel (Gu), log Gumbel (LGu), log normal (LN), Hazen (H), and log Pearson type III
(LP).
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Fig. 5b. Flood frequency predictions for Station 11-0980. The peak discharge Vis given
as a function of recurrence intervals T. The scale-invariant (fractal) prediction, F, is com-
pared with the six statistical predictions given by Benson (1968); 2 parameter gamma (Ga),
Gumbel (Gu), log Gumbel (LGu), log normal (LN), Hazen (H), and log Pearson type I11
(LP).
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Fig. 6a. Distribution of the 1009 stations that have been analysed.

Fig. 6b. Hydrologic regions of the continental United States.
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Fig. 7a. The peak daily discharge for the largest annual floods
over 40 years as a function of the assigned period: Station 1-0860.
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Fig. 7Tb. The peak daily discharge for the largest annual floods
over 40 years as a function of the assigned period: Station 3-2305.

In order to determine the quality of the fit of the
data to the fractal relation Eq. (3), the ratio of the
measured peak flow to the value predicted by the
fractal fit is given for periods of 1, 2, 5, 10, 20, and
40 years in Fig. 8. The 111 stations from hydrologic
region 3 are given in Fig. 8a, the 57 stations from
region 4 in Fig. 8b, the 10 stations from region 16 in
Fig. 8c, and the 100 stations from region 17 in Fig.
8d. If all points were unity the fit would be perfect.
The mean deviations from the fractal relation are
only a few per cent. The deviations for larger values
of the period are greater as would be expected since
the individual points are only a few floods, How-
ever, the mean values of the 40 year floods are close
to the fractal extrapolation. This agreement pro-
vides support for the applicability of fractal statis-
tics to the estimation of the flood hazard.
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In Fig. 9a the 111 fractal fits for hydrologic region
3 are given, the fits for regions 4, 16, and 17 are
given in Figs. 9b, 9¢, and 9d. The peak flow at a pe-
riod of 10 years was normalized by the drainage
area upstream of the station. If peak flows were
simply proportional to upstream drainage areas in a
hydrologic district then all the plots should fall on a
single band. In fact, there is more than an order of
magnitude variation. This is not surprising but the
details of the variations should be helpful in provid-
ing a better understanding of the flood hazard.

The regional variations in F are clearly illustrated
in Table 2. The highest values of F are generally as-
sociated with the arid southwestern states in regions
12, 13, 15, and 18, the mean value of F for these re-
gions is F =5.03. The lowest mean value for F is in
region 17, the Pacific Northwest, with ¥ =2.08. In
some cases the standard deviations for F in a dis-
trict are large. For district 18 (primarily California)
the mean is 5.34 and the standard deviation is 2.4.
In this case much of the deviation can be identified
with the presence or absence of snow run off. Those
stations with large upstream snow packs have rela-
tively small values for F compared with those sta-
tions with little or no upstream snow packs.

4. Conclusions

Historical flood-frequency records have been ex-
amined to determine whether fractal (power-law)
statistics are applicable. Although it must be recog-
nized that the relatively short duration of historical
records restricts the validity of conclusions; never-
theless, quite good agreement is obtained between
fractal statistics and observations for 10 benchmark
stations and for 1200 other stations in the United
States. The basic question in terms of flood hazard
assessment is whether extreme floods decay expo-
nentially in time or as a power law, If the power-law
behavior is applicable then the likelihood of severe
floods is much higher and more conservative
designs for dams and land use restrictions are
indicated.

For fractal behavior the ratio of the 10 year to the
1year flood F is also the ratio of the 100 year to the
10 year flood and the ratio of the 1000 year flood to
the 100 year flood. We find large regional variations
in values of F. In arid regions such as the south-
western United States the values of F are nearly
three times the values in more temperate regions
such as the northwestern and northeastern corners
of the country. Smaller values of F are also found if
upstream drainage areas have large snow packs.
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Measured Peak Flow/Value Predicted by Fractal Fit
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Fig.8a. Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data as a function
of the assigned period for the 111 stations in region 3.
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Fig. 8b. Ratio of the observed peak daily discharge to the value predicted by the fractal fit to the data
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Table 2. Average values and standard deviations of the flood
intensity factor F for the 18 hydrologic districts

Hydrologic F Standard Number

regions deviations of stations

1 2.369 0.377 54

2 2.998 1.313 147

3 2.758 0.617 111

4 2.183 0.289 57

5 2,396 0.509 129

6 2.505 0.324 38

7 2.782 0.738 123

8 3.021 0.979 22

9 4.7 1.586 13
10 3.557 1.677 64
11 3.897 1.801 46
12 4.848 1.559 13
13 4.104 2.121 14
14 2.283 0.51 18
15 6.066 1.08 11
16 2.778 0.752 10
17 2.076 0.357 100
18 5.134 24 39

The relevance of R/S analysis to flood frequency
forecasting has also been addressed. For the ten
bench mark stations we find the Hurst exponent to
be H;=0.7%0.03. This value indicates moderate
persistence for the floods but also shows that deter-
minations of Hurst exponents are not useful for
flood hazard assessments. The Hurst exponent does
not correlate with the fractal flood parameter F. In
the terms introduced by Mandelbrot and Wallis [10]
the Hurst exponent is sensitive to the Joseph effect
or persistence of events whereas the fractal flood
parameter F is sensitive to the Noah effect or skew-
ness of the statistical distributions of floods.

It certainly remains to be demonstrated that frac-
tal flood frequency statistics are generally valid.
However, the success indicated in the results given
here raises the interesting question whether the un-
derlying physical processes are inherently fractal.
Fractal statistics will be applicable to any scale in-
variant process. They are also applicable to dynam-
ical systems that exhibit self-organized criticality
[20]. One speculative conclusion is that the storms
that generate floods are associated with the self-
organized critical behavior of the atmosphere.
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In order to utilize limited historical
wind records for estimating extreme
wind speeds for natural hazards dam-
age mitigation, a Markov chain model
for generating long-term annual ex-
treme winds, on the basis of short-term
records, is investigated. Basically, this
simulation model consists of three com-
ponents. They are state of wind speeds,
wind spced distribution functions, and
transition probability matrices.

The basic strategy of our simulation
model is to generate the time series of
hourly wind speeds in parts: for those

winds associated with well-behaved cli-
mates and those with extreme winds.

- Applications of this model to generate

long-term extreme winds, on the basis
of short records at Houston Intcrconti-
nental Airport of Texas, are demon-
strated,
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1. The Model

Recent efforts have been made to improve the
methods of utilizing short-term wind records
[1,2,3,4]. Our contribution to this endeavor is the
development of stochastic simulation models which
generate hourly wind data on a daily cycle basis
[5,6].

The three essential elements in the Markov
chain model are: state of wind speeds, wind speed
distribution functions, and transition probability
matrices.

1.1 State of Wind Speeds

In the simulation process for a given wind site,
the first step is to divide the entire range of ob-
served wind speeds into a finite number of states.
This is performed with reference to the probability
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histogram derived from the observed wind data for
that site. A computer program called WSTAT was
developed for performing this task.

1.2 Distribution Functions

The second basic element involves the wind
speed distribution functions, viz., the probability
density functions (PDF) and the cumulative distri-
bution functions (CDF) of wind speeds in various
states. In this paper, four types of PDFs are uti-
lized to fit a wind speed histogram, viz., uniform,
linear, exponential and Weibull distribution func-
tions. The exponential and Weibull distributions
are exclusively reserved for the last state in which
extreme winds are involved.
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1.3 Transition Probability Matrices

The transition probability p; is actually a condi-
tional transition probability of wind speed v, going
from one state i at hour 7 to wind speed v.+, of
state j at hour 7+1 or

M

With m states determined, an m Xm transition
probability matrix PM can be determined as

Pi =p (Verr1=jlv.=i).

PM =[p;] for i,j =1.2,...m )
in which, p; have the following properties:
S pi=1fori=12,..m (3)
j=1
and
pi >0, for all i and j. 4)

In this paper, a day is divided into several peri-
ods. Similarly, the variation of mean monthly wind
speeds is accounted for by grouping consecutive
months with similar wind speed trends into a num-
ber of seasons for a year. If the number of periods
in a day and the number of seasons in a year are R
and S, respectively, then there will be R X S transi-
tion probability matrices in the simulation process.
A typical transition probability matrix for a given
period r and season 5 can be expressed as

PM(s,r)=[p*] )
where s=1,2,....5, and r=12,...,R. A computer
program called WTPM was developed for calculat-
ing the PM(s,r).

2. Simulation Procedures

Some sequential steps of generating hourly wind
data points at a given site are briefly described as
follows:

1. Divide the historical wind data into subsets so

that program WSTAT may be executed.

2. Define R, number of periods in a day, and S,
number of seasons in a year, so that program
WTPM is activated.

3. Calculate PDFs and CDFs of the historical
data.
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4. By means of Eq. (5), compute PM(s,r), the
transition probability matrix of period r in
season 5. A total of R X § transition probabil-
ity matrices will be obtained.

. Determine the state of the succeeding hour’s
wind speed. For any given wind speed in state
i of this current hour (with specified period r
and season s), the succeeding hour’s wind
speed state interval “k” can be determined.

. Determine the value of the succeeding hour’s
wind speed. With the state k determined in
Step 5, the simulated wind speed for the suc-
ceeding hour can thus be obtained.

Repeat steps 5 and 6 until a desired period of sim-

ulation is attained. A computer program called

WSIM was developed for generating the hourly

wind data.

3. Markov Property and Stationary Tests

In order to substantiate the major assumptions
made earlier, a test must be performed of the
Markov property, i.e., the existence of dependency
between two adjacent hourly wind speeds. This
simulation technique is only applicable to station-
ary time series; the intended simulation model is a
stationary first order Markov chain. Consequently,
a test of stationarity of the historical wind speed
times series is necessary prior to the acceptance of
the simulated results. Anderson and Goodman’s
method [7] was used in performing these tests in
Sec. 4.

4. Application

The simulation model based on the described
procedures is applied to wind data collected at the
Houston Intercontinental Airport in Texas. In this
illustration, three periods in a day (1:00 a.m.-9:00
a.m., 10:00 am.-7:00 p.m, and 8:00 p.m.-mid-
night) and two seasons in a year (November-May
and June-October) were considered. The periods
of a day were decided from the averaged diurnal
wind speeds at the site. Therefore, by using Eq. (5),
six transition probability matrices were calculated.

Based on the 20 years (January 1973 to Septem-
ber 1992) of hourly wind records available at Hous-
ton Intercontinental Airport, eight simulation runs
were made. Each run generated 100 years of hourly
wind speeds. Historical record periods for the eight
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runs are: the first 5 years (January 1973-Decem-
ber 1977); the second 5 years (January 1978
December 1982); the third 5 years (January 1983-
December 1987); the fourth 5 years (January 1988
September 1992); the first 10 years (January
1973-December 1982); the second 10 years (Janu-
ary 1983-September 1992); the first 15 years (Janu-
ary 1973-December 1987); and all 20 years
(January 1973- September 1992).

The annual extreme wind speeds of the historical
data (1963-1990), and of eight sets, each 100 years
long, of simulated hourly data, are plotted on Type
I probability paper (Fig. 1). Using the Gumbel line
fitted to the historical data as the reference, the
performance of the simulation model is summa-
rized in Table 1. As shown in this table, the devia-
tions of the simulated 25-year, 50-year, or 100-year
wind speeds from the reference Gumbel line were

measured by S,, Cramer-Rao’s standard deviation
of the inherent sampling error of the historical
records [8,9]. As indicated in Table 1, the differ-
ences between the simulated annual extreme wind
speeds and the values obtained from the reference
Gumbel line of historical data at 25 year or 50 year
or 100 year recurrence intervals are all smaller
than one S.. This result is very encouraging.

The plots of cumulative distribution functions
for the historical as well as the 100 year generated
records at Houston Intercontinental Airport are
presented in Fig. 2. As shown in this figure, the
curves derived from the generated records closely
match those of the historical records, which implies
that the characteristics of the historical wind
speeds at Houston Intercontinental Airport were
adequately represented.

Table 1. Estimated annual extrcme wind speeds from historical records and from
simulation methods at Houston Intercontinental Airport

Recurrence
interval Va—V.
Data period (in years) V. Sv V. Sy
1963-1990 25 26.6 1.78
50 28.8 2.13
100 309 2,48
1/1973-12/1977 25 276 -0.56
50 28.7 0.05
100 29.9 0.40
2/1978-12/1982 25 271.8 -0.67
50 29.1 -0.14
100 303 0.24
1/1983-12/1987 25 274 —0.45
50 28.4 0.19
100 29.4 0.60
1/1988-9/1992 25 274 —045
50 28.6 0.09
100 29.8 0.44
1/1973-12/1982 25 274 —045
i 50 28.6 0.09
100 29.7 0.48
1/1983-12/1987 25 28.1 -0.84
S0 294 -0.28
100 30.7 0.08
1/1973-12/1987 25 276 —0.56
50 28.8 0.00
100 300 036
1/1973-9/1992 25 27.9 -0.73
50 29.6 —0.38
100 313 -0.16

V.=extreme wind speed from annual series in m/s and 10 m above ground level.
Va=simulated extreme wind speed in m/s and 10 m above ground level.
$.=Cramer-Rao’s standard deviation of inherent sampling crror of historical

records,
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5. Conclusions

A procedure for predicting extreme wind speeds
at a location along the Gulf Coast is demonstrated.
The results obtained from the application of this
model are very encouraging. Although 20 years of
data were available for the particular station in the
illustration, computer simulation runs were made
on the basis of 20 year, 15 year, 10 year, and 5 year
database. It has been shown that it is not necessary
to have 20 years of continuous data and that even a
5 year record is adequate for showing good com-
parison between the simulated results and histori-
cal data. Further research effort is being
undertaken at the University of Hawaii at Manoa
to study the applicability of this method to other
stations along the Gulf Coast and other parts of the
continental United States.
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Models for extremes of environmen-
tal processes have been studied exten-
sively in recent years. The particular
problems arising when attempting to es-
timate return levels from sequences of
measurements on the appropriate vari-
ables have been considered in some
detail. In particular, the aspects of sea-
sonal variation and short-range depen-
dence have received a great deal of
attention. In this paper we present a
case study based on 10 years of hourly
wind speed measurements collected at
a UK. site, elucidating the most suc-
cessful procedure emerging from an ex-
tensive study of this data. The basic
model (in which an extreme value
distribution is fitted to cluster peak ex-
cesses over a high threshold) is stan-
dard. However the cmphasis is on a
number of practical problems which

will arise when such models are fitted
to wind speeds, but which have re-
ceived little consideration. These in-
clude: model sclection and assessment
of model adequacy when the threshold,
and some or all of the parameters, are
allowed to vary seasonally; the choice
of the best combination of threshold
and cluster identification procedure;
and the choice of a measure of preci-
sion for return level estimates. The aim
is to suggest an algorithm which can be
generally applied to the problem of
gust return level estimation at individ-
ual sites.

Key words: extreme value theory; gen-
eralized pareto distribution; peaks over
threshold; return levels; statistics of ex-
tremes; wind speed.

1. Introduction

Threshold models for exceedances have been
widely adopted in recent years in the study of ex-
tremes of environmental processes. The main ad-
vantage of such models over the so-called
“classical” extreme value models (in which a limit-
ing distribution is fitted to the largest order statis-
tics selected form fixed time intervals) is their
greater flexibility in the manner in which events are
identified as “extreme.” This generally leads to a
larger number of extreme events being available
for analysis, and this in turn to more precise esti-
mates for return levels and return periods.
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The price paid for the increased efficiency of
data exploitation and consequent improvements in
estimation precision is, as one would expect, a
greater complexity of model. Seasonal variation
and short-range correlation, almost always present
in environmental time series, can no longer be ig-
nored in the manner of a traditional “annual max-
ima” analysis (or “Gumbel analysis”). Instead they
must be given careful consideration. Models which
take account of both of these features have re-
ceived considerable attention in the literature (e.g.,
Refs. [2,3,7,8] and the associated discussion).
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In this paper we consider a complete study of a
sequence of wind speed measurements recorded at
a single U.K. site. We address some of the practical
complexities that arise when adopting a threshold-
based approach to extremes of environmental time
series. In particular, the related issues of
1. choosing a threshold large enough for the distri-
bution of excesses to approximate to a limiting
form,

. allowing the threshold and some or all of the
parameters to vary seasonally,

. employing a threshold-based declustering
method for identification of storm peaks,

give rise to a situation which requires some careful
consideration in terms of the practical application
of existing models.

The theoretical arguments supporting the use of
threshold models in the manner considered in this
paper, already validated in previous studies (e.g.,
Ref. [8]), suggest that the techniques employed
should be applicable at any site at which the natu-
ral mechanism underlying the generation of ex-
treme winds is not capable of taking on several
distinct forms (e.g., hurricanes and conventional
storms). Thus the approach considered here could
be viewed as a possible algorithm for the estima-
tion of the extreme wind potential at any site in a
temperate climate.

2. Background to the Study
2.1 Wind: The Variable

The behaviour of wind velocity as a continuous
variable demonstrates certain characteristics which
distinguish it from other environmental variables.
In common with other such variables, clear sea-
sonal patterns and short-range dependence are
strong features of the wind climate at most loca-
tions. However, in comparison with these others,
wind velocity is fairly well-behaved in a number of
ways. Unlike sea-level (Ref. [9]), wind speed does
not naturally break down into distinct components,
and unlike rainfall, the wind does not arrive in
clearly identifiable episodes. In comparison with
many environmental phenomena, wind velocity is
not subject to very violent departures from the
norm. Although a wind velocity of 200 mph may
sound rather severe, from a statistical point of view
such departures from mean levels are small com-
pared with those- occasionally demonstrated by
rainfall levels over short periods, flow rates in riv-
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ers, and concentrations of certain pollutants. The
relative stability of wind velocity is more akin to
sea-level behaviour, but wind speed differs from
sea-level in being one of the most rapidly varying of
all environmental variables. Conditional on the un-
derlying “level” of the wind (characterized by
storms and periods of calm), many distinct gusts
can be observed in periods as short as several min-
utes. In a sense therefore, while being rather sta-
ble, the wind can provide us with a great deal of
information in a relatively short time. This
strengthens arguments supporting limiting asymp-
totic distributions for the most extreme gusts, and
potentially allows us to make inferences about
long-period return levels from comparatively short
runs of measurements.

2.2 Extreme Value Models: Exploiting the
Variable

We consider the problem of estimating gust re-
turn levels for specified periods of the order of 50
or more years, when data available consist of
recorded maximum gusts taken over short intervals
(say 1 hour or 1 day), and are collected over a time
period which may be short in comparison to the
return periods (perhaps less than 10 years). In such
situations, a classical approach based on annual
maxima is unworkable, due to sparsity of data.
Methods which make use of several order statistics
from each year (for example the “r largest” ap-
proach advocated by Tawn [9] in analysing extreme
sea-levels) can produce viable estimates of 50 year
gust return levels from as little as 10 years of data
[10]. However, such methods must take account of
serial correlation, and are vulnerable to the effects
of seasonal variation. Seasonal effects could be in-
corporated into the models, but given the addi-
tional complexity this would entail, it is thought
preferable to convert to a threshold-based ap-
proach. The main advantage over the use of order
statistics from fixed time intervals is the additional
flexibility in the choice of extreme events for analy-
sis. This arises from allowing the number of such
events which occur over a fixed period to vary ac-
cording to the behaviour of the wind during that
time. Serial correlation can be dealt with by identi-
fying clusters of observations above a threshold,
which are deemed to be correlated, and discarding
all but the largest observation within each cluster,
The aim here is to filter out a set of independent
“cluster peak excesses” for further analysis (Ref.
[7]). Seasonal variability in the behaviour of
extremes can be incorporated by allowing the
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threshold (above which events are deemed to be
extreme), and the distribution of excesses over this
threshold, to vary through the year. However the
justification for such a model is not immediate and
is worth considering in a little more depth.

It is usual in strongly seasonal climates for the
occurrence of truly extreme wind speeds to be con-
fined to a certain part of the yearly cycle. In the
U.K. for example, it is very unusual for wind dam-
age to occur outside the period October through
March. However a model for extreme values which
takes account of this seasonality will select as ex-
treme events all gusts which are large given the time
of year. If the probability of important levels being
exceeded during certain seasons is negligible, then
there is only a point to modelling the extremes ob-
served during these periods if we believe that they
can supply additional information about what may
happen in the seasons in which genuinely large
events can occur. For this to be the case, we must
assume that there is some homogeneity in the ex-

‘tremal behaviour across the different seasons—
that in some sense it is fundamentally the same
mechanism which is responsible for the generation
of large gusts throughout the year, and it is just
some of the associated parameters of this mecha-
nism which change. Fortunately, there are often
good reasons for making this assumption. In tem-
perate climates, it is essentially the same alternat-
ing passage of anticyclones and depressions which
leads to all the storms which occur throughout the
year. It is merely the severity of these systems
which is seasonally variable. Hence it seems rea-
sonable to assume that the manner in which large
events cluster together will be broadly homoge-
neous throughout the year.

A further, more tentative contention is that the
patterns of turbulence caused by the local terrain
around a site also remain essentially unchanged
throughout the annual cycle. Since it is this turbu-
lence that is the cause of gusting, i.e., very short
term fluctuations away from the mean wind speed,
and since the systems generating sequences of high
or low mean speeds appear to differ from season to
season only in their severity, we suggest that the
shape of the upper tail in the distribution of gusts
could well be homogeneous throughout the year
(i.e., the distribution of extremes varies seasonally
only in terms of location and scale). In terms of
fitting extreme value distributions to large gusts,
this would be reflected by the shape parameter
(denoted here by k) being held constant across all
seasons.
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Of course homogeneity conditions on both clus-
tering behaviour of large gusts, and the shape of
the upper tail in their distribution, must be verified
from the data. However, previous studies suggest
that such assumptions are often validated, and can
then provide an important route to a more efficient
exploitation of data. This will be demonstrated in
the case study which follows. Working with hourly
maximum gusts collected at Sheffield University
for the U.K. Meteorological Office over a 10 year
period 1975-1984, we identify four steps to the esti-
mation of return levels. Implementing this al-
gorithm, we obtain useful return level estimates for
10, 50, and 1000 years. The level of precision at-
tached to these estimates is greater than any
achieved via a whole range of conventional analy-
ses applied to the same data, as well as some more
novel models (see Ref. [10]).

3. Step 1—Generating a Stationary
Series

3.1 Dealing with Seasonal Variation

Davison and Smith [3] identify two basic ap-
proaches for handling seasonal data:

1. the removal of known seasonal components to
create a stationary (prewhitened) series;

2. a separate seasons approach, in which a differ-
ent model is fitted within each of a finite num-
ber of seasons. '

For wind-speed data there are no clearly defined
seasonal components. Also, as Davison and Smith
[3] point out, it is important that the seasonal ef-
fects identified are those which affect the upper
tails, rather than the central portion of the data.
We therefore advocate the separate seasons ap-
proach (with a different extreme value model being
fitted to large gusts from each season) as the more
natural choice. However, as stated in Sec. 2, we
hope to be able to exploit homogeneities across
seasons in the mechanisms underlying generation
of extreme gusts. This may involve application of a
uniform procedure for identification of clusters of
large observations, and/or the fitting of a constant
shape parameter across all seasons. Now the as-
sessment of goodness-of-fit of extreme value mod-
¢ls generally entails graphical rather than formal
methods, due to the intractability of the latter, and
the ease of application and interpretation of the
former. In particular, the mean excess plot [mean
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residual life (MRL), or conditional mean excess
(CME)] is advocated for the limiting Generalized
Pareto Distribution (GPD) fitted to threshold ex-
cesses (see Lechner, Leigh, and Simiu [5,6] for ar-
guments in justification). In order to check our
homogeneity assumptions we must be able to as-
sess the adequacy of the model to all the seasons
simultaneously. For this purpose we suggest the
generation of a prewhitened series for the prelimi-
nary stages of the analysis only, namely the choice
of an appropriate seasonally varying threshold, an
accompanying method of identifying clusters of ob-
servations above this threshold, and the initial as-
sessment of model adequacies.

In this paper, we take our seasonal unit to be 1
month. Experience suggests that by dividing the
year into 12 equal-length seasons, we strike a good
balance between the two conflicting requirements
of a) reflecting reasonably accurately the continu-
ous nature of seasonal changes in climate, and b)
retaining a substantial amount of data for analysis
within each season. The models we will consider
thus consist of a separate GPD fitted to cluster
peak excesses within each month, the threshold
also being allowed to vary on a monthly basis. We
will assume a homogeneous clustering mechanism
throughout the year, but retain the option of allow-
ing the shape parameter k to vary from month to
month, or constraining it to take a single value
across all months. (In other situations where a dif-
ferent length of season is considered appropriate,
the arguments laid out below would apply un-
changed.)

Under such a separate months model, an appro-
priate set of prewhitening operations would be pro-
vided by separate transformations t, for each
month m (applied to all the observations in month
m). In order to know the precise transformations
required, we would need to know the parameters
in the GPDs fitted to cluster peak excesses within
each month. Since we have not yet established how
to obtain the cluster peak excesses (CPEs), we can-
not know these values. However it is possible to
make an educated guess at an appropriate set of
monthly transformations, as shown in the following
sections.

3.1.1 Homogeneous Shape Parameter ¥ We
consider first the situation in which the GPD shape
parameter k is assumed constant over all months. It
is then easy to show that a set of linear transforma-
tions tm(x)=amx +b.; a >0, m=1, .., 12 can be
chosen to render the distribution of CPEs over a
single threshold homogeneous GPD across all
months (see Ref. [10]).
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In order to form estimates for the required
transformations, we bear in mind that it is the up-
per tails of the monthly distributions of all
recorded maximum gusts (in our case hourly)
which will yield the CPEs. Since the clustering
mechanism is assumed homogeneous across all
months, we suggest that a good approximation to
the appropriate transformations will be obtained
by making the upper tails of the empirical monthly
distributions of all recorded maximum gusts coin-
cide with each other in some sense. Since the re-
quired transformations are linear, this can be
achieved by transforming two high quantiles (e.g.,
0.95 and 0.99) from each month to two distinct ar-
bitrarily specified points, say the corresponding
theoretical quantiles of the unit exponential distri-
bution. Explicitly, we would transform empirical
monthly quantiles 2,,, and z,,, to the corresponding
exponential quantiles g, and g, by solving the
simultaneous equations:

AnZ1m +b, ={q1

(1

for a., >0 and b,,, and for each m =1, ..., 12. The
precise choice of quantiles is not critical, and is
somewhat arbitrary. It is determined by the neces-
sity of moving as far as possible into the upper tails,
while still retaining a substantial amount of data
between the two quantiles, and above the largest of
them (in order to keep sampling error to a mini-
mum).

3.1.2 Variable Shape Parameter & If the
shape parameter k is allowed to vary from month
to month, the required monthly transformations
are no longer linear. However, the arguments lead-
ing to approximately the correct transformations
being obtained (by causing the upper tails of the
empirical monthly distributions of all monthly gusts
mutually to coincide) still hold. This time transfor-
mations which will lead to monthly cluster peak ex-
ceedances being homogeneous GPD over a single
threshold are of the form ¢, (x) =a. log(x —¢m ) +bm;
a., >0 (easily obtained by considering the transfor-
mation which maps one GPD c.d.f. onto another).
Estimates can be obtained by transforming three
high quantiles (e.g., 0.90, 0.95, and 0.99) from each
month to distinct arbitrary points. For example the
empirical quantiles zim, Z2m, and zz, from each
month m could be transformed to the correspond-
ing theoretical quantiles qi, g2, and g3 of the unit
exponential distribution by (numerically) solving
the simultaneous equations:

A2 m + bm =q2
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amlog(Zl,m _Cm) +bm =QI

(2

Amlog(zom —Cm) +bm =q2
a,m lOg(Z3,m - Cm) +b,, = qs

for a, >0, bm, and ¢,, and for each m =1, ..., 12.

3.2 Implementation for the Sheffield Data

For each month, 10 years of hourly maximum
gusts constitute approximately 7300 observations.
Hence there are about 365 points lying above the
0.95 quantile; 73 above the 0.99 quantile. The sam-
pling error in estimating these quantiles’ theoreti-
cal values via the empirical equivalents is therefore
reasonably small. We initially make the assumption
of a homogeneous shape parameter. As we shall
see in Sec. 4, this appears to be well-founded. For
each month, then, linear transformations which
map the two empirical quantiles to their theoretical
unit exponential counterparts (2.996 and 4.605),
are applied to all hourly maxima. The resulting
prewhitened sequence occupies the range [ —4.559,
8.596].

4. Step 2—Threshold Selection
4.1 Methodology

Having created an approximately stationary (in
the upper tail at least) sequence of hourly maxi-
mum gusts, we are in a position to experiment with
various choices of threshold and cluster identifica-
tion procedure,

We propose a constant threshold for the
prewhitened series, based on the assumption that
the region of the data to be treated as extreme will
constitute the same upper quantile for all seasons.
Applying the inverses of the prewhitening transfor-
mations to this threshold in monthly segments will
then provide the seasonally varying threshold for
use in the final model.

Exceedances of the threshold will occur in clus-
ters (storms) from which we wish to choose only
the peak excesses for modelling. We need to be
able to identify these clusters, bearing in mind that
some of the observations within a storm may lie
below the threshold. Of several possible methods,
we opt for a fixed termination time approach,
whereby a storm is deemed to have ended when a
certain required number of consecutive observa-
tions below the threshold are observed. The advan-
tage of this -method over some others is that it
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allows both the duration of storms, and the dura-
tion of intervals between them to vary according to
the data, reflecting the inherent natural variability
of these quantities.

The threshold and the termination interval may
be regarded as the two parameters for estimation
in this section of the analysis. Formal estimation
procedures such as maximum likelihood are inap-
propriate here: distributional assumptions on CPEs
only hold if the threshold is chosen high enough,
and we do not wish to impose a specific model
structure on the underlying process which gener-
ates storms and periods of calm. However, graphi-
cal procedures are highly effective in this capacity.
In particular the mean excess plot (the mean resid-
ual life plot: see Ref. [4]; or conditional mean ex-
cess plot: e.g., Ref. [5,6]) performs well. This is
produced by simply plotting the mean excess of all
model data above threshold u against u for a range
of such thresholds. Linearity in the plot corre-
sponds to a good fit of the GPD to excesses of the
model data over any threshold above which the lin-
earity holds. In our case the model data will be the
selected cluster peak exceedance magnitudes.

Note that the threshold and the termination in-
terval must be chosen in combination, because
these two parameters interact in the manner in
which they determine the set of cluster peak ex-
ceedances actually selected. Basically, provided
both are large enough, the set of corresponding
CPEs should be iid GPD, because

L. the GPD exhibits a threshold stability property,
whereby a good fit above a certain threshold im-
plies a good fit above all higher thresholds, with
merely a change in scale parameter, and

2. if the termination interval is long enough for the
CPEs to be approximately independent, then
this will still hold for increased intervals.

However, subject to this constraint, we wish to
make both quantities as small as possible, in order
to maximize the number of valid CPEs selected for
analysis.

In principle, it would be possible to produce a
large number of mean excess plots to examine the
model adequacy under a whole variety of combina-
tions of threshold and termination interval. In
practice however, this would prove a very cumber-
some route to making an appropriate choice. In-
stead we propose a simple modification to the
mean excess plot which leads to considerable
streamlining of the selection procedure. For a
given termination interval z*, we propose that the
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mean excess above threshold u is plotted against u,
with the identification of cluster peak exceedances be-
ing carried out separately for each threshold u. We
will call this device a reclustered excess plot. The
idea here is that linearity in such a plot above a
certain threshold @ suggests both a good fit of the
GPD to CPEs over & selected using termination
interval z*, and a robustness of the mean CPE to
the threshold at which declustering is carried out.
Note that if such a robustness were not present, it
would cast considerable doubt on the validity of the
declustering procedure.

By producing individual reclustered excess plots
for a range of values of z* (each one requires sur-
prisingly little computation time), we should be
able to identify the smallest such value for which
the independence criterion for the CPEs is met to
a good approximation. This will be the smallest
value yielding a plot which straightens out above a
certain level &i. This value of & is then chosen as the
best threshold for the corresponding value of z*,
giving the optimal pairing (i, z*).

Note that having selected the pair (&, z*), it is
strongly recommended that a conventional mean
excess plot is obtained for the CPEs so obtained,
the plotting range being u 24. This is to verify the
validity of the choice, and in particular to check
that approximate linearity in the reclustered excess
plot is not caused by lack of fit of the GPD and
non-robustness to the declustering threshold hav-
ing opposing effects, and thereby cancelling one-
another out,

For a more in-depth discussion of reclustered ex-
cess plots and their validity, see Ref. [10].

We suggest that we first work with a
prewhitened series obtained under the assumption
of a homogeneous shape parameter k, since this
will provide a very useful improvement in return
level estimation precision if it proves to be justi-
fied. Only if the reclustered and mean excess plots
suggest a poor fit for all trial values of z* do we
recommend relaxing this assumption and working
with a prewhitened series created using non-linear
transformations,

Note that the effect of a moderate failure in the
assumption of homogeneous clustering behaviour is
not liable to be serious. While this implies that z*
should be allowed to vary seasonally, the above
procedure will tend to lead to the selection of the
smallest z* value large enough to work for all sea-
sons: any smaller value of z* will fail in some parts
of the annual cycle, and this should show up as a
lack of fit of the overall GPD model to CPEs from
the prewhitened series.
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4.2 Implementation for the Sheffield Data

Figure 1 shows reclustered excess plots produced
for termination intervals z* =0 (all excesses), 6 h,
15 h, 30 h, 60 h, and 120 h. Here we are using the
prewhitened series obtained at the end of Sec. 3,
based on the homogeneous k assumption. The
plots appear to straighten for z* =30 h (debatable),
60 h, and 120 h, but not for the smaller termination
intervals. Conventional mean excess plots (Fig. 2)
produced for z*=15 h, 30 h, 60 h, and 120 h using
the corresponding linearity thresholds 4 =2.8, 2.6,
2.7, and 3.3 (for z*=15 h we use the inflection
point) broadly support the findings, and we con-
clude that z*=15 h is too small; z*=30 h is bor-
derline; and z* =60 h or z* =120 h is large enough.

The fact that the fit of a single GPD to this
prewhitened series appears good supports the ho-
mogeneity assumption on k, and we do not need to
abandon this in favour of a model which allows k to
vary.

We select the pairs (2 =2.6, z*=30) and
(1=2.7, z* =60) as our choices for the next stage
of modelling. We retain rwo combinations because
of the doubt over the adequacy of the termination
interval z*=30 h, and in order to check on the
robustness of final results to the precise choice of
CPEs. The 10 years of hourly maximum gusts yield
respectively 525 and 352 CPEs under the two pair-
ings. The thresholds 2.6 and 2.7 lie at the 0.923 and
0.935 quantiles in the empirical distribution of
transformed hourly maxima.

5. Step 3—Model Verification
5.1 Likelihood Ratio Tests

From any given choice of threshold and termina-
tion interval, and the corresponding monthly sets
of cluster peak exceedances, we are able to move
directly to a separate seasons model for the raw
(untransformed) cluster peak exceedances. Under
the appropriate model, the excesses of these in
month m over a segmented monthly varying
threshold (obtained by applying the inverses of the
prewhitening transformations to the threshold #
identified in Sec. 4) are independent GPD(om km ),
with distribution functions

Gmf)’iﬂm,kn.):(l _kmyfﬂ'm)lm"; (3)
scale parameters o, > 0; shape parameters k,, arbi-
trary; and G,, defined on 0<y < w if k, <0, and
0<y < Oulkm if km>0. The case k, =0 is inter-
preted as the limit k,,—0, and is the exponential
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Fig. 2. Mean cxcess plots.

distribution with mean o.,. The parameters o, and
k. can be estimated via numerical maximum likeli-
hood estimation. (N.B. at this stage of the mod-
elling, the values u,, are treated as fixed constants.
Starting values for ., and k, can be provided from
the graphical estimates for scale and shape
parameters for the prewhitened CPEs obtained us-
ing the fact that the fitted line on the mean excess
plot should have slope —k/(1+k) and intercept
a/(1+k); see Ref. [3]. Applying the inverses of the
prewhitening transformations to the GPD(o k) will
give good preliminary estimates for o, and k). It
is then possible to verify the choice of homoge-
neous or variable shape parameter k via a likeli-
hood ratio test—twice the decrease in fitted
log-likelihood when k is constrained to be homoge-
neous (over a model in which it can vary from
month to month) should be chi-square on 11 de-
grees of freedom (11 is the change in the number
of model parameters) under the null hypothesis of
homogeneity. In the surprising event of the test re-
sult conflicting with the decision reached in Sec. 4,
we recommend the likelihood ratio result as the
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more reliable, due to its more rigourous justifica-
tion. In this instance, we would have to be satisfied
that the preliminary analysis of Sec. 4 has at least
allowed us to get to this stage, while proving to be
somewhat misleading!

Notice that once the thresholds and the termina-
tion interval have been chosen, a separate seasons
model which allows the shape parameter to vary
from month to month is in fact equivalent to a
model in which each season is treated entirely sep-
arately, i.e., no further homogeneities are incorpo-
rated. If the extremes occurring in some seasons
are not truly large values, then including these sea-
sons in any further analysis will contribute little to
return level estimation.

5.2 Graphical Evaluation

The overall fit of the separate months model for
the magnitudes of excesses over thresholds can be
verified via probability plots or quantile plots (plots
of fitted distribution function versus empirical dis-
tribution function, or fitted quantile versus empiri-
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cal quantile; the plotting points being defined by
the cluster peak exceedances). By using the fitted
parameter values to transform each monthly set of
CPEs to a common margin (say unit exponential),
the fit to all seasons can be assessed simulta-
neously.

5.3 Implementation for the Sheffield Data

Tables 1 and 2 contain thresholds u,, and maxi-
mum likelihood estimates for o, and k(=k,, for all
m =1, ..., 12) for the separate months model fitted
to the CPEs obtained from z*=30 h and z*=60 h,
respectively.

Likelihood ratio tests confirm the validity of the
homogeneous k assumption: for the cases z* =30 h
and z* =60 h, respectively, 8.23 and 7.56 are com-
pared with a chi-square distribution on 11 degrees
of freedom; no evidence that k should vary from
month to month,

Table 1. Results when the separate months model is fitted to
cluster peak exceedances obtained using z*=30 h

Month (m) Uy Fon R

1 38.38 16.75 (2.01)
2 29.68 15.60 (1.99)
3 34.65 11.37 (1.39)
4 29.57 10.63 (1.25)
5 24.85 7.68 (0.79)
6 25.77 8.75 (0.96) 0.3603 (0.0469)
7 24,26 7.23 (0.79)
8 237 9.22 (1.08)
9 2995 12.12 (1.37)

10 29.52 10.76 (1.26)

11 34.45 12.34 (1.53)

12 33.27 16.03 (1.84)

Table 2. Results when the separate months model is fitted to
cluster peak exceedances obtained using z* =60 h

Month (m) Uy G k

1 39.95 23.28 (2.60)
2 30.94 22.93 (2.60)
3 35.717 14.09 (1.57)
4 30.52 13.61 (1.51)
5 25.65 9.48 (0.95)
6 26.52 11,52 (1.20) 0.4975 (0.0573)
7 25.07 8,76 (0.90)
8 24.45 11.97 (1.30)
9 31.03 16.75 (1.89)

10 30.69 13.57 (1.44)

11 35.58 16.32 (1.98)

12 34.75 19.98 (2.11)
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The overall adequacy of the model in both in-
stances is strongly supported by the probability and
quantile plots shown in Fig. 3.

6. Step 4 —Return Level Estimation
6.1 Profile Likelihood Confidence Intervals

For given monthly thresholds wu, and GPD
parameters g and k,, m =1, ..., 12, the r year re-
turn level g, is obtained as the solution of the equa-
tion

12

3 Al =kn (g —un)lon ] =r=', (4
where A, is the monthly exceedance rate of
threshold u,,. This arises by setting the exceedance
rate of level g, in any given year, given by the LHS
in Eq. (4), equal to 1/r. (Note that if g, < u,, for any
m, then the quantity An[1—Kkn(g —ttm )0 ]%"
should be replaced by A.; and if for any m kn, >0
and g, Zu,, + 0w /kn, the replacement should be by
zero, because of the range on which the GPD is
defined.)

We have not yet considered the monthly ex-
ceedance rate parameters A,. Assuming a Poisson
rate of storm occurrence (following Ref. [7]), the
maximum likelihood estimates for these are simply
the mean annual numbers of storms occurring in
each month. A point estimate for g, can be ob-
tained by substituting the thresholds u,,, and the
parameter estimates for A,, om, and &, into Eq.
(4), and solving numerically. Standard errors can
be estimated via techniques such as the delta-
method, but the construction of symmetrical confi-
dence intervals within a specified number of
standard errors either side of the mean is not rec-
ommended. Instead, we strongly suggest the use of
profile-likelihood. Rather than use the limiting
quadratic form of the likelihood surface, profile-
likelihood makes use of its actual shape for the
data in question. The severe asymmetry of the sur-
face often encountered when it is calculated for re-
turn levels suggests that conventional symmetrical
confidence intervals are highly misleading.

The details involved in the calculation of profile-
likelihood confidence intervals for return levels are
not entirely straightforward, and we describe them
here. For each of a range of possible values of the r
year return level g,, we maximize the log-likelihood
with respect to the model parameters subject to the
constraint Eq. (4), which ensures that g, is in fact
the desired return level. Technically this can be
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Fig. 3. Probability and quantile-yuantile plots.

achieved by making one of the parameters the sub-
ject of Eq. (4). Suppose, without loss of generality,
that o, is chosen. Then Eq. (4) gives

o1 =kn(g —w){1—-[r"'=C)/IN T}, (5)
where
€= 3 Al ~Kin(g ~tmYlom]. (©)

The return level g, is fixed at the desired level, and
the log-likelihood L =L {g,) maximized with re-
spect to the parameters An, km, and oo, ..., on2. At
each iteration in the maximization, ¢, is calculated
numerically from Eq. (5), and L is obtained as fol-
lows: suppose the CPEs occur over a period of [
years, and the number of CPEs in month m in year

l
jis nmi. Let np =‘21n,..;, and denote the CPEs y,;
P
i=1, ..., nm. Then

1

& 1) oe(1-522)

12
L= E_l[—ﬂm lOgO'm+(
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12
_i 2 Anr+

m=]

12 12
Eln,,, log A — 21 _Ellog(u,,.,- . D
m= m=1j=

A confidence interval for g, can then be formed via
inversion of a likelihood ratio test, i.e. as the set of
values go for which 2[L(§,)—L{(qu)] is not signifi-
cant when compared with a chi-square distribution
on one d.f., where §, is the m.Le. for g,.

6.2 Implementation for the Sheffield Data

Tables 3 and 4 give point estimates and 95% pro-
file-likelihood confidence intervals for the 10, 50,
and 1000 year return levels at the Sheffield site,
using the CPE sets obtained via z*=30 h and
z*=60 h, respectively.

Figure 4 shows the profile-likelihood for gs ob-
tained using z* =30 h, illustrating the gross asym-
metry in the surface. The vertical line is plotted
through §sa=82.4 knots. The horizontal line lies at
a level 0.5X% x#(0.95) below the maximized log-
likelihood, the intersections with the surface thus
providing the bounds for the 95% confidence inter-
val.
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Table 3. Point estimates and 95% profile-likelihood confidence
intervals for some return levels: z*=30 h

Return period and m.Le. for return level

10 (§10="76.4) 50 (gs0=82.4) 1000 (F1000=88.8)

95% Profile-likelihood confidence interval

(72,0, 84.9) (77.0, 93.9) (81.8, 103.8)

Table 4. Point estimates and 95% profile-likelihood confidence
intervals for some return levels: z*=60 h

Return period and m.l.e, for return level

10 (§10=77.3) 50 (§s0=82.5) 1000 (§1000=85.8)

95% Profile-likclihood confidence interval

(73.3, 86.7) (78.4, 93.1) (82.3,97.8)

-1362

-1364

-1366

profile log-likelihood

-1368

-1370

20 100 110
fifty year return level

Fig. 4. Profile likelihood for 50 years return level.

7. Discussion

The analysis of the previous four sections seems
to be very satisfactory for the data collected at
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Sheffield. Theoretically motivated models appear
to be vindicated by the good fit demonstrated by
the plots, and homogeneity arguments pertaining
to the wind process in different seasons are sup-
ported. The consistency of inferences drawn from
the two sets of CPEs obtained using z* =30 h and
z2*=60 h suggests a robustness of results to the in-
formal methods employed in the selection of
thresholds and in cluster identification procedures.
Finally, while the entire recommended procedure
may appear quite complex, once the appropriate
software has been set up it can be implemented
very quickly and easily, even on a small machine
such as a Sun SPARC station.

Despite the success of the algorithm described,
which it is expected will be repeated at other sites,
it is very important to bear in mind a number of
cautionary comments. In particular, we must re-
member that we have relied very heavily on the
assumption that there is essentially a single meteo-
rological mechanism which is responsible for the
generation of all extreme gusts. It is clear that this
is violated in climates where several distinct types
of storm can generate extreme winds (e.g., both
normal temperate zone storms and hurricanes can
occur and generate very high velocity winds). At
sites at which such climates prevail, considerations
different to those presented in this paper apply.
For example, it may be that we know that hurri-
canes can occur at a site, but the short run of data
available does not include any hurricanes. This
highlights a basic limitation in any extreme value
analysis—if we cannot assume that all the physical
mechanisms which can generate extremes have been
observed in our data, we cannot produce realistic esti-
mates for return levels. The best we could do under
such circumstances is attempt to import knowledge
on the unobserved mechanisms from other sites,
Any such analysis would, of course, be extremely
vulnerable to inter-site differences in behaviour,
which could only be assessed theoretically.

In the more favourable situation where instances
of all the relevant types of system have been ob-
served, it seems clear that separate models should
be fitted to the extremes generated by each one.
The overall exceedance rate of any particular high
level could then be expressed as a sum of compo-
nents corresponding to each system type, and re-
turn levels estimated numerically in a manner
similar to that employed in Sec. 6.

Two further aspects of the models considered
here are worth brief discussion:
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7.1 Piecewise Seasonality

The discontinuous (piecewise) nature of the
manner in which all seasonally varying parameters
are modelled clearly does not match the continuous
change inherent in natural processes. However, ex-
perimentation with model modifications which al-
low the parameters to vary continuously [10],
suggests that inferences are barely altered in rela-
tion to a separate months model for extreme wind
gusts. The significant increase in computation time
incurred by fitting continuously varying parameters
is therefore not thought to be worthwhile.

7.2 Weibull-Type Tails

More interestingly, we note that the shape
parameter k fitted to the Sheffield data is very defi-
nitely positive. A likelihood ratio test overwhelm-
ingly rejects a null hypothesis which constrains k to
be zero, in favour of an alternative which allows it
to be greater than zero.

Positive k values correspond to a Weibull-type
upper tail (with a finite upper endpoint) for the
distribution of extremes. Traditional analyses, on
the other hand, have been based on the assumption
of a Gumbel-type upper tail for extreme wind
speeds (with no upper endpoint), following from
the notion that there is no natural upper bound to
wind velocity anywhere near the orders of magni-
tude at which wind-speeds are actually observed.
However, the findings of this paper concur with
those of many other authors. Lechner, Leigh, and
Simiu [5], for example, find that a Weibull distribu-
tion performs significantly better than a Gumbel
distribution for the majority of a sample of 100 sta-
tions studied in the United States. These authors
point out that convergence to the Gumbel distribu-
tion can be extremely slow, and that the Weibull
distribution, as a penultimate asymptotic approxi-
mation, can then often provide a better fit even for
sample sizes as large as one billion. In view of this
consideration, we contend that the arguments sup-
porting the use of the Gumbel distribution are
something of a red herring as far as any practical
applications are concerned, and that if the data
supports the case for Weibull-type upper tails, then
a positive shape parameter should duly be fitted!

7.3 Conclusions

The analysis of the Sheffield data presented in
this paper has stood up to a fairly rigourous
scrutiny. Further, the assumption of a single mete-
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orological mechanism underlying the generation of
extreme gusts is believed to be well-founded in the
UK., and we suggest that even the estimates of
1000 year return levels produced from the 10 years
of data can be quoted with some confidence (pro-
vided that we remember that the quotation of a
1000 year return level does not incorporate any
forecast of a homogeneous climate over the next
1000 years!). It is worth elaborating here on the
precise manner in which the extreme value paradigm
[1] has been applied to our problem of return level
estimation. Theoretical (asymptotic) arguments
suggest that the GPD should provide a good ap-
proximation 10 cluster peak excesses over
thresholds, provided the thresholds are large
enough . Since the approximation does appear to be
good for all thresholds above a level close to the
upper 93rd percentile of the data, we feel justified
in assuming that the asymptotic arguments are ap-
plicable at these levels. By their very nature, they
are then applicable at all higher levels. This en-
ables us to extrapolate beyond the upper endpoint
of our sample, and hence estimate return levels for
periods far longer than those for which data have
been recorded. There is obviously a limit to the
extent to which this extrapolation is viable, but
hopefully this should be self-apparent: provided
the method of calculating confidence intervals is
not based on unfounded assumptions about the
shape of the likelihood surface, any attempt to ex-
trapolate foo far will simply lead to confidence in-
tervals which are too wide to be of use.

However, this last point leads to a very important
cautionary note. Most of the analyses on which cur-
rent design-level specifications are based make the
assumption of Gumbel-type upper tails. The effect.
of this has almost certainly been to over-estimate
return levels at most sites. Thus structures have of-
ten been designed to be stronger than is actually
necessary, and the precision of return level esti-
mates has not been of crucial importance. In con-
verting to the more appropriate Weibull-type tails,
it becomes essential to make adequate allowance
for the margins of error associated with return
level estimation. To rely, for example, on a proce-
dure such as the delta-method, which does not cap-
ture the inherent asymmetry in these error
margins, could prove disastrous!
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1. Introduction

Probabilistic load models are utilized for limit
state design procedures and safety assessments of
structures. Since lifetime maximum loads have to
be applied to these analyses, appropriate probabil-
ity distributions are needed to represent load in-
tensity models. The Gumbel distribution (Type I
extreme value) and the Frechet distribution (Type
IT extreme value) are often used for such purposes.

When the coefficient of variation (cov) is not
large, discrepancies of the upper tails may not be
very serious. However for load intensities with
fairly large cov such as earthquake ground motions,
existing extreme value distributions do not provide
good fits to statistical data. Then an empirical ex-
treme value distribution with both upper and lower
bounds proposed by the author [1] is a good alter-
native to improve probabilistic load models.

Statistical data were prepared for the annual
maximum earthquake ground motion, the annual
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maximum wind speed, and live load extremes in-
crowding situations. The significance of the pro-
posed distribution is discussed in terms of lifetime
maximum statistics.

2. Proposed Extreme Value Distribution

Three types of extreme value distributions are
commonly used for engineering purposes. Cumula-
tive distribution functions-are written as follows [2],

Fi=exp[-exp{-a@-b)}] ~-w<x<® (i)

Fn(x)=cxp[—(xc )7] €<x < oo (2)

—€

r— —w<x<w (3)

Futy-em] (320’
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wherea, b, c, €, v, w, v are parameters which char-
acterize the form of distribution. Distributions ex-
pressed in Egs. (1), (2), and (3) are the Gumbel,
Frechet and Weibull distributions respectively. In
Eq. (1), the random variable x could theoretically
vary between —  and + «, while in Eq. (2) the
lower bound value, €, and in Eq. (3) the upper
‘bound value, w, exist. When natural phenomena are
considered, it seems reasonable that the physical
quantity has a positive value with an upper bound
limit. On consideration the formula of Eqgs. (2} and
(3), the following empirical extreme value distribu-
tion has been proposed [1]

F;(x)=exp[—{JT*_%}Y], e<x<e 4)

where w and € are upper and lower bound values,
respectively, and u and vy are scale and shape
parameters, respectively. It can be seen that whenx
approaches the lower bound, €, Eq. (4) approaches
Eq. (2) with ¢ =(w —e€)/u and when x approaches
the upper bound, w, Eq. (4) approaches Eq. (3)
with v=w —u(w —¢). :

In order to demonstrate the form of the proposed
distribution, the effect of parameter u with w =10
and y = 1.0 for Eq. (4) is shown in Fig. 1 on Gumbel
probability paper, with x on the ordinate and re-
duced variate y on the abscissa. In a similar way the
effect of parameter y with w =10 and u =exp(4/y)
for Eq. (4) is demonstrated in Fig. 2.

10

maximum value, x
o

reduced variate, y

. 1. Effect of parameter 1 on proposed distribution with
w = 10, ¥ = 1.0. (Gumbel distribution probability paper.)

— T T T T T T T T T T ]
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i y =0.1
y=0.5
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& vy=1.0 B
g =
g | y=1 5 '}'=2-0 n
E
E 5rF ¥y=3.0
-g B . ‘y=50 N
E n _
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reduced variate, y

Fig. 2. Effect of paramcter ¥ on proposed distribution with
w =10, u =exp(4/y). (Gumbel distribution probability paper.)

3. Annual Maximum
Ground Motion Model

The seismic hazard estimation has often been
based on earthquake occurrence models assuming a
Gutenberg-Richter relationship. An alternative es-
timation is possible when sufficient number of
earthquake records are available to acquire annual
maximum earthquake ground motion data at a site.
Such an approach is rather common in Japan begin-
ning with Kawasumi’s work in 1951 [3]. A recent at-
tempt was made by applying the proposed
distribution of Eq. (4) [4]. Some modifications were
introduced in this study. Earthquake data for the
last 400 years were utilized according to Usami’s
catalogue [5]. Kanai’s attenuation law was chosen
as a representative relationship between the
bedrock velocity, V, and the magnitude, M, with the
hypocentral distance, x, expressed in the following
formula [6]

Earthquake

- EL — 143
V=100.61M (166 + = ¥ log x— (06314 P ) (5)

where a focal depth of 30 km is uniformly assumed
to calculate x.

The annual maxima of bedrock velocity calcu-
lated according to Eq. (5) are plotted on Gumbel
probability paper for four sites, i.e., Sendai, Tokyo,
Osaka, and Fukuoka in Fig. 3. The 50 largest data
from annual maxima in the 400 year period were
used, since minor earthquake motions were consid-
ered to be missing in historical records or docu-
ments and so should be eliminated from the
analysis.
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SENDAI

annual maximum bedrock velocity (cm/s)

annual maximum bedrock velocity {(cm/s)

reduced variate, y

TOKYQO
o771

T
!
!

annual maximum bedrock velocity (cm/s)

reduced variate y

FUKUOKA )

annual maximum bedrock velocity (cm/s)

reduced variate, y

Fig. 3. Extreme value fitting to .annual maximum bedrock velocity of earthquake motion in Japan, where the solid and dashed lines

indicate the proposed and the Frechet distribution, respectively.

