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1.   Introduction 

Classical waveguide circuit theory, of which 
Refs. [1,2,3,4] are representative, proposes an anal- 
ogy between an arbitrary linear waveguide circuit 
and a linear electrical circuit. The electrical circuit 
is described by an impedance matrix, which relates 
the normal electrical currents and voltages at each 
of its terminals, or ports. The waveguide circuit 
theory likewise defines an impedance matrix relat- 
ing the waveguide voltage and waveguide current at 
each port. In both cases, the characterization of a 
network is reduced to the characterization of its 
component circuits. The primary caveat of waveg- 
uide circuit theory is that, at each port, a pair of 
identical waveguides must be joined without dis- 
continuity and must transmit only a single mode, or 
at most a finite number of modes. 

A great deal of confusion regarding waveguide 
circuits arises from the tendency to overemphasize 
the analogy to electrical circuits. In fact, important 
differences distinguish the two. For instance, the 
waveguide voltage and current, in contrast to their 
electrical counterparts, are highly dependent on 
definition and normalization. Also, the general 
conditions satisfied by the impedance matrix are 
different in the two cases. Furthermore, only the 
waveguide circuits, not electrical ones, are describ- 
able in terms of traveling waves. The latter two dis- 
tinctions have been particularly neglected in the 
literature. In this introduction, we discuss all three 
of these differences and their relationship to the 
general waveguide circuit theory. 

All waveguide circuit theories are based on some 
defined waveguide voltage and current. These defi- 
nitions rely upon the electromagnetic analysis of a 
single, uniform waveguide. Eigenfunctions of the 
corresponding electromagnetic boundary value 
problem are waveguide modes which propagate in 
either direction with an exponential dependence 

on the axial coordinate. When limited to a single 
mode, the field distribution is completely described 
by a pair of complex numbers indicating the com- 
plex intensity (amplitude and phase) of these two 
counterpropagating traveling waves. The waveguide 
voltage and current, which are related to the elec- 
tric and magnetic fields of the mode, are linear 
combinations of the two traveling wave intensities. 
This linear relationship depends on the characteris- 
tic impedance of the mode. 

The classical definition of the waveguide voltage 
and current is suitable only for modes which are 
TE (transverse electric), TM (transverse mag- 
netic), or TEM (transverse electromagnetic). This 
includes many conventional waveguides, such as 
lossless hollow waveguide and coaxial cable. How- 
ever, modes of guides with transversely nonuniform 
material parameters are generally hybrid rather 
than TE, TM, or TEM. Thus, the classical theory is 
inapplicable to multiple-dielectric guides, such as 
microstrip, coplanar waveguide, and optical fiber 
waveguide. Neither does it apply to lines contain- 
ing an imperfect conductor, for a lossy conductor 
essentially functions as a lossy dielectric. This limi- 
tation has become increasingly important with the 
proliferation of miniature, integrated-circuit wave- 
guides, in which the loss is a nonnegligible factor. 

In the absence of a general theory, the most pop- 
ular treatment of arbitrary waveguides is based on 
an engineering approach (for example, Ref. [5]). 
The procedure makes use of the fact that, in TE, 
TM, and TEM modes, the conventional waveguide 
voltage and current obey the same telegrapher's 
equations which govern propagation in a low- 
frequency transmission line. The characteristic 
impedance, which enters the telegrapher's equa- 
tions, can be written in terms of equivalent circuit 
parameters C, G, L, and IL Engineers assume that 
waveguide voltages and currents satisfying the 
telegrapher's equations continue to exist for 
hybrid and lossy modes. Heuristic arguments, 
based on low-frequency circuit theory, are used to 
compute the equivalent circuit parameters, and 
those parameter estimates are used to determine 
the characteristic impedance from the conventional 
expression. 

In fact, a practical, general definition of waveg- 
uide voltage V and current i is easily constructed 
using methods analogous to those applied to ideal 
TE, TM, and TEM modes. The basic principle [1, 
pp. 76-77] is that, for consistency with electrical 
circuit theory, v and / should be related to the com- 
plex power/) hyp-vi*. This ensures that v and i 
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are proportional to the transverse electric and 
magnetic fields. Reference [1] declines to further 
specify V and /, arguing that their ratio v/i is irrele- 
vant and arbitrary. In fact, v/i is often pertinent. 
When only the forward-propagating mode exists, 
then v/i =Zo, the characteristic impedance. As 
pointed out by Brews [6], Zo is not entirely arbi- 
trary; the relationship/? = vi* determines the phase 
of v/i and therefore of Zo. The magnitude of Zo is 
formally arbitrary, but its normalization plays a sig- 
nificant role in many problems. The greatest con- 
tribution of Ref. [6] is that it defines the equivalent 
circuit parameters in terms of the characteristic 
impedance, rather than vice versa, and thereby 
derives explicit expressions for C, G, L, and R in 
terms of the modal fields. 

In Sec. 2 of this paper, we present a complete 
theory of uniform waveguide modes, beginning 
from first principles. We modify Brews' definition 
of the waveguide voltage and current with an alter- 
nate normalization devised to simplify the results. 
We also modify his procedure to simplify the 
derivation. 

In Sec. 3, we proceed to develop a general 
waveguide circuit theory based on the results of 
Sec. 2. A number of conclusions presented herein 
are at odds with not only the electrical circuit the- 
ory but also the classical waveguide circuit theory. 
This is expected, for the classical theory fails to 
account for losses. The inadequacy of the classical 
waveguide circuit theory is emphasized by several 
surprising results of the new theory. For example, 
the classical theory concludes that the waveguide 
impedance matrix, like its counterpart in electrical 
circuit theory, is symmetric when the circuit is com- 
posed of reciprocal matter. Here, we demonstrate 
that this conclusion is not generally valid when 
lossy waveguide ports are allowed. 

Even with the waveguide voltage and current rig- 
orously and consistently defined and with a proper 
accounting of waveguide loss, another major short- 
coming of the classical theory remains: the classical 
waveguide circuit theory fails to appreciate the 
subtleties of the scattering matrix, which, like the 
impedance matrix, characterizes the circuit, but 
which relates the traveling wave intensities instead 
of the waveguide voltages and currents. A good un- 
derstanding of the scattering matrix, which is re- 
lated to the impedance matrix by a one-to-one 
transformation based on the modal characteristic 
impedance, is vital to a practical waveguide circuit 
theory, for the scattering matrix is an essential part 
of an operational definition of the impedance ma- 
trix. The reason for this, as we discuss in Sec. 4, is 

that practical waveguide instrumentation is nearly 
always based on the measurement of waves or simi- 
lar quantities. In contrast, waveguide voltages and 
currents, like the fields with which they are de- 
fined, are virtually inaccessible experimentally. 

The scattering matrix provides a clear distinction 
between waveguide and electrical circuits, for the 
scattering matrix has no direct counterpart in 
electrical circuit theory. Electrical circuits are not 
subject to a traveling wave/scattering matrk des- 
cription because electrical circuits are not generally 
composed of uniform waveguides with exponential 
traveling waves. This is why it is mean- 
ingless to speak of the characteristic impedance of 
an arbitrary electrical port. Nevertheless, the elec- 
trical circuit theory mocks the waveguide theory by 
introducing an arbitrary reference impedance. This 
parameter is used in place of the characteristic 
impedance in a transformation identical to that re- 
lating the corresponding waveguide parameters, re- 
sulting in analogous quantities which are often 
(confusingly) called "traveling waves." However, 
since these are not true traveling waves and possess 
no wave-like characteristics, we prefer to use the 
term pseudo-waves. The relationship between the 
pseudo-waves is described by a matrix, often (con- 
fusingly) called a "scattering matrix," which we 
instead call a pseudo-scattering matrix. 

In contrast to the characteristic impedance, the 
reference impedance is completely arbitrary. Clas- 
sical waveguide circuit theory, along with electrical 
circuit theory, has failed to explicitly recognize this 
distinction. 

While the scattering matrix is incompatible with 
electrical circuit theory, the pseudo-scattering ma- 
trix is compatible with both waveguide and electri- 
cal theories. In this paper, we define waveguide 
pseudo-waves exactly as in the electrical circuit 
theory, using the waveguide voltage and current 
and an arbitrary reference impedance. These 
waveguide pseudo-waves cannot be interpreted as 
traveling waves but are a linear combination of the 
traveling waves. 

By defining the pseudo-scattering matrix for 
waveguide as well as electrical circuits, we establish 
a description common to both. On the other hand, 
such a common description also exists in the form 
of the impedance matrix. Why do we require both 
impedance matrix and pseudo-scattering matrix de- 
scriptions? This question has at least three 
answers, which we now enumerate. 

The first answer is that the commonality of the 
two theories allows the common use of tools 
developed for one of the two applications. These 
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tools include a number of analytical theorems and 
results as well as a great deal of measurement and 
computer-aided design software. Users should be 
able to take advantage of tools using both 
impedance matrix and pseudo-scattering matrix de- 
scriptions. Furthermore, many tools require both 
descriptions. For example, the Smith chart con- 
nects the two in a concise and familiar way. 

The second answer has to do with measurement. 
Electrical circuits are measured in terms of 
voltages and currents and are therefore fundamen- 
tally characterized by impedance matrices. In con- 
trast, the waveguide voltage and current are 
related to electromagnetic fields which are rarely, 
if ever, subject to direct measurement. Instead, 
waveguide circuits are measured in terms of travel- 
ing waves and pseudo-waves. For example, a slot- 
ted line, traditionally used for waveguide circuit 
measurement, relies on interference between the 
traveling waves. Most modern waveguide measure- 
ments use a network analyzer. We show in this pa- 
per that calibrated network analyzers measure 
pseudo-waves, defined with respect to a reference 
impedance determined by the calibration. This ref- 
erence impedance need not equal the characteris- 
tic impedance of the waveguide, so the measured 
pseudo-waves need not be the actual traveling 
waves. 

The third reason that both impedance and 
pseudo-scattering descriptions are important is 
that both are needed to analyze the interconnec- 
tion of a waveguide with an electrical circuit or 
with a dissimilar waveguide. Such an analysis typi- 
cally makes use of two assumptions. The first is 
that the waveguide fields near the interconnection 
are composed of a single mode; this assumption 
may lead to an acceptable result even though the 
discontinuity virtually always ensures that it is inex- 
act. The second assumption is that the (waveguide 
or electrical) voltage and current in that single 
mode are continuous at the interface. This is a gen- 
eralization of a result from electrical circuit theory 
that is of questionable validity for waveguide cir- 
cuits. Due to these two assumptions, any simple 
analysis of this problem is at best approximate. 
However, if it is to be applied, the matching condi- 
tions on the voltage and current may be directly 
implemented in terms of impedance parameters, 
while the waveguides are characterized in terms of 
scattering or pseudo-scattering parameters. Both 
sets of parameters are therefore required to solve 
the problem. 

A good example of this kind of problem is the 
interconnection of a TEM or quasi-TEM wave- 
guide with an electrical circuit which is small com- 

pared to a wavelength. In this case, the 
single-mode approximation may be valid, and the 
conventional impedance-matching method may be 
useful if the waveguide voltage and current are de- 
fined to be compatible with the electrical voltage 
and current. The canonical problem of this form is 
the termination of a planar, quasi-TEM waveguide, 
such as a microstrip line, with a small, "lumped" 
resistor. Such problems, while unusual in the study 
of conventional waveguides, are typical of planar 
circuits and have become increasingly important 
with their proliferation. The theory presented here 
supports the experimental study of these problems 
using conventional microwave instrumentation. 

Although Qur introduction of pseudo-waves en- 
tails some new terminology, these quantities are 
not new discoveries. They implicitly provide the ba- 
sis of the conventional "scattering matrix" descrip- 
tion of electrical circuit theory. Furthermore, while 
they have not heretofore been explicitly introduced 
into waveguide circuit theory, they have been ap- 
plied, perhaps unconsciously, to waveguide circuits 
by those unaware of the distinctions between the 
two theories. 

An important contrast to the pseudo-wave the- 
ory is an alternative known as the theory of "com- 
plex port numbers" [7]. This theory defines what it 
calls "traveling waves" and corresponding "scatter- 
ing matrices" in a way that is fundamentally differ- 
ent from that described here. The theory itself was 
originally applied to electrical circuits and remains 
popular in that context. It has also been extended 
to waveguide analysis, where it is known as the the- 
ory of "power waves" [8]. Here we demonstrate 
previously-unknown properties of the "power wave 
scattering matrbc" of a waveguide circuit. Further- 
more, we show that the power waves are different 
from not only the pseudo-waves but also the actual 
traveling waves propagating in a waveguide. As a 
result, they present some serious complications, 
discussed in the text. Practitioners of the wave- 
guide arts must be aware that conventional analysis 
and measurement techniques do not determine re- 
lations between power waves. Confusion concern- 
ing this matter is prevalent. 

