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chemometrics
conference

Topical Issue: Chemometrics

This issue of the NBS Journal of Research is devoted entirely to one topic:
Chemometrics. A conference by that title held earlier this year at NBS brought together
experts in analytical chemistry and applied mathematics, disciplines which are the
constituents of this new field. This conference was probably the first one in the United
States by that title.

The roots of the interdisciplinary effort go back to the late Dr. William (Jack) Youden
and we dedicate this issue to him. A brief description of Youden's career serves as the
introduction to the collection of conference papers which we present in this volume of
the JournaL The authors of this biographical sketch, Drs. Ku and DeVoe, worked very
closely with Youden while he was at NBS.

With the publication of the papers presented at this conference we hope to stimulate
further work in the field of chemometrics. Special recognition goes to the organizers of
the conference who also served as invited editors of this special issue of the NBS
Journal of Research: Drs. Clifford H. Spiegelman of the Center for Applied
Mathematics, Robert L. Watters of the Center for Analytical Chemistry, and Jerome
Sacks from the University of Illinois.

Hans J. Oser
Chief Editor
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JACK YOUDEN

We are pleased that the Conference proceedings are dedicated to Jack Youden.

Youden, an analytical chemist turned mathematical statistician, was a simplifying
and, indeed, enthralling teacher of statistical principles who could hold the attention
of sophisticated statisticians as well as scientists and engineers.

Born at the turn of the century, Youden worked for many years at the Boyce
Thompson Institute for Plant Research in Yonkers, NY before joining the staff at
NBS in 1948. He remained with the Bureau for 17 years and after his retirement
continued this association as a guest worker until his death in 1971.

The transformation of Youden from chemist to statistician probably began with his
reading of R. A. Fisher's Statistical Methods for Research Workers. He studied under
Fisher in 1937-38 at the Galton Laboratory of University College, London, thanks
to a Rockefeller Fellowship for the discovery of a new class of incomplete block
designs, "Youden Squares," which found immediate application in biological and
medical research.

At NBS he introduced "Youden Plots" for interlaboratory tests and "Youden's
Ruggedness Test" as a check on test methods, but he distinguished himself prin-
cipally for his ability to reduce a complicated idea to its essentials and to express that
idea in a simple, straightforward manner, so that it became understandable to sci-
entists of all disciplines. He worked hard at stripping away needless detail and
jargon. And he generated interest in his lectures, making his subject so intriguing
that an hour passed as minutes. He was a very rare breed-an outstanding statistician
who understood experimental systems in chemistry, physics, and engineering.

His first book, Statistical Methods for Chemists, was published in 1951 and was
followed by Statistical Techniques for Collaborative Tests which consisted of two
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Youden lecture series, "Accuracy of Analytical Procedures" and "The Collabo-
rative Test." The latter book was published by the Association of Official Analytical
Chemists (AOAC) whose William Horwitz states: "These lectures probably have
had a greater influence on improving the quality and interpretation of collaborative
studies conducted by AOAC members than any other event in the (85-year) exis-
tence of the Association."

A number of Youden's most important papers were collected in the Journal of
Quality Technology (Vol. 4, No. 1, January 1972) and in Volume I of NBS Special
Publication 300, Precision Measurement and Calibration: Statistical Concepts and
Procedures.

Jack Youden was a chemist and a communicator. The Chemical Division of the
American Society for Quality Control in 1969 established a Jack Youden prize to be
awarded yearly for the best expository paper in its journal, Technometrics. But it was
Youden the statistician who furthered collaboration and helped to maximize the
information content of experimentation, which is what the Chemometrics Confer-
ence was about. So it is appropriate that these conference proceedings be dedicated
to the memory of Dr. Youden.

H. H. Ku J. R. DeVoe
Statistical Engineering Division Inorganic Analytical Research Division
National Bureau of Standards National Bureau of Standards
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The Organizers' Goals

The wide range of disciplines represented by the participants and attendees of the Chemomet-
rics Research Conference held at the Gaithersburg Holiday Inn on May 20-22, 1985, exempli-
fies the depth and diversity of the chemometrics community. The Conference was sponsored by
several important professional societies whose members are involved in chemometric activity.
These include the Analytical Division of the American Chemical Society, the Section on
Physical and Engineering Sciences of the American Statistical Association, the Institute of
Mathematical Statistics, and the Society for Applied Spectroscopy. Generous funding for the
Conference was provided by the National Bureau of Standards, the Office of Naval Research,
and the National Science Foundation.

As organizers, we had two main goals in mind when deciding on the form and substance of
the Conference. The first was to provide a forum for reporting on some of the most recent and
important research activities in diverse areas relating to chemometrics. Nineteen invited speak-
ers covered topics including experimental design and optimization, kinetic rate constants,
Kalman filtering, chromatography, data analysis, artificial intelligence, stochastic processes,
regression and factor analysis. Despite the full schedule of papers, each of the five sessions was
attended by nearly all of the 134 Conference registrants. Most of the papers are published in this
special issue of the National Bureau of Standards Journal of Research to provide the registrants
and others the opportunity for careful study of the presentations. In these respects, our first goal
was easier to achieve than the second.

Our second and more important goal can only be achieved gradually. This was to increase the
willingness of chemists, statisticians, and probabilists to meet as colleagues and to solve
problems as a team. This will necessarily involve the exercise of communication skills as well
as the combining of scientific skills. We believe that even the best separate efforts of chemists
and mathematicians fall far short of the achievements that are possible by joint efforts in
chemometric research teams. We underscored this aspect of teamwork between the disciplines
of chemistry and mathematics by having each invited paper in one discipline discussed by an
invited discussant of the other.

We invited the speakers to take any approach they desired in the exposition of their subject.
Hence, the papers range from strictly technical to philosophical in tone. Discussants also had the
option of either commenting on the specifics of a given paper, or exploring the relevance of the
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subject to their respective disciplines. This free format encouraged open discussion and ex-
change of ideas at the Conference, and we hope that the same stimulus will be provided by these
Proceedings.

Finally, we look forward to future chemometrics conferences organized by researchers with
perspectives other than our own. For no matter how broad the coverage of chemometrics topics
in a given program, important areas are omitted. We believe that the widest scope of chemomet-
ncs research activities can be presented in meetings organized by committees of different
backgrounds and insights.

Clifford H. Spiegelman
National Bureau of Standards

Robert L. Watters, Jr.
National Bureau of Standards

Jerome Sacks
University of Illinois, Urbana
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Agenda for Chemometricians

It is most appropriate that the proceedings of this conference are going to be dedicated to the
memory of Jack Youden. He was interested in many of the topics that are being considered at

this conference, for example, interlaboratory comparisons, calibration, analytical methods, and
measurement errors-both systematic and random. He was indeed a pioneering chemometri-
cian, before the name existed. He was also interested in explaining to chemists, chemical
engineers, and others how they could benefit by using statistical methods.

I'm sure Youden would have been pleased with this conference, which provides a forum for
chemists, statisticians, and others interested in chemometrics to discuss research of mutual
interest. He also might have observed that chemometrics as a field has reached a level of

maturity that warrants consideration of questions related to spreading the word to others, to
non-chemometricians, so that they could take advantage of the techniques that are now avail-
able. In other words, perhaps chemometrics as discipline has reached a sufficiently advanced

stage of research and development that questions of production should now be addressed. What
are our most useful products? Who are out customers? Which products would they find most
valuable? What are the obstacles that prevent these customers from using these products now?
How can these obstacles be overcome? What are the most important things that can be done in
the next three years to reach new customers? What should the agenda be for chemometricians
in the next few years?

There are two ways to learn. One is to listen, as in a lecture. The other is to engage in a
dialogue, as in a conversation. The first way is passive. The second is active. Let's try the
second way to learn from one another how we might answer these questions.

[Participants at this point wrote out answers to these questions, discussed them, and voted on
them. The top vote-getters for the most important things that can be done in the next three years
to reach new customers were the following, listed in order of decreasing number votes:

1. Organize joint conferences with chemists.
2. Write textbooks on chemometrics.
3. Conduct workshops and teach short courses.
4. Write user-friendly software.
5. Teach chemometrics to graduate students.
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6. Write tutorial, expository, and review articles.
7. Undertake joint research projects with chemists.
8. Publicize success stories.
9. leach chemometrics to undergraduate students.

10. Communicate with management.
11. Hire professionals to help with a public relations effort.
12. Teach chemometrics to high school students.]
I recommend that we take action on the basis of this list. Let me now make a few observations

in closing. I would like to suggest a different starting point for statistics courses. Let us represent
the relationship between an observed response y and variables xl,.x2 ,. . . as

y=f(X1 ,x2 ,X3 ,X4.X5 . * x,126,. * ) -

Many, many, many variables affect y. It is the fluctuation of these variables that gives us
different answers when we repeat an experiment two or more times under "identical conditions."
We are often interested in creating a mathematical equation (model) that involves a subset of the
variables. For purposes of illustration, suppose this subset is (x ,x9.A. We can then write

Note that the g function includes xl and x2 (because of lack of fit of the model) as well as all
the other x's. Lack of fit occurs, for example, because the model f may be taken to be linear
inxl andx 2 but the actual relationship may be nonlinear in xi and x2. The function g is most often
called experimental error, and it is almost as often endowed by writers with an abundance of
desirable and well-known properties. They call it a random variable. A sequence of these
experimental errors, they frequently say, can be assumed to be independent, identically dis-

tributed according to a Normal distribution with a zero mean and constant variance. I believe
that statisticians too readily make this assumption and others like it. Sometimes such an assump-
tion makes sense, sometimes not. We should be more careful on this point.

An adequate model is a function that will turn data into white noise, as George Box has said.
An analogy that I find useful involves a process for separating gold particles from a slurry. If
the process is fully efficient, the waste stream will contain no gold. It is therefore prudent to
check the waste stream to see if it contains any gold. Likewise in creating and fitting models,
it makes sense to examine residuals to see if they contain any information. The data contain
information (that's the gold we want to get), and a good model will extract all the information
in those data. Hence the residuals will be manifestations of white noise, an informationless
sequence of values.

Chemists and chemical engineers could benefit from knowing more about variance compo-
nents, statistical graphics, and quality control techniques (including Shewhart and cumulative
sum charts). But, above all, I think they would find statistical experimental designs to be the
most useful thing of all that chemometricians have to offer. Such designs provide a practical
means for increasing research efficiency, which might be defined as the amount of information
one obtains per dollar spent.

The damage done by poor experimental design is irreparable. A poor design results in data
that contain little information. Consequently, no matter how thorough, how clever, or how
sophisticated the subsequent analysis is, little information can be extracted. A good design, for
the same expenditure of time, money, and other resources, results in data rich in information.
A fruitful analysis is then possible. (Note that analysis is defined as trying to extract all the useful
information in the data.)

Two-level factorial and fractional factorial designs can be extremely useful for chemists,
chemical engineers, and others who do similar work. One of the best ways for a student to learn
about such designs is to set one up, get the data, analyze them, and interpret the results. For a
number of years I have had students in our experimental design course undertake such projects.
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The main piece of advice I give them is to work on something they care about, something they

are really interested in.
Toward the end of an introductory one-semester undergraduate course in statistics, for exam-

ple, one student said that he was a pilot and that, ever since he started to fly, he had asked

instructors and other pilots what he should do if the engine failed on takeoff. He had been told

by several people that he should bank the plane, go into a 1800 turn, and land on the runway
from which he took off. Unfortunately, many different ways of doing this maneuver had been
suggested. He successfully organized and executed a replicated 23 factorial design with three

variables: bank angle, flap angle, and speed. He measured the loss in altitude. He started each

test at 1000 feet instead of ground level. The experiment was a success. He learned which

combination of factors he should use for his plane, and he discovered the minimum altitude for
attempting such a maneuver.

Factorial designs can be understood and run with profit by graduate, undergraduate, senior
high school, and junior high school students. Maybe younger students can use them, too.

Students can study the baking of cakes, the riding of bicycles, the making of chemicals, the
growing of plants, and the swinging of pendulums. Dalia Sredni, when she was a seventh grader,

for instance, studied the effects of changing oven temperature, baking time, and the amount of

baking soda when making a cake. Students should be told about factorial designs early so that
they can study systems that depend on many variables and learn how they work. Using such
designs they can discover interesting things, have fun, and be surprised. Our students deserve
more of these pleasures. I have included a list of 101 experiments that have been done by
students at Wisconsin, to indicate the variety of things that is possible.

I would like to end by congratulating the conference organizers for the excellent job they have
done. It is clear that they have worked hard to make-things enjoyable and rewarding for those
of us who have been fortunate enough to participate.

William G. Hunter

Professor of Statistics and Industrial Engineering
Director of Center for Quality and Productivity Improvement
University of Wisconsin-Madison

Table 1. List of some studies done by students in an experimental design course at the University of Wisconsin-Madison.

variables responses

I. seat height (26, 30 inches), generator (off, on), tire pressure (40, 55 psi) time to complete fixed course on bicycle and pulse
rate at finish

2. brand of popcorn (ordinary, gourmet), size of batch (1/3, 2/3 cup), popcorn to oil yield of popcorn
ratio (low, high)

3. amount of yeast, amount of sugar, liquid (milk, water), rise temperature, rise time quality of bread, especially the total rise

4. number of pills, amount of cough syrup, use of vaporizer how well twins, who had colds, slept during the night

5. speed of film, light (normal, diffused), shutter speed quality of slides made close up with flash attachment
on camera

6. hours of illumination, water temperature, specific gravity of water growth rate of algae in salt water aquarium

7. temperature, amount of sugar, food prior to drink (water, salted popcon) taste of Koolaid

8. direction in which radio is facing, antenna angle, antenna slant strength of radio singal from particular AM station in
Chicago

9. blending speed, amount of water, temperature of water, soaking time before blend- blending time for soy beans

big
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Tahie 1. continued

variables responses

10. charge time, digits fixed, number of calculations perfonmed operation time for pocket calculator

11. clothes dryer (A. B), temperature setting, load time until dryer stops

12. pan (aluminum, iron), burner on store, cover for pan (no, yes) time to boil water

13. aspirin buffered? (no. yes), dose, water temperature hours of relief from migraine headache

14. amount of milk powder added to milk, heating temperature, incubation temperature taste comparison of homemade yogurt and commercial
brand

15. pack on back (no. yes), footwear (tenmis shoes, boots), run (7, 14 flights of steps) time required to run up steps and heartbeat at top

16. width to height ratio of sheet of balsa wood, slant angle, dihedral angle, weight length of flight of model arplane
added, thickness of wood

17. level of coffee in cup, devices (nothing, spoon placed across top of cup facing up), how much coffee spilled while walking
speed of walking

18. type of stitch, yarn guage, needle size cost of knitting scarf, dollars per square toot

19. type of drink (beer, mm), number of drinks. rate of drinking, hours after last meal time to get steel ball through a maze

20. size of order, time of day, sex of server cost of order of french fries, in cents per ounce

21. brand of gasoline, driving speed, temperature gas mileage for car

22. stamp (first class, air mail), zip code (used, not used), time of day when letter number of days required for letter to be delivered to
mailed another city

23. side of face (left, right), beard history (shaved once in two years-sideburns, shaved length of whiskers 3 days after shaving
over 600 times in two years-just below sideburns)

24. eyes used (both, right), location of observer, distance number of times (out of 15) that correct gender of
passerby was determined by experimenter with poor
eyesight wearing no glasses

25. distance to target, guns (A, B), powders (C, D) number of shot that penetrated a one foot diameter
circle on the target

26. oven temperature, length of heating, amount of water height of cake

27. strength of developer, temperature, degree of agitation density of photographic film

28. brand of rubber hand, size, temperature length of rubber band before it broke

29. viscosity of oil, type of pick-up shoes, number of teeth in gear speed of H.C.. scale slot racers

30. type of tire, brand of gas, driver (A, B) time for car to cover one-quarter mile

31. temperature, stirring rate, amount of solvent time to dissolve table salt

32. amounts of cooking wine, oyster sauce, sesame oil taste of stewed chicken

33. type of surface, object (slide rule, ruder, silver dollar), pushed? (no, yes) angle necessary to make object slide

34. ambient temperature, choke setting, number of changes number of kicks necessary to start motorcycle

35. temperature, location in oven, biscuits covered while baking? (no, yes) time to bake biscuits

36. temperature of water, amount of grease, amount of water conditioner quantity of suds produced in kitchen blender

37. person putting daughter to bed (mother, father), bed time, place (home, grandpar- toys child chose to sleep with
ents)

38. amount of light im room, type of music played, volume correct answers on simple arithmetic test, time re-
quired to complete test, words remembered (from list
of t1)

39. amounts of added Turkish, Latakia, and Perique tobaccos bite, smoking characteristics, aroma, and taste of to-
bacco mixture

40. temperature, humidity, rock salt time to melt ice

41. number of cards dealt at one time, position of picker relative to the dealer points in games of sheepshead, a card game

42. marijuana (no, yes), tequiDa (no, yes), sauna (no, yes) pleasure experienced in subsequent sexual intercourse
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Table 1. continued

variables responses

43. amounts of flour, eggs, milk taste of pancakes, consensus of group of four living
together

44. brand of suntan lotion, altitude, skier time to get sunburned

45. amount of sleep the night before, substantial exercise during the day? (no, yes), eat soundness of sleep, average reading from 5 persons

right before going to bed? (no, yes)

46. brand of tape deck used for playing music, bass level, treble level, synthesizer? (no, clearness and quality of sound, and absence of noise

yes)

47. Type of filter paper, beverage to be filtered, volume of beverage time to filter

48. type of ski, temperature, type of wax time to go down ski slope

49. ambient temperature for dough when rising, amount of vegetable oil, number of four quality characteristics of pizza
onions

50. amount of fertilizer, location of seeds (3X3 Latin square) time for seeds to germinate

51. speed of kitchen blender, batch size of malt, blending time quality of ground malt for brewing beer

52. soft drink (A, B), container (cm, bottle), sugar free? (no, yes) taste of drink from paper cop

53. child's weight (13, 22 pounds), spring tension (4, 8 cranks), swing orientation number of swings and duration of these swings ob-

(level, tilted) tained from an automatic infant swing

54. orientation of football, kick (ordinary, soccer style), steps taken before kick, shoe distance football was kicked
(soft, hard)

55. weight of bowling ball, spin, bowling lane (A, B) bowling pins knocked down

56. distance from basket, type of shot, location on floor number of shots made (out of 10) with basketball

57. temperature, position of glass when pouring soft drink, amount of sugar added amount of foam produced when pouring soft drink
into glass

58. brand of epoxy glue, ratio of hardener to resin, thickness of application, smoothness strength of bond between two strips of aluminum

of surface, curing time

59. amount of plant hormone, water (direct from tap, stood out for 24 hours), window root lengths of cuttings from purple passion vine after

in which plant was put 21 days

60. amount of detergent (1/4, 1/2 cup), bleach (none, I cup), fabric softener (not used, ability to remove oil and grape juice stains

used)

61. skin thickness, water temperature, amount of salt time to cook chinese meat dumpling

62. appearance (with and without a crutch), location, time time to get a ride hitchhiking and number of cars that
passed before getting a ride

63. frequency of watering plams, use of plant food (no, yes), temperature of water growth rate of house plants

64. plunger A up (slow, fast), plunger A down (slow, fast), plunger B up (slow, fast) reproducibility of automatic dilutor, optical density

plunger B down (slow, fast) readings made with spectrophotometer

65. temperature of gas chromatograph column, tube type (U, J), voltage size of unwanted droplet

66. temperature, gas pressure, welding speed strength of polypropylene weld, manual operation

67. concentration of lysozyme, pH, ionic strength, temperature rate of chemical reaction

68. anhydrous barium peroxide powder, sulfur, charcoal dust length of time fuse powder burned and the evenness
of burning

69. air velocity, air temperature, rice bed depth time to dry wild rice

70. concentration of lactose crystal, crystal size, rate of agitation spreadability of caramel candy

71. positions of coating chamber, distribution plate, and lower chamber number of particles caught in a fluidized bed collector

72. proportional band, manual reset, regulator pressure sensitivity of a pneumatic valve control system for a
heat exchanger

73. chloride concentration, phase ratio, total amine concentration, amount of preserva- degree of separation of zinc from copper accom-

five added plished by extraction
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Table 1. continued

variables responses

74. temperature, nitrate concentration, amount of preservative added measured nitrate concentration in sewage, comparison

of three different methods

75. solar radiation collector size, ratio of storage capacity to collector size, extent of efficiency of solar space-heating system, a computer
short-term intermittency of radiation, average daily radiation on three successive simulation
days

76. pH, dissolved oxygen content of water, temperature extent of corrosion of iron

77. amount of sulfuric acid, time of shaking milk-acid mixture, time of final tempering measurement of butterfat content of milk

78. mode (batch, time-sharing), job size. system utilization (low, high) time to complete job on computer

79. flow rate of carrier gas, polarity of stationary liquid phase, temperature two different measures of efficiency of operation of
gas chromatograph

80. pH of assay buffer, incubation time. concentration of binder measured cortisol level in human blood plasma

81. aluminum, boron. cooling time extent of rock candy fracture of cast steel

82. magnification, read out system (micrometer, electronic), stage light measurement of angle with photogrammetric instru-
ment

83. riser height, mold hardness, carbon equivalent changes in height, width, and length dimensions of
cast metal

84. amperage, contact tube height, travel speed, edge preparation quality of weld made by submerged arc welding pro-
cess

85. time, amount of magnesium oxide, amount of alloy recover of material by steam distillation

86. pH, depth, time final moisture content of alfalfa protein

87. deodorant, concentration of chemical, incubation time odor produced by material isolated from decaying ma-
nure, after treatment

88. temperature variation, concentration of cupric sulfate concentration of sulfuric acid limiting currents on totaling disk electrode

89. air flow, diameter of bead, heat shield (no, yes) measured temperature of a heated plate

90. voltage, warm-up procedure, bulb age sensitivity of riicrodensitometer

91. pressure, amount of ferric chloride added, amount of lime added efficiency of vacuum filtration of sludge

92. longitudinal feed rate, transverse feed rate, depth of cut longitudinal and thrust forces for surface grinding op-
eration

93. time between preparation of sample and refluxing, reflux time, time between end of chemical oxygen demand of samples with same
reflux and start of titrating amount of waste (acetanilide)

94. speed of rotation, thrust load, method of lubrication torque of taper roller bearings

95. type of activated carbon, amount of carbon, pH adsorption characteristics of activated carbon used
with municipal waste water

96. amounts of nickel, manganese, carbon impact strength of steel alloy

97. form (broth, gravy), added broth (no, yes), added fat (no, yes), type of meat (lamb, percentage of panelists correctly identifying which
beet) samples were lamb

98. well (A, B), depth of probe, method of analysis (peak height, planimeter) methane concentration in completed sanitary landfill

99. paste (A, B), preparation of skin (no, yes), site (sternum, forearm) electrocardiogram reading

100. lime dosage, time of flocculation, mixing speed removal of turbidity and hardness from water

101. temperature difference between surface and bottom waters, thickness of surface mixing time for an initially thermally stratified tank of
layer, jet distance to thermocline, velocity of jet, temperature difference between jet water
and bottom waters
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The increased power of small computers makes the use of parameter estimation methods attractive. Such
methods have a number of uses in analytical chemistry. When valid models are available, many methods work
well, but when models used in the estimation are in error, most methods fail. Methods based on the Kalman
filter, a linear recursive estimator, may be modified to perform parameter estimation with erroneous models.
Modifications to the filter involve allowing the filter to adapt the measurement model to theexperimental data
through matching the theoretical and observed covoriance of the filter innovations sequence. The adaptive
filtering methods that result have a number of applications in analytical chemistry.

Key words: automated covariance estimation; Kalman filter; multicomponent analysis.

1. Introduction

The increased computational power available from
small computers has prompted a re-evaluation of the
methods used in reducing data obtained from a chemical
analysis. Many of the responses obtained from chemical
analyses are suited to mathematical analysis by methods
which estimate the parameters that generate the re-
sponse; these parameters are generally concentrations.
For parameter estimation to be successful, an accurate
model of the behavior of the chemical system is neces-
sary. The model used need not be theoretical; empirical
models based on experimental results or on a numerical
simulation of the chemical system are often satisfactory

About the Authors, Paper: Steven D. Brown is now
with the Department of Chemistry at the University
of Delaware. While Sarah C. Rutan, who was with
Washington State University under a Summer Fel-
lowship of the Analytical Division, American Chem-
ical Society, is now with the Department of Chem-
istry at Virginia Commonwealth. The work
described was supported by the Division of Chemical
Sciences, U.S. Department of Energy.

as well. When valid models are available, the parameters
associated with the model may be obtained with a vari-
ety of methods. Some that have seen extensive use in
analytical chemistry include analysis of the chemical
data using linear least squares [1], nonlinear least squares
analysis [2,3], and Kalman filtering [4-6].'

The methods mentioned above all work well with
accurate models, but are much less satisfactory when
used with models containing errors that can arise from
many sources. Theoretical models, or models based on
simulation, may not describe the physics or chemistry of
a system well enough to predict system responses to the
accuracy desired. Small changes in the experimental
conditions used for data acquisition may perturb
experimentally-obtained models, leading to errors when
these models are used to analyze subsequent experi-
ments. And, it may be impossible, because of the effects
of chemical equilibria, to obtain independent responses
for some of the chemical species included in a model for
a complex system, leading to "chemical" model errors.

Relatively few methods have been developed to com-
pensate for model errors affecting multicomponent
quantitation. Approaches using factor analysis [7] have

Bracketed figures indicate literature refrencrs.
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been developed for situations where the model is un-
known, but these approaches are generally limited to
very few components [8], and it is difficult to incorpo-
rate additional a priori information into such methods.
An alternative approach has used the Kalman filter. The
Kalman filter is a linear, recursive estimator which
yields optimal estimates for parameters associated with
a valid model [9,10]. Several methods, classified under
the term "adaptive filtering," have been developed to
permit the filter to produce accurate parameter esti-
mates in the presence of model errors [11-151. This pa-
per summarizes the development of an adaptive Kalman
filter for use in the mathematical analysis of overlapped
multicomponent chemical responses.

2. Theory

Kalman Filtering. The Kalman filter has received
some attention for the analysis of multicomponent
chemical responses [4,6,16,17]. Because most models re-
lating chemical responses to concentrations are linear,
application of the Kalman filter is straightforward. The
filter model is comprised of two equations. The system
model, which describes the time evolution of the desired
parameters, is, in state-space notation

X(k)=F(k,k - I)X(k - 1)+w(k) (2.1)

where X is a n X I column vector of state variables de-
scribing the chemical system, where F is an n X n matrix
describing how the states change with time, w is a vector
describing noise contributions to the system model, and
where k indicates time or some other independent vari-
able which meets the noise requirements given below.
For state-invariant systems, F reduces to the identity
matrix 1. Because multicomponent analysis is most often
performed under conditions where concentrations are
constant over the time frame involved, the case where X
is time-invariant is considered here.

The second equation describes the measurement pro-
cess by relating the measured response z(k), to the filter
states. For a single sensor, the measurement model is
given by

z(k) =HT(k)X(k)+v(k)

surement model is easily extended to systems with mul-
tiple sensors.

The two noise processes in the Kalman filter, w(k)
and v(k), are usually assumed to be independent, zero-
mean, white noise processes. The matrix Q(k), defined
as the covariance of the noise in the system model, is
taken as approximately zero for the time invariant sys-
tem discussed in this paper. The scalar quantity R(k) is
the variance of the noise in the measurement process.

The Potter-Schmidt square-root algorithm, one im-
plementation of the Kalman filter [18], is given in table
1. The details of this algorithm have been discussed
elsewhere [18,19]. Initial guesses for the filter states and
for the covariance matrix P are required to start the
filter. Estimates of X and P depend on k, and because
both are projected ahead of the data (in eqs 2.3 and 2.4)
by the filter, the notation (j I k) is used to indicate that
the estimate is made at pointj, based on data obtained up
through point k. The filter output consists of estimates
X, as well as P. In analytical chemistry, these are often
estimates of concentrations and of the error in the con-
centrations.

Table 1. Algorithm equations for the square root Kalman filter.