The upper bound value could be assumed from
tektonic findings on the fault activity [4], however
the upper bound magnitude seems to provide a
fairly rough estimate for a particular site as a varia-
tion of magnitude by 0.1 causes only 15% change in
the estimation of V.
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The proposed distribution fitted to plotted data
by the least squares method is shown where the
value of w in Eq. (4) was chosen by engineering
judgment as w =5.0, 12.0, 10.0 and 3.0 for Sendai,
Tokyo, Osaka and Fukuoka, respectively. The
Frechet distribution fitted by the same method is
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also shown in a dashed line for comparison. The ex-
istence of saturation tendency indicates that the
representation by Eq. (4) is better.

The difference in the results between the pro-
posed distribution and the Frechet distribution can
be summarized in Table 1. The error is estimated in
terms of the normalized square root of sum of
squares error as,

E-yls -sp/tex, (©)

where x; is the ith annual maximum data and %;is the
corresponding value estimated from the distribu-
tion model, and r =50 for earthquake models.
Although the extimated mean of 50 year maxi-
mum values based on the Frechet distribution is
similar to that based on the proposed distribution,
estimated cov values for the 50 year maxima based
on the Frechet distribution, which are the same as
those for annual maxima, are considerably greater
than those yielded by the proposed distribution.
Significant reduction in the error estimate also indi-
cates the appropriateness of the proposed distribu-
tion. The cumulative distribution of the 50 year
maximum was obtained as the 50th power of the cu-
mulative distribution function of the annual maxi-
mum, i.e., it was assumed that the annual maxima
are mutually independent. The mean and cov of the
50 year maximum were calculated numerically for
the proposed distribution as the closed form rela-
tionship between the mean and variance and the
parameters in Eq. (4) is not obtainable.

4. Annual Maximum Wind Speed

The Gumbel distribution is often used to repre-
sent the annual maximum wind speed distribution.

The possibility of improved representation by Eq.
(4) is examined for sites where some saturation ten-
dencies are observed, i.e., Aomori, Akita, Nagoya
and Kagoshima,

The wind speed data were corrected by taking
into account changes of measurement height and
the change of the terrain roughness in the period
between 1960 and 1970 [7]. Measured data at
meteorological agency stations in the period be-
tween 1929 and 1991 were utilized. Plotted data and
distribution curves fitted to the plots, as was done
for the earthquake cases, are shown in Fig. 4, with
dashed lines representing the Gumbel distribution.
The upper bound w =35 (m/s) was used for Aomori
and Akita, while w =40 was used for Nagoya and
Kagoshima in Eq. (4). Although the difference be-
tween the two types of distributions is not as signif-
icant as in the case of earthquakes, error estimates
are improved except for Nagoya, where the fitting is
rather poor in comparison with other cases as seen
in Table 2. The use of a nonzero lower bound value,
e.g., € =10, could improve the fitting for the case of
Nagoya. However, this was avoided. Two different
major factors, such as the occurrence of typhoons
and monsoons, could be the reason for the concave
shape of plots on the Gumbel probability paper.

Estimated mean and cov values for the annual
maxima and the 50 year maxima are also listed in
Table 2. The reduction in estimation of cov of the
50 year maximum for the proposed distribution can
be pointed out. When the existence of an upper
bound for the extreme value distribution of wind
speed is accepted, such a reduction could result in
a smaller load factor in the probability-based
design.

Table 1. Statistics of maximum earthquake ground motion
Proposed distribution, Eq. (4) Frechet distribution, Eq. (2)
Site Annual max 50 year max Annual max 50 year max
w u ¥ E [ Y E
Mean cov  Mean cov Mean cov Mean

Sendai 50 287 130 011 032 1.56 252 033 0455 288 023 063 04 2.44
Tokyo 120 576 115 0125 061 1.73 546 048 0.660 234 025 1.03 1.30 5.49
Osaka 100 909 .18 021 034 199 348 060 0303 206 037 052 329 3.50
Fukuoka 3.0 458 119 010 018 158 143 044 0.199 2.51 024 030 1.03 1.41
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annual maximum wind speed (m/s)

annual maximum wind speed (m/s)

AOMORI

reduced variate, y

NAGOYA

reduced variate, y

annual maximum wind speed (m/s)

annual maximum wind speed (m/s)

reduced variate, y

KAGOSHIMA

reduced variate, y

Fig.4. Extreme value fitting to annual maximum wind speed in Japan, where the solid and dashed lines indicate the proposed and the
Gumbel distribution, respectively.
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Table 2. Statistics of maximum wind speed

Proposed distribution, Eq. (4) Gumbel distribution, Eq. (1)
Site Annual max 50 year max Annual max 50 year max
w u ¥ E a b E

Mean cov Mean cov Mean cov  Mean cov
Amori 35 1.09  3.00 0.02 184 0.19 27.9 0.08 037 168 002 184 019 291 012
Akita 35 070 298 002 220 0.14 30.1 0.05 041 206 003 220 014 317 010
Nagoya 40 163 279 0.08 173 025 29.8 010 029 154 008 174 025 309 014
Kagoshima 40 139 205 0.02 194 029 340 008 023 169 003 194 029 368 015

5. Simulated Extreme Live Load

Extraordinary live loads for the ultimate limit
state design may be estimated based on computer
simulations according to a scenario for extraordi-
nary situations. One reported possibility is to model
crowd-gathering situations in supermarkets [8].
Room plans with specified shapes and weights of
racks with goods and other furnishings were used
according to surveyed data, and crowd-gathering
situations at one corner of each room were simu-
lated for typical cases such as,

(a) from 0.3 person/m’ to 5.0 person /m’

(b) from 1.0 person/m’ to 10.0 person /m’

Personnel loads were distributed in the area with
no racks or furniture, and 700 N was postulated as
the weight of a person.

Table 3. Satistics of extremc EUDL for supermarkets

The equivalent uniformly distributed loads
(EUDL) were calculated for slab end bending mo-
ments in a shorter span and for girder end bending
moments. The detailed procedure is described else-
where [8].

The plotted data with distribution curves of Egs.
(1) and (4) are shown in Fig. 5 in a similar manner
to Figs. 3 and 4. Dashed lines represent the Gumbel
distribution of Eq. (1). The upper half of the data
were used to obtain parameters of distributions by
the least squares method. The upper bound values
of 4 kPa and 7 kPa were used for cases (a) and (b),
respectively.

Results are summarized in Table 3. Saturation
tendency is clear for case (b) where the error is sig-
nificantly reduced by the proposed distribution.
Assumed personnel load intensities in the scenario
are somehow arbitrary and a further survey could
improve models introduced herein. Nevertheless
the usefulness of the proposed extreme value distri-
bution with upper bound can be recognized.

Proposed distribution, Eq. (4) Gumbel distribution, Eq. (1)
Case
w u ¥ E Mcan cov a b E
Slab (a) 4000 3.65 1.61 0.04 1674 0.36 0.00182 827 0.07
Slab (b) 7000 13.6 0.80 0.11 2476 0.68 0.00067 193 0.24
Girder (a) 4000 422 1.96 0.03 1390 0.36 0.00216 676 0.04
Girder (b) 6000 14.3 0.81 0.10 2075 0N 0.00076 64.7 0.22
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LIVE LOAD ( SLAB CASE A ) LIVE LOAD ( SLAB CASE B)

simulated EUDL for supermarket (KPa)
simulated EUDL for supermarket (KPa)

reduced variate, y reduced variate, y

LIVE LOAD ( GIRDER CASE A ) LIVE LOAD ( GIRDER CASE B )

simulated EUDL for supermarket (KPa)
simulated EUDL for supermarket (KPa)

reduced variate, y reduced variate, y

Fig. 5. Extreme value fitting to simulated extraordinary live loads due to crowding concentration in supermarkets, where the solid and
dashed lincs indicate the proposed and the Gumbel distribution, respectively.
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6. Concluding Remarks

An empirical extreme value distribution with
both upper and lower bounds was reviewed. The
usefulness and improved fit to extreme load intensi-
ties available, such as the annual maximum earth-
quake ground motion, the annual maximum wind
speed and the extreme EUDL due to crowding situ-
ations in supermarkets, were demonstrated. Use of
the simpler commonly used Gumbel or Frechet dis-
tributions could cause some significant overestima-
tion in the coefficient of variation for lifetime
maximum loads.
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The object of this paper is to propose
a stochastic method for evaluating the
magnitude of future earthquakes taking
account of nonstationarity in earth-
quake occurrence. For this purpose, the
strain energy accumulation in the focal
region was estimated by means of the
earthquake data of the past 100 years
in Japan. Furthermore, the distributions
of maximum ground acccleration were
derived by means of the attcnuation
law. As a result, we found that the
distributions of maximum ground accel-
eration fit the type II extreme value
distributions and that the expected

values of those distributions depend on
the strain energy accumulation signifi-
cantly, Finally, it is pointed out that
the nonstationarity in earthquake occur-
rence should be taken into consider-
ation in order to evaluate the earth-
quake load in design.
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1. Introduction

Since Japan is located on the subduction zone
of a few plates, seismicity is active and many struc-
tures have been damaged during large earth-
quakes. To evaluate the characteristics of earth-
quake load in design it is important to develop a
highly accurate method for estimating the ground
motion within the service life of a structure.

Both deterministic and probabilistic methods are
available. The former methods estimate the ground
motion by means of the dislocation model. Suzuki
and Satou [1] have applied this model to a great
earthquake expected in the Tokai region. The
latter methods evaluate the probability distribution
or the expected value of recurrence of the ground
motion by considering earthquake occurrence as a
probabilistic event. Kawasumi [2] has pmpf‘osed one
such method employing cumulative frequencies. At
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present, it can be pointed out that probabilistic
methods are more suitable for estimating the
ground motion than deterministic methods, be-
cause a geophysical model and its parameters in
earthquake occurrence are not known with cer-
tainty [3].

However, in traditional probabilistic methods, it
is assumed that the process of earthquake occur-
rence is temporally stationary, i.e., that the proba-
bility of occurrence is invariant in time. Actually, it
is rare for another large earthquake to occur in the
same region immediately after a large earthquake.
Moreover, since the service life of a structure
ranges from several decades to about 100 years, it
is not reasonable to assume stationarity in earth-
quake occurrence within the service life of a struc-
ture.
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The object of this paper is to estimate strain
energy accumulation in focal regions at present
and to propose a new method for evaluating the
ground motion.

2, State of the Art

Some seismic risk analyses in which the non-
stationarity in earthquake occurrence is taken into
consideration have been suggested. Typical models
of seismic risk analyses—the time-predictable
model, the slip-predictable model, and the semi-
Markov model are reviewed as follows.

2.1 Time-Predictable Model

This model was proposed by Shimazaki et al. [4].
Time history of the stress accumulation and release
in a fault is represented schematically in Fig. 1.
This is, stress accumulates at a constant rate up to
a certain threshold, at which time an earthquake
occurs and accumulated stress is released. The size
of the earthquake is determined by the level of the
released stress. The time when the next earth-
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Fig. 1. Time-predictable modcl.

quake will occur is predictable given the size of the
preceding earthquake, but it is difficult to estimate
the size of next earthquake. Anagnos et al. [5] de-
scribed this model by following Markov’s renewal
process.

P[Y.H.l =J, T,H.l*‘T,.--{-IIYu, .

Y3 Toyo s Tul

=P(Yuer =1, Tusi—Tust|Ya =11 (1)

where
I,J = the state depending on the size of the
earthquake
Y, = the state of the fault after the nth event
T. = the time of the nth event.

This means that the joint probability from
present state to the next state depends only on the
present state and is independent of past history. A
change of stress release by measuring a coseismic
slip in a fault has been proposed, because it is diffi-
cult to directly measure the level of stress release.

2.2 Slip-Predictable Model

This model, proposed by Shimazaki et al. [4] pre-
dicts the size of an earthquake based on the inter-
val times. Figure 2 shows schematically the stress
accumulation and release at a fault. For this model,
it is assumed that the stress at the fault drops to
zero after each earthquake. The time up to the
next event is random, and the longer the interval,
the greater the event due to the release of the
larger stress. Kiremidjian et al. [6] extend the slip-
predictable model to a site hazard model using the
attenuation law. However, the occurrences of suc-
cessive earthquakes are independent according to
the above assumption, and the process of fore-
shock, mainshock, and aftershock at the same fault
cannot be rationally explained.

2.3 Semi-Markov Model

This model was proposed by Patwardhan et al.
[71. It is based on the assumption that the size of
the earthquake and the interval of time until the
next earthquake are influenced by the amount of
strain energy released by the previous earthquake.
However, a weakness of this model is that subjec-
tive assessment is required when classifying the
magnitude. That is, the evaluated value is supposed
to vary with the classified magnitude because if the
magnitude is changed by only 1.0, the released en-
ergy varies by about thirty times. Also, the validity
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of the assumed probability distribution for the time
interval is questionable,

As mentioned above, it is necessary to harmo-
nize the stochastic model with the geophysical
model of earthquake occurrence for purposes of
seismic risk analysis, because the parameters in any
model contain some uncertainties. Therefore, we
based our research on the theory of plate tectonics
[8]. This theory postulates that “the strain energy is
accumulated due to the interaction movement of
the plates. At the time when the accumulated
strain energy reaches a certain extent, an earth-
quake occurs due to the break of the plates, and
the strain energy is released. So, some interval is
necessary for the accumulation of strain energy
leading to the occurrence of the next event.”

In this analysis, it is assumed that the size and
the time interval before the occurrence of the next
earthquake depend on the strain energy accumula-
tion in the plate at present. A method for forecast-
ing the magnitude of future earthquakes and the
distributions of maximum ground acceleration at
several main cities in Japan is proposed.
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3. Seismic Risk Analysis

In this analysis, the focal region which would in-
fluence Japan is restricted to latitudes from 25°N
to 50° N and longitudes from 125° E to 150° E. This
zone is divided into meshes of 0.5° and relative
strain energy accumulation in each mesh at present
is estimated. Next, in each mesh, the extremal dis-
tributions of magnitude of earthquakes which are
expected to occur in the next # years are estimated.,
Furthermore, the extremal distributions of maxi-
mum ground acceleration at main cities are derived
by means of the attenuation law.

Presently, it is difficult to estimate the absolute
strain energy accumulation, but seismic risk analy-
sis can be performed by estimating the relative
strain energy accumulation, according to the fol-
lowing assumptions.

3.1 Earthquake Data

In this analysis, we employ data on earthquakes
occurring in or near Japan from 1885 to March
1988 available from the Meteorological Agency
[9,10,11,12,13]. However, since the accuracy of
methods used in the past to evaluate magnitude is
unreliable, the data are corrected by means of the
following method [14] proposed by the Ministry of
Construction. The method is based on the assump-
tion that “the long-term incline of the curved line
of energy accumulation is almost constant and that
the incline from 1926 to 1973 shows a value pecu-
liar to Japan.” The magnitudes of earthquakes
which occurred from 1885 to 1925 are corrected by
the following formulas

1885-1895 M=M -05
1896-1915 M=M-06 @)
1916-1925 M= M -05

1926~ M=M

where M = magnitude before correction

M'= magnitude after correction.

We consider that a deep earthquake (focal depth
larger than 100 km) does not have much influence
on surface ground motion and that plate thickness
is approximately 100 km. Therefore, we limited our
investigation to earthquakes with a focal depth of
100 km or less occurring after 1926 when focal
depth was added to earthquake data.
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3.2 Fault Model

In general, fault movement is not uniform in ei-
ther time or space. But fault movement must be
simplified for the sake of modeling the earthquake
occurrence from a technical viewpoint. So in this
analysis, it is assumed that a rectangular fault oc-
curs at the time of earthquake occurrence, that its
center agrees with the epicenter, that the ratio of
its long side to its short side is 2 : 1, and that a
section of the fault is at an angle of 45° with the
horizontal plane. Moreover, it is assumed that the
long side runs parallel to a longitudinal line if the
epicenter is located at latitude from 35° N to 41° N,
and parallel to a latitudinal line otherwise [15].

Furthermore, in allowance with the concept of
the basic fault model by Kanamori [16], it is sup-
posed that strain energy is released uniformly in
proportion to some meshed part of the shadow
which the rectangular fault casts on the horizontal
plane, In practice, however, the areas releasing the
strain energy do not always spread around the epi-
center, but stretch in only one direction in many
cases. Therefore, with regard to data on such faults
included in the earthquake fault parameter hand-
book in Japan [15] and to enable interpretation of
the shapes of the faults, it is assumed that the epi-
center agrees with the center of the faults. Con-
cerning the relation between section of a fault and
magnitude, the proposed equation by Satou [15] is
adopted, and the length of the long side of a fault
is determined by the following equation:

logL = 0.5M —188, 3)

where L = length of the long side of a fault

M = magnitude.

A released amount of strain energy is assumed in
allowance with the following equation proposed by
Gutenberg and Richter.

logE = 1.5M +11.8, (@)

where  E = released amount of strain energy

M = magnitude.

3.3 Cluster Division of Each Mesh

It is assumed that the rate of strain energy accu-
mulation is constant regardless of time. In general,
there are areas which are similar with respect to
the changing conditions of the plates and release
conditions of the strain energy. But it is currently
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difficult to accurately estimate the accumulation
and the release of strain energy. In this analysis,
therefore, in order to grasp the relative strain
energy accumulation in each mesh, each mesh is
classified into the following three clusters based on
the distribution of the sum of total released energy
in each mesh from 1885 to March 1988. This
assumption is based on the thinking that it is more
rational to apply ergodicity to the meshes in which
the released rate of strain energy is almost equal
than to all meshes. The cluster division is deter-
mined by considering the relationship between the
earthquake magnitude and the amount of earth-
quake data.

1) cluster 1 Me=< 74
2) cluster 2 74 < Me< 7.7 (5)
3) cluster 3 Me> 1.7

where Mg = the magnitude into which the annual
average released energy in a mesh from 1885 to
March 1988 is converted by Eq. (4).

The amount of the annual average released en-
ergy for each cluster is averaged, and it is defined
as the progress rate of strain energy accumulation.
Furthermore, in the case of Mg <4.5, it is regarded
as the strain energy released mainly by the inelastic
slip and is not dealt with because the released
strain energy is small. The result of classifying each
mesh is shown in Fig. 3. The meshes not indicated
by marks do not belong to any cluster. From this
figure, it is recognized that many earthquakes have
occurred along the plates.

3.4 Evaluation of the Strain Energy
Accumulation in Each Mesh at Present

In order to evaluate the relative strain energy
accumulation (E;) in a mesh (i,j) with latitude
i° N and longitude j° E as the center, it is necessary
to estimate the strain energy accumulation of the
plate at the time of occurrence of the oldest earth-
quake adopted in this analysis. In general, it is sup-
posed that the recurrence period is peculiar to
each focal region, but it is difficult to evaluate
them strictly at present. Kanamori [8] reported that
the average interval time of a great earthquake
with a magnitude on the order of 8.0 is about 100
years on the Pacific side and offing. So in this anal-
ysis, it is assumed that all strain energy accumula-
tion is released at least once about every 100 years
in each mesh. Based on this assumption, the mini-
mum strain energy accumulation (min E;) on the
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strain energy-time curve is regarded as being rela-
tive strain energy accumulation 0, and the strain
energy-time curve is moved in parallel as shown in
Fig. 4. The relative strain energy accumulation
(E;) in each mesh at present is estimated by the
preceding method. The value of the relative strain
energy accumulation in each mesh of each cluster
is represented in Figs. 5 to 7. In cluster 3, the rela-
tive strain energy accumulation is divided into
three classes, i.e., high (more than 300 erg), middle
(200-300 erg) and low (less than 200 erg). In clus-
ter 2, the accumulation is divided into high (more
than 150 erg), middle (100-150 erg) and low (less
than 100 erg) (1 erg = 107 joules). As the strain
energy accumulations in all meshes of cluster 1 are
not high, that cluster is divided into three equal
parts.

LONGITUDE
E
— St
E inE 1y :

425

-
- ———
mmss s s s m—— .

Ei}

\

t
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3.5 Evaluation of Extremal Distribution of
Magnitude Considering the Strain Energy
Accumulation at Present

In this section, the extremal distributions of mag-
nitude in each mesh are evaluated. The process by
which the strain energy is released in allowance
with the size of the earthquake, and is again accu-
mulated as time passes, is repeated in each zone.
Thus, the strain energy accumulation at present
greatly influences the extremal distribution of mag-
nitude of the earthquake expected to occur in the
future. If sufficient earthquake data are gathered,
it is possible to obtain the extremal distributions of
magnitude of each mesh. However, the earthquake
data measured by seismographs in Japan are 100
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years old at most; the period of observation is not
sufficient in light of the recurrence period of
great earthquakes. So in this analysis, to evaluate
the extremal distributions of magnitude in each
mesh, ergodicity is applied to each mesh in the
same cluster. Figure 8 shows a flow-chart of the
analysis based on this assumption. Figure 9 shows
this method schematically. First, the strain energy
accumulation of E; in a mesh (i,j) at present is
evaluated, and the strain energy accumulation of
E;y equal to Ej; is determined based on strain
energy-time curves in other meshes of the same
cluster, Next, this time is defined as T:; and the
maximum released strain energy (maxAE;;) for n
years from Ti; is converted into the magnitude by
Eq. (4). Some samples from each mesh (i,j) are
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Fig. 6. Strain cnergy accumulation (Cluster 2).

obtained. To evaluate the form of the distribution,
these samples are plotted on the Gumbel proba-
bility paper. Assuming that n = 50 years, the
samples in meshes around Sendai are plotted on
the Gumbel probability paper in Figs. 10 to 13.
Figure 10 shows the extremal distribution of cluster
3, Figs. 11 and 12 show that of cluster 2 and
Fig. 13 shows that of cluster 1. On Gumbel proba-
bility paper, the type I extreme value distribution is
indicated by a straight line, type II is indicated by
a lower convex curve and type III is indicated
by an upper convex curve. The upper limit value is
decided from maximum sample data rounded off to
one decimal and parameters are decided by using
the method of least squares.

427

3.6 Evaluation for Extremal Distribution of
Maximum Ground Acceleration

Ten cities in Japan where earthquake observato-
ries are situated are chosen as the points for calcu-
lating the maximum ground acceleration. The
following attenuation law [17] suited for standard
clay is proposed by the Public Works Research In-
stitute of the Ministry of Construction and is
adopted in this analysis,

AcCmax = 18.4 X 100302M ¢ A 08

(6)
where  AcCmw = maximum ground acceleration
M = magnitude

A = epicentral distance
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The extremal distribution of the maximum
ground acceleration is estimated as follows.

a) It is assumed that a mesh (i,j) is a hypocen-
ter, and the epicentral distance from the center of
the mesh to a city is calculated.

b) Magnitude M; is obtained from the attenua-
tion law for which the epicentral distance and an
acceleration Accme are substituted.

M:'j =g (Accm, Aij) (7)

¢) The value of the distribution function F.;(a)
at a maximum ground acceleration Accmax is evalu-
ated by using the shape parameter, the modal value
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and the characteristic largest value of the extremal
distribution of the magnitude in the mesh (i,j ), and
M;; is obtained as in b).

d) The previous operation is done for each mesh
for maximum ground acceleration. Then using the
following equation, the distribution function at city
F,(a) is obtained.

F.(a) = HHF,,}-(a)

i=1lj=1

®

e) F.(a) is obtained by the preceding operation
from b) to d) for some (Accma) accelerations, and
the relation between F,(a) and a is plotted on
Gumbel probability paper.
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The minimum strain energy accusulation (min Ei;)
in mesh (i, j) is regarded as relative strain .
energy accumulation 0, and the strain energy
accumulation at present (Ei)) is estimated.

!

Mesh (i",3') in the cluster which
wesh (i, j) belongs to is gathered.

i

The strain energy accumulation Ei';" equal to Ei,
is obtained from the strain energy — time curve in
mesh (i’,j'), and this time is defined as T:";".

" The maximum released strain energy (maxAE:’;’) for
n years from Ti *; ' is converted into the magnitude,

v

The data of myear maximum of magnitude in each
mesh are plotted on Gumbel probability paper and
are fitted to the extreme value distribution.

Fig. 8. Flow-chart of the analysis.

Tirye Tuir+n

Fig. 9. Schematic represcntation of the analysis.

Thus, the extremal distributions of the maximum
ground acceleration at main cities are obtained.
Figures 14 and 15 show the distribution for 50 year
maximum of maximum ground acceleration at
Sendai and Tokyo, respectively. Moreover, in order
to examine the nonstationarity, the expected values
and the coefficients of variation of the distributions
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for 50, 40, 30, 20, and 10 year maximums of maxi-
mum ground acceleration in 1988 are shown in
Table 1. Furthermore, the expected values and the
coefficients of variation of the distributions for the
50 year maximum of maximum ground acceleration
at the different starting points (1968 and 1988) are
shown in Table 2,
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4. Results and Considerations
4.1 Relative Strain Energy Accumulation

Figures 5 to 7 show the relative strain energy
accumulation in each cluster at present. It can be
recognized that most meshes in each cluster are
distributed near the boundary of the plate of the
Pacific side in Kanto, Tohoku, and Hokkaido, and
many earthquakes occur in those places. Moreover,
it can be assumed that a large earthquake is likely
to occur in places in which the strain energy
accumulation is high such as in cluster 3 at present.
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4.2 Extremal Distribution of the Magnitude in
Each Mesh

The distributions for the 50 year maximum of
magnitude in the meshes near Sendai are shown in
Figs. 10 to 13. Judging from theoretical curve of the
type III extreme value distribution, the data ac-
counting for the relative strain energy accumula-
tion at present obviously fit this distribution. The
probability of the occurrence of a large earthquake
is greater as the strain energy accumulation at
present increases. For example, comparing Fig. 11
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Table 1. The cxpected values and the coefficients of variation of the extremal distributions of maximum ground acceleration at main

cities (1 gal = 1em s-2)

Name of City Statistics 10 year 20 year 30 ycar 40 year 50 year

Sapporo Mean value (gal) 41 42 45 46 46
COV?3(%) 16.2 15.9 15.6 15.4 14.6

Sendai Mean value (gal) 127 129 139 140 143
COV (%) 28.7 285 285 283 28.8

Tokyo Mean value (gal) 189 199 21 224 229
COV (%) 29.1 29.9 30.0 29.9 30.0

Niigata Mean value (gal) 52 53 57 58 59
COV (%) 21.9 223 20.7 19.9 194

Nagoya Mean value (gal) 260 260 262 263 263
COV (%) 5.4 54 3.6 39 39

Kyoto Mean value (gal) 87 S0 91 93 94
COV (%) 10.6 1.9 12.2 13.1 13.5

Qsaka Mean value (gal) 85 94 94 99 100
COV (%) 28.9 247 27.7 283 28.2

Hiroshima Mean valuc (gal) 83 96 99 104 108
COV (%) 23.0 27.2 25.3 26.2 252

Takamatsu Mean value (gal) 107 110 123 124 129
COV (%) 324 301 28.4 28.2 27.0

Fukuoka Mean value (gal) 93 104 117 133 137
COV (%) 234 23.7 221 22.4 220

2 COV: Coefficient of Variation.

with Fig. 12, which show the distribution for the 50
year maximum of magr’iide in the meshes at
cluster 2, the magnitude at a probability exceeding
0.2 is less than 7.5 in Fig. 12 and 7.0 in Fig. 11,
respectively, because the strain energy accumu-
lation at present in Fig. 12 is higher than that in
Fig. 11.

Therefore, it is thought that the form of the
distribution of the 50 year maximum of magnitude
remains unchanged, but that the magnitude at the
probability of occurrence varies depending on the
strain energy accumulation at present.

4.3 Extremal Distribution of Maximum Ground
Acceleralion_ at Main Cities

The distributions for the 50 year maximum of
maximum ground acceleration at main cities are
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shown in Figs. 14 and 15. Those distributions fit the
type 111 extreme value distribution as do the distri-
butions for the 50 year maximum of magnitude.
The expected values and the coefficients of varia-
tion of the distributions for 50, 40, 30, 20, and
10 year maximums of maximum ground accelera-
tion in 1988 are shown in Table 1. Those values
reflect the strain energy accumulation at present in
the mesh in which the cities are located. Com-
paring the expected values for n = 50 years in
Table 1 with the seismic risk map of maximum
ground acceleration by Gotou and Kameda [18] in
Fig. 16, the expected values yielded by this analysis
for Kyoto and Osaka are extremely low. Extensive
earthquake data were available for the Kyoto area
in which population and culture have been concen-
trated; the analysis by Gotou and Kameda used
historical earthquake data based on estimations
from the ancient records.
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Table 2. The expected values and the coefficients of variation of
the extremal distributions of maximum ground acceleration in
1968 and 1988 (1 gal = 1cm s72%)

Name of City Statistics 1968 1988
Sapporo Mean value (gal) 49 46
COV?*(%) 12.9 14.6

Sendai Mean value (gal) 151 143
COV (%) 299 288

Tokyo Mean value (gal) 239 229
COV (%) 30.1 30.0

Niigata Mean value (gal) 58 59
COV (%) 18.0 19.4

Nagoya Mean value (gal) 261 263
COV (%) 38 3.9

Kyoto Mean valuc (gal) 96 94
COV (%) 12.4 135

Osaka Mean value (gal) 139 100
COV (%) 16.0 282

Hiroshima Mean value (gal) 117 108
COV (%) 20.3 25.2

Takamatsu Mean value (gal) 136 129
COV (%) 219 27.0

Fukuoka Mean value (gal) 144 137
COV (%) 17.6 22.0

a COV: Coefficient of Variation.

4.4 Examination of Nonstationarity in Maximum
Ground Acceleration

According to Table 1, the expected values of
extremal distribution of maximum ground accelera-
tion at Sapporo and Niigata are almost constant
from n = 10 years to n = 50 years because the
seismicities of these cities are not active. However,
in other cities, there are large differences in the
expected values between n = 10 years and n = 50
years; in particular difference in Tokyo is 40 gal
(1 gal = 1cm s~%). Moreover, the expected values
and the coefficients of variation of the distributions
for the 50 year maximum of maximum ground
acceleration at the different starting points (1968
and 1988) are shown in Table 2. According to
Table 2, the difference of the expected values in
Niigata and Nagoya are small, but about 10 gal in
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Tokyo and Sendai, and 40 gal in Osaka. So, it is
recognized that the expected value of maximum
ground acceleration varied due to the strain energy
accumulation at that time. Therefore, it is neces-
sary to consider the nonstationarity in earthquake
occurrence when determining the earthquake load
in design.

5. Conclusions

This analysis employs seismic risk analysis in
which the focal regions which would have an
influence on Japan were restricted. This zone was
divided by meshes with 0.5° angles, and relative
strain energy accumulation in each mesh was
estimated by taking account of the nonstationarity
in earthquake occurrence. The distributions for the
50 year maximum of magnitude in each mesh were
evaluated. Furthermore, the extremal distributions
of maximum ground acceleration at the main cities
were derived by means of the attenuation law.
From this analysis, the following conclusions can be
stated:

(1) A procedure of seismic risk analysis taking
account of the relative strain energy accumulation
was proposed.

(2) The distributions for the 50 year maximum
of magnitude in each mesh fitted the type III
extreme value distribution very well.

(3) As the strain energy accumulation at present
increases, the value of magnitude at a probability
of occurrence becomes greater.

(4) The distributions for the 50 year maximum
of maximum ground acceleration at main cities also
fitted the type I11 extreme value distribution.

(5) The expected value of maximum ground
acceleration at a city reflected the strain energy
accumulation at present in the mesh in which the
city is located.

(6) this analysis is capable of forecasting the
earthquake load suited to the service life of a struc-
ture. That is, it is possible to determine a more
rational earthquake load in design by estimating
the strain energy accumulation at the time when
the structure will be constructed.

(7) This analysis is capable of evaluating the
extremal distributions for maximum ground accel-
eration and those expected values in all parts of
Japan, and it seems that these statistics are useful
for the criterion of aseismic design.
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Statistical period: 1200 years

Recurrence period: 75 years

Fig. 16. Seismic risk map by Gotou and Kameda.

As mentioned above, this seismic risk analysis is
capable of taking account of the nonstationarity in
earthquake occurrence by estimating the strain
energy accumulation in each mesh at present. So,
with this analysis, it is possible to forecast earth-
quakes by adopting new earthquake data and to
estimate the earthquake load suited to the service
life of a structure. However, the data on large
earthquakes with recurrence periods of 200 to 300
years are probably insufficient because the earth-
quake data of the past 100 years in Japan as
measured by seismograph are used in this analysis.
In this analysis, the seismicity gaps are not treated
and the attenuation law is used to cope with
standard clay. For obtaining more accurate find-
ings, it is necessary that the attenuation law be
suited to each place and condition of clay.
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1. Introduction

The NESS project [1] was funded by eleven par-
ticipants and conducted by a consortium of five
research institutes in Europe. The NESS users
group built up considerable experience in the field
of extremal value (EV) applications. (For a list of
acronyms see Appendix A.) Valuable input was
received from recognized experts in EV theory. It
should therefore be made clear that the objective
of the present comparison is not to review/criticize
the use of particular extreme value techniques.
Rather, the objective is (1) to reflect upon the
diversity of the modelling assumptions and the pro-
cedures used to determine extreme wave heights,
(2) to report on how the different groups set out to
deal with difficult issues such as data reduction,
statistical and parameter uncertainty, hindcast
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model uncertainty, and the consideration of mea-
sured data, and (3) to seek constructive guidance in
this area from the extreme value specialists present
at the NIST/Temple University EV Conference.

2. The NESS Data Set

The wave model used in the North European
Storm Study (NESS) is an adaptation of the model
HYPAS (Hybrid Parametrical Shallow Water wave
model by Giinther and Rosenthal [2]). The model
results used here are from the “fine” grid model,
which has a resolution of 30km and output
available every 3 h. Data are available for the peri-
ods: 1) 25 continuous 6 month (October-March)
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winter periods for the winters of 64/65 through 88/
89; 2) three continuous 6 month (April-September)
summer periods for the summers of 77 through 79;
3) continuous data for the month of April 85; and
4) 40 discrete storm periods in the April-September
summer periods between 1968 and 1988. The sig-
nificant wave height, Hs, from the model is based
on the spectral definition of Hs, i.e., four times the
square root of the spectral variance. It is assumed
that Hs is representative of a 3 h average sea state
in a 30 km by 30 km square around the grid point,
and that all storms, which would have any effect on
annual extreme values of Hs, are included in the
data set.

3. Benchmark

The NESS grid point used in the present studies,
was selected to be a location in the Forties area of
the North Sea with latitude 57.777°N and longi-
tude 0.952°E and a water depth of about 100 m.
The NESS participants were invited to provide, as
a minimum requirement, their “best” estimate of
a 100 year return period significant wave height,
Hs-100, for this grid point together with a short
writeup describing how and why a particular EV
procedure was used. Five industry groups submit-
ted contributions; for the purpose of this paper, it
was agreed not to identify the contributors; they
will be referred to as groups A, B, C, D, and E. All
the contributors exceeded the basic requirement of
providing a 100 year return wave. Particular em-
phasis was given to the question of how to account
for the uncertainty associated with the hindcast
model itself. The contributors’ supererogation
should not come as a surprise —many of the analy-
sis procedures are coloured by subjective choices
and assumptions: it is very much up to individuals
to decide what looks good, what techniques are ap-
propriate, how they should be used, and which
numbers will finally be acceptable.

The emergence of the NESS database in the
North Sea is not the cause of the divergence of
extreme value analysis methods. To date extremal
analyses have been based on available measured
wave data sets—each with their own degree of ac-
curacy and length of record. Only one attempt has
been made to use the measured data in a consis-
tent manner in estimation of extremes. The results
of that pioneering effort are reported in the

U.K. OTH 89 300 Supporting Document [3]. Be-
cause those results were intended to provide
“indicative” values of extreme environmental crite-
ria, implicit interpretations were made, for exam-
ple in extreme value extrapolations, to reduce the
risk that the results might be underestimates. It
was also accepted at the time that a case for other
values could be made. For reference, the results
at Forties in that document provide an Hs-100 of
143 m.

In the following five Sections, the five bench-
mark study contributions are summarized.
Acronyms are used to denote the several cdfs used
by the contributors; to avoid confusion caused by
unclear terminology, the distributions correspond-
ing with each acronym are listed in Appendix A.
Whenever “storm peaks” are used in a subsequent
analysis, the contributors resort to the same peak
identification procedure: peaks are identified by
determining the maximum wave Hs within a mov-
ing 18 h window — the average duration of a storm
event.

4. Contribution A

Two basic techniques are used. The first one
(A1) consists of fitting all 3 hourly data to a (three
parameter) Weibull (W3), a Gumbel (G), or an
FT3 distribution (the extreme value distribution
with an upper bound) using either MOM or LS.
The selection between the two distributions is
made on the basis of individual judgment or a
goodness-of-fit (GOF) criterion.

The second technique (A2) is a peak over
threshold (POT) analysis of all peak storm event
values exceeding a given level. The threshold data
are fitted to either an exponential cdf (EXP) or a
two parameter Frechet cdf (F2); MOM or LS are
used to estimate the parameters of these condi-
tional distributions; a plotting position i/n +1 is
used in the case of LS, but it is not clear in which
direction errors were considered. Selection is based
on best visual fit or GOF. Threshold upcrossings
are assumed to be Poisson distributed, with A esti-
mated as the average number of storms (with peak
wave exceeding the threshold) per year. The NESS
results for the selected gridpoint are given in Table
1, together with results of the same analysis per-
formed on a set of proprietory measured wave data

" from the same area, at Forties.
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Table 1. Group A results; 100 year return period Hs (m)

Al NESS (3 hourly data) Measurements (“spot” data)
W3,LS 1142 13.0*
G, LS 13.2 13.6
FT3,LS 10.32 123
W3, MOM 119 12.8*
G, MOM 16.3 14.0
A2 50 storm peaks with Hs>7.6 m 52 storm peaks with Hs >7.6 m
FR2, LS 10.7 14.2
EXP, LS 10.9* 14172
F2, MOM 104 13.3
EXP, MOM 105 13.52
Average of Hs with good quality fit 10.8 13.4
Convert “spot” to “3 hourly” +0.6 —-09
Account for 1989-1992 data +1.2
Offset NESS/measurements 12.6 12.5

Adjusted estimate

Final estimate

12.6

8 Good quality fit.

The 100 year return values of the distributions
selected on the basis of a good quality fit are now
averaged, and it appears that there is a substantial
difference of some 2.6 m between NESS and
measured data (Table 1). Three corrections are
applied;

)

@

The measured data consist of Hs estimates
taken at a point (“spot data”) over a 20 min
sample interval and recorded at hourly or 3
hourly intervals; a “new” data base was cre-
ated by converting them to 3 h averages simi-
lar to NESS. Extreme value analyses on the
original set and the converted set were com-
pared and it was found that the “3 h average”
data consistently gave lower estimates of 100
year Hs extremes in comparison to “spot”
data. The variation ranges from 0.5m to
12m, with an average value of 0.9m, or
about 6% (see Table 1).

The NESS database finishes at the end of
March 1989. Some storms in the North Sea
since that date have been very severe; indeed
the most severe storm measured at Forties
occurred in December 1990, when an Hs of
11.6 m was recorded. The effect of this miss-
ing data in the NESS archive was assessed,
albeit indirectly, by examining the effect that
the equivalent period has on extrapolations of

437

(3

the Forties measured data. From the various
analyses performed for the above periods, the
effect on 100 year Hs estimates of including
data recorded in the period April 1989 to May:
1992 ranged from increases of 0.2 m to 0.9 m.
The average increase across the analyses was
0.6 m, or about 5% of the shorter period esti-
mate.

Both regression and extreme value analyses
have been performed on selected overlaps
between NESS and measured data. The re-
gression analyses revealed that the mean
NESS wave height was some 10% higher than
the measured wave height, but when extrapo-
lated to extremes, the 100 year Hs estimates
from NESS were between 0.5m and 2.0m
lower than extrapolations from the measured
database, with an average difference of 1.2 m.
This apparent offset could be due to a wide
range of factors, many (if not all) of which are
under investigation by the NESS User Group
at the time of writing.

All three corrections are captured in Table 1.

The conservative view taken in applying the three

corrections is indicative of the safety margin associ-
ated with the final estimate Hs-100=12.6 m;
however, no specific uncertainty band is provided.
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5. Contribution B

Group B’s procedure for wave criteria determi-
nation for Forties is as follows:

)

@)

©)

Extract storm peak data at the reference grid-
point with a threshold of Hs =6.0 m and an
18 h window (298 storm peaks).

Select the Annual Extreme Value (AEV) for
each of the 25 years from the 298 peaks. The
25 values range from 6.9 m to 9.9 m. The rea-
sons for using AEV instead of POT method
are described to be the following:

+ AEV shows consistently better fits than
POT (higher correlation coefficients,
smaller mean square errors in the case of
LS, and larger likelihood functions in the
case of MLE);

« The extremes from AEV are not influ-
enced by the threshold, i.e., they are less
subjective;

= Extremes based on AEV method tend to
be higher than POT (more conservative);

» In the North Sea, due to the high fre-
quency of storms, the highest Hs in a year
‘does represent the wave severity for the
year in most cases, whereas for POT,
when calculating extremes for various
thresholds, it is sometimes found that the
storm frequency for the best fit is less than
1.0/year, less than that for AEV.

The 25 Annual Extreme Values are fitted to
six distributions: G, BM, FR3, FT3, W3,
EXP, using two estimation methods: LLS and
MLE. All six LLS fits are very good since the
correlation coefficients all exceed 0.98. Only
three MLE fits are considered acceptable:
this was judged on the basis of the relative
magnitudes of the likelihood function. The

Table 2. Group B results; 100 year return period Hs (m)

)

(5)

(6)

)

range of the 100 year Hs given by the nine
good fit cases (6 LLS and 3 MLE) is from
10.6 m to 11.5m (Table 2). Since Gumbel is
theoretically sound for annual extremes and
the Gumbel LLS gives an excellent fit, it was
decided that Gumbel LLS would be used
throughout the analysis. Plotting positions for
LLS are i/n + 1 and squared errors on Hs are
minimized.

To take consideration of possible bias in
NESS, measured, smoothed storm peaks at
the Forties location are plotted against the
corresponding peak Hs from NESS. Only
peaks exceeding 6.0 m are considered. A re-
gression analysis yields the best fit linear
function

Hs, measured = 0.63+0.9746 Hs, NESS (1)

with a standard deviation of 0.93 m.

The 298 NESS peaks are adjusted on the
basis of Eq. (1), and the analysis steps 2 and 3
are repeated; this is shown in the second
column of Hs-100 values in Table 2.

Scatter is now considered by adding random
errors to the adjusted 298 storm peaks,
Random errors are generated using a Monte
Carlo simulation assuming a normal distribu-
tion with a standard deviation of 1.0 m (1.0 m
is selected as a round-off value of the regres-
sion model error of 0.93 discussed above). An
AEV LLS Gumbel analysis is performed on
the Hs data containing random errors. After
10,000 simulations the average Hs-100 is
12.4 m with a sample standard deviation of
0.66 m.

The proposed 100 year return period Hs is
taken to be 12.4 m.

NESS (3 hourly data)

NESS with Linear adjustment

G, LS

BM, LS

FT2,LS

FT3,LS

W3, LS

F, MLE

FT2, MLE

W3, MLE

Incl. Random Errors (STD = 1.0 m)

11.0
10.7
11.1
11.0
10.8
10.6
10.8
10.6

11.4
11.2
11.4
11.3
10.9
111
11.3
10.9
12.4

Final estimate

124
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6. Contribution C

Group C established the following EV procedure
for NESS data. The method accounts for spatial
spreading using neighbouring grid points, but this
aspect of the procedure will not be described. To
start with, the 2 parameter Weibull cdf (W2) is fit-
ted to the cumulative frequency distribution of all
the data. In practice, however, a best fit is sought
for the top 10% of these data. MML is used to
estimate the parameters. POT is suggested as an
alternative method for a finer 10 x 10 km grid, but
not for the 30 %X 30 km grid under consideration.

The NESS extremes are now corrected to take
into account hindcast model uncertainty by apply-
ing all of the following techniques:

C1: add random Gaussian noise at 5%, 8%, and
10% to the W2 cdf (the KESPL method) and
record the increase of Hs-100,

obtain short return period quantiles, specifi-
cally those having exceedance probabilities
equal to 12/k and 1/k, where k =365x8/2 is
approximately the number of NESS data per
year; then multiply these two values with 1.86
and 1.40, respectively, (the RATIO method).
The idea of scaling short return period values
to 100 year estimates using factors obtained
from measurements, originates from the so-
called Jenkinson method used by the UK Met
Office for deriving extreme wind speeds.

use a linear equation to transform both W2
parameters to ‘“equivalent measured” para-
meters (the PARAMETER method). The
equation derives from an existing regression
between hindcast and measured data.

The final step is to interpret the results obtained
and to compare them with all available measured
data (Table 3). In the case of Forties, the Hs-100
based on measurements was found to be 13.29 m;
this indicates that a 8% noise level is appropriate
under C1, and a 1 year ratio method under C2. The
100 year return values for C2 and C3 are averaged,
and this value is then averaged with C1. This is
considered to be the best “equivalent measure”
Hs-100. Finally, this result is averaged once more
with the direct NESS estimate and a correction
factor of 1.03 is applied to take into account that
NESS covers only the 6 month winter period in
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each year. The results in Table 3 should be used
with caution: certain values are valid for the aver-
ages of 5 gridpoints (including our reference point)
covering the Forties area.

7. Contribution D

Group D’s Method is a POT method of storm
peak values. The threshold is varied in increments
of 0.1 m, until a good visual fit is obtained to the
following distributions: Gumbel (G), Exponential
(EXP), two-parameter Weibull (W2), Pareto (P),
lognormal (LN), and generalized gamma (GG);
parameters are estimated wusing LS or MML,
except in the last case where a MOM based on
Stacy and Mirham [4] is used. The empirical cdf is
taken to be i/n*+1, where n* is the number of
data exceeding the threshold.

In this particular case, little variation in Hs-100
was detected when the threshold was varied from
7.0m to about 7.9m, and reasonable fits were
obtained using G, GG, and LN. The final selection
of a threshold of 7.8 m was guided by the principle
that a POT analysis should ideally be conducted
using (approximately) the top 40 data. The best
visual fit on a Gumbel plot is obtained by the GG
(Table 4). The estimate of Hs-100 is 10.7 m, which
is rounded to 11.0 m.

Measured storm peak data at the Forties are
taken into account by multiplying the NESS
estimate by 1.07. The value of this multiplication
factor is justified on the basis of the following two
considerations:

(a) perform a peak-to-peak scatter plot (mea-
sured vs NESS): the best fit regression line
forced through the origin has a slope equal to
1.07;

a POT analysis (threshold = 7.0 m) is con-
ducted on the measured data and on the
corresponding NESS data (i.e., the NESS
data occurring simultaneously with the mea-
sured data). The 100 year return period on
the

former turns out to be 7% greater than the
NESS Hs-100; the generalized gamma cdf was
also used for this purpose.

(b)

Table 4 summarizes the intermediate values and
shows Group D’s best estimate Hs-700 = 12.0 m.
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Table 3. Group C results; 100 year return period Hs (m)

1. Directly from NESS (W2, MLE) 113
2. Measured data available 13.32
3. C1 using noise at 8% 11.42
4. 2 using 1:100 ratio 124
5 C3 124
6. Best “Equivalent Mcasured™ 0.5Cl + 0.25C2 + 0.25C3 12.22
7. Final estimate = 1.03 x average of 1 & 6 12.22
2 These values are averages of 5 grid points located in Forties.
Table 4. Group D results; 100 year return period Hs (m)
POT with threshold of 7.8 m (n* = 37)

1. Gumbel using MML 9.8
2. Gumbel using Ls 10.4
3. LN using MML 9.7
4, LN using LS 9.9
5. P using MML 13.0
6. GG using MOM 10.72
7. NESS best estimate (round off of 6.) 11.0
8. Correction based on Measured Data: (7.)? 1.07 12.0

2 Indicates best fit.

8. Contribution E

POT storm are fitted to one of three distribu-
tions that are left-truncated below the threshold xq:
Gumbel truncated (GT), Frechet truncated
(FR2T), and Weibull truncated (WT). In the
present application, however, the second cdf failed
to give a good fit and was discarded. The likelihood
expressions involve three parameters: the two
basic parameters, together with x¢. In practice, the
MML is applied to determine the two basic
parameters, given xo. The associated 95% confi-
dence bands on the corresponding 100 year return
values are determined using the 2x2 observed
information matrix, given xo. The candidate distri-
bution is selected on the basis of (1) the correlation
coefficient for LS residuals in the Hs direction
(usually >99%), (2) the mean error on cumulative
probabilities (generally = 0.05), (3) the mean square
error on cumulative probabilities (generally = 0.01),
and (4) visual assessment.

To determine the threshold x,, the above proce-
dure is repeated in order to find a range of
thresholds over which both the goodness-of-fit
statistics, as well as the extrapolated design value
are stationary. The selection process is guided by
the condition that the annual storm frequency at
the site should be between 1.0 (0.5) and 3.0 (4.0).
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This frequency is proportional to the inverse of the
number of peaks exceeding x,. The half range of
the two parameter confidence interval obtained
using the MML procedure for the selected xq, is
now added to the Hs-100 value. The addition of the
half-range confidence interval derives from the
concern noted in Contribution A that the 3 h aver-
age hindcast data overly smooths storm peaks as
compared to the 20 min “spot” measured data. In
the comparisons to measured data at three North
Sea sites which have been performed to date, use
of the confidence interval results in an unbiased
extrapolation at both the 40 year and the 100 year
return period.

As with the previously discussed procedures, the
impact of several severe storms which have oc-
curred after the NESS hindcast period was also
considered. Measured data from those storms were
used to artificially extend the hindcast database. A
repeat of the above procedure using the extended
database resulted in an increase in the extrapo-
lated 100 year wave height by 0.7m. The best
estimate of Hs, shown in Table 5, including the
confidence interval and consideration of post-Ness
storms, is 12.0 m.
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Table $. Group E Resuits; 100 year return period Hs (m)

Hs-100 (m)
Threshold x 0 (m) Number of points > x0 Annual storm frequency Fit to GT Fitto WT
Stationary range
7.00 118 4.7 10.8 10.6
7.15 92 37 10.6 10.4
7.25 81 32 10.7 10.5
735 68 2.7 10.6 104
745 56 22 10.5 103
7.55 50 20 10.6 10.4
7.65 44 1.8 10.6 10.5
1.75 37 15 10.6 10.6
7.85 29 12 10.7 10.3
Average 10.6 104
Best NESS estimate 10.5
Add 95% Cl as described 113
Add 0.7 m to account for post NESS storms 120
Final design value 12.0
9. Summary

Five NESS participants were asked to provide
their best estimate of the 100 year return signifi-
cant wave height at a given grid point in the North
Sea. We cannot help being pleasantly surprised
with the astonishing array of approaches used by
the participants: all submissions attest to the fact
that the contributors have an expert understanding
of the NESS statistics and the extreme value
methods needed to formulate engineering design
criteria. Our second impression is equally com-
pelling: not withstanding the diversity of selected
EV methods and the variety of subsequently

Table 6. Summary of Recommended Hs-100 (m)

applied *“adjustments/corrections,” it is interesting
to observe that the recommended Hs-100 values lie
very close to one another,

Table 6 summarizes the final results. The first
row lists the Hs-100 obtained from a direct EV
analysis of the NESS data: all values submitted can
essentially be rounded off to the same number:
11.0m. This value may be contrasted with the
aforementioned reference approach (R), which
was seen to result in a significant wave height of
143 m,

A B C D E R
Value based exclusively on NESS data 10.8 11.0 11.3* 11.0 105 14.3
Recommended value including all corrections/uncertainties

126 124 12.2* 12.0 12.0
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10. Evaluation

Each submission contains a fair number of steps
that require the use of good judgement and subjec-
tive reasoning. Several issues are simply not
amenable to quantitative evaluation. For instance,
the reason for selecting a particular approach may
be that it is a given group’s standard way of dealing
with extreme value problems, or it may be an
approach strongly favored by one or more people,
or it may be a series of procedures developed over
the years, which enjoys a history of frequent and
successful use. At the same time, each group must
attempt to derive a result that is theoretically
defensible as well as one that will in all likelihood
be acceptable to the outside world (management,
designers, regulatory agencies, etc.)

Consequently, there are several aspects of the
submissions that are difficult to interpret. Keeping
these limitations in mind, it seems reasonable to
identify the following basic criteria to assess the
quality of a particular approach:

(1) How practical and clear is the suggested
approach? A convincing procedure must be
logical and simple to use.

(2) Is the method theoretically sound and does it
lead to accurate results? Is it based on recog-
nized statistical techniques and proven results

from extreme value theory?

(3) Can the method be generalized easily to other
gridpoints and locations or is it very depen-
dent on a particular data structure? How wide

is its range of applicability?

(4) How sensitive is the method to assumptions
regarding data, distribution types? Is the
method robust? Can confidence intervals
easily be constructed? Is parameter/statistical

uncertainty taken into account?

(5) Does the method allow for adjustment based
on measured data; is the hindcast model un-
certainty taken into account?

In fact, two questions should be considered:
(5a) When measured data are available at
the site, can a suitable procedure be
used to incorporate them in any way?
and;

When no measured data are available
at the site, can the intrinsic hindcast
model uncertainty be accounted for in
a NESS EV analysis?

(5b)
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A detailed evaluation is not attempted, but it is
felt that most of the methods used would get a fine
score against each of the above criteria, with the
exception of criterion (5b). This is due to the lack
of a consistent technique to account for the intrin-
sic hindcast model uncertainty, even in the absence
of measured data. Another weakness would be re-
flected in criterion (4); parameter uncertainty and/
or short data uncertainty should be addressed in
extrapolating to high return values.

On a theoretical level, we feel somewhat uneasy
about the use of “cumulative” data (as opposed to
working with storm peaks): the implication on
estimating high extreme values is not clear. As far
as distribution choices are concerned, three con-
siderations jump to mind. First, we are somewhat
surprised that no contribution included the
(3 parameter) generalized extreme value cdf in the
analysis; this is a particularly flexible distribution
and it could virtually be used on its own to model a
wide range of tail behaviors. By the same token, no
attempt was made to look at an analysis based on
seasonal extremes, month-by-month extremes, and
the effective use of more than just one high
order statistic (for instance through the use of the
i dimensional generalized extreme value cdf).
Weighted least squares also failed to be selected as
a convenient way to correct tail behavior. With
regard to the POT analyses, it is somewhat
puzzling to see that distributions which would not
be expected to yield good fits were included in the
analysis (one would expect POT density functions
to be monotonically decreasing starting at the
threshold).