In this paper, we comprehensively construct a 
complete waveguide circuit theory from* first 
principles. Beginning with Maxwell's equations in 
an axially independent region, we define the 
waveguide voltage and current, the characteristic 
impedance, and the four equivalent circuit parame- 
ters of the mode. We then define traveling wave 
intensities, which are normalized to the character- 
istic impedance, and pseudo-waves, which are 
normalized to some arbitrary reference impedance. 
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We discuss in detail the significance of the waves 
and study expressions for the power. We introduce 
various matrices relating the voltages, currents, and 
waves in the ports of a waveguide circuit and de- 
scribe the properties of those matrices under typi- 
cal physical conditions. We extensively investigate 
the problems of measuring these quantities. 

Although the normalizations in many of the defi- 
nitions introduced here are unfamiliar, we have 
striven to ensure that each parameter is defined in 
accordance with common usage and with the ap- 
propriate units. Awkward definitions are occasion- 
ally required to achieve convenient results. 

2.   Theory of a Uniform Waveguide Mode 

In this section, we develop a basic description of 
a waveguide mode. Beginning with Maxwell's equa- 
tions, we define the waveguide voltage and current, 
power, characteristic impedance, and transmission 
line equivalent circuit parameters. We close with a 
discussion of the measurement of characteristic 
impedance. 

2.1   Modal Electromagnetic Fields 

We begin by defining a uniform waveguide very 
broadly as an axially independent structure which 
supports electromagnetic waves. In such a geome- 
try, we seek solutions to the source-free Maxwell 
equations with time dependence e*'"". Here we 
consider only problems involving isotropic permit- 
tivity and permeability, although some of the re- 
sults are easily generalized (see Appendbc A). We 
need to prescribe the appropriate boundary condi- 
tions at interfaces and impenetrable surfaces. If the 
waveguide is transversely open, the region is un- 
bounded, and boundary conditions at infinity, suffi- 
cient to ensure finite power, are also required; this 
excludes \eaky modes. The eigenvalue problem is 
separable and the axial solutions are exponential. 
In general, there are many linearly independent so- 
lutions to this problem, each of which is propor- 
tional to a mode of the waveguide. In this paper, 
we restrict ourselves to consideration of a single 
mode which propagates in both directions. Most of 
the results are easily generalized to any finite num- 
ber of propagating modes. 

We introduce complex fields whose magnitude is 
the root-mean-square of the time-dependent fields, 
as in Ref. [9], and orient our z-axis along the 
waveguide axis. For a mode propagating in the for- 
ward (increasing z) direction, the normalized 
modal electric and magnetic fields will be denoted 

by ee "" and he ~'", respectively, where e and h are 
independent of z. Although it need not be speci- 
fied here, some arbitrary but fixed normalization is 
required to ensure uniqueness of e and h. The 
modal propagation constant y is composed of real 
and imaginary components a and )8: 

y = a+]'l3. (1) 

Split e and h into their transverse (e, and h,) and 
longitudinal (e^z and hzz) components, where z is 
the longitudinal unit vector. As shown in Appendk 
A, the homogeneous Maxwell equations with 
isotropic permittivty and permeability can be ex- 
panded as 

and 

V X e, = —joyfihiZ, 

ye, + Vcz = —jcofiz x h,, 

VxA, = +jcoeezZ , 

yh, -t- Vhz = +jct)ez x e,, 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

We expressly exclude discussion of the case o) = 0, 
to which many of the results in this paper do not 
apply due to the decoupling of e and h. 

To get a better understanding of the eigenvalue 
problem, we can eliminate either e, or h, from Eqs. 
(3) and (5) and thereby derive the explicit expres- 
sions for the transverse fields in terms of the axial 
fields 

(<uVe + y^)e< = - yVe^ +;a>ju.z X V/ir 

and 

(w^/j,e + y^)h, = - yVhz -jojez X Vcj 

(8) 

(9) 

Differential equations for the axial fields are 

(V^ + wV + r'K =^e,-V€ 

and 

(y^ + o>^fie + y^)hz =^hr^fi, 

(10) 

(11) 
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These equations are in general quite complicated. 
In many conventional waveguides, e and ii are 
piecewise homogeneous, so the right sides of Eqs. 
(10) and (11) vanish. Even so, these equations re- 
main complicated since the various fields compo- 
nents are coupled through the boundary 
conditions. 

In general, the solutions of the boundary value 
problem possess a full suite of field components. In 
certain cases, it may be possible to find either a TE 
(e^ = 0) or TM (hi = 0) solution. Equations (8) and 
(9) ensure that TEM (ez=^z=0) solutions exist 
only in domain of homogeneous fie with the eigen- 
value y satisfying y^= —(o^fie. This forbids TEM 
solutions in the presence of multiple dielectrics, as 
exist in open planar waveguides or waveguides 
bounded by lossy conductors. 

Equations (2)-(7) prohibit nontrivial modes with 
either e,=Q or A, = 0, except when 7 = 0. This de- 
generate case, which corresponds to mode of a 
lossless waveguide operating at exactly the cutoff 
frequency, is discussed in Appendix C. 

2.2   Waveguide Voltage and Current 

Recall that ei, CzZ, hi, and hzZ., satisfying Eqs. 
(2)-(7) with the propagation constant y, represent 
the fields of the mode propagating in the forward 
direction. Clearly, the fields e,, —CzZ, —h,, and h^z 
satisfy the same equations with a propagation con- 
stant of — y. These latter fields represent the nor- 
malized backward propagating mode. The 
distinction between the forward and backward 
modes is made below. 

In general, the total fields E and H in a single 
mode of the waveguide are linear combinations of 
the forward and backward mode fields. Their 
transverse components can therefore be repre- 
sented by 

t* 
■e, 

and 

H,=c+e-'^h,-c-e^^h, = i^ 
to 

h,. 

(12) 

(13) 

We will call v and / the waveguide voltage and 
waveguide current. The introduction of the normal- 
ization constants t* and io allows i; and wo to have 
units of voltage, i and io to have units of current, 
and E,, H,, e,, and h, to have units appropriate to 
fields. Other waveguide theories omit i* and io and 
therefore require unnatural dimensions. 

For basis functions, we have chosen to use the 
normalized field functions e, and A,, whereas con- 
ventional waveguide theories choose arbitrary mul- 

tiples of e,, and A,. The present formulation is 
conceptually simpler since e, and A, are the fields in 
the normalized forward-propagating mode. This 
mode has propagation constant y, waveguide 
voltage v(z) = voe~'^, and waveguide current 
i(z)=/oe~^. For the normalized backward-propa- 
gating mode, the propagation constant is -y, 
v(z) = voe ^^, and i(z) = —ioe *''\ 

2.3   Power 

The net complex power p(z) crossing a given 
transverse plane is given by the integral of the 
Poynting vector' over the cross section S: 

p(z)^l E, xH,* -zdS = ^^'•JiyVo,      (14) 

where we have defined 

PQS \e,xh,*'zdS. 
Js 

(15) 

In accordance with the analogy to electrical circuit 
theory, we require that 

p — vi* (16) 

This cannot be achieved with arbitrary choices of 
the normalization constants vo and io. Therefore we 
impose the constraint 

po = voio*, (17) 

which allows Eqs. (14) and (16) to be simulta- 
neously satisfied. Either t* or io may be chosen ar- 
bitrarily; the other is determined by Eq. (17). 

The magnitude of po depends on the normaliza- 
tion which determined the modal fields e and A; in 
fact, Eq. (15) can even be used to specify the nor- 
malization. The phase ofpo does not depend on this 
normalization since the phase relationship between 
e and A is fixed, to within a sign, by Maxwell's equa- 
tions. This sign ambiguity can be resolved by explic- 
itly distinguishing between the forward and 
backward modes. The most concise means of mak- 
ing this distinction is to define the forward mode as 
that in which the power flows in the +z direction; 
that is, 

Re(po)>0. (18) 

' The magnitude of the complex fields was defined to be the 
root-mean-square, rather than the peak, of the time-dependent 
fields. This accounts for the absence of the factor 1/2 in the 
expression for the power. 
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The ambiguity remains if Re(po) = 0, as occurs in 
an evanescent waveguide mode. In this case, we 
use the ahernative condition Re(y)>0, which 
forces the mode to decay with z. With Eq. (18) or 
its ahernative, the phase ofpo is unambiguous, ex- 
cept in the degenerate case po = 0. 

The average power fiov/P(z) across 5 is given by 
the real part of p(z) as 

P(z) = Re\p(z)] = Re\ E.xH?' -zdS =Re(vi*).(19) 
Js 

When only the normalized forward mode is 
present, the complex power isp(z) —p^e ~^'". When 
only the normalized backward mode is present, the 
complex power is —pae *^'". The associated average 
powers are Re(po)e~^'" and - Re(po)e ■^^'^, respec- 
tively. The signs differ because the forward mode 
carries power in the -t-z direction and the back- 
ward mode in the -z direction. 

The power is not generally a linear combination 
of the forward and backward mode powers, since it 
is given by the nonlinear expression in Eq. (19). 
This means that the net real power P is in general 
not simply the difference of the powers carried by 
the forward and backward modes. This issue is dis- 
cussed at greater length below. 

2.4     Characteristic Impedance 

We define the forward-mode characteristic 
impedance by 

Zo = vo/io = \v»\Vp* =/Ja/|/op . (20) 

The equivalence of these expressions again demon- 
strates the analogy to electrical circuit theory. 
Brews [6,10] also defines the voltage, current, 
power, and characteristic impedance so as to satisfy 
Eq. (20) and refers to Schelkunoff s point [11] that 
the equivalence of these three definitions of Zo fol- 
lows from Eq. (17). The three definitions would in 
general be inconsistent if po, vo, and I'o were defined 
independently (for example, in terms of some 
power, voltage drop, and current in the waveguide) 
without regard to Eq. (17). 

Zo is independent of the normalization of the 
modal fields e and h which affected \po\. While its 
magnitude does depend on the choice of either vo or 
/o, its phase is identical to that of po and therefore 
independent of all normalizations. As pointed out 
by Refs. [6] and [10], the phase of the characteristic 
impedance Zo is a fixed, inherent, and unambiguous 
property of the mode. A sign ambiguity would have 
remained had we not imposed Eq. (18) since, due to 

the sign reversal in the current, the characteristic 
impedance of the backward mode is -Zo. However, 
Eqs. (18) and (20) constrain the sign of Zo such that 

Re(Zo)^0. (21) 

In particular, as we will see below, the characteristic 
impedance of any propagating mode of a lossless 
line is real and positive. Equation (21) serves to 
completely specify Zo unless Re(Zo) = 0, in which 
case the alternative condition Re(y) > 0 suffices to 
make the distinction. 

When only a multiple of the forward-propagating 
mode exists, then v(z)/i(z) =Zo for all z and at any 
ampUtude. Likewise, when only a multiple of the 
backward mode exists, then v(z)/i(z)- —Zo. If both 
forward and backward modes are present, v/i de- 
pends on z due to interference between the two. 

In order to illustrate the close correspondence 
between this definition of Zo and conventional defi- 
nitions of the characteristic impedance, we consider 
the special case of TE, TM, or TEM modes in ho- 
mogeneous matter. Each of these has fields which 
satisfy 

zxe, = 'nh„ (22) 

where the wave impedance TJ is constant over the 
cross section. In this case, 

Zo-—'—'       7]. 
fhpd5 

(23) 

Since the modal field e, is normalized, the denomi- 
nator is fixed. The magnitude of Zo therefore de- 
pends only on VQ. However, the phase of the 
characteristic impedance is equal to that of the wave 
impedance. This corresponds to most conventional 
definitions. 

For TEM modes, 77 is equal to the intrinsic wave 
impedance \/JiJe (==377 fl in free space), with the 
result that 

1 
arg(Zo) = 2 (arg(M) - arg(e)). 

For example, if /i is real then 

arg(Zo)=-|s, 

(24) 

(25) 

where tanS s Im(e)/Re(e) is the dielectric loss tan- 
gent. 

When Vo is chosen to be the voltage between the 
ground and signal conductors, Zo is equal to the 
conventional TEM characteristic impedance. 
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For TE and TM modes, 

,=^(i-- 

where " + " corresponds to TM and 
and kc is the cutoff wavenumber. 

(26) 

toTE 

2.5   Normalization   of Waveguide  Voltage   and 
Current 

Although the phase of either no or k can be cho- 
sen arbitrarily, the choice is of little significance. 
The important quantity is the phase relationship 
between i* and io, which, due to the constraint (17) 
and the fact that the phase oipo is fixed, is unalter- 
able. The phase relationship between vo and io is a 
unique property of the mode. 