State estimate extrapolation
X(k Ik - 1)=-F(k Ik - 1).X(k - IIk - I)

Covariance square root extrapolation
S(k I k- 1)=F(k,k - 1)-(k - I| k -1).Fr(k,k - )

where

F(k,k - 1)=1

p=S.S

Kalman gain:
K(k)=aS(k Ik-l).G(k)

where

G(k)=ST(k Ik-1).H(k)

I/a=GT(k).G(k)+R(k)

d =(l +(a-R(k))..')-1

State estimate update:
X(k I k)=X(k I k - )+K(k)[z(k)-HT(k).X(k I k - i)]

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.2) Covariance square root update:
S(k I k)=S(k k - I)-ad.S(k k- I)G(k).GT (k) (2.10)

where HT(k) is a I Xn vector relating the response at
point k to the n states, and the scalar v(k) is the noise
contribution of the measurement process. For example,
in absorption spectrophotometry, z(k) is an absorbance
measurement at some wavelength k, and HT(k) is the
vector of absorption coefficients at that wavelength for
all chemical species included in the model. The mea-

Adaptive Kalman Filtering. Errors can occur in both of
the models used in the Kalman filter. Errors in the sys-
tem model arise if the system was taken as time-
invariant, but was actually composed of time-dependent
states. Errors in the measurement model arise from un-
derestimating the number of components involved in
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the state vector (which can be thought of as incorrectly
setting values in HT(k) to zero for one of the possible
elements in the state vector), or by use of inaccurate
values in Hr(k). Either type of error produces a sub-
optimal filter, in that the accuracy of the filter's esti-
mates are severely degraded. Many methods for com-
pensating these model errors make use of the filter
innovations sequence, v(k), defined as

essence, this amounts to "covering" the errors in the
model with noise, then estimating the noise variance.
The adaptive estimate of R at the kth point, when Q is
known, is

R (k)= 1/rm[X v(k -j)v(k -j)]

-H T(k)S(k I k- I)Sr(k Ik - I)H(k) (2.13)

v(k)=z((k)-H T (k)X(k I k-1). (2.11)

The innovations sequence can be used to construct a
measure of the optimality of the filter; a necessary and
sufficient condition for an optimal filter is that this se-
quence be a white noise process [10]. An optimal filter is
one that minimizes the mean square estimation error
E{(X-R)(X-X)TJ. A suboptimal filter may generate
results which show large estimation errors, or even a
divergence of the errors [11]. The aim of an adaptive
filter is to reduce or bound these errors by modifying, or
adapting, the models used in the Kalman filter to the real
data.

Several methods for controlling error divergence in
the filter have been reported [11-15]. Most involve
cases where Q is poorly known, the situation which
arises when the time-dependence of states is incorrectly
modeled. These include methods based on Bayesian esti-
mation and maximum likelihood estimation [14], cor-
relation methods [14], and covariance matching tech-
niques [14,15]. The last method has also been suggested
for use when Q is known, but R is unknown, the situ-
ation that arises when the number of components in the
state is underestimated, or when the measurement
model is otherwise incorrect. Because errors in the num-
ber of components and in the response factors used in
the measurement model are common in multicomponent
chemical analysis, covariance matching is used to de-
velop the filter discussed here.

The aim of covariance matching is to insure that the
residuals remain consistent with the theoretical covar-
iances. The covariance of the innovations sequence v(k)
is [14]

E[v(k) .v(k)] =HT(k)P(k |k - 1)H(k)+R (k), (2.12)

If the actual covariance of v(k) is much larger than the
covariance obtained from the Kalman filter, either Q or
R should be increased to prevent divergence. In either
case, this has the effect of increasing P(k I k -1), thus
bringing the actual covariance of v(k) closer to that
given in eq 2.12. This also has the effect of decreasing
the filter gain matrix, K, thereby "closing" the filter to
new data which would otherwise be incorrectly inter-
preted because of errors in the measurement model. In

where m is the width of an empirically chosen rectan-
gular smoothing window for the innovations sequence.
The smoothing operation improves the statistical signifi-
cance of the estimator for R(k), as it now depends on
many residuals.

Adaptive estimation of R allows accurate estimates
for the states to be obtained, even in the presence of
model errors, because only data for which an accurate
model is available are used in the filter. A new mea-
surement model can be constructed from the estimated
R (k), either by augmenting the Hr vector, or by cor-
recting any one of its existing elements; choice of cor-
rection or augmentation is arbitrary. For augmentation,
the equations

H,*+±(k)=b(k)[R(k+m)/2) '2 , for b(k)>O

H,'+ (k)=O, for b(k) <O

(2.14)

(2.15)

apply, where H ,(k) denotes an element which is in-
corporated in the H' vector. The term (k + m /2) arises
from the lag induced by averaging m of the squared
innovations. The factor b(k) is defined as

b(k)=1, for IYv(k -j+m/2)/m>0

b(k)=-1, for 5 v(k-j+m/2)m <0.
J1=

(2.16)

(2.17)

Equations 2.16 and 2.17 allow determination of the sign
of the model error by evaluating the average of the
innovations over the range for which R was calculated.
Equation 2.15 reflects the fact that the relation between
the chemical response and concentration, given by HT,
is generally positive.

For correction of the ith component of the vector H,
the expressions

H7 (k)=Hj(k)+b(k)[R (k +m/2)]"/2, for

(2.18)

Hf (k)=0, for Hf* (k)<0 (2.19)

apply instead of those given in eqs 2.14 and 2.15. In
either case, a valid measurement model can be generated
from the adaptive estimation of R.
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Two criteria must be met for this adaptive filter to be
useful in the mathematical analysis of multicomponent
responses. First, the model to be adaptively corrected
must already be correct for some of the values of k
where each of the known components of the model has
a measureable response. The second requirement is that
the adaptive correction must be performed on a single
component. For a single sensor, R is a scalar, and it is not
possible to distinguish the different portions belonging
to the different components. It is often feasible, how-
ever, to treat model errors as a single, unmodeled com-
ponent without affecting the accuracy of some or all of
the estimated quantities. Although it has been observed
that the adaptive estimation of R by covariance match-
ing is not a sufficient condition for obtaining an im-
proved measurement model [10], application of this ap-
proach in the mathematical analysis of multicomponent
responses has shown that significant model im-
provement generally occurs in practice [15,20].
Automation of the Adaptive Filter. The adaptive filter
requires an initial guess of the states and of their covar-
iances, just as in the ordinary filter. The adaptive esti-
mation of R affects the calculation of P, however, and
itis found that the diagonal elements of P decrease as R
decreases. Since the size of R is directly related to the
quality of the measurement model, this relation provides
a means by which the quality of the final filter estimates
can be judged. Once results are obtained with minimum
values for the diagonal elements of the estimated P, the
resulting corrected measurement model better describes
the experimental data available, judging from the deter-
ministic variances of fitting before and after the model
correction. Because the innovations are not white in the
presence of model error, the filter results are no longer
guaranteed to be optimal, but now depend on the initial
guess, Thus, the adaptive filter must be run several
times, with different initial guesses, X. and P., to locate
those best estimates. This process is easily automated,
however. Simplex optimization [21-23] can be used to
minimize the metric based on the diagonal elements of
the covariance matrix

Y= ,I log P1j (2.20)
/=1

as a function of the initial guesses input to the adaptive
filter. We have previously demonstrated that the min-
ima in the variance surface Y=f(X0 ,P0 ) correspond well
to the minima in an error surface defined by the quan-
tities (X-k) [24].

3. Application in Analytical Chemistry

Empirical Model Improvement. Empirical models
have been used with the Kalman filter to study the

chemical speciation of metal ions. One study [20] re-
ported the adaptive correction of the visible photo-
acoustic spectrum of Pr(EDTA)-, This spectrum was
obtained from data collected on solutions containing
both Pr"+ and Pr(EDTA)- species. Direct spectro-
scopic measurement of Pr(EDTA)- is not simple, A
similar approach was also used to obtain the spectrum of
(U0 2)3(OH)t5, another ion whose spectrum is difficult to
observe in the absence of related chemical species (25].
These studies demonstrate the ability of adaptive fil-
tering to correct for "chemical" errors in the mea-
surement model.

Two other studies used adaptive filtering to model the
electrochemical response of an equilibrium mixture of
Cd2 and Cd(NTA)- [20,26]. The adaptively modeled
component, attributed to the reduction of Cd' F after
dissociation of the Cd(NTA)- complex, was corrected
[26] from an approximate model based on digital simu-
lation (19]. The stability constant for the Cd(NTA)-
species was estimated from the concentrations obtained
from the filter. These studies illustrate the correction of
"theoretical" errors in the measurement model by adap-
tive filtering,

The adaptive filter has also been used to correct em-
pirical models for errors which occurred in data acquisi-
tion, An example is the correction of models used for the
resolution of overlapped electrochemical responses, Re-
solved peaks are generally needed to obtain estimates of
the component concentration. Small changes in experi-
mental conditions, occurring between the time when
data are obtained for use in empirical models and the
time when the mixtures are measured, change peak pos-
itions slightly. The resulting inaccuracy in the model
degrades the accuracy of the resolution obtained with
the Kalman filter. Adaptive filtering can correct for
these type of model errors, resulting in substantially im-
proved concentration estimates from multicomponent
electrochemical responses [20].
Removal of Interferences. In many multicomponent
analyses, substances which interfere with the chemical
analysis are often present. Frequently, these species
must be chemically separated, because they are not eas-
ily removed in the mathematical analysis of the data.
Adaptive estimation of these unknown components of
the model is an alternative approach. The feasibility of
this has been demonstrated [24] in a visible spec-
trophotometric analysis, where adaptive filtering was
used to quantify UO2?, Ni2", Co2" and picric acid in the
presence of the "unknown" contaminant Cu2". The er-
rors in estimating species concentrations were typically
less than 5%. An adaptive estimation of Co2 + in the
presence of "unknown" Cu2', Ni2 l, UO2' and picric
acid, where interferent species responses strongly over-
lap that for the species of interest, gave an estimation

406



error of 14% with a five-fold excess of interferent spe-
cies. This estimation's lower accuracy results from the
adaptive filter's response when its model restrictions are
not met, a situation which occurs here as a consequence
of the severe overlap of the analyte and interferent re-
sponses. Even though this result is of lower accuracy
than many of the others reported, it is still remarkable.
Unlike the other fitting, this result does not rely on the
use of a complete model. Using peak resolution based on
an ordinary filtering approach, with the same
incomplete measurement model, an error of 200-300%
is likely.

4. Conclusion

The automated, adaptive estimation of mea-
surement model covariance permits the application of
Kalman filtering in chemical systems where models are
poorly known, Although results obtained from the
adaptive filter are not guaranteed to be optimal by the-
ory, significant improvement in the accuracy of models
and estimated parameters is generally possible in prac-
tice.
Restrictions are fairly minor: parts of the model must
be known well enough to "open" the filter to the data,
and only one component of the model may be adap.
tively corrected at a time. Adaptive filtering should
yield results similar to those obtained from factor anal-
ysis using target transformation [27], but the adaptive
filter requires only one mixture response, while factor
analysis requires several.
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Interlaboratory Comparisons using common (reference) materials of known composition are an established means for
assessing overall measurement precision and accuracy. Intercomparisons based on common data sets are equally
important and informative, when one is dealing with complex chemical patterns or spectra requiring significant
numerical modeling and manipulation for component identification and quantification. Two case studies of
"Chemometric Intercomparison" using Simulation Test Data (STD) are presented, the one comprising STD vectors as
applied to nuclear spectrometry, and the other, STD data matrices as applied to aerosol source apportionment. Generic
information gained from these two exercises includes: a) the requisites for a successful STD intercomparison (including
the nature and preparation of the simulation test patterns); b) surprising degrees of bias and imprecision associated with
the data evaluation process, per se; e) the need for increased attention to implicit assumptions and adequate statements
of uncertainty; and d) the importance of STD beyond the Intercomparison-i.e., their value as a chemometric research
tool. Open research questions developed from the STD exercises are highlighted, especially the opportunity to explore
"Scientific Intuition" which is essential for the solution of the underdeternined, multicollinear inverse problems that
characterize modern Analytical Chemistry.

Key words: aerosol source apportionment; chemometric intercomparison; gamma-ray spectra; interlaboratory compari-
son; inverse problem; linear regression; multivariate data analysis; pattern recognition; reference materials; scientific
intuition; scientific judgment; simulation test data.

Introduction
Accuracy Assessment

Ideally, the results of chemical analyses performed by a
single laboratory using a well-defined Chemical Measure-
ment Process (CMP) should be characterized by reliable
measures of accuracy-i.e., imprecision and bias (or
bounds for bias). Meaningful statements of uncertainty
would then follow directly from these CMP Performance
Characteristics [l]l. Such is almost never the case, how-
ever. Once two or more laboratories perform measurements

About the Author: L.A. Currie is with the NBS Center
for Analytical Chemistry where he leads the atmospheric
chemistry group.

'Figures in brackets indicate literature references.

of the same material, interlaboratory errors become evident.
Collaborative tests, using common, homogeneous materi-
als, serve as one of the most powerful means for both expos-
ing and estimating the magnitude of this error component.

A familiar illustration of the outcome of interlaboratory
measurement is reproduced in figure 1 [2]. Here, following
the spirit of the "Youden Plot" [3], we show the results of
pairs of measurements by 10 laboratories of the determina-
tion of trace levels of vanadium in two Standard Reference
Materials (SRMs). A log transform has been applied to the
reported concentrations, in order to expose proportionate
errors among laboratories. As is generally the case, intralab-
oratory precision is comparable among laboratories, and
considerably better than the interlaboratory component.
Note that the line drawn in the figure is not fitted; its location
is fixed by the certified values of the SRMs (dashed box),
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Figure I-Interlaboratory results for vanadium (jigig) in two standard
reference materials. The plot shows proportionate interlaboratory errors
among nine participants using the same analytical method. The outlier
( derived from a second method, lacking internal replication. Dashed
region indicates the 'truth' [certified values),

and its slope is fixed at 450 (proportionate errors). SRMs or
samples having known composition carry a very important
attribute in interlaboratory tests, in that one can estimate
individual laboratory and CMP bias in addition to interlabo-
ratory variability. Also noteworthy is the "outlier" (marked
by the cross) which deviates from the line significantly more
than the other members of the interlaboratory set. Investiga-
tion of such outliers can sometimes yield important insight
into the causes of interlaboratory differences. (In the exam-
ple at hand the "outlier" resulted from a different analytical
method that lacked internal replication.)

Modern Analytical Chemistry:
Importance of Data Evaluation

Enormous advances in analytical methods have brought
great improvements in sensitivity, but at the same time,
significant complications in data interpretation. In little over
a decade, for example, "trace analysis" came to mean the
measurement of pg of an analyte rather than p.Lg [4]. Chem-
ical patterns or spectra are central to the interpretation of
complex mixtures, as are sophisticated analyte separation
techniques such as high resolution gas chromatography.
Practical demands on analysts also have accompanied the
increase in sensitivity; toxic chemicals, for example, are
regulated down to concentrations of 10-12 g/g. The magni-
tude of the problem can be appreciated from the fact that the
analyst in measuring a substance at a concentation of 10I1l
g/g in drinking water must contend with -'i0 5 compounds
which are more concentrated by at least a factor of 1000 [5].

When the Chemical Measurement Process involves sig-
nificant modeling or numerical operations in the data evalu-

ation or information extraction step, it becomes interesting
to consider the data analog of the SRM-the STD or Simu-
lation Test Data set. By providing participants with com-
mon, well-characterized sets of data which adequately sim-
ulate the observations of real experiments, one can directly
assess the imprecision and bias of the data evaluation proc-
ess, independent of confounding errors or unreliable as-
sumptions connected with the experimental parts of the
CMP. This, in turn, makes it possible to estimate the error
components associated purely with the experimental steps.
Simulaton Data, as opposed to Real Data, are beneficial
because "the truth is known"-i.e., the physical model
(functional relation) as well as the random error model can
be strictly controlled.

One might expect that little may be learned from such
"Chemometric Intercomparisons" since numerical opera-
tions can be reproduced quite rigorously from laboratory to
laboratory; but such is not the case. An illustration involving
Real Data comes from the reevaluation (auditing) of several
sets of chromatographic data from Love Canal soil and
sediment samples for toxic organic compounds. As shown
in table 1, compounds identified in common between ana-
lytical and auditing labs represented only about 60% of the
total identifications, where the discrepancy was due strictly
to differences in data evaluation [6].

Table 1. Real data-Love Canal soil and sediment samples: Compound
identification by GC/MS. (Data Tape Auditing).

Same Compounds TotaI Compounds
Lab Code Identified Identified

A 20 32
B 13 24
C 22 51
D 13 20
E 63 104

EPA 14 20
[intersection] [union]

A myriad of hidden assumptions, and even algorithm
changes exist in many of the pattern recognition and spec-
trum deconvolution schemes currently in vogue. Since the
actual number of degrees of freedom is generally negative-
i.e., the chemical model is never really known-numerical
solutions often require subtle injections of "scientific intu-
ition" or "scientific judgment." The importance of these
issues will be illustrated by two case studies, actual inter-
comparisons among expert laboratories of the data evalua-
tion phases in Gamma Ray Spectrometry and trace element
Aerosol Source Apportionment, respectively. The STD in
the first exercise was a data vector (nuclear spectrum); in the
second, it was a data matrix (set of samples each having a
trace element "spectrum"). The author was a participant in
the first intercomparison and instigator of the second.
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Figure 2-The Chemical Measure-
ment Process (CMP) which oper-
ates within the laboratory, and the
Analytical Measurement Process
(AMP) which operates within the
larger "Enviromrental" (or other
external) system. (See text for ex-
planation of symbols.)

Chemnometric Intercomparison
Structure of the Measurement Process

In order to introduce some notation and to put the STD
Intercomparison (IC) in perspective, it is useful to consider
the structure of the Chemical and Analytical Measurement
Processes (CMP, AMP) [4]. These two processes, which
symbolize the environment in which Analytical Chemistry
operates, are shown in figure 2. As indicated in the upper
portion of the figure, the CMP represents the laboratory
process, where a sample of composition x is operated on
(chemically) to produce a signal y, which in turn is operated
on (mathematically) to generate an estimate of x and an
uncertainty interval. The chemometric challenge thus is to
obtain a chemically-meaningful and mathematically-
consistent solution to the inverse problem as represented by
eq 1. Control of the overall measurement process is
achieved by injection of an SRM as a surrogate sample;
control of the data evaluation process is achieved by injec-
tion of an STD as a surrogate signal.

Except in limited laboratory investigations, the real object
of Analytical Chemistry is to provide information on an

external attribute (here represented by 0) through composi-
tional analysis. The lower portion of figure 2 describes this
broader context, where an external process (here labeled
"environmental") operates an 0 to produce the sample of
composition x. Following this, the imbedded CMP yields
the compositional estimate xi The final step, once again, is
the solution of a (generally more difficult) inverse problem
eq 2. STD injection in the AMP case means provision of a
surrogate sample whose estimated compositional pattern
corresponds to eq 2.

A fundamental difference exists between the CMP and
the AMP with respect to the chemometric task. That is, in
the laboratory, in principle, we can isolate ever-decreasing
numbers of analytes (chemical fractions or instrumental sig-
natures), in many cases leaving just a single term (compo-
nent) in eq 1. For the AMP and the corresponding environ-
mental, geochemical, or biochemical problem, for example,
Nature is seldom so cooperative. That is, real samples x are
determined by the external process over which we have
limited control (beyond the sampling design), so eq 2 nearly
always exhibits a multicomponent, multivariate structure.
Unique solutions are generally impossible in the absence of
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scientific knowledge concerning the external ("environ-
mental") system.

The following STD intercomparison consists of univari-
ate data (y) from a simulated CMP. The second example
consists of multivariate data (i) from a simulated AMP.
Both ICs took place because of analytical measurement
problems having major public import-the first related to
accurate monitoring of radioactivity; the second, to accurate
apportionment of atmospheric pollutants.

STD Vector-
IAEA Intercomparison

of Gamma Ray Spectrum Analyses

In connection with their Analytical Quality Control Ser-
vices program, the International Atomic Energy Agency
(IAEA) undertook in 1976-77 a broad interlaboratory data
evaluation exercise involving computer-simulated high res-
olution Ge(Li) gamma ray spectra such as might arise in
contemporary neutron activation analysis [7]. The purpose
of the intercomparison was both to assess the state of the
-y-spectrum evaluation art and to provide data sets of known
structure to assist in the improvement of that "art" (or sci-
ence?). To my knowledge this was the first numerical
chemometric intercomparison of such scope, using STD
vectors. The organization and structure of the IAEA exer-
cise are summarized in table 2.

Several features of the IAEA intercomparison were
analogous to those involving chemical measurement inter-
comparisons with reference materials. First, the STD were
well-characterized, with y-rays of known identity (energy)
and amplitude. The "samples" were absolutely homogenous
(identical numerical data to all participants), and they simu-
lated observations from actual laboratory samples. SRM

intercomparison organizers strive to also meet such condi-
tions, but of course they can only approach the homogeneity
and exact composition knowledge found with STD. The
IAEA data sets also had known random error distributions
(Poisson), a situation which is actually approached in many
nuclear experiments, but which can never be guaranteed.
Realism was preserved in the shapes of the y-peaks, in that
they were derived from high precision observations with
Ge(Li) spectrometers. The fact that these shapes were not
analytic was one of the more discriminating elements of the
IC, particularly for the resolution of doublets, where alter-
native analytic or empirical peak shape functions had to be
employed [8]. (Each peak was approximately Gaussian near
the top but decidely asymmetric near its base.) Referring
again to table 2, we can see that important planning took
place, over a three-year period, resulting in four categories
of data designed to provide initial "calibration," and to test
detection, accuracy and precision in quantification, and
doublet resolution. The importance of the pilot study cannot
be overstated; development of realistic STD of sufficient but
not excessive complexity does not come about without care-
ful initial trials and iteration.

Detailed results for the IC may be found in [7]. Some of
the highlights follow. Figure 3, for example, shows the
spectrum (pattern) offered the participants, in digital and
analog form, to address the problem of unknown peak detec-
tion. Participants knew only the calibration peak shape (as
a function of "energy" or channel number) from the Refer-
ence Spectrum #100 (not shown), plus the facts that the
unknown peaks were singlets and that random errors were
Poisson. The numbers and locations of the trace peaks were
to be determined. (The steep rise in the baseline near the
center of the spectrum was inserted by the IAEA to simulate
a Compton Edge.) The inset shown in figure 3 gives some

Table 2. Structure of the IAEA Gamma-Ray STD intercomparison.

Objectives

* To permit each participant to assess the accuracy of his data evaluation process.
* To determine the quality of alternative gamma-ray spectrum evaluation methods as applied in representative laboratories.

Evolution

* 1973: Proposed at Consultants Meeting.
* 1975-6: Pilot Study involving a small number of experts.
* 1976-7: Full IC, involving 163 labs in 34 member states.
* Currently: Simulation data offered as continuing pan of the IAEA Analytical Quality Control Service.

Data Sets

* Reference Spectrum: 20 high-precision peaks spanning 2000 channels.
* Detection Spectrum: 22 subliminal peaks, whose number and locations were unknown to participants; detection criteria (a-, P-errors) were left

to individual judgment.
* Precision Spectra: 6 replicate spectra having 20 known plus 2 unknown, large singlet peaks (Poisson statistics).
* Resolution Spectrum: 9 doublets of unknown location and relative amplitude.
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Figure 3-IAEA Gamma-Ray STD;
"Detection" Spectnum. Inset shows
discrete data for a peak detected
by about 50% of the participants.

Adapted from [7.]

idea of the discreteness and scatter of the digital data; this

"real" peak was detected by about half of the participants.

The results of this intercomparison were somewhat sur-

prising. Though most of the 200-odd participants submitted
results, no one correctly identified all 22 subliminal peaks.

Some six classes of methods, including one labeled

"unclassified," were employed, including: the relative max-

imum, first and second derivatives, cross correlation, and

"visual". It is interesting that the last gave the best result;

one "trained eye," using analog data only, identified 19

peaks correctly, with no false positives! Understanding the

process (Scientific Intuition) employed by this expert is

certainly one of the more intriguing aspects of this work. It

seems hardly pure chance, for only 5 out of 212 participants

correctly reported this many (19) peaks; yet 2 of the 5 were

"visual." (For comparison, the visual technique was em-

ployed by about 5% of the participants.) The second deriva-

tive and cross correlation techniques were close behind,

with up to 18 and 17 peaks correctly identified (w/o false
positives), respectively. Performance was quite diverse for
all methods, however: correct identifications ranged from 2

to 19 peaks, and false positives ranged from 0 to 23. Appar-

ently, Detection Limits were rarely estimated, for this issue

was not even mentioned in [7]. Histograms for the three

"best" methods are shown in figure 4. Though all three

exhibit considerable dispersion, it is clear that the visual

technique gave the best single result as well as the smallest

fraction of false positives. 2

The replications (Spectra 300-5) and resolution (Spec-
trum 400) exercises also indicated often inadequate and

2 Scientific Intuition, as employed by experts, is alleged to be much more
disperse that "rule-based" methods [9]. In the light of figure 4, it is not
obvious that this presumption is true, for even the "objective" numerical
techniques employed by different laboratories operating on exactly the

same data gave broad distributions.

SCIENTIFIC INTUITION
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Figure 4-Frequency distribution of results for peak detection according
to the type of method used. The upper boundary of each histogram
represents the data for all results regardless of the number of spurious

peaks reported; the upper boundary of the shaded region is for those

results which were accompanied by zero spurious peaks.
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widely varying performance. The majority of the results
submitted contained quite inaccurate or no estimates of un-
certainty for large singlet peaks, even though the random
error distribution was known; and less than 25% of the
participants even submitted results for the most difficult
doublet resolution case.

The IAEA Simulation Data Sets have been viewed of
sufficient importance that they have become an integral part
of the Intercomparison Programme of the Analytical Quality
Control Service of that organization. The most recent offer-
ing was issued in December 1984 [10] where STD Dray
spectra are included alongside isotopic and trace element
Intercomparison and Certified Reference Materials of im-
portance in many areas of nuclear and environmental analy-
sis.
STD Matrix-NBS-EPA Intercomparison of Source Ap-
portionment Techniques. The second case study com-
prises STD in the form of two-dimensional data matrices,
simulating sets of atmospheric aerosol samples each ana-
lyzed for up to 20 chemical species [11]. The stimulus for
this exercise, which is believed to be the first STD intercom-
parison involving Data Matrices, was the great potential but
great difficulty of identifying multiple pollutant sources via
their "chemical fingerprints" as preserved in ambient parti-
cles, (A vivid illustration adjoins [11], where one finds
discord even in assigning names to pollutant factors deduced
from elemental patterns observed in actual measurements of
[Houston] aerosol samples [12].) As noted at the beginning
of this section, this type of problem is characteristic of the
AMP, where superposition of multiple components is intrin-
sic to the nature of the system, so chemical manipulation
cannot simplify the structure of eq (2).

We designed the STD in coordination with (nearly) all of
the "Receptor Modeling" (source apportionment) experts in
the U.S. with the object of providing a few realistic data
matrices covering a range of problems. The overall structure
of the study is given in table 3. The data matrix x is given
by the superposition of source contributions (MO)j, where
each source has a characteristic chemical pattern or profile
Mi and a temporal (or spatial) intensity pattern Oj Three
classes of error typify such measurements, as indicated in
the table. A significant task involved building the database
of source profiles and error terms. Unlike the y-ray calibra-
tion profiles (peak shapes), the aerosol source profiles were
not even approximately analytic (fig. 5, top); reliable empir-
ical field data had to be sought and evaluated.

When generating data matrix STDs, one must pay atten-
tion to a major new element of complexity which is absent
from data vector STDs. That is, unless the simulation data
are to be no more than arbitrary superpositions of sources
with added random errors, it is essential to generate the
source intensity patterns by means of suitable source emis-
sion locations (emissions inventory map) plus realistic mix-
ing and transport to the receptor (sampling) site(s). This step
is intrinsic to the nature of the data matrix; it underlies its
multivariate character, and it highlights information (source
map, meteorological patterns...) external to the data
matrix, per se, which may be crucial for a successful data
analysis. The source map used for the simplest of our three
data sets is shown in the lower portion of figure 5. Stochas-
tic source impacts at the receptor R were generated by
bringing together the source map, emissions intensities and
operating schedules, actual meteorological data (from St.
Louis, September 1976), and the 'RAM' atmospheric dis-

Table 3. Structure of the source apportionment simulation test data.

Generating equation

P

ii,=L [M-ea,+el]Hynl +eu

where:

p = number of active sources (p - 13)
t=sampling period (l-tG 40)

x,="obscrved" concentration of species i for period t (T1_i6,ANI20)
j, =true intensity (at receptor) of source j(lqjlp)

M1 }='observed' source profile matrix (element j1)
ei =random niaesurenlent errors, independent and normally distributed
e,1 1=systenotic source profile errors, independent and normally distributed (systematic because fixed over the 40 sampling periods)
c=ranhdom source profile variation errors, independent and log-normally distributed

Data set characteristics

Set l: p=9 (including one unknown source)* enrors=el, em: City Plan No. I (fig. 5)
Set 11: p= I (all known); errors =eI,e,,; City Plan No. 2
Set III: p = 13 (all known); errors=ei, em. eH; City Plan No. 2

-For DOat Set I, participants were told only that pl-3.
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Figure 5-Source Apportionment
STD (Data Set 1), Upper portion
shows one column (transposed) of
the source signature matrix M, and
one row of the source intensity
matrix 0-both for source-2, IN-
CINERATOR. Mi2 has a discrete
pattern (individual chemical ele-
ments), the most discriminating el-
ements of which are marked by cir-
cles; the dashed line indicates
which elements exceed 1% of the
(Incinerator) particle mass. 02, has
a continuous underlying structure
(time series) which is sampled at
40 equidistant points; the dashed
line indicates samples for which
the Incinerator source contributes
more than 5% of the average aero-
sol mass.