Further discussion is needed to investigate the
quality of the different approaches.

11. Problem Issues

In the course of evaluating the different submis-
sions, it becomes clear that there are a number of
grey areas with issues that will need to be dealt
with at some point in the future. Guidance needs
to be sought from experts in EV analysis and from
experienced oceanographers and engineers with
regard to these matters. The following list may not
be complete, but it does contain a set of both gen-
eral and particular issues identified in the process
of analyzing the five contributions:
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11.1 1Issues related to EV analysis

1. Selection of storm peaks from 3 hourly data;
smoothing/interpolation of peaks; storm dura-
tion: can the 18 h window criterion be relaxed?

Least Squares Methods: plotting position to be
used, particulary in the case of upper tail anal-
ysis; in which direction should errors be consid-
ered: variable, log (exceedance probability),
weights?

POT: How many data are needed; How does
the threshold need to be selected (almost all of
the contributors used different criteria); In
deriving EVs, is it preferable to use quantiles
simply on the basis of an adjusted exceedance
probability or on the basis of a compound
Poisson cdf?

Develop means to construct confidence inter-
vals associated with some of the more compli-
cated methods. Only contributor E made an
attempt to account for parameter uncertainty.

When using the “cumulative” (all data) ap-
proach, assess the impact of correlation
between peaks, particularly when only a small
percentage of the top data is used.

Evaluate the impact of discontinuous data on
determining r year return periods; in the par-
ticular case of AEV, what is the impact of
using 6 month (winter) extremes?

11.2 Additional Issues

7. Measured Data; the various used/proposed
methods require a detailed examination. Clari-
fication and consensus is needed on how to
“combine” hindcast and measured data. Some
of the approaches reflect a sense of “we know
what number we want to get close to, so let’s
select a method that will get us there”; this

arbitrary aspect should be addressed.

Spatial Spreading; this issue was not part of the
present analysis, but contributor C showed that
any method should also be applicable to a
series of gridpoints, rather than just one

gridpoint.
Inclusion of recent storms and/or recently
observed high Hs values in a NESS extreme

value analysis. Only contributor A explicitly
addressed this seemingly important issue.
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12. Appendix A. Acronyms Used for
Distribution Functions and
Analysis Methods

A,B,C,D,E: the 5 contributing groups
AEV: Annual Extreme Value (Method)

BM: Borgman cdf
“)] x>0 b >0

xi-
F(x) =exp| —exp |\ — 5
EXP: exponential cdf:

xX—a

b

F(x)=l—exp(— ) x>a b >0

EV: Extreme Value

FR2: 2 parameter Frechet (or Fisher-Tippett Type
2, or log extremal) cdf:

F(x)=exp|:—(§)-c:| x>0bc>0

FR3: 3 parameter Frechet (or Fisher-Tippett Type
2, or log extremal) cdf:

F(x)=exp|:—(x;a) ] x>0 bc>0

FR2T: Left-truncated Frechet cdf
FT3: the Fisher-Tippett Type 3 (or, the inverted

Weibull) cdf:
——x)] x<a bc>0

F(x) =cxp[— (ab
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G: Gumbel cdf

F(x)=exp[-exp(—x
—w<x <+ow;b>0

GG: 3 parameter generalized gamma cdf with
probability density function:

AB_

Ty )™ e [~ ()°1

fx)=
x>0 a,B,A >0

GOF: goodness-of-fit
GT: Left-truncated Gumbel cdf

HYPAS: Hybrid Parametrical Shallow Water Wave
Model

MOM: method of moments
MML: methods of maximum likelihood
MLE: maximum likelihood estimate

LN: 2 parameter log-normal cdf (Log of the vari-
able has a normal cdf)

LS, LLS: least squares, linear least squares
NESS: North European Storm Study
P: Pareto cdf

Fx)=1-x"% x>1p8>0

POT: peak over threshold
R: the reference approach in the Guidance Notes

W2: the 2 parameter Weibull cdf (or the FT3 for
minima)

F(x)=l—exp|:—(f—’)c:| x>0 bc>0
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W3: the 3 parameter Weibull cdf (or the FT3 for
minima)

F(x)=1—exp[— (a;x)c] x>a bc>0

W2T: Left-truncated Weibull cdf
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1. Introduction

As in many other fields of engineering, the
design of ocean or marine structures is governed by
extreme values of wave heights. Several methods
have been given in the past for the determination
of design values. However, no method is widely
accepted by the engineering community.

Traditionally, the analysis of yearly maxima has
been considered as a good method for this pur-
pose. However, recently, peak value methods arose
as a promising alternative.

The aim of this paper is to compare these two
methods and illustrate some of the problems
related to their use.

2. Two Standard Methods in the
Determination of Wave Height
Design Values

In this section we analyze the following two well
known procedures for obtaining design wave
heights: the peak value method and the yearly max-
ima method .
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The first one employs the peak wave heights of
individual storms and thus composes a set of ex-
treme wave data. The second one uses the yearly
maxima.

Several authors have criticized the second
method in that it discards large wave heights, when
they occur in years with large storms, but includes
relatively small wave heights which are maxima of
calm years.

2.1 The Peak Value Method
~ This method consists of the following steps:

1. Fit the peak values of individual storms to a
parametric family of distributions

Fo(x; Ao, 80, Bo), )

where Ay, 8o and B, are the parameters. In some
cases these three parameters can be reduced to-
two or ‘even to a single one. The fitting of the
above family can be done either by using all data
or only tail data (Peak over threshold (POT)
method).
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It is worthwhile mentioning that this distribu-
tion corresponds to the wave height of a storm,
that is, we assume that the cdf of the maximum
wave height of storms is Eq. (1).

Use the following cdf for the maximum wave
height in a period of duration D years:

Fo(x; Ao, 8o, Bo)™, )

where k is the mean number of storms per year,
or determine the wave height, xr, associated
with a return period T, that is, solve, for x, the
equation

Fo(x; Ao, 8o, Bo)*=1 —%,. 3)

Note that the cdf in Eq. (2) implies the assump-
tion of independence of storms.

2.2 The Yearly Maxima Method

This method consists of the following steps:

1. Fit the yearly maxima to a parametric family of
distributions

Fi(x; Ay, 81, By), 4)

where A, 8, and B are the new parameters.
This is equivalent to assuming that the yearly
maxima follow a distribution which belongs to

Eq. (4).

Use the following formula to extrapolate to the
maximum of a period of D years:

Fi(x; A1, 81, B1)?, (5)

or determine the wave height x associated with
a return period T, i.e., solve the equation for x:

-1-1.

Fl(x; Ay, 64, 81) T

(6)

3. Some Problems Related to the
Data Analysis

In the analysis of data one has to deal with some
problems. Among them we mention the following:

+ Selection of the families Fo(x; Ao, 8o, Bo) Or
Fi(x; A1, 81, B1)

» Estimation of the parameters of the selected
families
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« Confidence interval determination

+  Qutlier detection

= Treatment of incomplete series

3.1 Some Distribution Families Used in the
Analysis of Wave Data

The most common used distributions in the anal-
ysis of wave heights are the following:

)
8 | '

F(x; A, S)Zexp[—exp (i-—

— o <y < W N
2. The maximal Weibull family
A—x\5
Fes a8, B)=ep {~ (255)"};
x<A 8)

3. The maximal generalized extreme value or
Jenkinson’s family

F(x)=exp {-— [1+ &—B)

[}

kA
14 i"ff—l 20 ©)
4, The minimal Weibull family
F(x; A, 8, B)=1—exp {— (‘%) ﬂ} ;
X2\ (10)

The Gumbel, maximal Weibull and maximal
Jenkinson’s families are justified from a theoretical
point of view, because they are the limit distribu-
tions for maxima (see Galambos [5] or Castillo [2]).
It is interesting to note that the Jenkinson’s family
includes the other two, as particular cases, and the
maximal Frechet family (for k >0). The Frechet
distribution is not justified in this case because
wave heights are physically limited, no matter we
deal with shallow or deep waters (see Castillo and
Sarabia [3] and [4]).
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The minimal Weibull distribution, though widely
used, is not theoretically justified in the case of
maxima. Its only justification is that its range can
be made to be consistent with the positive charac-
ter of wave heights. In addition, we remind the
reader that it belongs to the maximal domain of
attraction of the Gumbel type, i.e., it is asymtoti-
cally equivalent to a Gumbel distribution of the
type Eq. (7).

However, due to the fact that this distribution is
widely used in the analysis of wave heights, it seems
convenient to make here some comments.

Initially we can say that this distribution has the
following advantages:

* For A =0, its range is (0, ), that is, it does not
include negative values of the random variable.

* Assuming that the location parameter, due to
physical reasons, is fixed to zero, it depends
only on two parameters. This makes the estima-
tion process much simpler.

+ Its associated domain of attraction is Gumbel
type. Thus, it could be used if this were the
actual case.

Its main drawbacks are the following:

* Its range is unbounded on the right. This con-
tradicts the physical reality.

+ It does not cover the Weibull domain of attrac-
tion that could be the real situation.

+ It is an asymptotical minimum law.

*+ It is not stable with respect to maximum opera-
tions. Thus, if the minimal Weibull law is satis-
fied for yearly maxima the maxima of periods of
duration different from one year cannot satisfy
this law. This problem can be solved by adding
an extra parameter to this family, which leads
to the extended minimal Weibull family.

Consequently, the minimal Weibull family could
be used if and only if we were sure that the domain
of attraction of wave heights is of a Gumbel type.

In order to determine the domain of attraction
of a given distribution several methods are avail-
able, such as the Pickands’ or the curvature
methods (see Castillo [2] chapter 6 and Castillo,
Galambos and Sarabia [3]).

3.2 Estimation Methods

Several methods have been used to estimate the
parameters of the families Eqs. (7) to (10). The
most important are:

* The maximum likelihood method
* The method of moments

* The least squares method

+ The probability paper method

* The Goda’s method

* The percentile method

3.2.1 The Maximum Likelihood Method This
method is based on maximizing the likelihood of
data with respect to the parameters. The central
idea consists of assuming that the sample comes
from a population with parent distribution belong-
ing to a parametric family and choosing the
parameter values that maximize the probability of
ocurrence of the sample data.

This is the best known method in statistics and it
is recognized as the most convenient, due to its
statistical properties. It leads to the best estima-
tors, which, in addition, are asymptotically normal.
This allows asymptotic confidence intervals for
the parameters to be easily obtained. Using the
d-method, to be described later, the confidence
interval of any regular function of the parameters
can be obtained, too. In particular, confidence

- intervals of percentiles can be obtained in this

manner.

In order to estimate an extreme value distribu-
tion with the purpose of extrapolation beyond the
data range, only high order statistics must be used
and the rest must be discarded. Thus, we recom-
mend the method indicated by Castillo [2], in
chapter 5.

In the case of the minimal and maximal Weibull
families, the estimation process can lead to some
problems, either because the likelihood function
becomes unbounded (8 < 1) or because some non-
regularities, for some values of the shape parame-
ter (1< B <2). However, it can be applied to values
of the shape parameter larger than or equal to 2
without any problem. Thus, once the estimates are
available, it is necessary to check that their values
are consistent with the initial hypothesis. Here we
give the following recommendations:

* If the shape parameter takes a negative value,
this means that the data indicate a Frechet type
domain of attraction. This suggests the pres-
ence of at least one outlier that gives an erro-
neous curvature in the right tail,

+ If we get a value of B< 1, we can think on the
presence of outliers. This value of the shape
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parameter indicates that the probability density
function is increasing in the tail, which contra-
dicts the physical reality.

+ If we get 1< B <2 then the law is far from the
Gumbel law (note that Gumbel corresponds to

B=c).

+ If the value of the A parameter is less than the
maximum of the sample this indicates that
there is an outlier.

3.2.2 The Method of Moments This method
consists of equating the moments of the sample to
the moments of the theoretical distribution. We
use as many moments as there are parameters to
be estimated and we get the same number of equa-
tions from which the parameters can be obtained.
The asymptotic properties of the moment estimates
are good but worse than those associated with the
maximum likelihood estimates.

This method can also be applied to tail estima-
tion, using the moments of the truncated distribu-
tion.

3.2.3 The Least Squares Method This method
consists of minimizing the sum of squares of the
differences between the theoretical and the empiri-
cal values. There are many versions of this method.
In some cases the random variable scale is used to
measure the errors and in other cases the probabil-
ity or the return period scales are used (see chapter
4 of Castillo [2]).

The main advantage of these methods is that
they give an explicit solution and do not depend on
convergence of any algorithm, as is the case with
the maximum likelihood method.

Nevertheless, these methods are sensitive to the
plotting position formulas used in the estimation
method.

3.24 The Probability Paper Method By prob-
ability paper method we understand a visual
method, in which the data is drawn on probability
paper and a straight line is visually fitted to data.

The main drawback of this method is that it
depends on the plotting position formula used in
the graphic representation and the subjective
criteria for selecting the optimal fit.

3.2.5 The Goda Method Goda [4] fits a mini-
mal Weibull distribution, truncated at the
threshold value x,, to the right tail of data. By right
tail are meant the wave heights above a second
threshold value x> >x,.

3.2.6 The Percentile Method One way of ob-
taining quick estimates of the parameters of a dis-

448

tribution is by means of the percentile method.
This method consists of equating as many percen-
tiles in the sample and the theoretical distribution
as the number of parameters to be estimated.

As an illustrative example we use this method for
the estimation of the parameters of a three parame-
ter maximal Weibull family.

The cdf of the maximal Weibull distribution is:

cw=en|-(25%)]. an

Thus, the percentile or order p satisfies the equa-

tion

p=exp[—()t—6xp)s], (12)
from which we get

x,=A—-58(—logp)". (13)

Equating the three percentiles of orders pi1, p2, p3
of sample and population, we get the following sys-
tem of equations:

X, =A—8(—logp)"*;i=1,2,3, (14)
where p; can be written, using the Gringorten’s
formula, as:

i—044

P oz (15)

where i is the rank of the order statistic associated
with Pi-
From Eq. (14) we get

_ (—logpa) "= (—logp.) "
 (—logps) "E—(—logpa) V¢’

Xp2—Xp,

Xpa—Xp;

(16)

which depends only on the parameter 8 and thus, it
can be easily solved by an iterative method, as the
bisection method for example, with a personal
computer. Once B is known, the values of A and §
can be obtained from any two of the equations in
Eg. (14). For example:

Xpy—Xp,

—logp,) "#—~(—logp2) "* ;
P

A=x,+8(—logp)"*f 17
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For the estimates to be consistent with the
model we must have

A>max{X,,X2,...,%n) (18)

where (xy,x2,...,x,) is the sample,

If the percentiles are arbitrarily chosen, this
inconsistency can easily appear. Thus, it is good
practice to choose as one of the percentiles the
maximum of the sample x ).

In addition, if we are dealing with a tail estima-
tion we must choose the adequate percentiles, that
is, percentiles in it.

In order to improve the quality of the estimates
we can use three groups of percentiles instead
of three percentiles, that is, replace the system

Eq. (14) by the system

imky+my—1 5 i=ki+mj—1
w2 m=A—— ¥ (~logp)";
¢ "=*] / :'-kj
=123 (19)

where m;, (j =1, 2, 3) are the numbers of percen-
tiles included in each group. With this, equation
Eq. (16) becomes Eq. (20).

1 imky+my=1 1 i=ky+my—1
E i§2 e E l'gl n
i=k3+m3—1 itma—1
E l"g; e E f§z xm
i=ky+my=1 1 i=ki+mp—1
= 2 (-logp)"~— 3 (-logp)"*
imky L S,
imky+my—1 l i=kytmy—=1 . (20)
. 2 (—logp)P——- 3 (-logp;)"
imks m L,
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3.2.7 Plotting Position Formulas There is
much controversy about the plotting position
formulas to be used for representing data on prob-
ability paper and the posterior estimation by least
squares methods.

The resulting estimates are sensitive to the plot-
ting position formulas being used. This confirms
the fact that the least squares method is not opti-
mal, Note that maximum likelihood or moment
methods do not depend on plotting positions.

The discussion of the appropriateness of various
formulas is intended to avoid or reduce some of the
errors involved (in this case authors recommend
using formulas leading to unbiased estimators).

However, we mention here that all plotting posi-
tion formulas are asymptotically equivalent.

3.3 8-Method

- The &-method (Bishop, Fienberg, and Holland
[1]) allows us to obtain confidence intervals of
certain regular functions of the parameters, as
functions of the parameter estimates, and its vari-
ance-covariance matrix.

Let

mo=hA, A LAYl = 1,2,k (21)

be k functions of the set of parameters

A1, Az, ..., A, Then, according to the §-method,
(7;1, 1:.“1, vy ‘l’;k)=(hl(;i|, ;tz, ey X;),
hZ(ilyj-Zy---9;.{5')7'"}hk(ilsiZ,---,i’)) (22)

is an estimator of (11, 72, ... ,m«) which is asymp-
totically normal and has mean

(Ai(As, Azy o A ) ha(A, Az oy AS), s

hk(l\-l, 1\2, P

2 As)) (23)
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and variance-covariance matrix

PN A
A1 dAy OAL
g |dn o m
dA2 dAz dAs
o
| oA, A, T A
B N
o o
dA; dA dAq
y he
2 dAz dAa dAa (24)
dhy éh; ahy
2T

where 2 is the variance-covariance matrix of
(A, Az, ooy As).

3.4 Estimation of Percentiles of the Maximal
Weibull Distribution

As a simple example of the 5-method we give the
confidence interval of one percentile of the three
parameter maximal Weibull distribution. We as-
sume that the parameter B is larger than 2.

3.4.1 Point Estimate The percentile x;, of the
maximal Weibull distribution is:
X, = A—8(-logp)"t. (25)
Thus, according to the invariance principle, the
maximum likelihood estimator of that percentile,
is: .
X, = A—38(—logp)"® @)
3.4.2 Maximum Likelihood Estimators: Asymp-
totic Theory We assume here that the sample
consists of those observed values above the
threshold value ¢ (type 1I censoring), that is, the
probability density function is given by

flx;A,8,B)
1-F(t;A,8,8)

fix) = (27)

and f and F are the pdf and cdf of the maximal
Weibull family.
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The maximal Weibull distribution satisfies the
necessary regularity conditions for the asymptotic
normality if B=2. Thus, if we have a sufficiently
large sample coming from a population with maxi-
mal Weibull parent, we can write:

Va((A,8,8)-(1,8,B) DN@ %)  (28)

where

3=+ (29)

where I = (a;;) is the information matrix associ-
ated with the maximal Weibull family, that is,

any=1Iun= L%zlﬁr(l —%) (30)
2
ap=1I= _%F(Z_lﬁ) (31)

-1 . 1 1. 1 1., 1
ai=1,s Z?f (l—ﬁ)-i-gf (Z—E)-l-gf (2——3)

(32)

an = Is = £; 33)

an = Isg = —%r'(z) (34)
as = lgg = %(1+I‘"(2)) 35)

and J is the matrix of the second order partial
derivatives, with respect to the parameters of the
model, of the function

G(t; A, 8,8) =log[1-F(t; A, 8, B)] .

If we consider now the function:

f(A,8,B) =x, = A=8(~logp)"#,  (36)
with partial derivatives:
- 9f _
fi=gn =1
fo= 2k = —(~togp)¥s (37)
fi = 2L = 2 10g (~logp))(~logp)"”
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then, by the §-method we have:

Va(f(A, 6, B)~f(A, 8, 8)) > N, 3*) (38)

where

3* = (fufa )22, (39)

from which the confidence interval for the percen-
tile x;, at level o becomes:

. ‘wliz 2*1!2
Cp—21-ap == ;X +Z1oan——) .

Vi Vn

(40)

3.5 Outlier Detection

In this section we give a method to detect the
presence of outliers in the sample data. The method
is based on the fact that if we make the following
change of variable:

Y = F(X) (41)
where F(x) is the cdf of X, the resulting random
variable, Y, is uniform U(0,1).

In addition we know that the maximum of a
random sample of size n coming from a standard
uniform parent has cdf

Fyoo(y) = y" = Prob[Yuu<y]. (42)

We shall say that the sample maximum is one

outlier if the probability of being exceeded is very

small. Thus, the value y, can be considered as eriti-
cal for the maximum value of the sample if

Pl'Ob[YM >yu] = Fym(yn)=1—yﬁ = o (43)

with a very small (0.01, 0.05, etc.). Then, we get

yo=(1-a)™ (44)

This critical value refers to the random variable
Y. Thus, we need to obtain X by means of the in-
verse of Eq. (41). As one example, for the maximal
Weibull distribution we get

Xo =-A—5[—log (1—a)"]"8. (45)
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3.6 Treatment of Incomplete Series

If we know about the existence of r storms in a
given series, but we ignore the peak intensities we
can perform an estimate based on the known peaks
and then make a correction for the unknown
peaks. This means estimating the cdf with the
known peaks and raise to the power (n+r)/n,
where n and r are the number of known and un-
known peaks, respectively.

4. Critical Analysis

In this section we analyze the previous methods
and discuss some of their inconsistencies.

4.1 Inconsistencies due to the Lack of Stability
With Respect to Maximum Operations

When several design methods are recognized by
the engineering community a certain consistency in
the respective results should be expected. We shall
see that this is not the case for some of the previous
methods.

Let us assume that we try to fit the minimal
Weibull family

X — Ao

8o

). o

where Aq, 8 and B are the parameters, Then, Eq.
(2) transforms to

F(x; Ao, 80, Bo) = 1—exp {_(

Fp(x; Ao, 8o, Bo) = F(x; Ao, 80, Bo)>* =
{1 -exp[ - (I_gu{\j )B“]}m

and the wave height associated with a return period
T becomes Eq. (3):

Xr = Aot 8 {—log [1—(1—%)“]}”3" (48)

(47)

Let us assume that now we also use the minimal
Weibull family in Eq. (4):

X —A

Fi(x; Au, 81, Bi) = 1-exp {— (T )B} . (49)
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where Aj, 81, Bi are the new parameters. Then,
Eq. (5) becomes

Fp(x; A1, 81, B1) = Fi(x; A1, 8y, B1)° =

(e -(52)" ) o0

and the wave height associated with a return
period T, from Eq. (6), is

Xr = A+ {—log [1—(1—%.)]}”"'1 (51)

The minimal Weibull model is inconsistent in the
following sense: It is not stable with respect to max-
imum operations, that is, when the cdf is raised to
a given power s =1, then, the resulting cdf is not
minimal Weibull. Thus, though Eq. (46) is minimal
Weibull, Eq. (47) is not minimal Weibull for Dk =1.
In other words, if we assume a minimal Weibull
distribution for the peaks of storms, the yearly
maxima cannot be minimal Weibull and vice versa.
In fact for equations Eqs. (47) and (48) to be
identical to Eqgs. (50) and (51), respectively, i.e., for
consistency, we must have

A=A =8,B=pLk=1 (52)

which implies k = 1, that is a mean number of one
storm per year, which is not the case.

However, if, instead of using the minimal Weibull
family we use the maximal Gumbel family

Fn_'(x':-; l\p, 80) = exp [— exp ()“’a:x )] ,  (83)

then, Egs. (47), (48), (50) and (51) become

ot = oo - e (52

xr = )q;—&,log[— log (1—%)“] (55)

Fo(x; AL, 81) = { exp [- exp ("‘T‘l" )]}D (56)
and

Xr = =8 log[— Iog(l—%)] (57)

and, taking into account that

the coincidence of the pairs Eqgs. (54)-(56) and Eqgs.
(55)—(57) implies

& = 51yl9= A;—&llogk. (59)

That is, the coincidence of both is possible for any
value of k.

The same conclusion is valid for any of the
Weibull Eq. (8) or the Jenkinson’s Eq. (9) families.

4.2 Inconsistencies Associated With the Lack of
Stability With Respect to Truncation

Goda’s method is inconsistent for the following
reasons:

1. It gives different estimators for different values
of xy.

2. If the truncated distribution belongs to the
minimal Weibull family it cannot belong for a
different threshold value. Thus, different
designers using different threshold values
necessarily arrive to different models.

In the following paragraphs we shall make a de-
tailed analysis of this problem.

With respect to the first inconsistency it is clear
that because the method only uses the data above
the second threshold value x,, the resulting esti-
mates should be independent on the first threshold
value xq.



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

In relation to the second inconsistency, the
model should be stable with respect to truncations.
With the purpose of clarifying this idea, let us
assume that we choose a family of candidate distri-
butions H(x;y), where the second argument y is
one parameter, which, without loss of generality,
can be assumed to be the threshold value. Then, if
the wave height exceeding z has as cdf the function
H(x,z), then, the wave height exceeding y should
have a cdf given by

H(x;2)—H(y;z)
1-H(y;z)

=H(x;)’), (60)

where the right hand term arises from the consis-
tency condition that expresses that the family
H (x; z) remains valid for any value of the threshold
parameter, which in this case is y.

Equation (60) is a functional equation. Its gen-
eral solution can easily be obtained by making
z = zq, that is,

G —
Han - S0 g
where
Gx) = H(x; z0) . (62)

For H(x;y) to be a cdf, then G (x) must also be a

Equation (61) proves that any consistent family
H(x;y) must come from another family G(x) by
means of a truncation procedure.

The minimal Weibull family, used by Goda, does
not satisfy this condition. Thus, it is inconsistent.

With the purpose of having a consistent family in
the two previously given senses, one solution would
consist of assuming G (x) to be extended minimal
Weibull with null location parameter. This would
imply that the sample data above the threshold
value x, should be fitted to the family

8, B)I'~[F(y; 8, B)I"
1-[F(y; 3, B)I"

Hexy, 5, p) = F& , (63)

where
F(x;5,8) = 1—exp[—(%)s], (64)

Nevertheless, we temind the reader that this
solution can be satisfactory only in the case of a
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parent distribution in the domain of attraction for
maxima of a Gumbel type.

Consequently, as a summary, we recommend to
fit the sample data above the threshold to one of
the following three families:

* If the domain of attraction is Weibull type, fit
the right tail to the maximal Weibull family

)} e

« if the maximal domain of attraction is Gumbel
type, fit the right tail to the maximal Gumbel

family
)] @
or to the extended minimal Weibull family

s - foeel -

xz20

Ap—x

8o

Folx; Ao, 8o, Bo) = exp {—(

Ao—x

o

Fo(x; Ao, 80,) = exp[— cxp(

(67)

where 8, 8 and 7 are the parameters to be esti-
mated. In the last case we are assuming that
the cdf of the maximum wave height in an
indeterminate period, to be estimated, is mini-
mal Weibull.

Note that fitting the right tail means fitting a
truncated model with basic distribution given by
Egs. (65), (66) or (67).

All these models are consistent in the previously
mentioned sense.

4.3 Inconsistencies Associated With the Use of
H;and T,

It is very common in the Ocean Engineering field
to work with the significant wave height, H,, and
period, T, as the basic variables for extreme value
analysis of waves. However this is not correct
because T is the mean zero up-crossing period and
H, is defined as the mean of the 1/3 largest waves.
These two random variables are convenient to jus-
tify normality assumptions in wave spectra, but can-
not be accepted if an extreme value analysis of wave
height, H, is to be performed. In fact, distributions
in different domain of attraction types can lead to
the same distribution for H, and/or T, thus, obscur-
ing the tail properties of single waves.
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§. Conclusions

From all the above we get the following conclu-
sions:

1. The most convenient families to fit wave height
data in the tails are:

+ The maximal Weibull family
= The maximal Gumbel family

However, the extended minimal Weibull family
can be used too.

Before fitting the Gumbel or the extended
minimal Weibull families, the domain of attrac-
tion for maxima must be checked using, for
example, the Pickands or the curvature meth-
ods. For the estimation of the parameters,
the maximum likelihood or the method of
moments applied to the truncated distributions
is recommended.

In the case of the maximal Weibull family, the
shape parameter 8 must be larger than unity. If
it is not, the data suggests an increasing proba-
bility density function in the tail, which contra-
dicts-the reality.

It is recommended the elimination of outliers
by means of the following iterative method:

(a) Estimate all parameters with all data but
the maximum

Check for the outlier character of the
maximum by the previously indicate
method

(b)

If it is an outlier, remove the maximum
and start the process again; if it is not,
repeat the estimation with all the valid
data

(©)

If there are missing data correct the obtained
cdf by raising to the power (n +r)/n where n
and r are the number of known and unknown
data, respectively.

Significant wave height H, and mean up-cross-
ing periods T. are not adequate variables to
analyze the extreme value behaviour of wave
heights.
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tributed,
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obtained by the diffusion theory ex-
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are compared with available time simu-
lation results in irregular scaways. Gen-
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1. Introduction

The jack-up drilling rig concept, Fig. 1, has
proved to be very convenient in the exploration for

oil and gas in offshore areas. Therefore, requests

are made for designs able to operate in increasing
water depths. Due to their sizes and independent
leg configuration the natural periods of their lowest
vibration modes become comparable with the dom-
inant wave periods in the design sea states. As an
example jack-up rigs with leg lengths of 160 m, hull
masses of the order 15,000 t and lowest natural pe-
riods around 8 s are currently under construction,
For such structures dynamic amplification of the
wave load responses is certainly to be expected.
The wave loading on the legs can be estimated us-
ing Morison’s equation. Usually, the legs are truss-
like, with each leg consisting of three (or four)
vertical chords connected by horizontal and oblique
bracing members. The diameters of the individual
members are so small that the wave loads on the
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legs become drag dominated. Alternative designs
for smaller platforms have considered circular cylin-
drical legs, yielding inertia-dominant waveloads [1].
For larger platforms the circular cylindrical leg de-
sign is not feasible as the loadings and thereby the
required amount of steel are so much higher than
for the truss leg design that it cannot be counterbal-
anced by lower production costs.

A drag-dominated wave load implies a loading
which is nonlinear in the wave height. Furthermore,
the integration of the wave load up to the actual po-
sition of the wave elevation on a leg and the non-
symmetry (Stoke’s 5th order wave) of the wave
profile magnify these nonlinearities in the base
shear, the overturning moment and associated re-
sponses.

The structural stiffness of the jack-up rig in the
lowest vibration mode is characterized by the leg
stiffness, the distance between the legs, the bottom
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Fig. 1. Jack-up platform with cantilever.

support conditions, the distance L from sea bottom
to the platform deck and the leg-jack-house flexibil-
ity. The global vibration pattern is normally beam-
like with a maximum horizontal deck deflection of
the order of 1 %-2 % of L in the design sea states.
A linear structural analysis would therefore nor-
mally $uffice. However, the additional overturning
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moment in the deflected state due to the high axial leg
loads from the deck mass must be included by the so-
called P — § effect and, in a dynamic analysis, by reduc-
ing the leg bending stiffness.

A jack-up rig is a highly stressed structure. Therefore,
it is important that an accurate structural evaluation is
performed. Such an analysis should be done, not only
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when designing a new structure, but also when a
jack-up rig is moved to a new location. In order to
get uniform and reliable site approval procedures, a
large study was initiated by a group of companies
involved in jack-up design and operations. A sum-
mary of this project is presented in [2]. Generally
three different methods are applied:

» Single degree of freedom methods (SDOF),
= Frequency domain methods.
* Time-domain methods.

In the first procedure the quasistatic solution, de-
termined by neglecting the motion of the platform,
is amplified by a dynamic amplification factor
(DAF) calculated by the classical SDOF formula.
This will introduce errors due to the nonlinearities
in the wave loading and several approximative pro-
cedures have been used [3]-[5], aiming at reducing
these errors.

The frequency domain methods rely on a suitable
linearization of the wave loads with the wave height.
The resulting linear dynamic system is then solved
exactly. The non-Gaussian behavior of the extreme
values is then simply estimated by multiplying the
standard deviation of the linear response with a fac-
tor depending on the ratio between the root-mean-
square values of the drag and inertia terms in the
wave loads.

Due to the assumptions inherent into above-men-
tioned methods, time simulation procedures are of-
ten used. For a specific stationary stochastic sea
state random time signals of wave elevation and
corresponding wave Kinematics are generated, typi-
cally by superposition of first order (Airy) wave
components. A structural analysis of the jackup-rig
including dynamic and nonlinear effects is then car-
ried out using time steps of the order of 0.5 s. The
main drawback in this method is that due to exces-
sive computational costs only a limited number of
time simulations, each covering a few hours, can be
generated. The extrapolation of these results to ex-
treme value predictions for design approval can be
difficult. Several applications of time simulation
procedures to jack-up rigs have been published [1]-
(21, [41-7).

In a previous paper by the author [8], an alterna-
tive method has been developed. The method is
based on exact solution of a linear single-degree-of-
freedom system subjected to a non-Gaussian excita-
tion, Like in the SDOF method the present method
also needs the nonlinear quasistatic response as in-
put but now the dynamic effects are calculated
much more consistently. The present procedure

yields all required statistical moments of the re-
sponse, which makes extreme value predictions very
easy. This is done without using any stochastic lin-
earization procedures as required in the frequency
domain method. Finally, compared to time simula-
tion procedures, the present method is much faster
to apply and does not have the problems with ex-
treme value predictions inherent in time simulation
procedures.

The aim of the present paper is to evaluate the
proposed procedure [8] by comparing results with
those obtained from time simulation procedures.
Previous comparisons [8], [9], with results based on
a usual SDOF procedure have been very favorable
as well as have been comparisons with time simula-
tion results for a large offshore jacket structure [10].
In the next section the present stochastic dynamic
procedure is described. Then it is applied to data
presented in [5], obtained using a time simulation
procedure and the importance of the various ap-
proximations and different modelings is discussed.

2. Stochastic Dynamic Analysis

For a linear single-degree-of-freedom system the
equation of motion for the response Y(¢) can be
written

V(1) +28% so¥ (1) + wid(t) = wd Yo(2),

where ay and § is the natural frequency and damp-
ing ratio, respectively. Time is denoted by ¢ and dif-
ferentiation with respect to ¢ by (+). The function
Yo(t) is seen to be the quasistatic response obtained
neglecting the dynamic behavior of the structure
(> ).

If Yo(¢) represents a global jack-up response vari-
able like the base shear or overturning moment,
then it has been shown, [3], [8]-[10] that it can quite
accurately be represented by a polynomial descrip-
tion in terms of the wave height H.

Yt = 3 Ay @
h(:)=% oos[21r% +e] , 3)

when the jack-up is subjected to a regular long-
crested wave. The coefficients A4; will depend on the
platform geometry, the water depth, the wave
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theory applied and the current profile. No closed-
form solution exists and the actual values of 4; must
be derived by curve fitting from the numerical
results.

The wave period T in the applied regular wave
and in equivalent wave elevation & is taken to be
uniquely given by the wave height H, using for in-
stance Odland’s formula [11]

T=1+4.1 H%, )
with T in seconds and H in meters.

In a stationary stochastic sea state with significant
wave heights H; the individual wave heights H have
been found to be Rayleigh distributed with a root-
mean-square value close to H,/27/2. Furthermore,
the phase lag € in Eq. (3) can be taken to be uni-
formly distributed. Then the parameter i, Eq. (3),
becomes normal distributed with zero mean and
standard deviation equal to H./4. Thereby, the
stochastic equivalent of Eq. (2) becomes

Y.,(r)zéi)] a; U(t) (5)
with
a; =Ai (Hi/4) 6)

and where U(z) is a standard Gaussian process with
zero mean and unit variance. In most cases a cubic
polynomial, n =3, will suffice.

Clearly the curve fitting and the specific values of
T=T(H) used to obtain the quasistatic response
description, Eq. (2), impose some inaccuracies in
the coefficient a;. Therefore, if time simulation re-
sults are available for the stochastic quasistatic re-
sponse, Yo, then these results could be used directly
to generate proper values of a;. For example, from
the four lowest statistical moments: mean, standard
deviation, skewness, and kurtosis, it is straightfor-
ward to determine the four coefficients a; in a cubic
description of Y,(¢) [8]. This possibility will be con-
sidered in the next section.

The solution of Eq. (1) with the right hand side
given by Eq. (5) will be based on the theory of dif-
fusion processes. Therefore the forcing function
£(¢) must be a normal white-noise process with a
covariance function satisfying

E[&(@t) &t +7)]=2m S 8(7), (7

where S is the spectral density of £ and 3(r) is
Dirac’s delta function. A constant spectral density is
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a very poor approximation for a wave load process
U(t) and the standard procedure to overcome this
problem is to pass the white noise process £(f)
through a filter defined by

+24 o ntwin=§. (8)
Thereby, the spectral shape §, of 1 becomes
28
So(w)= (o w=0. (9

“@ QL)

Compared to the usual wave spectra of the Pierson-
Moskowitz type the spectrum §,(w) has the disad-
vantage that $,{0)=0. The spectral shape S (w)

So (0) =Sy (@) (w/wy)’ (10)

of the process
(11)

much better resembles the Pierson-Moskowitz
spectrum. This is illustrated in Fig. 2, where the
normalized spectra S,(w), Sy{(w) are compared
with the normalized Pierson-Moskowitz spectrum

@(t)=71(1)w

Sem(w)=47" 07° CXP( - ('rp w)_") ;0z0. (12)

Here

T, {4\
2 (g) ’
where T, is the spectral peak period for the sea

state. The normalizations are such that all three
spectra have a unit variance implying that

5256

k

(13)

=

(14)

for both S, and §,.

Furthermore, the spectral parameters w; and §
are chosen such that the peak values and peak fre-
quencies for all three spectra coincide [8], yielding

Sy(@): w=1.052 ?—"’; £, =0.221
P
21
Se@) o= T 5 §=022 (15)
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Fig, 2. Comparison between the normalized spectra $;(w),
Seo(w) and Sep(w).

In the following normal process U(r) in Eq. (5) will
be taken as

U(t)=ep(t) (16)

Egs. (1), (5), (8), and (11) can be written as Ito dif-
ferential equations

Z =CZ(@)+W(), (17)
where
Z={Y,YIw, 0, 0} ={Z), 25, Z5, Zy"  (18)
and
oz i
-2 ﬁ)(ﬂ)Zz—(le"'ah 2 a,-Z.{
c@)= 19)
Wy Zs
| 2L ZimwgZs ]
W(t)={0, 0, 0, £(t)/we}". (20)

Since W(t) satisfies the white noise property

1

it follows from diffusion theory, e.g., [12] that the
statistical mean value E[g(Z)] of any function g of
Z satisfies

E[W@)W(+1)]=D (),
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b E[C.-(Z) ;;?%]+

(22

% 2 ? D;,-E[—azg—]=0

azZ; dZ;

in a stationary sea state. In the present case i,j =1,
2, 3, 4 and only the D4 component in the 4 X 4 ma-
trix D is different from zero.

As the vector C(Z) is given in polynomial form, it
is straightforward to apply the procedure given by
Krenk and Gluver [12] to obtain exact values for the
statistical moment of Y. Here only the four lowest
moments are determined and used to define
uniquely a cubic polynomial approximation for

Y(t), [8]

Y()=cota Ut)+c2 U@) +cs U()*.  (23)

Extreme values of Y{(¢) are finally obtained by re-
placing U(¢) with corresponding extreme values,
that is by /2 InN for the most probable largest
peak among N peaks.

3. Numerical Results

For a linear single-degree-of-freedom system
subjected to a Gaussian excitation, a dynamic am-
plification factor can be defined as [11]

dynamic amplification factor=

[ v 5@y a]”

as

, (24)

where ¢ is the classical dynamic amplification factor

o
V(e ="'+ (24 o w)’

Pw)= (25)

and where S(w) is the spectral density of the qua-
sistatic response (the excitation) Y,. Furthermore,
o, is the standard deviation of the excitation given
by

oF= FS(m) dw. (26)

Examples of dynamic amplification factors deter-
mined by Eq. (24) are shown in Fig. 3. Three spec-
tral densities S (w) are used, the Pierson-Moskowitz
spectrum, Eq. (12), the spectrum S,(w), Eq. (9),
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and the spectrum S,(w), Eq. (10). The damping ra-
tio is taken to be {&=0.07 and it is seen that at res-
onance the dynamic amplification factor is only
about half the value of Y(wo)=1/2 &.

DAF ' T T
Linear

3.0

20

10 1 |
10 117,

1.5

Fig. 3. Dynamic amplification factor (DAF), Eq. (24), for the
standard deviation of a linear one degree-of-freedom system,
using different excitation spectral densities.

For a linear system subjected to a Gaussian exci-
tation the same dynamic amplification factor will
apply to both standard deviations and extreme val-
ues, Typical values of the fundamental period
To=27/wo are around 8 s for large jack-up rigs
whereas the peak spectral period T, in the design
sea state is about 16 s. From Fig. 3 one could then
expect dynamic amplification factors in the vicinity
of 2. However, most time simulation results [4]-[7],
yield dynamic amplification factors for the extreme
values much lower and even sometimes below 1. In
the following this difference will be discussed using
data for the example jack-up rig considered in [5].

First deterministic, quasistatic results for this
jack-up rig were computed using both the Stretched
Airy and the Stoke’s 5th order wave theory. The
results obtained for the overturning moment
(OTM) using the Stretched Airy wave theory are
shown in Fig. 4. Corrections for P-§ effects have
been made. The wave period T is taken in accor-
dance with Eq. (4). The sensitivity of the calculated
results to the choice of T is exemplified in Table 1.
It is seen that minor variations in T around the
value given by Eq. (4) do not change the overturs-
ing moment significantly.

Two different curve fitting procedures have been
used in Fig. 4 to generate cubic polynomial repre-
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sentations (A, B) of the overturning moment as
function of the deterministic wave height H. Similar
curves are obtained for the base shear and also
when using the Stoke’s 5th order wave theory. All
these results are expressed in terms of coefficients
A; to be used in Eq. (2).

OTM.
(10°Nm)

2

® : Direct Calculations

Fig. 4. Overturning moment for the jack-up-rig considered [5],
subjected to a regular long-crested stretched Airy wave.

The coefficients A; are then used in Eq. (6) to ob-
tain values of a; valid for the stationary stochastic
design sea state. From these coefficients the four
lowest statistical moments are calculated by the
procedure given in [8]. The results are given in
Tables 2 and 3 and compared with those presented
in [5] from a quasistatic time simulation procedure.
Furthermore, these tables contain the dynamic re-
sults determined by the present stochastic dynamic
procedure and by dynamic time simulations in ran-
dom seaways [5]. From Table 2 it is clear that the
choice of wave theory and curve fitting procedure
has only a marginal influence on the quasistatic
overturning moment. Therefore Table 3 for the
base shear only contains results for one of these
choices. Also it appears that the statistical moments
calculated from the deterministic results using Eqs.
(2)-(6) are remarkably close to those found from
time simulations except perhaps for the kurtosis
which is somewhat lower in the time simulations.
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Table 1. Sensitivity of overturning moment (OTM) to wave
period T, H =13.7 m (45 ft), Stoke’s 5th order wave

Wave period T max OTM min OTM

(s) (10° Nm) (10° Nm)
9.854 3.108 —0.811
11.261 2.635 —0.941
12.690 [Eq. (4)] 2.428 ~1.112
14.077 2.457 -1.261

Table 2. Statistical moments and dynamic amplification factors
(DAF) for the overturning moment in the design sea state,
H;=128m, T,=153s

Time Based
Overturning _Stoke’s 5th _ Stretched Airy  simu- on
moment fitA fitB fitA fitB lation *)
Quasistatic
Mean/stand. 0.197 0.198 0.192 0.193 0.200 (*)
dev,
Skewness 260 277 250 261 299 (%)
Kurtosis 257 297 243 270 184 (%)
Dynamic
Mean/stand. 0081 0.082 0.079 0.080 0.128 0.080
dev.
Skewness 017 019 016 0.18 1.29 0.19
Kurtosis 689 760 6.67 7.15 8.40 5.30
DAF/stand. 243 241 243 241 149 2.50
dev,
DAF 1.36 136 136 1.36 1.08 1.39
(N =1000)

Table3. Statistical moments and dynamic amplification factors
(DAF) for the base shear in the design sea state, H,=12.8 m,
T,=155s

Base shear Stoke’s 5th  Time simulation Based on
(BS) [5] ™

Quasistatic

Mean/stand. dev. 0.163 0.160 (*)

Skewness 243 223 (%)

Kurtosis 322 13.7 *)

Dynamic

Mean/stand. dev. 0.068 0.122 0.065

Skewness 0.17 1.34 0.12

Kurtosis 8.18 9.01 4.71

DAF (stand. dev.)  2.40 1.24 2.46

DAF (N = 1000) 137 1.05 1.38
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The only additional information needed to calcu-
late the dynamic responses by the present stochastic
dynamic procedure is the fundamental period T,
and the total damping ratio {, see Eq. (1). For the
example jack-up rig 7o =8.45 s whereas the damping
ratio is specified to 0.05 [5]. However, the time sim-
ulations are carried out in [5] using a single-degree-
of-freedom formulation which includes coupled
fluid-leg interaction terms. These terms will reduce
the dynamic response and therefore act as addi-
tional (hydrodynamic) damping. The total damping
in these time simulations must thus be greater than
0.05. In the present calculations, Eq. (1), (7)—(23),
the damping ratio has been taken to be ¢ =0.05.
The consequences of larger actual damping will be
discussed later.

It is seen from Tables 2 and 3 that the dynamic
amplification factor is nearly the same whether the
quasistatic input is taken from Eqs. (2)-(6) or from
the quasi static stochastic time simulations per-
formed in [5] (the results marked by (*)). The dif-
ference in kurtosis is apparently not important,

For both the base shear and the overturning mo-
ment the dynamic amplification factors for the stan-
dard deviation turn out to be around 2.4 whereas
the dynamic amplification factor for the most prob-
able largest response peak among N =1000 peaks
becomes 1.36. As Ty/T,=8.45/15.5=0.54 the dy-
namic amplification factor for the standard devia-
tion is seen to be in accordance with Fig. 3 taking
into account that the damping in the present exam-
ple is {=0.05. Tables 2 and 3 also show that the
dynamic effects tend to reduce the skewness and
kurtosis making the response more Gaussian than
the quasistatic response. Thereby, the dynamic am-
plification factors for the extreme values become
smaller than for the standard deviation with de-
creasing values for increasing values of N.

The most severe disagreement between the re-
sults from the present stochastic dynamic procedure
and the time simulations is clearly in the dynamic
amplification factors. They are consistently smaller
in the time simulations,

Before looking after possible explanations it
should be stressed that the above results only con-
cern one specific jack-up rig. Other results obtained
by time simulations have shown larger dynamic am-
plification factors. For instance the dynamic ampli-
fication factor for standard deviation of the
overturning moment is found in Ref. [6], Figs. 7 and



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

11 to be 5.583/2.521 =2.21 for a comparable jack-up
rig and sea state. Also [4] shows dynamic amplifica-
tion factors around two without specifying precisely
the extreme value level.

One source of uncertainty is the damping ratio.
In the present stochastic dynamic procedure the to-
tal damping has to be specified whereas in the time
simulation procedure the hydrodynamic damping is
automatically taken into account by the relative ve-
locity terms in Morison’s equation. Therefore, it
could be interesting to see how much the total
damping should be increased before results in ac-
cordance with the time simulations are obtained. In
Table 4 such results are shown and it is seen that
first for a total damping ratio of about 20 % good
agreement on dynamic amplification factors is ob-
tained. Such damping is rarely expected in real jack-
ups although [4] presents experimental values
around 10 % for a model test. A total damping as
low as 2.2 % has on the other hand been estimated
from full scale measurements [14]. As mentioned
previously, the stochastic dynamic time simulation
procedure in [5] includes 5 % damping in addition
to some damping from fluid-structure interactions
(Eq. (26) in [5]). This must result in an effective to-
tal damping in the time simulation results greater
than 5 % but how much greater it is not possible to
say.

A further verification of the present procedure
will clearly require more detailed comparisons with
time simulation results including estimations of the

total damping in the time simulations as function of the
severity of the sea state. Until then it seems reasonable
to assume that if the total damping is known then the
present procedure will yield results with uncertainties
mainly related to the assumption of a single degree-of-
freedom system. Note that P — § effects are included in
T, through a reduced leg stiffness [11].

To illustrate the potential of the present procedure,
Fig. 5 shows the variation with sea state of the non-
Gaussian behavior and of the dynamic amplification
factor for the most probable peak value among 1000
peaks for the overturning moment. In particular, one
should note that even in extreme sea states some
dynamic amplification occurs. There are two reasons for
this. First the stochastic sea state averages out the
classical dynamic amplification factor as shown in Fig. 3.
Secondly, the non-Gaussian parts of the quasistatic exci-
tation Y, are amplified differently. In Fig. 6 the dynamic
amplifications associated with a pure quadratic and a
pure cubic excitation are shown. The linear excitation,
Fig. 3, has a maximum dynamic amplification factor for
TJ/T, =1, whereas the quadratic excitation yields
maxima for To/T,=0.5 and the cubic excitation maxima
for TwT,=0.33 and Ty/T,=1. Thus depending on the
relative magnitude of the linear (a,), quadratic (a2) and
cubic (as3) terms in the excitation Yy, Eq. (5), the largest
dynamic amplification factor can appear within a range
of TW/T, values. For the example considered here in
Fig. 5, the linear and especially the cubic terms domi-
nate yielding a maximum dynamic amplification factor
when the spectral peak period T, gets close to the

Table 4. Statistical moments and dynamic amplification factors (DAFs) for the overturning moment in
the design sea state, (H,=12.8 m, T,=15.5 s5) as function of total damping &

Mean Stand. dev. Skewness Kurtosis DAF

b ® 7 o "" Stand dev. N =903
0.05 20.5 258 0.19 53 2.50 1.39
0.10 20.5 193 0.52 7.1 1.87 1.26
0.15 20.5 165 0.90 B4 1.60 1.19
0.20 205 148 1.25 9.4 1.44 1.13
Quasistatic
time sim. 205 103 2.99 184 1.00 1.00

£5]
Dynamic
time sim. 19.6 153 1.29 8.4 1.49 1.08

{51
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fundamental natural period To. Note, however, that
most jack-up rigs have Ty/T,=0.5 in the design sea
state which is where the dynamic amplification fac-
tor from the quadratic term is largest. This is the
reason why the dynamic amplification factor in Fig.
5 levels off for H, around 13.7 m (45 ft).

01

1 ]
10 H_{m}

DAF
(N=1000)
25

20

10 Hylm)

Fig. 5. Skewness s, kurtosis «, and dynamic amplification fac-
tors for the dynamic overturning moment as function of the sig-
nificant wave height.

Finally, Fig. 7 shows for sake of completeness the
varjations of the skewness and the kurtosis for a dy-
namic system subjected to a pure quadratic and a
pure cubic excitation. Note that a quadratic excita-
tion has x3=2 1/ 2, ks=15 whereas the cubic excita-
tion has x3=0, xs=46.2. The change towards a
Gaussian behavior is clearly significant already for
Tn >0.1 Tp.

4. Conclusions

A procedure able to predict dynamic global re-
sponses of jack-up rigs subjected to wave loads in
stationary stochastic seaways has been described,

463

DAF

10 Pure quadratic, Spw), ED =007

Stand. dev.

| |
084 0.5 10 T,/1s 15
DAF X
10l Pure cubic, Splw), C,=007
Stand. dev.
2.0
-~ “"-\
-
/// \\\
’-‘\ = 1
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d \\
/’ \\
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\\
] |
0'80 05 1.0 T/Tp 15

Fig. 6. The dynamic amplification of the standard deviation
and the most probable largest peak among 1000 peaks for a pure
quadratic and a pure cubic excitation.

The procedure consists of three steps:
(i) determine the wave load response using a suit-
able nonlinear regular wave theory neglecting
the motion of the platform,

(i) fit a polynomial in the wave height through the
calculated response maxima and minima,

(iii) assume a deflection mode in the form of the
first horizontal vibration mode and solve the
corresponding equation of motion in stationary
sea states using the theory of diffusion pro-
cesses.

For an example jack-up rig it is observed that the
dynamic amplification quite significantly changes
the statistical behavior of the response toward a
Gaussian process. Also, a significant dynamic
amplification is found in the extreme sea states
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15
L)

Pure quadratic, Sp(w), C,=007
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0.5 0 T, 15

Pure cubic, Splw), L,=007

0 | ]
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oM, 15

Fig. 7. Skewness x3 and kurtosis «; for a dynamic system sub-
jected to a pure quadratic and a pure cubic (k3=0) excitation.

where the spectral peak period is about twice the
lowest natural period. These results are in agree-
ment with previous findings [1]-{13] using various
formulations and jack-up geometries.

Comparisons with time simulations performed
for the example jack-up rig considered in [5] have
indicated that the main uncertainty in the present
procedure relates to a proper choice of total damp-
ing. In order to clarify this point estimates of total
damping ratios from time simulation results would
be extremely helpful. Such dampings would include
fluid-structure interaction effects and will vary with
time. Suitable average values must then be defined.
In this context also doubts expressed on the use of
the relative velocity term in Morisons equation
should be mentioned [13].
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This paper studies the applicability of the
path integral solution technique for esti-
mating extreme response of nonlinear dy-
namic oscillators whose equations of mo-
tion can be modelled by the use of Itd
stochastic differential equations. The state
vector process associated with such a
model is generally a diffusion process,
and the probability density function of the
state vector thus satisfies the Fokker-
Planck-Kolmogorov equation. It is shown
that the path integral solution technique
combined with an appropriate numerical
scheme constitutes a powerful method for
solving the Fokker-Planck-Kolmogorov
cquation with natural boundary condi-

tions. With the calculated probability den-
sity function of the state vector in hand,
one can proceed to calculate the required
quantities for estimating extreme re-
sponse. The proposed method distinguishes
itself by remarkably high accuracy and
numerical robusiness. These features are
highlighted by application to example
studies of nonlinear oscillators excited by
white noise.
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1. Introduction

An important element in the safety assessment of
many engineering systems, is the task of estimating the
probability of extreme events that may jeopardize the
structure in some specified sense. Very often, this prob-
lem can be formulated as finding the probability that
some time varying random quantity does not exceed a
specified capacity level during a given time period.
Stated this way, the problem typically reduces to a study
of the extreme values of a stochastic process originating
as the response of a system subjected to some stochastic
loading process.