The magnitude of Zo is determined by the choice 
of i* or Io. Given the constraint [(Eq. 17)], and hav- 
ing selected a modal field normalization, we may 
independently assign only one of these two vari- 
ables. One useful normalization defines the con- 
stant Vo by analogy to a voltage using the path 
integral 

Wo 
.'path 

d/. (27) 

The path is confined to a single transverse plane 
with the restriction that IA)?SO. This can always be 
arranged unless e, = 0 everywhere, but this occurs 
only in the degenerate case 7 = 0. The integral 
does not in general represent a potential difference 
because it depends on the path between a given 
pair of endpoints. In certain cases, such as when 
the mode is TM or TEM, the integral depends only 
on the endpoints, not on the path between them. 

Although the path is arbitrary, certain choices 
are often natural. With a TEM mode, for example, 
we can put an endpoint on each of two active con- 
ductors so that lA) becomes the path-independent 
voltage drop across them at z = 0 in the normalized 
mode. In this case, Zo is equal to the conventional 
TEM characteristic impedance. We may not have 
both endpoints on the same conductor, for then 
iA)=0. The same is true of TM modes. 

A result of Eq. (27) is that v is also analogous to 
voltage: 

v(z)=-f    . 
■'path 

E,(z)'dl (28) 

The normalization in Eq. (27) yields what is 
known as a "power-voltage" definition of the char- 
acteristic impedance, even though the "voltage" is 
not an actual potential difference. Another useful 
possibility is a "power-current" definition, choos- 
ing io to be a current. Yet another choice, popular 
for hollow waveguides, is to normalize so that 
IZol = l. It is not our intent to debate the issue of 
the optimal definition. However, it is only the mag- 
nitude, not the phase, of Zo that is open for discus- 
sion. 

A "voltage-current" definition, popular in the 
literature, is generally forbidden by Eq. (20), since 
an arbitrarily specified vo and io may not be of the 
appropriate phase to satisfy vo/io=Zo. 

Appendix F includes a table displaying the ef- 
fects of renormalizing vo and e, on all of the 
parameters used in this work. 

2.6   Transmission Line Equivalent Circuit 

We now develop a transmission line analogy by 
defining real equivalent circuit parameters C, L, 
G, and R, analogous to the capacitance, induc- 
tance, conductance, and resistance per unit length 
of conventional transmission line theory. The four 
parameters are defined by 

and 

ja>C + G=-^ 
Zo 

jwL +R = yZo. 

(29) 

(30) 

Equations (29) and (30) are identical to those 
derived from the electrical circuit theory descrip- 
tion of a transmission line with distributed shunt 
admittance;6>C + G and series impedancey'oiL +R, 
as shown in Fig. 1. These quantities also appear in 
the conventional transmission line equations satis- 
fied by V and /: 

and 

^=-a<aL+R)i 

-|=-(;6>C + G)i;. 

(31) 

(32) 
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Fig. 1.   Equivalent circuit model of transmission line. 

Although Eqs. (29) and (30) provide unique defi- 
nitions of the four circuit parameters, it is possible 
to cast them into another form which is more con- 
venient for many purposes, as is done by Brews [6]. 
A simpler derivation, given in Appendix B, shows 
that the circuit parameters are given exactly by 

C=-r^[Je'|e,|^d5-jM'|/i.|^d5],        (33) 

=|^[/^M'|At|M5-J^e'|e.pds],        (34) 

[|e>,|2d5 + |)u,"|/r,|^d5],        (35) 

and 

R =Tn2 \ \ M"|/«.|'d5 + f e'VzI'dsl.        (36) 

Here e = €'—je" and pL=iJi'-jyu". In passive me- 
dia, the four real components e', e", ^', and /x" are 
all nonnegative. Metal conductivity is not included 
as an explicit term in e but is instead absorbed in 
e". In general, of course, e and /x depend on w. 

The parameters C,L, G, and R depend on the 
same normalization that determines the magnitude 
of Zo. For instance, when i* is chosen to be the 
voltage between two active conductors in a lossless 
TEM line, then C and L are the conventional 
capacitance and inductance per unit length. 
Certain combinations of these parameters, notably 
G/(a)C), R/(a)L), RC, RG, LC, and LG, are 
normalization-independent. For example, 
LC = e'fji' for a TEM line. 

Equations (33) through (36) have many applica- 
tions. In addition to providing a means of numeri- 
cally calculating the circuit parameters from known 
fields, they offer opportunities for analytical calcu- 
lations and approximations as well. The quadratic 
form in which the fields appear make them particu- 

larly useful for these purposes. Another major role 
they serve is in the attribution of circuit-parameter 
components to portions of the cross section. For 
example, it is common to divide the inductance L 
into an "external" inductance in the dielectric and 
an "internal" inductance in the imperfect metal. 
Such a division cannot be undertaken using only 
Eq. (30) but is readily obtainable by dividing the 
surface integral in Eq. (34) into dielectric and 
metal regimes. 

Equations (29) and (30) imply the familiar ex- 
pressions 

and 

r = V(;<«iL+^)(;wC + G) 

Zo=VOL +R)/(j(oC + G) . 

(37) 

(38) 

The pairs of roots in Eqs. (37) and (38) correspond 
to the presence of both forward and backward 
modes, each of which have identical C, L, G, and 
R but opposite y and Zo. To distinguish the two, 
recall from Eq. (21) that the forward mode is 
defined such that Re(Zo)>0. Either Eq. (29) or 
(30) can then be used to distinguish between the 
two values of y. If the waveguide material is pas- 
sive, then Eqs. (35) and (36) ensure that G and R 
are both nonnegative, which requires that 
a = Re(y) > 0. Thus, the fields of the mode that we 
have defined as the forward one must decay with 
increasing z in a lossy system. In general, however, 
the sign of a does not distinguish the forward and 
backward modes since a = 0 in energy-conserving 
modes and may be negative in the presence of ac- 
tive media. Nevertheless, Eq. (18) ensures that the 
forward mode carries power only in the +z direc- 
tion. 

C and L are typically positive for modes of com- 
mon interest, in which the energy is primarily car- 
ried in the transverse fields and the second 
integrals of Eqs. (33) and (34) are relatively small. 
On the other hand, C and L may be zero or nega- 
tive in certain cases. For instance, in the lossless 
case in which e" = fjL" = 0, G=R=Q and Eqs. (37) 
and (38) become 

(e" = )it" = 0)::»y=;(wVLC 
and 

(e" = /i'' = 0)=>Zo '4 
(39) 

(40) 

As shown in Appendbc C, the modes of a lossless 
waveguide, except those with/Jo=0, either propa- 
gate without attenuation (a = Re(y) = 0) or are 
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evanescent (a > 0 but ^ s Im(7') = 0). For the prop- 
agating modes, therefore, LC is nonnegative and 
thus Zo and po are real. For the evanescent modes, 
Zo and po are imaginary and the mode carries no 
average real power. Equation (39) shows that, for 
evanescent modes, either L or C, but not both, 
must be negative. For instance, TM modes have 
hz — 0, so that C cannot be negative. As a result, 
L>0 for propagating TM modes and L<0 for 
evanescent TM modes. Complementary statements 
hold for lossless TE modes. 

In lossy waveguides, we can no longer strictly dis- 
tinguish "propagating" from "evanescent" modes, 
since generally a and ^ are both nonzero. There- 
fore, if we perturb a lossless TM mode by the addi- 
tion of a minuscule amount of e", we find a mode 
that is not evanescent in a strict sense (since /3 ^ 0) 
but nevertheless has L < 0. In this way we prove 
that not all modes with L < 0 or C < 0 are strictly 
evanescent. 

The allowed range of the phases of y and Zo is 
determined by Eqs. (37) and (38). We assume for 
the moment that G and R are nonnegative, as in 
passive structures. In this case, if C and L are posi- 
tive, then y lies in the first quadrant and -45°^ 
arg(Zo)=S45°. If in addition G =0, a good approxi- 
mation in many common quasi-TEM waveguides, 
then 45'':S arg(y)^ 90° and -45°^ arg(Zo)^0°. If 
instead i?=0, then again 45°=$ arg(y)« 90°, but 
now 0°< arg(Zo)^45°. In lossless propagating 
modes, y is positive imaginary and Zo positive real. 
Zo is also real in lossy lines in the special case 
G/(wC)=R/(oiL). 

Figures (2) and (3) illustrate the allowed range 
of the phase of Zo and y for various cases, as distin- 
guished by the signs of L and C. G and R are as- 
sumed nonnegative in these figures. 

Let us compare the current results to the con- 
ventional theory of TEM lines. For a lossless TEM 
line, G and R vanish, as do the second integrals in 
C and L. The remaining integrals in C and L are 
simply the energy per unit length stored in the 
electric and magnetic fields, respectively. Thus the 
expressions for C and L are simply the conven- 
tional expressions for the dc capacitance and in- 
ductance per unit length, as given by CoUin [3]. 
When the dielectric is lossy but ju," is zero, the 
mode may remain TEM but a shunt conductance 
G, given by the first term of Eq. (35) as in Ref. [3], 
is present. 

For a general TEM line. 

(TEM): Zo^=0§ =^ L^= Ml 
e   C^ 

(41) 

which takes a more familiar form when e"=/A"=0. 
When the metal boundaries are lossy or the 

dielectric is inhomogeneous, the mode is non- 
TEM. The second integrals in C and L, which are 
absent in Ref. [3], are quadratic in the longitudinal 
fields and may, in some quasi-TEM cases, prove to 
be negligible compared to the first terms. The ex- 
pressions for C and G in general include contribu- 
tions due to fields inside the metal that are not 
often appreciated. A nonzero series resistance R, 
given by the second integral in Eq. (36), may also 
appear whenever Cz and e" are nonzero; the inte- 
gral extends over a lossy dielectric as well as an 
imperfect conductor. CoUin does not provide a sur- 
face-integral expression for R, but it can be shown 
that Eq. (36) reduces to Collins line-integral ex- 
pression when the surface-impedance approxima- 
tion is invoked and the dielectric is lossless. 

lm(ZJ 

►Re(ZJ 

Fig. 2. Allowed ranges of the phase of Zo for various signs of 
the equivalent circuit parameters. The figure gives no indication 
of the magnitude of ZQ. G and R are assumed to be nonnega- 
tive. 
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Fig. 3. Allowed ranges of the phase of y for various signs of 
the equivalent circuit parameters. The figure gives no indication 
of the magnitude of y. G and R are assumed to be nonnegative. 

2.7   Effective Permittivity and tlie Measurement of 
Characteristic Impedance 

It is useful and customary to define the effective 
relative dielectric constant (or permittivity) by 

er,e£t= -(cy/cof. (42) 

where c is the speed of light in vacutim. This defini- 
tion equates y to the propagation constant of a 
TEM mode in a fictitious medium of permittivity 
er.eff Co and permeability no. We have no need to de- 
fine an effective permeability. 

Using Eq. (37), 

cr,eff=-^ [«^LC -RG -j(o{LG +^C)].       (43) 

If, as is most common, C,L,G, and R are nonneg- 
ative, then Im(er,eff)< 0. Although Re(er,eff) is typi- 
cally positive, it becomes negative in lossy lines at 
low frequencies if itG ><t)^LC. It is also negative 
for lossless, evanescent modes. 

An alternative form of Eq. (29) is 

Zo = Cr.eef 
cC{\+Gij^y (44) 

which, as discussed in Ref. [12], may be applicable 
to the determination of Zo. For example, if GI{coC) 
is known, the phase of Zo is determined by the 
phase of er,eff. For TM modes in homogeneous 
dielectric, G/(<aC) = tan5, which is typically much 
less than 1 and can often be neglected. The same is 
true for typical quasi-TEM modes. In these cases, 
C is nearly independent of frequency and may be 
readily determinable [13]. If so, then Eq. (44) pro- 
vides the magnitude as well as the phase of Zo. This 
provides a practical method of determining Zo, 
since €t,e£f may be readily measured using standard 
microwave instrumentation to measure y. By con- 
trast, a direct measurement of Zo is impractical. 
For instance, the phase of Zo is defined as the 
phase of the complex power/Jo, a quantity which is 
difficult to assess directly without detailed knowl- 
edge of the modal fields. 

A similar method of determining Zo makes use 
of the relationship between Zo, y, L, and R de- 
scribed by Eq. (30). This method is often difficult 
to apply, particularly at low frequencies in the pres- 
ence of lossy conductors, whose internal induc- 
tance and resistive loss typically make R/(caL) 
nonnegligible and L and R strongly dependent on 
resistivity and frequency. In other cases, however, 
it may prove useful. 