The lower portion of the figure
displays the aerosol source emds-
sion map.

persion model [13]. Illustrations of a source (chemical) sig-

nature [M1 ] and a source intensity time series [0jI] are given

in the upper portion of the figure. Note that M 4j by its nature

(individual elements) is discrete, whereas %j, is a sampled

continous time series (intensity variations).
The objective of spanning the range of difficulty was

achieved. Our initial "pilot" data matrix was so transparent
that one of our participant-advisors was able to identify
sources by inspection. Caused in part by the narrowness of

the RAM model plumes, this was remedied in the final STD
intercomparison data sets, one of which was so difficult

(though realistic) that none of the participants submitted
results. Results for the data set of intermediate difficulty
(Set 11) were generated by three laboratories, all using re-
gression techniques. Two of these were identical: "effective
variance" weighted least squares (WLS), which took into

account errors in the observed chemical concentrations as
well as those in the source profiles. The third method was
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ridge regression, of interest because of the high degree of
collinearity among the 13 sources. For the most part, the
three sets of resuits were self consistent, and within a factor
of 2 of the truth. For four of the sources, however, widely
discrepant results were reported-a surprising outcome, for
similar or identical numerical methods were applied to iden-
tcal numerical data.

An exploratory graphical analysis of the results from the
two laboratories using weighted least squares (WLS-1, -2)
is shown in figure 6. This approach, which was inspired by
the "Youden Diagram" for bi-rmaterial inrercomparisons,
a4DwR us :o spot 'ouliiers"' from the line of concordance.
(As with the line drawn for .:e Youden Ll ot of figure 1. the
45° line in figure 6 was drawn independent of the data-i.e.,
it was in no way "fitted".) Exact results would fall at the
origin (0. 0), and equivalent data reduction bv the two
laboratories would prodLce results lying or: the line. Disper-
sion along the line derives from random enrors bLiit into the
common data set and systematic errors connected with the
common numerical model (WLS). Two of the sources (Ag,
0,) were well below their detection limits, and will not be
further discussed here. The three outlices (Cf point 'x' in
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Figure 7-Absolute errors ror each or the 13 source estimates for Data Set
Ii, byWLS-1 ix), WLS-2(+) iand Ridge Regression (i), plotted as a
function of the reported stucdard errerss. (On the average about 213 of the
points for a correct method should fall below the diagonat.)
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Figure 6-"Scientific Judgment" Plot. Correlation (Youden-type) Dia-
gram showing data evaluation resuts of laboraturry-2 vs laboslery-l
operatine on the same data set (iI) using the same method of numerical
analysis (weighted Least Squares). Deviations from the non-fitted tine
of concordance imply chemometric 'operator erior" (SJ).

[Source Codes: Steel-A (8,), Steel-B (S2), Oil-A (of Oil-B (02),
Incinerator (1), Class Nffr (G), Coal-A (Cl), Coal-B (C2), Aggregate

(Ag), Basalt (B), Soil (So), Auto (v). Wood Smoke (W)j

Figure I-G , W. and Cl-deserve oar attmntior. however.
As will be shown rin the next section, shby may be attributed
to what the laboratories involved labeled "Scientific Judg-
ment." Discovering this factor, and understanding its na-
tzre, was one of the unexpected but important outcomes of
the experiment.

Another major difference and inadequacy among the lab-
oratories relates to the uncertainties (i.e., SEs) reported. All
did report standard errors, but an examination of the actual
deviations from the truth for the 13 estimates from each lab
was illuminating. For one of the three, all 13 (absolute)
deviations exceeded the SEs by factors of 2 to 10, whereas
for another lab the deviations were all straller than. the SEs
by fattes of ahctfl 1.6 to 30. None cf the Abs -enrtzd
lxLnd5 for sylemnatic or mozel m LUI . (See fi . 7..

Because of Ile rnultvariat- cuanacte-cf the sorsceappor-
tionment data sets, both simple linear regression and factor
analysis (FA) techniques could be applied. The regression
methods ("Chemical Mass Balance", i.e., WLS) were the
more precise, when model information and source profiles
were available. When the model was not fully known and if
the number of interfering components was not too great,
factor analysis or certain hybrid methods appeared to yield
more acceptable results. Such was the case for Data Set I
%vhi'ch had 9 sourzes, one of which was unknown to the
participants. In Set 11, however, with 13 known sources
having a significant degree of multicollinearity, factor anal-
ysis was able to discern but four sources.
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Subsequent Developments:
STD as a Basis for

Chemometrics Research
A principal conclusion from the foregoing exercises is

that the data evaluation step of multicomponent and multidi-

mensional chemical (nuclear) analysis is not free from prob-

lems of imprecision and bias. Scientific Intuition (SI) and

Scientific Judgment (SJ), often manifest as subtle assump-
tions, can provide important guidance for pattern recogni-
tion, or it can be somewhat misleading. Collaborative STD
exercises appear to be an effective means for exposing and

perhaps better understanding these "expert" techniques.
The limitations found in the STD intercomparisons-

e.g. , limitations in accuracy, in model formulation, in un-
certainty estimation, in detection, and in utilizing external
information (non-negativity, meteorological data,. ..)-sug-
gest that an important part of experimental inaccuracy, as
seen for example in SRM intercomparisons, may lie with the

data evaluation process. Attention to this matter offers the
possibility of improved overall performance, either through
the reduction of needless data evaluation error, or through
improved measurement process design to reduce model
complexity and multicollinearity.

Both intercomparison exercises exhibited an afterlife. As
noted earlier, the Gamma-Ray STD have become a routine

part of the IAEA's Analytical Quality Control Service. The
source apportionment STD have spontaneously evolved into
a research data set for chemical element pattern recognition
method development. Initially, new research was under-
taken by participants who wished to try improved versions
of the their regression or FA methods in light of the IC
results and knowledge of the truth. More recently, requests
for the data tape have come from others for the testing and
development of multivariate pattern recognition methods
quite apart from aerosol source apportionment. A sampling
of post-intercomparison research with the STD data ma-
trices follows:

Investigator

M-D. Cheng,
P. Hopke*

L. Currie*
1. Frank, B.

Kowalski
G. Gordon*
R. Henry
P. Lioy
D. Lowenthal

et al.
T. Pace

Topic

Linear Programming

Detection, Design, Model Error
Partial Least Squares

Student Instruction, QA
Composite Components (SVD)
Student Research
Special Error Propagation

(Cov)
Sensitivity Analysis

Ref.

[14]

Table 4 includes results from some of these more recent

investigations, together with an examination of the
"outliers" and Scientific Judgment exposed in the correla-
don diagram (fig. 6). Table 4A lists results for the best prior
results (TTFA) for Data Set I and the new application of
Partial Least Squares (PLS). Though PLS results carry no
uncertainty estimates, they are clearly closer to the truth.
The two deceptions, as well as all of the source profiles,
however, were known for carrying out the PLS analysis.

Regarding TTFA and other prior analysis, the first decep-
tion-the linear combination of AUTO and SOIL to repre-
sent the ROAD component, including re-entrained dust-
was missed by all participants; the presence of a large,
additional component (SANDBLAST) was discovered by
all.'

Table 4A. Source apportionment STD (Data Set 1).

Truth
Source [tg/rn3 ] PLSI TTFA 2 A/SE2

Steel (c) 0.05 0,07 --- ?

Oil (c) 2.0 2.5 2.1±1.0 +0.1
Incinerator 1.3 1.4 1.9±0.14 +4.3
Coal-B 2.4 1.9 2.2±0.73 -0.3
"Crustal" (cl 12.7 13.0 12.5±0.75 -0.3
*Road 7.1 7.2 4.0 ±0.09 -34.4
Wood 3.3 3.4 4.3±0.52 +1.9

*Sandblast 4.2 4.1 4. I±0.20 -0.5
(Total) (+2%) (-6%)

(c) Composite components for multicollinearity reduction.
*Two Deceptions: Road (Soil+Auto); Sandblast (fUnk).

t. Frank and B. Kowalski [15] 2pf Hopke [11T.

Table 414. Source apportionment STD (Data Set I)-analysis of outliers.

Incinerator Glass Coal-A Wood
(I) (G) (Cd (W)

Truth
(ALg m3 ) 1.81 0.46 3.7 0.94
[N] [38] [36] [32] [40]__________ _____________

WLS-15

[N]

[15] WLS-2
2

[N]

1.5±0.05
[27]

1.5±0.43
[26]

WLS-33 151±0.14
[16] [NV] [31]

[171 LI4 1.60

0.16±0.03 4.3±0.3 0.5±0.1
[3] [II] [11]

0.28±0.11 5.3±t1.4 0.91±0.16
[8] [22] [26]

0.43±0.44 4.3±2.2 1.33±0.24
[231 [29] [36]

0.48 0.44 0.45

N=Number of actual or assumed non-zero occurrences of the source in
question among the 40 aerosol samples.

tHeisler, Slah [II].
2Cooper. DeCesar [11].

3Lowenthal, Hanumraa, Rahn, Currie [17].
4Cheng, Hopke [14].
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The outliers (G, Ct, W) from data Set 11 are examined in
table 4B for new and earlier analyses. The INCINERATOR
results, which fell directly on the line of concordance (fig.
6), are included for comparison. It is interesting that Ll
linear programming gave significantly improved results for
sources I and G, but much poorer results for the other two
sources. A conjecture, which bears investigation, is that in
the absence of experimental blunders, least absolute residu-
als carry too high a penalty in highly collinear problems. We
gain some understanding of Scientific Judgment (SJ) from
the three WLS results. It is apparent that the exercise of SJ
in deleting rare components from the model is operator-
dependent and generates important differences in overall
results. This is an issue deserving additional research, the
outcome of which could be the transformation of Ad-Hoc SI
into scientifically-based SL4

Conclusion
For modern Analytical Chemistry, where chemometric

approaches are mandatory to resolve complex signals from
multianalyte mixtures, Simulation Test Data serve two im-
portant purposes: 1) The assessment of interlaboratory data-
evaluation precision and accuracy; and 2) the exposure of SI
and SJ plus the generation of more powerful methods of
combining scientific knowledge with advanced techniques
of data analysis. The need for this is critical, because in
principle nearly all of our multicomponent "inverse" prob-
lems are underdetermined-i.e., solutions cannot obtain in
the absence of explicit (or hidden) assumptions. We con-
clude with a summary of recommendations for the prepara-
tion of STD data sets, and open research questions which
could be fruitfully addressed by chemometricians (table 5).

Table 5. STD exercises,

Observations and Recommendations

* Benefits: Controlled model, errors; Truth is known.
* Prerequisites: defined objectives, 'lab' population, plan, input datamodel.
* Pilot study advisable.
* Investigate 'surprises-unexpected accuracy, discrepancies.
* Blind; anonymous; don't score; discourage premature communication.
* Deceptions: mimic reality; be not too obvious.

Some Open Questions

* Adequate treatment of uncertainty-esp. bias (bounds).
* Further understanding of 'SI' and 'SI'-who are the experts?
* Utilization of external information: phenomena, data, "fuzzy" S& partial knowledge, constraints,...
* Treatment of the 'total' problem (simultaneous estimation over the entire data matrix), mdn. errors in y' and 'A'.
* Solution and uncertainties when the linear model doesn't apply (physical-chemical and mathematical strategies; eg, atmospheric transformation).

Special recognition should be given to the designers of the
two STD exercises discussed, as well as to the participants
and the scientists who are using the STD for continued basic
research in chemometrics. R.M. Parr (IAEA - STD) and
R.W. Gerlach (Source Apportionment - STD) made essen-
tial contributions. Others deserving special recognition are
listed as authors of references [7, 11], and [14 - 18].

3STD deceptions-i.e., realistic complications-are, of course. in order
for all but the simplest of exercises. Though organizers should attempt to
span the range of difficulty occurring with real data sets, they should not
do so in too obvious or regular a manner. Informing the IAEA y-ray STD
participants, for example, that the multiplets had just 2 components was
already a considerable simplification, but the regular spacing (1, 3, 10
channels) and relative amplitude (1, 3, 10) of the doublet members was
unnatural and could encourage a certain amount of guess work on the part
of the participants.

4The paradigm proposed here classifies experts' decisions or assump-
tioas as "intuitive" (SI) or "judgmental" (SJ) depending on whether they are
based on sound (though possibly subliminal) reasoning or ad hoc judg-
nments, respectively. These asymptotic classes may each yield correct or
incorrect results, just as target and contaminating populations may each
produce outliers or inliers. though with differing probabilities.

References
[1] Eisenhart, C., Science 160 (1968) 1201.
[2] Currie, L.A., and JRi Devoe, Chapt 3 in JR. DeVoe, Ed. VALI-

DATION OF THE MEASUREMENT PROCESS, Amer Chem
Soc Sympos Ser #63 (1977).

[3] Youden, W.I., Anal Chem 32 [13] (1960) 23A.
[4] Currie. L.A., Pure & App! Chem, 54 (1982) 715.
[5] Lamuparski, L.L., and T.J. Nestrick, Anal Chem, 52 (1980) 2045.
[6] Kirchhoff, W.H., Edit, NBSIR 82-2511 (1982).
[7] Parr, R.M.; H. Houtermans, and K. Schaerf in COMPUTERS IN

ACTIVATION ANALYSIS AND GAMMA-RAY SPEC-
TROSCOPY, US Dept of Energy, CONF-780421 (1979) 544.
(See also Zagyvai, P.; R.M. Parr and L.G. Nagy, J. Radioanal.
Nucl. Chem. 89 589 (1985).)

[8] Ritter, G.L., and L.A. Currie, ibid, p. 39.
[9] Nalimov, V.V., FACES OF SCIENCE, ISI Press (Philadelphia,

1981).
[10] IAEA Analytical Quality Control Service Program, LAB/243 (1984).
[11] Curie, L.A.; R.W. Gerlach, C.W. Lewis, W.D. Balfour, L.A.

Cooper, S.L. Datuner. R.T. DeCesar, G.E. Gordon, S.L. Heisler,
P.K. Hopke, J.J. Shah, G.D. Thurston, and H.J. Williamson,
Atm Environ 18 (1984) 1517.

[12] Dzubay, T.G.; R.K. Stevens, W.D. Balfour, H.J. Williamson, J.A.
Cooper, I.E. Core, R.T. DeCesar, E.R. Crutcher, S.L. Datnner,

418



B.L. Davis, SL. Heisler, J.J. Shah, PI'K. Hopke, and D.L.
Johnson, Atm Environ 18 (1984) 1555.

[13] Novak, J.H., and D.B. Turner, J. Air Ponut. Control Assoc., 26
(1976) 570.

[14] Cheng, M-D., and P.K, Hopke, An Intercomparison of Linear Pro-
gramming Procedures for Aerosol Mass Apportionment, Air Pol-
lution Control Association Paper No. 85-21.8 (1985),

[15] Frank, I.E._ and .R. Kowalski, Statistical Receptor Models Solved
by Partial Least Squares, ACS Diva of Environ Chem Sympos

DISCUSSION
of the L.A. Currie paper, The Limitations of
Models and Measurements as Revealed Through
Chemometric Intercomparison

Leon Jay Gleser
Department of Statistics
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The construction and use of Simulation Test Data (STD)
to help evaluate alternative chemometric methodologies is a
highly welcome contribution to the field. Dr. Currie, and the
agencies and colleagues whom he credits, are to be congrat-
ulated for an approach which has the potential to promote
improvements in the art of quantitative chemical analysis.

What follows is a brief discussion of some previous use
of standard data sets in statistical research, along with some
warnings about the possible pitfalls connected with the use
of such approaches. In particular, the parallel that Dr. Currie
draws between the use of standard data sets and interlabora-
tory comparisons using common reference materials cannot
be pushed too far. Many interacting factors lead to bias in
modeling and analysis of complex data sets; the contribu-
tions of these factors would be confounded in typical inter-
laboratory comparison designs. One factor, scientific judg-
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ment, cannot even be identified in standard frequentist
reports of statistical data analysis. This suggests that subjec-
tive scientific judgments need to be given more explicit
mention in reports of statistical analyses, perhaps through
the use of the Bayesian approach to inference.

To make standard data sets more closely resemble real-
world data, the use of the "bootstrap" is suggested. The
"bootstrap" can also help in providing the estimates of statis-
tical precision that Dr. Currie notes were lacking in the two
studies conducted to date.

Standard Data Sets in Statistics

Statisticians have long recognized the usefulness of hav-
ing common data sets on which new methodologies can be
tried out, and their relative merits assessed. For example,
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new methodologies for classification and discriminant anal-
ysis are often applied to the iris data of E. Anderson [11',
which was featured in a famous paper by R. A. Fisher [2].
(To Anderson's undoubted frustration, these data are usu-
ally referred to as "Fisher's iris data.")

Another famous data set is Longley's [3] econometric
linear regression data. In these data, the independent vari-
ables in the regression are highly interrelated (multicolin-
ear). Longley ran the data through several computer soft-
ware packages designed to do least squares analysis. In
theory, all of these programs solve the same set of linear
equations to estimate the regression slopes. However, the
solutions obtained by the various algorithms differed, in
some cases even by sign! What had happened was that the
multicollinearity in the data made the answers obtained
highly sensitive to roundoff and truncation of the data, and
the algorithms differed by where and by how much roundoffs

were done. Longley's paper had the very beneficial conse-
quence that software developers now pay careful attention to
numerical analysis in designing statistical algorithms. Fur-
ther, it stimulated study of the resistance of statistical
methodology to data perturbations (robustness).

However, Longley's paper (and particularly his data) may
also have had a less salutory effect on software develop-
ment. Software developers now know that consumers will
test out their programs on Longley's data. [See, for exam-
ple, Lachenbruch's review [4] of STAN, Version 11.0 by
David Allen.] This may lead them to overcompensate for
multicollinearity problems, and consequently overlook or
neglect other potential problems or sacrifice desirable fea-
tures to include subroutines necessary to accurately process
multicollinear data.

This last comment points out a real danger in the use of
standard data sets, namely that their existence can bias the
direction which development of methodology and software
takes. The best guard against such bias is the creation of
standard data sets of many types.

An artificial standard data set (simulated according to a
known model for the distribution of errors) can lead to a
particularly serious bias. Chemometricians who know that
their work will be evaluated by such data sets will tend to
use a methodology which is known to be efficient for the
given statistical model. Such a methodology, however, may
not do well against real data, for which the given statistical
model is not necessarily a good approximation. Alterna-
tively, chemometricians may object to evaluations on the
basis of such data, arguing (with considerable merit) that
such data do not reflect their practical experience.

The reason, of course, for using artificial data is that the
"truth" or "signal" underlying the "noise" (error) in the data
is known. This allows us to separate bias (lack of validity)
from precision (reliability, repeatability). In this respect

there is an obvious parallel, which Dr. Currie correctly
points out, with the use of common reference materials in
interlaboratory comparisons. The goal of such studies is to
eliminate bias (which is usually reflected in interlaboratory
variation), and to estimate precision (intralaboratory varia-
tion). However, whereas common reference materials are
"real" (although they may be ideal examples of materials
analyzed in practice), this is not clearly the case with data
simulated from specified statistical populations (e.g., Gaus-
sian populations). Real populations may have "heavy tails"
and/or other funny features (e.g., several modes) which are
not modeled by standard distributions.

One obvious solution is to vary the distributional assump-
tions which generate the errors in artificial data. This ap-
proach is widely used in statistics to study the robustness
properties of statistical methodologies.

Another possible solution is to use the ideas underlying
the "bootstrap" (Efron [5], Diaconis and Efron [6], Freed-
man and Peters [7,8]) to simulate data which have "real
world" error distributions.

The Bootstrap

In using the "bootstrap," we start by assuming that the
observed data yi are related to unknown parameters 6 and
errors ei by a model

yi =G(Oen), i = 1,2,...,n, (1)

where G(-,') is known. Given a value for 6 (which may be
a vector), we assume that the eq (1) can be inverted to obtain
the errors ei. That is,

e, =Hi(0,y 1 ,. .. y,,), i=l.. (2)

Given "real" data yI' Y2. .Y,,. with n sufficiently large to
give us some hope of accurately estimating 6 by

w =h yls (smeY d),

we now construct the residuals (estimated errors)

i=l1,2,...,n. (3)

The resulting finite population {( ,...,J} of residuals is the
statistical population from which we can randomly sample
new errors ei, i = 1,2,...,,n, to create standard data sets

yi =G (0*,Ze), i =1,2,...,m I

'Figures in brackets indicate literature references. where 0* can be chosen to have any desired value.
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The data sets so simulated are not entirely "real." The
model (I) relating observations yi to errors e, must still be
specified, and need not be correct. However, such models
can be specified (and criticized) taking account of chemical
and physical theory, without also imposing statistical as-
sumptions about distributions of errors. As such, these mod-
els are "prestatistical."

A population of residuals &i that is too small can misrep-
resent statistical variation. Thus, attempts should be made to
constantly enlarge this population with new residuals ob-
tained from real data obtained in contexts described by the
model (1). Since the "bootstrap" is a fairly recent statistical
development, new insights into problems and advantages
connected with the method are constantly being published.
Consequently, the input of specialists in "bootstrap"
methodology should be sought when applying this method

to the generation of standard data sets. In particular, changes
in instrumentation, personnel, or experimental design may
change the error population over time. Careful attention
should be paid to detect such shifts in distribution.

Not all measurement contexts lend themselves to the
"bootstrap," since the transformation (2) from observations
to errors may not exist, or may not be well defined. (This
may be the case, for example, with the Gamma Ray Spec-
trum Analysis example discussed by Dr. Currie.) However,
when the "bootstrap" does apply, it can be used both to
create standard data sets, and also to provide nonparametric
estimates of precision [5,7,8].

Estimates of Precision

Although I share Dr. Currie's concern that the laborato-
ries in his two examples either failed to provide estimates of
precision, or gave incorrect estimates, I must point out that
in Dr. Currie's two examples, it is not clear what measures
of precision are appropriate. In all of the analyses, multiple
decisions are made. For example, in the Gamma-Ray exam-
ples, the locations and amplitudes of several peaks had to be
determined simultaneously. Although individual standard
errors can be given, these do not directly provide measures
of simultaneous accuracy [9]. Further in the detection spec-
trum and precision spectra sets, even the number of peaks
was unknown. This produces a highly complicated estima-
tion problem for which only large-sample approximations to
precision are available. There is some evidence in the liter-
ature that such large-sample approximations have consider-
able bias in moderate samples (see, e.g., [6]).

Similar problems arise in the three data sets for the NBS-
EPA Source Apportionment study, particularly in the case
of Data Set 1, where the number of sources is left unspeci-
fied. Both ridge regression and factor analysis are ex-
ploratory methodologies, requiring iteration and judgment
that are difficult to describe analytically. The only available

measures of precison for such techniques are large-sample
approximations which refer to analytical formulas for the
estimators not directly related to the way such estimators are
actually obtained. For example, I know of no way to specify
the precision of estimates of slope obtained by the ridge
trace method. Published formulas for the precisions of ridge
regression estimators refer to those estimators in which the
ridge factor k is a specified function of the data, rather than
being obtained by inspection of the ridge trace.

Given the complex natures of the estimation problems
that Dr. Currie describes, and the fact that statistical theory
has not yet provided reasonable estimates of precision for
some of the methodologies used in these problems, it is not
surprising that the laboratories either failed to provide mea-
sures of precision, or gave estimates that were off the mark.
Clearly, there is much theoretical statistical work yet to be

done.
In the meantime, it should be mentioned again that the

"bootstrap" can provide estimates of precison in cases where
the assumptions (1), (2) underlying the bootstrap are appli-

cable.

Analogy to CMP Interlaboratory
Comparisons

As already noted, Dr. Currie makes an analogy between
the use of standard data sets in the two examples he dis-
cusses, and traditional interlaboratory comparisons using
common reference materials. However, this analogy cannot
be carried too far, since there are some important differences
in context.

In traditional interlaboratory comparisons, differences
between laboratories are usually assumed to be due to vari-
ations in the calibration (adjustment) of the instruments, or
to differences in instrumentation or technique. Conse-
quently, a one factor (additive) components of variance
ANOVA model can reasonably be employed to assign vari-
ability between inter- and intra-laboratory sources.

In the standard data set context described by Dr. Currie,
however, there are at least three factors which can describe
variability between laboratories: I) different models or as-
sumptions used, 2) different statistical methodologies em-
ployed, and 3) different numerical algorithms. Further, the
"levels" of these factors (particularly factor 1) appropriate to
describe a given laboratory's analysis are not always appar-
ent. (Not all assumptions made are clearly stated). For ex-
ample, "outliers" can be discarded, parameter values can be
truncated (e.g., negative estimated amplitudes reported as
zero), or several different analyses may be run but only one
(the one that the laboratory thinks is "right") reported. Con-
sequently, it will be difficult to separate sources of interlab-
oratory variation.

Even worse, even if all factor levels can be accurately
identified (or set in advance), there is the clear possibility of
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interaction among factors, making interpretation of results
difficult. For example, different methodologies work "best"
in the context of different models, and different models and
methodologies lead to different algorithms and thus to dif-
ferent reasons for numerical instability when such al-
gorithms are applied to data.

How do we then interpret Dr. Currie's examples? First,
and most important, we see that in certain far more precisely
defined contexts (in terms of model) than would be met in
practice there are wide variations in conclusions between
laboratories, and also wide variations from the correct an-
swer. Second, the divergences between laboratories cannot
be assigned to sampling variation because (and this is the
beauty of the standard data sets) the data are fixed. How-
ever, the divergence of the centroid of the laboratory conclu-
sions from the truth may be due to sampling variation (the
sample did not represent the population), or to poor labora-
tory conclusion-making processes, or to both. We cannot
partition this last variability in terms of possible causes,
because no accurate measures of precision over sampling
variation are provided by the laboratories, or (in some cases)
known.

To better understand the sources of interlaboratory varia-
tion, we need to start with pilot studies that control the levels
of each of the factors (1-3) listed above. To establish the
contribution of algorithms to interlaboratory variability, we
need to ask numerical analysts to study the possible numer-
ical errors that can occur in algorithms, describe the situa-
tions that produce these errors, and suggest remedies to
reduce such errors. (Here, our "pilot sample" design fixes
all factors but the "algorithm" factor.) To establish the con-
tribution of methodology (or rather methodology - model
interactions) to such variability, chemometricians (particu-
larly statisticians) need to use mathematical analysis and
simulaton to identify formulas for the precisions (sampling
variability) that can be assigned to the various methodolo-
gies in the contexts of various models (Here, we assume a
fixed, perfectly accurate algorithm, and vary combinations
of method and model.) Finally, we need to study and assess
the variability due to choice of model, and also to the other
"scientific judgments" made by a laboratory in choosing
methodology and algorithms and in announcing measures of
precision. It is particularly in this last type of study that
standard data sets, both real and artificial, can be most
useful.

proach. Scientific decision-making involves subjective
judgments about both models and types of permissible con-
clusions. When such judgments are unstated, we have seen
that this can obscure our understanding of how decisions are
reached, and thus prevent us from finding sources of "bias"
or error.

Bayesian statisticians, who try to mathematically model
their subjective judgments in terms of prior probabilities
over unknown parameters (and models), are often accused
by frequentist statisticians of proposing analyses that lack
"scientific objectivity." Clearly the contrary is true. The
scientist who claims to base conclusions only on the
"objective" evidence provided by observed frequencies is
nevertheless often guilty of imposing unstated judgments on
such evidence. The Bayesian, at least, tries to bring these
judgments into the open, where they can be assessed along
with the data. Even if we doubt that probability models can
ever serve as adequate models of subjective belief, we can
still applaud the Bayesian's efforts to expose the methods by
which this belief interacts with the evidence in the data to
produce new judgments or belief. Rather than criticize the
Bayesian for being "subjective" or "biased", the frequentists
need to find ways of making their own decision-making
processes available for objective study, so that we can gain
the opportunity to learn how to improve scientific judgment.
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Scientific Judgment and Bayesian Inference

The question of how to analyze the biases introduced by
"scientific judgment" has a direct relationship to a long-
standing controversy between classical (frequentist) statisti-
cians and those statisticians who advocate a Bayesian ap-
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1. Introduction

O'Dea et al. (1983) proposed a nonlinear regression
procedure for estimating, and obtaining confidence in-
tervals for, kinetic parameters describing the reduction
of Zn(Il) at a stationary mercury electrode in aqueous

solutions of NaNO3 . In this paper we examine the statis-
tical properties of the procedure and suggest mod-
ifications to improve these properties.