In this paper the focus will be on the problem of
estimating the extreme response of nonlinear dynamic
systems subjected to random forcing processes. In re-
cent years the methods of time domain Monte Carlo
simulations, see, e.g., Refs. [1-5], have received consid-
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erable attention as a tool for estimating response statis-
tics, These methods are versatile and attractive in the
sense that nonlinearities can be easily dealt with. The
main drawback at present is the large CPU times needed
for accurate prediction of extreme responses. Even if
this issue seems to become less of an obstacle every
year, portending perhaps that such methods may domi-
nate practical estimation of response statistics of nonlin-
ear systems in the not too distant future, it will still be
desirable to have available alternative methods of calcu-
lating the response statistics, both simplified and more
elaborate. Here we shall explore a method based on the
theory of Markov diffusion processes. The justification
for using this theory is related to the fact that the re-
sponse of nonlinear dynamic systems to broad band
random excitation can very often be accurately de-
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scribed by applying the theory of multidimensional
Markov processes. By this, the extensive theory of
Markov diffusion processes can be brought to bear on
these problems. In particular, it can be shown that the
probability law of response quantities can be derived by
solving a partial differential cquation, viz., the Fokker-
Planck (-Kolmogorov) (FPK) equation, see Refs. [6,7].
In most cases of practical interest, this equation has to be
solved numerically.

In the next section we shall describe a method for
solving the FPK equation that is based on a formal
solution of the same equation. This solution is obtained
by invoking the fact that a Markov diffusion process
locally looks like a Brownian motion. By using the
Markov property, the global solution can then be con-
structed by linking the local solutions, which are known
explicitly. The obtained solution is generally known as a
path integral solution (PIS). The reader is referred to
Ref. [7] for a further discussion. One of the first efforts
to exploit the PIS method explicitly in developing nu-
merical solution algorithms is described in Ref. [8].
Subsequently, other authors have also used the PIS ap-
proach to solve various random vibration problems, cf.
Refs. [9-13].

Before embarking on a description of the PIS method,
it is expedient to briefly show how the obtained solutions
are used in an extreme value analysis. Assuming that the
response quantity of interest is a scalar (real) stationary
stochastic process, Z(t) say, the PIS method typically
provides a numerical estimate of the joint probability
density function (PDF) fz(»,*) of Z(t) and Z(t)=dZ(1)/
dr. It is now assumed that the mean level upcrossing rate
15 (*) of Z(t) can be calculated from Rice’s formula as
follows

o

vz(z)= J Yzz(z.y)dy.

o

8y

Adopting the assumption that upcrossing of high levels
are statistically independent events, which lcads to Pois-
son distributed crossings, it follows that an asymptotic
approximation of the probability distribution function of
the extreme value of the process Z(t) during a time T,
denoted by M(T) (=sup{Z(1);0=t=T}), is given by
Prob {M(T)=z }=cxp{—¥(z)T} (T—H=). 2

The accuracy of Eq. (2) depends to a large extent on
the cffective bandwidth of the response process Z(r).
Decreasing bandwidth leads eventually to a significant
clumping cffect of large response peaks, invalidating
the assumption of statistically independent upcrossing of
high levels. Mcthods that aim at correcting for this effect
have been proposed for Gaussian (Refs, [14,15]) and
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non-Gaussian (Ref. | 16]) processes. However, this pomt
will not be pursued any further here. We shall assume
that Eq. (2) provides an acceptable approximation.
Hence, the central paramcter to be determined is the
upcrossing frequency vi(+), which is casily calculated
once the joint PDF fy(s,*) of Z(t) and Z(1)=dZ(r)/dt has
been made available. In the next section it is shown how
this PDF can be calculated for the response of a wide
range of nonlinear oscillators subjected to white noise
or filtered white noise loading.

2. The Path Integral Solution

The path integral solution (PIS) method is suitable for
calculating the joint probability density function (PDF)
of a vector process X (£)=[X,(1),...X.(1)]" (T-transposi-
tion) satisfying a stochastic differential equation of the
following form, cf. Ref. [6],

X (t)y=m[X(N)]d+Q [ X (1) }dW(r). 3)
Here m(-)f[m.(-),...Jnn(')]T, m;(+) denotes a real func-
tion of » real variables. @ (*)=(g;;(+)) denotes an nXm-
matrix where each g;(+) is a real function of n real
variables.  W(O)=[W,(1),..W.(1)]T where Wyr),
j=I,...,m are standard, real Brownian motion processes,
which are mutually independent, sec c.g., Refs. [6,7].
That is, E[W;(t}]=0 and
E[dW;(1)dW;(1+7)]=8;;8,...d T, i j=1,....m, 4
where §,=1 for x=y, 8,=0 for x#y. Equation (4)
is a short-hand notation for the relation

E [J- j h(s ,)dW:(s)dW;(1)]=5; f h(t,t)dr, where h(s»)

is a non-random function.

Equation (3) is interpreted here as an Itd stochastic
differential equation (SDE). Since it is often relevant to
consider Eq. (3) as being obtained as a limit of equations
with band limited noise processes, it may happen that
m (+) should contain correction terms to ensure a consis-
tent limiting solution, ¢f. Rcf. [6]. It is assumed here that
this consideration has already been made, and that Eq.
(3) has the final form to be used subsequently.

It is demonstrated in Ref. {6] that the solution X (¢) to
Eqg. (3) is a Markov vector process. [ts transition proba-
bility density function (TPD), p(x.r |.t',r'), is defined
by the equation

Prob{X(1) €A | X(t")=x' }=j-; 'Jp(x,t |x ")dx, (5)

where A C R" is some event, x, x' € R, dx=dx,...dx,.
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Provided that m(+) and Q (=) satisfy certain regularity
conditions, see Ref. [6], it can be proved that the TPD
plx.t |x'.t‘) (t=r'=0) is the solution of a partial differ-
cntial equation of the form
9 AN
Pt x=—3 Yo

i=1

[m:(x)p (x 1 | X7 11)]

)

=1 el

62 ! L}
axax, [gs()p (.t | x,)], (©6)

where G (x)=(g;(x)=Q ()@ (x) (X7, gu gx), and

with initial condition p(x.r' | x' #')=8(x~x"). G(*) will
be called the diffusion matrix and Eq. (6) will be re-
ferred to as the Fokker-Planck-Kolmogorov (FPK)
equation. Since clearly Prob{X(t) € R"| X (1')=x"}=I
the TPD satisfies the following normalization condition

f s f ple | X )de=1. 7

Let f(x,t) denote the PDF of the random vector X (¢).
If f(x,r")=w(x) for some initial PDF w(x), then it is
recognized from Eq. (6) and the relation

f(x’f)=J-',;..'fP(I-f |x’,r')w(x’)dx' (8)
that f(x,r) itself is a solution of Eq. (6) satisfying the
initial condition f(x 1" )=w (x).

In this paper we shall be intcrested primarily in sta-
tionary solutions f;(x) to Eqg. (6), that is

fe)=lim fe.)=lim p(x.t | x' 1) ©)
1am 1o
provided they exist. Even when both limits exist, it is
clear that lim f(x.,r) provides the faster convergence
when the initial condition f(x,/")=<f,(x). This comment
is relevant to the numerical implementation of the PIS
method, and will be discussed below.

To obtain the PIS appropriate for the dynamic systems
studicd in this paper, it is necessary to be more specific
on the structure of the matrix function Q (+). In particu-
lar, it will be assumed that the first r rows of 0O (=) arc
zcro, that is

q;(2)=0 for i=1....r; j=1,...m (r<n) (10)
and that g;;(+)#0 for at least onc j for every i=r+1,...,n.
This implies that the diffusion matrix G(») assumes the
form

0 0

G(-)=[O & | (1
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O denote appropriate zero-matrices and G(») denotes an
(n—r)X(n—r)-matrix function with elements gi4(*),
ij=r+l,...,n. G(+) will be called the reduced diffusion
matrix. Equation (6) can now be rewritten as

a - 3
i PGt Lt == = Imieyp et |20

82

31,— BIJ

OB

imr+l jersl

+ [g,(x)p (x| x ).

(12)

Proceeding in a manner similar to the derivations in
Ref. [7], it can be shown that the TPD for small values
of 7(=t—1') is given by the following expression, which
is correct up to terms of order 72

plx.g+1 ] x't )={H6(x;—x,-’—m; (x"H7)}

el R D)
Cimxi'=mi(x")7) [G&") )i oy (—x/—my(x") 7)),

(13

where |G| denotes the determinant of the reduced dif-
fusion matrix G, assumed to be positive definite. This
implies that |G |> 0. {G~"]; denotes the element in po-
sition 7j of the inverse matrix of G. As shown in Ref.
[7], the expression given by Eq. (13) is not unique, but
scems to be well suited for our purpose,

Having obtained an explicit expression for the TPD
for a short time step, one can now invoke the Markov
property. This allows a TPD over a time interval of
arbitrary length to be expressed in terms of a product of
short-time TPDs. By dividing a given time interval (¢',1)
into N small time intervals of length ~=(t—¢'V/N, it is
found that (=t"+j7, t=1", x=x", r'=1,, x'=x™)

N
plxt|x' )= f j]‘[ P9 {00 dxDeende® 1,
Redv Ty =1

(14

Similarly, with an initial PDF f(x’,t')=w(x'), the PDF
Sf(x,1) will be given by

N

f(x ,f)=J’oo. HP (IU]JJ, ' xY “,I,- w (x“”)d.t‘“’-"dx‘” N,
I

) (15)

Hence, by combining Eq. (13) with Egs. (14) or (15),

a formal (approximate) solution of the FPK equation can

be written. Equations (14) and (15), which are often
rcferred to as PIS, constitute the core of the numerical
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solution procedure to be described subsequently. It is
realized that a numerical solution according to this
method, automatically provides the evolution in time of
the (conditional) PDF of the Markov process X (¢) from
given start conditions in terms of an initial density
fx't)=w(x'), including the degenerate case
f(x' t")=8(x"—x,), for some starting point xo. It is also
worth noting how the PIS relates to the physics of the
dynamic model, which is expressed through the coeffi-
cients m;(+) and g;(*), cf. Eq. (3). The evolution in time
of the PDF as expressed by the PIS, is scen to be directly
determined by these coefficients in an explicit manner.
This fact is a very important advantage of the PIS
method, and reveals its fundamental physical signifi-
cance.

3. Numerical Implementation

In the numerical implementation, the PIS is obtained
by an iteration process based on the Chapman-Kol-
mogorov equation cxpressed as

p(xVg; | "’)=J ‘o J P2 | x6- Dt )p(xVh,

o | xt £)dx 07, (16)

The discretization of state space for the numerical
solution makes it appropriate to employ an interpolation
and smoothing procedure to increase the numerical effi-
ciency. It was found that application of cubic B-splines,
as detailed in Ref. [17], offered the desired accuracy and
smoothness for the type of problems considered in this
paper. This procedure was used as follows. At each time
step t;-1—t;, p(x9™"4-, | x',') is represented as a cubic
B-spline series in the following manner

My My
PO | = >, ene > T ks 000 k)
k=l kgl

® B, (9 V), amn
where M=number of grid points for the i’th state vari-
able x;, {®7,B,,(*) }iL, is a tensor product basis of cubic
B-splines and {/V " V(k;,**=k,) i, is the set of interpola-
tion coefficients associated with time £; . It is assumed
that cach set {By(*)}iL,, i=1,%+s,n, is a basis of cubic
B-splines associated with the knot sequence determined
by the grid points for the i’th variable x;. The tensor
product B-spline is defined by

& B, 0)=] | B (). (18)
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The representation of p (xY™ "1, | x' 1) by B-splines
makes it possible to retain high numerical accuracy cven
with a fairly coarse basic grid if p(x9™",,_, | x' #') is not
too singular, By substituting from Eq. (17) into Eq. (16),
Eq. (19) is obtained

p(xY; | x;,r.}=§l: ...2 Tk, 000 k)

k=1 Ky
J.];:J'p(x(ﬁ,tj |x(j-i),rj_l) é B*i(x(i—n)dx(i—n. (19)

It is seen from Eq. (13) that since m;(+) and g;(*) are
not functions of time ¢, the TPDs cannot depend on
absolute time, but only on the time increment. Markov
processes whose TPDs have this property, are called
homogeneous. It follows that

p (xojs‘j | x(j_ uytj— l):p (x(j)"r | x(j_ l );0)3 j=l 929'"; (20)

which holds for any #—1,=7=0.

From Eqgs. (19) and (20) it is seen that for a fixed
value of the time increment 7, cach of the integrals on
the right hand side of Eq. (19) need to be calculated only
once, and can be stored for repeated use. That is, the
following parameters are calculated initially and stored

Bi';_fr,,-I';;Jp 7| x97,0) ® B, (xU"")ax ",
2n

Here, the index ;, i=1, ..., n, refers to grid point number
I for the state space variable x;. It may be noted here that
due to the properties of the TPD for small time incre-
ments 7, the tensor Bz has a strongly banded charac-
ter with the clements decreasing rapidly away from the
main diagonal k,=,,...,k,=I,. This has important impli-
cations for the efficiency of the computer program, Let
P2 =pxd | x* ). Then Eq. (19) can be rewritten
as

M, M,
pH{J,,’E C“Z I(i_”(kly-"rkn )B:l]—:fi!n_

k=l k=l

(22)

Having calculated the TPD p(x?,1; | x'.1') at the grid
points by using Eq. (22), a spline interpolation is again
carried out and a new set of interpolation coefficients
{I%k,,....k, ) 11, are calculated. This provides an up-
dated representation of the TPD for time step j, cf. Eq.
(17). For each time step, the normalization condition Eq.
(7) is checked. That is, if

My

My
J " j POy | x" 1)dx 0= eee 3 VK. k)
k=1 k=l

[T | Bu()dr=g, (23)
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and ¢;# 1.0 within the desired accuracy, then the follow-
ing replacement is made to restore the correct normal-
ization,

r(ﬂ(k] ,...,kn )m (_Q'j_l Iv(ﬂ(kly...skn )Okl (24)
This normalization check and replacement strategy con-

tributes to producing a very stable and accurate numer-
ical procedure.

4. Examples

The accuracy and power of the developed PIS proce-
durc will be illustrated by application to specific case
studies taken from two classes of dynamic models. Both
models are described by Eq. (3) with n=2 and m=3.
This implies a two-dimensional state space vector
X=(X,,X;)"=(Z Z)". Further, m(=) and Q (+) are such that
m(X,,X3)=X, and g,;(+)=0 for j=1,2,3. Assun_ling suffi-
cient restrictions on m(*) and Q (=), cf. Refs. [6,7], X (1)
becomes a Markov diffusion process. Invoking Eq. (13),
it can be shown that, up to correction terms of order 72,
the associated TPD assumes the form

px,7 | X' 0)=8(—x,'"—x)' TYF(enr |2 0).  (25)

5 (X2, T | x',0) is given by the relation
P

- ' 1 (XQ“'Xz"_mg(x')T)z}
* ’0} - I L]
poarlx V2B c’q’{ 2BG)7
(26)
where
B(x")=2 qy(x'). @n

By combining Eqs. (25) and (26), and applying the
solution technique described in the previous section, the
TPD p(x,t |x',r') for large t—¢' can be calculated. By
this, the time cvolution of the system when it starts from
rest, for example, can be studied. The stationary PDF is
obtained in the limit as r~t'—e, For application of the
PIS method to other problems involving both two- and
three-dimensional state space vectors, the reader may
consult Refs. [11-13,18,19].

4.1 Example 1-—The Caunghey Oscillator

There is a class of dynamic models for which there
exist an analytical solution for the stationary joint PDF
of X. A member of this class may be called a Caughey
oscillator, Ref. [20]. The generic equation of motion for
this oscillator can be written as

469

Z+Zg(E)+h(Z)=I' N(1). (28)
N(t) denotes a stationary, zero-mean Gaussian white
noise satisfying E[N(t) N(t+1)]=8(7), where 8(+) de-
notes Dirac’s delta function, I"is a positive constant and
g(E) is a function of the total cnergy E=E(Z,Z) given
as follows

%Z’H’(Z) 29)

where

Viz)= J’ h(s)ds. (309)
]

For this example my(z,2)=—7g[E(z,2)]—h(z), and
we may choose @u=gyu=W,=W,=0. ¢u=I" and
dWs(r)=N(t)dr. The stationary, joint PDF, denoted by
ps(*), is then determined by the relation, cf, Refs.
[20,21]

E

P:(2,2)=C exp{— I—%z J g(s)ds},

0

(&1)}

where E'=7%/24V (z), and C is a normalization constant
to ensure a total probability equal to 1.0.

For the illustration purposes in this paper, we have
chosen the following special case of Eq. (28)

20RO 1+ 2 (D4 3200 IAZHO) 12 (0)

+AZ ()=2VEN(1) (32)
with parameters £, €, and A,

The stationary PDF only depends on the parameters £
and A, and the numerical solution for the following set
of parameter values has becn calculated (&,4)=(0,0)
(Gaussian responsc), (0, 0.2) (Duffing oscillator) and
(0.5, 0.1). The calculations were carried out with the
same number of grid points on both axes in state space,
aviz., 45. Since the resulting PDFs are actually indepen-
dent of £, the value &=0.1 was chosen for the Gaussian
and Duffing cases, while £&=0.5 was adopted for the last
case, The time increments used were 7=0.0025 s, 0.001
s, and 0.02 s, respectively. The total CPU time on a DEC
station 3100' was about 5 minutes for each case. In Figs,

'Certain commercial equipment, instruments, or materials are identi-
fied in this paper 1o specify adequately the experimental procedure.
Such identification does not imply recommendation or endorsement
by the National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the
best available for the purpose.
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1 and 2 are shown thc marginal PDFs of the displace-
ment response for the three case studies considered,
together with the corresponding analytical solutions, In
Fig. 3 are given the corresponding analytical and numer-
ical results for the mean upcrossing rate. It is seen that
in all three cascs the agreement between the numerical
PIS and the analytical solution is very good over the
whole range of probability levels given. In fact, the
accuracy can be retained down to much lower probabil-
ity levels (==10""") at a moderate increase in computer
time.

4.2 Example 2—Parametric and External
Excitation
In this example, the response statistics of a nonlinear
oscillator subjected to both cxternal and parametric ran-
dom excitation will be illustrated by applying the
methodology of the paper to two specific case studies.
The equation of motion of the oscillator is the follow-

ing

2
Z¥2E[1+N(D]Z+y [ 22+ %]z'ﬂug[ 14+N5(6)]Z=Ns(1).
(33)

Here &, v, and @, are positive constants, N, (), j=1,2,3,

0.6 v :

arc independent Gaussian white noises satisfying

EIN;0ON;(t+1)1=17 8(7), j=1.2.3, (34)
where I are positive constants. For this example it
is found that ma(z,2)=—2&—y[+i% el -wiz,
q2(2.2)=—2&T, g2x(z,2)=— izl and gy3(z,2)=I".

This model was studied by Dimentberg [22], who
showed that when

ol [3=4E 17 (35)

a closed-form cxpression for the stationary joint PDF
can be obtained. It is given as

exp{—p*+i i)}

p:(ZaZ)=C (K+Z2+Z:2‘;‘og)ii—xp 9 (36)
where C is a normalization constant and
I? 2 v

K==, ==+ 5, p=—4 37

o Zontrmen 9

By this, we have the opportunity to test the accuracy of
the PIS method for this kind of dynamic model. The
results of two particular cases will be presented.

Probability density

0

Displacement

Fig. 1. Probability density function of displacement response for the Caughey oscillator in example |. Ana-

Iytical solutions:

solution: +, e=0, A=0; X, £=0, A=0.2; O, £=0.5, A=0.1,
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, £=0, A=0; ~ ¢~ £=0, A=0.2; ————, £=0.5, A=0.1. Numerical path intcgral
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Fig. 2. Logurithmic plot of the probability density function of displacement response for the Caughey oscillator
in example 1. Key as in Fig. 1.

(T T T
..
i1 i

T TTTTI
IR R BIT]

102

v FTTTIIT
L1 L L1l

103

L Ll

10+

Mean upcressing frequency

T T T T LLRELLLL

AT

105

rrrrmm
L L il

104

o

Displacement

Fig. 3. Mean upcrossing rate of displacement response for the Caughey oscillator in example 1. Key as in Fig.
1.

471



Volume 99, Number 4, July-August 1994
Journal of Research of the National Institute of Standards and Technology

Case 1: Here the following parameter values were
used. &=0.1, y=0.1, an=1.0, I7=2.5, I?=0.1, I'?=0.3.
For the numecrical calculations a grid size of 49x49
points and a time increment 7=0.01 s was used. The total
CPU time on a DEC 3100 work station was 3 min for the
PIS calculation. The results for the analytical and nu-
merical solutions are given in Figs. 4-6. In Figs. 4 and
5 are shown the marginal PDF of the displacement re-
sponse and in Fig. 6 is shown the corresponding mean
upcrossing rate.

Case 2: In this case the following sct of parameters
were used. £0.1, =04, an=1.0, I'?=5.0, I'?=0.2,
I3=0.3. A grid size of 5151 points together with a
time increment =~0.01 s were chosen. The CPU time
was about the same as in the previous case. The same
results as for Case 1 are presented in Figs. 4-6.

5. Conclusions

A numerical method for estimating the extreme re-
sponse of nonlinear oscillators excited by white noise,
or filtered whitc noise, has been described. The example
calculations presented show that the method gives very
accurate estimates of the required joint PDF. In fact, for
every example having analytical solution on which the
method has been tested, complete agreement has been
found with proper choice of grid size and time incre-
ment in the numerical solution procedure. In the present
paper, of course, only a few cascs can be given. Experi-
ence with the method indicates that two-dimensional
problems can be solved routinely with high accuracy
requiring a few minutes CPU time on a work station
(DEC station 3100). The solution of three-dimensional
problems requires more care in the sense that computer
capacity starts to become an issue of importance. In
such cases the CPU time easily runs into hours.

0.7 — —r T —

0.6

0.5

03+

Probability density

0.2r

Q.
i 1 L — O-n oo -

-2.5 2 -1.5 -1 -0.5

0 0.5 1 15 2 25

Displacement

Fig. 4. Probability density function of displacement response for the oscillator in example 2, case | and 2.
Analytical solutions: y case 15 — v~ «, case 2. Numerical path integral solution: +, case 1; O, case 2.
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Salt induced concrete delamination is a
problem often encountered in parking
garagc slabs in northern climates where
deicing salts are heavily used. A ran-
dom ficld model of the delamination
process is investigated and compared
against some field data. Delaminated
regions of the slab are modeled as ex-
cursions of a random field above a pre-
scribed threshold and the growth of
these regions with time is obtained by
allowing the threshold to fall as a func-

tion of time. Simulation based cxcur-
sion statistics are used to obtain the
mean and variability of various aspects
of the delamination process using this
model.
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1. Introduction

The delamination and spalling of concrete sur-
faces in parking structures in northern climates is
an ongoing and expensive problem. The Trans-
portation Research Board [1] estimates that be-
tween 50 and 150 parking structures in the
Northeast and Midwest United States will need to
be rehabilitated each year for the next 10 years at
an average cost of §1 million per structure. With-
out proper design and/or maintenance, deicing
salts brought in by vehicles from the roadways are
deposited on the concrete surface along with water.
Chloride ions gradually penetrate the concrete and
electro-chemical processes lead to corrosion of the
reinforcing steel. This results in both a degradation
of structural integrity and, since the corrosion
products occupy considerably more volume than
the original steel, delamination or spalling of the
concrete surface and loss of utility.

This paper is aimed at developing a tool to aid
in a rational probabilistic approach to the rehabil-
itation of parking structures. Such an approach
allows the optimal allocation of limited resources
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to this ongoing and rather expensive maintenance
issuc. A simple stochastic model involving only a
few parameters is used herein to represent what is
known to be a complex phenomenon. The follow-
ing factors are suggested by Public Works Canada
[2] to have the largest effect on the onset of con-
crete delamination;

* chloride ion input: quantities of deicing salts
used,

* concrete  permeability: influenced in turn by
water/cement ratio, intensity and frequency of
cracking, surface coatings/sealers and construc-
tion practices,

* ambient temperature, humidity, precipitation

* concrete cover depth

* pH of local aggregates

= conductivity: wetness of concrete.

It is immediately recognized that virtually all of
these factors are highly variable from structure to
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structure and within a single structure from point to
point. As well, on a practical basis for an existing
structure, some of the factors are unknowable ex-
cept through extensive destructive testing. Clearly a
representative model should not require experi-
mental validation on a per structure basis, where
the experimentation may be more expensive than
the final repairs. This, in fact, is the primary motiva-
tion for the use of stochastic models.

In a different approach to the same problem,
Attwood et al. [3] develop a limit state function for
parking structures based on a critical fraction of
floor area delamination, D,

m=Ds—aS(t—t), >4, (n
where m =0 denotes the “failure” state, § is the
annual delamination rate, « is a correction factor
accounting for ambient temperature and crack
widths, £ is time in years, and #; is the time to initia-
tion of delamination (also in years). Note that the
second term is taken to be zero for all r=¢.
Atiwood et al. employ a First-Order Reliability
Method (FORM) to estimate reliabilities associ-
ated with the delamination of a parking garage
structure. In their approach, all of the factors ap-
pearing in Eq. (1) are expressed in terms of random
variables having assumed distributions and the joint
cumulative probabilities are evaluated using
FORM.

In this paper a 2-dimensional random field model
representing the spatial delamination process over
time is investigated. The random field may be
loosely interpreted as the out-of-plane stress field
at the reinforcement level (which changes randomly
from point to point over the area of the slab). De-
laminated regions are represented by excursions of
the random field above some threshold which can
be thought of as a critical concrete resistance to
horizontal splitting. In fact the stress field itsclf will
not be considered in that it is unmeasurable in prac-
tice. Rather, the ficld excursions will be used to rep-
resent the delaminated regions directly, since these
regions are measurable to some extent. A simple
random field model is adopted whose primary moti-
vation is to attempt to shed light on the following
questions;

1) what is the mean and variability of the total
area of delamination as a function of time?

2) what is the average size of individual delami-
nated regions as a function of time?

3) how many dé¢laminated regions can be
expected in a slab?
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These are essentially questions regarding the statis-
tics of excursion regions and so some simulation
results regarding excursion statistics will be pre-
sented in the next section.

Figure 1 illustrates an example of excursions of a
random field above some predefined threshold, In
the context of this paper, the dark regions can be
viewed as areas where concrete delamination has
occurred at some fixed time. As time progresses,
delaminated regions are expected to grow in size,
corresponding to a falling threshold level. A falling
threshold is equivalent to a rising mean, in the case
of a homogeneous field. Since the excursion statis-
tics in the next section are developed as functions of
the threshold, the falling threshold interpretation is
used here rather than a rising mean. In either case,
a nonhomogeneous field could be employed, if the
data so indicated, by considerably extending the
simulation based study (in the absence of analytical
results). In this preliminary investigation, only a ho-
mogeneous field is considered.

Fig. 1. Excursions of a two-dimensional random ficld above
threshold be.

To represent the delamination process, excur-
sions of an isotropic Gaussian random field having
mean zero and unit variance will be used. Although
other values of mean and variance are possible, the
excursion statistics are dependent purely on the
distance between the mean and the threshold. This
distance can be expressed in units of o, the stan-
dard deviation, so that there is no advantage in
choosing anything other than a mean zero, unit
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variance field. The quantity bo will be referred to
henceforth as the physical threshold and b alone as
the threshold. The choice of an isotropic Gaussian
process has been made largely for simplicity, there
being little evidence available to clearly justify other
types of random functions.

2. Excursion Statistics in Two Dimen-
sions

With respect to excursion statistics, such as the
mean number and area of isolated excursions, ana-
lytical results developed to date are asymptotic in
nature, accurate only at very high thresholds where
the excursion process approaches a Poisson point
process. Often in engineering problems the interest
is in thresholds which are quite a bit lower, such as
the delamination process considered herein. In or-
der for the proposed random field model to be use-
ful in this context, excursion statistics should be
available. This section summarizes a study in which
excursion statistics are obtained through Monte
Carlo simulation. Specifically, an ensemble of 2000
realizations of an isotropic zero mean, unit variance
Gaussian random field, Z (x), with Markovian co-
variance function,

Bm=dpm=crep{-3ld}, @
are produced using the Local Average Subdivision
(LAS) method [4, 5], where 7 is the lag vector and
0 is the scale of fluctuation. The scale of fluctuation
is loosely interpreted as the distance over which
correlation is significant. Since many of the statis-
tics of interest depend strongly on the scale of fluc-
tuation, 2000 realizations were generated at each of
5 different scales of fluctuation.

Individual realizations are decomposed into
excursion regions and “holes,” using a space-filling
algorithm, over a range of thresholds b =[ -4, 4).
The mean and variance statistics of the excursions
are estimated over the ensemble. It should again be
emphasized that b is measured in units of standard
deviation, for example b =2 implies a threshold at
two standard deviations from the mean. For a unit
variance field there is no distinction between the
value of b and the physical threshold level. However
the local averaging performed by the LAS method
results in a slight decrease of the variance of the dis-
cretized field, as dictated by local averaging theory.
In that each field is represented as a discrete lattice
of 128 x 128 “cells,” the variance of each cell varies
from 0.971 at the smallest scale of fluctuation con-
sidered to 0.999 at the largest. The distinction
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between cell variance and point variance will be ig-
nored in this paper, although the results presented
in the various plots to follow are accurate in this re-
spect. For a more rigorous treatment of this issue,
see Ref. [6].

Within a given domain V' =[0, L;] X [0, L.] of area
Ar=L, L,, the total excursion area per unit area,
Dy, where the process Z(x) exceeds some
threshold, can be defined by

D, =AiT Lr (Z(x)=-bo) dx, 3)

where bor is the physical threshold of interest, o2 be-
ing the variance of the process, and 7(-) is the indi-
cator function defined on V (taken to be zero
outside the domain V)

1 ift=0

0 ifr<0° (4)

10)= |
For a homogeneous process, the expected value of
D, is simply

E[D,]=P[Z zbo], (5)

which, for a zero-mean Gaussian process yields

E[D)]=1-o(b), (6)
where @ is the standard normal distribution func-
tion. The estimate of E[D,], denoted my,, derived
using the simulation results is shown in Fig. 2 and is
in complete agreement with Eq. (6). Figure 2 (b)
shows the estimated standard deviation of D, de-
noted sp,. Note that while E[D,] is independent of
0, its variance is not. In keeping with the practice of
normalizing all results, the scale of fluctuation has
been normalized with respect to L =+/A; in these
plots. Note also that the horizontal threshold axis
values decrease to the right—this is because the
threshold axis is associated with time in the next
section and time increases to the right as usual.
Figure 3 shows the estimated mean and standard
deviation of the number of isolated excursion re-
gions, N,, denoted my, and sy, respectively, as a
function of scale and threshold. Although not read-
ily apparent from the plot, the limiting value of my,
at the right edge of the plot (b— — @) is 1. In other
words, a single excursion exists over the entire do-
main for very low thresholds. At the other extreme
(b— ), the limiting value is zero as expected.
Although the roughness of the estimate sy,, as seen
in Fig. 3(b), is as yet unexplained, it appears un-
likely that it arises from statistical uncertainty in the
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Fig. 2. Estimated statistics of total excursion area per unit arca, Dy,: a) mean, b) standard deviation.
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Fig. 3. Estimated statistics of number of isolated excursions, Np: a) mean, b) standard deviation.

estimation procedure. Based on a sample size of
2000 realizations, a 90 percent confidence bound on
the standard deviation of N, is about *0.025sy,
which is smaller than the size of most of the
“bumps” seen in Fig. 3(b).

Within a given realization, the average area of an
isolated excursion per unit domain area, D., can be
obtained using the number of excursions,

D,

D.= N,

Since D, is the sum of the N, isolated excursion
areas, the expected value of De is just

_LLDs]

E[D.]= EN)

Figure 4(a) illustrates this result using the esti-
mated mean value of N, shown in Fig. 3(a). The
estimated standard deviation of D. shown in Fig.
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4(b) is derived using the assumption that the sizes
of isolated excursions are independent. While this is
true from realization to realization, it is clearly not
true within a single realization. Thus Fig. 4(b) can
only be considered to be a rough indication of the
true variability of the area of isolated excursions.

3. Calibrating the Model

There are essentially only two parameters in the
random field model considered in this study. These
are the scale of fluctuation, #, and the threshold
level, b. Although there is little published experi-
mental evidence to allow a clear statement of what
these parameters should be for a given structure,
some preliminary estimates are possible. First the
relationship between the threshold level and the
age of the structure can be obtained by fitting
delamination versus age data collected by Trow [7]
and presented in Ref. [3] to the curve of Fig. 2(a).
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A good fit was obtained using least squares re-
gression (r’=0.93) on the linear relationship
b= 3.17-0.225¢. To obtain this relationship, the
total fraction of delaminated area observed by
Trow, Dy, was plotted against b = ®~'(1~D,) and
a best fit line obtained. Figure 5(a) shows the re-
gression results and Fig. 5(b) shows where the ob-
served delamination results would appear on Fig. 2.
To expand the scale, only positive thresholds are
shown in Fig. 5(b). The choice of function relating
time and threshold is largely arbitrary as long as
b(t) is a decreasing function over all times of inter-
est (assuming delaminated areas cannot “heal”).
While a quadratic gives a slightly better fit to the
raw data, it violates this principle and so cannot be
used to extrapolate,

Some additional unpublished data was made
available to the author by Public Works Canada
based on a survey of a single parking garage struc-
ture in Ontario, Canada. Figure 6 illustrates this
data. The =1 standard deviation curves are ob-
tained using Fig. 2(b) with 6/L =0.1. Clearly, for
such a choice in 8, the variability in D; predicted by
the random field excursion model underestimates
the variability in the observations. The additional
variance arises because the time-threshold relation-
ship b(t) is itself a function of random coefficients,
as implied by the regression analysis. Alternatively
and equivalently, the additional variability could be
ascribed to the fact that the delamination field is
not homogeneous on such a scale. When considered
at the scale of a typical bay, some bays show much

0.6

0.4

0.2

Fig. 4. Estimated statistics of isolated excursion areas per unit area, D.,: a) mean, b) standard deviation.
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higher delamination rates than others, perhaps cor-
responding to smaller mean cover depths and/or
higher Cl~ inputs. Note also that larger values of 6/
L lead to higher standard deviations in D, so that
the variability seen in Fig. 6 could also be explained
by larger values of . However the choice of 8
should not be based on the variability in Dy, rather
this observation indicates that perhaps the Gauss-
Markov covariance model is not appropriate.

In this study, b(¢) will be treated as a determinis-
tic function which corresponds to the choice of a
homogeneous random field. It is beyond the scope
of this initial investigation to consider estimating
the parameters of a nonhomogeneous (or self-
similar) field to represent the delamination process

@

0 4 8 12 16 20 24
Time (yrs.)

generally, although this appears indicated. Since
plan views of the delaminations are available from
Public Works for individual bays of approximately
5m X 5m in extent (L =5), attention will be re-
stricted to data on such a scale over which the field
can be considered homogeneous. Choosing one
such area from the Public Works data, the mea-
sured delamination fraction as a function of time is
shown in Fig. 7. In this case the line of best fit was
found to be

b=4.13-0.172¢ (7

with r2=0.86. Notice that for such a case, the vari-
ability in the observations is substantially reduced
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Fig. 6. Delamination ratc data provided by Public Works Canada. The fitted line is & =3.61 —0.142¢ with r2=10.6.
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and that 2/3 of the observations lie on or within the
+1 standard deviation curves for /L =0.1 (see
also Fig. 5). This result appears encouraging al-
though it is recognized that it could be due in part
to the reduced number of samples, even though
similar resuits were found for most other bays.

Before considering the estimation of 8, it is worth
pointing out a further difference between the ran-
dom excursion model and the commonly accepted
delamination model. Salt induced reinforcement
corrosion is generally believed to involve two stages
(see Ref. [8]): 1) an initiation phase during which
the alkalinity of the concrete surrounding the rein-
forcement (which renders the steel passive) is re-
duced by the migrating Cl~ ions, and 2) an active
phase during which corrosion takes place. Attwood
et al. [3] estimates the initial phase to last 4.7 years,
During this phase no corrosion is assumed to take
place. Note that such a model can only be applied
to points in the slab where the concrete is in contact
with the reinforcement.

In contrast with this two stage model, the random
field excursion model admits some probability of
delamination even at time ¢ =0. Using Eq. (7), one
obtains b =4.13 at time ¢ =0, so that the expected
total delamination area per unit areais 1.7x 10 % or
about 17 mm?%m? of slab. At these levels the precise
definifion of delamination comes into question. If it
is strictly interpreted as a loss of bond between the
concrete and reinforcement then this result is not
unreasonable given the presence of cracks, voids
and the initial state of the reinforcement. At time
t =5 years, the expected total delamination area is
still only about 6 cm*m? of slab, a level which is
probably still largely undetectable at the surface of
the slab and presumably would correspond to corro-
sion in the immediate neighborhood of surface
cracks. Although it is believed that cracks do not
contribute significantly to the areal delamination
process [8], it is not unreasonable to expect that
they can be initiators of the corrosion process at dis-
crete points in the slab. If this is the case, then the
many year delay before the onset of observable lev-
els of delamination impiies that the corrosion
growth should be quite slow at first. The results
predicted by Fig. 2(a) are in basic agreement with
this in that E[D,] grows very slowly for b decreasing
to about 2 [corresponding to t <12 years using
Eq. (7)].

Turning now to the estimation of the scale of
fluctuation, 8, it becomes apparent that this task is
complicated by the type and quality of data avail-
able. Ideally, one would take measurements of the
corrosion induced stress field over a number of
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structures, estimate a spatial covariance structure
and from this obtain #. Even if this approach were
possible, the nonhomogenicties mentioned above
would make it difficult. However, in general the
stress field is unmeasurable and what little data is
available generally consists of surveys giving the
spatial extent of delaminated regions. Figure 8(a) il-
lustrates such a survey while Fig. 8(b) is a realiza-
tion of the random field excursions using 8 =0.5 m.
Once the time-threshold relationship has been
established, and for the purposes of this argument
Eq. (7) will be used, a possible technique of estimat-
ing 8 would be to count the average number of
excursions and enter Fig. 3(a) at the appropriate
threshold to estimate 6/L. Purely on the basis of
Fig. 8(a) this yields estimates of =2 to 4 m (6/
L =04 to 0.8). However realizations at this scale
yields excursions which are generally far too well
connected as shown in Fig. 9. Realizations at such
large scales appear like large land masses with many
small islands close to shore. Figure 8(a) has
“islands™ that are more uniform in size and distri-
bution implying a smaller scale of fluctuation. In
Fig. 8(b), produced using 6 =0.5, the larger islands
are of similar size to the delaminations seen in Fig.
8(a). This along with arguments to follow supports
the choice of a smaller scale of fluctuation.

While one cannot expect the plots in Fig. § to be
identical since they are both independent realiza-
tions of a random process, any more than one could
expect the pattern of delaminations in another
building to be identical, 2 number of points can be
made about the two plots;

1) there is no apparent spatial orientation of the
delamination regions in the observations of Fig.
8(a), indicating that the assumption of isotropy is
acceptable, at least for this case.

2) about half of the excursions in the random field
model (Fig. 8b) are of very small extent, This frac-
tion increases at larger scales. On the other hand,
in Fig. 8(a) therc are only very few “small’ areas
appearing in the later survey. It seems reasonable to
suspect that additional small delamination regions
are in fact occurring in the real slab but that the
chain-drag surveying technique is unable to resolve
them. Operator bias will almost certainly also be
present due to the prior knowledge of existing de-
lamination areas.

3) the random field model is much “rougher”
than the observed delamination plots. Again this is
likely a problem with the ability of the chain-drag
survey to resolve detail.
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Fig. 8. a) Observed delamination regions at ages f =13 years (dark grey) and ¢ =22 years (light grey) on a
5mx5m portion of a parking garage slab. b) Excursions of a random ficld above b=0.34(s=13) and

b =19(¢ =22) using #=0.5 and Eq. (7).

Fig. 9. A realization of excursions at { =13 years (dark grey)
and at ¢ =22 years (light grey) using 0=4mona 5m x 5m field.

The last two points illustrates the difficulty in esti-
mating 6 on the basis of delamination surveys. The
chain-drag method depends on setting up reverber-
ations in the delaminated concrete. For delamina-
tion details below a certain size, the frequency shifts
are undetectable to even the most sensitive human
ears, rendering them unnoticeable. Thus many of
the delamination details on which an estimation of
@ depend are unavailable using current surveying
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techniques. To some extent the deficiencies in the
chain-drag procedure could be accommodated sim-
ply by introducing more local averaging in the ran-
dom field model —effectively smoothing the field.
While such a “correction” would not likely result in
an improved delamination model, it may allow
improved estimates of 6. For the purposes of this
investigation, the realization based estimate of
8=0.5 m is used.

4. Discussion

Conceptually the model proposed herein is quite
attractive in that the delamination process is indeed
a threshold excursion process in two dimensions.
Once the details of the model have been established
(type of distribution, time-threshold relationship
and scale of fluctuation) and some of the properties
of threshold excursions in two dimensions have
been determined analytically or via simulation, the
model can be used in a reliability context. For ex-
ample, using Eq. (7), at time ¢ =12 years (b =2.07)
Fig. 2 along with Eq. (6) indicates that mp, =0.0194
and sp, =0.0080, using 8 =0.5 m. If D, is assumed to
have a Beta distribution, which is properly bounded
between 0 and 1, then the probability that D; is less
than 3 % at 4 years is given by

P[Dy»=<0.03]=0.90 . 8)

In turn, if a target reliability of 0.9 were chosen
against delamination in excess of 3 %, then
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inspection of the garage would be recommended at
t =12 years for this structure.

Because the model includes the spatial aspects of
delamination, it can be used to evaluate testing and
mapping procedures. For example, at time =12
years one could expect about 42 isolated excursions
on a5 mXx3 mslab (6 =0.5 m) with a standard de-
viation of about 11. The area of each isolated excur-
sion would average about 0.011 m? with a standard
deviation of about 0.022 m®. Surveys which yield re-
sults considerably different than these may require
verification using other techniques. In addition, the
spatial description of delamination could be used in
a structural reliability study. For this the simulation
approach could be employed to yield a measure of
the degree of clustering of the delamination regions
(see Ref. [6]).

One recognizes that the excursion model is at-
tempting to predict the cracked state of a concrete
slab. In that internal cracks are exceedingly difficult
to map, even in controlled laboratory conditions,
the model is to some extent intuitive and will likely
remain so until improved surveying techniques are
developed. Nevertheless the model demonstrates
some promising features and can be used as a pow-
erful reliability tool when its parameters are clearly
defined in terms of additional data and simulation
studies. In particular, the data shown in Fig. 6 indi-
cates that perhaps alternative correlation functions
[see Eq. (2)] should be studied —multiple-scale or
self-similar type random fields are suggested, show-
ing the small scale behaviour over small regions
while reflecting also the large scale, slower varia-
tions over larger domains. Also the fact that the
model allows delamination to occur at time t =0 (or
before) implies that some thought should be given
to the assumption of a Gaussian random field and/
or the time-threshold relationship. In the interim,
however, the choice of a Gaussian field and linear
time-threshold relationship leads to results which
appear reasonable for any time ¢ > 0.
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Calculations of the first and sccond
moments of displacement damage
energy distributions from elastic colli-
sions and from nuclear reactions, at
proton energies ranging from 10 MeV
to 300 MeV, are incorporated into a
model describing the probability of
damage as a function of the proton
fluence and the size of the sensitive
micro-volume in Si. Comparisons be-
tween the predicted and measured
leakage currents in Si imaging arrays
illustrate how the Poisson distribution
of higher encrgy nuclear reaction

recoils affects the pixel-to-pixel variance

in the damage across the array for pro-
ton cxposures equivalent to mission
duration of a few years within the
earth’s trapped proton belts. Extreme
value statistics (EVS) quantify the
largest expected damage extremes

following a given proton fluence, and
an analysis derived from the first-princi-
ple damage calculations shows excellent
agreement with the measured extremes.
EVS is also used to demonstrate the
presence of high dark current pixels, or
“spikes,” which occur from differcnt
mechanisms. Different sources of spikes
were seen in two different imager
designs.
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1. Introduction

Proton-induced displacement damage degrades
semiconductor electrical properties by introducing
localized energy states within the band-gap which
result in increased generation dark current, carrier
recombination and charge trapping. On average,
the permanent proton-induced damage in bulk Si is
proportional to the average amount of energy
which has been imparted through non-ionizing
processes following elastic and inelastic scattering
of Si atoms [1-3]. However, on micro-volume scales
appropriate for microelectronics, average damage
is a poor indicator of damage effects because of
differences in the number of incident particles and
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fluctuations in energy deposition which are an
unavoidable conscquence of collision kinematics.
Characterization of displacement damage in Si
micro-volumes has particular importance for satel-
lite imaging array applications. Device radiation
hardening solutions have largely solved problems
associated with ionization effects. However, parti-
cle irradiation seriously degrades charge transfer
efficiency through carrier trapping and increases
dark current by carrier generation. Permanent dark
current increases from single particle interactions
have been reported in sensor arrays following pro-
ton and neutron irradiation [4,5]. Pixel-to-pixel
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variations in dark current increases following
multiple interactions within each pixel have also
been shown to depend on the incident particle and
energy [3,6].

Orbital proton energy spectra, whether from the
earth’s trapped radiation belts or solar flares, typi-
cally peak at very low (and more damaging) ener-
gies and decrease exponentially with increasing
proton energy. Typical spacecraft structural shield-
ing effectively attenuates lower energy protons re-
sulting in spectra cxtending from a few MeV to
several hundred MeV with average energies over
20 MeV. Proton linear accelerators and cyclotrons
are therefore well suited for monoenergetic charac-
terizations of damage verses proton energy which
can then be incorporated in damage predictions for
a given environment and shielding configuration.

For the proton energy range of 10 MeV to
300 MeV, this work explains the average damage
and pixel-to-pixel damage fluctuations in terms of
calculated parameters reflecting the energy depen-
dence of the proton-silicon interactions. The analy-
sis predicts the damage distribution within a given
array as illustrated for the particular case of a
charge injection device (CID) depletion volume
and the cross-sections and Si recoil energics
applicable to 12 MeV, 22 MeV, and 63 MeV pro-
ton induced damage. This enables a direct com-
parison between the predicted damage distri-
butions and the observed dark current histograms
reported in [3] across a range of energies important
for orbital environments.

Dark current extremes, which may follow from
damage extremes, are a particularly serious con-
cern for a variety of satellite imager applications.
These “hot pixels” of “spikes” interfere with the
instruments ability to resolve small, dim objects
such as low magnitude stars which might be used
for a star tracker guidance system. Also, spikes in a
image can place overhead on data compression al-
gorithms and burden telemetry channels. Extreme
value statistics are well suited for characterizing
the frequency and magnitude of these spikes.
These tools are applied to proton damaged CID
imagers to illustrate this approach, and we show
that for one particular CID design, the spikes can
be accurately predicted based on the calculated
probabilities and kinematics of proton-initiated
nuclear reactions.
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2. Recoil Spectra Parameters

For proton energies of practical interest in satel-
lite orbits, the damage is caused by recoiling atoms
from collisions with Si atoms. As depicted in Fig. 1
[7], elastic scattering by the Coulombic field of the
nucleus dominates for protons below 10 MeV,
though at higher energies, nuclear elastic scattering
also becomes important. By 60 MeV, about half of
the displacement damage is due to nuclear inelastic
reactions which dominate above 100 MeV. Elastic
cross-sections are relatively high with recoil ener-
gies typically less than 1 keV as opposed to in-
frequent nuclear reactions emitting very damag-
ing MeV-range recoils. In this work, the first and
second moments of the recoil spectra are calcu-
lated separately for each type of interaction.

The average damage energy from all elastic
recoils is obtained by numerically integrating the
product of the differential cross section weighted
by the corresponding recoil damage energy, over all
scattering angles. Damage energy is defined here
as the portion of energy lost by a recoil through
mechanisms other than ionization as calculated by
Lindhard et al. [8]. Note that this represents an
important adjustment to the total energy imparted
by the reaction atoms which must be assessed for
evaluating either the nonionizing or the ionizing
energy imparted. The second moment calculations
proceed in the same manner, except the recoil
damage energies now appear to the second power.
The variance follows as the second moment minus

Displacement Damage Processes

| PROTON ﬂlER;Y
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RECQIL ENERGY
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Fig. 1. Frequent coulombic scattering from protons of a
few MeV initiate low encrgy recoil atoms resulting in isolated
defect sites. More energetic protons can impart more energy 1o
recoil atoms via nuclear elastic and inclastic reactions resulting
in less frequent but more complex damage structures.
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the first moment squared, as is customary. Figure 2
plots the mean and variance of non-ionizing energy
for proton energies from 10 MeV to 300 MeV, and
Table 1 lists the values of experimental interest,
along with the total elastic cross-sections and recoil
energies.

The inelastic reaction cross-sections are esti-
mated according to the empirical formula of Letaw
et al. [9]. Calculations of primary recoil energies
consider both the initial intranuclear cascade and
subsequent evaporation of nucleons. The momen-
tum imparted during the evaporation phase is esti-
mated using a Brownian motion model. Next, the
average and variance of the damage energy are

B

g

DAMAGE ENERGY MEAN (x 10-8MeV)
1zABWg-01 X} IDNVIHYA ADHINI IDVINYT

1 ] ! | 1 0
o 100 200
PROTON ENERGY {MeV}

=

Fig. 2. The mean and variance of the total elastic damage energy
arc plotted versus proton cnergy along with a best-fit curve. The
moments werc calculated based on eclastic differential cross-
section data [1 and rcferences therein] indicated by circles and
triangles.

Table 1. Proton recoil spectrum parameters

calculated as in the elastic case, and the results are
summarized in Table 1. Further details and
comparisons with data are discussed in [1,3].

3. Damage Calculations

For a given proton energy, the mean and variance
describing the probability density function (pdf)
for damage from single interactions, as listed in
Table 1, allow independent evaluation of the dam-
age expected from the elastic and inelastic recoil
categories. For the elastic category the mean for the
pdf describing damage at a given proton fluence is
the product of the number of interactions and the
mean of the pdf for single interactions. The number
of interactions is the product of the average cross-
section, the incident particle fluence, and the num-
ber of Si atoms in the sensitive volume.

The elastic scattering component of the variance
associated with the fluence dependent pdf is esti-
mated as the product of the number of interactions
and the single interaction pdf variance shown in
Fig. 2. This is possible because Poisson fluctuations
in the number of elastic recoils per pixel do not con-
tribute significantly to the final result. In the regime
where N, the average number of interactions per
volume element, is greater than 20, the N-fold con-
volution of the single interaction pdf with itself
leads to a Gaussian elastic damage distribution with
mean and variance as described above,

For sensitive volumes and fluences of interest
here, the average number of inelastic recoils ranges
typically from a fraction to a few, and a discrete
Poisson distribution determines the probability of a
given number of inelastic recoils. The pdf governing
the inelastic damage energy for a pixel with N,

Proton Cross Mean recoil Mecan damage Variance of damage
energy section energy cnergy energy
(MeV) (BARNS) (MeV) (MeV) (MeV)?
Elastic reactions
12 1548 340x1074 L76x107* 4.77x 107"
22 857 4.68x10~* 213x107% 7.71x 107
63 318 7.77%1074 287x107% 1.62x 1073
Inclastic reactions
12 0.670 0.267 0.0765 2.05x 1073
22 0.723 0.569 0.111 2,71x 1073
63 0.523 1.44 0.152 311x1073
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inelastic recoils reflects the N;-fold convolution of
the pdf for single inelastic damage. For purposes of
this analysis, the form of the single event pdf for
inelastic recoil products is approximated as a two
parameter gamma distribution with mean and vari-
ance as indicated in Table 1.

Since the elastic and inelastic processes arc in-
dependent random variables, the combined damage
for pixels in which both occur follows as the con-
volution of the pdfs describing each of the two
categories. Figure 3 illustrates this simulation for
the specific case of the imaging array used in this
study in which damage from a fluence of 4.0x 10"
12 MeV protons/cm? occurs, and each pixel’s sensi-
tive volume is 1300 wm’. The Gaussian distribution,
shown in Fig. 3a as the N: =0 case, describes dam-
age corresponding to an average of 4,000 events per
pixel. Figure 3a curves for N; =1 through 10 inelas-
tic recoils per pixel reflect increases in both the
means and variances as the shape tends toward
Gaussian. Figure 3b shows the pdf for total com-
bined damage as the superposition of the pdfs in
Fig. 3a, after weighting by their associated Poisson
probabilities according to the average of 1.8 inclas-
tic recoils per pixel. This average is arrived at by
considering the number of silicon atoms present in
the 1300 um® volume, and the composite cross-
section for nuclear inelastic reactions for 12 MeV
protons as shown in Table 1.

RELATIVE FREQUENCY

,.“0"‘0';}"
‘)),fef!ff;k&\ |

20
DAMAGE ENERGY (MeV)
A

DAMAGE ENERGY {MeV]

Fig. 3 (a). The Gaussian distribution with no inclastic recoils de-
scribes elastic damage and convolved distributions show com-
bined damage from clastic and 1 through 10 inelastic recoils.
(b) Weighting according to the Poisson probabilities precedes
the superposition to determine combined damage probabilitics.
The simulation applies to the Si CID scnsitive volume of
1300 pm* and 4.0x 10" 12 MeV protons/cm’.
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Early in a space mission or in a relatively benign
orbit, the fluences may be 1-2 orders of magnitude
lower, at about 10°cm™2 In this low fluence
regime, the very low probability of inelastic recoils
suggests that two would probably not be observed
in the same volume element. The number of elastic
recoils per volume would be correspondingly low
resulting in very large relative changes within the
pixels where nuclear reactions occur. The product
of the low probability of an inelastic event with the
large number of pixels determines the pixel popu-
lation for which damage exceeds the average by
factors of up to 1,000.

4. Predicting Damage Extremes

In addition to being a necessary tool for assessing
radiation-induced fixed pattern noise, the probabil-
ity density function describing damage throughout
the array can be used to predict the number of
elements sustaining exceedingly large damage in-
creases after a specified exposure. In [6] it was
shown how extreme valuc statistical analysis can
describe the measured distribution of pixels with
the iargest damage increases following 12 MeV and
63 MeV proton damage to the Si CID. For a broad
range of proton energies and fluence levels, the
largest cxtremes were shown to obey a Type 1 ex-
treme value distribution. Next it wili be shown that
the particular Type 1 distribution describing pro-
ton-induced damage extremes can be predicted
from the calculated pdt described above.