3.   Waveguide Circuit Theory 

In this section, we apply the results of Sec. 2 to 
develop a waveguide circuit theory. We first discuss 
traveling waves and pseudo-waves for a single uni- 
form waveguide. These form the basis of the scat- 
tering and pseudo-scattering matrices. We also 
introduce the cascade and impedance matrices and 
discuss the transformation of reference impedance, 
concluding with an investigation of the load 
impedance. 

3.1   Traveling Wave Intensities 

We define the forward and backward traveling 
wave intensities (or simply traveling waves) ao and 
bo by normalizing the forward and backward modes 
of Eqs. (12) and (13): 

flo^ VRi^c+e-^^ = ^^y- (v +iZo)     (45) 
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and 

fco = VRi^ c-g^>^ = ^yP'''>- (v-iZo) 
2wo 

(46) 

where the positive square root is mandated. This 
power normalization ensures that, in the absence 
of the backward wave, the unit forward wave with 
flo = 1 carries unit power. 

It can be shown that ao and bo are independent 
of the arbitrary normalization of vo. While their 
phases depend on the phase of the modal field et in 
the same way that c+ and c- do, ao and bo are inde- 
pendent of the magnitude of ei. This normaliza- 
tion-independence suggests that ao and bo are 
physical waves rather than simply mathematical ar- 
tifacts. 

Assuming that Re(Zo)?^0, Eqs. (45) and (46) 
imply 

(47) 

and 

/(z) = to 

VRe(po) 
(ao-bo). 

From Eq. (19), the real power is therefore 

Piz) = \ao\'-M +2Im(aobo*)^^y 

(48) 

(49) 

This demonstrates that the net real power P cross- 
ing a reference plane is not equal to the difference 
of the powers carried by the forward and backward 
waves acting independently, except when the char- 
acteristic impedance is real or when either ao or bo 
vanishes. 

Although Eq. (49) is awkward and somewhat 
counterintuitive, it is not an artifact of the formula- 
tion but an expression of fundamental physics. Nor- 
malizations do not play a role, for the result is 
independent of the normalizations of ci and vo. Only 
the phase of Zo appears and, as we have seen, this 
phase is not arbitrary. 

In the evanescent case, Re(po) = Re(Zo) = 0, so 
that neither the forward nor backward wave individ- 
ually carries real power. In this case, Eq. (49) is in- 
determinate. To resolve the problem, we can 
express Eq. (49) in the form 

Piz) = |flop- |6op + 2 lm(po) Im(c+c- *),      (50) 

since ;3 =0 for evanescent waves. When Re(/7o) = 0, 
both flo and bo vanish as a result of the power nor- 
malization of Eqs. (45) and (46), but the last term 

may be nonzero. This means, that, although the for- 
ward and backward cutoff waves each carry no real 
power, power may be transferred if both waves ex- 
ist. Thus, as we expect, power may traverse a finite 
length of lossless waveguide in which all modes are 
strictly cut off. This familiar case exemplifies the 
fact that the net power may fail to equal the sum of 
the individual wave powers. 

The reflection coefficient To is defined by 

niz) 
flo(z) ■ 

(51) 

The power can be expressed in terms of /o by 

/> = H{l-|ror-2Im(ro)^g^],        (52) 

which is similar to a result on p. 27 of Ref. [2]. As 
noted in Ref. [2], l/ol^ is not a power reflection coef- 
ficient and may exceed 1 if Zo is not real. 

3.2   Pseudo-Waves 

We now introduce another set of parameters, the 
pseudo-waves, which, in contrast to the traveling 
waves, are mathematical artifacts but may have con- 
venient properties. We first introduce an arbitrary 
reference impedance ZKU with the sole stipulation 
Re(Zref)>0. We then define the complex pseudo- 
wave amplitudes (or simply pseudo-waves) a and b by 

a(Z, ^~L t*     2|Z..,|     J^'' + /Z„f)        (53) 

and 

6(Z )4^'W^-'' /Z„f). (54) 

Although a and b depend on z (through v and i), we 
have chosen not to explicitly list z as an argument 
but instead to concentrate on the parameter Zref, 
which plays a more important role in the remainder 
of this development. 

The inverse relationships to Eqs. (53) and (54) 
are 

„=[ Wo \ZJ 
hi VRe(Z„f) ]ia+b) (55) 

and 

^"Zr=f    LN   VR^J^''      *^ (56) 
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Positive square roots are again mandated in Eqs. 
(53) through (56). 

With these definitions, Eq. (19) becomes 

P = \aY-\bY^2lra{ab*)'^y (57) 

P, V, and i were defined earlier and do not depend 
on Zref. 

The pseudo-reflection coefficient F, defined by 

r(7  N-^(^"=f) 
^^^«y-a(Z„f)' 

(58) 

depends on Zref. The analog of Eq. (52) is 

p.|'.p[i-|rp-2.m(r,^].     («) 

Comparing Eqs. (45) and (46) with Eqs. (53) and 
(54), we see that a(Zo)=flo and fe(Zo)=feo. Al- 
though the multiplicative factor in Eqs. (53) and 
(54) is complicated, it is the only factor that satisfies 
this criterion and also ensures that a and b satisfy 
the simple power expression Eq. (57). 

Since the pseudo-waves are equivalent to the ac- 
tual traveling waves when the reference impedance 
is equal to the characteristic impedance of the 
mode, this is the natural choice of reference 
impedance. On the other hand, it is not always the 
most convenient choice. For instance, when Zo 
varies greatly with frequency, as is often the case in 
lossy lines [12], the resulting measurements using 
Zref=Zo may be difficult to interpret; a constant Zref 
may be preferable. Furthermore, the characteristic 
impedance of a given mode is often unknown and 
difficult to measure. In such cases, the fact that 
Z,ef=Zo does not suffice to provide a numerical 
value for Zref, which is required in order to make use 
of Eqs. (55) through (57). 

Other choices of reference impedance are also 
well motivated. In particular, if Zref is chosen to be 
real, the crossterm in Eq. (57) disappears. The re- 
sult is the conventional expression in which the 
power is simply the difference of lap and 16P. The 
choice of real Zn-f therefore simplifies subsequent 
calculations and allows the application of a number 
of standard results which arise from the conven- 
tional expression. For example, conservation of en- 
ergy ensures that the net power P into a passive 
load is nonnegative. If Zref is real, Eq. (59) implies 
that the load's reflection coefficient has magnitude 
less than 1; that is, it "stays inside the Smith chart." 
This need not be true for complex Zref. Another ex- 
ample is the conventional result that the maximum 

power available from a generator is that power 
which would be delivered to a load whose reflection 
coefficient is the complex conjugate of the genera- 
tors reflection coefficient. In the general case, this 
result applies only to pseudo-reflection coefficients 
using a real reference impedance. 

One more choice of reference impedance is in 
common use: that which makes 6 (Zref) vanish at a 
given point on the line. Such a choice (Zref=i»//) 
also simplifies Eq. (57), although only at the partic- 
ular z and for a particular termination.The primary 
effect of this choice of Zref is to make the pseudo-re- 
fiection coefficient vanish. As discussed later in this 
paper, many calibration schemes force the pseudo- 
reflection coefficient of some "standard" termina- 
tion, usually a resistive load, to vanish. Those 
schemes thereby implicitly impose this particular 
choice of reference impedance. 

Unfortunately, the quantities a and b are propor- 
tional to the forward and backward traveling waves 
only if Zref=Zo; otherwise, the pseudo-waves are lin- 
ear combinations of the forward and backward 
waves. For example, suppose that we have an in- 
finite waveguide with all sources in z > 0. For 2 < 0, 
we know that oo = 0; no wave is incident from this 
side. However, unless Zref=Zo, we will find that a 
and b are both nonzero in this case. 

Another contrast is that, as a function of z, flo and 
bo have a simple exponential dependence while a 
and b are complicated functions of z due to interfer- 
ence between the forward and backward traveling 
waves. For illustration. Fig. 4 plots the magnitudes 
of aa and bo for a line which is uniform in z < 0 but 
has an obstacle of reflection coefficient r=0.2 lo- 
cated at z = 0. In contrast. Fig. 5 plots the magni- 
tudes of the associated pseudo-waves a and b with 
Zref chosen to make b vanish at z = 0. Figure 5 
demonstrates not only the complicated behavior of 
a and b with respect to z but also the fact that the 
change of reference impedance forces b to vanish at 
only a single point. It is clearly unrealistic to inter- 
pret a and b as "incident" and "reflected" waves. 

In contrast to ao and 60, a and b generally depend 
on the normalization which determines \vo\, IIQI, and 
(Zol. This dependence helps to explain a potential 
paradox. Assume, for instance, that Zo=50 fl. If 
Ztef=50 O, then the pseudo-waves are equal to the 
traveling waves. Now, since IZol is arbitrary, depend- 
ing on how we define vo, we can easily refine Zo to, 
say, 100 n. Are not the pseudo-waves still equal to 
the traveling waves, even though Zief ^'Zo? In fact, 
they are not, for the change in v^ leads to a renor- 
malization of v and i [see Eqs. (12) and (13)] and 
therefore a renormalization of a and b through Eqs. 
(53) and (54). Thus, the pseudo-waves are no longer 
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•80 
n 
-40 -20 

Fig. 4. The magnitudes of ttie incident (ao) and reflected (bo) 
traveling waves near a termination at Z =0 with reflection coef- 
ficient ro = 0.2. The propagation constant is 0.005+0.1/. The 
waves depend exponentially on z. 

equal to the traveling waves unless we shift Znc to 
100 fl as well. This normalization dependence of 
the pseudo-waves, in contrast to the traveling 
waves, further illustrates the fact that they are not 
physical waves but instead only mathematical arti- 
facts. 

Finally, the condition Re(Zref) ^ 0 that we have 
imposed on the reference impedance corresponds 
to the condition Re(Zo)>0 that we imposed earlier 
on the characteristic impedance. Therefore, it is al- 
ways possible to choose Zcd=Zo. 

Since the most convenient choice of Z„f depends 
on the application, it will prove useful to construct 
a procedure to transform the pseudo-waves in ac- 
cordance with a change of reference impedance. 
This is considered below. 

3.3   Voltage Standing Wave Ratio 

To illustrate the distinction between the travel- 
ing waves and the pseudo-waves, we introduce the 
voltage standing wave ratio (VSWR). For simplic- 
ity, we limit discussion to the lossless case a = 0, in 
which case the fields in the waveguide are strictly 
periodic in z with period Iv/^. The VSWR is de- 
fined to be the ratio of the maximum to the mini- 
mum electric field magnitude, which reduces to 

i.s. 

0.0 ■  —r- 
-80 ■60 

1^ 
40 -20 

Fig. 5. The magnitudes of the pseudo-waves a and b for the 
example of Fig. 4. The reference impedance Z^t is chosen so as 
to make the pseudo-reflection coefficient r(Ztcf) vanish at the 
termination reference plane. Since the waves depend in a com- 
plicated fashion on z, r(Zref) vanishes only at z =0. 

ysyf^^X^iM ^"TkM 
n>m|£-,(2)[ Tl"(^)l 

kl + N 
\ao\-\bo\- 

i+ird 
i-ird (60) 

In the lossless case, the magnitudes of flo, bo, and .To 
are independent of z. 

Equation (60) illustrates that the VSWR, a 
quantity which is determined solely from the elec- 
tric fields, is directly related to the ratio of travel- 
ing waves. In fact, it is the interference between 
these traveling waves that produces the periodicity. 
The pseudo-waves cannot be measured by such a 
procedure because they have no physical manifes- 
tation. 

The pseudo-waves reduce to the traveling waves 
when the reference impedance is equal to the char- 
acteristic impedance. Therefore, the reference 
impedance of the reflection coefficient derived 
from a VSWR measurement is equal to Zo. This 
provides another argument that Zo is the natural 
choice of reference impedance. 
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3.4   Scattering and Pseudo-Scattering Matrices 

Consider a linear waveguide circuit which con- 
nects an arbitrary number of (generally) nonidenti- 
cal, uniform semi-infinite waveguides which are 
uncoupled away from the junction. In each wave- 
guide, a cross-sectional reference plane is chosen 
at which only a single mode exists. If the mode of 
interest is dominant, this can be ensured by choos- 
ing the reference plane sufficiently far from the 
junction that higher-order modes have decayed to 
insignificance. 

For each waveguide port i, we choose a refer- 
ence impedance Zief, in terms of which the pseudo- 
wave amplitudes a/CZlcf) and fe;(Zref) at port / are 
defined by Eqs. (53) and (54). The orientation is 
such that the "forward" direction is toward the 
junction. We define column vectors a and b whose 
elements are the a,- and bi. The vector of outgoing 
pseudo-waves b is linearly related to the vector of 
incoming pseudo-waves a by the pseudo-scattering 
matrix S: 

b = Sa. (61) 

Although S depends on the choice of reference 
impedance at each port, we have suppressed nota- 
tion which would explicitly acknowledge that fact. 