In section 2 we describe O'Dea's procedure. In sec-
tion 3 we show his estimation procedure to be equiv-
alent to maximum likelihood estimation. In section 4 we
show his interval estimation procedure produces inter-
vals that are related to higher-dimensional confidence
regions obtained by likelihood ratio theory, and we sug-
gest modifications to the procedure that will produce
confidence intervals with the desired coverage proba-
bility. In section 5 we question the assumption of
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independent errors and examine the effect of including
another parameter in the model to describe the apparent
autoregressive error structure.

The notation used here is similar to that used by
O'Dea, but as is customary in literature on regression we
use Y as the dependent variable.

2. Description of the Procedure

O'Dea models the observed response at time tj to an
arbitrary pulse sequence by

Y,=af+c +Ei,

where a and c are unknown constants that convey no
kinetic information, {EiJ is a sequence of errors that are
assumed to be independent with mean 0 and unknown
variance o-2* The functionf=f(tj,a,k,E 4 ,) is the solution
of an integral equation. It depends on unknown kinetic
parameters a, k, and El, and it must be obtained by
solving the integral equation numerically.

The kinetic parameters are of primary interest, so
O'Dea uses a nonlinear optimization procedure to find
the values of these parameters that maximize the cor-
relation R between Yandf(t,a,k,EI,). These values are
taken as the estimates. Estimates of a and c can then be
obtained by simple linear regression of Yonf(t,a,k,ET1),
and a- can be estimated by the standard deviation of the
residuals from this regression.

With no error the correlation R calculated above
would be equal to unity. O'Dea measures the deviation
from unity by R = I -R and defines Rmj. as the optimum
value of A?. To measure the uncertainty in his estimate of
a he fixes k and E. at their optimal values and finds the
two values of a that give R = 3 Rj,,. He calls the interval
between these values a "confidence interval" for a, but
he assigns no confidence level to the interval. He com-
putes similar intervals for k and Eb.

3. Maximum Likelihood Estimation

A more traditional approach to a problem of this sort
would be to write the likelihood or log likelihood func-
tion for the problem and maximize it as a function of the
unknown parameters. For normally distributed errors
this is equivalent to choosing parameter values that min-
imze the sum of squared residuals. In this section we
show that the above estimation procedure is also equiv-
alent to maximum likelihood estimation.

If n is the number of observations, the log likelihood
L is given by

L(a~cakE,aro)= -n log(2TaO2) I Y-c -a ]2

The maximum is easily found by noting that for any
value of a-, the expression is maximized by choosing a,
c, a, k, and E. to minimize the sum of squared residuals
SSR=!(Y-c-aI) 2 . It is a simple matter to show
that if Y+n-'XYj and SST=2(Y-_y) 2 , then
SSR =(I -R )SSr, so SSR is a minimum when R is a
maximum (in absolute value). Therefore O'Dea's esti-
mates are the maximum likelihood estimates.

4. Confidence Intervals

Confidence regions for unknown parameters are often
found by computing the maximum likelihood estimates
and then finding other sets of parameter values for
which the likelihood function, or an approximation to
the likelihood function, is not much smaller. O'Dea's
procedure is related to this approach.

Define L (a,kE4) as the maximum over a, c, and a of
the log likelihood L(ac, akEjj,a). Using the re-
lationships between R, SS, and SST above and max-
imizing over a gives

L (a,kEf)= (-n /2)(l +log(27r) + IogSST
+log(l-R 2 )-log n).

O'Dea's procedure involves finding six points-the two
endpoints of the confidence intervals for each
parameter-with the same correlation R = I- 3Rin.
The above expression for L(a,kE4) shows that these
points have the same log likelihood as well.

Let &a,*/ and A' be the maximum likelihood estimates
of a, k, and E@. The quantity X=exp(L(&,flK)
-L(a,k,E,)) is called the likelihood ratio. It can be
shown that 2 log X has an asymptotic chi-square distri-
bution with 3 degrees of freedom if a, k, and E. are the
true parameter values. Then P[2 log X<7.815]=0.95, so
the parameter values for which 2 log X<7.815 form a
95% confidence region for the true values of the param-
eters. This region is bounded by the roughly ellipsoidal
surface X(a,kEI,)=exp(3.908), as shown in figure 1. In
general, any surface of constant X bounds some con-
fidence region.

The confidence level of the region bounded by the
surface containing O'Dea's points can be determined by
computing X. In his procedure

2logX= -n [log(l -(I-Rmjn) 2)-log(l -(I- 3Ri) 2 )]

z -n log(2Rnj./6Rnj,)=n log3,

since (Rnjn) 2
«<<Rij,,. Here n =81, so 2logk=89. By

comparison, the region bounded by the surface for
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Figure I-Relationship between O'Dea's intervals and a three-
dimensional confidence ellipsoid. The ellipsoid passes through the
endpoints of the solid line segments.

which 2logX= 16.268 has a confidence level of 99.9%,
so a three-dimensional confidence region found using
2logX=89 would be very conservative.

A more customary confidence level is 95%. Since the
likelihood ratio can be written as a function of the cor-
relation, it is possible to use a modification of O'Dea's
procedure to find points on the boundary of a 95%
confidence region. Rather than increasing R by a factor
of 3, the appropriate factor is the value of b for which 81
log b =7.815, or b z 1.10. For example, in a sample data
set that does not appear in O'Dea's original paper,
a=.22522. Increasing R by a factor of 3 produces the
interval (.22139, .22916], while the factor 1.10 leads to
the interval [.22435, .22609].

On the other hand O'Dea's goal was not to find points
in a confidence region for all three parameters, but to
find separate confidence intervals for each parameter. In
order to use the distribution of the likelihood ratio,
O'Dea's procedure must be modified so that in com-
puting the endpoints of the confidence interval for one
parameter, the likelihood is maximized over the other
two parameters. Twice the log of this likelihood ratio
has an asymptotic chi-square distribution with one de-
gree of freedom.

In the case of a, for example, this is done by com-
paring 2logX=2[L(ca&,kE)-L(aA(a),ARl(a)] to a chi-
square distribution with one degree of freedom, where
k(s) and A,(s) are the values of k and E. that maximize
L (a,kEf,) subject to the restriction a=s. The 95% point
of this distribution is 3.841, so the values of a for which
2 log X<3.841 form a 95% confidence interval for the
true parameter value.

This is best illustrated in two dimensions, as in figure
2. Here approximately elliptical contours of constant A

II

I J

Q

/ i

-- ., - U

Estim ate i I

'L O'Dea's Interval

, 4 b Confidence Interval

Figure 2-Comparison of confidence interval with interval computed
by O'Dea's procedure in two dimensions.

are plotted as a function of a and k for constant Ei. (The
complete contours are ellipsoids in three dimensions.)
The inner ellipse has 2logX=3.841, while the outer el-
lipse has 2logX=7.815. The endpoints of the confidence
interval for a are the points on the contour that have
tangents perpendicular to the a axis. This interval can be
compared with the interval found by O'Dea's pro-
cedure, which is that portion of the k =IF line that is
within the outer ellipse.

Which is larger? If the two ellipses have major axes
parallel to the coordinate axes, O'Dea's intervals are
longer and their coverage probabilities exceed 95%.
While this is not desirable, it increases the probability
that his interval will contain the true parameters. But if
the major axes are not parallel to the coordinate axes and
if the lengths of the minor axes are small, O'Dea's inter-
vals are shorter and have a coverage probability less
than 95%. Unfortunately it is not possible to determine
which is the case by looking only at the points examined
in his procedure.

There are two sensible remedies to this problem. The
first, the likelihood ratio method, is similar in spirit to
O'Dea's original procedure. This method involves find-
ing the confidence interval as described above by find-
ing those values of the first parameter that produce the
proper likelihood ratio when the likelihood is max-
imized over the other two parameters. In this problem,
though, it is time consuming to calculated and its deriv-
atives do not have simple analytic expressions, so re-
peated maximization of the likelihood may be too com-
putationally burdensome.

The other method, an asymptotic normal approxi-
mation, is the one we use here. This involves assuming
that the maximum likelihood estimates have a multi-
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variate normal distribution with a mean vector equal to
the true parameter values and with covariance matrix
equal to minus the inverse of the second derivative of
the log likelihood L. (This is equivalent to the likelihood
ratio method applied to a quadratic approximation to
the log likelihood.) Since there is no analytic expression
for the second derivative in this problem, we use a nu-
merical approximation.

In the example given above, the estimated covariance
matrix is

S 
1.0334

- .6908
.0396

-. 6908
8.6984

-. 7509

.0396 1
-.7509 | X10-7 .

.13842

A 95% confidence interval for a is given by
&± l.96(S,,)1 , or [.22459, .22585]. This is narrower than
the interval obtained above using O'Dea's procedure
with a factor of 1.10.

5. Residual Autocorrelation

The above derivations are valid if the errors {Ej- are
independent normal random variables with a common
variance. In practice this assumption must be checked.
This is especially true when, as in this case, mea-
surements are taken over time. It is often reasonable to

(N

r~~

Observed
..--- - Fitted

4.I

0 

suspect that measurements at neighboring time points
may be correlated.

The errors {fc} are not observed, but they can be
estimated by the residuals, or the differences between
the observed Yi and the fitted values
fj=2+af(tj,a,kA92). Figure 3 is a plot of Y andt as a
function of time. Figure 4 is a plot of the residuals
ej= Y1-?, over time. If the residuals were independent
we would not expect to find any pattern here, but in fact
there is a pronounced tendency for residuals at neigh-
boring time points to have the same sign.

There are three possible causes for this phenomenon.
First, it is possible that this is an artifact of the fitting
procedure. Even when the errors are independent, fit-
ting an ordinary linear regression produces residuals
that have some correlation (for example, they sum to
zero). It is possible that minimizing the sum of squared
residuals in this more complicated model produces re-
siduals with some autocorrelation. However experi-
ments with the model do not support this hypothesis.

A second possible cause is model inadequacy. The
model relates an imposed voltage to an observed cur-
rent, and the voltage is highly correlated with time. If
the equation used here is not the true relationship be-
tween the current and the voltage, there may be cor-
relation between the current and the residuals, and this
dependence could be masquerading as time dependence.
The cure for this difficulty is to propose alternative
models that better fit the data.

Figure 3-Observed and Fitted
Current.
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The third possible cause is actual autocorrelation in
the errors, and this autocorrelation can be modeled as
well. We proceed under the assumption that the true
errors have time-dependent correlation.

Two common models for time series are the first or-
der autoregressive model

Ci=P Ei-1 +U;

and the first order moving average model

EijUj+p Up-1,

where in both cases luid is a sequence of independent
normal random variables with mean 0 and common un-
known variance, and p is an unknown parameter be-
tween - I and 1. Other possible models are the higher
order models, where terms from earlier time points are
used, and mixed models, where ei is modeled as a linear
combination of ei-l fjp and Ui,...,Uiq_.

Two tools useful for identifying a good model are the
autocorrelation function and the partial autocorrelation
function. These appear in figures 5 and 6. The sample
autocorrelation function is simply the correlation of e;
and ei-k plotted as a function of k. For a moving average
process of order q the true autocorrelation function is 0
for k > q For autoregressive processes and mixed pro-
cesses the true autocorrelation function approaches 0 as
k ¢c, but it is not identically 0 for all k beyond some
finite value. The sample autocorrelation function in fig-

ure 5 seems to be more consistent with that of the auto-
regressive and mixed models, since there does not seem
to be a sharp cutoff.

The partial autocorrelation function is more compli-
cated, but its interpretation is quite simple. It is the
"dual" of the autocorrelation function, in that it is 0
for all k >p for an autoregressive process of orderp, and
it approaches 0 as k-co but it does not vanish for mov-
ing average and mixed processes. The sample partial
autocorrelation function in figure 6 shows a large value
at k = 1 and smaller values for k > 1. It is never exactly
0, but for most k values the sample partial auto-
correlation falls inside the boundary that marks the val-
ues that are significantly different from 0. The function
seems to be consistent with what might be expected
from a first order autoregressive process.

The new model

Y 1=afi+c +Ei with Ej=pEiq_+Uj

is equivalent to

Yj=pYj_, +a(fj-pfiD)+c(l-p)+ui,

which is a nonlinear regression model with independent
errors.

There are now four parameters to be estimated, in
addition to a, c, and o-. But if only the original three
parameters are of interest, it is possible to treat p as one
of the nuisance parameters by using a variant of the
Cochrane-Orcutt procedure, as follows:
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1) For any given a, kz, and E., compute ~ff1.
2) Estimate a and c by linear regression to get {eJ}.
3) Estimate p by the sample correlation of the {e,}.
4) Regress Y1-pY,-, on fj-pt-, to get new esti-

mates of a and c, ;nd new residuals {e,.
5) Repeat steps 3 and 4 until convergence.
6) Compute the sum of squares Xu'=Y(ei-pei_,)-

The computer time needed for these steps is much less

.I .. . 1 _1 .I .-.I - - t 1.1 ' I t 1 2 0 
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than that needed to compute {f1, so the estimation is
much faster if the nonlinear optimization program
searches only in the three-dimensional space of (a,kE#j).
For each set of trial parameter values the above steps
can be performed to minimize the residual sum of
squares over the nuisance parameters. The resulting esti-
mate of a is .22473.

The other calculation can also be repeated for this
new model. The estimated covariance matrix is
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terval that is about twice as long as the one in the inde-
pendence model, but still only a third as long as the
interval obtained by O'Dea's procedure.

This is roughly four times the previous covariance ma-
trix, so the length of the new confidence interval is
about twice that of the previous confidence interval.
The new interval is [.22336, .22600].

The four intervals around a are compared in figure 7.
The procedure used in O'Dea's original paper produces
an interval obtained from a three dimensional con-
fidence ellipsoid with a very large confidence level,
and it is quite long. The interval is shortened by using a
95% confidence ellipsoid, but it still does not have a
95% coverage probability. The 95% confidence inter-
val is still shorter. Taking into account the apparent
autoregressive error structure leads to a confidence in-

Figure 7-Confidence Intervals for
Alpha.

Thanks to Herman Chernoff for numerous discus-
sions. Thanks also to IBM for providing graphics hard-
ware and software.
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DISCUSSION
of the Lane-O'Dea-Osteryoung paper,
Statistical Properties of a Procedure
for Analyzing Pulse Voltammetric Data

Janet Osteryoung

Department of Chemistry
State University of New York at Buffalo

To supplement Lane's discussion of a statistical pro-
cedure for analyzing pulse voltammetric data, I would
like to describe the experiment more fully in the context
of the scientific problem being addressed. In a
controlled-potential (voltammetric) experiment the cur-
rent response generally depends on both potential and
time. Since the current is the rate of charge transfer, the
results of such experiments can be analyzed to yield the
values of parameters that characterize the charge trans-
fer process. The current for many charge transfer mech-
anisms can be calculated, although often the results (a
current-potential curve, or voltammogram) can be ob-
tained only numerically. The calculated voltammogram
must be inverted to yield the values of the charge trans-
fer parameters. It was the objective of O'Dea, et al. [Il'
to devise a procedure for this inversion that would not
depend on either the charge-transfer mechanism or the
choice of voltammetric experiment. However the spe-
cific problem addressed was that of determining the
charge transfer parameters for the reduction of Zn(II) at
mercury electrodes in aqueous solutions of NaNO3 .

It was assumed at the outset that the mechanism of
charge transfer was described by the Butler-Volmer
equation

i(t) =nFAk e r[Do"'CO(O ,t)-,EDR112CR(O, t)]

where i(t) is the current at time t, n the number of
electrons per zinc ion reduced, F the value of the Far-
aday, A the electrode area, DO and DR the diffusion
coefficients of the oxidized (0) and reduced (R) forms of
zinc. CO (O,t) and CR (Oat) are the corresponding con-
centrations at the electrode surface at time t,

c =exp[(nF/R T)(E(t)-Ell2)]

where R is the gas constant, T the absolute temperature,
E(t) is the imposed potential, which is a function of time,
and k, a, and E,,2 are the kinetic parameters as given by

Number in bracket is literature reference.

Lane. A mathematical model which describes exactly
the current-potential relation is developed by formu-
lating the diffusion problem with the Butler-Volmer re-
lation as a boundary condition and expressing the sur-
face concentrations in terms of convolution integrals of
currents to yield an integral equation for the current
which can be solved numerically.

The typical procedure used in electrochemical kinetic
studies is to measure Eml1 independently and to use its
value as a known quantity in analysis of the voltam-
mogram. Furthermore, usually DO, DR, A, and n are
determined in order to compare calculated and experi-
mental currents directly. These additional pieces of in-
formation are not necessary, however, and may intro-
duce systematic error into the values of the derived
kinetic parameters. Because of the exponential form of
the current-potential relation, minor errors in the value
of Ell2 distort the shape of the response and therefore
cause errors in the derived value of a. These errors can
even suggest a potential-dependence of a which is an
artifact. In a differential experiment such as square wave
voltammetry the response is generally peak-shaped, and
the height of the peak reflects the values of k and a.
Errors of normalization (e.g., measurement of A) there-
fore also introduce error into the values of the derived
parameters.

From the discussion of Lane et al., it is clear that the
normalization factor, a, is an unnecessary "nuisance"
parameter, and thus it is foolish to confound the results
of kinetic measurements by employing a method of data
analysis which requires that a be known. The question
of E£12 is more subtle, for experimental and chemical
factors must be considered. In principle, knowing the
true value of Ell, simplifies the problem. Potential dif-
ferences can be measured accurately, but it is difficult to
maintain a laboratory reference potential at a known
value over time. The data of [1] and the data employed
by Lane et al. display confidence intervals for E£12 at the
95% level of <0.001 V. Working laboratory standards
are not maintained with that precision. Chemical factors
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must also be considered. The value of Eml1 is measured
using either a voltammetric experiment with a much
longer time scale or an equilibrium experiment. In the
latter case the diffusion coefficients must also be known
to yield Em11. In either case the change in time scale
introduces the possibility of a change in mechanism,
which produces a value of Ell2 inappropriate for the
conditions of the kinetic experiment. Therefore Em11
should be treated as an unknown parameter of the ex-
periment together with k and a.

A further objective of this work was to obtain con-
fidence intervals for the expectation values of the kinetic
parameters. Typically in experiments of this type uncer-
tainty is estimated by estimating the coefficient of vari-
ation of the current response and assigning that coeffi-
cient of variation to the derived parameters, because
more realistic procedures have not been available. The
procedure presented by O'Dea et al. [1] has the merit of
computational simplicity and thus provides a well-
defined quantity that can be used by the experimenter as
a working figure of merit during the course of experi-
ments. The procedure of Lane et al., which provides
conventional confidence intervals with known con-
fidence bound, relies on quadratic approximation of the
model, which should be adequate for well-behaved re-
sponse surfaces.

Recent advances in theory and in computational ca-
pabilities raise the possibility of fully quantitative the-
oretical descriptions of at least some classes of electro-
chemical reactions. Theoretical developments can be
guided and tested using accurate data that have been
analyzed using appropriate statistical techniques.

The work described in this report was supported in
part by the National Science Foundation under grant
number CHE-8305748 and by the Office of Naval
Research.
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Kinetic models described by systems of linear differential equations can be fitted to data quickly and easily by
taking advantage of the special properties of such systems. The estimation situation can be greatly improved
when multiresponse data are available, since one can then automatically determine starting values and better
discriminate between rival models.
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1. Introduction

In this article we summarize the work of a series of
papers [1-3]' in which we deal with fitting first order
kinetic models to uniresponse and multiresponse data.

About the Authors, Paper: Douglas M. Bates is with
the Department of Statistics at the University of Wis-
consin. Donald G. Watts is a member of the Department
of Mathematics and Statistics, Queen's University at
Kingston. The work reported on was supported by the
National Science Foundation in the United States and
the Natural Sciences and Engineering Research Council
of Canada.

We consider systems in which the expected responses
at K points in the system, (t)=(7 11 (t), 72 (t), --- . (t))
are described by the system of linear differential equa-
tions

(1.])

where A is a K XK system transfer matrix depending on
rate constants 0, 0 , ... , and ¢(t) is a vector input function
to the system. We assume further that there are K initial
conditions V90=(O1o 0, ..n,.-, Ij77)0, some possibly un-
known, and that r=t -Oo, where 0o is a (possibly un-
known) time delay. All the unknown parameters are
gathered into a P x I parameter vector 0.
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Example: Oil Shale.!
Asazrxarzpleaf a cherndcahwsstenm~desoribcd by s ,et

of linear differenrial equations, we cite; the pyrolysis of
oil shale in which the model, fitted by Ziegel and
Gornian [4] has the system diagram

6 6,

/ 61 °20*-l2-*-- 
II'1 1 3

0 3

In this system, 1 denotes kerogen, oo, bitumen, and )7A
oil. The model implies that kerogen decomposes to bitu-
men with rate consisxt 0,, -and to oil with rate constant
0,, and bitumen produces oil with rate constant 02, and
unmeasured by-products with rate constant 03.

The integral of the vector function is evaluated com-
gonentwise. CornpLtautual methods for .evaluadng the
convolution inregral are given in Moler and Vat. Loan
[8], when A is diagonalizable, and in Bavely and Stewart
[93, when A is nondiagonalizable.

22 Derivatives of the Expectation Function

To use a Gauss-Newton procedure to estimate the
parameters we need derivatives with respect to the pa-
rameters. As shown by Jennrich and Bright [6], a great
advantage to compartment models is that the deriva-
tives can be evaluated in she same fashion as the model
function itself. Instead of differentiating NQ) directly as
in Jennrich and Bright, however, we differentiate eq
(1.1) and solve the resulting linear system of differential
equations. This idea was discussed in another context in
Smith [10! and was used by Kalhfleisch el at. [I l].

To simplify notation, we use a subscript p to denote
differentiation with respect to the parameter Qp so

2. Expectation Functions and
With' Respect to the Parameters for

Kie tic Systems

Derivatives
First Order

apt(t)

for p = 1, 2, ... P. The derivative of (1,1) with respect to
0, is then

Several methods are used to estimate the parameters
in first order kinetic models. The most obvious method
is to solve the system of differential equations corre-
sponding to the particular comnpartment model and use
the resulting expectation function in a standard non-

linear estimation program. A second approach is to fit a
generai sum of axpnaetials rmodei by "peeling" [51, A
Thiru approach IS to use a sian&tArd nonlinear esimaDn
program, using numerical integration to solve the equa-
tions. A superior approach, proposed by Jennrich and
Bright 16]. is to obtain the general solution to the system
of equations by calculating values for the model func-
tion Eiq) and its derivatives directly, given values of B
and t and i(t).

2.1 The General Solution

The solution to a lineac systenm of differential equa-
tions can be expressed in terms of convolutions using the
matrix exponential [7]. The solution is

lQ)=e 'io~e"'*tft)

k (0 =-4 vp W +AP tt) + (P t)

for which the solution is

,q ,)= e' %9, (O) + e *IfAn(t) + tP (eN) (2.3)

' =e t t, - (t,) r + e ̀ *A PC.4S+e A AIe ,t f .

Dead time, 0,, can be incorporated by modifying ( 1. 1) to

i(,r) =A ti(r)+t
,Q(0)=Vo

where
v-Go 2>Oo

r 0 t6O0 .

If 8o is known, we simply replace (by r in eqs 1.1, 2.1,
and 2.3, but if Co is unknown and depends on a parame-
ter, the expression for the derivatives is extended to

(Z. )

where the '*' denotes convolution,

e t~tL)f= J eA(-JNt(g de.
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It is easy to evaluate A,,i, (0)=aio/a80, and r, since
they are constants and, in fact, usually two of the three
are zero. Also, for any t <00, r, is zero for all
p = 1, ... , P. Note that the method can be extended to
higher order derivatives.

Specifying the Model

A simple unambiguous computer notation can be used
to specify first order kinetic models in a parameter table
consisting of three columns, the first column giving the
parameter number. For a rate constant, the second col-
umn entry gives its source and the third column entry its
sink, a sink with compartment number 0 denoting elimi-
nation. For initial conditions, 110, the second column
entry is the number of the component in 170 and the third
column entry is -1. For a step input, t, the second
column entry is the number of the component in z and
the third column entry is -2. Dead time is coded as 0 in
column 2 and 0 in column 3.

Example: Oil Shale.2

The oil shale parameter table is presented in annotated
form. It is to be noted that a single parameter may repre-
sent more than one rate constant.

To determine the minimum of IZ'Z 1 it is advan-
tageous to calculate the gradient and Hessian and ex-
ploit Gauss-Newton optimization techniques. Efficient
numerical procedures for computing the gradient and
approximate Hessian are given in [2], and an algorithm
which performs the calculations in [1].

Alternative expressions for the components of the
gradient y and the Hessian r are

y,=81 VI/aO,=2I VItr[V-'Z'Z],
p = 1,2,...,P I (3.2)

and

r'mq=a21 VI/opaOq= (3.3)

='peq+ 2 I VI tr[V-lZ'Z 0 V-Z'Zp]
+21 Vltr[V-'Z'ZqV-'Z;Z]

+21 Vltr[V-'ZZq]+21 Vltr[V-'Z'Z,,
p,q=1,2, .,P.

The second derivative terms Z,, in eq (3.3) are ignored
to produce an approximate Hessian.

Table 1. Oil shale parameters.

Parameter Column Column
number (type) 2 3

l (rate constant) I (source) 2 (sink)
2 (rate constant) 2 (source) 3 (sink)
3 (rate constant) 2 (source) 0 (elimination)
4 (rate constant) I (source) 3 (sink)
s (dead time) 0 0

3. Multiresponse Estimation

In the multiresponse situation when the errors have
unknown variances and covariances but are assumed to
be temporally uncorrelated, the appropriate criterion
derived via a likelihood or Bayesian approach is to min-
imize the M XM determinant [12].

l V(0) I = Z'Z I (3.1)

In eq-(3.1), Z= Y-H is the NXM matrix of residuals
{Z0k}=Tkk(tl).-flk(t.)}, k = 1, ,2, ... , M, n = 1, 2,
N. The expected responses 17 are assumed to depend on P
parameters 0: except where explicitly required, we sup-
press the dependence on 0. For first order kinetic sys-
tems with all responses measured, M =K.

4. Practical Aspects

Linear Constraints

Sometimes the data matrix Y involves dependencies
as a result of imputation of responses or mass-balance
calculations. If these dependencies also occur in the ex-
pected responses, then important modifications to the
multiresponse estimation procedure must be made so as
to avoid convergence to spurious optima [13,14]. It is
therefore necessary to examine the residual matrix Z(0)
for singularities, which can be done by arranging the
rounding units in the columns of Y to be approximately
equal and taking a singular value decomposition of Z
[15]. As explained there, singular values on the order of
the rounding unit indicate singularity and should
prompt the analyst to search for constraints in the data.
Such examinations should be done at the beginning of
the analysis using the initial parameter values and at the
end of the analysis using the converged values. To aid
convergence, logarithms of parameters are used during
estimation.

Linear constraints can be dealt with easily by com-
bining the linear constraint vectors into a matrix, per-
forming a QR decomposition of that matrix, and letting
the rotation matrix W be the columns of Q which are
orthogonal to the constraint vectors. We then simply
minimize I(ZW)'(ZW)I, where ZW=YW-HW.
Clearly, the gradient and Hessian of this determinant
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are obtained from eqs 3.2 and 3.3 by replacing Z by ZW
and Z, by Z, W.

Constraints on the Number of Parameters,
Responses and Observations

The determinant criterion implies two constraints on
the number of observations [2,3]. First, N must be at
least equal to M since otherwise the determinant is iden-
tically zero. Second, N must exceed P otherwise the
criterion can be made zero by fitting any one response
perfectly, which can generate up to M distinct minima.
Thus the residual matrix has effectively N-P degree of
freedom. It may seem that there should be more degrees
of freedom since there are NM separate observations,
but the criterion can be locally controlled by any one
response so the effective number of observations is N
rather than NM.

Starting Values

An important part of fitting nonlinear models is deter-
mining good starting values. For uniresponse data, an
effective method is to use peeling in which we plot the
logarithm of the response versus time and fit a straight
line to the segment at large t values. The slope of the line
gives an estimate of the smallest eigenvalue of the A
matrix. Using the fitted line to generate residuals and
plotting the logarithm of the residuals versus t should
again reveal a straight line portion at large t values, so
the process is repeated, thereby obtaining estimates for
the eigenvalues. As mentioned in section 2, this process
is often used for parameter estimation, but we do not
recommend it.

In the case of multiresponse data for first order kinet-
ics, the problem is easily solved using linear least squares
by exploiting the linear relation between the rates and
the responses! As noted in [3], if we could measure the
rates 9 and the responses y at a particular time r, then
using 9(7-)=Ay(T) produces a linear relation between
the "dependent" variable y=y and the "independent"
variables xP =Apy in the form y =XO. We can thus
solve for 6 by using linear least squares. A simple pro-
cedure for obtaining starting values, then, is to use ap-
proximate rates from finite differences of the responses
at successive time points and xp values from the corre-
sponding averages. Alternatively, one could smooth the
data for each response by fitting splines so as to obtain
better rate and response values, and then use these in a
linear least squares routine.

a thorough multi-response analysis was presented in
[13]. The fitted model was described by the system

'2 01yi

Ili5 = 3 =02/
L°IY34O27V5

I-0373-04Y3 + 05Y=A M
03Y3

04Y3 -05^)Y5 

which can also be written y=XO, where

X= 01

0

L0

-7i
0

7 3
0
0

0
0

-Y3

Y3
0

0 0 j
0 0

-757
KY-'Y

Substituting estimated rates for each time and joining
them into a single vector y, and calculating X matrices
for each time and joining them into a single X matrix,
allows us to use linear regression to estimate starting
values for 0. The starting values obtained are listed in
column 2, table 2. Note their closeness to the converged
values, column 4.