Figure 4 shows an expanded view of the tail
region in Fig. 3b which identifics the contributions
to the pdf from the 11 populations containing
0 through 10 inelastic recoil events per pixel. The
damage energy distribution has a mean of
0.85 MeV, and the skewed high energy tail extends
to about 1.8 MeV. Individual distributions are iden-
tificd according to the number of inelastic recoils.
Figure 4 illustrates how several of the component
distributions contribute to the probability of ex-
ceeding large damage energies. Based on a total
pixel population of 61,504, the inset presents the
number of pixels expected above the specified
damage level, £4. This number is the total popula-
tion multiplicd by pg, the probability of exceeding
damage energy Eg within the whole array. This
probability is calculated as the summed pdf inte-
grated from [y to infinity.
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Fig. 4. For the simulation depicted in Fig, 3, volumes containing
from 1 to 10 inclastic recoils contribuite to the population of
pixels with the most damage. The insct shows thc number
expected above a given damage energy for a 61,504 pixel array.

Two steps are necessary to compare these results
on the basis of the cumulative Type 1 extreme value
distribution. As discussed in [6,10-12], extreme
value analysis can be applied to data to evaluate the
probability of exceeding a certain value within any
population size by evaluating a set of largest values
extracted from subsets of a given population. In the
next section we will treat the case where the 61,504
pixel population has been subdivided into 248
groups of 248 pixels each. Using p, as defined
above, the probability, po, of having no pixels ex-
ceeding Eg4 within the group of 248 pixels can be
evaluated using the discrete binomial distribution

as:
(M

The associated standard variate specific to the ex-
treme value cumulative probability plot is given by:

S(po) = —In[~In(po)]. 2)

Thus Eg4, or a proportional quantity such as dark
current, can be plotted against the corresponding
standard variate to predict the Type 1 extreme dis-
tribution specific to the pdf from which it is gener-
ated. Detailed discussions of extreme value analysis
are discussed in the references [11,12], and applica-
tions to this study will be illustrated in the following
section.

po = (1-pa)**.

5. Comparison with Dark Current Data

Calculations described in the previous section are
compared here to measured dark current increase
distributions specific to proton-induced damage in
a General Electric 256 pixe! x 256 pixel Si CID.

489

Devices are fabricated in an n-type Si epitaxial
layer doped with 5x 10" P atoms/cm?® A field iso-
lation oxide confines the collection area to about
I7mm X 17 mm, but for purposes of dark current
studies only the 1300 um® depletion volume leads
to carrier generation.

All dark current data reported here were ac-
quired at 18.0 °C and correspond to a 248 x 248 sub-
set of the array. After each proton exposure and
measurement the dark current increase for each
element was calculated by a pixel-by-pixel subtrac-
tion of the pre-irradiation value. This correlation
removes imager spatial noise not resulting from
radiation. Temporal read-out noise accounts for
less than 5% of the dark current spreads reported
here. More detailed descriptions of the imaging
array and the dark current measurement are pro-
vided in [6].

Proton irradiations with energies of 12 MeV,
22MeV, and 63MeV were performed at the
University of California at Davis cyclotron facility.
The beam line and dosimetry have been described
previously [13]. Irradiations were conducted at a
nominal dose rate of 1kRad(Si)/s with all leads
grounded. Dark current measurements were ini-
tiated about 15 minutes post irradiation and re-
peated after 1 day and again after about 1 week. No
significant annealing was observed over this period.

In Fig. 5, comparisons are made between dark
current data histograms and calculated damage
energy distributions in the CID pixels. The calcula-
tion approach described above has been exercised
for three 12 MeV proton fluences corresponding to
averages of (1.8, 4.5, and 9.0) inelastic recoils/pixel.
Based on the population of 61,504 pixels and
Poisson statistics, the maximum numbers of inelas-
tic recoils expected in any single pixel are 10, 16,
and 24, respectively. For comparing the calculations
to dark current data, a conversion factor relates the
average dark current and the mean damage energy.
For the three fluences, the average conversion fac-
tor of 2.2 nA/em® per MeV of damage energy varies
by up to 10%, which reflects the experiment’s
dosimetry uncertainty. The calculated damage
curves in Fig. 5, based on the first and second
moments of the non-ionizing energy imparted by
the recoil spectrum, describe the dark current dis-
tribution to a remarkable degree of accuracy.

Comparisons for 22 MeV and 63 MeV proton
damage show similar agreement. The coefficient of
variation, defined as the ratio of the standard
deviation to the mean damage (or dark current), is
a dimensionless figure-of-merit. At 12 MeV,
22 MeV, and 63 MeV, the experimental and calcu-
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Fig, 5. Calculated damage encrgy distributions show excellent agrecment with
measured dark current histograms from a Si CID damaged by 12 MeV protons.
Calculations are based on averages of (1.8, 4.5, and 9.0) inelastic recoils per pixel,
and the damage distribution shapes reflect the associated discrete Poisson distribu-

tions.

lated results agreed within 2%, 12%, and 15%
respectively [14]. Also at 63 MeV, with 45% of the
damage caused by inelastic recoils, the means of
the two distributions are normalized by a factor of
2.0nA/cm? perMeV of damage. This does not
differ significantly from the conversion factors de-
termined for 12 MeV, thus demonstrating that the
average damage is proportional to the energy lost
through non-ionizing processes, and that the ex-
pected damage from both the elastic and inelastic
categories is present.

The somewhat better agreement between calcu-
lated and measured damage distributions at the
lower proton energy of 12 MeV could be influenced
by characteristics associated with high energy
recoils. At proton energies of 12 MeV and 63 MeV,
the contribution to the total damage from inelas-
tic reaction recoils increases from roughly 15% to
45%. Also, as this fraction increases, the average
inelastic recoil energy (and range) also increases,
and at higher proton energies the higher energy
recoil ranges approach the smallest dimension
of the sensitive volume (about 2 wm). These issues
would be even more important for smaller sensi-
tive volumes (i.e., CTE loss in a CCDs buried
channel).
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6. Largest Dark Current Extremes

Here the measured largest dark current in-
creases are compared to the calculated damage
maxima for the specific cases of the three 12 MeV
proton fluences of Fig. 5. For each proton energy
and fluence level, the dark current extreme popula-
tions are generated by subdividing the 61,504 pixel
population into 248 groups of 248 pixels each. The
largest value from each group comprises the popu-
lation of extremes. Figure 6 depicts how the ex-
treme distribution is derived for the case of the
lowest fluence level shown in Fig. 5 (note this
example also corresponds to the calculations for
Figs. 3b and 4). After ranking and estimating the
probability according to the [rank/(n +1)] for n
samples as in [6], the standard variate follows from
Eq. (2), and the measured dark current extremes
can be compared with the Type 1 extreme value
distribution using a Type 1 cumulative probability
chart.

Likewise, damage maxima calculated as de-
scribed in section C can be compared to the same
Type 1 extreme probability distribution using
Egs. (1 and 2) and the normalization constant of
2.2 nA/em® per MeV of damage energy. Figure 7
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Fig. 6. Mcasurcd dark current histogram for 61,504 pixcls
following exposure to 4.0x 10" 12 MeV protons/em®. The 248
extremes are from groups of 248 pixcls.

compares measured dark current extremes, for the
three 12 MeV proton fluences treated in Fig. 5, to
predicted damage maxima according to the Type 1
distribution. The linear character of the data and
calculation show that they obey a Type 1 distribu-
tion, and the close agreement at each fluence
demonstrates the robustness of the analysis, The
return period abscissa at the top of Fig. 7 identifies
the largest expected dark current increase for a
given number of array subsets. For example, at the
fluence of 2.0 X 10"/cm? the return period value of
10 corresponds to about 13 nA/cm?® indicating the
largest expected increase within a set of 10 groups
or 2,480 pixels. Good agreement also exists be-
tween the measured and predicted extremes from
63 MeV protons.

The ability of the calculation to predict the
largest measured dark current changes offers in-
sight into the mechanisms responsible for proton-
induced damage extremes. The linear response on
the Type 1 plot indicates that a single mechanism is
probably responsible for largest values while the
slope reflects the variance. As pointed out in Fig. 4,
the largest damage regions in this fluence regime
follow from the probabilistic treatment of pixel
populations damaged by several inelastic reaction
recoils.

When the probability of an inelastic recoil per
pixel is much less than one, as is the case in many
natural space environments, the analysis can deter-
mine the total number of pixels expected with dam-
age above a given level. In this regime, where the
background radiation-induced damage can be quite
low, largest damage regions can be several hundred
times the average. Some of the array subsets would
have largest changes dominated by single inelastic
recoil damage and others by the largest of the less
damaging elastic recoils. In this case, agreement
with the Type 1 cumulative chart could be expected
only with sufficiently larger bin sizes so that each
bin would include at least 1 pixel with damage from
an inelastic reaction.

A qualitative comparison of such a situation fol-
lows from our evaluation of the proton response of
an alternate CID imager design. The important as-
pects of this “narrow row” design were previously
discussed in [6], with the key difference resulting in
spurious high electric field profiles near the row
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'S
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Fig. 7. Cumulative probability distributions demonstrate excellent agreement between
calculated damage extremes and the measurcd dark current extremes based on a 248
pixel by 248 group extreme valuc analysis. Though not shown here, similar agreement
is obtained for damage from 63 McV protons.
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electrodes. The comparison of the dark current
and extreme distributions for this device type,
shown in Fig. 8, can be made with the previously
discussed design at the same proton exposure level,
as in Fig. 6. Note that the average dark current is
doubled, but more importantly, the character of
the extreme distribution is markedly different. The
consequence of this is more evident in the proba-
bility chart of Fig. 9. Clearly the narrow row design
results in an extreme distribution which is not Type
1 when analyzed as before. Rearrangement of the
array to 31 bins of 1984 pixels offered a better
match with the Type 1 distribution. Even so, the
extremes for this case cannot be understood based
on first principles analysis of damage mechanisms
as before. We concluded that in this case, the

largest extremes were not caused by conventional
charge generation, and extreme value statistics
played a critical role toward quantifying the likeli-
hood and magnitudes of this other mechanism. In
[4] we discuss supplemental measurements and
analysis which have lead us to conclude that the
high field regions were causing localized lowering
of the band-gap resulting in field enhanced emis-
sion and tunneling currents. Thus the statistics of
extremes are applied to evaluate design variations
and to assure that optimum imager performance
can be assured. We also concluded that acceptable
designs should have extreme characteristics as
depicted in Fig. 6 which are limited only by un-
avoidable consequences of particle-semiconductor

physics.
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Fig. 8. The high electric field CID design yields a different dark current and extreme
response as compared to the same conditions shown in Fig. 6. High electric fields are
thought enhance the leakage currents when associated with damage.
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Fig. 9. The probability chart comparing the responses shown in Figs. 6 and 8
suggests the role of field enhanced mechanism in causing the largest lcakage

extremes.

7. Conclusions

This paper presents an analytic approach for de-
termining the pixel-to-pixel distribution of particle-
induced displacement damage in micro-volumes
representing sensitive volumes in sensor arrays.
The calculation is based on interaction cross-
sections as well as parameters describing the dam-
age imparted by the spectrum of particle-initiated
recoils. It predicts the dark current distribution
and largest dark current changes in a Si CID fol-
lowing incremental damage with 12 MeV, 22 MeV,
and 63 MeV protons. These proton energies span a
regime important to the natural space environ-
ment; lower energy protons for which the damage
is dominated by elastic scattering and higher ener-
gies where nuclear reactions become increasingly
important. The analysis illustrates how high energy
recoils from nuclear reactions influence the pixel-
to-pixel variance in proton-induced damage and
cause the largest damage occurrences. To under-
stand the important exception, we rely on extreme
value statistics to identify and quantify the role of
electric field enhanced emission as a mechanism
for excessive leakage currents.

The calculation is general in the sense that once
the parameters describing the recoil spectrum are
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determined, the particle-induced damage distribu-
tion can be calculated as a function of particle type,
particle fluence, sensitive volume, and material.
The significance of these results is that once the
factor relating the mean dark current to the dam-
age energy is known from a single measurement on
a particular array, the radiation response in a
specified environment can be predicted. In addi-
tion to providing a means for assessing the radia-
tion response of a given imager, this analysis has
flexibility enabling the design-phase evaluation of
the radiation response of different pixel geometry
and materials in a variety of environments.

Extreme value statistics play a critically impor-
tant role in understanding leakage current spikes
and in assuring reliable satellite performance. In
ongoing related research we continue to rely on
this valuable tool for assessing damage and single
particle ionization extremes in infrared imaging
arrays and in optoelectronic detector materials for
high data rate spacecraft data links, each of which
must perform to exacting standards to assure reli-
able performance of extremely valuable space
assets.
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Various attempts have been made to
develop models for predicting the de-
velopment of damage in mctals and al-
loys due to pitting corrosion. These
models may be divided into two classes;
the empirical approach which employs
extreme value statistics, and the deter-
ministic approach based on perceived
mechanisms for nucleation and growth
of damage. More recently, Artificial
Neural Networks (ANNs), a nondeter-
ministic type of model, has been devel-
oped to describe the progression of
damage due to pitting corrosion. We
comparc the three approaches above —
statistical, deterministic, and ncural net-

advantages and disadvantages of each
approach, in order that the most reli-
able methods may be employed in fu-
ture algorithms for predicting pitting
damage functions for engincering struc-
tures. Ta illustrate the difficulty that
we face in predicting cumulative pitting
damage, we selected a set of data that
was collected in the laboratory. We
comparc and contrast the three ap-
proaches by reference to this data set.

Key words: artificial neural networks;
deterministic; mathematical modcling;
pitting corrosion; statistics.

works. Our goal is to illustrate the
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1. Introduction

On the basis of laboratory studies [1], and
through the analysis of field data collected over the
past decade by Battelle Columbus Laboratory [2],
several factors have been identified as contributing
to the development of pitting damage in gas fired
heat exchangers in domestic and industrial service:

(i)  The type of alloy used for fabricating the
heat exchanger
(i)  Chloride concentration in the flue gas

condensate
(iii) Temperature
(iv) Exposure time

(v) Ambient versus indoor air

(vi) pH
(vii) Electrochemical potential

Unfortunately, few of these factors are simply
related to the damage functions or to one another,
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Accordingly, it is seldom possible to establish a
simple empirical equation for predicting pitting
damage as a function of these variables. The case
cited above is not atypical, and it illustrates the dif-
ficulties faced by those who seek to develop predic-
tive models for assessing corrosion damage.
Indeed, the data base established by Battelle is
probably one of the best that currently exists for
the development of pitting damage in an industrial
system. A full interpretation of the Battelle data in
terms of statistical, deterministic, and artificial
neural network models is published elsewhere [3].

In the present paper, we use a more restricted
database to illustrate how various classes of models
are used to analyze the damage caused by pitting
corrosion. These models include a statistical ap-
proach based on the Weibull distribution function,
a deterministic model based on a physicochemical
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mechanism, and an Artificial Neural Network
(ANN) that assumes neither a mathematical model
nor a physical model, but which seeks to establish
relationships between the dependent and indepen-
dent variables by examining the patterns contained
within the data set.

2. Experimental Data

We used laboratory data to illustrate the time
and potential dependencies of pitting damage. To
do this, we chose a laboratory data set for which the
following independent variables were identified: 1)
concentration of minor alloy elements in weight
percentages, 2) difference in oxidation state be-
tween host metal and minor alloy elements, 3) ap-
plied potential, and 4) time of observation. Inde-
pendent variables 1) and 2) are related to the type
of alloy; and independent variable 4) together with
solution composition (which was maintained con-
stant) is determined by the electrochemical poten-
tial. Temperature, solution composition, and pH
were maintained constant. The dependent variable
was the total number of pits.

We then used this set to illustrate the prediction
of cumulative damage for pitting corrosion using
three different models: statistical, deterministic,
and artificial neural networks. The data were mea-
sured by English and Macdonald at SRI Interna-
tional [1].

Several alloys of nickel were fabricated. Each of
the alloys tested was arc-melted from powders un-
der an Argon gas blanket in a sealed container. Bi-
nary nickel alloys containing Al, Ta, and Mo in
nominal concentrations of 0.1 %, 0.5 %, 1 %, 3 %,
5 %, and 8 % by weight were cast as 100 g buttons
and were sectioned in an acrylic plastic before pol-
ishing. The alloying elements were selected on the
basis of their oxidation states relative to nickel (ox-
idation state =2). The excess oxidation statcs range
from 1 for Al to 4 for Mo.

The polished specimens were placed in a cell.
The electrode potential was swept in the positive
direction at 1 mV/s from an initial potential of 0.0
V. This results in a distribution in breakdown po-
tentials. Alternatively, the potential was stepped
from 0.0 V t0 0.325 V, 0375V, 04 V,and 0.45 V.
This resulted in a distribution in induction {(or ob-
servation) times for the nucleation of pits.

In both types of experiments the pit nucleation
and growth events were photographed at 65 X mag-
nification at regular intervals. The number of pits
were counted on the pictures taken at different
times and conditions.
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The pitting data were measured several times on
a similar sample to explore reproducibility. The re-
producibility in pure nickel appeared satisfactory
(about 10% difference between runs), but the
reproducibility from alloy composition to alloy
composition was different. Reproducibility was
better at high potentials perhaps because the total
number of pits developed was higher. Reproducibil-
ity appeared to be better at high minor alloy con-
tents and high oxidation states (about 20 %), than
at low minor alloy contents and low oxidation states
(about 50 %). Regardless of the poor reproducibil-
ity in some of the samples, a general trend was ob-
served: a) The cumulative number of pits
diminishes with 1) minor alloy element content, and
2) with increasing difference in oxidation state be-
tween the basc alloy and the minor alloy element;
and b) The cumulative number of pits grows with
increasing applied potential and observation time.

Cumulative pitting damage is an irreversible,
dynamic, time decay, environmentally related pro-
cess. The literature is abundant in pitting corrosion
data, but there is a lack of good quality data be-
cause of the difficulty of measuring pitting corro-
sion when controlling all the environmental
parameters.

All model building is concerned with an attempt
to increase our knowledge of complex physical real-
ity. The parameters plus the validity of the model
must be determined from the data. The philosophy
behind the type of model is different. The informa-
tion obtained from a purely probabilistic model
(statistic and stochastic models) is about finding
embodied in the data trends that can be used in fu-
ture predictions. The information obtained from a
deterministic model is about the physical meaning
of the phenomena itself. The information obtained
with a ANN model is about the dependency and im-
portance of input /output relationships. In any case,
the model capabilitics need to be tested.

We can start the process of solving our problem
by listing facts, listing observations, and listing exist-
ing laws relating variables and outputs. Then we
have to ask ourselves which will be the best model
to describe the problem, and what do we expect
from ‘the model. Later we need to identify the
model or models to use; specify the constraints,
choose the coordinates, and apply the laws dictated
by the model. Important questions related to the
choice of a correct model are: Is the process static
or dynamic? Is the process stationary or not?; Are
the available data distributed or not? What do the
data mean? What is the data variance? What are
the correlations?. In any case, the fitted model you
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use for analyzing your data is the nearest iepresen
tation of the true situation you have available.

3. Statistical Approach and Results

Stochastic processes are dynamic, and good ex
amples are fatigue, wear, and crack or pit growth.
There are two main types of stochastic pro-
cesses: stationary and nonstationary.

It is well known from experimental data that cu-
mulative pitting damage is a nonstationary phe-
nomenon. It is well known that nonstationary
models and their estimation are notoriously diffi-
cult problems to handle except for special cases.
Discrete state continuous Markoff processes are
good examples of models that describe nonstation-
ary stochastic phenomena. However, there is no lit-
erature on problem solving using nonstationary
finite Markoff chains [4]. On the other hand, for the
last data set [1] (measured at the laboratory), the
cumulative damage versus time was measured, but
the pit depth versus number of pits was not. There-
fore, it is impossible to derive a dynamic model for
pitting damage using that data set. The only option
available is to try to fit a static model (i.e., our hy-
pothesis is that the numbers of pits versus pit depth
does not change with time). We choose a 2 parame-
ter Weibull distribution; for which we assume that
the independent parameters are potential, and the
oxidation state and concentration of the minor al-
loying elements. The dependent variables are the
cumulative number of pits and the induction time.
The Weibull distribution function is

F@)=(1-exp(~(/B)))

where a and B are fitting parameters and x is the
dependent variable of interest.

We normalized the data set 10 80 % of its maxi-
mum value, allowing 20 % of the pits to nucleate if
the time would have been extended to infinity, For
each potential, oxidation state, and perceatile of
minor alloy element, we performed a nonlinear fit
to estimate the Weibull fitting parameters.

The choice of a Weibull distribution is arbitrary,
we chose a Weibull distribution instead of some
other probabilistic distribution because of the flexi-
bility that this distribution offers in fitting different
shapes obtained when plotting cumulative damage
versus dependent variables.

The nonlinear fits were acceptable (sum of
square errors between fit and data <20 % for a or
B). We used those data sets for which simooth
changes of a and § were calculated as a function of
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puténtial. That1educed the data base to about 50 %
of the 1otal available (the total data base had 1400
data lines containing number of pits at different ob-
scivation tinies, applied potential, oxidation states,
and percentile of minor elements), We plotted the
« and g values as 4 function of potential. Figures 1a
and 1b show the 1esults. The beta parameter of the
Weibull distribution appears 1o not change with ap-
plied potential at high concentration of minor alloy
elements (5 %), but it changes drastically with ap-
plied potential at low concentrations of minor alloy
element (3 %, 1 %). We then fit polynomials de-
scribing @ aud B as tunctions of applied potential,
oxidation state, and percentile of minor alloy
elements.

‘The Weibull distribution with e and 8 as parame-
ters was used 1o generate the cumulative damage
function Figures 2a, b, and ¢ show the predictions
abtained with this statistical model. When we com-
pared the predictions obtained with this model and
the measured data, we observed that both trends
are similar. However, it would be very risky to use
the model to make predictions for other oxidations
states, percentile of minor alloys elements, or
applied putentials outside the range for which the
Weibuli-parameters were calculated,

it is well known that the Weibull distribution is a
sufficiently flexible function that practically any set
of data can be fitted by it. However, the problem we
faced is that we do not know a priori the correct re-
lationships between a and B and the independent
variables,

Predictions wiih the samie model for oxidation
states greater than 3-2 gave cumulative probability
of zeru at any time and are not shown. The designa-
tion "3 27 referes 10 the oxidation state of the al-
loying elemient (Al=3) and the host metal (Ni=2).

4. Deterministic Model

A cumnpletely successful model must account for
all of the phenomenological correlations that exist
bictween pitling susceptibility and pit velocity, and
various environmental and electrochemical factors,
such as temperature, pH, |Clf, potential, time, and
alloy composition. The Point Defect Model (PDM)
[5, 6] accounts for the effects of electrochemical po-
tential, alloy composition, and environmental con-
ditions on the nucleation of pits.

The deterministic model is based on the PDM
and the Solute Vacancy Interaction Model (SVIM)
[7-10]. The PDM proposes that passivity break-
down oceurs because of an enhanced flux of cation
vacancies from the film/solution to the metal/film
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Fig. 1. (a) Alpha parameter of the Weibull distribution versus

applied potential; at several percentiles of minor alloying clements,
and oxidation states. (b) Beta paramcter of the Weibull distribution
versus applied potential; at several percentiles of minor alloying ele-

ments, and oxidation states.

interface. If the excess of vacancies arriving at the
interface between the metal and the film can not be
absorbed into the metal or be annihilated by some
appropriate mechanism at high enough rate, they
accumulate to form a vacancy condensate at the
metal film/interface, which then grows to a critical
size. The PDM is used to calculate the breakdown
potential and induction time. The effect of the mi-
nor alloying elements in the oxide film on the
breakdown parameters is modeled using the SVIM.
The SVIM is based on the hypothesis that highly ox-
idized solutes in the passive film electrostatically
complex with the mobile cation vacancies.

The PDM and SVIM results in distributed values
of the breakdown potential and induction time, and
complexing between the immobile alloying element
in the film (the “solute”) and the mobile vacancies
diminishes the flux of vacancies across the film. This
leads to an increase in the breakdown potential and
the induction time for film breakdown. The higher
the net oxidation state (minor alloy element oxida-
tion-host ion oxidation) and/or the higher the per-
centile of minor alloying elements in the film, the
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greater the effcct on reducing the flux of vacancies
and hence in increasing the pitting potential and
the induction time. Once the pits nucleate, they
grow at different rates. To calculate the pit growth
rate we used 1) a simplistic steady state model sug-
gested by Alkire [11]; and 2) a nonstationary model
developed by us [12-13]. The stationary model is ex-
pected to be adequate for only short times.

The overall model (combination of the PDM,
SVIM, and pit growth) requires the defining of a
number of parameters, as shown in Table 1.

Figure 3a shows the cumulative probability of the
number of pits (normalized to 1) as a function of pit
depth and observational time of 50 s, for an applied
voltage of 0.325 V and for several concentrations of
the minor alloying element with oxidation state of
3-2 (example aluminum in nickel). Figures 3b and
3¢ show similar plots for oxidation states of 4-2
(e.g., titanium-nickel) and 6-2 (e.g., molybdenum-—
nickel), respectively, for the same conditions. It is
interesting to note the great effect of minor alloying
elements with high oxidation states. The model pre-
dicts that the cumulative probability of the number
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Fig, 2. Predicted cumulative probability, obtained using the statisti-
cal model, versus time of observation, at several applied potentials. (a)
Oxidation state 3-2; and 1 % of minor altloying clement segregated in
the film. (b) Oxidation state 3-2; and 3 % of minor alloying element
segregated in the film. (¢) Oxidation state 3-2; and 5 % of minor
alloying clement scgregated in the film.

Table 1.  Input data used in the calculation of the deterministic/probabilistic model

Paramctcrs Value Units
Stoichiometry 2

Avogrado constant 6.023 E+23 mol~!

Mol vol. of oxide cation 30 cm?/mol
Gibbs energy change* — 40,000 Jimol

Gibbs energy change?* = 10,000 Jimol

Mean diffusion coefficient SE-20 cm?/s
Standard deviation 0.75 Dmean cm?/mol
Chloride activity 0.573/2

Electrical field across film 1.1E+6 Viem
Alpha 0.65

Beta - 001 V/pH  unit
Critical area vacancy size* 1E+16 No./fem?
Critical vacancy flux® 1587 E+12 No./em?*
Temperature 298.15 K

Applicd potcntial —0.55 VSHE
Molar gas constant 8.314 JK "mol™!
Electrical potential film/sol -05 ¥V SHE

-* Variables that were used to adjust one datum point to scale the results properly.
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of pits at all pit depths is higher at lower minor
alloying element oxidation state and at lower con-
cenfration of the minor alloying element. Because
the model does not assume a total number of break-
down sites only a normalized probability is ob-
tained.

Figure 4 shows the beneficial effect of adding
minor alloying elements with high oxidation states.
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0.6 -
4
>
g 05 -
o
z
oy 04f E
g
=
03 -1
[VE-] ' I L 1 1 1

Minor Alloy Percent

Fig. 4. Difference between calculated breakdown potential
of nickel containing 0 %-5 % of minor alloying elements with
oxidation states of (___ 3-2: Ni-Al}, (---4-2: Ti-Ni), and
{-.-.-.6-2: Mo-Ni) and calculated breakdown potential of
pure nickel (containing 0 % of minor alloying clements).
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The breakdown potential is shifted in the positive
direction, indicating that higher potentials are nec-
essary to achieve the same damage.

5. Artificial Neural Network Model and
Results

Probably the most efficient method, when data
are available, of establishing relationships between
inputs and results is to use artificial intelligence
techniques. Accordingly, we describe here an Artifi-
cial Neural Network (ANN) for predicting pitting
damage functions for condensing heat exchangers.
When the net is trained with reliable data and
knowledge, we are able to accurately predict dam-
age outside the ranges of the input variables.

An ANN is a highly interconnected system
inspired by the brain and formed by simulated
“neurons” represented by a transfer function, and
“weights” associated to the connections of the
“neurons.” The back propagation training al-
gorithm allows experimental acquisition of input/
output mapping knowledge within multilayer
networks. Because we have experimental data on
the cumulative numbers of pits versus time of obser-
vation, as a function of oxidation state, minor alloy-
ing element, and applied potential, we decided to
use an ANN backward propagation technique with
supervised learning. During training of the ANN,
the cumulative numbers of pits were used as
“output” and the applied potential, oxidation state,
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minor alloying element concentration, and time of
observation as “inputs.” We explored several to-
pologies to obtain the best compromise between
learning and computing time for an ANN with 2
hidden layers.

The maximum training time was set to 12 hours
on a Macintosh II microcomputer with a threshold
of 10 % of the normalized input values (input-
ouput) [2].

The ANN had the following features:

(i) Heteroassociative memory, for which the
patterns on recall from the memory are purposely
different from the input pattern, because the inputs
and outputs are different and belong to different
classes of information.

(ii) Delta rule type of learning, where the neu-
ron weights are modified to reduce the difference
between the desired output and the actual output of
the processed element. The weights are changed in
proportion to the error calculated. This rule also
limits the learning, if the error at the output of the
network is lower than a given threshold. The learn-
ing rates of those layers close to the output are set
lower than the learning rates of the other layers.

(iii) A momentum term, which is used to
smooth out the changes.

(iv) A sigmoid transfer function, which is a
monotonically continuous mapping function.

The ANN predictions are in good agreement with
the measured data. Figure 5 shows that correlation.
Considering the difficulty of obtaining high quality
data, we consider that the correlation factor is satis-
factory.

LN (ANN Cumulative Number of Pits)
(=]
1]

6 3 " 1 i " L N 1
-8 -4 -2 0 2 4 [5

LN {Measured Cumulative Number of Pits)

Fig. 5. Natural logarithm of the predicted ANN total number
of pits versus natural logarithm of laboratory measured total
number of pits. The measurements included several: applied
potentials, obscrvational times, oxidation states, and percent of
minor alloying elements.
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After the ANN was trained, it was used to make
predictions of the number of pits at different ap-
plied potentials, observation times, oxidation states,
and percentages of minor alloying elements in the
film. The total number of pits predicted by the
ANN decreased with increasing percentage of mi-
nor alloying elements in the film, and with increas-
ing oxidation state of the alloying element (Figs. 6a
and 6b). Behavior similar to that predicted by ANN
was observed experimentally.

The ANN, once trained, can be used to explore
the importance of the relationship between
“output” and “inputs.” We found that the results
were strongly dependent on observation time (¢°, t),
have a medium dependency on applied potential
(V'®), and show weak dependencies on oxidation
state (Z'”) and concentration of minor alloying
element in the film ([%]").
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Fig. 6. ANN prediction of cumulative number of pits versus ap-
plicd potential, at 50 s time of observation; and several percen-
tiles of minor alloying elements, (6a) Oxidation state (4-2). (6b)
Oxidation state (6-2).
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6. Discussion

Figures 7a to 7d show the best predictions
obtained with the three models compared with the
laboratory data.

The deterministic model predicts that the cumu-
lative probability at low applied potentials is not
only described by a flat curve but that the curve is
displaced to higher times. This prediction coincides
with the experimental observations. The predictions
with the deterministic model at high potentials indi-
cated that the plateau corresponding to higher
times is reached sooner than that measured. The
deterministic model is the only model (compared to
the other two models) that brings together an un-
derstanding of the problem as well a predictive tool.
Another advantage that the deterministic model
has over any nondeterministic model is that to fit
the model, only an experimental datum paint is nec-
essary to calibrate the model to the data. The deter-
ministic model was developed to predict damage

Cumulative Probability

a) Time, 5

Cumulative Probability

30 40 50
¢) Time, 5

and cumulative number of pits simultaneously. This
last capability makes it very attractive to the user.

The results obtained with the probabilistic model
are in general agreement with the experimental ob-
servations. As with the deterministic model, the
plateau in cumulative damage is reached sooner
than the measured one. However, the curves are
flatter at Jower potentials than at high potentials,
but they are not displaced to higher times. The
probabilistic approach needs a large data base, and
the predictive capabilitics are limited to the ranges
of variables confined in the data base.

The ANN model describes the cumulative num-
ber of pits very close to the experimental measure-
ments. The plateaus on cumulative damage
correspond very well to the plateau obtained exper-
imentally. The ANN predictions at low number of
pits are inaccurate, but they are very close to the
experimental observation at higher cumulative
numbers of pits.
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Fig. 7. Cumulative number of pits versus time of obscrvation at several applicd potentials; Oxidation state (3-2); and 3% of minor
alloying element. (7a) Predictions using the deterministic model. (7b) Predictions using Weibull Distribution model with 2 fitting
paramcters, (7c) Predictions using the ANN. (7d) Laboratory mcasurements.
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We conclude that little is learned abont the phe.
nomena when nondeterministic models are used;
however, they can represent invalnable pradictive
tools. The statistical model is in a sense more de-
manding that an ANN maodel. Tt requires 3 robust
and large data base. We found that an AIIN can
learn from “noisy” data. and that the range of pre-
diction can be extended autside the range for which
it was trained, if trained correctly [13]. Damage
functions can also be calculated using the determin-
istic model based on the PDM and SVIM. The e
terministic model does not need to have an
extensive data base that includes pit depth distribu.
tions. On the other hand, the nondeferministic
models need a large data base, and they are unnble
to make predictions of partial damage if the pit
depth versus number of pits is not confined to the
data base. Cumulative damage can be interpolated
and extrapolated to other voltages and times, and 10
other applied potentials, for any of the three mod-
els. In general the results obtained with the three
models were found to be in reasonable agreement
with experimental data [12].

We do not intend to emphasize here the impor.
tance of deterministic models over nondeterminis-
tic models, but we have to keep in mind. when
picking a model, to choose the one that hest repre-
sents the observations and that is reasonably easy tn
solve. Clearly, the reliability of the extrapolation in
particular, depends critically on the ¢uality of the
data and on the veracity of the model
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The stress distribution in bond layers
of two different thicknesses (50 pm and
200 pm) was calculated by finitc cle-
ment analysis for pairs of rectangular
cross section metal bars bonded to cach
other and subjected to four point bend-
ing. These stresscs were used to aid in
identification of the failure origin by
use of the Weibull risk-of-rupture (RR)
function. By use of the stress distribu-
tions, the characteristic strength from
50 pm bond test specimens could be
correlated with that for 200 um bond
test specimens when the failure was as-
sumed to have an interfacial origin.
The finite clement meshes were refined
twice and the ratios of characteristic
strengths were recaleulated and re-
mained virtually unchanged by each of
the mesh refinements. Hence, the iden-
tification of the interface as the failure

origin remained consistent. Further, the
use of stresses extrapolated to zero
mesh size also produced the same ra-
tios. Therefore, the RR calculations do
not appear to be sensitive to the mesh
sizes used for the stress caleulations
when the meshes are comparable or
when changed in a comparable manner.
The results show this method can be
consistent and a uscful adjunct for
identification of failure origins,
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bending; failure origin; failure stress;
failure stress and size effect; finite ele-
ment analysis; finite clement Stress;
origin of failure; Weibull analysis;
Weibull hazard function; Weibull risk-
of-rupture function.
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1. Introduction

In previous work [1,2] bending tests were con-
ducted on adhesively bonded specimens of a dental
alloy. The purpose was to determine:

a) how much the bond thickness influenced the
test results;

b) whether the failure origins appeared to be the
same for the two different bond thicknesses em-
ployed;

¢) failure origin through analysis using the risk-of-
rupture (RR) function.
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In this paper, the finite element method was used
to arrive at the stress distributions used for the RR
analyses that employ the Weibull risk-of-rupture
function' [3]. An ancillary purpose, therefore, was
to ascertain how sensitive the analyses were to the
fineness of the finite-element mesh and, hence,
whether the method can be applied with confi-
dence to the analyses conducted for a, b, and ¢
above.

' Today, a risk-of-rupture function, defined by Weibull, would
be recognized as a hazard function,
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2. Materials and Methods

The failure of brittle materials is typically
catastrophic and in many instances the failure
stresses obtained from a set of test specimens fol-
low a Weibull distribution. For a homogeneous
isotropic material subjected to a uniform tensile
stress, o, the probability of failure, P(o), is given
by:

P(o)=1—exp—[8(a/ov.)"], e))
where oy is a characteristic strength for a speci-
men of unit dimension; m is a shape factor
(Weibull modulus); and 8 is a size factor (the ratio
of the failure originating dimension to a unit di-
mension of the same kind) and represents the vol-
ume, ¥, area, A, or other dimension in which
reside the flaws from which the failure originates
[3]. Eq. (1) is often written as:

P(o)=1-exp—[(o/ov)7], (1a)
where the size of the specimen, 8, is subsumed into
ov. This form of the equation is commonly used
when analyzing test data and the effects of speci-
men size are ignored. It is clear from Eq. (1) that
for specimens of two sizes, 8 and &, with the same
failure origins and presenting the same distribution
of failure stresses (m=my), there will be two dif-
ferent values of oy for Eq. (1a), with the larger size,
call it &, leading to a value, oy, that is less than
0y,2.

For such specimen sets, the relation between the
characteristic strengths calculated by Eq. (1a) is

(4]

o2 = o[ 61/82]"™. (2)
For a nonuniform tensile stress field, a more gen-
eral form of Eq. (1) is necessary:
P(a)=1—exp—[fs(a/ov)"d5], (3)
where the region of integration over § is the region
critical to failure (rupture) and it can be in one,
two, or three dimensions. Then the relationship be-
tween the values of oy [Eq. (1a)] as determined
from experiments on sets of specimens having ei-
ther one or the other of the bond thicknesses, is
given by the ratios of the exponents of Eq. (3), i.e.,
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(/o)™ .[ 5](01!0“'")”“3[

mo - (4)
(a/on2) L(Uzr'av.u)’"dﬁz

Canceling terms in ovu on the right side and o on
the left side leads to

; [ J’ (m)’"dﬁl]um
el B (4a)
ay,1 J’m( Uz)"'d 5

When o;(8) is not known as an explicit function,
the relationship between oy, and o2 may, in princi-
ple, be approximated by [3]):

mu:o'(,.l[(Za{'}AS;;)]{ZUﬁ'}Aﬁy)]Um‘ (5)

and the validity of the approximation must be
checked by computation. Here the summations are
over all the elements considered to be involved
with the failure (interface, volume, etc.) and the
stresses can be evaluated by the finite-element
method of analysis.

Note: The stress field in the bond region is typi-
cally three dimensional; the analyses of this paper
utilize unidirectional tensile stresses because alter-
ations to the principal stresses were found to be
minor and may be ignored. We also note that for a
variety of reasons (plasticity, change in composi-
tion, properties, or flaw populations) this analysis
method may not apply for very thin bond layers
approaching micrometers or less.

Each assumed failure origin for a specimen has
its own specific & with its associated stresses. When
the ratios of volumes, surface areas, interface ar-
eas, edge lengths etc. (any dimensions containing
the flaws from which failures may originate) are
properly chosen to be different for experimental
tests, only one set of §’s, ai’s, §’s, and g;’s should
produce coincidence between the experimentally
determined ratio of ay's and the ratios of either the
integrals shown by Eq. (4a) or the summations as
shown in Eq. (5).

As with any analysis employing the finite ele-
ment (FE) method for determination of the
stresses, a critical question arises as to the FE-
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mesh sensitivity of Eq. (4). If sensitive, then the
method would not, in actuality, be useful for the
correlation of results from differently sized speci-
mens.

To provide insight into the ability of this ap-
proach to identify sources of failure, rectangular
bond specimens as shown in Fig. 1 were prepared
for testing in four-point bending, with either 50 wm
or 200 um bond-thicknesses. Rectangular bars of
the bulk bonding material were also tested in
three-point bending. The details of specimen
preparation were given in a presentation by Keeny
et al. [1]. The number of specimens and the results
for each test series are shown in Table 1.

A three-dimensional, finite-element elasticity
model® was used for evaluation of the stress distri-
bution throughout the volume of the bond region.

S0um
or
200um
1.0mm
10.0mm
20.0mm
10.0mm
4.3mm 0.3mm

4.3mm

Fig. 1. Specimen used for bond testing, The shaded arca repre-
sents the bonding material between rectangular beams of alloy
that were bonded together, Two small projections were used to
control the width of the bond at either 50 um or 200 .

The original bond model (Fig. 2) consisted of 2,197
elements in one quadrant of the specimen which
had three planes of symmetry, Subsequent refine-
ments of interface and surface elements led to ele-
ments 1/2 and 1/3 the original size. The validity of
the model was checked by comparison of the finite-
element results for a homogeneous beam with the
analytical solution, Examples of how the bending
tensile stresses change as a function of the thick-
ness of the bond layer are shown in Figs. 3, 4, and
5, for which Ey=E,/50 where: E, is Young’s mod-
ulus for the bonding material; and E, is Young’s
modulus for the alloy.

If the failure stresses are referenced to the
stresses along the surface, the ratio of the operative
(effective) dimensions, 8, from which the failures
originate are given by Eq. (6):

o (E)Lo{m” ®)
Serz \owy 2 A, ’

where ox denotes the reference stress.

For these calculations the bending stress at the
surface was used as the reference stress for calcula-
tions of bending strength and or2=o0wr,. Then,
from Eq. (2) and Eq. (6)

Lim

2oliAs,
002/ 001 = (Betttf Beprg) " = | L—r-| (7
205'}532;

which is equivalent to Eq. (5).

Table 1. Uncorrected Weibull paramcters and mean strengths

Test Gap (pm}  N* oy (MPa) {range 95%}°  m {range 95%}
4-Pt Bend 50 25 110 {106-115} 11.3 {8.2-14.0)
" 200 25 107 {10311} 115 {8.3-14.2)
3-Pt Bend Bars of 54 85 {81-89} 6.8 {5.5-7.93}
bulk bond
material

* N =the number of specimens.

©{}=the associated confidence bounds on o and 1 as determined from the data,

% Developed at NIST.
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Interface

Fig. 2. A 1/8 section of a three-dimensional model for finite element calcula-
tions of stress. The specimens (Fig. 1) had three planes of symmetry.

1.00

e
()
(=

STRESS
o
g

0.70

[ RS TR N IO TR TR PO SN NN Y DU T S N TN N

0.60 ++r———— T
0

T

50 100 150 200
THICKNESS (MICROMETERS

Fig. 3. Result of finite element calculation of the near-surface
bending stress at the bond midplane that bisects the bend speci-
mens into symmetrical halves,

3. Results

By the use of the right-hand side of Eq. (7) and
the finite-element-derived stress distributions,
characteristic strength ratios were calculated for
four potential regions (Table 2) where the failure
of the bond could originate, i.e., volume, surface,
interface, and interface-line-junction failure
origins. These were then compared with the results
obtained from the left hand side of Eq. (7). For
these calculations, a value of m =11.5 was used
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FEM STRESS/BEAM STRESS

o
o

[
H
=]

-
>

i

0.2

0.4 0.6 0.8 1.0
NORMALIZED THICKNESS

Fig. 4, Surface bending stress across the surface of the bond
material, from one interface junction to the opposite one, as
calculated for three thicknesses. The 5 wm thickness is pre-
sented to illustrate the trend toward beam stress calculations as
the thickness approaches zero. The deviations from beam the-
ory calculations are appreciable for thick bond specimens, show-
ing the need to usc the more robust finite clement method for
the failure analysis employing the RR function.

[in Table 1, m was obtained from Newton-Raphson
iteration for fitting experimental data to Eq. (1)].
The ratio of the experimental characteristic
strengths has a 95% confidence range of 0.955 to
1.11. When this ratio is compared with ratios calcu-
lated from the finite element analyses, the inter-
face (Table 2) is identified as the origin of failures,
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0 20 40 60 BO 100 120 140 160 180 200
THICKNESS (MICROMETERS)

Fig. 5. Finite element calculated stress for the adherend-adher-
ent interface surface junction line, illustrating the dramatic ef-
fect of bond thickness on interface stresscs.

Table 2. Ratios of characteristic strengths calculated from risks
of rupture; (strength, 200 pm)/(strength, 50 um). Four-Point-
bending

Assumed

failure Coarse Refined Refined
origin mesh mesh 1 mesh 2
Volume 112 1.12 1.12
Interface 2995 101 1.06
Surface 1.26 1.36 1.32
Interface- 1.24 1.25 1.41
surface

junction line

Interface- 1.38 1.37 1.37
surface

junction line

(extrapolated)®

“Obtained from extrapolations of finite element dcrived
stresses at centroids to the interface between alloy and bond

layer.

with all other failure origins excluded. The row
with the next closest match of strength ratios is that
for volume failures which, with a ratio of 1.12, lies
just outside the 95% confidence range, so this ar-
gument, by itself, is somewhat unconvincing. How-
ever, volume failures are ruled out because the m
value of 11.5 from the bond tests differs, at the
90% confidence level, from the value of m =6.8
which was obtained from the bulk specimen test
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data. The bulk specimens can fail only by volume
or surface failures. The strength ratio calculations
for bond specimens rule out surface failures. The
m value differences then are used to rule out vol-
ume failures.

Hence, the most reasonable explanation is that
the bond specimens fail by interfacial failures. This
Is consistent with features of the failed specimens
which always presented regions showing interfacial
debonding.

There is some possibility that the strength of the
bond itself would depend on the bond thickness
due to a change in material response (i.e., forma-
tion of plasticity). Such effects obviously cannot be
dealt with by the linear elastic analysis presented
and within the confines of this analysis, interfa-
cially initiated failure is concluded.

4. Summary

An analysis by Weibull RR for bonded speci-
mens of two different sizes tested in bending has
shown:

1) Correlations between characteristic strengths,
oy’s, were possible through the use of finite-ele-
ment derived stresses in the RR analysis.

The correlations were not sensitive to the par-
ticular mesh chosen.

For the interface, surface, and interface-surface
junction line, the stress ratio calculations em-
ploying the element centroid stresses are not
significantly changed by use of stresses from ex-
trapolations to the interface. The largest differ-
ence is for the interface-surface junction line
and these are shown in Table 2.

Because the absolute magnitude of each RR
calculation changes, mesh of the same size and
configuration must be used for each set of com-
parisons.

The origins of failures can be determined by
suitable testing and analysis of different size
bond specimens and bulk specimens of the
bonding material. This involves the use of a
combined approach, analysis of the oy’s and m
values.

The determination of failure origin by this ap-
proach can be useful for focusing attention on
the proper parameters if improvements in sys-
tem strength or performance are sought,

2)

3)

4)

5)

6)
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1. Introduction

Let %, ={X., ..., X, ) be a point sct of independent
identically distributed d-dimensional random vectors
sampled from the probability measure u, and K be a
punctured at the origin cone in R% d > 1. We define the
kth layer as

FOH) =X : R (K N H)=k—1} k= 1,2,...,

where K, =x+K is the translated cone with vertex in
x € R”. Intuitively, the kth layer is the set of the kth
cxtremes of #, in the direction K. The prime examples
we have in mind arc (1) the Pareto-optimal points corre-
sponding to the first layer in the direction of the positive
orthant, and (2) the total maximum, which may be con-
sidered as the first layer in the direction of the cone,
complement to the negative orthant. We are intcrested
here in the distributions of random variables

V.= # 293,

counting the number of points in the kth layer. These

distributions depend essentially on both X and “.
From a more general viewpoint, the first layer can be

regarded as the set of maximal elements [4] with respect
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to the binary relation % in R? defined as x%y < x—
Y € K. Alternatively, any scale and translation invariant
binary relation generates a cone by setting K = {x € R*
xR0} and the maximal elements are conical extremes.

Two above cases of the counting problem have been
considered in the literature under the assumption that g
is either a product of one-dimensional marginal mea-
sures or a multivariate normal distribution [2,10,11 ,12].
It is well known, for example, that if u is a product
measure in R? then the average number of Pareto points
is of the order of (log n)*", while the probability that the
multiple maximum exists is n'~.

In this paper we focus on a class of distributions 13
already studied in connection with multivariate ex-
treme—value theory [8] and statistics of convex hulls
[1,5,6,9]. These distributions are characterized by regu-
lar variation of the tail of the radial component and
asymptotical indcpendence of radial and angular com-
ponents. We show that typically the V,*s converge in
distribution and the expectations have finite limits as
n — = In the special case of slow variation we calcu-
late explicitly the limiting distributions.
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2. Preliminaries

We define a cone as a punctured at the origin, scale-

invariant Borel set in R?, ie, 0 € K, IK=K Vi>0.

Each cone is uniquely determined by its spherical base
8, =K NS, where § denotes the unit sphere. We asso-
ciate with K also the spherical set S_ obtained by reflec-
tion about the origin, S = S\($, U S)and 5. =5, N S..
The cone with spherical base C C S will be denoted
cone (C).

Set B, ={x€R*:|x[j=r}
A, c=cone (C) N B..

We fix in what follows a cone K and a multidimen-
sional probability distribution u satisfying the following
conditions:

(i) There exists @ = 0 and a probability measure p on S
such that

B:=RAB, and

(B
lim ——==1r" >0, 1
T I o
(i) For all p-continuous C C §
"‘(A!.C)
lim ———=p(C), 2
i Sy O @

(ii1) p (int 8,) > 0, and

(iv) p has no atom at the origin.

Consider an #id sample from u, ,=4{X,,.... X, }
represented in the polar form as the product of radial
and spherical components: X; =R, Z;, where R; =[x/,
Z; = X,;/|X;||. The above conditions on g have a natural
probabilistic interpretation. Condition (i) means that the
distribution function of the radial component,

F(r) = p(B),

has a regularly varying tail. Condition (ii) is translated
as

lim P{Z, €. |Ry>r}=p()
r—w

and is to be interpreted as the asymptotic independence
of radial and spherical components, where the limiting
distribution p does not disappcar in the interior of S,
(condition (jii)). The last condition is not essential and
assumed for technical reasons.

Given a Borel set B C R?, we represent the number
of the kth layer points in B as the sum of random indica-
tors

#ﬂ'ﬂ(% NAB)= 2 Lix, & 2@y 0 a3
i-1
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and using the iid assumption write for the expectations

E#F%(3, N B)=nP{X, € $NHK)NB}=

n(:j)P{xl EB:Xa . XeEKx i Xkrss- - XaE Ky }=

"(:j) L(#(Kx))*"(l—m&))“ du(x) . (3)

The following lemmas will be used to estimate these
integrals.

Lemma 1. There exists 7> O such that w(K,) >
T(1—w(Byp) for all x ER? .

Proof. Consider first the case where there exists a
linear isomorphism which maps K onto the positive
orthant. Let y be the inverse image of the vector
(1,...,1) under this isomorphism. By convexity,
K, CK, for all x € B,.

Condition (iii) allows one to select a compact p-con-
tinuous set CC S, with p (C)>0 . It is easy to see that
y € int K, the sets K,,, s>0, are increasing as s 1 0 and
U, Ky =int K. It follows that C C K|, for sufficiently
small s. Furthermore, for small s we have also
Aic CK,,. Indeed, the points of A, ¢ are representable as
tx , with 1> 1, x € C, thus, by convexity, x € K, im-
plies x € K,,, C K,,. Homogeneity implies A, C K,,.
It follows now from Eqgs. (1) and (2) that

»u'(Kry) - w(Aise) _ H(Arse) w(Brs)
w(B) " wm(BY)  u(Bi) u(B)

— 5p(C), r—®©, (4)

From K, D Ky, we derive for sufficiently large r, and
n,l‘" > ry that

w(K,) . P &) 1
F‘(Blch‘lﬁ) h »""(ch) 2

$"p(C).

For x € B,, we have K, D X, ,, therefore Eq. (4) along
with the inclusion K., D K, ,, t > 1, implics

w(K,) - wik, )
(Bl — nBy)

The assertion follows in this case by setting
T= min(ﬂ‘(Kroy )! % -"aﬂ(c)) .

For arbitrary K one can find a smaller cone K' C K,
which is linearly isomorphic to the positive orthant and
still has the interior of its spherical base of positive
p-measure. This is possible since the spherical d-sim-
plexes build a measure-generating class on S. It remains
to note that w(K,) = w(K}) for any translation, whence
the estimate holds in general. [J

>pK.y)> 0.
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Lemma 2. IfE V,"“ has a limiting value v € [0,%)
then all EV,%, k=23,... converge to this limit as
n—oo,

Proof. Letm(t), t € [0,1], be the distribution function
of the image measure induced by the mapping
x—>p1(K,). Changing variables transform Eq. (3) to the
one-dimensional Lebesgue-Stiltjes integral

EV® o n(‘;j)ﬂ N (1-t)*dm (r).

A slight modification of the standard Tauberian theorem
as found in [14] assures that the limiting value of this
integral for k= 1 exists iff m(¢) is left-differentiable at
t=1, in which case the limit and the derivative have the
same value. Applying this theorem in the reverse direc-
tion one can easily see that all the EV,,* ’s must have the
same limit. (J

Lemma 3. Assume v, is an increasing sequence such
that li_t:l n(1-F(y,))—>7v, y>0, then

n 30

lim sup EV® < 71, )]

n—o

lim sup E # (£(3,) N B,,) <e "7, ©)

with T determined by Lemma 1.
Proof. Set

finy= dF(r), t € [0,1].

Firi=t

Regular variation of F at infinity implies readily that for
all sufficiently distant discontinuity points the ratio
(jump-size)/(distribution tail) is close to zero. It follows
that (1-£(1))/(1-1)—1 as t T 1 (for continuous F this is
obvious since f(t) = 1 ). Lemma 1, a change of variables
and the Tauberian theorem yield

EV," = n[ (1K) 'du(x) <
n j (I-r(1-p B 'dp(x) =
R4

J(l—f(l—F(r))""dF(r) = f (I—r(1-r))y"'df(r)—»7".
R 1]

Similarly, ,-,.
lim sup E#(£(%,)NB, )<n f (1-r(1=F ()™
n—« 11

dF(r)=

FYn) ’
n f ( l-r(l—r))"“df(t)“*nJ. (I=r(1-1))" dr

1]

—e 77
where the equivalence can be justified by partial integra-
tion, [J

3. Pareto-Tails: a>0

In this section we study the limiting behaviour of V,®
under the assumption that the regular variation index o
in Eq. (1) is positive. Qur plan is to translate Eqs. (1) and
(2) into the convergence, of a suitably normalized sam-
ple, to a Poisson process[6,15] and then apply a continu-
ity argument to prove also the convergence of the
v, %,

Compactify R by adjoining the infinite point  and
then puncture in the origin. The resulting topological
space, say R, is isomorphic to R and canonically em-
bedded into its compactification, bounded from the
origin Borel sets B C R’ being relatively compact. We
endow the space M(RY) of Radon measures with the
vague topology: m, ¥ m iff m,(B)—m(B) for all rela-
tive compacts.

There exists a scquence of positive constants a, 3%
such that the measures v,(-) % nu(a,-) converge
vaguely to the measure v determined by

VArc) =17 p (C), v({*}) =0. %

The limiting measure is in M(R%) , being infinite on
balls centered at the origin as well as on the sets
cone (C) with p(C)> 0. In particular, condition (iii)
implies v (int K') = o. Clearly, v is a product measure in
polar coordinates and has no atoms.