We likewise define the vectors of incoming and 
outgoing traveling wave intensities ao and bo whose 
elements are the co and bo. These two vectors are 
related by the (true) scattering matrix S°: 

bo = 8030 (62) 

If ZUf= Zo' for each port /, then 8 = 8". In other 
words, the pseudo-scattering matrix is equal to the 
scattering matrix when the reference impedance at 
each port is equal to the respective characteristic 
impedance. 

The reflection coefficient To is the single element 
of the scattering matrix S of a one-port. The same 
is also true of F and S. 

We can say more about S in special cases. For 
example, the net power into apassive circuit is non- 
negative. From (57), this requires that 

Re(a^[l-8+8 + 2yV8]a)>0, (63) 

where "t" indicates the Hermitian adjoint (conju- 
gate transpose) and V is a diagonal matrix with ele- 
ments equal to Im(Zret)/Re(Z'ref). If the circuit is 
lossless, the inequality in Eq. (63) can be replaced 
by an equality. If all of the reference impedances 

are real, then Eq. (63) implies that I — S^S is posi- 
tive semi-definite. If, in addition, the circuit is loss- 
less, then 8^8 = 1; that is, 8 is unitary. 

Another useful property of S is a result of elec- 
tromagnetic reciprocity and is therefore demon- 
strable when all the materials comprising the 
junction have symmetric permittivity and perme- 
ability tensors; in using Eqs. (2)-(7), we have al- 
ready assumed as much in the waveguides 
themselves. As shown in Appendbc D and also in 
Ref. [14], the reciprocity condition is 

5;; _Ki l-jIm(Zief)/Re(Z„f) 
Sii     /^- l-;Im(Z'„f)/Re(Z'„f)' 

where the reciprocity factor Ki is given by 

(64) 

Here 

poi* 

<'o=    eiXh, zdS 

(65) 

(66) 

and the additional subscript / refers to the port. 
When Zref=Zo at each port, Eq. (64) simplifies to 

SH _    po!    Re(poi) 
5,?    Re(poi)    poj 

(67) 

The significance of Eq. (64) is that, in contrast to 
conventional expectations, electromagnetic re- 
ciprocity does not necessarily lead to symmetry of 
the 8 matrix. In lossless waveguides, Ki = l and Zo 
is real, so 8° is symmetric and we need only choose 
each reference impedance equal to the correspond- 
ing characteristic impedance to ensure a symmetric 
8. In lossy waveguides, Ki is not generally equal to 
1. Although Ki~l for typical waveguides, calcula- 
tions show that it may be much less than 1 in cer- 
tain guides with very lossy dielectrics [14]. 
Furthermore, it is not always desirable or even pos- 
sible to choose a real reference impedance, and a 
complex reference impedance generally destroys 
the symmetry of 8 even when ^=1. For devices 
with more than two ports, it is not generally possi- 
ble to choose the reference impedances so as to 
make 8 symmetric. 8 can always be made symmet- 
ric for a two-port, but the phase of the appropriate 
Zref at each port depends on Ki at both ports. 

Experiments which illustrate the effect of the 
phase of the reference impedance on the symmetry 
of 8 are reported in Refs. [14] and [15]. 
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3.5   The Cascade Matrix 

Equation (61) denotes a linear relation between 
the fl/ and fc,. If the circuit of interest is a two-port 
with 52i5»'0, we can express the same relationship 
using the cascade matrix R, which relates the vari- 
ous pseudo-waves by 

The indices in the superscript of R'' indicate that 
the reference impedance at port 1 is Z^i and that at 
port 2 is Zini. 

Formulas for the conversion between scattering 
and cascade matrices are readily available [4,16]. 
For completeness, we repeat them here: 

p__!. I'S'iz^ai — SnSn.      S\11 
521L       ~5n 1 J 

(69) 

and 
O 1     l-R 12  •/?11^22~^12^21    1 /^n\ 

The cascade matrk of two series-connected two- 
ports is the product of the two cascade matrices as 
long as the connecting ports are composed of iden- 
tical waveguides, with identical reference 
impedances, joined without discontinuity. Since this 
holds true regardless of the reference impedances, 
the introduction of terminology such as "pseudo- 
cascade matrbc" would be needlessly confusing. We 
will, however, introduce the special notation R" to 
describe the cascade matrbc which satisfies 

R is equal to R° when Z'„f=Zo' for each port i. 

3.6   The Impedance Matrix 

The impedance matrbc Z relates the column vec- 
tors V and i, whose elements are the waveguide 
voltages and currents at the various ports: 

v=Zi. (72) 

In contrast to S and R, Z is independent of the ref- 
erence impedance since v and i are also. This makes 
Z particularly interesting for metrological purposes. 
Z does, however, depend on the normalization of xjo. 

The relation between S and Z is explored in 
Appendbc E. The results are 

S = U(Z-Zref)(Z + Zr„)-^U-' = 

U(ZZref'-l)(ZZ?i) + l)-'U-^ (73) 

and inversely 

Z=(l-U-^SU)-^(l + U-^SU)Zr,f. (74) 

Here Zref is a diagonal matrbc whose elements are 
the Zief and U is another diagonal matrix defined by 

U.diag(i^^^^S). (75) 

The factor U, which does not appear in other ex- 
pressions relating S with Z [3,4], generalizes the 
earlier results to problems including complex fields 
and reference impedances. 

Appendbc D demonstrates that the off-diagonal 
elements of Z are related by 

Zij     KjVo, voj* 
(76) 

Thus Z, like S, is generally asymmetric, even when 
the circuit is reciprocal and vo is chosen real at each 
port. The asymmetry of Z is not a result of wave nor- 
malization, for Z is defined without reference to 
waves. 

The admittance matrbc Y is the inverse of Z and 
satisfies 

i = Z-V = Yv. (77) 

3.7   Change of Reference Impedance 

As discussed earlier, the most convenient choice 
of reference impedance depends on the circum- 
stances. In order to accommodate the various 
choices, we consider the relationship between the 
pseudo-wave amplitudes based on different refer- 
ence impedances. By expressing a (Z«f) and b(Z!ct) 
in terms of v and / using Eqs. (53) and (54) and v 
and i in terms of a (Znt) and b(ZTd) using Eqs. (55) 
and (56), we arrive at the linear relationship 

L6(Z?.f)J U(ZSf)J' (78) 

where 

cr= 1    IZ 
O ■7'"     171 :?cf|vR 

e(Z?rf) 
Re(Zref) 

IZTcl + Zlef    Zref — 

^rcf ~ Znt     Z', 

ref —Z?efl 
ref-l-Z^fJ 

(79) 
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This can be put into more conventional fonn by 
defining a quantity Nm, analogous to the "turns 
ratio" of a conventional treuisformer, by 

SO Eq. (78) becomes 

cr= /Re(Zg.f) ri +Ni 
VReCZSt) 11-N, 2lM.mp vRe(ZSt) 

1 -NL 
1+NL J 

(80) 

(81) 

Equation (81) is similar to the two-port cascade 
matrix of a classical impedance transformer [4], in 
which the square root in Eq. (81) is replaced by 
Nnm. When ZSf and Z?ef are both real, the two ma- 
trices are identical. However, Eq. (81) can be de- 
termined neither from the classical result nor from 
any other lossless analysis. This explains why the 
result Eq. (79) does not, to our knowledge, appear 
in previous literature. Equations (78) and (79) are 
an exact expression of the complex impedance 
transform. We may accurately refer to the pseudo- 
waves as impedance-transformed traveling waves. 

Two consecutive transforms can be represented 
as a single transform from the initial to the final 
reference impedance by 

Q™"Crp = Cfp. 

Also, 

(82) 

(83) 

where I is the identity matrix. As a result, 

[Q«'"]-' = Cr«, (84) 

which states that the transformation is inverted by 
a return to the original reference impedance. 

The determinant of Q""" is 

The scattering matrix associated with Q""" is sym- 
metric if and only if det[Cr"] = 1, which is true if 
and only if the phases of Z%f and Z?ef are identical. 
Equation (85) demonstrates that the scattering ma- 
trix representing the transform between a complex 
and a real impedance is in general asymmetric. In 
other words, a symmetric scattering matrix cannot 
remain symmetric when the reference impedance 
at a single port changes from a real to a nonreal 
value. This result is closely related to Eq. (64) 
since, from Eq. (69), the determinant of a cascade 

matrix is equal to SIT/SII of the associated scatter- 
ing matrix S. 

CT" can be expressed in yet another form: 

_  /l-/Im(Zref)/Re(Zref) 
V1-; 

1 

where we use the definition 

Im(Z?.f)/Re(Z?ef) 

r 1 r™,] 
U„    1  J' 

^ nm — 
 Zref    ^ref 

ZSf+Z^f" 

(86) 

(87) 

This form is convenient in the computation of 
the effect of the complex impedance transform on 
the reflection coefficient. The reflection coefficient 
is transformed by 

r{Z!,t) = Prun + /"(Zref) 

i+r„„r(zPe{)' 
(88) 

A short circuit, defined as a perfectly conducting 
electric wall spanning the entire cross section of 
the waveguide, forces the tangential electric field 
to vanish at the reference plane. A short therefore 
requires v = 0 and 6 = -a. As a result, the reflec- 
tion coefficient is ro= — 1. We can see from Eq. 
(88) that the transform of a perfect short remains 
r(,Z^ec) = -1, independent of the reference 
impedance. The only other reflection coefficient 
which is independent of the reference impedance is 
the perfect open circuit (magnetic wall), at which 
the transverse magnetic field vanishes so that i = 0, 
b=a, and r= +1. The unique status of the short 
and open is related to their unique physical mani- 
festations. 

If r(ZZt) = 0 (perfect match) then r(Z^^t) = r„„. 
Conversely, if r(ZSf)= -T™ then r(Z?ef) = 0. 

3.8   Multiport Reference Impedance Transforma- 
tions 

A direct, if somewhat complicated, means of 
computing the transformation of S due to a change 
of reference impedance begins by computing Z us- 
ing Eq. (74). Subsequently, Eq. (73) is used with 
the new reference impedance to calculate the 
transformed S. This procedure works because Z is 
independent of reference impedance. 

If the circuit under consideration is a two-port, 
the simplest way of computing the transform is to 
compute the associated cascade matrix R, perform 
the transform on R, and convert back to an S 
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matrix. To determine the effect of the transform on 
R, we insert Eq. (78) into the right hand side of Eq. 
(68). In order to do the same with the left hand 
side, we need use the result that, due to symmetry 
of Q™ about both diagonals, Eq. (78) implies that 

La(Z?=f)J 
Q^ K b(ZU)'\ 

(ZU)] 
(89) 

Upon making these replacements and using Eq. 
(84), we can put Eq. (68) into a form relating 
6i(2?cf) and fli(Z?ef) to b2(Zh) and a2(Zh). The 
result is that 

RM = QP«R»"<Q"9. (90) 

This equation displays the effect on the cascade ma- 
trix of altering the reference impedance of port 1 
from ZTct to Zfcf and that of port 2 from Z?ef to Z%f. 
This is a concise expression of the complex 
impedance transform. 

In the special but common case in which the two 
ports use identical reference impedances, Eq. (90) 
simplifies. In transforming the reference impedance 
of both ports from Z%{ to Z^f, the cascade matrix is 
transformed by 

nw —; ry" p™n O"^ ^ 

^ '^    R"™ '^ ("91) 
1      •* pm   Li/vn      1     J L      * pm 1      J 

This transformation was used in Ref. [16]. 

3.9   Load Impedance 

The load impedance is defined as the single ele- 
ment of the impedance matrix describing a linear 
one-port. At the reference plane, at which only a 
single mode exists, the load impedance is defined in 
terms of v and i as 

7       =_ (92) 

From Eq. (19), the power absorbed by the load 
can be expressed as 

l^loadl 
(93) 

where/?ioa(i = Re(Zioad). Power conservation ensures 
that, for a passive one-port, R\oid^O. For the re- 
mainder of this section, we assume that the load of 

interest is passive in order to avoid conflict with the 
requirement that Re(Zref)>0. 

The load impedance, like v and /, is independent 
of the reference impedance. Unlike the result of 
low-frequency circuit theory, however, Zioad is not a 
unique property of the one-port itself but instead 
depends on the fields of the mode incident upon it. 
Illumination of the same device by a different 
waveguide, or even a different mode of the same 
waveguide, may result in a drastically different Zioad. 
Zioad also depends on the normalization which de- 
termines vo and /o, for this affects v and i. 