Table 2. Estimation for a-pinene at 189.5'.

Box Bates and watts
Parameter Start et al. Full Reduced

Model Model

X 5.84 5.95 5.94 5.95
2 2.65 2.85 2.84 2.82
3 1.63 0.50 0.45 -
4 27.77 31.5 31.21 30.75
5 4.61 5.89 5.79 5.72

Determinant
600 28.4 29.0

Parameter estimates are listed in table 2 in
minutes-'X 10-5 ; that is a table value of 5.84 is actually
a rate constant of 5.84X 10-' minutes-'.

When some of the responses are not measured, it is
still possible to use approximate rates provided other
information, such as a mass-balance, is substituted.

5. Two Examples

5.1 Oil Shale

Example: a-pinene.1

Data on the thermal isomerization of a-pinene at
189.5' were reported by Fuguitt and Hawkins [16], and

The model and data presented by Ziegel and Gorman
[4] were fitted using the procedures described here. In
this problem the concentration of 7ll was not measured,
which introduces some complexity in determining start-
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ing values. Second, the elimination compartment, corre-
sponding to coal and gas, was not measured. Third,
there was a time delay caused by the shale having to
reach the reaction temperature. The observed responses
are Y2 and y, , measured in percent of the initial kerogen
711, so K=3, M=2, with N=14.

To determine starting values in this case, we plotted
the data and obtained a rough estimate of Oo=6 min.
Estimating the initial slopes of i72 and 71 from the graph
gave values of 0.029 min-' for 0, and 0.013 min' for 04 .
This delay estimate and the rate constants were used to
obtain starting estimates of 02 and 03 as shown in column
2, table 3, following the procedure of section 4. The final
results, together with those of Ziegel and Gorman, are
shown in columns 3 and 4 of table 3.

Table 3. Parameter estimates for oil shale data.

Parameter Start Bates-Watts Ziegel-Gorman

1 0.029 0.0172 0.0173 (k,)
2 0.012 0,0090 0.0092 (k2 f2)
3 0.028 0.0205 0.0201 (k,(t-f,))
4 0.013 0.0104 0.0104 (k3)
Oo 6.0 7.8 7.7

Determinant
67980 429

5.2 a-pinene

In their analysis of the a-pinene data, Box et al. [13]
noted that response 4 was imputed using
y4=0.03(l00-y,), and that the data set was subject to a
mass-balance constraint, Y +Y2+Y3+Y4+Y5=100. To
avoid convergence to spurious optimal parameter val-
ues, they recommended that these data dependencies be
taken into account by using observation vectors consis-
ting of linear combinations of y, , y, y,, y4 and ys which
are orthogonal to the space defined by the vectors
(0.03, 0, 0, 1, 0)' and (1, 1, 1, 1, 1)'. We therefore
treaty 4 as an unmeasured component for estimation pur-
poses, and use linear combinations of the responses
which are orthogonal to the vectors a =(0, 0, 0, 1, 0)
and a,=(l, 1, 1, 1, 1). The rotation matrix M and the
modified responses can therefore be determined by per-
forming a QR decomposition on the matrix (a,, a,) and
using the last 3 columns of Q coupled with all the re-
sponses. In this case, K=5, M=3, with N=8.

Approximate 95% confidence limits for InO3 were
very wide, suggesting that 03 was badly estimated and
could be zero. We therefore fitted a reduced model
in which there was no path from ,33 to 714, see column 5.
The change in the determinant is 0.6 on I degree of
freedom, which, when compared with the scaling factor
s =28.4/3=9.46 on 3 degrees of freedom, is clearly

small, verifying that the reduced model is adequate for
this data set.

To further substantiate the adequacy of the reduced
model, we fitted both models to a second set of data
taken 204.50 [16]. The results of this fitting procedure
are presented in table 4. The reduced model appears to
be adequate for both data sets.

Table 4. Estimation for a-pinene at 204.5'.

Full Reduced
Parameter Start Model Model

1 23.0 22.6 22.6
2 13.2 12.6 12.6
3 8.3 0.02 -
4 76.9 72.8 72.8
5 16.0 15.6 15.6

Determinant
116 0.55 0.55

6. Conclusions

Several advantages of the direct multiresponse esti-
mation approach for systems of differential equations
are apparent. First, the model can be specified directly
from the network diagram. Second, there is no need to
obtain the analytic solution to the differential equations
describing the reactions. Third, there is no need to code
the model functions in a nonlinear estimation routine.
Fourth, the bothersome and error-prone step of obtain-
ing and coding derivatives of the expected responses
with respect to the parameters is eliminated. Fifth, ex-
cellent starting values can be determined automatically.
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DISCUSSION
of the Bates-Watts paper,
Multiresponse Estimation With Special
Applications to First Order Kinetics.

Michael Frenklach

Department of Materials Science and Engineering
Pennsylvania State University I

The authors presented an interesting approach to pa-
rameter estimation for first order kinetic systems. The
method is user oriented and particularly suited for com-
puter implementation as a "canned" program. Indeed,
present chemical kinetic codes input reaction rnech-
anism in a natural chemical language, that is, specifying
reactions (usually in unformatted READ routines) as
they are conventionally written on the paper. This infor-
mation is automatically converted to a so-called reac-
tion matrix and, based on it, to differential equations
describing the kinetics of reaction species. The reaction
matrix, which contains all the stoichiometry of the sys-
tem, can conveniently provide the required input infor-

'Michael Frenklach's contribution to the subject stems from work
performed in the Departmnent of Chemical Engineering, Louisiana
State University.

Another important feature, from the user's point of
view, is that the presented method is applicable to mul-
tiresponse data. It should be realized that modern prob-
lems of interest to chemical kinetics get tougher, as fot
example, formation of pollutants in hydrocarbon com-
bustion. The experimental answer to the growing com-
plexity of the systems is the employment of multiple
diagnostics for simultaneous monitoring of various pro-
cess variables. However, interpretation of the experi-
mental results cannot be fully realized without reliable
and convenient multiresponse methods.

The following are some of my thoughts on the needs
in this area:

I) Oftea, kineticists exhibit a philosophical re-
sistance to a multiparamneter approach to experi-
mation for automatic coding of the method of Bates and
Watts.
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mentation. A classical way is to "isolate" a given reac-
iton of interest; under such conditions the rate
coefficient parameters can be determined by a simple
well-established straight-line treatment. Determination
of more than one rate coefficient in a single set of experi-
ments is considered "not clean experimentation." In
principal, however, the isolation is not possible: there
are always other reactions occurring simultaneously
with the one of interest. The researchers usually engage
in an elaborate line of reasoning to assume, sometimes
unjustifiably, single-reaction conditions. These kinet-
icists must realize that multiparameter analysis using rig-
orous multiresponse techniques can provide more accu-
rate and informative answers. Neglecting, for instance, a
chemical reaction with the rate contribution of, let us
say, 10%, can lead to a much larger than 10% distortion
in the estimation of the main parameter. Statisticians, on
the other hand, should demonstrate the techniques they
develop on examples of current interest and difficulty.

2) Although first order kinetic models constitute an
important class, higher order kinetics are of more gen-
eral interest and there is a great need for development of
statistical methods for these nonlinear systems.

3) Most estimation methods, including the one
presented by Bates and Watts, concentrate on deter-
mining the solution which minimizes the objective func-
tion and only approximate confidence limits. What is of
interest to many applications is the joint confidence re-
gion. It should be noted that in the problems of chemical
kinetics these regions are usually not ellipsoidal, for
which second order approximation methods are suf-
ficient, but crescent shaped.

4) While estimating parameters, it is most important
to check the model adequacy. This point was excellently
demonstrated by Box and Draper (1965). These authors
warn that "the investigator should not resort immedi-
ately to the joint analysis of responses. Rather he
should... consider the consistency of the information
from various responses." To my knowledge, however, a
formal multivariate lack-of-fit test for a general non-
linear case has not been developed.

5) A question on the number of degrees of freedom

was brought up by Bates and Watts. Using fast
digital sampling electronics, the number of observations
per response can be very large (in our laboratory this
number was approximately 1000). Does this number de-
termine the degrees of freedom? If so, then one can
easily increase this number by orders of magnitude by
using faster electronics. This point should be clarified.

Finally, I would like to point out that in an attempt to
resolve some of the issues brought up above, a method
for multiresponse parameter estimation applicable to a
dynamic model of general order was developed in our
laboratory (Miller and Frenklach, 1983; Frenklach,
1984; Frenklach and Miller, 1985). The method is based
on approximating the solution of the differential equa-
tions describing the kinetics of reactive system instead of
the equations themselves. The approximation is devel-
oped following the methods of empirical model building
(Box et al. 1978) and the concept of computer experi-
ment of Box and Coutie (1956). Once the approxi-
mations to all responses are obtained, the parameter esti-
mation, determination of joint confidence region, and
lack-of-fit test are easily performed following the ap-
proach of Box and Draper (1965).
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Different chemometric methods to improve calibrations are described. A Kalman filter is applied for

processing and predicting slowly varying parameters of a linear calibration graph. The results are used for the
evaluation of unknown samples, and for deciding whether to calibrate again or to analyze the next unknown
sample. Another approach of the calibration problem, particularly in chromatography, is the use of cor-
relation techniques. The noise reduction property of correlation chromatography is used to extend the
calibration graph to very low concentrations. Furthermore, an experimental technique to determine a cali-
bration curve and the unknown sample simultaneously under exactly the same conditions is described.
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1. Introduction

The computer has added a new dimension to anal-
ytical chemistry. Chemometrics, the application of
mathematical and statistical techniques, is improving the
quality of the analytical results concerning accuracy,
precision, time, and costs, and has created new possi-
bilities. An extended number of chemometric pro-
cedures are now available and are being increasingly
applied in practice.

However, the "off-line" application of chemometric
procedures, i.e., the processing of data or signals already
obtained with common analytical methods like titration,
chromatography, spectroscopy, etc., is dominating. The
computer is generally used as an off-line calculation
machine. The incorporation of the computer into exist-
ing analytical methods or the development of new meth-

About the Author, Paper: H. C. Smit is with the
University of Amsterdam's Laboratory for Anal-
ytical Chemistry. The work he describes was sup-
ported in part by the Netherlands Research Or-
ganization ZWO.

ods based on the capabilities of the computer is not far
developed; the intelligent analyzer is still in its infancy.

In this paper, some examples of chemometric on-line
computer applications in an analytical procedure and
analytical method are given. The calibration, which is
very important in analytical chemistry, is emphasized in
both examples-a generally applicable procedure using
an optimum recursive parameter estimation technique
(vector Kalman filter), and a method developed for one
particular analytical technique (chromatography).
More details concerning the basic theory are given in

[l]'.

Calibration and Optimum Estimation

An analytical system is usually very complex and in-
cludes chemical, optical, electrical, and mechanical
parts. All these parts are subject to several influences,
like contamination, changes in temperature, humidity,
etc., and, of course, aging. These influences result in a
decrease of the quality of the analytical data. Two main

I Figures in brackets indicate literature references.
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components can be distinguished: a stochastic com-
ponent resulting in stationary random fluctuations, and
a semi-random component caused by irreversible pro-
cesses like the mentioned contamination, aging etc. This
semi-random component has a non-stationary nature
and a regular calibration is required to maintain the
quality of the results respectively to reduce the influ-
ence of the drift in the calibration parameters. Ignored
drift seriously affects the accuracy in the analytical re-
sults and various off-line drift correction procedures
have been proposed [2-6].

A Kalman filter enables on-line drift compensation,
particularly suitable in the case of automated analytical
procedures. An optimum recursive estimator like a
Kalman filter requires a model of both the system or the
signal process, including the system noise and the mea-
surement (observation) noise. Using an appropriate
model, the Kalman filter can predict (estimate) future
values of the changing parameters and the samples can
be evaluated using these predicted parameters. The esti-
mation may also be used to determine when a re-
calibration is required. The criterion is a given preset
precision of the results. The final goal is to analyze
samples with a predetermined minimum accuracy.

System Model

A state space model is used to describe the system.
The linear discrete dynamic system

x(k)=F(k)x(k-l1)+w(k-l) (1)

whe

z(k)=h'(k)x(k)+ v(k)

:re

k :a time or a sequence nurn
x(k) in Xl state vector
F(k) :n Xn transition matrix
h'(k) :1I X n measurement vector
z(k) :measured signal
w(k - 1):n X I system noise vector
v(k) :scalar measurement noise

(2)

her

is representative for many analytical systems (fig. 1).
The model is linear because neither in the transition
matrix F(k) nor in the measurement vector h'(k) param-
eters x(k) are present. A commonly used calibration
graph is

y =a *c +b

where

a: sensitivity
b: intercept

(3)

c: concentration
y: measurement

Reformulation gives

y=(c,l)b
Using

(b) an( z)

h'= (c, 1) and z =y

and adding system noise and measurement
in a dynamic calibration curve

(4)

(5)

noise results

(a (k)\( O= ja(k-l)\ fwi(k-l)\
(b(k)I k0lIJkb(k- I)) +w2(k -1)]

z(k)=(c,l)( a(k) )+ v(k).

(6)

(7)

A common situation in practice is that the parameters
of the calibration curve are slowly varying in time. Sto-
chastic variations can be represented by the system
noise, introduced in the model. However, in practice
often a deterministic variation of the calibration parame-
ter can be observed; particularly an extension of the
model with a linear drift increases the usability.

A single parameter (state) x, affected by a linear drift
in the sequence k can be written as

x(k)=dk +e

where

d: (constant) drift parameter

e: x(0)

Evaluation of eq (8) leads to

x(k)=d(k-l)+d +e

=x(k-t1)+d.

(8)

(9)

The introduction of system noise and measurement
noise gives

(10)
{x(k)\ I x(k -1)) w,(k -1)
d(k) I I) )d(kl I)dk 1w2(k-f))

z(k)=(1,0) ((k))+v k).
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Figure 1-Linear dynamic system.

If both the sensitivity a and the intercept b are influ-
enced by random drift, two extra parameters have to be
introduced in the original model. The final model is

a(k)
b k)

a(k)
/3(k)

1010
0101
-0010
000 1

a(k-I)
ba(k-1)
a(k-l)
,/3(k-l)

w, k-1)

+ w3 (k-1)
w4 (k-1) (I 1)

mate the slope, the intercept, and the drift parameters of
the calibration curve [7]

x(k/k - I)=F(k)i(k - I/k -1)

P(k/k - 1)=F(k)P(k - I/k - I)F'(k)+Q(k -1)

x(k/k)=i(k/k - l)+k(k){z(k)-h'(k)i(k/k- 1)

(13)

(14)

(15)

a(k)
b (k)
a(k) +v(k).
:6(k)

The observability matrix is

C, C2 C3 C4

11 I1 1
0 c2 2c3 3c4

0 1 2 3 .

P(k/k)=P(k/k - l)-k(k)h'(k)P(k/k -1)

k(k)=P(k/k - I)h(k){h'(k)P(k/k - I)h(k)+

(16)

(17)

where:

(12)

The system is observable if there are at least two
different concentrations.

Q(k): system noise
R (k): measurement noise
k(k): Kalman gain factor (correction factor)

Equation (18) gives the innovation, i.e., the difference
between the experimental and the estimated mea-
surement

Sample Evaluation and Recalibration

Assuming the transition matrix F(k) in eq (11) is
known exactly and the measurement vector h'(k) is
known from the calibration, and assuming the statistical
properties of the system noise and measurement noise
are known ("white" noise with zero mean and normal
probability density function (pdf), the usual Kalman fil-
ter algorithms, given in eqs (13-17), can be used to esti-

v(k)=z(k)-h'(k)i(k/k - 1) (18)

with

E{v(k)}=0

E{v(k)v'(l}={h'(k)P(k/k-l )h(k)+R (k)}S(k,l)- (19)

The variance of the predicted measurement is also
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given by eq (19). The prediction of the Kalman filter can
be used to evaluate a constituent in an unknown sample.
Rewriting the calibration relation eq (3) gives

2, = (z(k) -b)l

var(.,) = (l/a 2){h'. P(k /k - l)h,, + Ru, (20)

with: hi. =(&u,,1,0,) and &,b from k(k/k-1).

The relative imprecision of an unknown concen-
tration ca. is given by

Nun=2/~cun&){h%,n P(k/k - l)h~s+R '}1 (21)

with: hu=(cl,, 1,0,0).

The available calibration standards are used to com-
pute Nu. in eq (21). The computed maximum im-
precision NmV, is compared with a predefmned im-
precision NH,. If N,,,>NC6 ,, a recalibration is
performed; if New < N,, the samples are processed.

Application in Practice

The described state estimation is applied in automated
flow injection analysis. The quality of the results is im-
proved by smoothing all the stored estimates of the
Kalman filter. An extensive description of the smooth-
ing procedure is given in [8].

Figure 2 shows an automated flow injection system
used for the determination of chloride in aqueous sam-
ples. Thiocyanate originating from Hg(SCN) 2 is substi-
tuted by Cl- in the presence of Fe3". Red coloured
Fe(SCN)3 is formed and measured spec-
trophotometrically at 470 nm. Each sample requires 40
seconds; 90 samples/hour can be processed.

Figure 3 shows the results of the repeated injections
of 2, 4, 6, 8, and 10 ppm samples. The chi-square values
given in table I are obtained with a noise variance
R =15.lo-6 and system noise covariances
Q,3 = Q4= 10- 10

As can be seen from table 1, a first order calibration
graph (4 parameter state, x I-x4) is obviously not satis-
fying and the model has to be extended to a second order
drifting calibration graph (6 parameter state, xl -x6).
In this case smoothing does not yield significant im-
provement in the estimation.

Figure 4 shows the result of the measurement of stan-
dards and "unknown" samples (6 ppm) at fixed positions
in the sequence. The on-line Kalman estimation is de-
picted in figure 5 and the improvement by the smoother
is shown in figure 6. The histograms figure 7 and figure
8 show the evaluated results.

The on-line processing of the uncorrected peak
heights permits one to decide to recalibrate or not. Fig-
ure 9a and figure 10 give an impression of the results,
respectively for the estimation of the state by the
Kalman filter and after the smoothing. If a given preset
criterian Ncr,, is exceeded by the maximum imprecision
eNm.. the system is recalibrated. After 9-12 calibrations
the system starts to evaluate the unknown samples and
recalibrates regularly.

computer

4? 0 N Figure 2-Flow injection system.
S=sample holder, C=column,
P = pump, D=spectrophotom-

D eter, l=injection valve, W=
waste.
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Figure 3-Repeated injections

Figure 4-Standards and unknown samples.

Table 1. Values ofx 2 for the flow injection peaks of figure 3.

Peak height Peak height Peak integral/300 Peak integral/300
baseline corrected corrected

Kalman filter 618.8 662.7 134.9 797.2

(1st order)

Smoothed 578.7 620.1 122.0 744.2

(1st Order)

Kalman filter 69.8 67.5 61.0 395.4
(2nd order)

Smoothed 62.0 59.3 53.8 354.4
(2nd order)

Figure 5-On-line Kalman esti-
mation.
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Figure 6-Improvement by smooth-
ing.

Entrles : 60
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Figure 7-Histogram of the Kalman estimation.
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Figure 8-Histogram of the smoothed results.
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Figure 10-On-line calibration sys-
tem. State and concentrations
used by the smoother.

Correlation Techniques

The introduction of correlation techniques permits a
completely different approach to the calibration prob-
lem, particularly in chromatography. In correlation
chromatography (CC) the usual impulse-shaped injec-
tion is replaced by multiple random injections. An exam-
ple of an application is given in [9]. The resulting ran-
dom response of the chromatographic system is
cross-correlated with the used input function. The
cross-correlation function of two signals, in this case the
input signal x(t) and the output signal y(t) of a linear
process, is by definition:

However, the autocorrelation function of x (t) is defined
as:

(26)

and eqs (25) and (26) can be combined to:

RxyQt2)= ){h(r)Rxx(t2-tnr)dr (7r>0) (27)

If x(t) is stationary, then:

(28)

and eq (27) becomes:
(22)

(29)
E[ ] denotes the expected value of the expression be-
tween the brackets. The output signal y(t) of a linear
system can be calculated as a convolution of the input
signal x(t) and the impulse response h (t) of the system:

y(t)=x(t)*h(t)=ft h(r)x(t-r)d. (23)

Combining eq (22) and eq (23) gives:

R,(t 3te2)=E [x(t){ h (r)x(t 2 - T)dr] . (24)

In this case integration and averaging can be inter-
changed, hence:

Rx,(tit 2)= f h (T)E[x (tl)x(t2-r)]dr (25)

Comparing eq (23) and eq (29) shows that the output
signal y(t) of a linear system with an input signal equal
to the autocorrelation function R.(t) of a signal x (t) is
similar to the cross-correlation function RX,(t) of the
input signal x(t) and the output signal y(t) resulting
from x(t).

A white noise, that is, white with respect to the band-
width of the system, has in impulse-shaped auto-
correlation function and can be used as input function
x(t) to determine the impulse response, in which case
Ry(t) =h (t).

On further consideration a chromatographic pro-
cedure can be regarded as the determination of an im-
pulse response; a chromatogram shows the response on
the impulse-shaped injection of the sample. The prime
objective of correlation chromatography is to determine
the chromatogram by stochastically injecting the sam-
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ple into the column and cross-correlating the input and
the resulting output. If the chromatographic system is
contaminated with noise, this noise is not correlated
with the input and its contribution to the overall cross-
correlation function converges to zero with increasing
correlation time. A considerable improvement of the
signal to noise ratio can be achieved in a relatively short
time.

AU.

5001-

50

0.

Application in Practice

The most suitable random input function, controlling
the input flow of the sample, is the pseudo random bi-
nary sequence (PRBS). This function is to be preferred
to other random inputs with approximately impulse-
shaped autocorrelation functions for the following rea-
sons:

1) It is a binary noise, the only two levels being + I
and - I or + 1 and 0. The levels can be used to
control simple on/off valves and correspond with
the injection of sample and eluent, respectively;

2) It can be easily generated and reproduced; and,
3) Its special properties offer the possibility of re-

ducing the correlation noise, which is caused by a
limited correlation time.

The PRBS is a logical function combining the proper-
ties of a true binary random signal with those of a re-
producible deterministic signal. After a certain time (a
sequence) the pattern is repeated. It is important that the
estimated autocorrelation function of a PRBS, if com-
puted over an integral number of sequences, is at all
times exactly equal to the autocorrelation function. Fig-
ure 11 shows a correlation HPLC set-up.

.05

phn calib aion cur.

ppt .0 Ppt '00ppt ppb .o ppb .o0 Ppb

Figure 12-Calibration graph of phenol with fluorimetric detection.

The analytical performance of CC is demonstrated in
figure 12. A calibration curve of phenol was measured
over five decades of concentration: 0.01 -100 pg -'.
Conventional HPLC equipment with fluorimetric de-
tection and a newly developed injection device for cor-
relation HPLC was used. The two higher concen-
trations (10-100 gg /') were determined by
conventional (reverse phase) HPLC and the two lower
concentrations (0.01-0.1 jvg 1-;) by correlation HPLC
with 16 and 3 sequences of correlation time, re-
spectively.

Measurements at the 1 ig -' level were performed
both by conventional and correlation HPLC (I se-
quence).

The bars indicated on the calibration graph represent
the peak area ± 3o-, (arbitrary units), when a-, is the
standard deviation of the integrated noise [10]. The in-
ner bars at the 1 Mig level represent the correlation re-

Figure 1l-Set-up of a correlation
HPLC system. The constant wa-
ter flow is depending on a PRBS
pattern directed either to the
sample or to the eluent reservoir.

SAMPLE LOOP
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suits and the outer bars the single injection results. The
detection limit for the single injection experiments, de-
fined as 3o-,, was about 0.5 Mtg 1'. The detection limit
with the 10 ng t1 concentration was estimated to be 3
ng l' (3 ppt).

Simultaneous Correlation Chromatography

On further consideration, the question arises whether
it is possible to inject different samples simultaneously,
each sample injection controlled by its own unique
PRBS. If these pseudo random sequences are mutually
uncorrelated, then the correlogram (chromatogram) of
each sample can be determined without any influence of
the other samples, even if the components in the samples
are the same. The problem is to find uncorrelated
sequences.

A possible solution is the following. A binary pseudo
random noise sequence is generated by a digital shift
register with a suitable modulo-2 feedback. Appropriate
digital multiplexing yields multiple uncorrelated pseudo
random outputs from a single n-bit shift register. Each
of the K output sequences is identical to the single shift
register sequence; they are staggered by 24/K bits, so
they will remain uncorrelated for l/K(2 0 -1) output
bits. These output sequences can be used for the men-
tioned simultaneous input patterns of a chro-
matographic column.

Figure 13 shows the result of a simulation experiment.
A separation of two components is simulated with four
different samples which were "injected" simulta-
neously. The "separation" is excellent.

The injection of n samples requires a correlation time
of n times the total elution time. Therefore, no time gain
can be expected. However, the method can be used for
a number of interesting applications. For example, si-
multaneous CC permits measurement and calibration at

PRES I

PROS 2

PROS 3

Figure 13-Simulated simultaneous chromatogram.

the same time under the same chromatographic condi-
tions.

Figure 14 shows an experimental set-up of a simulta-
neous chromatograph (HPLC) with four reservoirs
(three samples and eluent) together with four valves,
each controlled by a sequence uncorrelated with the
others. The flow stability is maintained by dividing a
clock period in four parts. In each part either eluent or
sample (respectively sample 1, 2, and 3) can be injected,
depending on the status (0 or 1) of the sequence con-
cerned.

The results of the analysis of three samples with naph-
talene, anthracene, and 1,2 benzanthracene is shown in
figure 15. The anthracene concentration in each sample
is the same; the concentration of the other components
in the different samples differ by a factor of 2.

The experimental injection system is not yet perfect,
and because of this, serves as a source of so-called cor-
relation "noise." This noise is not really random, but is

oETECTOR

Figure 14-Experimental set-up of a
simultaneous HPLC system.
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Figure 15-Simultaneous chromatogram of three samples, each con-
taining naphtalene, anthracene and 1,2 benzanthracene with differ-
ent concentrations.

Figure 16-Calibration graph for benzanthracene, simultaneously
determined.

Figure 17-Calibration graph for benzanthracene, successively deter-
mined.

composed of deterministic signals (ghost peaks). The
peaks of benzanthracene are used to construct a cali-
bration curve (fig. 16). Comparison of this curve with
the calibration curve determined in the usual way (fig.
17) shows the performance of the method. The advan-
tages are twofold: the random fluctuations are reduced
by the multiple injection and averaging property, and
both the unknown sample and the calibration sample are
measured simultaneously under exactly the same condi-
tions.

The final conclusion is that on-line chemometric tech-
niques, such as Kalman filtering and correlation pro-
cedures, create promising new possibilities in analytical
chemistry. The given improvements of the calibration
procedure are a typical example of the power of these
techniques.

Major contributions to this paper were made by P. C. Thijssen, J. M. Laeven and C. Mars.
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DISCUSSION
of the H.C. Smit paper, The Use of Kalman
Filtering and Correlation Techniques in
Analytical Calibration Procedures.

Diane Lambert
Department of Statistics, Carnegie-Mellon
University

I would like to thank Professor Smit for his thoughtful
paper on one of the most important steps in the measurement
process: the calibration which determines how instrument
response is translated into concentration units. As Dr. Smit
points out, calibration in analytical chemistry is often diffi-
cult because the response of analytical instruments changes
with time. The response may vary with ambient tempera-
ture, line voltage, and contamination that accrues with use,
for example. To compensate for such fluctuations, certain
U.S. EPA/CLP protocols for GC/MS instrumentation re-
quire that the calibration factor be determined every eight
hours. At the beginning of a shift, a standard sample with
known concentrations of the target chemicals is analyzed
and its response factors for the target chemicals are used to
quantitate all other samples analyzed in the same shift. In
some cases, a standard "check sample" is analyzed at the
end of the shift and its response factors are required to be
within some percentage of those observed earlier. This cal-
ibration method has two major shortcomings. First, the cal-
ibration factor is determined by only one sample, and if
there are any anomalies in its response factors, they affect
all the samples analyzed in the shift. Even small variability
in the response factors of standard samples may introduce
unacceptable variability in measured concentrations be-
tween shifts. Second, the calibration factor is changed every
eight hours regardless of how slowly or rapidly instrument
response is changing.