Let £be a Poisson point process in R? with intensity
measure v, and £ be the random element of M(R%)
associated with the scaled sample a;" %, . Obviously, the
operation of taking a layer commutes with rescaling:
EPad,) = aFP(H,), a> 0, therefore the number of
points in each layer remains invariant under scale trans-
formations. One can expect in this situation that V,®
converges in some sense to an analogous functional of
the Poisson process.

Define the kth layer of the Poisson sample as

FUE = ER: E(x =1, E(K)=k-1},

and denote V® = #££%(£) the number of points in the
kth layer.
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Using the polar representation, x = rz, and homo-
gencity we can write ¥(K.,) = r ¢ (z), where ¢(z) =
YK} is a function of the spherical argument. Using
Palm probabilities and integrating along radial rays we
represent the expectations as

K k1
EV® = Lﬁ b &) (‘Zi 1)))' dw(x) =
o k-1
f f o0 B 4 cpicr 7y
dp(z)
L) ®)

The resulting integral does not depend on &, as it is
suggested by Lemma 2. The intcgration area can be
reduced to Shint S since ¢ is infinite on int S_.

The following lemma is found in [5].

Lemma 4. Let E be a locally compact, Hausdorff and
separable space; ho, hy, ... be a uniformly bounded
sequence of real measurable functions commonly
supported by a relatively compact set; and mq, m, . . .
be a sequence of Radon measures on E such that
m, Y>my. The set D={x € E :3{x,}, x,>x, h,(x,)
- h(x)} is measurable and if myD)= 0 then
I Audm,—§ hodmo.

Now we are ready to prove a convergence result.

Theorem 1. Assume (1)—(iv), a >0, and

v(~3K) =0, ©)

vXv{(xy) ERXR’: (x-y) EAK}=0.  (10)
Then for all k= 1,2, ...

VP, VO SO, v, an

EVRSEV® p_so, (12)

Proof. By Skorohod’s theorem we can find random
point measures £,, £ € M(RY) satisfying £, 2 &,
£ 4 ¢and £, £as. Thus to prove the convergence in
distribution (10) it suffices to consider the case & % &
a.s. In what follows we fix a typical realization of £ and
assume n sufficiently large.

Since v(int K)=%, £ lays in the cone interior
infinitely many points. Selcct & of them, say x,, . . .
Pick r sufficiently small to satisfy B, C N
well as £(dB,) =0 and also B, N {x),...,x;}=0. The
complement B; is relatively compact hence the
processes & and £ have there a finite number of points,

» Ko
-1 —K,}. as
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SaY Ynis---,Yap @and yi, ...y, respectivcly. These
points may be labeled so that y,; — y;, as it follows from
the vague convergence. By the construction, any trans-
lated cone K, with x € B, contains at least k points of £,
thus B, N $9(£)=0 and also B, N .£Y&)=0 for
j=1,... k.

For y; € —int K, the cone K, contains a vicinity of the
origin, where £ has infinitely many points. Therefore
7 & Ny Z0E), yas & Ny POE,).

The condition shown in Eq. (9) assures that no one of
Yis o+« Yp lies on —gK, almost surely.

For y; 1 K, the shiftcd cone K|, is bounded from
the origin. Therefore there exists an open vicinity of
cl(Uf., K,,) which is still relatively compact, and hence
contains at most a finite number of points in addition to

Yi-oos ¥ - By Eq. (10), £(K,) = 0 as. Again the
poinwise  convergence  implies & (K, )=
&(K,,), whence (V,", ..., v,y = (V™" | . v®) and
thus (11).

Now turn to the convergence in mean. It is enough to
prove Eq. (12) for the first layer, k = 1. It is easy to see
that

EV, 1 ~ J exp(—v, (K ))dw, (x) = j (...)dv+

j (...dy, r=0
BE

Take a point x & ~cl K and a sequence x, — x and
consider the indicator functions of the sets K, and K, as
the A’s in L.emma 4. The divergence set D is dK,,
whence by (9) and the lemma v, (K,) — »(K,).

For x € —int K, x,—x we have 1,(K,,) to v(K,) = o
since K., contains some fixed vicinity of the origin,for
all sufficiently large n. Therefore in this case also
v, (K, ) > (K,) = =

To make further use of Lemma 4, consider this
time the functions hg(x) = exp(—(K,))., h.(x)=
exp(-v(K,,)). For the discontinuity set we have D C
—dK U {x : ®dK.) > 0}. The assumptions in Eqgs. (9)
and (10) imply (D) = 0, hence for any r

f exp(—v, (K )dv, (x) —>J exp(—v(K,))dux).
Now apply Lemma 3 to derive the estimate
lim supj exp(—v, (K)dw(x) < 7 'exp(=»(BH)T).
n—e S

The right-hand side here tends to zero as r—0.
Putting this all together and comparing with Eq. (8)
we conclude
lim sup EVY)) < EV®,

n—s
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The reverse incquality,

lim inf EV," = EV",
n—-3»x
follows from the convergence in distribution O

Remark. The continuity conditions of Egs. (9) and
(10) are actually some properties of the spherical mea-
sure p. The first one trivially translates as p (—9K) =0,
but we have not been able to find a re~formulation for
the second. Sufficient conditions for Eq. (10) are: p is
non-singular, and &8, lies in a (n—2)—-dimensional set;
or XK is convex, 7K has no two—dimensional facets and
p(8S,) =0.

Example. Here is a remarkable case where the expec-
tations are explicitly computed. Consider the two—
dimensional Cauchy distribution specified by the
density dp(x)= Qm)'(1+x|)>?dx, x €ER2. The
radial tail is regularly varying with & = 1 and the circu-
lar measure is uniform, ie., dv (rz) = 27 )'r *drdz,
r>0, z € [0,27).

Assume first that K is the positive quadrant. The kth
layer arc those X;’s which are exceeded by exactly k—1
points of #, in both components. Integrating yields

Ccos z +sin z —1
247 sin zcos z

¢(z)=v(K.) = zE€ (~n/2, m)

and ¢(z) = otherwise. Computing thc integral in
Eq. (8) we obtain

lim EV,® =1 4+ 37,
m 3

For k=1 we have the limiting mean of the number of
Pareto points.

Now suppose K is the complement to the negative
quadrant. The kth layer consists of those X;’s which
exceed all except some k-1 sample points in both com-
ponents. We get

CcO§ Z+sin z +1
29 sin zZ cos z

(z) = z€ (0,m/2)

and ¢(z) = = otherwisc. Computing the integral Eq. (8)
in this case, we obtain

lim EV,®=1-Z,
n—s

The first layer is either empty or just one point, maxi-
mizing both components, thus this mean value coincides
with the limiting probability of the total maximum,

The limiting distribution and higher moments of the
V@ ’s can be, in principle, expressed in terms of some
integrals similar to Eq. (8). These expressions do not
scem tractable by analytical methods because of the
complicated integration domains.

4. Slowly Varying Tails: @ =0

The case of slowly varying radial tail, with &« =0 in
Eq. (1), is of special interest. The above Poisson approx-
imation method does not work, since the sample cannot
be rescaled to provide a non-dcgenerate limit. To get
around, we extend here a method already exploited in
[1], where the number of convex hull extremes of a
sample under slighly stronger assumptions on the
distribution has been studicd.

We assume for technical reasons that F is continuous
though, in fact, slow variation is all that is needed.

Let X5, ..., X" be the elements of %, arranged in
the norm-decrcasing order, ie., X0 >...>[x%|.
SetRY =R;and ZY' =7, ,iff XY = nij=1,....n.
One can recognize in the R'} °s the radial order statistics.
The associated spherical variables, ZU s will be called
concomitants . Note that the continuity hypothesis make
the definitions correct since the radial components are
different with probability one.

Maller and Resnick [13) proved that slow variation is
equivalent to

R,[H”
RT

Y0 i=12,.... (13)

Our convergence results cffectively cxploit this fact
combined with the asymptotic independence of the con-
comitants shown next.

Let 2", Z'%, ... be iid S-valued random variables
with distribution p.

Lemma 5. Assume that F(r)= u(B,) is continuous
and Eq. (2) holds. Then

VAN NG AL L S S I

Proof. For p-continuous C C § write (2) as

. 1=Fe(r)
where  Fe(r) = p(cone (C) N B,). Select  arbitrary
k€N and p-continuous spherical sets Ci,..., C;.
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We have Introduce the random variables

T,9=0; T,® =min{i : Uk L7(%,) N X",

1
P{z':'ec.,...,z':'eck}-(n—fﬁ -
‘ XDy =03, k=1,...,n,

ni w_ 0] W
P{ZV'€ G, X' =Xy 20 € G X, which count the X; ’s in the norm-decreasing order until

the first k layers having been filled. Clearly,

1
X }= L _pzlec,RU=R,..., V® < 7® < 7% Denote S” the product of infinitely
(n—k)!
many spheres, and set
ZWe ¢, RM =R} ——P{zi,:' ec,..., 7Oy =0; T®@ =min : (S, NV {21, .... 5=k},

—k)!
Vo) =#{ : T*Y () <j < T®(@), 7 € S\S_},
ZI:IEC;;,R|>...>R1;R§>R; fori=k+l,...,n}=
where z=(z;,2,...)E 8" and inf@=c. For i=j

! the set
oo [ Ewrwea .- "
aet uea ZE S V@) =}, TP@) =i}
n! ek B is a finite-dimensional cylinder in S”.
(n—k)! f (F(re)™dFc,(r) . . . dF ¢ (re) = Denote Z =(Z",Z%,...)the sequence with iid

n>..on components distributed according to p, T® = T®(Z),
V® = V®(Z). It follows from the definition and condi-

n-1 o tion (iii) of Sec. 2 that T®, k=1,2,...is a strictly
ln(&‘c—l) I Fr)dFe(r) ... dF o) increasing sequence of finite stopping times with

Taeemi> 0 respect to Z", Z", . ..
Theorem 2. Assume (i)-(iv), a =0, and p(dS, U 45))
-1 N i =0. k=1.2,...
n(27) [ @eoraraen [ .| are Then Jor any
(4] i i

VR, T, ... VOISO, T, ..., vO TH).

n—l1 n-k

<+ dFe (ria) = i'!(J‘c—l) J:(F(n)) Proof. Fix integers vy, . . ., i3 ty, .. ., i = t satisfying

0<rl<...<t;,alu10$v,-ét,-—t;_|fori= l,...,k.We
(I—Fcl (r;,)) . (l—F(_-k_l (re)) dFQ(J’}) - need to prove that

) (] ) orli) [ere Bmpoonme e
P{V@=y, TP =r; i<k}
(for large r uniformly in n)

We endow S' with the product measure p' and the
( [ l) p(C) ... p(Ciy) J-m (I-F(r ) (F (o)™ Euclidean metric. Define

dF (re) + € > p(Cy) - .. p(Ce) + €,

as n— , where we have used Eq. (14) and applicd an D=05.U a8, D={z,....2) ES":

argument similar to that in Lemma 3. Asymptotically, {zi,...,yND =0},
the probability is factorized, whence the statement []
To prove the convergence we combine in what follows A=z ... 2)ES Vg, ..., 2)=

the above lemma and Eq. (13). The idea is that the points
with top layer ranks have also small ranks in the radial
components. On the other hand, conical extremality of
the points with small layer ranks is determined by their, The definition of & is correct due to the cylindrical
almost independent, spherical components. property. It is casy to see that & is compact, S\ is

open and, by the assumption, p'(2)=0. It follows,

Vi, Tz1, .., z) =t i <k}
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p'(A) = p'(\D). For any & there exists &5 with the
properties:

HAsCAD, p(A)-p(ds)<8, dist(s45,D)>0,

p'(9d5)=0. (16)
To prove this, take %= {a € D :dist (a,d(\
2))>6}) then €, is an open set, incrcasing to
AD as 610 . We hae p'(DADNE) <8 for
sufficiently small 6. On the other hand, 3%, C
{a € §': dist (a,d(A\D)) = 8}, these sets being dis-
joint for different 6. Hence the set of the values of 6
with p'(3€s) > 0 is at most countable. Selcct an appro-
priate 6 and set o5 = €, .

We derive from Eq. (16) with the help of some topo-
logical considerations that for sufficiently small €

‘LJ (Z+B)Ncone(D)=0 (z1,...,z)E As. (17)

Assume now that the compound event

@0,..., 2" € ofs; RUSRIM i=1,...,k (18)

occurs. We show next that in this case

TO=1,V@=v, i=1,...,k. (19)
Let O be an clement of the finite algebra of spherical
sets generated by S, and S_. The following equivalence

holds:
XU-XYecone(Q)=ZeQ forl sist,i<j<n. (20)

Indeed, note first that 3Q C D. By (17), Z! € Q implies
Z'+ B.C cone (Q). From Eq. (18) we have also
XUy By Ccone (Q). But -XWe Biy thus XN —
XV € cone (Q). Use Q° instead of Q to prove the
reverse implication.

The definition of & and Eq. (18) yicld Z"' € .,
i=1,...,k. Setting Q@ =S, in Eq. (20) we have X
XY €K, t;<j= n. Therefore,

k
& XMy (NL':JI LNH,)) = 0.

Let iy <j<t; and ZY €S . Setting Q= S_ in Eq.
(20), we have {X/*",..., X'} C (XY +K). Setting
@=S. we have further X" X, . xk-ly
€ (XD +K). Thatis, XU & U, = L™(K).

Let,, <j<t;and ZJ € §, . Substituting Q = S, into
Eq. (20) we get XU-X"' & cone (S,), j+1=<p=n,
together with $,=-S, and S, N S, =0 this yields
KL XMy N (KXY =0, For Q=5\S, and
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Xae
>t} we have

pe {lv--'9j_1}\{tlstﬁs'--’ti—|} we hm
(K + XU, Similarly, for p € {t,,1,, ...

.CD ¢ NN (L Yab ¢ 4

Thus in this case XY € F(F,).

In the same manner, Z!§' € S\S. implies X% €
yi—ll(m)'

Summarizing, if Eq. (18) holds
LUK =X <js 1, ZVE SN,
Eq. (19).

Now from Eq. (13) and Lemma 5 (recall that r=1¢, )

then
whence

P{ZY, ..., 2% € o, R > RV,
[= l., P ft}—)p“(&fs).

Recalling the definitions of s and &5 we get

liminf PAVO = v, TO =1, i< k}>
n—w©
PVP=y, TO=1; i<k}é.
Take S=8(i,....vish, ..., I) with
36y . .., vishy ..., )= and choose a diagonal

subsequence of the values of n to get the convergence of
the probabilities in the left-hand side. Recalling that
probabilities sum to one, we derive Eq. (15) by setting
B—00O

Convergence in mean does not require additional
restrictions, as shown next.

Theorem 3. Under the assumptions of Theorem 2

EVOSEV®, 3o,

Proof. Tt is sufficient to consider only the case k = 1.
Denote by 1,' and /' the indicator functionsof the
events {X%Y € FNHK,)} and {ZV € S\S, i< T},
respectively. Clearly,

IACEY (UMY (R LR (LI (I

By an argument similar to that used in Theorem 2 we
show that
AW, 1y qm oy m e 12, (21)
Choose Y. satisfying np,—A , where A >0, p, =
I-p(B,,). The random variable N =#({X,,...,X,}
N B:,) has binomial distribution with parameters (n ,p, ).
By Eq. (6),

E(LM 4. +15) = E(E(H,) N B,,) < €7 .
@2)
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Fix m and write the expectation as
EVO=E(V+... ITY=EJ%+... 1"+
EC" 4 I e JHE@ 4 T izt
E@ "+ . I lwem.
The first term converges by Eq. (21):

Eq@''+... I'™SEI" +. .. I'). The first and the
third terms are estimated by Eq. (22) as

E@™ 4+ 1) Lwmm + EE™ 4 1) Tven )
<E@MV 4.+ el

Since N is binomially distributed, we have for the
second term

E(f,l,m”+. . .I”:]) |{Nam}<E(N Tvemy —

AP{N,=m-1}, n—ox
where N, is a Poisson random variable with parameter
A. Selecting A and then m sufficiently large, we prove
lim sup,_. EVY < EV®.

The inverse inequality involving lim inf follows from
the convergence in distribution (I

It is not hard to find the limiting distributions of the
V%5, Note first that

(V(l}’ ?‘(l))9 (V[ll, T’(Z)_T(l})’ .

are all iid, therefore it is sufficient to consider only the
tirst pair. Clearly 7 is geometrically distributed with
parameter p(S,). The probability law of V" is found
from the following scheme: throw down the iid points
ZWM, Z¥ .. in S according to the probability law p
until the first point falls into S, , then count all the points
falling into S\S_. To make this precise denote

Po=p(So), p= = p(8+), p-= p(5.), p. = p(S.)

(thus po + p. + p.=p- = 1). The joint distribution of V!
and T% is this:

PV =i TO=jy=P{{Z",..., 2V} N S, =0,
Zhe S H#{ZM, .., Z0yN(S\S) =i} =

P{{Z",....Z"yn S, =0,
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ZUE SN\S, #({ZW, ..., ZV I N (S\S)) = i1} +
P{{z", ...,z ns. =0,z € 8.,

B{Z", ..., ZV YN (S\SY) ~ i) =

P {#({Z",...,Z0 "N Sp) —i-1,

#HZM, ..., ZV"Y 0 (SDSL) = j-i )X
P{ZV € SNS.} + PLHEZY, ..., Z¥ 13N Sy =i,

#UZM,.., ZV Ny N (SN = j-i-13P{ZV € 8.} =
j-1 i-1 i -1 i fi-1
(‘;_1) po (p—p=Y " (pip=) + (" i )po (P—p=Y""p-,

where i = 0, j= 1 and j = i. Summing over j we arrive
at the limiting distribution of points in the kth layer:

) _ __Pa_
P{V _0} ].—p +p1’
. o'(-pp. .
Pvh = =L_% i=172,...
{ YUt p

If the cone satisfies K N -K =0 (or, more generally
p(S. N S)=0) then p. =0 and V® is geometrically
distributed. A little additional work is needed to find the
expectation:

gve 12 (23)
ps

Example. Assume that the radial tail is slowly vary-
ing and p is the vuniform spherical measure.

For K = R? we have p, = p_=2", and Eq. (23) yield
EV® — 27 1. In particular, the mean number of Pareto
points in two dimensions converges to 3.

Taking the complement to the negative orthant, we
have p, = p_= 1-2¢and EV® — (2°-1)™". In two dimen-
sions, the probability that the sample has the double
maximum tends to 1/3.

Appearing of inverse numbers in the above example is
a general phenomenon.We write further V' (K) to
emphasize the dependence on the cone.

Theorem 4. Under the assumptions of Theorem 2

lim EVE (K)EVY (-K) =1,
n—xe
provided one of the numbers p, or 1-p_ is positive.
Proof. This follows from Theorem 3, Eq. (23), and the
formulas p_(-K*) = 1-p.(K), p.(-K9) =1-p(K) U
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Remark. Given a binary relation, say %, on a sam-
pling space, and a random sample #,, therc are two
natural ways to definc the ““kth extremes” of &, : (1)
sample elements X; which are in % with all other sample
elements with the exception of some k-1 points; or
(2) the elements X; such that there are cxactly k-1
sample points which are in the relation with X;. In the
theory of partially ordered sets exiremes (k = 1) of the
first type are called the greatest points, of the second
type—maximal [4]. This is best illustrated by the
natural partial order of R% total maximum is the great-
est point, while Parcto set consists of maximal points. If
the binary relation R is generated by a cone K, as
mentioned in Introduction, then the K-extrecmes are
maximal points, while the —X © -extrcmes are the greatest
points w.r.t. . Baryshnikov [3] has proved that the
asymptotic upper bound for the product of expectations
of the numbers of the extremes of both types is at most
1, for any fixed 9 and k. Theorem 4 shows that this
bound is sharp.

Remark. Normal multivariate distributions can be
viewed as the case of fast decreasing radial tails, o = .
The mean number of conical extremes demonstrates
typically the following behavior: for any k, EV}
infinitely grows if K is contained in a half-space, and
tends to zero if K contains a half-space [10,11].
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This article develops new theory and
methodology for the forecasting of
extreme and/or record values in an ex-
changcable sequence of random vari-
ables. The Hill tail index estimator for
long-tailed distributions is modified so
as to be appropriate for prediction of
futurc variables. Some basic issucs re-
garding the use of finite, versus infinite
idealized models, arc discussed. It is
shown that the standard idealized long-
tailed model with tail index @< 2 can
lead to unrealistic predictions if the
observable data is assumed to be un-
bounded. However, if the model is
instead viewed as valid only for some
appropriate finite domain, then it is
compatible with, and leads to sharper
versions of, sensible methods for pre-
diction. In particular, the prediction of

the next record value is then at most a
few multiples of the current record. It
is argued that there is no more reason
to cschew posterior expectations for
forecasting in the context of long-tailed
distributions than to do so in any other
context, such as in the many applica-
tions where expectations are routinely
uscd for scientific inference and deci-
sion-making. Computer simulations are
used to demonstrate the cffectivencss
of the methodology, and its use in fore-
casting is illustrated.

Key words: Baycsian forecasting; ex-
changeability; long-tailed distributions;
record values; tail-index estimator.
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1. Introduction

Consider a sequence Xj,...,X, of positive random
variables that is exchangeable. We say that X, is
a (new) record value if X4, > X, fori =1,..n. See
[2] for some related discussion of record values in
the iid case. The problem that we address concerns
forecasting of the next observation, X, |, given that
it is a record value, conditional upon the data
X;=x;, for i=1,..,n. In other words, given that
X,+1 sets a new record, how large will it be?

In the Bayesian approach, with squared error
loss, the forecast of X, ., conditional upon the data
Xy,....Xu, and upon X, >max[Xy,...,X,], is simply
the posterior expectation of X,,., conditional upon
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the same information. Note that if a sequence is
exchangeable, then the future variables are also
conditionally exchangeable, given the realization of
the first n variables. Hence each of the next N ob-
servations has in fact the same posterior predictive
distribution. The posterior expectation for X,,;,
conditional upon X, .; being larger than each of the
first n observations, is then the same for eachj = 1.
It may be noted that there are two quite different
questions that arise concerning the forecasting of
future record values. The first concerns the fore-
casting of when the next record value will occur,
while the second concerns the forecasting of the
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magnitude of the next record value. In this article
we only consider the second question.!

Although we focus attention here only on the
prediction of the magnitude of X, ., given that it
sets a new record, there is a relatively straight-for-
ward extension of these results to the evaluation of
the posterior expectation of X,+;, given that it sets
a new record. To obtain the prediction of the next
record value, conditional upon the data xi,...x.,
and upon X, +; being the next new record value, we
must evaluate the posterior expectation of X4,
conditional upon the collection of inequalities that
define the event that X, .; is the next record value.
This can be done by a generalization of the proce-
dure for forecasting X, +1, conditional upon its be-
ing the next record value. For example, the
posterior expectation of X, conditional upon its
setting a new record, can be obtained by condition-
ing upon the event that X, sets a new record, and
then making the same type of evaluation as above
for Xa+1, given that it is a record value; or alterna-
tively, by conditioning upon the event that
Xu+1<max[X,...,X» ], and then evaluating the pos-
terior expectation of X, given that it is larger
than max[X},....Xx]. Since in the Bayesian frame-
work with a specified a priori distribution, the pos-
terior probability that X, ., sets a new record is
known, there is no difficulty in principle in extend-
ing the analysis for the posterior expectation of
X,+1, given that it sets a new record, to the fore-
casting of the magnitude of future record values.
Explicit algorithms for doing so will appear in a
later paper.

Although the present paper deals only with the
evaluation of the posterior expectation of X,+i,
given that it sets a record, we shall nonetheless
sometimes speak of forecasting the magnitude of
future record values, since this can be achieved by
the same basic methods. Similarly, one can obtain
the posterior expectation of the maximum over
some finite horizon, say the maximum of
X +1,-,Xn+n, given that this maximum exceeds our
current record value. This is a problem of consider-
able practical importance both in economic fore-
casting of interest rates, and in engineering design,
where for example, one desires to build a structure
capable or withstanding severe winds or earth-
quake tremors over a certain period of time. To the

! For those unfamiliar with exchangeability, it may be remarked
that cxchangeable sequcnces are strictly stationary processes,
and can be strongly dependent. An interesting and important
class of exchangeable processes consists of the Markov-Pdlya
processes, discussed in [3,4,5,6], which play a major rolc in the
theory of stochastic chaos.
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best of my knowledge such forecasting has never
been attempted before in the sense of providing a
procedure that could be recommended for serious
consideration in real-world problems.

If we assume a conventional statistical model
with some unknown parameter 8, then in principle
these are straight-forward Bayesian problems,
since one can integrate out unknown parameters
with respect to their posterior distribution, to ob-
tain the predictive distribution for a new observa-
tion; and then condition also upon such a new
observation being a record value, in order to an-
swer the question. For example, one could obtain
the posterior expectation and variance for X..i,
given that it is a record value. However in typical
real-world problems involving forecasting of such
extreme values, the model is always uncertain and
often unreliable. This is cspecially so in the tails of
the distribution, where there is little, if any, past
data to rely upon. Thus to obtain reliable forecasts
requires serious attention to model uncertainly.
See Hill {7] for discussion of the selection of mod-
els from a Bayesian viewpoint, Poirier [8] for a
Bayesian analysis of some theoretical models in
economics, and Singpurwalla and Meinhold [9] for
Bayesian robustification theory in a closely related
area.

In this paper we attempt to deal with the prob-
lem by using the formulation for inference about
the tails of the distribution initiated in [1]. See [10]
for an exposition, and Csorgé et al. [11] for related
asymptotic theory. This approach utilizes only the
upper order statistics of the past data for inference
about the upper tail, since it is only such order
statistics that fall in the upper tail where the form
of the distribution is assumed known. Seriously to
utilize the information in the other order statistics
requires knowledge concerning the global form of
the distribution, and such knowledge is often un-
available. Suppose that given the parameter a, the
upper tail of a distribution F on the positive real
line is of algebraic form, with tail index a. We as-
sume that

1=F({)=P(X >t|a)=C xXt7",

for C >0,a>0, and ¢ in some interval (4,k) that
is considered relevant for prediction of future ob-
servations. It is supposed that a random sample
X;=x;, for i=1,..n, from the distribution is
available, and based upon this data we wish to
forecast the next observation X, +,. Such prediction
in the Bayesian context amounts to putting forth a
posterior distribution for X+, that is obtained by
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integrating out unknown parameters such as a,
with respect to their posterior distribution, and
then making appropriate forecasts by minimizing
posterior expected loss with respect to some loss
function. In this article we consider only squared
error loss, but our methods can be used in connec-
tion with any loss function believed appropriate.
See Aitchision and Dunsmore [12] and Maret [13]
for the Bayesian theory and methodology of such
predictive distributions.

Often a simple summary of the posterior predic-
tive distribution, such as the posterior expectation
and variance of X, ., suffices for many practical
purposes. In typical applications 4 will be the
largest order statistic of the past data. k can some-
times be + , but for reasons discussed below will
often instead be some modest multiple of 4. We
might be interested, for example, in forecasting the
next observation, X, ., conditional upon its being
between x and 5xx®, where x, is the largest
order statistic of the past data. Forecasting of such
a record value is an especially difficult part of the
overall forecasting problem, since by assumption
there is no past data of this magnitude. Yet in fore-
casting extreme values, it is necessary to consider
precisely the situation in which the observation is
more extreme than anything yet seen. For example,
in designing a structure to resist high winds, one
must make allowance for forces more extreme than
have yet been experienced. It would be foolish to
imagine that such forces have already been ob-
served at their maximum.

The best that one can do in such circumstances
is to use what relevant theory exists, making sure
that such theory is compatible with the data that
has been seen. In this article we shall rely on the
theory of long-tailed distributions, in which the tail
is known to be of algebraic form at least in some
interval. Many data sets are known 10 be of this
form. Examples include income distributions, city
size distributions, distributions of genera by spe-
cies, insurance claim sizes, word frequency distri-
butions, stock market fluctuations, and many
others. See Zipf [14] for graphical presentation of a
great variety of data in support of his theory for
long-tailed distributions. Several theoretical mod-
els have been proposed for such data. These in-
clude the probability models of Yule [15], Hill
[16,17,18], Hill and Woodroofe [19,20], and Hill,
Lane and Sudderth [3,4]. See Johnson and Kotz
[21] for discussion of the model of Hill [22,17],
which was the starting point for the later models.
As pointed out by Chatterjee and Yilmaz [23],
some of these models are related to stochastic
models for chaos.
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We are particularly interested in the case where
a is not large, so we are dealing with a truly long-
tailed distribution. For any a > 0 the distribution of
Xn+1 is proper, even when k = «. However, for
fixed known a < 1 the expectation of X, is infinite
if there is no finite upper bound for the data, and
the variance of X, is infinite if a<2. Also, if
a =1 is unknown, which is ordinarily the case, the
posterior distribution for @ must give sufficiently
small weight to values of a near 1, in order for the
posterior expectation of X, +, to be finite. This gives
rise to an important practical issue for Bayesians,
since the predictions are then very sensitive to the
precise form of the a priori distribution for « near
1, and the results are not robust. Similarly, if a =2
is unknown, the posterior distribution for a must
give sufficiently small weight to values of a near 2,
in order for the posterior variance of X,.; to be
finite.?

In view of such nonrobustness, it is necessary to
proceed more carefully than in most problems of
statistical inference and prediction. Our method is
to take explicit account of the boundedness of the
observations. In many real world applications of ex-
treme value theory, where one deals with maximal
temperatures, wind velocities, rain fall, etc., the
data are generally considered to be bounded. For
example, a wind velocity even double the highest
ever previously experienced, must be regarded as
extremely improbable. Even if such could occur, it
might be regarded as indicating a basic change in
climate such as would invalidate all standard as-
sumptions, and so require modification of existing
theory. This suggests that a realistic analysis of the
problem should incorporate a finite upper bound,
say K, for the data.* Such a bound might be taken a

*Some may think that because of such issues one should be
considering inference about percentiles, such as the median,
rather than the expectation. However, means are often of par-
ticular interest and importance in real-world problems, and of
course are appropriate for squared error loss, If there were no
technical difficulties at infinity with the expectation, would any-
one arguc against its use for prediction?

* Instead of requiring that the mass be exactly 0 beyond a cer-
tain known bound K, one can alternatively rcquire that the mass
beyond this bound be so negligible as to be of no interest, In the
subjective Bayesian approach it would be remarkable for anyone
to have a probability of 0, to infinitely many decimal points, for
a logically possible event. However, whether or not 0 is taken
literally, in cffect one ordinarily ignores values of the observa-
tion larger than the bound. For the purposes of this article we
treat such negligible mass as though it were 0. An alternative
and nearly equivalent way to deal with the problem is to con-
sider only conditional inference, given that the observations arc
no larger than the bound. A general theory and methodology for
such conditional inference is proposed in [24].
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good deal larger than is ordinarily believed reason-
able. A 10-fold increase above a previous record
value that was based upon substantial data would
often be too large, but is worthy of consideration. If
such an upper bound is incorporated in the analy-
sis, then as shown below, even if a<1 there is no
problem with infinite moments. We will typically
assume some known finite upper bound K, perhaps
much too large, but we will not necessarily assume
that e=1, and will let the data speak for them-
selves in this regard. Since the density in the tail is
proportional to t™*7', we see that a=0 corre-
sponds (in the tail) to a uniform distribution for
the logarithm of the observation. Such a distribu-
tion is often used by Bayesians to represent diffuse
a priori knowledge about a positive quantity such as
a variance.

Our precise model is as follows. We assume that
there exists a known constant K such that
0< X <K, so that K is a known upper bound for
the data. In applications, ordinarily K < o, but for
completeness we shall also discuss the case K = o,
which is sometimes appropriate and is mathemati-
cally convenient when «>2+&>2, in which case
no problems arise due to infinite first or second
moments. We do not assume in applications that
one can necessarily determine a smallest such K,
but merely that one can pick some bound. We also
assume that there exist constants k and 4 with
K >k >A =0, such that the tail is algebraic, to an
adequate approximation, for A €¢<k, with 0 mass
beyond K. Let x> - >x, be the descending order
statistics of the past data. Ordinarily we take 4 to
be the largest order statistic of the past data,
A =xq). The quantity k is the key variable in our
analysis. It represents the point up to which the
algebraic assumption is assumed to be valid. & is
not a parameter in the usual sense, but is more in
the nature of a decision variable, since in applica-
tions the tail will not be exactly algebraic in any
interval, but it will nevertheless be reasonable to
act as if it were approximately of this form for some
intervals. The selection of & in part acts as a means
to specify the portion of the distribution that we
are particularly interested in. Even if X >k we may
not be interested in forecasting X for such extreme
values, since the occurrence of such would force us
to reconsider our modelling assumptions, as in
[7,24,25].

We are in effect assuming a model in which the
algebraic behavior holds, given «, to a satisfactory
approximation for A<X <k, and that eventually
there is 0 (or negligible) mass beyond some known
K >k. We assume that the same k is appropriate
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for all values of a being given positive weight. Be-
tween k and K there must be a transition from the
algebraic tail behavior up to k and the negligible
mass beyond K. In this transition zone the tail of
the distribution may not even be approximately al-
gebraic, and if algebraic, may have a different tail
index. The mass between & and K need not be en-
tirely negligible, but we assume there is no data-
based or other information concerning the form of
the mass distribution in this interval, apart from
the fact that the total mass in the interval is smaller
then C Xk~ as is required by the model. If k is
large enough, then C xk ™« although not entirely
negligible, may be sufficiently small so that the
mass between k and K < e« has only a slight effect
upon the posterior moments for X, +1. We shall as-
sume that this is the case, so that the tail distribu-
tion is of algebraic form from A to k, while beyond
k, although not 0 or entircly negligible, the mass is
of no practical importance for the assessment of
the posterior moments of X, +1.

Typically, the posterior expectation of C Xxq)”
will be of order of magnitude 1/(n +1) based on a
previous sample of size n. Compare the maximum-
likelihood estimator €, of [1, p. 1168]. This also
corresponds to the fiducial analysis of Fisher [26, p.
210], and to the Bayesian non-parametric proce-
dure A4, of Hill [22,27,35]. Thus before observing
X,,....X., because of the exchangeability there is an
unconditional probability of 1/(n +1) that X,.., will
be the maximum, which suggests that even condi-
tionally this will often be of the right order of
magnitude. As shown in [5], there is an explicit
parametric model, called a splitting process, for
which this evaluation holds cxactly, and such an
evaluation is coherent in the sense of de Finetti
[28,29].

The constant K plays virtually no direct role in
the following analysis, but is important because of
the delicate issues that arise when a<2. In this
case if there were no finite upper bound K and the
algebraic tail were assumed valid everywhere be-
yond A, then the posterior predictive variance of
the next observation would be infinite; and the pre-
dictive expectation would also be infinite unless the
a priori distribution for « gave sufficiently small
weight to values near 1. There is no known reason
that @ must be larger than 2, or even larger than 1,
and the data may in fact clearly suggest that it is
smaller than 1, But an infinite predictive expecta-
tion would not correspond to any real world prob-
lem that T know of concerning extreme data, and I
doubt that one could seriously recommend such
predictions. For example, they would lead to
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terribly poor performance if predictions were made
and assessed according to some proper scoring rule
or loss function. This change in viewpoint to reflect
the boundedness of the data gives rise to some sur-
prising consequences with regard to prediction.
The key choice concerns not K but k, since even
if there were a known finite upper bound K for the
data, it might still not be appropriate to assume the
algebraic form all the way up to X, but only that in
the domain of practical importance the tail is of
this form, say up to &, which is equal to some ap-
propriate upper percentile of the distribution. This
is in essence a modelling assumption, just as when
we assume that the normal model for data is suffi-
ciently closely satisfied to be useful in the analysis
of that data. Modelling assumptions are rarely ex-
actly true, but they are sometimes indispensable in
order to proceed, and often give useful results. See
[7.25,27]. The form of analysis that we recommend
is a conditional analysis, given a specification of k.
For example, with A =x(;), we consider predictive
inference about the next observation given that it
lies between X and some k =X If L =kfxu), then
we find that it typically makes a great difference
whether L is of order 5 or order 100, both with
respect to the posterior predictive mean and the
posterior predictive variance for the next observa-
tion. Based upon the mathematical and computer
analysis in the next sections, we recommend that
the forecaster make a choice of L, usually with
L =10 and sometimes even with L =2. To illus-
trate, when L is chosen to be 3, the adequacy of
our modelling assumption depends on whether it is
or is not the case that the algebraic form holds be-
tween xq) and 3 Xx(y), with the mass beyond 3 xx;,
no longer even approximately of the algebraic form
with the same a as between x() and 3 Xx(;), and also
with the mass beyond 3 xx, sufficiently small so
that for practical purposes it can be ignored. In
principle the optimal choice of k is the largest vaiue
for which the algebraic assumption holds exactly
(or in a suitable sense, approximately); while be-
yond that k the tail is no longer of that same form,
and also is of little practical importance in the eval-
uation of the first two posterior predictive mo-
ments. It would be difficult if not impossible in
typical real-world problems to find such an optimal
k, and so we recommend that several values of k be
chosen, yielding different values for the posterior
predictive moments, and then by means of judg-
ment and data-analytic methods that a choice be
made to yield a forecast. See for example Sec. 5 of
[1] for a closely related type of data-analysis. Such
analyses must be made on a computer, rather than
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purely mathematically, and can be quite demand-
ing computationally,

We emphasize that it docs not seem possible to
avoid such considerations as to the choice of k,
since in even the best of cases, where the tail of the
distribution is known to be of the algebraic form in
the domain of interest, the only alternative to such
an analysis is to simply ignore the boundedness of
the data, and take k = «, But then our prediction
of the next record value can become infinite, which
is absurd in most real-world problems. Hence the
algebraic tailed model with 1< «< 2 is not compat-
ible with unbounded data unless the a priori distri-
bution is chosen to give suitably small weight to
values of « close to 1. There may be little or no
evidence for choosing the a priori distribution in
this way, and it does not seem appropriate to do so
merely to avoid the issue, just as it does not seem
appropriate to replace the expectation by the me-
dian merely to avoid the issue. At any rate, this
article shows that effective predictions can be
made with any prior distribution for e, including
cases where a< 1, provided that one can justify
some finite upper bound K for the observations.

Our underlying motivation is that given the unre-
liability of assessments of the far upper tail of a
distribution, for predictive purposes it may be ap-
propriate to ignore this far upper tail, i.e., the part
beyond k, or cquivalently, to condition upon X
falling in some finite interval, say (xq,L Xxq), for
which the algebraic assumption is believed to be
valid, and beyond which there is no assumption
that is believed trustworthy. It is implicit in this
analysis that there is little mass beyond k, and that
in ignoring the case X =k for some appropriately
choscen k, one loses little, while gaining the power
of a slatlsncal analysis based upon the extreme
value model with some a>0. In the case of a
known finite upper bound K, in effect we perform
conditional inference, given that the observation is
not too large, and then examine sensitivity to the
choice of k. The same is true if the random vari-
able is unbounded and K = «, since again beyond
a certain percentile one would have no empirical
basis for any assumption in the far upper tail.
Whatever extreme value theory exists for tails of
distributions could not be expected to hold literally
in the far upper tail of the distribution, where no
data has been observed. Nevertheless, one may
have to make some forecasts, and it would appear
reasonable to assume that the algebraic assumption
holds for at least some distance beyond x,. If this,
or some other assumed model does not hold
beyond x, then plainly no serious theory-based
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forecasting is possible. But if through data analysis,
as in [1,26], it has been discovered that the alge-
braic assumption is acceptable for say the upper
r +1 order statistics of the past data, then it would
be reasonable to anticipate that this will also be
true for some distance beyond x(1). A Bayesian the-
ory of data analysis is put forth in [25] which indi-
cates how the classical Bayesian approach must be
modified to deal with issues that arise from such
data analysis.

Finally, real world data sets of interest in regard
to the forecasting of extreme values are not neces-
sarily of the long-tailed algebraic form that we have
discussed. In this case we recommend that a trans-
formation be first applied to the data in order to
make the upper tail of the long-tailed form. For
example, if the tail is of Weibull form, then the
transformation to exp X" yields an algebraic tail, as
discussed in [1,10]. When the form of the tail is
unknown, data-analytic methods can be used to de-
termine an appropriate transformation. In this way,
having learned how to forecast extreme tails for the
long-tailed distributions as a type of standard case,
we can also apply our methods to distributions not
of this form in the upper tail, and then take the
inverse transformation to forecast the extreme val-
ues in the original units in which the data were
measured. Such methods are quite common in
statistics, for example in transforming data in order
to obtain approximate normality, using normal
methods for analysis of the data, and then trans-
forming back to the original units. In the Bayesian
scenario it is even possible to provide a strong justi-
fication for these methods, since conditional upon
the data, one can quite freely transform the
parameters, and obtain the posterior distribution
for the new parameters by the wvsual calculus of
transformations.

2. Predictive Moments for Known «

Our object is to evaluate, as meaningfully and
robustly as possible, the posterior moments

EX.ild < X,15k),

for specified A and k, and i =1,2. 'The primary ap-
plication will be in the case where there has been a
previous sample, X),...X,. Let D denote the data
X\ =x1,....Xs =x,. Given this data, we wish to fore-
cast the next observation X,.;. It is notationally
convenient to refer to X, +; as X from now on. Since
A will usually be held fixed, we suppress it in the
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notation. To evaluate the posterior predictive ex-
pectation of X we first condition on a, to obtain

flk,a)=E(X|A< X<k, a),

and then we take the expectation of this quantity
with respect to the posterior distribution of a to
obtain the predictive expectation of primary inter-
est.

Based upon our assumption that the tail is alge-
braic between 4 and k, we obtain

ﬁ‘x‘“dx

flk,a)= PR M

For L =%, this yields:

|—1l-a

A X2 x—r= if a=0,1
f(k,a)=[A xIn(L)X5 ifa=1
"—",,%j—” if a=0. ¢))
For a=0, 1, we can also write:
. @ L '—1
flk,a)=A4 xa_lex T (2)

A similar equation is available for fP(k,a)=
E(X}4 <X <k,a). We obtain:

1—12-e

AITX X T fa=02
ﬂ2>(k,a)=[2xA2x1n(L)x[L—5-i—, if a=2
Arx Ll if @=0.

3)

The posterior predictive variance for a future
record value X, given «, is therefore

Vik.a) =k a)=[f(k.a)]". 4

It follows from (2) that for a > 1, as L — we have

flk,a)~A X

a
-1 (5)
When a >1, the right-hand side of (5) decreases
from o for a=1 to the value 2XA4 when a=2,
with the value 3 XA when « =1.5. Provided that «
is bounded away from 1 this expectation remains
bounded.

For a <2, the posterior predictive variance goes
to o as L—, If we define e =2—a >0 then for
large L

Le—1

€

FO%k,a)=A?X a X (6)
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For each L >1, and for e€>0, the function
¢(e)=%~ is monotonically increasing in e. For
0<e<2 it has a maximum value of 54 when
€=2, and an infimum of In(L) as €—0. For large

L, as e—0 we see from Egs. (3), (5), and (6), that

Vika)=A*x (a In(L) = [-5]). ©)

From Eq. (3), it follows that for a >2 the poste-
rior predictive variance remains bounded, and as
L — < tends to the limiting value

AX DD ®

Now consider the forecasting of the maximum of
N future observations, Define

M= max [X'JI + ly---vxﬁ'l\']s

and let m*(a,C) be the posterior distribution for
a,C, based upon the data D. The likelihood func-
tion Ly(a,B) of [1], when converted from lower tail
to upper tail inference, can be used to obtain this
posterior. distribution. For t >4, we have

P(M>fID)=LIJ:[1 —(1=C xt7"]

*(a,C) da dC. )

When N =1 this gives the posterior predictive
distribution for a single new observation consid-
ered earlier, except that here we have not yet con-
ditioned upon X =A. Just as before, one can
consider the posterior moments of M, given that
M =A4. When N is not small it is very probable that
M Zxq), so that a new record will be set. Thus for
large N the predictive distribution of M will be ap-
proximately the same as the predictive distribution
of M, givcn M?'—x(l).

In Table 1 we present for several values of a the
predictive moments as obtained by numerical inte-
gration. The predictive mean is denoted by E *(X)
and the predictive standard deviation by SD*(X).
The column labelled DIST gives the posterior pre-
dictive probability that X is larger than 2, 3, and 5
times A. Values of & go from .10 to 1.90, and values
for L go from 1.25 to 10° It can be checked that
the above asymptotic formulas hold quite closely
for fixed a.

We see from Table 1 that the posterior expecta-
tion of X, given that X >A, is only a few multiples
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of 4, even when a is as small as .10, provided that
L <10. In an important class of application 4 is
taken to be x(, so that the real action takes place
with regard to a few multiples of the largest obser-
vation yct observed. When L <2 we see that the
value of & between .10 and 1.90 has very little ef-
fect on the posterior predictive first and second
moments. On the other hand, when L is very large
the value of a has a huge effect. For example, the
posterior expectation drops from 37,297 x 4 when
L =10°to 2.11 XA, as « changes from .10 to 1.90.
The choice of L can make a huge difference when
a< 1. However, in many applications of extreme
value theory, it could safely be assumed that
L <10, in which case L has only a minor effect
even when a<1. The choice of L has a greater
effect with regard to the predictive variance, but
again if L <10 there is substantial robustness.!
Thus the first conclusion that we draw is that in a
real-world problem, where there has been substan-
tial data, such as with regard to wind velocities,
temperatures, etc., and where one does not take
seriously the possibility of the next record value be-
ing an enormous multiple of the current maximum,
the precise choice of a and L has a limited effect
upon the forecast. This is precisely what we are
aiming for, namely an approach in which one can
seriously input a priori knowledge regarding a and
L in such a way as to sec clearly the real but limited
effect of such choices.

Table 1 refers to the case of known a. In prac-
tice « will ordinarily be unknown. The Bayesian ap-
proach is to employ some a priori distribution m for
a, obtain the posterior distribution for a given D,
and then obtain the posterior expectation of X,
given that A € X< k. For a specified k, this poste-
rior expectation can be written as

f)=E[E(XIDA<X<k,a)]=E[f(k,a)], (10)

where the last expectation is taken with respect to
the posterior distribution of a. Similarly, the poste-
rior second moment for X is obtained by evaluating

FOk)=E[E(X*ID A< X <k,a)]=E[fP(k,a)1.(11)

We employ the theory of [1] to obtain a likeli-
hood function for the parameter a based upon the
upper order statistics of the past data, We first
condition upon the upper r +1 order statistics of
the data lying in the region where the tail is of

4 See [30] for a general formulation of the robustness problem
in Bayesian statistics.
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Table 1. Fixed ALPHA

ALPHA PRED DIST BOUND
o E*(X) SD*(X) 2 3 5 L
10 112 07 93 8 M 125
.10 1.23 14 9 8 .19 1.50
.10 1.44 29 9 8 M 2
.10 1.80 57 93 8 .19 3
10 2.43 112 9 85 19 5
10 375 245 93 8 .79 10
10 18.70 23.46 93 8 79 100
10 734.88 1715.25 93 8 .19 104
10 3729727  1.28x10° 93 85 .19 10°
50 1.12 07 il 45 3R 1.25
50 1.22 14 I 45 32 1.50
.50 1.41 28 7 45 3R 2
50 .73 56 7 45 32 3
50 2.24 1.07 7145 32 5
50 3.16 2.22 71 45 3R 10
50 10.00 16.43 I 45 32 100
50 100.05 57177 45 32 10%
50 1001.62 18257.56 7 45 32 10°
90 112 07 54 2313 1.25
90 122 14 54 23 13 1.50
90 1.39 28 54 23 13 2
90 1.66 54 54 23 13 3
90 205 1.00 54 23 a3 5
90 267 1.93 54 23 .13 10
90 5.35 10.12 54 23 13 100
90 13.62 142.79 54 23 13 10°
90 26.86 1806.66 54 23 13 100
1.10 112 07 47 a7 08 1.25
1.10 121 14 47 17 08 1.50
1.10 1.38 28 47 a7 08 2
1.10 1.63 53 47 a7 08 3
1.10 1.97 96 47 a7 08 5
1.10 246 178 47 17 08 10
1.10 4.09 773 47 117 o8 100
1.10 6.62 69.46 4 17 10*
1.10 8.24 554.67 47 17 08 10°
1.50 111 07 35 09 .03 1.25
1.50 1.21 .14 3 09 03 1.50
1.50 1.36 27 3 09 03 2
1.50 1.57 50 35 09 03 3
1.50 1.82 87 3 09 .03 5
1.50 2.12 1.49 35 09 03 10
1.50 2.70 4.44 3 09 03 100
1.50 2.97 16.98 3 09 03 100
1.50 3,00 5472 3 09 03 10°
1.90 L1 07 27 05 0 1.25
1.90 1.20 14 27 05 o 1.50
1.90 134 27 27 05 0 2
1.90 1.51 48 27 05 0 3
1.90 1.69 78 27 05 01 5
1.90 1.87 1.22 27 05 01 10
1.90 2,08 2.61 27 05 01 100
1.90 2.11 4.93 27 05 m 10*
1.90 2.11 7.23 217 05 0 10°
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algebraic form, i.e., larger than D of [1], and then
condition upon the values of the ratios of upper
order statistics vi =x@x*V fori=1,..r. As shown
in [1], if we are indeed in the upper tail of the
distribution where the algebraic form holds, then
conditional upon «, the quantities ¢, =i X In v; ar¢
independent with a common exponential distribu-
tion having parameter «. A sufficient statistic for
a, conditional upon the v; and r, is then

t=t(r)=§: é. (12)

The (conditional) likelihood function based upon r
and ¢ is then

L{a)xa xexp[—-at], (13)
for a >0. In conjunction with some a priori disiri-
bution for « this likelihood function can be used to

obtain the posterior distribution for «. If k is large
and a >1, we see from (5) that

EXDA<X<k,a)~A x:;‘f-i-. (14)

In general, the predictive moments of X can only
be obtained by numerical integration. In Sec. 4 we
examine the sensitivity of such quantities to the
data, choice of L, and choice of a priori distribution
for a. The case k = «, however, has a closed form
analytic solution for a Gamma a priori distribution
of «, and this contributes some insight into the be-
havior or the posterior moments of X.

3. k=

In this section we examine the special cuse in
which the distribution is known to be algebraic ev-
erywhere beyond A4 . In this case, in order for poste-
rior moments to be finite, we will have (o assume
that « is sufficiently large. It follows from Eq. (1)
that the posterior expectation of X, , given that it
is in the upper tail and e, is finite if and only if
a > 1. In the Bayesian analysis, with an a priori dis-
tribution for «, the unconditional posterior expec-
tation of X is finite if and only if the a prion
distribution sufficiently downweights values of «
near 1.

We can gain some insight by supposing that « = 1
has the prior distribution

m(a)=c X (a—1)""'exp[ ~ la - 1)},
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for 8,8 >0, where ¢ =I'(8)/B° is a proportionality
constant. In other words, we give a—1>0 a
Gamma a priori distribution. If §>1 we obtain
from Eq. (1) that the posterior expectation of X/A4,
given X 24, is

- o
E( D)

B (s xs* i xexp[ ~ (¢t + B)s Jds
R +syxsPixexp[— (¢ +B)s]ds

(15)

This expectation is finite provided that § > 1.

For positive integral values of r we can expand
the powers of 1 +s using the binomial theorem, and
this allows us to make explicit evaluations, To illus-
trate, if r=1 as in the forecasting of city sizes in
Tables 6 and 7, we have

a0 126D/t +B)+8(8—DI( +B)
E(a—llu)_ 1+8/(t +B)
x‘SL_‘la. (16)

This reveals the manner in which the expectation
blows up as §-»1. When § =2, the right-hand side
can be written as

(B +B+1)
Ao e

Fort + g =1, we obtain the value 1.67. This is com-
parable with the values in Tables 2, 3, and 4, when
r=t=1,and L=5. Forr=1and §=2, f(k) is ap-
proximately (1+1+ B)x.4, provided that 1+ 8 is
sufficiently large. Similarly, other integral values of
r yield closed form expressions, which provide some
insight as to the behavior or the posterior expecta-
tion of X.