Using Eq. (92) in Eq. (54), we see that, when the 
reference impedance is equal to the load 
impedance, we have b (Zioad) = 0. From Eq. (58), this 
implies that 

r(Z,oad) = 0. (94) 

In other words, when Zref=Zioad, the reflection coef- 
ficient vanishes. In this reference impedance, the 
load looks like a perfect match. Likewise, if we insist 
that the reflection coefficient vanishes when a cer- 
tain load is connected to our line, we have effec- 
tively chosen the reference impedance to be equal 
to Zioad. This is relevant to the calibration problem 
considered below. Keep in mind, however, that it 
may be difficult to establish a value for Zioad since 
that depends on the waveguide as well as the load. 

Using Eq. (94) along with Eqs. (87) and (88), we 
find that 

r(Z„f) = ^load     Zref 

^load " ^1 ref 
(95) 

We can also solve for Zioad: 

'^load — ■^rcf i-r(Z„,)- (96) 

This produces the same result regardless of the ref- 
erence impedance with respect to which F is de- 
fined. If we choose Z„f equal to the characteristic 
impedance Zo, these two equations are identical to 
those of ordinary waveguide circuit theory and to 
the theory of Ref. [6]. 

We see from Eq. (96) that the load impedance of 
a short is 0 and that of an open is <». 

As an example of a load, consider the use of a 
semi-infinite transmission line with characteristic 
impedance Zi to terminate a transmission line with 
characteristic impedance Zo. In general, the reflec- 
tion coefficient and the load impedance are impos- 
sible to compute. One common approximation. 
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based on the notions of low-frequency circuit the- 
ory, Is that both v and i are continuous at the inter- 
face. This assumption leads to the result that the 
load impedance of the line is simply its characteris- 
tic impedance. This allows the reflection coeffi- 
cient to be determined by Eq. (95). 

Unfortunately, the assumption leading to this re- 
sult is not generally valid, since v and / are not 
generally continuous at an interface. Recall that v 
and / are not strictly related to true voltage or cur- 
rent. The actual boundary conditions at the inter- 
face require continuity of tangential fields, and 
these cannot in general be satisfied without the 
presence of an infinity of higher order modes at the 
discontinuity. By contrast, the waveguide voltage 
and current are indicative of ttie intensities of only 
a single mode. The reflection coefficient cannot 
therefore be determined from waveguide circuit 
parameters. For an explicit example, consider the 
case in which Zo=Zi while the two transmission 
lines are physically dissimilar. In this case, the as- 
sumption that the load impedance equals Zi leads 
to the result that there is no reflection of traveling 
waves. In fact, reflection must take place due to the 
discontinuity at the interface. Exceptions occur 
only when no higher-order modes are generated. 
An example is coaxial lines of lossless conductors 
which differ only in the dielectric material. In this 
peculiar example, the reflection coefficient can be 
computed exactly from Zo and Zi. In other exam- 
ples, the result is at best approximate. 

4.   Waveguide Metrology 

In this section, we apply the theoretical results of 
the previous sections to the elucidation of the basic 
problems of waveguide metrology, which aims to 
characterize waveguide circuits in terms of appro- 
priate matrix descriptions. 

4.1   Measurability and the Choice of Reference 
Impedance 

In addition to the slotted line, which measures 
VSWR directly, the primary instrument used to 
characterize waveguide circuits is the vector net- 
work analyzer (VNA). Here we restrict ourselves 
to a two-port VNA, which provides a measurement 
M, of the product 

-['IM%] (98) 

Mi=XTiY. (97) 

is the reverse cascade matrix corresponding to Y. 
The problem of network analyzer calibration is to 
determine X and Y by the insertion and measure- 
ment of known devices i. With X and Y known, Eq. 
(97) determines T, from the measured M,-. 

X, Y, and T, are commonly considered unique, 
and a calibration process which determines them 
uniquely is applied. However, as we have seen in 
this paper, the cascade matrix T,- depends on the 
reference impedances with which it is defined. 
Thus, any number of calibrations lead to legitimate 
measurements of a cascade matrix and therefore 
legitimate measurements of pseudo-scattering 
parameters, although with varying port reference 
impedances. We refer to these calibrations, each of 
which is related to any other by an impedance 
transform, as consistent. Any calibration which is 
not related to a consistent calibration by an 
impedance transform will not yield measurements 
of pseudo-scattering parameters. Such a calibration 
is inconsistent. For example, X and Y may be deter- 
mined in such a way that the resulting measure- 
ment of an open circuit is not equal to 1. Such a 
result is prohibited for pseudo-scattering parame- 
ters, so the calibration is inconsistent. It is mean- 
ingless to speak of the reference impedance of such 
a calibration. 

The reference impedances of a consistently cali- 
brated VNA are uniquely determined by the cali- 
bration. Only when the reference impedance is 
equal to the characteristic impedance of the line 
are the resulting pseudo-scattering parameters 
equal to the actual scattering parameters. Of 
course, transformation to an alternative reference 
impedance is possible, but only if the initial refer- 
ence impedance is known. This section analyzes 
some common calibration methods to determine 
their reference impedance. 

We assume that the waveguides at the two refer- 
ence planes and the two corresponding basis func- 
tions e, are identical. When Zttt at both ports is 
equal to the characteristic impedance Zo, we can 
express Eq. (97) as 

M,=X»T?Y». (99) 

Here T, is the cascade matrix of the device / under 
test, X and Y are constant, non-singular matrices 
which describe the instrument, and 

The single superscript on the network analyzer ma- 
trices refers to the reference impedance at the test 
ports. We do not need to define or discuss a refer- 
ence impedance at the "measurement ports." 
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From Eq. (84), the identity matrix can be ex- 
pressed as | = Q*"Cr"'. Inserting this into Eq. (99) 
yields 

M, = (X''Q'^)(Cr°T? OP"){(y° Y)=X'"!,'""Y",  (100) 

where 

and 

X'-sX^Q*", (101) 

(102) 

(103) 

are the impedance-transformed cascade matrices. 
If the calibration procedure determines that X=X'" 
and Y=Y", then subsequent calibrated measure- 
ments will determine the matrix T/"". If X"" and Y" 
have the form of Eqs. (101) and (102), the VNA 
will be consistently calibrated to reference 
impedances ZTct on port 1 and Zlet on port 2. 

The most accurate method of VNA calibration 
is TRL [17, 18], a moniker which refers to the use 
of a "thru," and "reflect," and a "line." The "thru" 
is a length of transmission line which connects at 
either end to a test port. The line standard is a 
longer section of transmission line. The "reflect" is 
a symmetric and transmissionless but otherwise ar- 
bitrary two-port embedded in a section of transmis- 
sion line. The method assumes that each measured 
device has an identical transition from the test port 
to the calibration reference plane. The reference 
planes are set to the center of the thru. 

The TRL method, like other calibration meth- 
ods, determines the matrices X"" and Y". However, 
as we have seen, these two matrices are nonunique 
since they depend on the reference impedances. 
Thus, we need to analyze the algorithm to deter- 
mine which reference impedances are imposed by 
the calibration. 

Our first standard (/ = 1), an ideal thru, is a con- 
tinuous connection between two identical lines. 
Since the traveling waves are not disturbed, the 
cascade matrbf using a reference impedance of Zo 
must be the identity matrix I: 

T? = l. (104) 

If the calibration is consistent but, instead of Zo, 
reference impedances Z?J( and Z%f are used, then 
the thru has the cascade matrix 

However, the TRL algorithm is constructed so as 
to force the calibrated measurement of the thru to 
equal the identity matrix. That is, it imposes the 
condition that 

Tr = Cr" = l, (106) 

which, from (86) and (87), is true if and only if 

Zm   '7/1 
ref — ^ref ■  (107) 

In other words, the algorithm imposes the condi- 
tion that the reference impedances on both ports 
be identical. The thru alone cannot provide any in- 
formation as the value of that reference 
impedance. 

Another result of the TRL algorithm is that the 
calibrated measurement of the reflect standard is 
identical on both ports. This again reveals nothing 
about the port reference impedances except that 
they are identical. 

The ideal line standard (/ —2) is a length of 
transmission line identical to that of the two test 
ports and connected to them without discontinuity. 
As a result, there is no reflection of the traveling 
waves. This requires the cascade matrix of the line, 
with a reference impedance of Zo, to be 

^Je-y-     0   ] 
(108) 

where y is the propagation constant and / is the 
line length. Since we require identical reference 
impedances on both ports, the transformed cascade 
matrix is 

TT" = CT'TIQ'*" = 

,+yi 
'^Om 

1-rL 
(1 -p-iyi- r e-^^-n )r. H   (109) 

m J 

where Fom is defined as in Eq. (87). 
The TRL algorithm ensures that the cascade ma- 

trix in Eq. (109) is diagonal and therefore that the 
calibrated measurement of the line will be such 
that 5ii=522 = 0. The off-diagonal elements of 
(109) are equal and opposite. Assuming that 
g-2r/^l^ jmm ij diagonal if and only if rft„=0, 
which implies that Q°" = [ and 

jmn _ QmOjQOn _ Qm« (105) 
Zref — Zo . (110) 
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That is, the TRL method using a perfect line and 
thru results in a consistent calibration with identi- 
cal reference impedances on each port equal to the 
characteristic impedance of the line. Recall that 
the condition ZKI=ZO was the condition under 
which the pseudo-waves are equal to the actual 
traveling waves. Thus the TRL method calibrates the 
VNA so as to measure the unique scattering matrix S" 
which relates the actual traveling waves, not some ar- 
bitrary pseudo-scattering matrix S. 

In the special case e~^^'=l, as occurs in a loss- 
less line whose phase delay is an integral multiple 
of 180°, P""" is diagonal for any Fom. Therefore, the 
reference impedance need not be equal to Zo and 
is in fact indeterminate. This results in the well- 
known problem of ill-conditioning in such a case. 

We have seen that the TRL method calibrates to 
a reference impedance of Zo. What happens if we 
use the TRL algorithm but not the TRL standards! 
We consider methods which use the thru and re- 
flect but replace the ideal line by some other pas- 
sive artifact, which we call the surrogate line. The 
matrix Tl takes the arbitrary form 

Unless Eq. (114) is satisfied, the analysis reveals 
a contradiction. The resolution of this problem lies 
with the realization that Eq. (112) results from the 
assumption that the calibration is consistent. How- 
ever, unless Eq. (114) is satisfied, the calibration is 
inconsistent and Eq. (112) does not apply. This con- 
clusion is almost obvious, given the fact that both 
the thru and the surrogate line must appear per- 
fectly matched at each port. In order to meet this 
condition with a consistent calibration, the thru re- 
quires identical reference impedances on each port 
while the surrogate line demands different refer- 
ence impedances. Consequently, the calibration is 
inconsistent and no reference impedance exists. 

Clearly, the perfect line meets the symmetry 
criterion (114). However, so do many other arti- 
facts. Given standards that satisfy (114), a consis- 
tent calibration is obtained and the condition of 
diagonality determines Fom ■ When 5 = C = 0, as 
was the case with the TRL method, then Tom = 0 
and the reference impedance is Zo. In any other 
case, Tom is determined by a quadratic equation 
whose solution is 

11 •[r^ (111) 

Since the use of the thru forces any consistent cali- 
bration to have identical reference impedances on 
each port, the transformation of T? is 

l2     — it + Brom —CFQ Om ' Oni 

AFo„-BFL + C+DF^ 

Fom — 
D-A 

2B .V[^P. 015) 

The cascade parameters A, B, C, and D can be 
replaced by the scattering parameters of the stan- 
dard: 

D-A     ,n ■   1       St2S°2i 
D —'J11+ QO CO 
^ On on 

(116) 

+AF^+B-CFl,-DFe 
-ArL-BF(^+CFo„,+D ]■  (112) 

The algorithm attempts to force IS"" to be diago- 
nal. With a surrogate in place of the line, this may 
be impossible if Tf" has the form of Eq. (112), for 
we have two equations to be satisfied but only the 
single variable Fom ■ The sum of those two equations 
produces the requirement 

C=-B, 

which is identical to the condition 

(113) 

5?i=552 (114) 

on the scattering parameters of the standard. 

This formally determines the reference impedance, 
albeit in a somewhat complicated fashion. In the 
special case 5i252i = 0, the insertion of Eq. (116) 
into (115) leads to the two solutions Fo„, =5ii and 
Fom = VSn. An analysis lets us reject the second of 
these. It is then simple to show that 

jload. (117) 

That is, the reference impedance for the calibra- 
tion is the load impedance of the device used as a 
standard. As indicated by Eq. (94), this is the ap- 
propriate reference impedance so that the cali- 
brated reflection coefficient vanishes. 

Since the standard is assumed passive, then, 
from Eq. (93), Re(Z,oad) > 0. Therefore, Eq. (117) 
presents no conflicts with the requirement that 
Re(Zref)>0. 