In contrast, Dr. Smit proposes that the calibration factor
be updated smoothly, based on the behavior of past samples,
and that a new standard sample be analyzed only when the
estimated imprecision of a measured concentration becomes
intolerably large. There are also other perhaps less evident
advantages to Dr. Smit's approach. First, the assumptions

about the measurement process that justify the updating
scheme are all explicit. Drift, measurement noise and sys-
tem noise are modelled parametrically, so that the adequacy
of models can be checked and the updating scheme can be
modified if the models are found lacking. For example, in
Professor Smit's application concening the determination of
chloride in aqueous samples, a quadratic rather than linear
model of drift is fit. Second, estimates of model parameters
such as background and average drift are convenient for
monitoring instrument performance. Third, the procedure
automatically provides information about the uncertainty of
measured concentrations. It is as important to report how
trustworthy reported concentations are as it is to report the
measurements themselves.

Prof. Smit has also considered simultaneous injection and
measurement of standard and "unknown" samples. There
are, however, some questions about his procedure for con-
ventional sequential analysis of samples that I believe have
not yet been resolved. For example, how effective is the
procedure if samples are analyzed at a rate of one per hour
rather than one per minute? What happens when several or
hundreds of chemicals, perhaps all at trace levels, are mea-
sured for the same sample? In some examples, accuracy was
increased by smoothing Kalman filter estimates and in oth-
ers it was not. What guidance can be given to a laboratory
technician? In short, what are the limits of applicability of
this calibration method and when should it be authorized?

Prof. Smit has taken an important step towards improving
the chemical measurement process. I look forward to his
future work on his procedure.

Work refenred to here was supported by the Nation.] Science Foundation Grant
Number R1H8410006.
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Feasibility studies on the application of multivariate statistical and mathematical algorithms to chemical problems
have proliferated over the past 15 years. In contrast to this, most commercially available computerized analytical
instruments have used in the data systems only those algorithms which acquire, display, or massage raw data. These
techniques would fall into the "preprocessing stage" of sophisticated data analysis studies. An exception to this is, of
course, are the efforts of instrumental manufacturers in the area of spectral library search. Recent firsthand experiences
with several groups designing instruments and analytical procedures for which rudimentary statistical techniques were
inadequate have focused efforts on the question of multivariate data systems for instrumentation. That a sophisticated
and versatile mathematical data system must also be intelligent (not just a number cruncher) is an overriding consider-
ation in our current development. For example, consider a system set up to perform pattern recognition. Either all users
need to understand the interaction of data structures with algorithm type and assumptions or the data system must possess
such an understanding. It would seem, in such cases, that the algorithm driver should include an expert systems
specifically geared to mimic a chemometrician as well as one to aid interpretation in terms of the chemistry of a result.
Three areas of modem analysis will be discussed: i) developments in the area of preprocessing and pattern recognition
systems for pyrolysis gas chromatography and pyrolysis mass spectrometry; 2) methods projected for the cross interpre-
tation of several analysis techniques such as several spectroscopies on single samples; and 3) the advantages of having
well defined chemical problems for expert systems/pattern recognition automation.

Key words: data systems, intelligent; instrumentation; multivariate algorithms, statistical and mathematical; pattern
recognition; preprocessing; pyrolysis gas chromatography; pyrolysis mass spectrometry.

Modem computer hardware and software technologies
have revolutionized the direction of analytical chemistry
over the past 15 years. Standard multivariate statistical tech-
niques applied to optimization and control of instrumenta-
tion as well as routine decision making are at the forefront
of new instrumental methods such as biomedical 3-

dimensional scanners and pyrolysis MS and GC/MS as well
as more established measurement techniques. Despite these
advances, little attention has been paid to the exploitation of

intelligent computerized instrumentation in the design phase
of chemical research.

Instrumental intelligence is the ability of a scientific in-

strument to perform a single or several intelligence func-

About the Authors: Alice M. Harper is with the Chem-
istry Department at the University of Texas at El Paso.
Shirley A. Liebman is with the Ballistics Research Labora-

tories at Aberdeen Proving Grounds.

tions in such a way that operations normally performed by
the scientist are completely under automated computer con-
trol and decision making. Under this definition, intelligent
instruments are quite common. Indeed in recent years, man-
ufacturers of small scientific equipment have used the term

"intelligent" in conjunction with single purpose items such

as recorders to describe the addition of software and/or
programmability to the device. Concurrent with this, larger
scientific instruments have been marketed with data systems
hosting a wide variety of intelligence functions including
control and optimization of instrumental variables, optional
modes of experimental design, signal averaging, filtering
and integration as well as post analysis data massaging and
library search interpretation. Although instruments with the

software to perform sophisticated intelligence operations
exist, they are not so readily marketed as intelligent instru-
ments. For example, modem pulsed Fourier transforms nu-
clear magnetic resonance spectrometers (NMR) have micro-
computers built into the system, operate over a wide range
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of NMR experimental designs, and control instrumental
parameters; however, decision making is, for the most part,

an operator based function. For this reason, such instru-
ments have limited "intelligence" in comparison to the level

of intelligence required to carry an experiment to comple-

tion without extensive interaction with the operator. In fact,

it could be that more intelligent research instruments might

also be less versatile. The limitation is the current state of
technology of intelligence programming. The instrument, if
used for routine analysis where problem statements can be

well defined, could operate with no loss of utility as a totally
automated and intelligent instrument.

Figure I gives insight into the problems arising in creating

intelligence programs for instrumentation. Figure la) is an

analytical chemist's perception of a totally automated exper-

imental design []1. As can be seen, the experiment remains

unspecified without an initial problem statement. The issue
of intelligent data systems for single instruments is one of
either defining the set of all possible problem statements in

an evolutionary design or restricting the analysis to a single

well defined problem. Figure lb) is an example of a first

stage multivariate data analysis system proposed for re-

search applications in pyrolysis mass spectrometry [2]. The

design is one that leaves the problem statement, data inter-

pretation and decision making entirely in the hands of the

scientist. What is really described in this figure is a statisti-

cal package residing on a microcomputer which receives
data from the mass spectrometer. However, as Isenhour has

IFigures in brackets indicate literature references.

Figure 1-Four designs for instru-
ment data systems.
a. Totally automated experimental

design and decision making.
b. Multivariate analysis for spec-

tral instruments.

c. Expert systems driven single
purpose instrument.

d. Laboratory automation using
expert systems drivers.

454

a. PROBLEM STATEMENT, I ONE~E ~suiITL Sm 

IHYPOTHESIS ITIII
a.

b. |DATA ACQUISITION|

I SPECTRAL NORitALIZATION]|

UNIVARIATE & FACTOR ANALYSIS 3 SUPERVISED
BIVARIATE MULTIDIMENSIONAL LATTERN |

C-

EXPERIMENTAL CONTROL OPTIMIZATION DATA ANALYSIS
DESIGN _ INTERPRETATIC

EXPERT SYSTEM EXPERT SYSTEM EXPERT SYSTEM EXPERT SYSTEP

KNOWLEDGE BASE KNOWLEDGE BS KNOWLEDGE BASE KNOWLEDGE HA

d. EXPERT SYSTEMS
|EXPERIMENTAL,'SG 

INSTRUMENT I INSTUET2 .. .. ISRMNCONTROLCOTOCNRL
PREPROCESSING PEROCESSING 

IINTERPRETATIO 'INTERPRETATION INTERPRETATION

DATA BASE MANAGEMENT EXPERT SYSTEM

DATA ANALYSISINTERPRETATIONI

I



demonstrated, multivariate factoring of spectral libraries of-
fers advantages in the interpretation of complex single spec-
tra [3]. It would seem that the incorporation of a multivariate
statistics package in the data system is a key element in
intelligence programming for many instruments. Figure ic)
incorporates the expert system approach to intelligence for
instrumental systems. Under this design, the instrument can
accommodate a series of problem statements and decision
networks at various analysis stages and uses an intelligent
driver for the multivariate analysis and interpretive stages of
the analysis. Figure Id) places such a system into the re-
search laboratory controlling a variety of instruments and
interpreting results based on one or more analyses.

Although the diagrams of figures lb-Id are not compre-
hensive designs for total automation, they do provide a
hierarchy for linking problem statements and decision mak-
ing into multivariate research problems. After a brief discus-
sion of components of intelligence designs, an example will
be presented of the feasibility of developing expert system
data reduction for pyrolysis analysis problems.
Problem Statements: Ideally a problem statement is
analogous to the standard hypothesis in statistical analysis.
Under the hypothesis a knowledge base can be collected and
the hypothesis tested. For example, a patient does or does
not carry a genetic trait [4]. Unfortunately, chemical re-
search problems are often ill-specified and the problem
statement may become a hierarchy of data investigations
leading to one or more problem statements. For example,
I) are there differences in the chemical composition of a
series of samples? if differences do occur; 2) what are the
nature of the differences?; 3) do the chemical differences
correlate with observed changes in physical properties?; and
4) can physical properties be predicted from the chemical
differences? [5,6].
Knowledge Base: In order for a instrument to operate as an
intelligent system, it must have the knowledge base neces-
sary to arrive at a solution for each of its problem state-
ments. This knowledge base may contain data, rules ("Mass
peak 94 is phenol"), programs, and heuristic knowledge.

Consider the knowledge base required for setting up and
operating routine analyses of polymer composition by pyrol-
ysis gas chromatography. Possible problem statement areas
include optimization of pyrolysis parameters, chromato-
graphic conditions and interface characteristics, control of
instrument and data acquisition parameters, data reduc-
tion, and data interpretation. The knowledge base must
include all information necessary to each of the proposed
problem statements. For optimization of parameters,
rules governing the detection of an optimum, algorithms
(e.g., "simplex" [7]) for efficiently moving toward an
optimum, rules for hierachical movements within the al-
gorithm, rules for the detection of poor optimization sur-
face structure, and representative previous optima data
might be employed in the decision making. Such optima

will be determined, in part, by the polymer degradation
characteristics and therefore will not, in this case, be inde-
pendent of the samples used in the analysis. Instrumental
control might employ a knowledge base of rules for the
automation of events such as the initiation of sample pyrol-
ysis and data collection. Data reduction for this method will
require the rules and data necessary for baseline correction,
chromatographic normalization, and peak matching. The
knowledge base requires a "memory" of previously col-
lected data to aid peak matching protocols, rules for baseline
determinations, transformations for baseline correction,
normalization rules and algorithms, and rules for acceptance
or rejection of the chromatogram under consideration. Data
interpretation on the other hand might require a library of
previous chromatograms as well as rules and/or algorithms
for interpretation of the current event based on a knowledge
of past data with verified interpretations.

Development of the knowledge base is the expensive and
time consuming operation in the development instrumental
intelligence even when the application is highly specific. It
must be remembered that each operation that a human might
perform automatically from experience must be pro-
grammed into the data system. For this reason, among the
attributes of the system, there needs to be evolutionary oper-
ation. In other words, in addition to long term knowledge,
facts about the current data and new conjectures under con-
sideration must also be easily accommodated.

Expert Systems Driven Multivariate Data Systems: The
response of many modern chemical instruments (e.g., spec-
trometers and chromatographs) is inherently multivariate.
For such instruments, data reduction and interpretation often
consume a greater portion of analysis time than data collec-
tion, and requires scientific expertise. The time delay be-
tween data collection and decision making has become an
acute problem for newer hyphenated techniques, such as gas
chromatography-mass spectrometry and mass spectrometry-
mass spectrometry, which are capable of collecting thou-
sands of mass spectral peaks in a short period of time.

One possible solution to the problems imposed by large
bodies of data is to incorporate into the instrument a data
reduction system consisting of multivariate analysis meth-
ods. The problem encountered in the actual implementation
of such a system is that few experts in instrumental analysis
have the expertise for carrying multivariate statistical analy-
ses. It has become increasing apparent that instruments em-
ploying versatile multivariate based data systems should be
capable of operating in a transparent data analysis mode. In
order to accomplish this, the expertise of a chemometrician
will need to be programmed into an expert systems driver
for the instrument data system. Given a problem statement,
and a knowledge base of rules from previous experience, the
computer could decide from a variety of possibilities how to
reduce the data and represent the results in a meaningful
form. A relatively simplistic example of this is the problem

455



statement "Is there a correlation between two independent
variables?" Invisible to the user would be the operations for
determining the integrity of the variable distributions, a
computation of the correlation and a determination of the
significance of the correlation coefficient of the relation-
ship. The result might take a simple form such as "there
appears to be a significant correlation between the first vari-
able and the logarithm of the second variable. Would you
like to see the computed values?"

Demonstration of Expert System for Data
Analysis in Curie-point Pyrolysis

Mass Spectrometry

Pyrolysis mass spectrometry has come to the attention of
both mass spectrometrists and chemometricians because of
its utility in the analysis of polymeric materials and the
complexity of the mass spectra produced by natural poly-
mers and biopolymers. The technique involves degradation
of the solid material by pyrolysis followed by mass spec-
trometry of the pyrolysis fragments. It has been demon-
strated by the pioneering work of Meuzelaar (for example
see [8]) that Curie-point pyrolyses of samples of biomateri-
als can produce profiles which, when properly normalized
[2], are reproducible and diagnostic of the chemical similar-
ities and dissimilarities among groups of samples and are
quantitative under appropriate experimental designs [9]. Be-
cause the process of pyrolysis followed by mass spectrome-
try of the network polymer of natural heterogeneous bio-
polymers produces mass spectra with peaks which tend to be
highly correlated, the interpretation problems created
by the vast number of, and the overlap of, the masses are
solved through multivariate analysis of the mass spectral
profiles. A data system for a pyrolysis mass spectrometer
would be of limited utility without multivariate statistical
methods [2].

To test the hypothesis that an expert systems approach to
data reduction is potentially helpful and feasible, an expert
systems driver was implemented to mimic the data analysis
portion of a Rocky Mountain Coal study done at Biomateri-
als Profiling Center in Utah. Detailed results of the original
study can be found in [5,6] and of the numerical methods
used in [2]. Briefly, 102 Rocky Mountain Coals were ana-
lyzed in quadruplicate by pyrolysis mass spectrometry. The
pyrolysis profiles were added to a preexisting data set con-
taining conventional measurements on the same coal sam-
ples (see table 1). After normalization of the profiles by the
method of Eshwis et al. [10], average mass specta were
analyzed using multivariate analysis techniques.

Figure 2 is a minimal design for an expert systems driven

data acquisition and analysis system for pyrolysis mass
spectrometry. Figure 3 shows the design of the data bases
for the present application. As diagrammed in figure 2, each

Table 1. Conventional measurement contained in the "old data" data
base for the Rocky Mountain coals.

Conventional Measurements

Vitrinite % Potassium
Fusinite % Phosphorus
Semifusinite % Moisture
Macrinite % Pyritic sulfur
Liptinite % Mineral matter
Vitrinite Reflectance % Volatiles
% Silicon % Organic sulfur
% Aluminum Calorific value
% Titanium % Organic carbon
% Magnesium % Organic hydrogen
% Calcium % Organic sulfur
% Sodium % Organic nitrogen

% Organic oxygen

operation of the instrument requires an expert systems driver
and decision module for its automation. A rudimentary ex-
pert systems was built to mimic the decision making used
for statistical analysis of coal pyrolysis patterns. This sys-
tem demonstrates the problems and pitfalls associated with
intelligent instrumental development.

Normalization is rarely an option in pyrolysis techniques
since the size of the sample undergoing electron impact is
determined by the quantity of pyrolsates actually making
their way to the ion source of the mass spectrometer. For
this reason, spectra are normalized to place each sample on
a relative quantitative basis. Furthermore, when replicates
of a single sample are analyzed in detail, it is found that
some peaks replicate better than others. For example, if an
organic solvent is used during the sample preparation, the
mass peaks due to this solvent replicate poorly. The same is
true of contaminants absorbed to the sample matrix. On the
other hand, because the sample size in terms of total ion
counts is a variable in these experiments, often one or more
replicate spectra will exhibit outlying tendencies when com-
pared to other replicates of the same sample.

NORMA [2], developed by Meuzelaar's group at Utah, is
designed to select peaks with stable variance characteristics
for inclusion in the normalization process. With this routine
an expert interacts with the computer in a loop of peak
deletions and replicate spectra deletions until a set of peaks
is defined which stabilizes the normalization process.

An expert systems approach to the software interaction
represents peaks by their variances over the samples and
sample replicates and spectra by Euclidean distances be-
tween replicates over the mass units. A library data base for
normalization is established which contains spectra patterns
for commonly used solvents and commonly encountered
contaminates as well as the background spectrum from the
mass spectrometer. The expert sysems are initialized by
computation of peak variances. The variances are ordered
high to low andthe shape of the plot of ordered variances is
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Figure 2-Expert systems driven py-
rolysis mass spectrometer. Each
stage of data acquisition, analysis,
and interpretation has decision pro-
tocols based on a knowledge base
of an expert. Note that the interac-
tion between mathematical meth-
rds and the expert system chemo-
metrician.
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quired for an application oriented
expert system for instrumental
analysis and interpretation.
Knowledge representation takes
two forms: 1. knowledge which
when taken as a whole or in pans
can be represented as a similarity
or correlation; and 2. knowledge
for which antecedent clauses must
be satisfied in order for the inter-
pretativedecision making process
to occur.

analyzed. The library is searched under expert systems guid-
ance to account for the peaks exhibiting high relative vari-
ance. For example, background spectrum is placed under
consideration only when the total ion counts of the sample
spectrum is less than a factor at of the background. After
examination of the library, a decision is made as to which
peaks will be deleted based on their expected contribution to
the peak variation and with restrictions on the total number
of peaks that can be deleted at this stage of analysis. This
first deletion is a permanent deletion of peaks. None of the
casual base peak deletions is reexamined at later stages.

The distance matrix of replicates is generated using the
peaks remaining in the analysis and samples are deleted
based on a comparison of their distances from the expected
distance generated as a mean distance over the samples with
variance d. (Note that such a formulation may ignore sys-
tematic error among the sample replicates, and won't per-
form at the expert level under such a condition).

The next stage on analysis involves computation of both
peak variances and sample distances. The rank order of the
peak variances is compared. If variance reduction seems to
be exhibited by a small set of peaks upon deletion of the
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samples, the peaks involved are temporarily deleted, the
samples previously deleted are brought back into analysis
and the distances reexamined. The expert systems decide
which will be deleted at this stage, peaks or samples based
on the recomputed distances. The iterative decision mak-
ing-statistical computation continues until a key set of
peaks remain activated for normalization over all spectra. A
diagram of the proposed normalization experts system is
shown in figure 4.

The system, as described, does not completely emulate an
expert for all applications of pyrolysis mass spectrometry. It
has already been noted that the data evaluation does not
address errors which arise from time dependent or system-
atic error. In addition to this, the decision making process,
while designed to emulate the human decision process based
on statistical results, does not necessarily operate on a one-
to-one correspondence with a human expert. The problem is
that two experts working on the same set of data may arrive
at approximately the same results via slightly different pro-
cedural routes. The same is true of the expert system when
compared to a human expert. The major deviations from a

-

next
iteration

I~1

I

I

1i

3-~ | Normalization of spectra I

i convergence
Quit and save normalization

Figure 4-Interaction of expert systems and statistical computation for a
rational normalization process for pyrolysis mass spectrometry.

human procedure found when working with this system is
the lack of "intuition" or "fuzzy logic" that is used by the
expert. The expert systems converges in more steps than is
necessary by human interaction with the statistical al-
gorithms and for some data bases, has trouble defining con-
vergence at the solution. For example, the optimal cut off
parameters for variance and distance change between data
sets. These and other problems are best solved by training
the expert systems to recognize the structure of a good
spectal solution in addition to the structure of good statistics.

Correlation Based Hypothesis Testing

Perhaps the most often asked question of large data sets
involves finding relationships between the variables or be-
tween the variables and an external parameter. Table 2 lists
the form of the problem statements included in our data
system for this demonstration. The term "relate" invokes
one of several multivari ate algorithms for the study of corre-
lations in the data. The possible responses are the Pearson
correlation coefficient, linear regression, factor analysis or
canonical correlation analysis.

Consider the problem statement: What is the relationship
of peak 34 (H2S) in the mass spectrum of coal to the total
organic sulfur from the conventional data matrix. "Relate
current data, mass 34 to old data, organic sulfur over sam-
ples, all" results in a computation of the correlation coeffi-
cients, a estimate of significance and the confidence interval
about the correlation. "Relate current data, mass 34 to old
data, organic, sulfur over samples, all; Interprete using old
data, organic sulfur" results in the additional computation
of (organic sulfur)=a (mass 34)+b with residuals Ej. The
residual pattern is tested for randomness. A failure results in
a search through the library for a reference residual pattern
with similarities to the computed residual pattern.

The next relate function asks for a study of the relation-
ships among variables in the current data set. "Relate cur-
rent data, all with current data, all over samples, all"
results in the factor analysis of the data correlation matix.
The loadings of the factor analysis are interpreted for the
variable relationships seen along the orthogonal axes of the
original rotation. This interpretation is an experts systems
based analysis of the major peak series and will be discussed
later.

Interpretation of the factor score is a difficult problem.
Consider the two dimensional factor score projection of
these data. Figure 5a is a projection without labels. Figure
5b is the same projection after a human expert has assigned
sample labels corresponding to the geological source of the
samples and an interpretation. Figure Sa is representative of
the information about the factor scores stored by the com-
puter. The addition of labels is readily accomplished but,
without training, patterns formed by the sample labels
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Program Initialization
Select samples
Sort if necessary
Evaluate ion intensities

Compute mass variances
a. over all samples
b. within replicates
Computte sample distances
a. over all samples
b. within replicates
Sort all statistics
Form F-statistic ratios

Expert system evaluation
a. of mass variations
b. of sample distances

Expert system decisions
a. delete mass peaks
b. delete samples
c. reactivate mass peaks
d. reactivate samples



Table 2. Variations of the expert system commands RELATE and INTERPRETE USING. The FORTRAN subroutine calling protocols are
based on the data types used in each variable location of the command and on the command sequence. Note that the same command strings
and rotes cm accomodate computation on questions about the data base transpose matrix when ".OVER samples ... " is replaced by
"..OVER variables..."

RELATE data base t, variable list I TO data base 2, variable list 2 OVER samples, sample list

Examples:

1. RELATE current data, mass 34 TO old data, organic sulfur OVER samples, match
(Results: correlation coefficient and significance test)

2. RELATE current data, mass 34 TO old data, organic sulfur OVER samples, match; INTERPRETE USING old data, organic sulfur
(Results: correlation computed at least squares fit, significance test, and residual pattern evaluation)

3. RELATE current data, all TO current data, all OVER samples, all
(Results: Factor analysis of current data and loading interpretation)

4. RELATE current data, all TO old data, calorific value OVER samples, match, active; INTERPRETE USING old data, calorific value
(Results: Factor analysis of current data followed by target rotation to calorific value and interpretation of loadings)

5. RELATE current data, all TO old data, all OVER samples, match
(Results: Canonical correlation analysis of two data bases and interpretation of mass spectral loadings)

within the space have little meaning. A generalized solution (a)
to this problem does not seem likely. Each study would *

require an elaborate knowledge base specific to the samples *

in order to interpret trends seen in this picture.
For the coal data, the old data matrix of conventional

measurements provides a more easily implemented route for ,
hypothesis testing on the pyrolysis mass spectral factors.
Consider once more the "relate" command. After matching
the two data sets by the logic used in [5], factor analysis of
the PY/MS set followed by "Relate current data 2, all with 0.0- - so

old data, calorific value using samples, active; interpret c 'C
using old data, calorific value" results in the regression *
analysis of calorific value=E W (factor scores)py-.T+b pro-
ducting both the variable and the sample relationships of the -l0
rotation of the Py/MS data to calorific value. The results are s . .
given in figure 6 and discussed in [6]. 42 0 0.D 1.0

The last example of a correlation based statement is 2.D- -

"Relate current data, all with old data, all over samples, CANIEL b
all." This results in a cannonical correlation analysis factor- 'KING

ing both data matrics in such a way that the overlap in
information between the sets is maximized. Four factors are -. -

extracted. The first two of these are shown in figures 7 a o

through 9. This analysis showed these data sets to be ap-suBBIr
proximately 80% correlated over the coal samples. The r doe a _ -.

major chemistry of the conventional measurement trends are
given above the spectral representation form the Py/MS - -

factors. Z OS^ , _

Figure S-Comparison of computer representation of factor scoes (a.) to c . OA'

the same plot after interpretation by an expert (b.) Symbols represent X _ .- -¶
sample specific relationships deduced by the expert. Dotted lines are a B ' U * UPPER
separation of the samples into classes not available to the computer in the cto.
pyrolysis data base. The knowledge base required to mimic the expert ,
would form a reference book of information about the samples. The 4.o -1.0 0.0 D.0

generation of such a knowledge base would be a fonritable task. FACTOR I SCORE
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Figure 6-Chemical interpretation of the mass spectral peaks associated strongly with a targeted least squares rotation of pyrolysis factor scores to
the external parameter calorific value. Peak interpretations were accomplished by the system described in figure 10. Results on chemical
interpretation are identical to those of the original study, demonstrating that chemical infonnation is more readily implimented as an expert system
than sample specific information for this instrumental method.

R(ZAcXc) = R(ZAPXP) = 0.99

R(ACXCJAPXP) = 0,95

CONVENTIONAL MEASUREMENT SET

CALORIFIC VALUE -

ORGANIC OXYGEN +

MOISTURE +

ORGANIC CARBON -
REFLECTANCE -

PYROLYSIS MASS SPECTRAL DATA SET

1681 3,-. 1
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Figure 7-First canonical variate loadings for the rotation of pyrolysis mass spectra of coal samples to the conventional data matrix described in
tablet. The correlation of the data bases to the derived variate (Z) is 0.99 and to each other is 0.95. A0Xc and APXP are the linear composites of
the conventional and pyrolysis data bases respectively. Only the signs of the strongly correlated variables of the conventional data are given.
Loadings for the pyrolysis data are given as positive and negative. Interpretations of mass peak were accomplished using the system described in
figure 10.
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R(ZAcXc) = R(ZAPXP) = 0.96
R(ACXCiAPXP) = 0.86

CONVENTIONAL MEASUREMENT SET
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REFLECTANCE -

PYROLYSIS MASS SPECTRAL DATA SET

ISOPRENOID SIGNALS ?

41 DIENES 79 TRIENES 1 as 202'41 OlDIES ~ ~ 9 159 173
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Figure S-Second canonical variate loadings for the rotation of pyrolysis mass spectra to the conventional data matrix described in table 1. See figure
7 for an explanation of the symbols used in this figure. Interpretation by the system described in figure 10 failed for the positive loadings labeled
as isoprenoid signals?. These were assigned by the authors.

Figure 9-Canonical variate scores
on the first two axes (described in
figs. 7 and 8). Dotted lines separat-
ing classes were inserted by the an-
thors and not interpreted by the ex-
pert system (see fig. 5 for an
explanation of implimentation -

problem for sample interpretation.)

HIGH
VOLATILE
BITUMINOUS,

A

I.

: 0

/ I
* 1

*11 0. *0

0 

0 0

** | @ - @
0.8

%. atL *
.0* :0

S 0SOD _ -*

. #0
* :0
0

.

0
HIGH VOLATILE
BITUMINOUS B

0
0

0

I SUBBITUMINOUS

*I

HIGH VOLATILE BITUMINOUS
C

FIRST CANOnICAL COMPONENT

461

II

i

I

I

i

II

I

I

I



The assignment of chemical interpretations for mass spec-
tra and for factor loadings is accomplished by an expert
systems intepreter that can be used for any study in which
the samples are coal. The data base for the interpretation
includes commonly encountered chemical species in coal,
the major peaks expected from their presence and, given two
chemical species with similar patterns, the probability of
their contribution as a major component to a coal pattern.
Also included is a routine for generating molecular species
from C,N,O, and S given the base peak molecular weight
and the ion series. The operation of the expert system along
with the results of each iteration are given in figure 10.
Because Py-MS spectra contain many low intensity masses
of questionable interpretation, and because factor loadings
are rarely pure, only the most intense ion series patterns are
interpreted. The program is initialized by setting an initial
threshold limit (TL3). The ions (m/z) above the threshold
are collected, sorted and given temporary chemical assign-
ments. The threshold limit is lowered each time by a lesser
factor until it encounters the "grassy" region of the spec-
trum. At this point, permanent ion series interpretations are
assigned. The "?" appearing in the figure for Mass 104
means that no library interpretation of this peak was found
and that the number of peaks in the ion series was below the
limit set for generation of hypothetical molecular species.
The entire system is diagramed in figure 11.

a

3

TI)3 40 60 80 100 VO 140 160 180 200 220

COLLECTED MASSES: 2a .2 C2 H4
94 £7810 C6S6O
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132. 146.160
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Discussion

The correlation work described in this paper along with
similar considerations of other algorithms seem to support
the possibility that, for a given instrument, an expert sys-
tems driver for data analysis can be developed which is
independent of the nature of the chemical problem. The way
to accomplish this is to build expert systems drivers to
interpret the problem statement and to interpret the data
analysis results. Viewed in this manner, an instrument-
dependent expert system can generate the experimental de-
sign and optmization from the problem statement and pass
to the data analysis driver the statistical elements necessary
for its decision on the proper data reduction protocol. Learn-
ing is initiated when the data analysis system receives an
unrecognizable set of elements. Otherwise, the expert sys-
tem selects from the knowledge base the algorithm sequence
for data reduction.