From Egs. (3) and (11), the posterior predictive
second moment for X, given that X 24, is

o

FOk) =A% E[—5

DX Al (17)

If a > 2 and the a priori distribution for o —2 is of
the Gamma form, with parameters 8,8, the poste-
rior predictive variance for X will be finite, pro-
vided that § >1. Closed form expressions can be
obtained when r is a positive integer, just as with-
the corresponding predictive first moment.
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Table 2. Uniform prior, LB=1.001, UB=1.999, prior mean=1.50, $D=.29

DATA POST PRED DIST BOUND

r ! E*(@) SD*(@) E%X) SD*X) 2 5 10 L

1 1 147 29 L1 07 37 10 .04 125

1 1 1.47 29 121 14 37 10 .04 150

1 1 1.47 29 136 37 27 10 04 2

1 1 147 29 158 s1 27 a0 04 3

1 1 147 29 1.84 88 37 10 045

1 1 147 29 2.16 1.54 37 10 .04 10

1 1 147 29 2.96 5.37 37 00 .04 10°

1 1 147 29 382 38.95 37 10 .04 104

1 1 147 29 4.30 305.19 37 10 04 10°

3 2 150 .28 111 07 36 10 04 125

3 2 1.50 28 1.21 14 36 10 .04 1.50

32 150 28 1.36 27 36 .10 .04 2

3 2 150 28 157 sl 36 10 .04 3

30 2 1.50 28 183 88 36 .0 045

300 2 150 28 2.14 1.52 36 .10 .04 10

30 2 150 .28 2.88 5.16 36 .10 .04 10°

3 2 150 28 3.63 35.99 36 10 .04 10

300 2 150 .28 4.03 276.83 36 .10 .04 10¢

2 3 13727 111 07 39 a2 05 125

23 137 27 121 14 39 a2 .05 1.50

23 137 27 1.37 28 39 12 05 2

23 137 27 1.59 51 39 a2 05 3

23 137 27 1.87 90 39 a2 05 5

2 3 1.37 27 2.24 1.61 3936 36 10

2 2 137 27 32 5.99 39 36 .36 102

2 3 137 27 4.43 46.85 39 36 36 10*

2 3 137 27 5.16 37737 39 36 .36 10°

5 1 1.67 25 111 07 32 07 03 1.25

5 1 167 25 121 14 32 07 .03 1.50

5 1 167 25 135 27 32 07 0 2

5 1 167 25 1.55 49 32 07 03 3

5 1 167 25 177 84 32 07 0 s

5 1 167 .25 202 1.40 32 07 .03 10

5 1 167 25 249 4.05 32 07 03 102

5 1 167 .25 2.80 21.99 32 07 0 10¢

5 1 167 25 2.93 152.19 32 07 .03 10°

1 5 1.22 20 L11 07 43 a5 w7 125

1 5 122 20 1.21 14 43 a5 w07 150

1 5 122 20 137 28 43005 w07 2

1 5 122 20 161 52 43 a5 073

1 5 1.22 20 193 93 43 a5 075

1 5 122 20 2.36 171 4305 07 10

1 5 122 20 3.68 6.97 4325 07 102

1 5 122 .20 5.61 60.75 4315 07 10*

1 5 122 20 6.94 512.81 4315 .07 10°
30 22 152 0» L11 07 35 09 03 1.25
0 20 152 23 1.21 14 35 09 .03 1.50
30 20 152 23 136 27 35 .09 .03 2
30 20 152 23 157 50 35 .09 .03 3
00 20 152 2 182 87 335 09 .03 5
30 20 152 .23 212 1.50 35 09 .03 10
30 20 152 .23 2.78 481 35 09 .03 100
0 20 152 .2 3.29 28.02 35 09 0 10¢
30 20 152 .23 3.48 185.91 3 09 m 10°

530
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Table 2. Uniform prior, LB=1.001, UB=1.999, prior mean= 1.50, $SD = .29 — Continued

DATA POST PRED DIST BOUND
r 1 E*a@) SD'(e)  E*X) SD*X) 2 5 10 L
20 30 108 .07 L.12 07 47 18 .08 125
20 30 108 07 122 14 47 18 .08 1.50
20 30 108 07 1.38 28 47 18 08 2
20 30 1.08 07 163 53 47 18 08 3
20 30 1.8 07 1.98 96 47 a8 08 5
20 30 1.08 07 2.48 1.80 47 18 .08 10
0 30 1.08 07 a1 8.01 47 a8 .08 100
20 30 1.08 07 7.27 78.63 47 18 08 10*
20 30 1.08 07 9.71 706.23 47 a8 .08 10°
300 200 150 09 111 07 35 09 .03 125
300 200 1.50 09 1.21 14 35 09 03 150
300 200 150 .09 136 27 35 09 .03 2
300 200 150 .09 1.57 50 35 .09 .03 3
300 200 150 .09 1.82 87 3509 03 s
300 200 150 09 2.12 1.49 35 09 .03 10
300 200 150 09 27 4.48 3509 .03 10°
300 200 150 .09 3.00 18.24 35 09 .03 10*
300 200 50 09 3.04 67.25 35 09 .03 10¢
200 300 101 01 112 07 S0 20 .10 1.25
200 300 1.01 o1 122 14 50020 .10 1.50
200 300 101 01 1.39 28 50 20 10 0 2
200 300 1.01 0 165 53 50 20 a0 3
200 300 101 01 2.01 97 50020 10 5
200 300 101 01 2.55 1.85 50 20 .10 10
200 300 1.01 01 4.59 8.73 50 20 .10 102
200 300 101 o1 8.88 95.94 500 200 .10 10*
200 300 1.01 01 1301 941.80 500 20 .10 106

4, k<>

One of our purposes in this article is to show
that prediction can be very sensitive to the a priori
information introduced regarding L, and that it is
essential to incorporate strong a priori information
as to the magnitude of this quantity in order to
obtain realistic forecasts. No closed form results
are available apart from those of the last section.
We consider now various a priori distributions for
a. In the previous analysis it was not possible to
give a a uniform distribution, since this would re-
quire =0 and 8 =1, in which case with infinite k
the expectation is infinite. However, with a finite
upper bound for X, we obtain a finite expectation
for any =0, and in fact even for negative «, al-
though this case is of little interest.

Table 2 displays results for the case of a uniform
a priori distribution for a, using a finite grid of pos-
sible values for a between LB=1.001 and
UB=1.999, several values of r and ¢, and several
choices of L. The prior expectation and standard

531

deviation for @ and 1.50 and .29, respectively. Table
3 gives such results for a uniform a priori distribu-
tion, using a finite grid of values between LB =.001
and UB=1.999, in which case the prior expectation
and standard deviation for « are 1.00 and .58, re-
spectively. In these tables the column labelled
“POST” gives the posterior expectation and stan-
dard deviation for a, the column labelled “PRED”
gives the posterior predictive expectation and stan-
dard deviation for the next observation X, and the
column labelled “DIST” gives the posterior proba-
bility that X is larger than 2,5, and 10 times A,
respectively.

So far we have only considered very strong a
priori knowledge, such as in Table 1 where « is
known, and very weak a priori knowledge, such as
the uniform distributions of Tables 2 and 3. In ap-
plications it is important also to be able to input an
a priori distribution for « in which some values are
singled out as being given substantially more
weight than others. A useful family of a priori dis-
tributions for « for this purpose is the three-
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Table 3. Uniform prior, LB=0.001, UB=1.999, prior mecan=1.00, SD = 58

DATA POST PRED DIST BOUND

r t E*@) SD%«)  E*X) SD*(X) 2 510 L

1 1 L9 51 112 07 S0 2415 1.25

1 1 109 51 121 14 50 24 15 1.50

1 1 109 51 138 28 50 24 .15 2

1 1 19 51 1.64 53 50 24 15 3

1 1 109 .51 1.99 98 S50 24 15 5

1 1 1.09 51 2.55 1.90 50 24 15 10

1 1 1.09 51 571 11.70 50 24 1S 100

1 1 1.09 st 5913 47446 S0 24 15 104

1 1 10 51 159934 2645907 .50 24 .15 10°

3 2 131 4 111 07 42 a5 08 125

3 2 131 42 121 14 4 a5 08 150

32 131 42 137 28 42 a5 08 2

30 2 131 42 1.60 52 42 15 08 3

3 2 131 42 1.90 93 42 15 08 S

32 131 42 232 170 4215 08 10

3 2 13 42 3.98 8.23 42 15 08 100

302 131 42 1597 209.46 4205 08 104

3 2 131 42 18775 856151 42 a5 08 10°

2 3 90 44 112 07 56 29 .19 125

2 3 90 44 122 14 56 .29 .19 1.50

2 3 90 44 1.39 28 560029 .19 2

2 3 90 44 167 54 56 29 9 3

23 90 44 2.07 1.01 56 29 19 5

2 3 90 44 272 2,01 56 .29 .19 10

2 3 % 44 6.76 13.07 56 .29 .19 100

2 3 90 44 7077 51132 56029 .19 10°

2 3 90 44 1619.79 2617642 .56 29 .19 10°

5 1 1.64 29 111 07 3308 .03 125

5 1 164 29 121 14 33 08 .03 150

5 1 164 29 135 27 33 08 .03 2

5 1 1.64 29 155 50 3 08 03 3

5 1 1.64 29 1.78 85 3 08 03 5

5 1 1.64 29 2.04 143 33 08 .03 10

5 1 1.64 29 2.62 4.57 33 08 .03 100

5 1 1.64 29 3.57 50.32 33 08 03 10°

5 1 164 .29 7.89 1247.04 33 08 .03 10¢

1 5 40 28 112 07 g1 51 47 1.25

1 5 40 28 123 14 7 51 47 1.50

1 5 40 28 1.42 29 7514 2

1 5 40 28 175 56 71 51 47 3

1 5 40 28 2.29 109 77 51 415

1 5 40 28 3.33 231 g1 51 47 10

1 5 40 28 1274 1946 7151 47 100

1 5 40 28 30024 112556 71 5147 10*

1 5 40 28 1184158 7268237 .77 .57 47 10°
30 2 1.51 24 111 07 36 09 04 1.25
30 20 151 24 1.21 14 36 09 .04 150
30 20 151 24 1.36 27 36 09 04 2
30 20 151 24 1.57 50 36 09 04 3
30 20 151 24 1.82 87 3 09 045
3 20 151 24 2.13 150 36 .09 .04 10
30 2 151 24 281 4.92 36 .09 .04 100
30 20 1.51 24 342 32.25 36 .09 .04 10*
30 20 1.51 24 3.80 284.87 36 .09 .04 10°
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Table 3. Uniform prior, LB=0.001, UB=1.999, prior mean = 1.00, SD = .58 — Continucd

DATA POST PRED DIST BOUND
r t E*(@) SD*(a) E*X) SD*(X) 2 5 10 L
20 30 .70 a5 112 07 62 33 2 1.25
20 30 70 BE] 122 14 62 3321 1.50
20 30 70 A5 1.40 28 .62 33 21 2
20 30 .70 15 1.70 .55 .62 33 21 3

20 30 70 15 2.14 1.03 62 33 21 5
20 30 i a5 2.91 2.09 62 33 2 10
20 30 70 15 7.49 13.50 62 33 21 100
20 30 70 a5 46.87 366.86 62 33 2 10°
20 30 0 A5 357.17 10632.53 .62 33 21 108
300 200 1.50 .09 1.11 .07 35 .09 03 1.25
300 200 1.50 09 121 14 35 09 .03 150
300 200 1.50 09 1.36 27 35 09 .03 2
300 200 150 09 1.57 50 35 .09 .03 3
300 200 150 09 1.82 87 35 .09 .03 5
300 200 1.50 09 212 1.49 35 .09 .03 10
300 200 1.50 09 271 4.48 35 09 .03 100
300 200 1.50 09 3.00 18.24 35 09 .03 10°
300 200 1.50 09 3.04 67.25 35 09 .03 10°¢
200 300 67 05 1.12 .07 .63 34 22 1.25
200 300 67 05 122 14 63 34 22 1.50
200 300 67 .05 1.40 28 63 3 22 2
200 300 .67 .05 1.70 55 .63 .34 22 3
200 300 67 05 2.16 1.04 63 34 5
200 300 67 .05 2.94 2.10 63 34 22 10
200 300 67 05 7.62 13.58 63 34 2 100
200 300 .67 .05 41.81 330.65 .63 34 22 10*
200 300 67 .05 212.71 7448.90 .63 34 22 108

parameter log-normal family. Suppose that long-tailed distributions. For a>1, and using a

In(a—y)~N(u,0%). This is the three-parameter
log-normal distribution with threshold parameter
¥, and is a very convenient and interesting family
with which to make inference about a. See
Aitchison and Brown [31], and Hill [32] for some
properties of this distribution. The integrations in
this case again have to be done by numerical analy-
sis. In Table 4 we present results for the case y=1,
with a taking values between LB=1.001 and
UB=10. The prior mean and standard deviation
for a are 1.50 and .61, respectively.

5. Discussion of Tables

If a>2 then for fixed known « there is no prob-
lem with infinite first and second moments. This is
also the case when « is unknown, except that the a
prioni distribution for a must give sufficiently small
weight to values near 2 in order that the second
moment be finite. However, the case a>2, al-
though of some interest, does not deal with truly
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Gamma prior distribution for @ —1 with §>1, as
k— < the posterior moments of X converge to the
limiting results discussed in Sec. 3, such as in Eq.
(16). We observe, however, that the convergence is
quite slow. For values of £ in the practical range,
say L < 10, the results are not very sensitive to the
precise value of L, but are quite different from the
limiting results, because the convergence is so slow.
For example, the theoretical value for the multi-
plier of A when r=0¢=1,6=2,8=1, is 3. Using
UB =10, when L =10" the calculated value for this
multiplier is 2.86, and it is still only 2.98 when
L =10%. For L < 10° however, the multiplier is less
than 2.16, and for values L <10, it is at most 2.
Thus even in this case, where the posterior expec-
tation exists for k = o, it can still be important to
use a realistic value for L. Although this case can
be described as a genuine long-tailed distribution,
in order for the posterior expectation of X to be
finite when k = o, it is necessary to take 8 > 1, and
so the a priori expectation for a must be larger than
1+1/8.
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Table 4. Log-normal prior, LB=1.001, UB=10,y=1, g = = 1.19, o=, prior mean= 1.50, SD = .61

DATA POST PRED DIST BOUND

r t E*(a) SD*a)  E*(X) SD*(X) 25 10 L

1 1 139 38 111 07 39 a2 05 1.25

1 1 139 38 121 14 3y a2 05 1.50

1 1 1.39 38 137 28 39 12 05 2

1 1 1.39 38 1.59 51 39 12 05 3

1 1 139 38 1.87 90 39 a2z 05 5

1 1 139 38 2.24 1.62 39 a2 05 10

1 1 139 38 3.26 6.09 39 a2 05 100

1 1 1.39 38 4.48 46.61 39 a2 05 10¢

1 1 1.39 38 515 353.95 39 a2 .05 10¢

3 2 141 38 L11 07 39 a2 .05 1.25

3 2 141 38 121 14 39 a2z .05 1.50

3 2 141 38 1.36 27 39 a2 .05 2

3 2 141 38 1.59 51 39 a2 .05 3

3 2 141 38 1.86 90 39 a2 .05 5

3 2 141 38 2.22 1.60 39 a2 .05 10

3 2 141 38 3.18 5.92 39 a2 05 100

3 2 141 38 430 4435 39 a2z .05 10

3 2 141 38 490 332.81 39 a2 .05 10°

2 3 1.27 23 111 07 42 4 06 1.2

2 3 127 23 1.21 14 42 4 .06 L5

2 3 1.27 23 137 28 42 14 06 2

2 3 127 23 1.61 52 42 4 06 3

2 3 1.27 23 191 92 42 14 06 5

2 3 127 23 231 167 42 14 06 10

2 3 127 23 3.50 6.57 42 4 06 100

2 3 127 23 5.02 5243 42 4 06 104

23 127 23 5.02 5243 42 14 06 10°

5 1 2.34 117 111 07 25 06 02 1.25

5 1 2.34 117 120 14 25 06 .02 1.50

5 1 2.34 117 1.32 26 25 06 02 2

5 1 2.34 117 1.48 47 25 06 .02 3

5 1 2.34 117 1.65 a7 25 06 2 5

5 1 2.34 117 1.83 1.26 25 06 m 10

5 1 2.34 117 2.22 3.82 25 06 .02 100

5 1 2.34 1.17 2.58 24.18 25 06 .02 104

5 1 2.34 1.17 2.74 17055 25 06 .02 10°

1 5 118 14 111 07 44 a5 07 1.25

1 5 118 14 1.21 14 4415 07 1.50

1 5 1.18 14 1.38 28 44 a5 07 2

1 5 1.18 14 1.62 52 44 a5 07 3

1 5 118 14 1.94 94 440507 5

1 5 118 14 2.38 1.73 4405 07 10

1 5 118 14 3.77 71 A4 a5 07 100

1 5 L18 14 5.73 60.45 44 U5 07 10*

1 5 118 14 6.95 483.26 44 a5 07 10°
3 20 1.40 2 1.1 07 38 .1 .04 1.25
30 20 1.40 22 121 14 38 .1 .04 1.50
30 20 1.40 22 1.36 27 38 a1 .04 2
300 20 1.40 2 1.58 51 38 .1 04 3
30 20 1.40 2 1.86 90 38 .1 04 5
0 20 1.40 2 2.21 1.58 38 A1 .04 10
30 20 1.40 2 3.09 5.58 38 1 04 100
30 20 1.40 22 39 36.97 38 .11 .04 10*
38 20 1.40 22 4.28 252.19 38 a1 .04 10°
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Table 4. Log-normal prior, LB=1.001, UB=10,y=1, p=—1.19, =1, prior mean=1.50, SD=.61—

Continued
DATA POST PRED DIST BOUND

r t E*a) SD*(a) E*(X) SD*(X) 2 5 10 L
20 30 1.10 07 111 07 47 17 .08 1.25
20 30 1.10 07 1.21 14 A7 17 .08 1.50
20 30 1.10 07 1.38 .28 47 17 08 2
20 30 1.10 07 1.63 53 47 17 .08 3
20 30 1.10 .07 1.97 96 47 A7 .08 5
20 30 1.10 07 2.46 1.78 47 17 .08 10
20 30 1.10 07 4.09 1.76 47 17 .08 100
20 30 1.10 07 6.75 71.88 47 17 .08 104
20 30 1.10 07 8.61 607.81 A7 17 .08 10°

A case of substantial practical importance is that
in which the a priori information about « is weak,
apart from the knowledge that 1<a<2. There is
substantial empirical data on incomes, stock-mar-
ket prices, city sizes, the distribution of biological
genera and species, and many other variables, for
which a= 2. See Yule [15] and Zipf [14]. However,
there is no known theoretical reason for taking the
a priori distribution of « to be of the Gamma form,
or for taking 8 > 1. In the case of weak a priori in-
formation, the likelihood function is approximately
proportional to the posterior density for a. See the
stable estimation argument of Savage [33] and Ed-
wards, Lindman and Savage [34]. For either classi-
cal statisticians, to whom the a priori distribution is
non-existent or “unknown,” or to Bayesians who
prefer to use some form of “uninformative” prior
distribution, the results of Table 2 should be quite
reassuring. It is possible, despite the delicacy at
to obtain robust answers. It may be noted in this
table that typically the posterior predictive expecta-
tion of X,.i, given that it is between x;, and
10 xx(3), is some modest multiple of the largest ob-
servation, at most 3 Xx); and it is at most 5 Xx,
when L < 100. This is as it should be. One does not,
for example, anticipate wind strengths that are
some enormous factor times the largest yet experi-
enced, even given that we set a new record wind
strength. By comparing Table 1 for @ =1.50 known,
with Table 2 for the case r=3,t =2, we see that
there is little sensitivity in either the predictive mo-
ments or the predictive probabilities. For example,
when L =5, Table 1 gives predictive moments of
1.82 and .87, and predictive probabilities of .35, .09,
and .03; while Table 2 gives predictive moments of
1.83 and .88, and predictive probabilities of .36, .10,
and .04. The greatest discrepancies occur for very
large values of L, such as 10°, which are inappro-
priate for most real-world applications.
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Another case of substantial interest is that in
which a is uniform from 0 to 2, so that even more
extreme long-tailed behavior is possible. Again re-
sults are not very sensitive to the choice of a priori
distribution, provided that L is not too large. For
example, Table 3 with r=3¢=2L =5, gives the
predictive moments as 1,90 and .93, and the predic-
tive probabilities as .42, .15, and .08. Although
there is a real change from the results of Tables 1
and 2, it is of limited extent, and is in the direction
of making the predictive distribution longer-tailed,
as was to be expected. If anything, one might be
surprised that allowing « to get close to 0, as with
this a priori distribution, did not move the predic-
tive distribution much further to the right.

The final case of great interest is where some
definite a priori information is input, as we do here
with the log-normal distribution. Table 4, for the
case y=I1r=3¢=2L =5, gives 1.86 and .90 as
predictive moments, and .39, .12, and .05, as pre-
dictive probabilities. These results are close to
those of Table 2, in which « has the same a priori
expectation as in Table 4.

The reader may compare these various tables for
other values of the parameters, to examine the ef-
fect of long-tailed sample data, greater sample
sizes, cases where the a priori information is less
concordant with the data, and the effect of L. For
example, in Table 3 with r =2,f =3, so that & = .67,
and L =5, the predictive moments are 2.07 and
1.01, while the predictive probabilities are .56, .29,
and .19. Again, provided that a realistic upper
bound for L is chosen, such as 10, the changes from
previous values are real but of limited magnitude,
and in the direction to be anticipated.

Armed with this information, let us now examine
real-world data on city sizes. Table 5 gives the sizes
of the 30 largest cities in the United States in 1940
and 1988. They are first presented in descending
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Table 5. City size x 107 data

«, Tables 6 and 7 give the running forecasts, and
their standard deviations, for the next observation,

based vpon the permutation. We imagine, in other
words, that a random sample has been taken from

1940 1988

Ordered Permuted Ordered Permuted
7455 1931 7353 987
3397 859 3353 727
1931 3023 2978 532
1623 305 1698 1647
1504 3397 1647 522
878 368 1070 599
859 816 1036 2978
816 587 987 465
771 399 941 1036
672 1623 924 502
663 456 751 434
635 387 738 511
587 77 732 1070
576 635 727 7353
495 492 645 481
492 301.2 635 732
456 495 617 941
430 663 599 3353
399 306 578 578
387 878 570 570
385 7455 532 1698
368 325 521 617
325 322 511 924
322 319 502 738
319 576 492 0645
306 302.2 481 751
305 672 465 442
302.3 430 439 635
302.2 1504 434 427
301.2 385 427 439

order, and then in a randomly chosen permutation,
The data for 1940 was previously analysed in [1] to
illustrate use of the tail-index method. The upper
tail of such city size data is generally regarded as
being modelled by Zipf's law, with some tail-index

Table 6. Forecast of 1940 city sizes x 1077

the population, and that we successively forecast
the magnitude of each upcoming record value. In
this way we simulate the actual forecasting of fu-
ture record values based upon a random sample
from a population. It is well known that sampling
(with or without replacement) from a finite popula-
tion generates an exchangeable sequence. Because
our forecast of the magnitude of the next record
value depends only upon the upper order statistics
of the past data, and not directly upon how many
past values have been observed, we put forth the
same expectation for the magnitude of the next
record value, until we observe a new record value.

The record values (with the first value taken as a
record value by default) for Table 6 occurred at
times 1, 5, 21, and had the values 1931, 3397, 7455,
respectively. Table 6 gives the 1940 forecasts for
L. =3,5,10, where each forecast is based upon all
the past data up to the time of the forecast, and
uses only the current upper two order statistics of
the data, so r =1. The column labelled & gives the
current maximum-likelihood estimate of « based
upon the two upper order statistics, so t =%, The
first row of Table 6 would be read as follows. Based
upon the two largest order statistics (1931, 859) at
time 2 in the 1940 permuted sequence, the esti-
mate of o iz 1.235. This data (with r=1 and

== .810) is used to obtain the posterior distribution
for «, for a uniform a prieri distribution on the in-
terval from 0 to 2. Forecasts and standard devia-
tions are then presented for L =3,5,10. For
example the L. =3 forecast of the next record value

City size a Forecast Forecast SD

3 5 10 3 3 10
3397 1.235 3146 3810 4831 1023 1869 3596
7455 1.770 5500 6621 8295 1787 3244 6166
(M 1.272 12137 14094 18008 3944 7209 13844
Table 7. Forecast of 1988 city sizes %107
G a T T e

3 5 10 3 5 10
1647 3271 1588 1899 2351 316 929 1743
2978 1.953 2663 3202 4001 8065 1568 2973
7353 1.688 4824 5810 7290 1569 2847 5420
)] 1.106 12007 14581 18574 3904 7154 13824
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is 3146 with a standard deviation of 1023, this fore-
cast being made using only the previous records of
1931 and 859. The realized value turned out to be
3397. Note that most of the actual values are well
within 1 standard deviation of the forecast. The
row ‘7’ forecasts a next record value, based upon
all the past data, as though the population were not
complete, and is given only for illustrative pur-
poses. Table 7 repeats the analysis for the 1988 city
size data. The record values occurred at trials 1, 4,
7, 14, and had the values 987, 1647, 2978, 7353,
respectively.

This type of forecasting problem, based upon a
random sample from a fixed population, is used to
illustrate the procedure in connection with an ex-
changeable sequence of observations. As shown by
de Finetti, and discussed in [35], one can always
represent real-world exchangeable sequences in
terms of limits arising in sampling from a finite
population. The exchangeable case is the simplest
scenario in which our methods can be usefully ap-
plied. More generally, on¢c must deal with evolu-
tionary processes, as for example when successive
records are set over time. For example, if we con-
sider the successive Olympic High Jump records,
since 1880, we must keep in mind that we are not
sampling from a fixed population, and that changes
in technique and general level of physical fitness
over time, may have a substantial effect. Similarly,
in considering the next record value of some stock
market index, such as the Dow Jones, there may be
time trends that must be taken into account. How-
ever, even in such examples as these, local ex-
changeability over sufficiently short time periods
may be a reasonable assumption, and appropriate
modification of the basic forecasting procedure
proposed in this article can be developed.

6. Conclusions

We believe that the above studies indicate that it
is possible to make effective inference and predic-
tions about record values. Our methodology can be
used both with uniform a priori distributions, such
as represented in Tables 2 and 3, and with more
informative a priori distributions such as in Table 4.
The case that is perhaps of greatest interest for
applications is that of the three-parameter log-nor-
mal distribution with threshold taken to be 1 or 0,
as may seem appropriate. Uniform a priori distri-
butions can, for practical purposes, be represented
as special cases of such log-normal distributions.
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We believe that it is important to study sensitivity
of results to choice of a priori distribution, as rec-
ommended in [36,30]. The choice of r and of L can
be implemented by Bayesian data-analytic tech-
niques, such as described in [1,25]. Here in our
forecast of city sizes we took r =1, but substantial
improvements could result from a Bayesian deci-
sion-theoretic choice of r.

There are some basic issues concerning the use
of finite models, versus infinite idealized models,
that are especially pertinent in connection with the
problem of prediction for long-tailed distributions.
If one took the conventional idealized model liter-
ally in our example, then the analysis of Secs. 1 and
2 demonstrates that there are some logical diffi-
culties, if one also views the observations as un-
bounded. For in the case of greatest interest,
where it is known that 1< o< 2, the posterior first
moment may be infinite, even though it is plainly
unreasonable to make a prediction of more than a
few multiples of the largest observation yet seen.
The issue is resolved here by treating the algebraic
model for the tail as only an approximation, valid
in some finite domain. In this case the algebraic
tail is compatible with both the data, and with
putting forth sensible predictions for squared error
loss. Sce [24] for discussion of the finite/infinite
question in connection with Steinian shrinkage es-
timators.

The issue regarding infinite predictive moments
thus turns out to be largely irrelevant for forecast-
ing, provided that one is comfortable with using
some reasonable upper bound for the observable
variables. Careless use of infinite models, ignoring
the fact that realistic finite upper bounds are usu-
ally available, might instead have led one to the
conclusion that theery-based forecasting is impossi-
ble in the case a<2. Since all statistical analyses
must eventually be done on a computer with finite
memory, such infinite models are at best only use-
ful guides, and their careless use can lead to nu-
merous  apparent  paradoxes, which have no
real-world importance. The primary conclusion of
this article is that provided that a finite upper
bound for the observations can be supplied, as is
ordinarily the case, it is possible to make effective
predictions of future record values. The forecasts
that we have obtained, employing such finite upper
bounds, are by no means perfect, but they do at
least put one in the right ballpark, with predictions
that are at most a few multiples of the previous
record value. I am not aware of other methods
available at present that do so.
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Forecasting is always difficult, and perhaps even
more so for the case of record values in the case of
long-tailed distributions. Nonetheless, often such
forecasts are important in the decision-making pro-
cess, and must somehow or other be put forth. We
have suggested a Bayesian methodology which can
make systematic use both of a priori information
and of the current data. When used with care, we
believe these methods can be of value in a variety
of areas.
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1. Introduction and Result

The extreme value theory of Gaussian sequences
has interested many authors, for instance Refs.
[1,4,7,8], dealing with the limit distribution of the
suitably normalized extreme value.

Let {X;,i =1} be a standardized normal sequence
with correlations E (X.X;)=r;, i,j =1, and ®(-) the
distribution function of X;,

Let
No = 210X > )

denote the number of exceedances of a boundary
given by a triangular array {u,;,i <n,n =1}. Then it
was also found that N, converges in distribution to
a random variable having a Poisson distribution
P(A,), if the mean number of exceedances
A =Z%i<n(1-P(u.)) remains bounded (cf. Ref.
[4D).
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For practical use of the asymptotic theory, it is
rather important to know the rate of convergence
or at least some upper bound for this rate.

For the stationary case, results on the rate of
convergence have been obtained for instance by
Refs. [2,3,9,10]. The aim of this paper is to give an
upper bound for the total variation distance d,, be-
tween N, and IP(A,), in the nonstationary case, ex-
tending the results of these mentioned papers.

Suppose that for some sequence p,: |r;|< p;_
for i), and that the two conditions

po<lforallnz=l
s Allogk ,k 22, for some constant A

M
@

are satisfied. Define p as p =max(0, ry, i #j)<1.
In addition, we assume that the boundary values
tend uniformly to =:

Uy, min = min Uy—> as n—>r oo,
Isizn

3)
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The exceedances of a constant boundary . =ua,
1<i<n, are considered first, where only the tools
given in Ref. [3] are used. We show in the second
result that the method of Ref. [3] can be used also
for nonconstant boundaries {u.}. But these
boundaries are restricted such that the condition

“4)

holds. If we want to extend the results fo a more
general class of boundaries such that only

lim sup n (1 — @(Un,min)) <C < @

limsup A, <C <

H— 2

©)

holds, we need to combine the method developed
by Ref. [4] with that of Ref. [3] to get satisfactory
results (see Ref. [6]).

Qur first result for boundaries which are con-
stant for fixed n, shows that the given upper bound
of the rate of convergence depends mainly on the
largest positive correlation value p.

Theorem 1: Let {X;,i =1} be a standardized nonsta-
tionary normal sequence with correlations {ry,
i,j 21}. Suppose that |r;|< py—; for i#j, such that
Egs. (1)} and (2) hold. Let the boundary values
{ttwi =un,1<i<n} and A, be real values with
A =n(1=®(u,)). Suppose that M<C< @, for
some constant C. Then as n—

d (N, P (M) = O n 157 - (tog ) 175

I n-l
) o

This extends the result of Ref. [3] showing that for
a constant boundary their upper bound of the rate
of convergence in the stationary case holds also in
the nonstationary casc.

Theorem 2: Let {X;,i =1} be a standardized nonsta-
tionary normal sequence with correlations {r;, i,j =1}
as in Theorem 1 satisfying Eqgs. (1) and (2). Suppose
that the boundary values {u., 1<i<n,n=1} are
such that Eq. (4) holds. Then Eq. (6) holds.

The first term of Eq. (6) dominates the rate of con-
vergence in cases with 24> pe < ® and p >0.

Then the rate of convergence depends only on the
lowest value u, s Of the particular boundary w.
and also on the largest positive correlation p. It
extends naturally the results of the stationary case
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with boundary values which are constant for fixed
n. This rate is only good if u, min is NOt a uniquely
low value, which is supposed for reasonable
boundaries. For the case u, mia 1s uniquely low, the
rate can be improved.

2. Proof

The proof of Theorem 1 is an adaption of that
used by Ref. [3] in the stationary case. We use the
following lemma which is a straightforward ex-
tended version of Lemma 3.4 of Ref. [3].

Lemma 1: Suppose that

e =M(oh(;, 7))

Define Z; = 1(Xi >u.i) for some boundary values u,i
where

1- @)= Cln
for some finite constant C.
Then for some constant K depending on C only and

foralln=2:

i) If 0y <1, then

&y _fi
OSCOV(Z‘;,Z})SK * nﬂ2+ﬂ%(]0gn)_l+r;j

1
VI—r.}

2 g._.
sKn'I( n )Hﬂv—n
logn
ii) If 0sr;<1, then
OECOV(Z.-,Z,-)EKQ%ZE-E@% log n

< KON

iii) If —1<r;<0, then

0=cov(Zi,Z) 2 _Kkil:%sﬁ; _ g pusilogn

n

iv) If —1<r; <0, then

O0zcov(Z,Z)) = —Kn—l2
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We need for Theorem 2 an extension of Lemma 1.

Lemma 2: Suppose that (X:,X;) and Z: are as in
Lemma 1. For any i,j, define u,; =min(u,;,u,;) and
Veij = MaX{Upi U ).

Then for some constant K depending only on C and
foralln=2:

) IfO0sry<1, then

2y
e
iy

1 (g!unif !)T%.Tq “u
V1— i Uy

with K = (217) 745 - (1+1;)2.

O=scov(Z,Z))sK

i) If 0sry< 1, then
e
0% cov(Z,23)% K 1y ) ) )

i) If —1<sr;<0, then
0zcov(Z:,Z) = — (1 — @(u))(1 — D(v.i))
2 —(1- D))’
iv) If —1=r; <0, then
0= fcov(Zi, Z;)|s K min(1,)r; [uwvny +rv2)
(1= P(un)) - (1 - D(vs))

(The proof of this lemma is given in [6]).

Theorem 1 follows also by Theorem 2. There-
fore, we prove now Theorem 2 by using the method
of Ref. [3].

By Theorem 3.1 of Ref. [3], we have

1—e~

A

do(Nay P(A)) S (%; +.—§; |cov(Z.-,Z;)|). (7

If p=0, ie. if ;<0 for i=j, then using Lemma
2(iv) for the second term of Eq. (7), we get the
second term of Eq. (6) which dominates the first
one in this case, if p« >0 for some k. Obviously, if
o =0 for all k, then the result holds, since the sec-
ond term in Eq. (7) is 0.

Thus suppose from now on that p >0.

Because of Eq. (2) the sum
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Su=_3%_leov(Z,Z)|= X

Isi<j=n Ii<jsn

Cij
is split up into three parts, by using § >0 such that

£
36<1+p

There are only finitely many &’s with g > §. This
will be treated first as Case (i). For indices k with
o< 8, we distinguish Case (ii) with k <n® and
Case (iii) with k =n?®

Case (i): Each term ¢; of the sum S, is bounded
above by

Knp-%0 +p)(10g n) —pill+p)

if r; 20 by Lemma 2(i)
or bounded by

Kn™?

if r; <0 by Lemma 2(iii).

Since there are finitely many k’s with p, > §, the
number of terms ¢; with i —j|=k and pc > 8 is of
the order Q(n). Hence the sum on these terms is
bounded by

Kn 0 —p}f(l+p)(10g n)--ra’(l Ny KnTt,

Case (ii): There are at most n® terms p such that
0=, <8 and k <n® llence there are at most
O(n'*? terms ¢; with such a k=i —j|. But each
such term c; of S, is bounded by

Kn v2.|'(1+5)(]0gn )—&[i+5)5‘ Kn —2+25

if r; 20 by Lemma 2(i)
or bounded by

Kn™?
if rj <0 by Lemma 2(iv).
Then the sum of these terms c; is bounded by

O(n=14%),

Case (iii): Finally we consider the terms such that
M= 8, with £ 2n% Note that we have

I

0= pes logk ~ 8logn *

(8)

Each such term ¢; of S, gives a contribution
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1-
Km( Vlog n)”i‘:&EKml(;gzn

n

if r; 20 by Lemma 2(ii) and by using Eq. (8)

k()

if r; <0 by Lemma 2(iv).
Taking now the sum on all terms (i,j) with
i —j|=n® we get the second term of Eq. (6).

Finally, adding up all these upper bounds of Cases
(i), (ii), and (iii), the result Eq. (6) of Theorem 2
follows.
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have a limiting Compound Poisson structure
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explore (a) the precise effect of such
clustering on the limit, and (b) the relation-
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1. Introduction

Extreme value theory for multivariate iid sequences
has been studied for quitec some time now but attention
to the dependent case has been relatively recent. For
univariate sequenccs it is known that local dependence
causes extreme values to occur in clusters, which in turn
results in a stochastically smaller distribution for the
maximum than if the observations were independent. We
begin with a brief review of these results, which we
shall later extend to the multivariate casc.

Let {£,} be a univariate stationary sequence. Write
M.=max{&....£& } and for 70, let {u,(7)} denotc a
sequence satisfying  lim, ..nP {&>u,(7)¥=7r. Under
quite general mixing assumptions there exist constants
0=6'=8"<1 such that

lim sup P {M,<u,(7)}=¢ * and
A=

lim inf P {M,=u, (1) }y=e"""
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for all 7. (See Ref. [1], although the idea actually dates
back to Refs. [2—4].) Thus if P {M,=<u,(7)} converges
for somc 7, then 6'=6"(=6, say) and hence
lim, P {M,=u,(t)}=c¢"* for all 0. The common
value 6 is then called the extremal index of {£,}. We
shall assume 8 to be positive whenever it exists, since the
case 6=0 corresponds to a degenerate limiting distribu-
tion for M, . Note that 6=1 for iid sequences. Let {é,, hbe
an iid sequence with &=" &, called the associated iid
sequence,, and write Hﬁmax{él,....é, 3. If {& } has ex-
tremal index & and lim, . P{M,<v,(t)}=H(r) for a
suitablc family of normalizing constants {v,(¢)}, then it
follows (upon identifying e™® with H(r)) that lim, .
P{M,=<v,(t)}=HA(t) where

H(t)=H (1)’ (1)

The extremal index is thus a measure of the effect of
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dependence on the lmiting distribution of M,. The
stochastically smaller limiting distribution of M, is in
fact a direct result of the clustering of extremes, as
explained below. Sce Ref. {5] for details.

For fixed >0 let the exceedance point process
N,=N!” be defined by

Nn (B )=1§| "{§,>a,,('r)}i{ianB}a B - I_0$ I' ]5

where 7, denotes the indicator funiction of the cvent A .
Then for a broad class of weakly dependent sequences,
the limit in distribution of N,, if it exists, is a Compound
Poisson process with intensity #r and multiplicity distri-
bution 7 on {1,2,...}. The Poisson events may in fact be
rcgarded as the positions of “‘cxceedance clusters’
while the multiplicities correspond to cluster sizes.
More explicitly, one may divide the # observations into
k, blocks of roughly cqual size and regard cxceedances
within each block as forming a single **cluster’’, so that
the cluster sizes arc given by N, (J;), i=1,...k,, where
JA(=L.)=(F . £]. For a suitable choice of k, depending
on the mixing rate of {£,}. one then has

tim P {N, (/)=j [N, (1)203~ 70y, j=1,
and
1@1)2 PN, J |)=0}=15_§: P{N,[0,1]=0}
=hm P{M,=u, (1) }=c "%,
s
so that in particular, m, ... &, £ {N,{J,)>0}=67. Hence
lim £ N, 0,1 |=litn &, N,i/1)
=lim kE (N, (/) | N, (1 )2000 AN, (4,20
=07 lim EW, U0 [ N,id)>0),
while on the other hand, lim,_. EN,[0,]]=lim,_.

nP {&>u, (1) y=7. The cluster size distribution and the
extremal index are thercfore related by
lim EN, () [N, (7)>0)=1/6. @
Now let {&=(&,.....&.1), PEZZ } be a multivariate sia-
tionary sequence where d=1 is a fixed integer, and
write  M,=(M,,,....M,;) where M =max{&;,....&, },
J=1....d. The study of multivariate extrcmes beguan in
the early 1950s, focusing mainly on the limiting behav-
ior of M, under a linear normalization, when the obser-
vations arc iid. The resulting class of limiting distribu-
tions was characterized in Ref. [6] and domains of
attraction criteria were given in Ref. [7]. See also Ref.
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[8], Chapter 3, for an account of the literature surround-
ing this theory. For stationary scquences satisfying a
general mixing assumption, it is known (see Refs. [9,
10], and Theorem 1.1 below) that the class of limiting
distributions of M, is the same as for iid sequences. In
this paper we explore the precise effect of dependence
on the limiting distribution by extending the univariate
theory described above to the multivariate case. Essen-
tially, this involves studying the inter-relationship be-
tween the two dependence structures present, onc due to
dependence over time and the other due to the depen-
dence between the various components of the multivari-
ate observations. The idcas become most transparcnt
when presented in terms of so-called dependence func-
tions [8]. Here we adopt the slightly modified definition
found in Ref. [9]. A distribution function D on [0,1]¢ is
called a dependence function if D;(D;(u))=D;(u),
u<[0,1], j=1,...,d, where the subscript j significs the jth
marginal. The dependence function of a distribution F
on IRY is dcfined by De(u)=P{F,(X)=
e F(XV =0y 3, u=(uy,.. 1) 10,11, where
(Xi,-...Xy) is a random vector with distribution F. More
generally, any dependence function  satisfying
F(x)=D(F\(x1),....FF4(x4)) could bc defined to be a de-
pendence function of F, although the present choice is
4 natural onc.

Write 7=(0,1)Y\ {1} where I=(1,...1)EIR? and for
t=(t1,- ot )ET, et v (=~(Var(f1),--..vaa(1s)) Where v ()
satisfics lim,,. nP {&>v,;(;)=—logt;. Let H, denote
the distribution function of M, (i.e., H,(x)=P {M,=x}),
with marginals H,;, j=1,...d. Then (sce Refs. {8, 11]),

H, (v ()" H (1) 3)

if and only if
Hoy (v (1,0)—=" H,(1)), j=11d , and Dpn()—* Do (1)

‘The limiting behavior of M, can therefore be separated
into two parts, one pertaining to the convergence of the
marginals (a univariate problem) and the other to the
convergence of the dependence functions, Here we fo-
cus attention exclusively on the Jatter. It should be noted
that the choice of normalising constants does not affect
the dependence function of the limit distribution H, but
only alters the marginals (sce Ref. |9], Lemma 3.2).
Since our main interest is in the dependence function,
the present choice of normalising constants is appropri-
ate in view of the fact that it results in Uniform[0,1]°
marginals for the limit distribution when {£, } is iid, so
that in particular Dy=fI. According to Theorcm 3.3 of
Ret. {9], the class of all possible limits H in Eq. (3) (for
id {&}) is precisely the class of extreme dependence
functions, that is those that satisfy
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DY t)=D{t,....17) (4)

for each n>1 and t=(¢,....,t;)E[0,11%. Theorem 1.1 below

shows that the same is truc also if {£ } is a stationary

sequence satisfying the following mixing condition.
For tET, let

BLva(O)=0 {(Epva (1)) - k=i=I, j=l,...d }
and for 1=/=n—1, define
a,=sup{| P(ANB)—P(A)P(B)| : A€ B!y, (1)),
BEBR, (v, (), | <k<k+l=n}.

The mixing condition A(v,(t)) is then said to hold if
a,;,—0 for some sequence {/, } satisfying /,/n—0. This
is the multivariate version of the mixing condition uscd
in Ref. [5] and is slightly stronger than the D (x,) condi-
tion in Ref. [9]. Henceforth {&,} will be assumed to
satisfy A(v,(t)), for some or all t, as required.

THEOREM 1.1. Let {&, } satisfy A(v, () for all t<T and
suppose that P{M,<v,(t)}>" H(t), non-degenerate.
Then Dy, is an extreme dependence function and hence,
in particular, H(t)=H(t) for each t€[0,11 and c>0
(where t'=(1},....,t])).

ProoF: The first part is an immediate consequence of
Theorem 4.2 of Ref. [9] while the second part follows
from the definition of extreme dependence functions
upon noting that (by the univariate theory described
above), the marginals of H are of the form H;(1;)=t
where 6 is the extremal index of {&;}, the jth-compo-
nent scquence of {&, ).

In the next scction we apply the excecdance point
process approach to multivariate extremes and obtain
some weak convergence results. The multivariate ex-
tremal index is then defined (in Sec. 3), based on the
multivariate analoguc of Eq. (1). It is seen to be a func-
tion of only d—1 variables and its properties naturally
extend those of the univariate extremal index. Finally in
Scc. 4 we consider two examples of bivariate moving
average sequences for which the computation of the
extremal index is demonstrated.

2. Exceedance Point Processes

Fix t€T and let S,ff{g?,”,{,j),, i=1,..,n,j=1.,...d, and put
8=(8,-.-.0u). The multivariate exceedance point pro-
cess Na=N is then defined by
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N.(B)=2 Linemb,, BE[0,1]. (5)

Assume that {¢, } satisfies A(v,(1)). If also N,—? N,
then it may be shown (as in the univariate case) that the
limit N, is a point process on [0,1] which is of Com-
pound Poisson type. More precisely, the Laplace Trans-

form of N, is given by
J;élf}.llJ;Ez‘I'

d
(1=exp{=2 yfi(x)hdm(y)dx.

d
—log E exp{—2, | f dNy}=v

J=1 40
6)

Here Ny denotes the jth-component of N, v is a
positive constant, 7 is a probability distribution on
Z71={0,1,2,..¥{0} and f;’s are non-ncgative functions
on [0,1].
Let {k, } be any sequencc of positive intcgers satisfy-
ing . '
kn—, kl./n—0, and k,a,;,—0,  as.n =% (7)
Set r,=[n/k,] (the largest intcger not exceeding n/k,)
and put J,,=[0,r,/n]. Define the probability distribution
T, on Z* by '

o (Y)=P {No(Jo)=y | N, (1) %0}, yEZ2.

The following theorem which gives a uscful characteri-
zation of the convergence of N, is an immediate conse-
quence of the results in Sec. 5 of Ref, [12].

THEOREM 2.1. N,—* N, if and only if m,—" o and
P{M.=v,(t)}> e ™", and in that case the Laplace Trans-
form of N, is given by Eq. (6).

Next we consider the iid case in some detail and
obtain an interesting connection with Theorem 5.3.1 of
Ref. [8).

PROPOSITION 2.2. Let {&,} be iid and for fixed tET let
N, be defined by Eq. (5). If N.—" N, then the multiplic-
ity distribution  in Eq. (6) is supported on the set
§={0,1YA{0}.

Proor: Observe that A(v,(t)) is trivially satisfied since
a,,=0 so that we may take =1 and k,=n. Then
7 (V)=P{8=y | &£v, ()}, YEZ, which is clearly sup-
ported on S. The result is now immediate since S is a
closed set and m,—" 7 by Theorem 2.1, O

Making the dependence on t explicit, we now write
N=NP,N=N{, 1=p® and 7=, In addition we shall
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require the following notation from Ref. [8]. For
I=k=d, let j(k)=(ji,.--z) denote a vector with integer-
valued components 1=<j<p<--<ji=<d, and for
X=(x1,....x2)EIR? write Xju=(x;,,....x;, ). Definc the ““sur-
vival function””

Gx)=P {&>xy,.bii>xs )

and write Gu(X)=P {&; >x;,,-...&;>x; }. For each j(k),
let yju denotc the element in S={0,1}A{0} whosc jth
component equals 1 if and only if j=j. for some i=1,....k.
(This defines a natural 1-1 correspondence between S
and the j(k)'s.)

THEOREM 2.3. Let {£,} be iid. Then N§"—° N{" for some
fixed tET if and only if
}Bg NG (Va (£))=hiju(t)< (8)

Jor each j(k),1=k=d. In that case N has Laplace
Transform given by Eq. (6) with

o
PO (1M D By )
k=1 V=jegjp=d
and with w" determined by the relations
By (©=v® X (). (10)

Y=Njhy

PrOOE: Write S (t)=21_<',-,(...<,}5,ij(u(t). s0 that P{f]‘.f
v (1) =34 (= D8, (v, (1), If Eq. (R) holds for each &,
then

> hwit=vY, (11)

1=yt sed

d
lim nP {&Ev,(t) }=>.(—
"= =]

and hence lim,_..P {M.=v, (t)}=e_“m.
Next observe that for each j(k), | =k=d,

Gipa )= D, P{o=y)=P{&%va(D)} D) m(y), (12)

F=¥iky ¥Y=Yjoy

where ,(y)=P {Sl—y\.f;ﬁv.. (t)}. Moreover, this rela-
tionship is invertible in the sense that each of the prob-
abilities m,(y), YES, can be expressed as a linear com-
bination of the Gjg(v.(t))’s. Therefore by Eq. (8),
lim, .7, (y)=m"(y) (say) exists and satisfies Eq. (10).
Hence by Theorem 2.1 NP ¢ N wherc N has the
specified parameters. Converscly if N —¢ N then 7,
and P{M,=v,(t)} converge (by Theorem 2.1 again),
and hence Eq. (8) follows by virtue of Egs. (11) and
(12). O
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CoroLLARY 2.4, Let {£,} be iid. Then N&®—* N for
each tE€T if and only if P{M, <v,(t)}=" H(t). More-
over H and {v™, 7P Yer determine each other.

Proor: (Sketch) The first part follows from Theorem
2.3 above and Theorem 5.3.1 of Ref. [8] which states
that P {M,=v,(t)}=" H(t) if and only if Eq. (8) holds
for each tET. Note that H(t)=c ™" so that H and the
v"’s can be obtained from each other. Also the =®’s
can be obtained from the »"’s by first inverting Eq. (9)
to get the hyy(t)'s and then inverting Eq. (10). (The
inversion of Eq. (9) is carried out inductively using the
fact that the weak convergence of H,(v,(t)) implics that
of all lower dimensional marginals.) O

Analogous results for the dependent case take on a
slightly diffcrent form. Let {&} be a stationary se-
quence satisfying A(v,(t)) for each tET. As before let
re=[nik,] where {k, } is any sequence satisfying Eq. (7),
and define

ani(k](vn (t))=P {M!J 1=V, (t.f 1)"""M’u;’i>‘ Ve ({u ) }

THEOREM 2.5. Let {£,} be a stationary sequence satis-
fring A(v, (1)) for each vET. Then P {M,<v, (t)}—>" H(t)
if and only if

J]wl_ﬁ k.G jae(va (E)=hju(t)y<=

Jor each j(k), \=k=d and t&ET, and in that case

> ()}

V=) pmemefe=d

H(t=exp{D.(— 1)}
k=1

ProoF: Observe that the mixing condition A(v,(t)) im-
plics that {£, s} satisfies A(v, (1)) for each j(k) (with
obvious notation). Hence it may be shown as in the
univariate case (see Lemma 2.1 of Ref. [1]) that

P M50 =V i) 3= PO {M, iy =Vajon(t) 30, (13)
for each j(k). The result may therefore be proved in
exactly the same way as Theorem 5.3.1 of Ref. [8]). O

ReEMARK: Under the hypothesis of Theorem 2.5, if
NP N, t&T, with parameters v and 7® then
P {M,<v,(t)}—>" H(t)=c ", as in the iid casc. However
it is not possible in general to recover the 7@’s from H
since the clustering of exceedances may cause the sup-
port of " t0 extend beyond S. References [9, 10] give
sufficient conditions (analogous to the D'(u,) condition
of Ref. [13]) under which clustering does not occur, so
that Corollary 2.4 can be extended to stationary se-
quences satisfying this condition.
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A distribution function £ on IR? is said 10 be indeper-
dent if F(x)=IIL Fi{(x;), xEIRY, If {&,} is iid and
P{M,=v,(t)}—=" H(t), then it follows from Corollaiy
5.3.1 of Ref. [8] that H is independent if and ornily if the
marginals of H are pairwise independent. The analogous
result for the dependent case is stated beiow. The proot
(which is omitted) is cssentially the same as for the ixd
case, but uses Theorem 2.5 instcad of Theoien 5.3.1 of
Ref. [8].

COROLLARY 2.6. Let {£, } be a stationary sequcnce sat-
isfying A(v,(t)) for each t€T and suppose ihui
P{M,=v,(t)}>" H(t). Then H is independent if and
only if k,P{M, >v.;(t;), M, >v,,(t)}—>0 for each
|=j<i=d t€T, i.c., if and only if k,G, j(v.(t)) >0 for
each j(2) and each teT.

It is shown in Ref. [14] that H is independent if
H(t)=TIL,H; (1)) for some tE(0,1)%. Although the result
in [14] only stated for iid sequences under a linear wor-
malization, the proof essentially rests on the defining
property of extreme dcpendence functions, namely Eq.
(1). Consequently the result cxtends to the present more
general situation allowing dependence and non-lincar
normalizations. Corollary 2.6 can therefore be improved
as follows.

CorOLLARY 2.7. Let {&,} be as in Corollary 2.6 and
suppose that P{M,=v,(t)}—=" H(t). Then the following
are equivalent:

(i) H is independent,

(it) H(®)=IIL H(t;) for some t(0,1),
(ii1) kG iw(va(1))>0 for each j(2), for some t€(0,1)"

It should be noted that Refs. [9, 10] give somc iiter-
esting sufficient conditions for H to be indepcndent
when {£, } is a stationary sequence. A nataral question
to ask in the present context is whether H is independent
whenever A is. Proposition 3.4 gives a nccessary and
sufficient condition for this in terms of the extremal
index, but the answer in general is negative and a coun-
ter-example can be found in [10]. It scems morc plausi-
ble that the converse may be true, i.c., that A is indepen-
dent whenever H is. In fact however, this too is not the
case, as shown by an interesting counter-example in
[15].

We conclude this section by stating a result which
extends Theorem 5.1 of [5] and is proved similarly.

THEOREM 2.8. Let {£,} be a siationary sequcnce satis-
Jying A(v, (b)) for each tET and suppose that N® —»* N
Jor some tET. Then N\ —~* N§° for each c>0 and fur-
thermore, v9=cv' and m=a® (where €=(if,....15)).
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3. The Multivariate Extremal Index

Let {£, ybe a stationary sequence and {é,, } the associ-
ated 11d sequence. Suppose that P {M,<v,(t)}—" H (t)
and P {M,=v, ()} 5" A (t). The multivariate extremal
inddex ot {£,} is then defined by the relation
H(=H""(1) (sce Eq. (1)), or more explicitly

t)=tog H (t)log H(t), tET.

Observe thiat &(t) is well defined since A has Uni-
form[0,1] maiginals and hence, 0<H (t)<! on T. The
followinyg vesults describe some basic propertics of the
multivariate extremal index.

PROPOSITION 3.1, Assume that {&,} satisfies A(v,(t)) for

each v&T and has extremal index 6(t). Then

(i) 8(ty=8(t) for each tET and ¢>0, and

(i) for each j=1,..d, {&;} has extremal index 8=0(t)
where tET has all coordinates equal to | except the
Jrh.

(Moie that by (i), @(t) is constant along the contours
L={tc0}, teT, and hence 6; in (ii) is well-defined.)

ProOE: Kecall dhat (by Theorem 1.1) H(t)=H(t) and
H (t)=H*(t) 50 that (i) follows from the definition of the
extremal index. Next, for tE€T with all coordinates but
the jth equal o 1, P{M, =v, (1) }=P {M,;=v,;(s;)} and
hence

I?m P{M =, () 3=lim P{M,<v,(t) Y=H({t)=H(1)).

Thercture by Theorem 2.2 of Ref. [1], {&,} has ex-
tremal index 6, (say) so that H;(r;)=t¥. Now
£(t)=A%(t) by definition of the extremal index, and for
the preseat choice of t this is the same as H,(1;)=t®,
whence it follows that 6(t)=8; for all such t. O

For tET, let N denote the one-dimensional point
process obtained from N,¥ via the map y—I o, from
{0.1¥ 16 {01}, ic., N¥(B)=31, Linend 5,20y, BEZRB.
Thus N,” has unit mass at i/n if and only if &=v,(t).
Assurmne that {£, } satisfies A(v,(t)) and with J,, as in
Scc. 2, fet

(=P NP U=y [N W,0503, y=I1.
PROPOSITION 3.2, Assume that (&, } satisfies A(v,(t)) for

each t€T and hay extremal index 6(t). Then
O(t)=(lim, ,.2 - y’ﬁ"(y))_].
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ProoF: Observe that

% " i $ [
Sy )=E @) | B0 Um0t T8 -

knrn "P{glfvn(t)}
n kP M, Ev. (D)}
Now lim,. P{M=v,)}=H(@®t) and lim,..