553 



Volume 97, Number 5, September-October 1992 

Journal of Research of the National Institute of Standards and Technology 

This sort of calibration is known as TRM or 
LRM [19], where the "M" stands for "match." 
Clearly, the match need not be perfect. If the 
match is perfect (5ii =522 = 0), then the calibration 
is identical to that using TRL and will allow the 
measurement of relations between traveling waves. 
If the match is symmetric but fmperfect and 
5?2 521 = 0, the LRM calibration is related to the TRL 
calibration by an impedance transform of both ports 
to a reference impedance equal to the load impedance 
of the match. In this case, the VNA calibrated with 
LRM measures relations not among the traveling 
waves but among a particular set of pseudo-waves. 

Frequently, the match standard is chosen to be a 
pair of small resistors in the hope that their load 
impedance is approximately real and constant. This 
would lead to a useful calibration in which the 
pseudo-scattering parameters would be measured 
with respect to a real, constant reference 
impedance. Unfortunately, it is difficult in practice 
to design a real and constant load impedance. 
Furthermore, that impedance is known only after it 
has been measured with respect to some other cali- 
bration. In addition, the load impedance generally 
depends on the line with respect to which it is mea- 
sured. 

If 5?i=5^25^0 and 5?252i?^0, as would be the case 
using a symmetric attenuator, the calibration refer- 
ence impedance depends on 5i252i as well as Sn of 
the standard. This is an important point to consider 
in designing the match standard, for any coupling 
between the two resistors will induce a shift in the 
reference impedance compared to the load 
impedance of either resistor alone. 

Another useful example is the mismatched line 
standard. The TRL method using an ideal, 
matched line led to a reference impedance equal to 
the characteristic impedance of the line. Since this 
perfect line is identical to the line at the test port, 
the traveling waves are not reflected. What hap- 
pens if the line standard, while uniform, is not 
identical to the test port? The problem is similar to 
one described in the previous section. In general, 
the question is impossible to answer. However, for 
illustration, we consider the approximation that v 
and i are continuous at the interface. In this case, 
we can compute the cascade matrix of the line of 
characteristic impedance Zi as 

T1 = 

e^\    e-''-rh       (l-e-^Vo/l      niR^ 
i-n, [-(1 -e-'^')ro,   1 -e-'y'n J '   ^"^^ 

which can be transformed to 

7?"" = 

,+yl r^y'-r? ml 

■ ml 

(l_e-2y)r„ 
.(l_e-2r')r„,     l-e-'^n 

ml] 

ml. 
(119) 

This is identical in form to the previous result for a 
perfect line standard. It leads to the result 

ZKt = Zl (120) 

In this approximation, the reference impedance is 
the characteristic impedance of the line. This po- 
tentially useful result suggests that a particular line 
may be used as a calibration standard for any net- 
work analyzer with identical results. However, the 
assumption that v and / are continuous, which led 
to the result, is not generally valid. The example of 
a 50 fl, 2.4 mm coaxial standard used on 50 il, 
3.5 mm coaxial test ports makes this clear, for the 
standard must reflect the traveling waves even 
though its characteristic impedance is appropriate 
for a reflectionless standard. In general, the quality 
of the approximation depends in detail on the na- 
ture of the waveguide interface. 

Calibration using any of these devices, as long as 
5ii = 522, leads to solutions differing only by a 
change of reference impedance. Of course, we can 
easily transform between any two reference 
impedances if given the values. A procedure to 
transform between LRL and LRM calibrations [16] 
is based on measuring the load reflection coeffi- 
cient with respect to an LRL calibration. However, 
this is only a relative transformation; the initial and 
final reference impedances remain unknown. The 
most comprehensive procedure is to determine the 
absolute Zrcf. A method to accomplish this com- 
bines the TRL calibration using a nominally per- 
fect line with a measurement of Zo, which in this 
case is identical to Z^f [12]. It is difficult to imagine 
determining the reference impedance of any of the 
other calibration methods, even in principle, with- 
out comparison to a TRL calibration. 

Many calibration methods other than those 
based on the TRL algorithm are in use. These typi- 
cally require the measurement of artifacts, such as 
open and short circuits, whose scattering parame- 
ters are presumed known. Although electromag- 
netic simulations may provide good estimates, the 
actual scattering parameters can be known accu- 
rately only by measurement. Thus the calibration 
artifacts must be viewed as transfer standards. If 
the scattering parameters are given incorrectly, the 
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calibration may be inconsistent. However, if perfect 
short and open circuits are used along with a termi- 
nation defined as a perfect match, it is possible to 
obtain a consistent calibration with the reference 
impedance equal to the load impedance of the ter- 
mination. 

4J   Measurement of Pseudo-Waves and Wave- 
guide Voltage and Current 

The methods of the previous section provide for 
the measurement of ratios of pseudo-waves. In or- 
der to measure the wave amplitudes, an additional 
magnitude measurement is necessary. The most 
convenient parameter to measure is the power P. 
From measurements of P and F and a known ZK(, 
Eq. (59) allows the determination of \a\. This ap- 
plies to laol as well if we replace Zref by Zo. The 
absolute phases of the pseudo-waves and traveling 
waves cannot be measured without specifying the 
arbitrary phase of the modal fields. However, the 
relative phase of a and b is given by Eq. (58). 

Once a and b have been determined, It^l and lil 
are given by Eqs. (55) and (56). The ratio of these 
two equations determines the relative phase of v 
and I. 

5.   Alternative    Circuit    Theory    Using 
Power Waves 

In addition to the pseudo-waves a and b defined 
by Eqs. (53) and (54), other quantities may be de- 
fined using different linear combinations of v and 
i. Popular alternatives are the "incident and re- 
flected wave amplitudes" normalized to "complex 
port numbers" [7]. For a complex port number Z, 
these quantities are defined by 

aizy. v+iZ 

and 
2VRe(Z) 

(121) 

When Z is real, the power waves reduce to 
pseudo-waves (except for a phase factor) with ref- 
erence impedance Zrcf=Z. Otherwise they do not 
correspond. The power waves are not equal to the 
traveling waves for any choice of Z unless the char- 
acteristic impedance is real. For example, Fig. 6 
plots the power wave magnitudes corresponding to 
the example of Fig. 4; Z is chosen so that b van- 
ishes at z = 0. This figure illustrates that the power 
waves are complicated functions of z; it is clearly 
unrealistic to interpret them as "incident and re- 
flected waves." 

The power waves are devised to satisfy the sun- 
pie power relation 

p=\aMb\^ (123) 

for any Z. The pseudo-waves satisfy a relationship 
of this form only when Z^i is real. 

a 

r=o 

n 
-80 

—r- 
-40 

1— 
-20 

b(Z)^ v-iZ* 

2VRe(Z) 
(122) 

In Ref. [7], Z is arbitrary except that Re(Z)>0; 
this restriction is lifted in subsequent publications. 
When Z is the load impedance of the device con- 
nected to the port, a and b are known as power 
waves [8]. For simplicity, we shall use the term 
"power waves" for all quantities of the form (121) 
and (122). 

We take v and / to be the waveguide voltage and 
current defined in Sec. 2. Like Ref. [7], we Umit 
our discussion to the case Re(Z) >0. 

Fig. 6. The magnitudes of the power waves a and b for the 
example of Fig. 4. The characteristic impedance is taken to be 
1-0.2;. Z is chosen so that r(Z) vanishes at the termination 
reference plane._ Since the waves depend in a complicated 
fashion on z, r{Z) vanishes only at z = 0. 

Power wave scattering parameters can be defined 
analogously to the pseudo-scattering parameters. 
For example, the power wave reflection coefficient 
is 

fl(Z) V+iZ Zload+Z 
(124) 
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which should be contrasted to Eq. (95). The power 
wave reflection coefficient of an open circuit (f = 0) 
is equal to 1, the same as the pseudo-wave reflec- 
tion coefficient defined earlier. However, the result 
for a short circuit (u = 0) is 

u=o=>r(z)=-^ (125) 

which is equal to the pseudo-wave reflection coeffi- 
cient -1 only in the special case Im(Z) = 0. This 
indicates clearly that the power waves are not gen- 
erally related to the traveling waves by an 
impedance transform. 

The implications of this are significant. For in- 
stance, the relationship between the load 
impedance and the pseudo-reflection coefficient is 
given by Eq. (95), which is the classical result. It is 
the basis of the Smith chart as well as most circuit 
design software. On the other hand, the equivalent 
relationship in terms of power wave quantities is 
Eq. (124), to which the Smith chart does not apply 
since it does not represent a linear fractional trans- 
formation. To sharpen this distinction, recall that 
the Smith chart is based on a normalized 
impedance; that is, the load impedance displayed 
on the chart is relative to Zns (Zo in the case of 
traveling waves). The chart is able to accommodate 
the data in this form because the pseudo-reflection 
coefficient, as illustrated by Eq. (95), depends only 
on the ratio Zxo^JZttt- The power wave reflection 
coefficient, however, depends not only on the ratio 
Zioad/Z but also on the phase of Z. Therefore, an 
attempt to generalize the Smith chart to display 
power wave reflection coefficients must lead to a 
separate chart for each phase of Z. 

Recall that the pseudo-wave scattering matrix of 
a reciprocal circuit is not generally symmetric in 
lossy waveguides. In contrast, advocates of power 
waves argue that the power wave scattering matrix 
of a lossy, reciprocal circuit is symmetric. For 
waveguide circuits, this is false. The usual deriva- 
tion of symmetry makes use of the symmetry of the 
impedance matrix, which, as we have seen, does 
not hold for waveguides. Thus, one ubiquitous jus- 
tification of a power wave description of waveguide 
circuits is invalid. The correct reciprocity relation- 
ship is given in Appendix D. 

Although a complete circuit theory based on 
power waves is possible, we have chosen not to de- 
velop one, for several reasons. Unlike the power 
waves, the pseudo-waves are related to the travel- 
ing waves by an impedance transform and there- 
fore    avoid    the    problems    discussed    above. 

Furthermore, unlike the power waves, the pseudo- 
waves can generally be set equal to the traveling 
waves by an appropriate choice of the reference 
impedance. Although the pseudo-waves do not 
generally satisfy a simple power expression of the 
form Eq. (123), they can always be made to do so 
by an appropriate choice of the reference 
impedance. Typically this involves choosing Zref to 
be real, but the choice of Zref=Zioad, analogous to 
the choice Z =Zioad made by Ref. [8], will also suf- 
fice. 

Although a network analyzer may be used to 
measure power waves, such a use is rare for, as 
illustrated in the previous section, it is the pseudo- 
waves that are measured using conventional cali- 
bration techniques. None of these methods may be 
easily modified to directly measure power waves. 
Methods which apply shorts and opens as calibra- 
tion standards are inapplicable since only the open, 
not the short, is a useful power wave standard. Fur- 
thermore, the TRL method cannot be applied to 
power wave measurement since it is closely tied to 
the measurement of traveling waves. 

One method of measuring a power wave reflec- 
tion coefficient begins with first measuring the 
pseudo-wave reflection coefficient. If the reference 
impedance of that calibration can be determined, 
then the load impedance may be calculated from 
Eq. (96); the power wave reflection coefficient can 
then be determined from Eq. (124). Methods 
which do not require the determination of the 
pseudo-wave parameters as a prerequisite appear 
to be unknown at this time. In any case, such meth- 
ods do not exist in the firmware which controls con- 
ventional network analyzers, so that these 
machines are incapable of determining power wave 
scattering parameters without external software. 

6. Appendix A. 
Equations 

Reduction of Maxwell's 

The electric and magnetic fields of a mode have 
been designated ee"^ and he~'^. For the moment, 
we will allow anisotropy and therefore introduce 
the tensor permittivity e and tensor permeability /t. 
Maxwell's equations take the form 

V X {ee -^') = -ioifi ■ (/»e -^) , (Al) 

V X (Ae - ■") =+;&)€• {ee ""'), (A2) 

V-(e-ee-'') = 0, (A3) 
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and 

which readily reduce to 

S7xe —yzXe = —jeofi 'h 

Vxh - yz xh = +jo3€-e, 

and 

V'(fe) = 'y(e*e)*z , 

V-(/fA ) = y(/fA)*z. 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

and 

e|ezp-*ei|ezp, (A17) 

(A18) 

If we now divide e and h into their transverse and 
axial components, Eqs. (A5) and (A6) become 

Vxe, = -jw{ti-k)-z, (A9) 

7.   Appendix B. Circuit Parameter Inte- 
gral Expressions 

Taking the scalar product of both sides of Eq. (5) 
with z xe* results in 

yz 'e,*xh,+z 'e,*xVhz = 

+Ja)€(z Xe,*)-(zxe,)= +J(oe\e,\\ (Bl) 

Integrating over the cross section of the waveguide 
and recognizing the first integral as po* = I i^VZo, we 
have 

Vxh, = +Me'eyz (AlO)        ^= r^p L Jele.pdS-z • J c* X V/t.dsl.    (B2) 

and 

zxVez + yzXe,= +ja>(fi h ), , (AH) 

z xVhz +gz xk, = -j(o{€'e), . (A12) 

For the isotropic materials discussed in the text, 
Eqs. (A7)-(A12) reduce to Eqs. (2)-(7). In gen- 
eral, it appears difficult to generalize the text to 
include materials of arbitrary anisotropy. However, 
generalization is fairly simple in the absence of 
terms in e and /t coupling between transverse and 
axial field components. In that case, we can write 

The second integral can be manipulated into a sim- 
pler form. First apply Stokes's Law to the vector 
hze* to yield 

f Vx(/i^,*)-zd5= I hzVxe,*^zdS- 

I e,*xV/iz'zd5= f hze,*'dl, 
Js JdS 

(B3) 

e-€, + Sizz; z-e, = erz = 0 

and 

pi,=lM + tizZz;z-fii = fit'Z=0. 