We are currently extending these concepts to the con-
struction of an expert system, EXMAT, for experimental
design, optimization, data reduction and interpretation of
measurements made on a sample by a variety of thermal
analysis instrumental techniques. TIMM® (General Re-
search Corp., Mclean, VA) a FORTRAN-based expert
system generator, has been enabled development of a
heuristically-linked set of expert systems for material analy-
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Figure 10-Operation of the expert system used to interprete the pyrolysis
mass spectra and spectral loadings in the demonstration. The rules used
to sort and interprete the peaks are based on ion series produced by mass
differences of 14 (CH2 ). Base peaks help terminate series for resolution
of multiple interpretations. ? is a peak not present in the data base.

sis. The attributes of the TIMM® system are listed in table
3. In order to accomplish the analytical goals of this project,
we have combined the concepts of specific instrumental
intelligence with the goals set forth in figure la to provide
a data system capable of experimental designs utilizing one
or several analysis techniques. Each instrument retains its
own control, design, preprocessing and interpretative expert
systems unit but the data analysis unit has, of necessity,
been generalized for analysis of data from a single or from
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Figure 11-Steps in the expert sys-
tem interpretation on pyrolysis
mass spectra of coals.

I SET ~THRESHOL~D I ICOLLECT PEAKS SORT PEAKS FORI
IN (T) maxALKYL LOSS I

SEARCH RULES|COLTPEK
FOR INTZRPRETATION Ia IN NEXT TI

I not found / ast TI
| GENERIATE FORMULA-S k|EIIAE[ IDSS GENTE 
|Ca Ib0c d e PEK 1FINALLS A STRUCTURES[

Table 3. Attributes of the TIMMR expert system. TIMMR was adapted to our application because addition of FORTRAN subroutine library
calls is more readily accomplished than in other systems and because the decision logic can already use computationally based rules as
well as chaining logic rules.

TIMMR: A FORTRAN - BASED EXPERT SYSTEMS APPLICATIONS GENERATOR, General Research Corporation

Forwardlbackward chaining using analog rather than propositional representation

Knowledge base divided into two sections: declarative knowledge and knowledge body

Pattemn-matching using a nearest neighbors search algorithm to compare cunent situation with antecedent clauses

Unique similarity metric computed form order information in declarative knowledge giving distance metric over all classes

Decision structure and knowledge body readily developed and modified by expert in any domain

Heuristically-linked expert system using implicit and explicit method permitting processing of "microdecisions' that are pan of
"macrodecisions"

Each system independently built, trained, exercised, checked for consistancy and completeness and then generalized

multiple measurement techniques. Table 4 gives a outline of
the decision making process for the experimental design
expert system, and for data interpretation. Rule generation
under the system is demonstrated in figure 12. The expert
system strategy for the chemometrics portion of the system
is similar to that described previously in the Py-MS example

with the added feature that the system generate the protocol
of analysis based on the initial problem statement and the
available data. The system is in its earliest stages of devel-
opment so any or all aspects of the proposed design are
subject to modifications as experience is gained in training
the system. Nevertheless, we feel that an expert systems
such as ours offers a strategy for automation of laboratory
instrumentation and interpretation under an expert systems
approach.

Rule I
If:

SCOPE IS R&D
SAMPLE AMT IS TRACE
SAMPLE FORM IS POWDER
SAMPLE PROCESS IS *
SAMPLE HISTORY IS *
INSTR. AVAIL IS ALL

Then:
ANAL STRATEGY IS SPECTRMS(1.0)

Figure 12-Example of rule generation in EXMAT using the TIMM®
expert system. Rule is from the expert system for analytical strategy.

Table 4. Example taken from overall organization structure of
EXMAT, an expert systems for materials analysis.

ANALYTICAL STRATEGY DATA INTERPRETATON

CHOICES: CHOICES:
CHROMGC PATTERN RECOGNITION
CHROMLC SAMPLE ID
SPECTRFTIR GROUP ID
SPECTRMS PEAKS ID
THERMTA NO ID
ELEMEL COMBINE DB

EXTEND DB
CORRELATION

FACTORS: FACTORS:
I. SCOPE I. DATA GENERATE

QUAL FTIR DB
QUANT MS DB
PURITY LC DB
QUALDQUANT TA DB
TIME/FUND LIMIT GC-FTIR DB
TRACE GC-MS DO
R&D GC DB
CORRELATION 2. GC DB TREATMENT
SCREEN DIRECT COMPARE

CHEMOMETRICS
DATA SET ID

3. FTIR DB TREATMENT
DIRECT COMPARE
PAIRS SEARCH

4. ETC. FOR EACH
DATA BASE (DB)
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DISCUSSION
of the Harper-Liebman paper, Intelligent
Instrumentation

Richard J. Beckman
Los Alamos National Laboratory

There has been an instrumentation revolution in the
chemical world which has changed the way both chemists
and statisticians think. Instrumentation has lead chemists to
multivariate data-much multivariate data. Gone are the
days when the chemist takes three univariate measurements
and discards the most outlying.

Faced with these large arrays of data the chemist can
become somewhat lost in the large assemblage of multivari-
ate methods available for the analysis of the data. It is
extremely difficult for the chemist-and the statistician for
that matter-to form hypotheses and develop answers about
the chemical systems under investigation when faced with
large amounts of multivariate chemical data.

Professor Harper proposes an intelligent instrument to
solve the problem of the analysis and interpretation of the
data. This machine will perform the experiments, formulate
the hypotheses, and "understand" the chemical systems
under investigation.

What impact will such an instrument have on both
chemists and statisticians? For the chemist, such an instru-

ment will allow more time for experimentation, more time
to think about the chemical systems under investigation, a

better understanding of the system, and better statistical and
numerical analyses. There would be a chemometrician in

every instrument! For the statistician, the instrument will
mean the removal of outliers, trimmed data, automated re-
gressions, and automated multivariate analyses. Most im-
portant, the entire model building process will be auto-
mated.

There are some things to worry about with intelligent
instruments. Will the chemist know how the data have been
reduced and the meaning of the analysis? Instruments made
today do some data reduction, such as calibration and trim-
ming, and the methods used in this reduction are seldom
known by the chemist. With a totally automated system the
chemist is likely to know less about the analysis than he does
with the systems in use today.

The statistician when reading the paper of Professor
Harper probably asks what is the role of the statistician in
this process? Will the statistician be replaced with a mi-
crochip? Can the statistician be replaced with a microchip?
In my view the statistician will be replaced by a microchip
in instruments such as those discussed by Professor Harper.
This will happen with or without the help of the statistician,
but it is with the statistician's help that good statistical
practices will be part of the intelligent instrument.

Professor Harper should be thanked for her view of the
future chemical laboratory. This is an exciting time for both
the chemist and the statistician to work and learn together.
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This paper presents a technique based on the inuitively-simple concepts of Sample Domain and Effective Prediction
Domain, for dealing with linear regression situations involving collinearity of any degree of severity. The Effective
Prediction Domain (EPD) clarifies the concept of collinearity. and leads to conclusions that are quantitative and
practically useful. The method allows for the presence of expansion tenms amongthe regressors, and requies no changes
when dealing with such situations.

Key words: collinearity: efficient prediction domain; ill-conditioning; multicollinearity; regression analysis.

Introduction

The scientists' search for relations between measurable
properties of materials or physical systems can be effec-
tively helped by the statistical technique known as multiple
regression. Even when limited to linear regression, the tech-
nique is often of great value, as we shall see below. Often,
however, difficulties in interpretation arise because of a
condition called collinearity. This condition, which is inher-
ent in the structure of the design points (the X space) of the
regression experiment, is often treated, at least implicitly, as
a sort of disease of the data that is to be remedied by special
mathematical manipulations of the data.

We consider collinearity not as a disease but rather as
additional information provided by the data to the data ana-
lyst, warning him to limit the use of the regression equation
as a prediction tool to specific subspaces of the X space, and
telling him precisely what these subspaces are. Thus,
collinearity is an indication of limitations inherent in the
data. The statistician's task is to detect these limitations and
to express them in a useful manner. If this viewpoint is
adopted, there is no need for remedial techniques. All that
is required is a method for extracting the additional informa-
tion from the data. We will present such a method.

The Model

We assume that measurements y have been made at a
number of "x-points," each point being characterized by the
numerical values of a number of "regressor-variables" xj.
We also assume that y is a linear function of the x -variables.
The mathematical model, forp regressors, is:..=PXI+PX2+- .+PXj+. ..+ppxp+E(1)

where E is the error in the y measurement. We denote by N

the number of points, or "design points", i.e., the combina-
tions of the x's at which y is measured.

Usually, the variable xl is identically equal to "one" for
all N points, to allow for the presence of a constant term.
Then the expected value of y, denoted E(y), is equal to fi1
when all the otherx 's are zero. This point, called the origin,
is seldom one of the design points and is, in fact, quite often
far removed from all design points. In many cases this point
is even devoid of physical meaning.

First Example:
Firefly Data

We present the problem in terms of two examples of real
data. The first data set (Buck [IIl) is shown in table 1. It
consists of 17 points and has two regressors, in addition to

Figures in brackets indicate literature references.
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Table 1. Data for firefly study.

x1 x2 X3 y

1 26 21.1 45
1 35 23.9 40
1 40 17.8 58
1 41 22.0 50
1 45 22.3 31
1 55 23.3 52
1 55 20.5 54
1 56 25.5 38
1 70 21.7 40
1, 75 26.7 28
1 79 25.0 38
1 87 24.4 36
1 100 22.3 36
1 100 25.5 46
1 110 26.7 40
1 130 25.5 31
1 140 26.7 40

Definition of Variables
y =time of first flash (number of minutes after 6:30 p.m.)
x2 =ight intensity (in metercandles, me)
xr=temperature (0 C)

a constant term (xlea 1). The measurement is the time of the
first flash of a firefly, after 6:30 p.m. It is studied as a
function of ambient light intensity (x2) and temperature (x 3).

Figure I is a plot of X3 versus x2. There is obviously a
trend: X3 increases as x2 increases. The existence of a rela-

A%

tion of this type between some of the regressor variables
often causes difficulties in the interpretation of the regres-
sion analysis. To deal with the problem in a general way we
propose a method based on two concepts. The first of these
we shall call the "sample domain."

For our data, the sample domain consists of the rectangle
formed by the vertical straight lines going through the low-
est and highest x2 of the experiment, respectively, and by the
horizontal straight lines going through the lowest and
highest X3 , respectively (See Fig. 1). The concept is readily
generalized to an X space of any number of dimensions, and
becomes a hypercube in such a space. Note that the vertex
B of the sample domain is relatively far from any of the
design points. This has important consequences.

The regression equation

5=IVlx,+0 2 .X 2+03.x 3 (2)

allows us to estimate y at any point (xl, x2, X3 ) (we recall that
xi= 1) and to estimate the variance of 9 at this point. The
point can be inside or outside the sample domain. Obviously
the variance of 9, which we denote by Var (9), will tend to
become larger as the point for which the prediction is made
is further away from the cluster of points involved in the
experiment. Therefore Var () at the point B may be consid-
erably larger than at points A, C, and D. Such a condition
is associated with the concept of "collinearity." We define
collinearity, in a semi-quantitative way, as the condition
that arises when for at least one of the vertices of the sample

x3

C

A

2 E] c] ED

B Figure I-Sample domain.

X 2

I,
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domain, Var (9) is considerably larger than for the other
vertices. The concept will become clearer as we proceed.

At any rate, the larger variance at one of the vertices of
the sample domain is generally the lesser of two concerns,
the other being that the regression equation, for which valid-
ity may have been reasonably firmly established in the vicin-
ity of the cluster of experimental points, may no longer be
valid at a more distant point. It is important to note that the
evidence from the data alone cannot justify inferences at
such distant points. In order to validate prediction at such
points, it is necessary to introduce either additional data or
additional assumptions.

For these reasons, we seek to establish a region in the
X-space for which prediction is reasonably safe on the basis
of the experiment alone. We call this the Effective Predic-

'tion Domain, or EPD.
The EPD is the second concept required for our treatment

of collinear data. It is closely related to the first concept, the
sample domain, as will be shown below.

Establishing the EPD
Our procedure consists of two steps, involving two suc-

cessive transformations of the coordinate system. The orig-
inal coordinate system in which the x-regressors are ex-
pressed is referred to as the X-system.

1. The Z System

The first step consists in a translation of the X-system
(parallel to itself) to a different origin, located centrally
within the cluster of experimental points (centering); and
simultaneously by a resealing of each x to a standard scale.
The new system, called the Z-system, is given by the equa-
tions2

j = Z0, E Z32= 1 (5)

It is then reasonable to choose a value K in (3a) equal to

K=I/VN (6)

so as to make Z21=1

The values of Cj and Rj for the firefly data are given in
table 2. Contrary to statements found in the literature (see
discussion at end of this paper), the centering and rescaling
defined by the Correlation Scale Transformation have no
effect whatsever on collinearity. The location of the sample
domain relative to the design points remains unchanged,
though it is expressed in different coordinates.

To arrive at an EPD, a second operation is necessary, viz.
a rotation of the Z-coordinate system to a new coordinate
system, which we shall call the W-system (of coordinates).

2. The W-System

The rotation from Z to W is accomplished by the method
of Principal Components, or its equivalent, the Singular
Value Decomposition (SVD). For a discussion of this
method the reader is referred to Mandel [2]. Here we merely
recall a few facts. Each w -coordinate is a linear combination
of all z-coordinates given by the matrix equation:

W=Z V (7)

where V is an orthogonal matrix.
In algebraic notation, eq (7) becomes

For j = 1: z1 =K (a constant)

Forj>l: Zji= ci

For Cj and Ri we consider two choices, which we call the
Correlation Scale Transformation (CST) and the Range
Midrange Transformation (RMT). We discuss first the Cor-
relation Scale Transformation defined by the choice

(4)

where the vki are the elements of the V matrix. The vkj, for
a given k, are simply the direction cosines of the wk axis
with respect to the Z-system. Consequently,

2 = I

Cjxij, Rj -
(9)I

where i = 1 to N.
It easily follows from (3b) that

2We assume that in the X-system, the regressor x' is identically equal to
unity, to allow for an independent term.

Table 2. Firefly data-parameters for correlation scale transformation.

j C R

1 0 4.123106
2 73.176471 135.264447
3 23.582353 10.073962
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ItWik = E ZijVkj

i
i=1 toN
j=l top (8)



Since the rotation is orthogonal, any two distinct w-axes,
say wk and Wk., are orthogonal and consequently:

for k*k' (10)E VkjI Vka °

For the firefly data, the V matrix is shown in table 3, and the
complete set of z and w coordinates is given in table 4.

Note that row 2, as well as column 1, in table 3 consists
of the element "one" in one cell and zeros in all others cells.
This is a consequence of the orthogonality of z2 with respect
to all zj with j>1. This orthogonality is in turn due to the
nature of the Correlation Scale Transformation, as ex-
pressed by eq (4).

At the bottom of the w columns we find values labeled Xi 
They are simply the sums of squares of all w-values in that
column.

bj , wJ7 (11)

Table 3. Firefly data-V matrix.

i
k 1 2 3

1 0 .7071 .7071
2 1.000 0 0
3 0 -. 7071 .7071

Table 4. Firefly data-z and w coordinates (CST).1

Point Z2 Z3 WI W3

i --.3488 -.2464 -.4216 .0724
2 -. 2822 .0315 -.1780 .2219
3 -. 2453 - .5740 -. 5800 - .2324
4 -.2379 -.1571 -.2800 .0572
5 -. 2083 -. 1273 -.2381 .0573

6 -. 1344 -. 0280 -. 1156 .0753
7 -.1344 -.3060 -.3121 -.1213
8 -. 1270 .1904 .0440 .2245
9 -.0235 -.1869 -.1495 -.1155

10 .0135 .3095 .2276 .2094

11 .0431 .1407 .1292 .0691
12 .1022 .0812 .1289 -. 0148
13 .1983 -. 1273 .0495 -. 2302
14 .1983 .1904 .2741 -. 0055
15 .2722 .3095 .4106 .0264
16 .4201 .1904 .4309 -. 1624
17 .4940 .3095 .5674 -. 1304

X1=1.6549 X3 = .3451

z1 = N1= .2425 for all i
w2= 1/Xi7= .2425 for all i, X2 1 Oc0

The Xi are also the eigenvalues of the Z'Z matrix which,
for our choice of Cj and Rj, is the correlation matrix of the
regressors x. Note that w2 is the constant= 1/VW. Conse-
quently

(flN

We need to consider wl and w3 only. A similar situation
applied to the z coordinates, where z,1/VN for all i.
Figure 2 shows both the z-coordinates (Z2 and z3) and the
w-coordinates (w, and w3) for the firefly data. The order of
the w-coordinates (wt, w2 , W3) is that of the corresponding
X-values, in decreasing order.

3. The Effective Prediction Domain (EPD)

The EPD is simply the sample domain corresponding to
the W-system of coordinates. Thus, straight lines parallel to
the w3 -axis are drawn through the smallest and largest wl,
respectively, and lines parallel to the wl-axis are drawn
through the smallest and largest W3. Here again generaliza-
tion is readily made to a p -dimensional W-space. The EPD
for the firefly data is also shown in figure 2.

The interpretation of EPD is straightforward. Unlike the
sample domain in either the X-system or the Z-system, the
EPD excludes points that are distant from the cluster of
regressor points. This has two advantages. In the first place,
the use of the regression equation is justified for all points
inside, and on the periphery of the EPD. And accordingly,
the variance of the predicted value 9 for any such point will
not be unduly large. These statements require more detailed
treatment. To this effect we introduce the concept of vari-
ance factor (VF).

4. The Variance Factor (VF)
From regression theory we know that the variance of any

linear functon, say L, of the coefficient estimates sj is of the
form:

Var (L)=f(X) u,2 (12)

where or is the variance of the experimental errors e of the
y measurements. The multiplier f(X) is independent of the
y and depends only on the X matrix and on the coefficients
in the L function. We call this multiplier the variance fac-
tor, VF.

Thus, we have:

Var (0j)=VF(0) ora (13)

and
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Z 2

Figure 2-EPD for firefly data.

-.1

140

Var (U) VF(i) .a 2 (14)

In eq (14), 9 is the estimated, or predicted y value at any
chosen point in X-space. VF (v) is of course a function of
the location of this point.

Returning now to our statements above, it is well-known
that a regression equation can show excellent (very small)
residuals and yet be very poor for certain prediction pur-
poses. The small residuals merely mean that a good fit has
been obtained at the points used in the experiment. This is
no guarantee that the fit is good at other points. However,
if the regression equation is scientifically reasonable, it is
likely that the experimental situation underlying it will also
be valid for points that are close to the cluster of the regres-
sor points used in the experiment. Every point in the EPD
satisfies this requirement.

Furthermore, the variance of prediction, measured by the
VF, will also be reasonably small for all points of the EPD,

simply because they are geometrically close to the design

points.
The calculation of VF (3) is quite simple, once the V-

matrix and the X values have been calculated. It is based on
the equation

(15)VFUf)=Z uk

k

where Uk is defined as:

Uk=c (16)

Combining eqs (8) and (16), we obtain

(17)Uik jE Zij V

469

26.7

it

9

17.8

26

Light Intensity (X2)



and hence:

(2 ZiJ",)

VFt-v)= A. (18)

Figure 3 shows the VF values at the vertices of the orig-
inal sample domain and of the EPD. Interpreting these re-
sults, we see that the collinearity of our data is reflected in
the rejection of an appreciable portion of the sample domain
for purposes of safe prediction. This does not mean that
prediction outside the EPD is impossible, or unacceptable.
It merely means that such prediction cannot be justified on
the basis of the data alone. Of course, the risk of predicting
outside the EPD increases with the distance from the EPD.
It will generally be reasonably safe to use the regression
equation even outside the EPD, as long as the point for
which prediction is made is reasonably close to the borders
of the EPD. Using eq (18), the VF for any contemplated
prediction point is readily calculated and can serve as a basis
for decision.

Second Example:
Calibration for Protein Determination

The instructive and intuitively satisfying graphical dis-
play of the EPD becomes impossible when the number of
regressors, including the independent term, exceeds 3. We
must then replace the graphical procedure by an analytical

d

C

Ib

one, as will now be shown in the treatment of our second
example.

The data were presented by Fearn [3], in a discussion of
Ridge Regression. They represent the linear regression of
percent protein, in ground wheat samples, on near-infrared
reflectance at six different wavelengths.

For reasons of simplicity in presentation, we include here
only three of the six wavelengths, a change that has a rather
small effect on the final outcome of the analysis: it turns out
that the regression equation based on these 3 wavelengths is
very nearly as precise as that based on 6 wavelengths.

The data, displayed in table 5, are a very good example
of the use of regression equations: the regression equation is
indeed to be used as a "calibration curve" for the analysis of
protein, using the rapid spectrometry instead of the far more
time-consuming Kjeldahl nitrogen determination. Our data
have an N value of 24, and p (including the independent
term) is 4.

Table 6 exhibits the correlation matrix of the 24 design
points. It is very apparent that the x values at all three
wavelengths are highly correlated with each other, thus indi-
cating a high degree of collinearity. At a first glance one
would be very skeptical about such a set of data, and suspect
that the X matrix shows such a high degree of redundancy
as to make the regression useless for prediction purposes.
Fearn explains that the correlations are more a reflection of
particle size variability than of protein content. Our analysis
will confirm that, properly interpreted, the data lead to a
very satisfactory calibration procedure.

We will find it useful to introduce a slightly different Z
transformation, which we call the Range-Midrange Trans-
formation.

Sample Domain

Vertex
A
B
C
D

EPD

Vertex
a
b
c
d

VF
.39

1.71
.69
.30

Figure 3-VF at vertices of sample
domain and of EPD.

VF
.41
.41
.41

.40
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Table 5. Protein Calibration Data(')

Reflectance
X'2 X3

246 374
236 386
240 359
236 352
243 366
273 404
242 370
238 370
258 393
264 384
243 367
233 365
288 415
293 421
324 448
271 407
360 484
274 406
260 385
269 389
242 366
285 410
255 376
276 396

% Protein
X4 Y

386 9.23
383 8.01
353 10.95
340 11.67
371 10.41
433 9.51
377 8.67
353 7.75
377 8.05
398 11.39
378 9.95
365 8.25
443 10.57
450 10.23
467 11.87
451 8.09
524 12.55
407 8.38
374 9.64
391 11.35
353 9.70
445 10.75
383 10.75
404 11.47

Table 6. Protein calibration data-correlation matrix of x, through x4 .

I 0 0 0
1 .9843 .9337

i .9545
l

The Range-Midrange Transformation

The Range-Midrange Transformation (RMT) is defined
as follows:

Forj=l: zl=1 (19a)

EPD for the Protein Data
The EPD resulting from the Singular Value Decomposi-

tion based on the Range-Midrange Transformaton will not
be he same as the EPD we would have obtained using the
Correlation Scale Transformation, but we will see that those
features of the EPD that are of importance for us, in estab-
lishing the limitations of the regression equation, are practi-
cally unaffected.

Table 7 shows the C and R values for the four regressors
and table 8 exhibits the V matrix and the X values obtained
from the Singular Value Decomposition. The latter, it may
be recalled, simply expresses the rotation of the Z coordinate
system to the W system.

For each wk coordinate, there are 24 values, correspond-
ing to the 24 regressor points.

Table 9 shows the smallest and the largest Wk value, for
each of the four k.

According to table 9, we must have, in the EPD:

(20)

with similar statements for w 2, W3, and w4. Applying now eq

Table 7. Protein calibration data-parameters for Z transformation
(RMT).

j C R

1l0 1

2 296.5 63.5
3 418.0 66.0
4 432.0 92.0

Table 8. Protein calibration data-V matrix and X values (RMT).

k 1 2 3 4 X

X -. 6665 .4845 .4217 .3784 43.7810
2 .7365 .3299 .3797 .4523 8.3782
3 -. 1096 -. 5491 -. 2509 .7896 .3758
4 -. 0332 -. 5958 .7843 -. 1698 .06624

Forj>l: zj= iR i

but now C1 is defined as the midrange of the N values of x
and Rj is one-half the range of these values. With these
definitions, it is clear that the smallest z-value, for any
regressor, is (-1) and the largest z-value is (+1). It is
because of this - I to + I scale that this transformation was
introduced. The benefits of this scale will become apparent
in the following section.

Table 9. Protein calibration data-limits defining the EPD.

Coordinate
(k) Smallest w Largest w

1 -1.9282 .6181
2 -. 4097 1.8989
3 -. 1669 .3158
4 -. 0801 .1324
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2
3
4
5
6
7
8
9
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I11
12
13
14
l5
16
17
18
19
20
21
22
23
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(8), this double inequality can be written:

-1.9282C-.6665 zl+.4845 Z2+.4217 z3+.3784 z4

-3.6181

Since z, is constant and = I, this double inequality be-
comes:

-1.2617' 4845 z2+.4217 Z3+.3784 z4t 1.2846 . (21a)

With the RMT, the value of any zk is, for any k > 1, between
(-1) and (+ 1). Thus the expression in the middle has, for
all design points, a value between -1.2846 and 1.2846,
where 1.2846 is the sum of the absolute values of the three
coefficients. Therefore, the double inequality expressed by
eq (21a) holds, essentially, for every point in the original
sample domain. Thus, wl, the first coordinate of the EPD,
which represents its largest dimension, imposes essentially
no restrictions on the sample domain.

Doing the same calculations for the three other
w-coordinates (see table 9), we obtain, respectively:

-I . 1462 .3299 Z2+.3797 Z3+.4523 Z4C 1 11619 (21b)

-0.568S -. 5491 z-.2509 Z3+.7896 z4- .4254 (21c)

-.0469 -. 5958 Z2+.7843 z3-.1698 z4s .1656. (21d)

We see that w2 too, imposes only very light restrictions on
the sample domain. On the other hand, W3 and W4 do imply
limitations that eliminate appreciable portions of the sample
domain from the EPD.

We could readily convert eqs (21c) and (21d) to x coordi-
nates by means of table 7 and eqs (19a) and (19b), but the
z-coordinates, using the Range-Midrange Transformation,
are more readily interpreted in terms of the severity of
collinearity than the x-coordinates.

Thus, the sum of the absolute values of the coefficients in
the middle terms of (21c) and (21d) are 1.5896 and 1.5499,
respectively. Points for which these linear combinations
take the valves ± 1.5896 and ± 1.5499 exist in the original
sample domain. The EPD, on the other hand, limits these
functions to intervals with much narrower limits.

Effect of Type
of Z Transformation

We have used two different Z transformations, the Corre-
lation Scale, and the Range-Midrange. It is proper to ask
how our results would have been affected in the Protein
Calibration Data, had we used Correlation Scale, instead of
the Range-Midrange Transformation. We show the com-

Table 10. Protein calibration data-effect of Z transfornation. 1

w coordinate Z Transf. Inequalities

I CST -3.034 1.021 2+21.061 2,3+4•3.082
RMT -3.334 1.280 z2+1.114 z3+z4•3.395

2 CST
RMT -2.534S•729 :z+.840 z3+z4•2.569

3 CST -. 075•-.686 z2-.321 z3+z4 .535
RMT -. 072•-.695 z2-.318 z3+z4•.539

4 CST -. 278•-3.531 22+4.640 Z3-Z4• 980
RMT -. 276s-3.509 z2+4.619 z3-,-4.975

'All inequalities are expressed in RMT z coordinates.

parison in table 10. Let us recall that with the CST, one of
the w coordinates yields a X-value of unity, and a constant
w value for all points. Therefore, we obtain for CST, only
three sets of inequalities, as compared to the four sets for
RMT. To allow the comparison between the two transfor-
mation to be made, we have multiplied eqs (21a) through
(2 Id) by positive constants, so as to make the coefficient of
z4 equal to ± 1. The same was done for the corresponding
inequalities obtained by the Correlation Scale Transforma-
tion.

Of course, since the z coordinates are different for the two
transformations, the inequalities for the CST, expressed in
the CST z-units, had to be converted to RMT z-units, for a
meaningful comparison. As can be seen from table 10, the
two smallest dimensions of the EPD are practically the same
for the two transformations. Thus, even though the method
of principal components is not invariant with respect to
linear transformations of scale, our analysis leads, in this
case, to very similar results for the small dimensions of the
EPD. We believe that this is generally true for all situations
in which collinearity is noticeable, i.e., for all situations in
which the EPD eliminates considerable portions of the orig-
inal sample domain. For situations in which this does not
apply, i.e., totally non-collinear cases, the inequalities do
not matter, since they impose no restrictions on the sample
domain.