P{M,=v,(t)}=H(t) (by assumption), so that lim, ..
nP {&%£v,(t)}=—log A(t) and (by Eq. (13)) lim,-
kP {M, £v,(t)}=—log H(t). Therefore lim, .. 3=
y#(y)=log A(t)/log H(t)=1/6(t), as required. O

REMARK: Proposition 3.2 is simply the multivariate ver-
sion of Eq. (1) and shows how the extremal index is
related to the clustering of *‘exceedances.’” Indeed, ac-
cording to the present viewpoint, an excecdance occurs
at time 7 if ££v,(t), i.c., if &>v,(t;) for at least one j.
Thus Propositions 3.1 and 3.2 show that while the dc-
gree of clustering may depend on t, it is constant on each
L.. Note also the connection to Theorem 2.8.

The next result gives the relation between the depen-
dence functions of H and A, which is seen to involve the
extremal index in an intricate manner.

ProrosiTiON 3.3, If {&,} has extremal index 6(t), tET,
then
DH(‘I&’-"J;")HD!‘;‘)(':)’

teT, (14)

where 0; is the extremal index of {&;}, j=1....d.

Proor: By definition of the dependence function,
Dy (ty=P {H,(X))<t),-.. Hs (X )=ts} where (X,,...Xa) is
a random vector with distribution H. Therefore, since
Hi(t;)=t/,

Dy (1 t§0)=P X111, X<ty y=H (£)=H *(t)
=Df(t),
or required. [1

REMARKS

1.) Note that s=t° (for some ¢>0) if and only if log s;/log
s~log tj/log 1m=a; (say), j=1,....d—1. Therefore we
may write Ly=L, where a=(a,....,a;—), and hence by
the remark following Proposition 3.2, 8(t)=6(a),
i.e., the extremal index is a function of d—1 vari-
ables only.

By Proposition 3.3, Dy (t{',...t2)=D A" (t)=Dg (t*").
Also, if tEL, then (¢7,....t%)EL,. wherc a*=(a, 6,/
By,enia-164—1/8,). Thus Dy is obtained by translat-
ing the valucs of Dy (=H) on L, onto L.

2)
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3.) While the above results illustrate some of the basic
properties of the multivariate extremal index, they
are far from complete. For instance; it would be
useful to identify the set of all ““admissible’” 8(-) for
a given A, that is the set of all 8(-) such that Dy(-)
defined by Eq. (14) is a probability distribution on
10,1]% It would also be of interest to study the prop-
crties of 6(-) when one or both of A and H are
independent. In this context we have the following
simple result.

PROPOSITION 3.4. If H is independent, then H is inde-
pendent if and only if

d d
a(t)=>. B;logt;/ Dlogt;,  for some tE(0,1)%
i1

1

In particular, if both H and H are independent then 8(t)
is a convex combination of the 6;'s.

Proor: If H is independent, then H(t)=H (t)*"=
(114,)*. The conclusion follows immediately from
Corollary 2.7 (iii) upon taking logarithm_s and noting
that if H is independent, then H (t)=ITL,17.

The extremal index can be given the following more
general formulation. Let g and p be the probability
measures on (0,1)? corresponding to A and H, respec-
tively. Thus for instance,

p(A)=lim P{M,Ev.(A)}

where v,(A)={v.(s) : SEA }, AC(0,1)*. We now define
6(A) via the relationship w(A)=*(A), or more di-
rectly 6(A)=logu(A)logfi(4), for subsets AC(0,1)*
such that £(A)>0 and p(A)>0.

Note that 8()=0((0,1,)X~-X(0,t,)) for tE€T. Thus if
{0(t) : t€T} is known along with either of H or H, then
it is possible at least in theory to obtain {§(A) :
AC(0,1)?}. In practice, however, it may not be possible
to obtain §(A) in a tractable form, but frequently one is
only interested in certain special sets, typically rectan-
gles of the form 11{,(a;,b;), and for such sets the compu-
tation is easy.

The definition of M, as the vector of componentwise
maxima actually corresponds to regarding & as an ex-
treme observation if &v,;(t;) for some j. More gener-
ally, one may definc & to be an extrcme value if
£Ev,(A) for some AC(0,1), in which case §(A) has an
interpretation as a mcasurc of the clustering of such
extremes. Note that the original definition of extremes
corresponds  to letting  A=((0,/)X---X(0,1,))". Alter-
nately onc may consider taking A=(t;,1)>X--X(#s,1)
which corresponds to defining & as an extreme observa-
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tion if &>v,(1;) for all j. Yet another choice is A=
{t:2t7>c}.

4. Examples

We conclude with two examples, both involving
bivariate stationary sequences.

EXAMPLE 4.1 Let {n,} be an iid sequence, and put
&u="n., and &,=max{m,-,, n, }. Let F denote the distri-
bution of &=(&.i, &z) with marginals F, and F,. Then
FZ(x)=P {fniﬁx }'=P {T!'n 15X, =X }='F|2(X) and

Fi(x),
Fr(n)F(x),

if x,=x
Fx, x;)=P {&1545196-2512#{ if i: q;f
If vy(y)) satisfies F}'(vy(1;))>1;, j=1,2, then lim,_.
Fi(va(t)=" so that vu(m)=va(t)?). Morcover
Vai(t)Zva(t2) if and only if =1}, and so

rzllrzl
th

H, v, (1))=P {M,=v,(t) }—)”H(r)={ if f=0"
e nn if 1<ty
The marginals of H are thercfore H,(t,)=t, and Hyt)=
;7 so that 8,=1 and 6,=1/2, and the dependence function
of H is Dy(t)=H (t,, t5)=nat. For the associated iid
sequence {é,. ) on the other hand, it is easily verified that

if ="

if f<t)?,

B (v (0)=P K<, (1)} H (,)={ t,

nt?,
from which it follows that

if f=p)?
if 1<ty

0|

We next consider a moving average sequence studied
in Ref. [16].

ExampLe 4.2, Let {Z=(Zi1,Z0)'y, —oo<k<oe, be a se-
quence of iid random vectors in IR%. We assume the
existencc of a sequence of positive constants a, ~>o, and
a measure ¥ on IR? which is finite on sets of the form
{x: [ix|l>r }, r>0 (where || - || denotes the Euclidean norm
in IR?), such that nP{a,'Z,S-}~" v(-). (Here ‘"
denotes vague convergence-of measures on IR? with
respect to the metric d(x,,x2)=|r,"'—r{'!\/|61—02|,
where for i=1,2,r; and 6, denote the polar coordinatcs of
x;, and a\/b=max{a,b }.) The mcasure v is necessarily
of the form »({x: |x|>r,0(x)EA })=r"S(A) for r>0
and AC[0,27), where S(-) is a probability measure on
[0,27) and a>0. Hence in particular [17],
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v(cA)=c""v(A) (15)
for all ¢>0 and all sets A with p(A )<,

Define the bivariate moving average process
X,=%70CiZy ;. where {Ci=[c;u1? .1 }=0 is a sequence of
rcal 2X2 matrices satisfying 2;01 Ciat | S<ao, k,I1=1,2, for
some 8€(0,a), 8=1. For x=(x,.x,)'EIR?, writc A, =
{z: GZE((—%,x)X(—%,5))°}, where A* denotes the
complement of a set ACIR?, Then [16],

lim P {a, '"M,=<x}=exp{— 7(x)}, and

lim P {a,'M,<x}=exp{~y(x)}, xEIR?,

where §(x)=27,v(Ay;) and y(X)=r(U%oA,;). The ex-
tremal index is therefore 0(x)=y(x)/y(x), xEIR™. It fol-
lows from the definition of A,; and Eq. (15) that this is
in fact a function of x)/x,. Note that the extremal index
defined above differs from that in Sec. 3 in that it is
defined on IR? rather than [0,1]%. However the two defi-
nitions arc equivalent as may be seen by means of a
suitable transformation from IR? to [0,1]%

The actual calculation of 8(x) may be quite difficult
in general, but possible to carry out under appropriate
simplifying assumptions.

Case (i). If C=c,C where C=[cy];,, and the ¢;’s are
non-negative  constants, then A,=c;'B(x) and
Ui =cB(x), where B(x)={z: CzE((—%,x))X
(—%,x2))"} and c=max{c; : j=0}. Therefore by Eq. (15),
VA )=c/v(B(X)) and »(ULyAs;)=cv(B (X)) so that
B()=cSZ,ct.

Case (ii). If the C;’s arc diagonal, i.e., C=diag|c;,cp]
with ¢;=0, i=1,2, then A, ={z: CHTIZX] O CpZz™>Xa)
and  UpA=((—=x/c)X(~®,x)/cy))*  where ¢=
max{c; : j=0}, i=1,2. In particular, taking x,=% and
using Eq. (15) as in Case (i), we have v(A, )=
¢iv({z:z>x}) - and  (UZuAs))=civ({z: z>x, ), so
that the extremal index of {X,} is Or=cii2 .

Case (iii). Let D denote the support of v. If DC
{z : 2;=0 or z,=0} (which is the casc if the coordinates
of Z, are indcpendent), then we may write

v({(—2x) X (=20 =aux; “Fax, ¢, xi, %,=0, (16)
for suitable constants ¢,=0 and a,=0. Once again, as-
suming the c¢’s to be non-negative and writing
ce=max{c;y : j=0} for k,J=1,2, we have (writing

arb=min{a b })

A ND=((— =11/ ¢j01 /%0 €21 ) X (=% 31/ €5 1A%/ €;22)) D
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and
U;UA,,JHD:--(( m.Xp‘I('l [EAY "-'?l".‘_')l !
X{(—exidepaxyfen, Vi,

so that using Eq. (16)

a(xi/ennn/cy) “ran/cpat/ep)

8 X)= = = ES =
() alz,-.n(xl‘" CinAX i) "'HT22;.—:3(-“'1"r‘-'_:'.l_?f'\v‘f?-" ¢ym)

Thus putting x,==, we have 8;=(a,c{} +ay )/ (@ 2wl t

"
e

@3 5ch:) and similarly, B=(ayesi+ayes)a Y
azz;ﬁfzz)-

If also ¢;10=C;2=0 for each j, (that is if the ;= a1
diagonal), then

i

ax] ey aax; e
— ) o ) w Rl .
Xy dzj..cﬂj'||+ﬂ',-xz 2}41-‘.‘-'_;_72

8(x)=

and in particular, 6=c\/2 /i) and B=c55/ %] o0, Mote:
that in this case the limiting distributions of M, and M,
are both independent, and hence (in accordance with
Proposition 3.4) 8(x) is a convex combination of #, and
..

The non-negativencss of the C;'s assumed ahove is

not crucial and may be relaxed, although at the cost of

more involved calculations.
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1. Introduction

Multivariate extreme value distributions have been
studied by many authors, and their contributions are
summarized by Galambos [1] and Resnick [2]. The pur-
pose of this paper is to obtain some necessary and suffi-
cient conditions for domains of attraction of the multi-
variate extreme value distributions. The joint asymptotic
distribution of multivariate extreme statistics is also ob-
tained. To study multivariate extreme value distributions
and their domains of attraction, Sibuya [3] introduces
the notion of a dependence function which is also used
by Galambos [1]. A dependence function or copula is a
useful notion to construct a family of joint distributions.

In this paper, basic arithmetical opcrations are always
meant componentwise (see Galambos [1], Chapt. 5).

Let (X, X3j...., X)), j=1,2,...n,be a sample of size n,
of a k-dimensional random vector with a distribution
function F(x). The i-dimensional distribution function
of the components X;,X;,...X; will be denoted
E} i (X X goeens X3 )=F r(Xs). We shall also use the
notation Fil--Ji(Ij|’""xji)=F-f(ﬂ(x-ﬂfl)=P(X}|>xj|""’)(j|>xii)'
For k=1 and p&€(0,1), let F~'(p)=inf{x:F (x)=p }.

Let Z=(Zs,...Zsn), where Z,=max{X;,..., X},
i=1,2,..k, and let us call Z, a multivariate cxtreme
statistic.
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If there exist a,>0,b,ER* n=12,.(a,>0 means
a;>0,i=1,....k) such that (Z,— b, )/a, converges in distri-
bution to a random vector U with a nondegenerate distri-
bution / (i.c., all univariate marginals of H arc nonde-
generate), then F is said to be in the domain of attraction
of H, FED(H) by symbol, and H is said to be a multi-
variate extreme value distribution. The convergence in
distribution is equivalent to the condition

lim F¥a,x+b,)=H (x) (1)
R
for all x, because multivariate extreme value distribu-
tions are continuous.

We shall need the following lemma to prove a propo-

sition in Sec. 2.

Lemma 1.1 Eguation (1) is equivalent to
lim n[1 —F(a,x+b,)]=—log H(x)

Jor all x such that 0<H (x)<1. (See Marshall and Olkin
[4])
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2. Domains of Attraction

For any k-dimensional distribution F,

Dr()=F (F7 ' ()serrsFe (K))y y=15eer9YEO, 1)

is called the dependence function of F. In this scction,
we derive necessary and sufficient conditions for do-
mains of attraction in terms of the dependence function.

Proposition 2.1 Let F be a k-dimensional distribution
and let H be a multivariate extreme value distribution
with univariate marginals H,, i=1,... k. Then the follow-
ing statements are equivalent:

1) FED(H).
2) FEDH,), i=1,...k, and

lim s[1 =Dy ")}=—log Dy (y) for all y&(0,1)".

3) F,ED(H)), i=1,...k, and

—_ 1-rx
111[? %J =—log Du(y) for all yE(0,1)".

4) F.€D(H)), i=1,...k, and

lim 12¢ 00

_ &
M D.0) =1 for all ye(O,1)".

Proof. The proof is straightforward from Lemma 1.1,
Theorem 5.2.3 and Lemma 5.4.1 of Galambos [1]. T

Proposition 2.2 Let F be a k-dimensional distribution
and let H be a multivariate extreme value distribution
with univariate marginals H;, i=1,... k.

(A) FED(H) ifand only if F;ED(H;), i=1,... .k, and
the functions

d}(n()’;(i))=1i_1£ ﬂDF,{i]((yJ(a)m)
for each fixed vector J(i)(i>1) and for all y&(0,1)" are

finite, and the function

k
Du(ir)y=yi-yie exp{2(—1) > dioln)}

=2 1 =j ek

is a dependence function of H.
(B) The following inequalities hold.

Dyu(y;:2r+1)=Dyu(y)=Dy(y:.2r),

for a nonnegative integer r, where

> diOu)}

1=j <=k

Dy(yr)=yryi exp{(—1)
=2

and Dy (y;r) is a dependence function of a multivariate
extreme value distribution.

Proof. It is easily scen that for all s3>0,

sd i () Y= Y ro)-

From Theorems 5.3.1 and 5.2.4 of Galambos [1], we
have the result. (1

Example 2.1 (See Examples 5.2.2 and 5.2.3 of Galam-
bos [1].) For a Mardia’s distribution

F(x,x)=1—¢ “—e “4(e4e?—1)7",

1 ]—l
—1 ,
11—y,

Dr()’l.)’z)=)’1+y2_1+[ +

1
1'_y|

- 1 1 =1
. 1in \in -
nDy (37, ¥, )=n|:1_yllm+ l_yzhrn 1]

_y— Uogy)logyy) = o o
log yi+log y,

Thus, by Proposition 2.2 we have F € D (H), where

Dy y)=ny exp[_ (log y))(lo 2)],

log y,+log y:
H(x,x)=A(x)A (x)exp{1/(c"+e) },

and A(x)=exp(—e™).

Proposition 2.3 Let F and G be k-dimensional distri-

butions and let H be a multivariate extreme value distri-

bution.
1) If FGED(H), then

lim =20

— &
i I—Dc(v’)_l for all y&(0,1)".

2) If FED(H), GED(H)), i=1,...k, and
. I_Dr(y) _
I:_H‘l T=Dotv) “Doly) =1, where 1=(1,...,1),

then GED(H).
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3. Marginally Independent or Perfect
Dependent Multivariate Extreme Value
Distributions

Let H be a multivariate extreme value distribution
with  univariate marginals H; i=l,.,.k. Let
H(x)=H\(x))--H(x:) and H‘(I)=miﬂ{Hf(Ii), i=1,..k},
then it holds

H{x)=H(x)<H"(x)

for all xER*, Both bounds, H. and H", are multivariate
extreme value distributions. Characterizations of these
distributions arc obtained by Takahashi [5].

In the bivariate case Sibuya [3] obtains necessary and
sufficient conditions for FED(H.) and FED(H"). In
this scction we generalize his results.

Proposition 3.1 Let F be a k-dimensional distribution
and let H; be a univariate extreme value distribution,
i=1,...k. Then the following statements are equivalent:
1) FED(H.).
2) FiED(H,),i=1,...k, and there exists y&(0,1) such
that

lim(D (y Y =y v
3) F.ED(H,), i=1,...k, and

im =200,
I—y

yT]
4) F.ED(H,), i=1,...k, and

lim 220D
¥T1 l_'y

Proof. The proof is straightforward from Theorems 2.2
and 4.1 and Corollary 2.4 of Takahashi [6). O

Remark. If k=2, we have the same result as Proposition
3.1 by Corollary 2.2 of Takahashi [6].

Example 3.1 (See Example 5.2.3 of Galambos [1].) For
the Morgenstern distribution

Fr,x)=1—e™ —c+e = 7 [1+a(l—e “)(1—e )],
Dr(y1,y2)=yr-yal 1+a(1 =y )(1 = y,)]-

where ~1=a=<=1, and

lip =200
¥TI l—y2 *
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By Proposition 3.1 4) we have FED(H.), where
Ho(- y=A()A().

Proposition 3.2 Ler F be a k-dimensional distribution
and let H; be a univariate extreme value distribution,
i=1,...k. Then the following statements are equivalent:
1) FED(H").
2) FiED(H,), i=1,....k, and there exists y&(0,1) such
that

lm(Dy (v " 1))'=y.
3) F.ED(H), i=1,....k, and

lim! —2eOD) _
yT1 l"y

1.

Proof. The proof is straightforward from Theorem 3.1
and Corollary 3.1 of Takahashi [6]. O

4. Joint Asymptotic Distribution of the
Multivariate Extreme Statistics

In this section, we show the joint asymptotic distribu-
tion of several multivariate extreme statistics along the
arguments in Sec. 2.3 of Leadbetter et al. [7]. For sim-
plicity we shall consider the bivariate case.

Let (X;,Y1),....(X..Y,) be a sequence of independent
random vectors with common distribution F. The order
statistics of the components will be denoted by

X]:MEXZmE"'EXn:n; and Y]:nEYZ:RE."EYn:n-
For i=0,1,...,r—1, dcfine
Zn—i'(Xu i:n,Yu—i:n)

and let us call.Z, ; an (i+1)-th multivariate extreme
statistic.

Proposition 4.1 Suppose that
P{(Z,—b.)a,=x}>H(x)

Jor some nondegenerate distribution H. Then, for
X=(X1, 1 )>X=(X2, y2),

P{Z,—b,)a,=x, (Z, \—b.Va,=x; }:)HJ(IIJZ)
where

H,(x\, x)=H (x,) {1+log H(x,)—log H (x,)
+Hlog Hi(xi)—log H\(x:)+(h(x1,y2)—h{x2))]
X[log Hy(yi)—log Ha(y:)+(h(xz,1)—h (x2))]}
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and h(x)=lim, .- F(ax+h,).
Proof. Define

Sam=tt{j | Xpa1214+b1, 08 Ya0,91+bs 0 j=1.2,...00.),
S;'='#{)' I alnx2+bln<Xanlnxl+bln and
Yi=ayy+bra, j=1.2,...n.},
Si=#{j | X;<a,xrtb:, and
A yr+bo<YiSayy +byy,, j=1,2,...n.},
Sh=#{j | ax+b,<(X; .Y )=ax+b,,j=12,.. .n.}

then, we have

P{(Zn_bn)fanﬂxis (Zn—l_bn)fanﬁv‘ﬁ}
=P {$;=0, S};=0, S{=1, S7=1}
+P {5:=0, Sit=1, §/=0, 5;=0}.

On the other hand, by using Theorem 5.3.1 of Galambos
[1], we can evaluate the asymptotic probabilities of the
evens

{So=i, Siy=j, Sy=k, S7=m }
for i,j,k,m=0,1. Thus we have the result. []
Corollary 4.1 Suppose that

P{(Z,—b.) a,=<x}>H (x)

for some nondegenerate distribution H. Then, for fixed
rz1 and x,>--->x,

|P{(Z.~b.)a,=x\..(Z, o1 —b,)a,=x,}

—PUZ;— B @ =x1(Zy o~ Ba) =3, }| 50,
as n—m,

where Z,,_, is the (i+1)-th multivariate extreme statistic
from the distribution H, i=0,..., and
Hax+B,)=H(x), n=1.2,...

r—1,

Example 4.1 Let F be the bivariate normal distribution
with the correlation coefficient less than one. Then

|P{(Z,~bYay<x,..(Z, ,n—b,)a,<x}

~P{(Z;~(log M1=x,,...(Z,,.—(log n)1=x,} | -0,
as n—%,

where Z, ; is the (i+1)-th multivariate extreme statistic
from the bivariate exponential distribution whose mar-
ginals are equal to the standard exponential distribution
and they are independent. For the univariate case, it is a
well known result (see Weissman {8], Theorem 3).
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1. Introduction

The severity of a storm or a flood is often a func-
tion not only of the peak value of whichever envi-
ronmental variable is concerned, but also of other
aspects of the extreme event, such as its duration
and temporal shape. An extended run of days with
temperatures just below freezing, for example, can
be more disruptive to everyday human activity and
to animal and plant life than a single day with a
much sharper frost. Similarly, sustained moderately
high water levels in a river or the sea can lead to
greater flooding than a more extreme level lasting
for only a short time. To attempt to analyze such
examples in a way which captures the notion of
severity implicit in them demands an extension of
traditional statistical methods for extremes, which
have tended to concentrate largely on the mod-
elling of maxima or storm peaks. In Ref. [1] it was
suggested that for an important class of applica-
tions a simple way to quantify the idea of severity
is in terms of the sum of the excesses of the envi-
ronmental variable over a high threshold during
the extreme event. In the case of a flood, for exam-
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ple, this sum or aggregate excess is a discrete ap-
proximation to the total volume of water
overtopping the threshold, and in the case of tem-
peratures the analogous quantity defined for low
values, the aggregate deficit, is a measure of expo-
sure or cumulative damage. In the earlier paper
some distribution theory was developed for aggre-
gate excesses, and an application to flood data was
discussed. Here I review that work and present
some extensions of its distributional results, and
discuss a new application to ozone concentrations,

2. Preliminaries

The techniques to be described are related to
threshold methods for extremes [2], and the distri-
butional results are formulated in terms of the
Mori-Hsing point process representation [3, 4] for
the structure of high values of a stationary
sequence. We briefly recall ideas from these two
areas.
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Suppose {X;} denotes a sequence of observations,
and let u be a high threshold. Times j at which
X; > u are referred to as exceedances of u by {X;},
and the sizes of overshoots X; —u at exceedances
are called excesses over the level u. In environmen-
tal applications exceedances are often found to oc-
cur in clusters corresponding to physical storms.
Threshold methods are based on the modelling of
the peak excess within each cluster by a generalized
Pareto distribution, with distribution function of
the form

)—l.fé

where o >0 is a scale parameter, {(— © <{ < ®}is
a shape parameter, and the range of x is such that
&lo> -1,

Let N denote the number of exceedances within
a cluster, and suppose that {; = ...= {yare the cor-
responding excesses. Then the suggestion above is
that the aggregate excess within a cluster

&x

G(x:ga)=1—(1+; )

S=X¢

1

is for some purposes a reasonable measure of the
severity of a storm event. For statistical modelling
we are interested in the distribution of S, particu-
larly for high thresholds u. Since § = {,, we expect
S to have (in the limit as u increases) a tail no
lighter than that of the limiting generalized Pareto
distribution of £. The distribution of S is also ex-
pected to reflect the cluster size and the pattern of
dependence between individual excesses {j.

Suppose now that M, =max,<;<, Xi. It is known
that for many {X;} sequences M, may be normalized
to converge in distribution to some nondegenerate
limit. Suppose in fact that there is a continuous and
strictly decreasing function u, (7) such that, for each
>0,

lim P(M, <u,(7))=¢ " @

Let u, ! denote the inverse function of u,. Consider
now the two-dimensional point process with points
(i/mu,(X;)). In Ref. [4], which generalizes Ref.
[3], it is proved under a weak long-range mixing
condition A that if this point process converges as
n— then its limit has points of the form (S,
TY;), i =1, 1<j=K;, where (5;,Ti), i=1 are the
points of a unit Poisson process in 3 *?, and for each
i, {¥;:j=1,..., K} with Y, =1, is a point process
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on [1, « ) with a random number K; of points. More-
over the processes {Y;;:j =1, ..., K} for each i are
independent of each other and of the {(S;,T;)} pro-
cess, and are identically distributed.

A natural interpretation of this convergence re-
sult is that large values of the {X;} sequence occur
in clusters, located in time at the points of a simple
Poisson process, and that values within a cluster
(from the peak downwards) are given, after trans-
formation, by T;, T:Y2, . . . respectively (reading up-
wards). Note that, since the transformation is
decreasing, a cluster peak corresponds to the lower
endpoint of a vertical string of points in the limiting
point process.

In what follows it will be convenient to suppose
that the point process associated with each cluster
contains infinitely many points Yj arranged in
increasing order of size

1=Yu=sYh=...

but that infinite values of the Yj; are allowed after
the first point, so that K;, the number of points in a
cluster, is just the index of the last finite Yj;. By this
means stochastic properties of K; are subsumed no-
tationally in those of {Y}.

We are interested in particular in clusters of
exceedances by {X;} of a high threshold u. Let
v=u,'(u). Then X;>u is equivalent to
u; ' (X;)<wv, and so, in the limit, clusters of ex-
ceedances of u correspond exactly to those clusters
in the point process for which T; <v. Given that we
are dealing with such a cluster (as we assume from
now on) it follows from the unit Poisson nature of
{(S:,T:)} that 7; is uniformly distributed over (0, v).

For many {X;} the transformation u, is related in
a simple way to the marginal distribution function,
F say, of X;. Suppose in fact that {X}}, still satisfying
condition A, has a positive extremal index 6. Then
([5], Theorem 3.7.2)

lim P(M, <un(1)= lim Fu,(r). ()

Hence, if the tail function 1—F of F is denoted by
#, it follows from Eq. (2) that

n8F(u, (7)) ~—nblog F(u.(t)) ~r,

for large n. We may therefore define u, by

u,(v)=F""(7/n0). 4)
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In particular therefore
né Fu)=v,
and so the excesses within a cluster, in decreasing

order of size, are in the limit (dropping the cluster
index i, no longer relevant)

§=u(TY))—u
= FYTY,; F(u)lv)—u
= FUT'Y, F(v))-u,
j=1,2,...,N (5)

where 7' =T/v is uniformly distributed over (0, 1).
The aggregate excess for the cluster is

N
S=X ¢,

where N, the number of exceedances in the cluster,
is
N=max {j: T'Y; <1},

and T’ is independent of the Y; process.

3. Asymptotic Distributions of Aggregate
Excess

In this section we outline various asymptotic dis-
tributional properties of aggregate excesses which
follow from the preceding discussion. The asymp-
totic distribution of aggregate excess S itself turns
out to depend on the Y process partly through ran-
dom sums

j
R=>Z
i=1

where the Z; are defined in terms of {¥;} by

(X{;f’)f—l for £>0

log (l};—l) for £=0

1- (Z“—‘)f for &<, (6)
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3.1 Limit Distributions of §

Suppose that the stationary sequence {X;} satisfies
Hsing's mixing condition A and has positive extremal
index, and that the marginal distribution F of the X; is
such that the limiting distribution of peak excesses
within a cluster is generalized Pareto with shape
parameter £ Suppose 100 that the corresponding point
process {(jin,u'(X;))} converges to a limiting process
with the structure described in Sec. 2. Then, as the
threshold level u tends to the upper end point, x+ say,
of the support of X,

.,“'Elp( @) >5) =

-
0D i “’f]
E_(_J—s+j,) for £>0
E rvf:xp (—s———} o8 )] for £€=0
-[ (% Y,-—f) v ]
E-(J":_S + for & <0
- ()
where
u for £€>0
ye()=1 1(1/Fu)) for £=0
Xy —U for £<0
®)
for a suitable slowly varying function I, and
Jy=min{j: Ys, =% or Rjzs }. 9

Expectations in Eq. (7) are taken with respect to the
point process {Y;}.

This result is a consolidation and re-statement of
the main limit forms found in Ref. [1]. The proof —
essentially a weak convergence argument based on
the Mori-Hsing process —exploits regular and slow
variation properties of implied by the assumption
that cluster peak excesses are, in the limit, general-
ized Pareto distributed. For example, when £=0,
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% belongs to the domain of attraction of the Gum-
bel extreme value distribution, so that, as x—,

F i e™™ —F (e™) ~ wi(e))

for each w >0, for some slowly-varying function /
(see, for example, Ref. [6], Sec. 8.13). Thus

4 ~F T, Fu)-F (Fu))~

(= log(T'Y)) (1 F(u)),

as u —x ., which establishes the connection between
the limiting behaviour of § and the Y-process.

We note that Eq. (7) reveals in reasonably ex-
plicit form the dependence of the distribution of §
on the number and pattern of excesses within a
cluster.

3.2 Joint Limit Distributions

The techniques used to obtain these results may
be extended to give limiting distributions for other
quantities. As an example (motivated by a question
from a reservoir engineer about peak water level
and total overtopping discharge at a dam wall) the
joint distribution of peak and aggregate excesses is
as follows.

Under the same assumptions as in Sec. 3.1, and
with the same notation:

.!'fi P(wfu) = 7;:(1u) >z)=
E :min {(E%E)M, (1+z)™ " }] for £>0
E :min {exp( —ﬂ%% ), e “}] for €=0
p[mnf (B2 a-0]
) (10)

Similar joint limiting distributions may also be
found for £ and § — {1. Like Eq. (10) they are singu-
lar. Methods of statistical analysis based on them
have yet to be explored.
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3.3 More Explicit Forms for P(S/y;(u) >s)

When specific models are assumed for the X' pro-
cess the limiting distributions Eq. (7) take on more
explicit forms. Several examples were studied in
Ref. [1]. Writing

lim P( N >s) _ {(1 +sign(€)V (s, £))~" for £=0
-4 Ye (u ) exp( _ V(s, 0) for g =0
(11)

it was found that V' (s, £) had the same general form
in all cases considered: that of a concave increasing
function of s dominated by s when £ =0, and by min
{1,5} when £<0. See Fig. 1.

25 30

V(s,5)
15 20

10

05

0.0

1 2 3 4

(=

s
Fig. 1. Forms of the V(s, £) function.

The findings and examples above motivate an at-
tempt to fit aggregate excess data by a distribution
with tail function of this general form. Two such
attempts are described in Sec. 4,

3.4 Higher Thresholds

As often in extreme value Statistics, an aim in
many applications will be extrapolation to longer
time periods or higher levels than seen in data. In
particular, for aggregate cxcesses, extrapolations to
higher thresholds will often be of interest. For exam-
ple, in flood applications knowledge of the aggre-
gate excess above a higher threshold might be vital
in estimating the reduction in the size of floods that
would result from improved river or sea defences.
The following presents a simple relationship on
which extrapolation of aggregate excesses could be
based.
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Suppose that S, and S.- denote aggregate excesses
above levels u and 1, respectively, with « <u ', in a
cluster in which level u is exceeded (so that S, but
not necessarily S, is greater than zero). In a slightly
more refined notation than used earlier, the limit-
ing forms in Sec. 3.1 are limits, ¥(s) say, of P(S./
Ye(1e) >s1S, >0) as u —x,. We are now interested in
P(Su/ve(u)>s|S. >0). But

Su'
P( ye(u)

> s[S“>0)=

zg.!u |

S.
P(')’f(u D ye(u’)

iS,,->0)

P(S.,>0|S,>0) =

?f(sml

'yg(u :) )P(gl >u '):

(12)

for high u, where {; is the peak excess in the cluster.
Thus the distribution of aggregate excesses with
respect to the higher threshold u* has a point prob-
ability at 0 corresponding to the event P({i=u’)
that no exceedance of u' occurred, together with a
form over the strictly positive half-line which is the
the same as that of the original distribution of ag-
gregate excesses except for an increased scale
parameter. Estimation of this distribution may
therefore be based, through Eq. (12) on estimation
of ¥ from data on aggregate excesses of u, and of
P(&i>u’) from data on peak excesses of u fitted to
the Generalized Pareto distribution Eq. (1). Rela-
tionship Eq. (12) should also be useful as a means
of checking the fit of specific models for ¥, though
this aspect has yet to be investigated.

4. Applications

4.1 Floods on the River Thames

In Ref. [1] an application of some of the limiting
results above to data on levels of the River Thames
is described. The aim was largely exploratory: to see
whether there is support in an important data set
for a model of the general kind suggested in Secs.
3.1 and 3.3, and, if there is, to seek an appropriate
parametric form for the model. The results were
surprisingly positive: confirmation was found for
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the general form of distribution predicted by
asymptotic arguments, and in particular a simple
Weibull distribution with

P(S >s)=exp(— as)?), (13)
for some parameters o >0 and ¢ was found to give
an acceptable fit to data on §.

4.2 Ozone Concentrations

An analysis of a further set of data, which calls
for the extension of the models above to take ac-
count of covariate information, is now reported.

The data consist of hourly mean ozone concen-
trations at a suburban site in Stevenage, about 25
miles north of London, over the years 1978--1989.
High levels of ozone are known to cause direct dam-
age to vegetation (see, for example, Ref. [7]). One
tentative suggestion is that a plant or tree suffers
damage in proportion to cumulative exposure to
ozone at concentrations above some threshold. The
threshold is not known, and indeed is likely to be
different for different plants, but a figure in the
range 40 ppb-90 ppb might be plausible. Though
this theory is at present no more than a working hy-
pothesis, it prompts an interest in the occurrence of
high values of aggregate excesses of ozone concen-
trations above moderately high thresholds., The
analysis summarized below is a preliminary investi-
gation into the possibility of using the aggregate ex-
cess models of Sec. 3 to describe such high doses. A
more complete account of the biological back-
ground, and of the application of the method to
spatial variation of exposure over the UK, is given
in Ref. [8].

For the theory of Secs. 2 and 3 to be applicable it
is desirable that we work with independent clusters
of high values. The hourly data were therefore sub-
jected to a preliminary declustering procedure,
which selected episodes when concentrations above
a specified ‘declustering threshold” were experi-
enced, and ensured that such episodes were sepa-
rated far enough in time to give some plausibility to
the independence assumption. Figure 2 shows a
time plot of the resulting aggregate excesses above
a threshold of 60 ppb, obtained with a declustering
threshold of 50 ppb and with a time separation be-
tween clusters of at least 48 hours —these values be-
ing chosen as typical of those of possible scientific
interest. An immediate observation from the plot is
that the assumption of stationarity is suspect: the
middle years 1982-1986 contain some values higher
than seen earlier or later. (There are known diurnal
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patterns in ozone concentrations too, but they are
of too short a duration to affect the present analy-
sis.) In view of the apparent nonstationarity a sim-
ple model of the kind found useful in the earlier
analysis would not on its own be expected to be par-
ticularly successful here: and indeed the Weibull
model Eq. (13) fitted to aggregate excesses above
60 ppb appears to underestimate the sizes of the
highest aggregates.

Cluster Peaks Aggregate Excesses
- L]
e -
g g
g ' .
* w%
2 . i
a8 2
i ) gs .
3 E
8] o
- * . g -
#s s cat ;
LAl LA I o %
.+ - . o L Fl
2 "-" e T RN T

1978 1980 1982 1984 1886 1968 1590

Year

1978 1960 1982 1984 19B6 1388 1990
Fear

Fig. 2. Hourly mean ozonc concentrations over 60 ppb: Steve-
nage 1978-1989.

The processes leading to the formation of ozone
in the atmosphere are photo-chemical —driven by
strong sunlight. It is possible therefore that unusual
weather conditions in the early to mid 1980s may
have had some bearing on the possible inhomo-
geneity. Unfortunately sunlight was not recorded at
the Stevenage monitoring site, nor was tempera-
ture, which is a crude surrogate for it. Temperature
data were not readily obtainable either from nearby
meteorological stations, but were to hand for
Sheffield, 140 miles north. Figure 3, showing aggre-
gate excesses over 60 ppb against monthly averages
of daily maximum Sheffield temperatures, illus-
trates that in spite of the geographical separation
there is nevertheless some connection. It appears
that the summers over the relevant years contained
some quite warm spells, presumably experienced in
Sheffield as well as Stevenage. Accordingly Weibull
models which incorporate temperature ¢ as a covari-
ate were fitted. Two forms were used:

P(S >s)=exp—(s/8(1))’, (14)
in which the scale parameter 8 depends on ¢ in the
form 8(t) = 8e”'; and secondly a model suggested by

560

the evidence from Fig. 3 that not all occurrences of
high temperatures ¢ at the time of an ozone cluster
are necessarily associated with a high aggregate
ozone dose. This suggests a model in which ozone
clusters are assumed to be of two types, the first
showing temperature dependence of the kind
above, and the second showing no dependence on
temperature. Thus

[ exp—(s/8(r))* for type 1 clusters
PS=s)= { exp—(s/6")* for type 2 clusters
(15)
581 :
53] .
8
22 .
E
g . PRI
o . e «3 . . - ‘:' - m‘ -* i, .
5 10 15 20 25

Monthly average of daily maximum temperature, degrees Centigrade

Fig. 3. Aggregate cxcess ozone over 60 ppb vs temperature.

(Since sunlight/high temperature is at best only one
of the preconditions known to be necessary for the
formation of ozone, there is some general scientific
justification for a model of this form.) In fitting,
clusters with aggregate excesses above a specified
level were taken to be of type 1. A likelihood ratio
test shows that model Eq. (15) represents a very
worthwhile improvement over Eq. (14) even after
allowing for the inclusion of two extra parameters
(W=217.26, p <107*, cut-off level for type 1=500).
Q-Q type plots for the two covariate models are
shown in Figs. 4 and 5 respectively. (These are con-
structed as follows: under model Eq. (14) S/(8¢®')
reduces to a standard Weibull variable with unit
scale parameter and shapc parameter ¢:P(S/
(8ef)>s)=exp(—s?). Thus a plot of the ordered
values of $/(8¢®) from a sample of size n against
[—log(i/n + 1)]"* should yield an approximate line
of unit slope. Figure 4 is a plot of this kind, and
Fig. 5 is constructed similarly from model Eq. (15).)
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Fig. 4. Q-Q plot for aggregate excess ozone: simple covariate
model Eq. (14).
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Fig. 5. Q-Q plot for aggregate excess ozone: two-type covariate
model Eq. (15).

Both plots appear to show a quite good fit to the
Weibull model after allowing for dependence on
temperature, model Eq. (15) doing a little betfer
than model Eq. (14). Further refinements of the
models allowing temperature-dependence also of
the shape parameter ¢ gave no worthwhile im-
provement in fit as judged by a likelihood test.

Though this is only a preliminary analysis (which
we hope to complete with better temperature data),
the results so far are encouraging. They appear to
show again that models of the form suggested in
Sec. 3.3, and in particular a Weibull model —after
allowance in this case for nonstationarity — can rep-
resent aggregate excess data reasonably well. If this
is confirmed, then for example these models will be

561

useful in estimating return levels of future high
doses of ozone above 60 ppb or, following the re-
sults of Sec. 3.4, above higher thresholds.
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1. Introduction

Measurements of many environmental variables
such as wind speeds, rainfall and the concentra-
tions of atmospheric and aquatic pollutants arc
generally duration-specific: the actual quantities
measured are averages over a specific time interval
rather than instantaneous values. Thus concentra-
tions of ozone are typically measured as parts per
100 million averaged over an hour, and wind
speeds are routinely recorded as hourly or daily
mean speeds. In practice however, the scientists
wishing to understand the environmental processes
which lie behind such measurements, and the reg-
ulatory body which monitors pollution, often wish
to deal with characteristics measured over some
other time interval: peak concentrations over a day,
for example, or high wind gust values, which in
practice correspond to peak 3-5 s averages. There
is therefore a need to understand the relationship
between the statistics of environmental measure-
ments averaged over different time scales, and to
relate these statistics to extreme levels of the vari-
ables. In this paper, results on the asymptotic joint
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distributions of extreme averages over different
time periods will be treated. These results will
make it possible, for example, to link long historical
data series containing information about extremes
of daily rainfall (sometimes extending back to the
early years of the century) to the shorter series of
extreme hourly rainfall which have been recorded
only in the past 20 or 30 years. Thus important his-
torical information could properly be taken ac-
count of in the estimation of floods, something
recognised as higly desirable by hydrologists. An-
other arca of application of the results is in the
study of the dispersal of airborne pollutants. Here,
it is known (see, for example Fakrell and Robins
[9]) that instruments used to measure the concen-
tration of pollutants dispersing in a turbulent flow
cannot resolve the finest scales present in such
flows. Measurements of concentration are there-
fore invariably obtained only as averages of the
characteristics of primary physical interest, and so
a statistical theory which links extremes of averages
over different ranges would be of great value
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to scientists working in the area (Mole [10]). One
related area is the study of joint distributions of av-
erages and maxima of random sequences. Interest
in such distributions is motivated by analysis of ex-
treme winds. For purposes of building design or
public safety, it is often important to estimate the
speed of the most extreme wind likely to occur at a
particular location over a period of years and to do
this it is natural to apply the methods of extreme
value theory to data on maximum gusts. The preci-
sion of estimates obtained may be low due to the
limited amount of relevant data—often no more
than 10 or 20 years, so it is desirable to try to im-
prove the precision by introducing into the estima-
tion procedure other information relevant to
extreme winds. It is natural, thefore, to ask whether
the data on gusts could be augmented by that on
hourly means, as gusts and means are evidently re-
lated. One source of guidance here may be provided
by the limit properties of the joint distribution of
means and the maxima.

In Sec. 2, we give a summary of the results that
exist on the joint limiting forms of sums and maxima
of stationary sequences and in Sec. 3 we give some
results on the asymptotic joint distributions of
extreme averages over different time-periods of
sequences which have moving average representa-
tions. Possible solutions for the general stationary
case are also indicated.

2. Extremes and Averages
Let {X;} be a stationary sequence of random

variables with marginal distribution function
P(Xi=x)=F(x) and let

SII:EA’;,M"=1TIHXX" ,n=l,2,...

! l=i<n
i=1

We study here the joint limiting distributions of

G, 1) = Q)

an

S» _"bn’ M..c: dn)

as n— o for suitable constants a, >0, ¢, >0, b, and
d,.

Case 1: Light Tailed Case

Assume that Var{(X;)<w and FED(A)or F
D (®.), a>2 or F € D(¥,), a>0, where A(.),
®,(.), ¥o(.) are respectively the Gumbel, Frechet
and Weibull distributions.

Then for the associated iid sequence (Chow and
Teugels [5])

(Sx, Mu)—? (N, A),
or

($nr Ma)— (N, @), a>2,

(8., M,)—¢ (NW,), a>0,

where the limit components are independent.

Can dependence amongst X; modify this limiting
independence? As the following theorem (Ander-
son and Turkman [1]) shows, under quite weak con-
ditions, dependence does not affect the limiting
distribution.

Theorem 2.1

Assume that {X;} is strong mixing and has posi-
tive extremal index and for some a,, ¢, and d,,,

5= 2 N,

i, = o) i,

where G =A or G =@, for some a>2 or G =Y,
for a>0. Assume further that {X;} satisfies the con-
dition

lim klimsup D'(a,,u,)=0,

k—= H—=

where

D'(anu)= 2 =E[lexp(ita,’ 2 Xi)

i=1 =1
1=

— 1 [x (> u)] @

Then S, and M, are asymptotically independent.
Local dependence condition D'(a.,u,) is quite

weak and satisfied, for example, by m-dependent

sequences and by Gaussian sequences with

summable covariances.

Case 2: Heavy Tailed Case

Assume that
1-F(x)=px * L(x),

F(-x)=gx*L(x)
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where L(x) is a slowly varying function and
O<a<2. Then for the associated iid sequence
(Chow and Teugels [5])

(Sn, M) =4 (U, V),

where
E(€"V x(V= v))=W.(t,p)exp I e’ ™ dw ™",

Here x(A) denotes the indicator function of the
event A, W, (t, p) is the characteristic function of a
stable law of index « and parameter p, and k is a
constant depending on « and p. Note that for the
heavy tailed case, U and V are dependent. Can the
type of local dependence of the X-sequence make a
difference to the Chow-Teugels limit? It can! If
large values are cancelled by large negative values,
then sums and maxima can be asymptotically inde-
pendent. We show this by constructing an example:
Let {Y;} be a stationary sequence with

1-Fy(y)=1—-y5,

e€<1,y=1 and for v>0 such that e+v<1, let

|

Then it can be shown that {X;} is stationary, 1-
dependent and 1—Fx(x)=¢e(e+v) 'x ™, Fx(—x)=
x~*. Hence the limit distribution of (3., M,) for the
associated iid sequence is the Chow-Teugels limit
with a=€ and p =€(2¢ +v)~". The components of
this limit are dependent. However, (S,, M) of the
dependent {Xi} process can be shown to be asymp-
totically independent due the cancellation of large
positive values by large negative values values, thus
showing that local dependence may make a differ-
ence on the limit distribution. However, if we rule
out this type of cancellation, then the limit distribu-
tion is not affected by the dependence in {X;}, as
the following theorem demonstrates (Anderson and
Turkman [4]). One possible local condition which
rules out this type of cancellation is Davis’ [6]
D’(a,) condition, which we assume in the theorem.
This restrictive technical condition also rules out
clustering of large and small values above and be-
low certain thresholds. Types of processes which
satisfy this condition (and others which we need in
the theorem) can be seen in Davis [6].

Y:
—-Yi

with probability Y;Z}

X; with probability 1— Y}
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Let {E;} be an iid unit mean exponential se-
quence, I; = 2 E,; and {8;} iid taking values +1 and
—1 with probBabilities p and g respectively. Then

Theorem 2.2

() If O0<a<l1, p>0 and conditions D(a,),
D’(a.) of Davis [6] hold then

(S, M,)—>1 (i TV Ty 1;..)

where D =min{j: §;=1}.

(i) If 1=a<2, p>0 and conditions D(a,),
D’(a,) and D"(a,) of Davis [6] hold then

(5., M, )—4

(?:{5 I~ lfn_(p —q)E(Is l.fu(o,l))} s l!w)

j=1

(iii) Under the conditions of (i) and (ii),

E [ x (M < x)]>* Wa(t,p) Palr)e ™02,

where

hex=[ e —1d(-ye),

and
8=p—a~—,

and C is a positive constant. Note that the value of
the limit does not depend on the dependence struc-
ture of {X;}.

These results seem to be discouraging for statisti-
cal applications. For example, for sequences with
finite variance, the independence of (U, V) does not
offer a basis for the use of average wind speeds in
inferences about gusts, contrary to the evidence
shown in data. This may be due to:

(i) Time intervals are not long enough in prac-
tice for asymptotic results to give adequate approx-
imations,
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(ii) The correlation structure of the data is not
well represented by our mixing and local depen-
dence conditions,

(iii) Residual seasonality remains in the data.
Based on these possible deviations, statistical mod-
els establishing connection between means and ex-
treme events are suggested in Anderson and
Turkman [3].

3. Extremes of Averages Over Different
Time Scales

The specific problem to be adressed in this sec-
tion is as follows: Let X, represent the instantaneous
value of the environmental variable at time ¢, and
denote by X7, a moving average of {X,} over the
range T:

-1
Xt > Xo-i. (3)
i=0

Then we are interested in the paired series {X7,,
X, } for different fixed S and T and in particular, in
the joint distributional properties of extremes of the
pair { Xz, Xs.}.

We will give results only for sequences with the
heavy tailed distributions. The light tailed case is
more complicated, since in this case large values of
the moving averages may occur due to the contribu-
tion of several relatively large values of the se-
quence in contrast to the heavy tailed case when
large values of the moving averages are dominated
by the largest value of the sequence. The techniques
to be used to study these questions will be develop-
ments of those used by Davis and Resnick [8].

Suppose that {X,}<, are iid random variables
with

P(Xi>x)~x"" L(x),

where L (x) is slowly varying asx— o, thatisX €D
(®.). Take constants a, such that

nPX >awx)— x5

Consider a point process P, which puts points at
(f—t, a; ' Xe),k=1,2,....Hence P, is the random

point measure on sets in R* xR
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E e{%-u;'x;‘) () H
k=1

where
1 ifxeA
e(4)= {0 if not.

It is known that P, converges weakly asn— to
a point process P, a Poisson process with mean
measure pu on R* X (R™ —{0}). (Davis and Resnick
call this Poisson measure, the Poisson random mea-
sure PRM(p) and consider a more general case
which involve the left tail of the distribution as
much as the right tail. Here due to the special sim-
ple form of the moving averages, we restrict
ourselves to the space (0,%).)

Here

dp=dt Xoax ™' €,(0,%)dx.

Hence

z e[%'an_ !

k=1

Xk)(') - 2 €io ()

where {(‘*’j*)}k{:I are the points of P.

Davis and Resnick [8] show that, correspond-
ingly, for {X;} with same normalization

=
2
k=1

o T
€kra1 X10) ()= 2 2 € ()

k=11i=1
on R* x(R* —{0}), where

i=1,2...,T.

1 ..
T
0 otherwise

Ci

and (t«, jx) are as above.

Results for the point process generated simulta-
neously by {X7;} and {X;,} processes can be ob-
tained with a straightforward generalization:

£ ot T
z e{%'an"X'm-a T X5 () - 12 2:1 €t rcnisén) ()
=1 i=

4)
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on R* X(R* ~{0})% where

1 .
&= [S i=1,2,..., 8.
0 otherwise

The joint limit distribution of M+, and Ms, now
can easily be calculated since

P(MT.N = anx, Ms,u = au}’)
=P( E €t Xrpart Xs.k)
k=1

(1% (= %, x]x (= =, y])) =0)

T

SP(3 S ctnansr (O1]x (%]

k=1 i=1

(= %,y]))=0)

=P( 3 cqurs-bo (Q1x((- 0,51

k=1

(- =.y1))=0)
=P(§ i (O] (Tx A Ts,%))=0)
=exp[—p (0, 1] %X (Tx A Sy, =))]
—ewl- [ qwad

if Tx A Sy >0

={em [=p(Tx ASy)~] ]
if not )

0

Special Cases
[1] §=T. Then

P(an_lMT,n Sx; an_l MS.H Ey):P(ﬂn-lM‘!:n $x/\y ),

so from theorem 3.1 of Davis and Resnick [8], we
should have

P(a,.‘ 1 M}}n <X, anr ]MS.n Ey) = e TN
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Hence the result Eq. (5) is consistent with the
existing results on this special case.

[2] §=1<T, soMs,=max;<, X;, and the result
Eq. (5) says that

P(a,'Mr, sx,a;'Ms, <y)—ser TAm™

Note that the above distribution is the joint limit
distribution of the maximum of the {X;} process and
the maximum of a moving average of it.

The above set up is a very simple case. The imme-
diate question is: what if the {X;} are themselves a
dependent sequence?

We can get a partial answer by taking {X;} to be
itself a moving average:

M:

j

o
a; Z,'_j,
=1

say, where Z; satisfy the same conditions as the X;
and a; =0 (for simplicity)

Thus
]
and
X={Z}*{a}.
Hence

Xe=(2)*{a)* {3 =12} * 1,

say, where
d={a}* {1}

Note that for any /=1, 2, ...,

TAad—1
d;= z ﬂ,r_;',.f::l, 2,...
i=1

Nl

As before

P(an_l MT,M Ex) aﬂ_l MS,“ Ey)

s

>

k=1 i=]

—P ( € (adagadn ((0,1] X

It

(=, x]x (- =, y]¥)=0), (6)
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where

Note that

(3 usite i (O] X ((— 0,x] X (= o8, y])) =0} =

im]

{eldi d) € (= 2, x]X (= 2,y]},

for every i for which one of the components is non-
zero. This is the case iff j,d *<x and j,d * <y, where
d* =max d; and d * =max d;. Hence the limit of Eq.
(6) is given by

(E e de ==

k=1
— et yix
=e /AL

{e—wﬁ%f‘ if(;—+/\f:)>0
o otherwise

()

Hence we see that this kind of dependence in the
underlying process does not change the form of the
limit distribution. It would be interesting to obtain
similar results for general stationary sequences.
This could be done by using characterization of the
limit point processes for the sequence of point pro-
cesses with points (t/n,a, ' X,,t =1,2,...,n) given
by Davis and Hsing [7] when {X.,} is a stationary se-
quence with regularly varying tails. In their paper,
Davis and Hsing show that when {X,} satisfies a
proper mixing condition then

Na =‘§ ‘E(ﬁ.m.‘1 X)) 0

converges to a point process N of the form

N=3 3 es.ron

=1 j=1

where

568

>

=1 j

€(5.P))
1

is PRM(v) with

dv=dt Xyax “"'dx, x>0,
(This is slightly weaker form of Davis-Hsing limit,
since we consider the convergence only on R* —{0}
not involving the left tail.) They also show that un-
der the proper mixing condition, the convergence of

N, to N is equivalent to:
For r,—>, r,/n—0 as n—, and k, =[n/n],

lim k, P(max X;>a,x)=vyx"*,

e 1= i r,

and

¥
P (2 exymanie; e, x; €-/max X;>a.x)

j=1 1=j&r,

-0()

Here Q(.) is the distribution of the iid point pro-
cesses

{é‘; €Qij (-)}; : 1.

From this basic result it may be possible to obtain
the limiting form of

NH’: ;l E(i’ ﬂ'n_l X7 au-l XS.I) (-) ?

where
1 T
Xr, =?E‘; X,
and
s
Xoi=% X
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One would expect that if the above sequence of
point processes converges, then the limit point pro-
cess should be of the form

N, —
>

1=1j

M s

€(-"'r- ciPyQy . ¢l PiO4j),

-
=1 i=1

Ir

where
1 .
c.-={7’ i=12...,T
0 otherwise
1 .
C;":{E :—1,2....,5
0 otherwise

Straightforward adjustment of Resnick’s [11]
arguments which involve consecutive application of
the continuous mapping theorem is not possible,
since thiese arguments use the convergence of

nP(a;"' X;>8, a,' X2 > 8)—0,6>0

which is clearly not satisfied by most sequences with
strong local dependence.

4.
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