(A13) 

(A14) 

All of the results in the text follow with slight mod- 
ification. For example, equations Eqs. (B5) and 
(B6), from which the circuit parameter expressions 
arise, must be modified by the following replace- 
ments: 

(A15) 

(A16) 

where dS is the boundary of S and d/ is a line 
element along that boundary. If the waveguide is 
transversely closed by a perfectly conducting 
boundary, then S coincides with that boundary and 
the line integral vanishes. If the waveguide is open, 
then a portion of S may lie at infinity, but the inte- 
gral also vanishes as long as e, vanishes fast enough 
to ensure that the modal power is finite. Finally, 
although Stokes' Law cannot formally be appHed 
across material discontinuities, it can readily be 
shown that the line integrals on both sides of the 
boundary are equal and opposite. As a result, the 
line integral in Eq. (33) vanishes. The insertion of 
Eq. (2) simplifies Eq. (B3) to 
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z- f e,*xV/i.d5= I h,'7xe,*-zdS = 
h Js 

Js 
(B4) 

so Eq. (B2) becomes 

£=N^[//I^'I^'^^-I'^*I^'H-    ^^'^ 

By an analogous procedure using Eqs. (3) and (4), 
we may demonstrate that 

rZo=^ [i ''I*'!' ^^ ~ //*l^'l' ''4     ^^^^ 

The use of Eqs. (B5) and (B6) along with defini- 
tions (29) and (30) results in Eqs. (33)-(36) for the 
circuit parameters C,L,G, and R. 

8.   Appendix C.   Relations Between po 
and y 

From Eqs. (20), (29), and (30), 

and 

(Cl) 

(C2) -)Po=lfoPl;wL+/?], 

from which it can readily be shown that 

2Re(7') Re(po) = +1 vol^G + |fop i? , (C3) 

2Re(y) Im(po) = -11*] ^ wC +1 iopwL,       (C4) 

2Im(y) Re{po) = +1wo|' wC + i/o|'«L,       (C5) 

and 

2Im(r)Im(pfl)=+hpG-|iop/?. (C6) 

An interesting alternative form of Eq. (C5) is 

Re(po) = ^[5hPC+i|;oPL]. (C7) 

This is the real average power carried by the for- 
ward mode at 2=0. For TEM modes, it is the 
product of the group velocity W^S and the energy 
density (per unit length), represented by the term 
in brackets. 

If the materials are lossless, then certain useful 
results apply. In that case, li^jP G =l/ol^ R=Q. Aside 
from the degenerate case in which ■>po=0, only two 
sorts of modes may exist. The first, which we de- 
note propagating modes, satisfy 

Re(y) = Im(po) = Im(Zo) = 0; 

Im(7')?i0; Re(/7o)>0, (C8) 

which implies that they propagate without decay 
with a real characteristic impedance. Equation 
(C4) becomes 

(Re(r) = 0)=>|u,|^C = !/oPL, (C9) 

leaving free only one of the four parameters R,C, 
G, and L. Equation (C9) can be expanded as 

(Re(r) = 0)^| fx,\h\^AS= \ e\e\''dS.   (CIO) 

This states the well-known result [3] that the en- 
ergy in a lossless propagating wave is divided 
equally between the electric and magnetic fields. 

Modes in lossless media with ypo'^Q that are not 
propagating satisfy 

Im(y) = Re(po) = Re(Zo) = 0; 

Re(7)>0;Im(po)?:0, (Cll) 

and therefore 

|i*|'C=-|Jo|='L. (C12) 

These modes are purely evanescent, decaying expo- 
nentially and, in isolation, carrying no real power. 
The inductance and capacitance are of opposite 
sign. 

If we restrict ourselves to passive but not neces- 
sarily lossless media, certain converse results apply. 
Passivity ensures that G and R are nonnegative. 
Thus, if either Re(y) = 0 or Re(/?o) = 0, then Eq. 
(C3) requires \vd^G =Uti^R =0. Since e" and ji" are 
nonnegative in passive media, Eqs. (35) and (36) 
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require that e"e = ti"h = 0 everywhere. Now, if 
e = 0, then Maxwell's equations imply that A = 0 
(and vice versa), except in the case w = 0, which we 
have explicitly excluded. Therefore, in passive me- 
dia, the possibilities Re(y) = 0 (unattenuated 
mode) or Re(/>o) = 0 (mode carrying no real power) 
occur only if e" = ft" = 0; that is, only when the me- 
dia are lossless. In contrast, there is no apparent 
prohibition against Im(y) or Im(po) vanishing in 
lossy media. 

Finally, we treat the degenerate modes in which 
either y or po vanishes. From Eqs. (Cl) and (C2), 
these modes satisfy 

{')Po=0}r» |tJBpC = hPG =|/opL =|/opi? =0. (C13) 

The second and fourth conditions ensure that such 
degeneracy occurs only in lossless waveguides. 

If y-0, then Maxwell's equations decouple into 
one set [Eqs. (2), (5), and (6)] involving only c, and 
hz and another set [Eqs. (3), (4), and (7)] involving 
only h, and e^. Therefore, we can decompose the 
fields into modes with either e,=hz = Q or 
h, -ez=0. In the former case, |iioPC automatically 
vanishes, due to Eq. (33), and the condition 
k'oP L = 0 constrains the remaining fields; the oppo- 
site holds true in the latter case. In either situation, 
po = 0 since the Poynting vector e, xh, vanishes. In 
this case y =po = 0, exemplified by a lossless waveg- 
uide mode operating exactly at the cutoff fre- 
quency, the forward and backward modes are 
indistinguishable. 

On the other hand, po=0 does not imply that 
y = 0. Furthermore, in contrast to the lossless case 
vfithpo^O discussed above, y is not restricted to be 
real or imaginary. "Complex waves," in which y is 
neither real nor imaginary even though the materi- 
als are lossless, have been discovered in inhomoge- 
neous as well as in anisotropic media. They are 
discussed in Ref. [20] and references included 
therein. 

9.   Appendix D.   Reciprocity Relations 

Consider two sets of electromagnetic fields 
(£', H') and (E", H"), which are produced by two 
different sets of boundary conditions. Applying the 
divergence theorem to E'xH" and using the ho- 
mogeneous Maxwell's equations produces the well- 
known result that 

/ 

whenever the permittivity and permeability tensors 
are symmetric. In Eq. (Dl), the surface encloses a 
closed region and the unit vector n is the outward 
normal to the surface. We let the surface enclose 
an entire waveguide junction and become infinitely 
large in such a way that the contributions to the 
integral can be entirely accounted for by the single 
mode of interest propagating in each waveguide 
leaving the junction. Expressing the fields in each 
port n in terms of Eqs. (12) and (13), Eq. (Dl) 
becomes 

tWon 

having defined 

Pon=\   em xh,n -z d5. 

(D2) 

(D3) 

where S„ is the cross section of the /ith waveguide. 
Equation (D2) can be written as the matrk equa- 
tion 

r<Wv'=v"'Wi'. (D4) 

As before, I and V are column vectors of in and v„, 
and "t" stands for "transpose." W is the diagonal 
matrix 

W=diag(W„); W„ =£g- = ^ 1^,       (D5) 
WOn'On Won    p fti 

where Eq. (20) has been used. Inserting v = Zi into 
Eq. (D4) and requiring that the result holds for all 
values of i' and I", we determine that 

z'=wzw-\ (D6) 

which is the reciprocity requirement on the 
impedance matrix. It requires that the elements of 
Z satisfy 

(D7) 7_   =^7 *-nm       1*1    *-mn » 

To determine the analogous condition on S, take 
the transpose of Eq. (E5): 

S'=U-^(Z' + Zref)-^(Z»-Zref)U. (D8) 

{E'xH"-E"xH')-ndS=Q, (Dl) 

Insert Eq. (D6) and factor out W and W~\ noting 
that W Z,9( W"^ = Zref since W and 2,^ are diagonal. 
The result is 

S'=U-^W(Z+Zre,)-MZ-Z,e,)W-^U.        (D9) 
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The two central terms can be commuted using the 
fact that any matrices A and B satisfy 

(A+B)-^(A-B) = B-^(A-B)(A+B)-^B     (DIO) 

as long as the inverses exist. Using Eq. (DIO) in 
Eq. (D9) and using Eq. (E5) to express the result 
in terms of S, we have 

S' = P-^SP, 

using the definition 

P = Z,efU2W-\ 

(Dll) 

(D12) 

Since P is diagonal, Eq. (Dll) requires that the 
elements of S satisfy 

(D13) 

which is expressed more explicitly as Eq. (64) of 
the text. 

We can also develop a reciprocity relation for 
the power wave scattering matrix, defined by 

where 

and 

b = Sa, 

a = F(v+Zi) 

b==F(v-Z*i) 

(D14) 

(D15) 

are the vector forms of Eqs. (121) and (122). We 
have defined 

and 

Zsdiag(Z) (D17) 

^-diag(^). (D18) 

Inserting Eqs. (D15) and (D16), as well as v = Zi, 
into Eq. (D14) and insisting that the result hold for 
all I yields 

S = F(Z-Z*)(Z+Z)-'F-\ 

the transpose of which is 

S' = F-MZ' + Z)-'(Z'-Z*)F, 

(D19) 

(D20) 

Using Eq. (D6) and some simple manipulation 
leads to 

S' = F-' W(Z+Z)-^ (Z-Z*) W-^ F.        (D21) 

Reference [8] shows that 

(Z + Z)-^ (Z-Z*) = 

F2(Z-Z*)(Z + Z)-V-2 = FSF-\ (D22) 

so that Eq. (D21) reduces to the simple result 

S'=WSW-^ (D23) 

The power wave scattering matrix therefore obeys 
a reciprocity relation identical to the one (D6) sat- 
isfied by the impedance matrbc. In lossy wave- 
guides, neither is generally symmetric. 

10.   Appendix E. Relations Between Z and 
S 

Recall that a, b, v, and i are defined as column 
vectors whose elements are am,bm,Vm, and i^ at the 
various waveguide ports m. The vector representa- 
tion of Eqs. (53) and (54) are 

and 

a = 2U(v+Z,e(i) 

b = iU(v-Z™,i), 

(El) 

(E2) 

(D16)        where U is a diagonal matrbc defined by 

U,di,g(ll^V^pa). (E3) 

Inserting v = Zi into Eqs. (El) and (E2) eliminates 
V. The condition b = Sa then implies 

b=|u(Z-Zre.)i = Sa=isU(Z-FZre,)i.     (E4) 

Since this must hold for all I, we can solve for S, 
yielding 

S = U(Z-Zre,)(Z-)-Zref)-^U-' = 

U(zzre?-i)(zzrel + i)-^u-^ (ES) 

This can be easily inverted to produce 

Z = (I-U-^SU)-MI + U-^SU)Z, ref- (E6) 
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11.    Appendix F.    Renormalization Table        Acknowledgments 

The text allows for the arbitrarily normahzation 
of the parameters «< and vo. This table details the 
effects of renormalizing these two parameters on 
the remaining variables. The second column shows 
the effect on the element in the first column of 
multiplying e, by the factor a. The third column 
shows the results of a change in the voltage integra- 
tion path which multiplies vo by the factor j8. No 
result is shown if the variable is independent of the 
normalization. 

Renormalization table 

y 
Ei,H, 

e„h, ae„ ah, 

C*,C- c^la, c-la 

va ava ^l* 

ill aid yp* 
V pv 

i up* 
Po \»VP« 

P 

P 

Zo WZo 
C.G C/|J0P.G/|^P 

L,R \PVL,WR 

flo, bo a         a 

a(Zr.i),b{Z„d a 
,(Zr.f),^ft(Z„,) a{Z,J\^i)HZ.Jw) 
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