It is interesting to contrast the remarkable similarity be-
tween the inequalities for W3 and w4 for the two transforma-
tions in table 10, with the behavior of a commonly advo-
cated measure of collinearity (Belsley, Kuh, and Welsch
[4], the condition-number.

The SVD resulting from the CST yields the following
eigenvalues: 2.9151, 1.0000, .07176, .01312. The condi-
tion number is defined as the ratio of the largest to the
smallest eigenvalue. In this case:

condition number=2.9151/.01312=222.2

On the other hand, the SVD resulting from the RMT on the
same data yields the eigenvalues: 43.7810, 8.3782, .37575,
.066244. This time we have:
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condition number=43.7810/.066244=660.9

Thus the condition number varies considerably when the
data are subjected to different standardizing transforma-
tions. It is not clear what useful information can be derived

from the condition number.
By contrast, the treatment of collinearity we advocate has

a useful and readily understood interpretation: the EPD is

that part of the X space in which, and near which, prediction

is safe. It also indicates what portions of the original sample

domain are inappropriate for prediction on the basis of the
given data alone. It fulfills this function in a way which is
practically invariant with respect to intermediate transfor-
mations of scale. We use the qualifier "intenmediate" be-

cause collinearity has meaning only in terms of a given

original coordinate system (the X system). This system,
which determines the original sample domain, must be con-

sidered fixed. On the other hand, transformations of this

system prior to calculating the EPD can be defined in differ-

ent ways without affecting the practical inferences drawn

from the data on the basis of the final EPD derived form the

standardizing transformation.

Cross-Validation

We can take advantage of the availability of a second set

of protein calibration data, also given in Fearn [3]; to verify
the correctness of our approach. Fearn lists 26 additional
points for which the reflectance measurements, as well as

the Kjeldahl nitrogen determination, were made. We ap-

plied the Z transformation obtained above (RMT on first set
of 24 points) to each of these 26 points, and noted every

point for which at least one of the four sets of inequalities
(21a) through (21d) failed to be satisfied. We found 14 such

points. This means that 14 "future points" obtained under
the same test conditions were outside the EPD established
on the basis of the original 24 points. However, as we

observed above, as long as the point is not far from the EPD,
prediction at that point is likely to be valid. We tested
"predictability" at these 14 points by calculating the VF

value for each of them, and by comparing the predicted
protein value with the measured one. The results are shown

in table 11. It is apparent that all VF are relatively small,

indicating that even though these 14 points are outside the

EPD calculated from the original set, they are not far from
that EPD. This is confirmed by the good agreement between

the observed and predicted values. The standard deviation
of fit for the original set of 24 points was 0.23; the standard

deviation for a single measurement derived from the 14

differences in table 11 is 0.30.

Expansion Terms

Quite frequently, a regression equation contains x vari-
ables that are non-linear functions of one or more of the

Table 11. Protein calibration data-cross-validation of analysis.

% Protein
Pointl Observed Predicted VF

1 8.66 9.53 .281
4 11.77 11.97 .416
6 10.46 10.96 .193
9 12.03 11.47 .212

10 9.43 9.54 .762
11 8.66 8.15 .454
12 14.44 13.99 .881
14 10.41 10.17 .468
16 11.69 11.24 .472

17 12.19 11.83 .390
18 11.59 11.39 .314
20 8.60 8.39 .201
22 9.34 8.93 .151
26 10.89 10.94 .741

rPoint in additional set (Fearn [3]) with its number designation in that set.

other x variables, such as x2, x2 x3 , etc. Polynomial regres-

sions are necessarily of this type. Since the x variables are

non-stochastic in the usual regression models, the least

squares solution for the regression equation is not affected
by the presence of such "expansion terms." On the other

hand, collinearity can be introduced, or removed, or modi-
fied by them.

In our treatment the expansion terms cause no additional
problems. Consider for example, the regression

(22)YI3tXl+p 2 X2+±3X2+E

with xl 31.

Here we have p = 3. Using RMT, followed by a singular

value decomposition, we obtain an EPD of three dimen-

sions, leading to the inequalities.

A1 •5v5B 1, A2 5w2 5B2 , A 3 •w 3•B 3 . (23)

Expressing the w as functions of the z, this leads to three

double inequalities governing the z, of the form

A,'-f 1 (z)•Bl, A2 •f 2(z)•B 2, A3 •f 3(z)5B 3 , (23)

2Now, since x3=x 2 , we have

X3 -C3 X22-C3 (R2Z2+C2 )2 -C3

Z3 R3 R3 R3

Hence:

CZi-C 3 2 C2 R2 R2 ,2
23= R3 2 R (24)

Because of this relation the functions fs(z),f2(z),f3(z) be-
come functions of zl, Z2 (and Z2) only. Using this fact, we
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interpret the three sets of inequalities (23) exactly as we
have interpreted eqs (21a) through (21d) by determining
which of these inequalities, if any, impose restrictions on
the use of the original sample domain.

To illustrate this procedure, consider the small set of
artificial data shown in table 12, for which the model is
given at the bottom of the table. The term X3=x2 introduces
a high correlation between x2 and X 3 and consequently also
considerable collinearity.

The inequalities characterizing the EPD based on a
Range-Midrange Transformation and converted to the z-
scales, are shown in table 13. Applying eq (24) to express
z3 in terms of z2, the three double-inequalities become:

for wj:-.8 4 3 !5I.12 8 4 22+±2853 z2•1.4137
for w2 :-.69285.8 5 4 1 Z2 +.1612 2.:1.0i53
for W3 : .00775.0003 22+.3218 z224 .3221.

It is readily verified that of these six inequalities, all but
one are satisfied for all 2z values between - I and + 1. The
last one, involving the left side of the third set, is satisfied
for all 22 values except for the interval: -. 15625.5 155.
This corresponds to an x, interval between 2.1 and 2.8, or
between the design points x,=2. 1 and x2 =3.6 (see table
12). The interpretation of this finding is that while ail design
points are of course inside the EPD, a small portion of the
curve x22 versus x2 falls slightly outside the EPD. This is of
no practical significance since the VF for these points, even
though they are outside the EPD, does not exceed 0.58. By
comparison, the smallest VF value along the curve, for the
range xc,.2 to x2=4,7, is of the order of 0.26. Thus we see
that the serious collinearity in this data set is merely a
consequence of the presence of the expansion term x3=x2.

Table 12. An anificia' quadratic examplel.

Point y2 r3 P

1 .2 .04 28.3
2 .4 .16 27.5
3 1 1.00 25.6
4 2.1 4.41 28.7
5 3.6 12.96 46.4
6 4.7 22.09 69.8

'N = P3LL+PX2+,x23i3+: f3=30, R2=8, 1,=3.5. c,=0.2 xa~l.
Nale Tha 3 x

Table 13. Quadratic examrple-inequalities for EPD.

r-coordinate Inequalities

w, -1.12815-.5070 z2+.6214 z3 •1.1284
Wa -. 8541•.5029 z2+.3 511 z3 •. 85 4 1
w3 -. 3141s-.7005 z2 +.7008 z3 5.0003

Any point in X space, in order to be acceptable, must lie on
the curve x 3=x22. An X3 with any other value is obviously not
valid and our analysis of the data, through the EPD, calls
attention to this fact: in the direction of w3, the width of the
EPD is only .31 as compared with widths of 2.26 and 1.71
for w, and w,.

Discussion

The common mathematical definition of collinearity is
the existence of at least one linear relation between the xt's,
of the form

E cjXj = OJ. j=I top (25)

where the cj are not all zero, and such that eq (25) holds with
the same cj values, for all i. This defines what we shall call
"exact collinearity. " Geometrically, it means that all design
points lie in an hyperplane of the x-space, going through the
origin of the coordinate system. Equation (25) also implies
that the matrix X'X is singular, and consequently that the
estimates of the 1 coefficients are not uniquely defined.

Exact collinearity seldom occurs in real experimental sit-
uations; indeed, if theX matrix is notthe result of a designed
experiment, it is highly improbable that a relation such as eq

(25) would hold exactly. If, on the other hand, the experi-
ment is designed, care would generally have been taken to
avoid a situation of exact coilinearity.

While exact collinearity is practically of little concern,
near-collinearity is a frequent occurrence in real-life data.
This occurs when an equation such as (25) is "approx-
imately" true for all i. Many attempts have been made to
define more closely the concept of near-collinearity, but
while these endeavors have led to a number of proposals for
measuring collinearity, they are of little practical use to the
experimenter confronted with the task of interpreting his
data.

It is not our intention to discuss here the pros and cons of
the various attempts made by a number of authors to
"remedy" a near-collinear situation. The best-known of
these remedial procedures is Ridge Regression. We merely
repeat what we have said in the body of the paper: any
attempt to remedy collinearity must necessarily be based on
additional assumptions, unless it consists of making addi-
tional measurements, The latter alternative is of course log-
ical and valid, but the making of assumptions invented
specifically for the purpose of removing collinearity does
not appear to us to be a recommendable policy in data
analysis.

One easily recognizable condition leading to collinearity
is the existence of at least one high correlation coefficient
among the non-diagonal elements of the correlation matrix
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of the x's. This has given rise to the concept of the Variance
Inflation Factor (VIF). The VIF for 13> is defined (Draper

and Smith [5]), as:

VIF(0)= I1 (26)

where R1 is the multiple correlation coefficient of xj on all

other regressors. If d represents a residual in this regression,
the usual formula for Rj is given by

Rj2= I _ Ed 2 (27)
E(XjXj)2

Now, Snee and Marquardt (Belsley [6], "comments") make,
implicitly, a distinction between the two "models":

Y=3 1 xI+ 32 x2 + +R3pxp+E (28a)

with xsl 1, and

Y - =,02(X2-32)+ " +, p(Xp -Rp)+E (28b)

where (28b) is called the "centered" model. For (28b), Snee

and Marquardt use eq. (27), but for (28a) they appear to use

the definition:

R l E21 _ d2 (29)

Equation 29, in which the denominator of the last term is not

centered, is not explicitly given by Snee and Marquardt, but

is implied by their statement:
"If the domain of prediction includes the full

range from the natural origin through the range of

the data, then collinearity diagnostics should not
be mean-centered," and confirmed by the VIF
values given in their table 1. In this table, "no

centering" results in VIF values of 200,000 and
400,000, while the VIF for the "centered" data are

unity. The quoted statement occurs in a section

entitled "Model building must consider the in-
tended or implied domain of prediction." The

basic idea underlying the section in question is

that the analysis of the data, based on the
"collinearity diagnostics" (specifically: the VIF

values), is goverened by the location of the points

were one wishes to make predictions and, more
specifically, on whether the origin (xl=I,

x2=x3 .. =0) is such a point. The VIF values
which, according to Snee and Marquardt's formu-

las, depend heavily on whether or not this origin
is included, will then indicate the quality of the

predicted values.
A more reasonable approach, and one more consistent with

the procedures commonly used by scientists, is to limit

prediction to the vicinity of where one made the measure-

ments, unless additional information is available that justi-
fies extrapolation of the regression equation to more distant
points of the samples space. The vicinity of the measured
points is determined by the EPD which, in the case of
collinearity, may be considerably smaller than the sample

domain. In this view, it is the location of the design points,

rather than that of the intended points of prediction, that
determines predictability. The latter is measured, not by

VIF values, but rather by the more concrete VF values, for

any desired point of prediction.
The view advocated by Snee and Marquardt sometimes

results in an enormous difference in the VIF values between

the centered and non-centered forms. Equation 29 serves no

useful purpose and is, in fact, unjustified and misleading. It

is unjustified because it not only includes the origin (xi = 1,

xk =0 for k>l) in the correlation and VIF calculations, but
moreover, gives this point infinite weight in these calcula-

tons. Yet, no measurement was made at that point. Equation

29 is also misleading because it leads to very large VIF

values for some non-centered regressions, implying that
severe "ill-conditioning" exists, even when the X matrix is

except for some trivial coding, completely orthogonal (cf.

[6]).
The ill-conditioning exists only in terms of the large VIF

value. It is an artifact arising from the desire to make the two

forms of the regression equation into two distinct "models".
The two forms, eqs 28a and 28b lead to identical esti-

mates for the 13>, including PI, and for their standard errors.

They also lead to identical values and variances for an esti-

mated (predicted) v, at any point of the X space. There

seems to be no valid reason for the two distinct equations for

the VIF. They only lead to the false impression that center-

ing can reduce or even remove collinearity.
Our viewpoint in this paper is that the usefulness of a

regression equation lies in its abilty to "predict" y for inter-

esting combinations of the x's. We also take the position

that inferences from the data alone should be confined to x

points that are in the general geometric vicinity of the cluster

of design points. An inference for points that are well out-

side this domain (i.e., outside a suitably defined EPD) is, in

the absence of additional information, only a tentative con-

clusion, and not a valid scientific inference. Such conclu-

sions may however, be very useful, provided their tentative

character is recognized, and provided they are subsequently

subjected to further experimental verification.
Daniel and Wood [7] discuss briefly the relation between

the variance of 9 and the location of the point at which the

prediction is made. However, their discussion is in the con-

475



text of selecting the best subset of regressors from among
the entire set of regressors, a subject different from the one
dealt with in this paper.

Another publication that deals explicitly with predictabil-
ity is a paper by Willan and Watts [8]. These authors define
a "Region of Effective Predictability" (REPA) as that portion
of the X space in which the variance of the predicted 5 does
not exceed twice the variance of 5 predicted at the centroid
of the X matrix. The volume of the region is then compared
with that of a similarly defined REP, denoted REPO. The
latter refers to a "fictitious orthogonal reference design" of
"orthogonal data with the same N and the same rms values
as the actual data." The ratio of the volume of REPA to that
of REPO is taken as "an overall measure of the loss of
predictability volume due to collinearity".

This concept, apart from its artificial character, suffers
from other shortcomings. Like so many other treatments, it
attempts to provide a measure of collinearity. But the prac-
titioner who is confronted with a collinearX matrix does not
need a measure of collinearity: he needs a way to use the
data for the purpose for which they were obtained. Further-
more, this measure loses its meaning when expansion vari-
ables are present. For example, for the artificial quadratic
set of table 12, Willan and Watts' measure would indicate
a high degree of collinearity which, while literally true, is
totally misleading since the collinearity in no way reduces
the usefulness and predicting power of the regression equa-
tion, as long as the meaning of the expansion term is taken
into account. But even in cases withoutexpansion terms, the
measure in question may be misleading. Thus when applied
to the protein calibration data of table 5, it may well lead the
analyst to give up on these data as a hopelessly highly-
collinear set, whereas, as we have seen, there is nothing
wrong with this set and it can indeed be used very effec-
tively for the calibration of a method for protein determina-
tion based on reflectance measurements.

Finally, a few words about estimating the ,,-coefficients
considered as rates of change of y with changes in the
individual xp. As pointed out by Box [9], this is generally
not a desirable use of regression equations. If, however, it

is the major purpose of a-particular experiment, then this
experiment should be designed accordingly, which means:
essentially with an orthogonal X matrix. A collinear X ma-
trix leads to the ability to estimate certain linear combina-
tions of the O's much better than the Os's themselves. The
experimenter can calculate the VF values, not only for any
point of X space, but also for any 1) or combination of Pl's,
and he can do this without making a single measurement,
i.e., in the planning stages of the experiment. If the exper-
imenter does not take advantage of this opportunity, he may
be in for considerable disappointment, after having spent
time, money, and effort on inadequate experimentation. We
believe that he advocacy of remedial techniques, such as
Ridge Regression for collinear data is unwise. One of the
most important tasks of a data analyst is to detect, and to call
attention to, limitations in the use and interpretation of the
data.
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DISCUSSION
of the John Mandel paper, The Regression
Analysis of Collinear Data

R. W. Gerlach
Monsanto Agricultural Products Co.

I fully agree with Mandel in that one's model can (usu-

ally) only be assigned a degree of validity in the region

spanned by the data used to generate the model. Though the

range for all variables may be quite large, collinearity effec-

tively restricts the model to a particular subregion. One

should be aware of these restrictions so as not to misapply

the model to those regions not represented by the data. I

want to point out the need to carry out an additional initial

operation; one should always examine the dataset for out-

liers. Otherwise the suggestion for using the largest and

smallest values on each principal coordinate to examine the

constraints may lead to overstating the region for a valid

calibration. In fact, this could happen anyway if the shape

formed by the data vectors was peculiar, perhaps occupying

two disjoint regions for instance.
Additional constraints are frequently available to the ana-

lytical chemist. Minimum and maximum values along the

original variables as well as conditions upon functions of

these variables are frequently encountered. The location of

the effective predictive domain within this potentially al-

lowed domain could also be useful. A comparison might

lead the researcher to conclude that more effort should be

spent gathering additional data so that the calibration equa-

tion was valid over the desired region.
The variance factor (VF), resulting from the propagation

of errors through the transformations, is a good method for

observing how well characterized the model is at any loca-

tion. Though principal components regression has been in

the literature of analytical chemistry for some time [1,2]' a

paper dealing with the region of applicability for the model

has only recently been published [3]. In this case the authors

used as their criteria the expected mean square error. Hope-

fully, the propagation of error in this and related techniques

will become more commonplace in analytical chemistry.

I think that the comparison of the measures advocated in

this paper to the condition number is somewhat misdirected.

The condition number can be used to provide a measure of

how sensitive a model could be to variations in the data

matrix. However, it would certainly not be appropriate to

consider a condition number for the complete data matrix if

one is dealing with only a subset of its dimensions in the

principal component regression. The condition number

tFigures in brackets indicate literature references.

assists one in interpreting the sensitivity of the model given

all the original variables (or any orthogonal transformation).

The condition number for the rotated coordinate system of
the principal coordinates will be the same as for the original

coordinate system. In the original coordinate system a large

condition number signaled that the regression coefficients

were not all well known. In the rotated eigenvector coordi-

nate system this same condition number reflects the fact that

coefficients for the eigenvectors with small eigenvalues will

not be estimated accurately. However, since only the eigen-

vectors with significant eigenvalues will be considered in

the principal component regression, the condition number

for the entire matrix is not an appropriate parameter to

consider. In fact, the only thing we can say is that one

expects large condition numbers every time a principal com-

ponent regression is the method of choice.
It should also be pointed out that other aspects of

collinearity are frequently encountered by analytical

chemists. While this paper deals with collinearity as it af-

fects the region for applicability of the model in terms of

predictability, it doesn't address questions as to the reliabil-

ity of the model coefficients. Also, instead of generating a

calibration or predictive equation, one might wish to evalu-

ate possible models in which the independent factors behave

somewhat similarly. What limitations are placed on the re-

sults of the traditional regression analysis? I want to mention

that statisticians have already developed several appropriate

techniques [4], such as methods to estimate confidence re-

gions and the effective sample size. Hopefully, these and

other measures to test the validity of the proposed model

will be more widely used.
The propagation of errors through a constrained corre-

lated regression would also be an appropriate technique for

investigating the significance of the terms in a proposed

model. As mentioned above, often there are known con-

straints, yet this information is commonly overlooked. A

recent comparison of multivariate techniques applied to

source apportionment of aerosols in which collinearity was

an important factor showed that the known constraints were

mostly ignored [5]. Mathematical techniques which deal

with these extra conditions [6], though more complex nu-

merically, should be investigated for their potential benefits

to areas of analytical chemistry and brought into more com-

mon use.
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Most research and development projects require the optimization of a system response as a function of several
experimental factors. Familiar chemical examples are the maximization of product yield as a function of reaction time
and temperature; the maximization of analytical sensitivity of a wet chemical method as a function of reactant
concentration, pH, and detector wavelength; and the minimization of undesirable impurities in a pharamaceutical
preparation as a function of numerous process variables. The "classical" approach to research and development involves
answering the following three questions in sequence:

I) What are the important factors? (Screening)
2) In what way do these important factors affect the system? (Modeling)
3) What are the optimum levels of the important factors?

As R. M. Driver has pointed out, when the goal of research and development is optimization, an alternative strategy
is often more efficient:

I) What is the optimum combination of all factor levels? (Optimization)
2) In what way do these factors affect the system? (Modeling in the region of the optimum)
3) What are the important factors?

The key to this alternative approach is the use of an efficient experimental design strategy that cam optimize a relatively
large number of factors in a small number of experiments. For many chemical systems involving continuously variable
factors, the sequential simplex method has been found to be a highly efficient experimental design strategy that gives
improved response after only a few experiments. It does not involve detailed mathematical or statistical analysis of
experimental results. Sequential simplex optimization is an alternative evolutionary operation (EVOP) technique that is
not based on traditional factorial designs. It can be used to optimize several factors (not just one or two) in a single study.
Some research and development projects exhibit multiple optima. A familiar analytical chenical example is column
chromatography which often possesses several sets of locally optimal conditions. EVOP strategies such as the sequential
simplex method will operate well in the region of one of these local optima, but they are generally incapable of finding
the global or overall optimum. In such situations, the "classical" approach cam be used to estimate the general region
of the global optimum, after which EVOP methods can be used to "fine tune" the system. For example, in chromatog-
raphy the Laub and Purnell "window diagram" technique cam often be applied to discover the general region of the global
optimum, after which the sequential simplex method cam be used to "fine tune" the system, if necessary. The theory
of these techniques and applications to real situations will be discussed.

Key words: optimization; screening: simplex.

1 Introduction 1 ) re-establishing acceptable product yield as a function of
reaction time and reaction temperature after a design

Most research and development projects require the opti- change in a chemical process;
mization of a system response (dependent variable) as a 2) maximizing the analytical sensitivity of a wet chemical
function of several experimental factors (independent vari- method as a function of reactant concentration, pH, and
ables). Familiar chemical examples are: detector wavelength;

3) tuning-up a nuclear magnetic resonance spectrometer by
About the Author: Stanley N. Deming is with the De- adjusting eleven highly interacting shim coil controls to

partment of Chemistry at the University of Houston- produce optimum peak shape.
University Park. 4) finding a combination of values for eluent variables that
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will give adequate separation in high performance liquid
chromatography.

Although "optimization" is often taken literally to mean
making something "as perfect, effective, or functional as
possible" [1]l, in chemical practice it usually means making
something "acceptable" or "adequate," as in examples one
and four above. Optimization in chemistry usually involves
adjusting a system until it is brought to some desired
threshold of performance.

The dual purposes of this short paper are to discuss sev-
eral strategies for the optimization of chemical systems and
to discuss strengths, weaknesses, and appropriate settings
for each approach. The intent of these comments is not to
suggest rigid guidelines for the proper uses of optimization
methods, but rather to stimulate discussion directed toward
a better understanding of how these methods can be used in
practice.

2. Classical Experimental Designs

The "classical" approach to optimization in research and
development involves answering the following three ques-
tions in sequence:

1) What are the important factors? (SCREENING)
2) In what way do these important factors affect the system?

(MODELING)
3) What are the optimum levels of the important factors?

(OPTIMIZATION)

Classical experimental designs (e.g., fractional factorial
designs and central-composite designs [2,3]) can be used to
screen factors and to acquire data for modeling the system
as a function of the most important variables. The resulting
model can then be used to predict the treatment combination
(experimental conditions) giving the optimum response [4-
6]. The statistical literature is rich in examples showing how
statistically designed experiments have been used in this
way to solve significant chemical problems (e.g., [7]).
A. Modeling

The critical part of the classical approach is the second
step, modeling. At the very least, a model that fits reason-
ably well over a limited region of the factor space can be
used to predict a direction to move to obtain improved
response (as in evolution operation, or EVOP [8]). A model
that fits well over a larger region of factor space is, of
course, even more useful. However, if the (usually empiri-
cal) model contains more than a few factors, then the num-
ber of experiments required to fit the model will be imprac-
tically large. For example, if a full second-order polynomial
model containing k factors is used to model the system, the
number of model parameters will be equal to (k + 1)(k +2)!

T
Figures in brackets indicate literature references.

2; for five, six, seven, and eight factors the numbers of
model parameters are 21, 28, 36, and 45, respectively. At
least this many experiments must be carried out to provide
data for the estimation of the parameter values; typically,
central composite designs are used which require 2k+3k+1
experiments (plus three replicates to estimate "pure error")
for a total of 46, 80, 146, and 276 experiments for five, six,
seven, and eight factors, respectively.

Thus, a desire to avoid extraordinarly large numbers of
experiments becomes a strong driving force for limiting
(typically to only thee or four) the number of factors to be
investigated by classical experimental designs. Hence, the
need for the initial screening of factors to choose only the
most important ones.
B. Screening

There are problems with screening experiments. For ex-
ample, most screening experiments are based on first-order
models which assume no interactions. If interactions do
exist, then factors which truly have a significant affect on
the system might not appear to be statistically significant
and would be discarded by the screening process.

A second problem with screening experiments can occur
if the effect of a factor depends upon its own level "self
interaction"). If screening experiments are carried out in a
region where the response is "flat" with respect to the factor
of interest (a stationary region), that factor will not appear
to a be very significant when, in fact, at different levels of
that factor, the effect on response might be considerable.

As a final example of difficulties in screening for signif-
icant factors, the "wrong" statistical test is usually used
when screening factors for their significance. It is true that
if a factor is "significant at the 95% level of confidence,"
then it is probably an important factor and should be retained
for further investigation. However, if a factor is "not signif-
icant at the 95% level of confidence," it does not mean that
it is an unimportant factor and can be neglected. It might,
for example, be significant at the 94.73% level of confi-
dence, not enough to exceed the common threshold of 95%
confidence, but still highly significant nonetheless. Ideally,
the question that should be asked while carrying out screen-
ing experiments is not "which factors are significant at some
high level of confidence," but rather, "which factors are
insignificant at some equally high level of confidence."
Unfortunately, the type of experimentation required to an-
swer this second question is extensive and expensive. An
alternative approach is to increase the risk (alpha) of stating
that a factor is significant when in fact it is not, so that fewer
truly significant factors are rejected [9].
C. Comments on the use of classical experimental de-

sign for optimization
Classical experimental designs appear to have been suc-

cessful in the past for "optimizing" many existing chemical
systems largely because these systems are usually run not at
the true optimum but rather are operated at some "threshold

480



of acceptability." A response surface view of this would be
that the system is being run at a point on the side of a hill;

not at the top of the hill, but far enough up on the side that
the system gives acceptable performance. As long as the

response surface maintains its shape and position, and as
long as the factor levels are kept in statistical control, the
system will perform acceptably.

However, if the response surface changes its shape or
"'moves" slightly (as a result, for example, of scale buildup
in heat exchangers, or different suppliers of feed stocks),
then the previous set of factor levels might no longer pro-
duce adequate performance from the system: the same set-
point will now correspond to some slightly lower position on

a changed response surface. In situations like this, small
screening experiments (such as saturated fractional factorial
designs [2] or Plackett-Burmann designs [101 are not too
much affected by factor interactions and are likely to give
nearly true estimates of the first-order factor effects (e.g.,
the effect of temperature, or the effect of increased amounts
of feed stocks). Similarly, a first-order model offers a good
approximation to the true shape of the response surface over
a limited region. Thus, the application of screening experi-
ments to choose the most significant factors is usually suc-
cessful in this application. When these most significant fac-
tors are used in a model of the system that is first-order with
interactions (fitted, say, to the results of a two-level factorial
design), then the fitted model will usually suggest an appro-
priate direction to move. Changing the factor levels in this
direction will usually move "up" the hill to a point lying
above the threshold of performance and once again achieve
adequate ("optimum") response from the system.

3. Sequential Simplex Optimization

As R.M. Driver has pointed out [11], when the goal of
research and development is optimization, an alternative
strategy is often more efficient. This alternative strategy
asks essentially the same questions as the classical approach
to optimization, but it asks the questions in reverse order:

1) What is the optimum combination of all factor levels?

(OPTIMIZATION)
2) in what way do these factors affect the system? (MOD-

ELING in the region of the optimum)
3) What are the important factors? (SCREENING for ef-

fects in the region of the optimum)

The key to this alternative approach is the use of an
efficient experimental design strategy that can optimize a
relatively large number of factors in a small number of
experiments. Once in the region of the optimum, classical
experimental designs can be used to full advantage to model
the system and determine factor importance in a limited

region of the total factor space.

A. ignoring Initial Screening Experiments and Avoid-
ing Models

For many chemical systems involving continuously vari-
able factors and relative short times for each experiment, the

sequential simplex method [12-38] has been found to be a
highly efficient experimental design strategy that gives im-
proved response after only a few experiments. It is a
logically-driven algorithm that does not involve detailed
mathematical or statistical analysis of experimental results.
Sequential simplex optimization is an alternative evolution-
ary operation (EVOP) technique that is not based on tradi-
tional factorial designs.

There are two reasons for the efficiency of the sequential
simplex method. The first reason is the number of experi-
ments required in the experimental design itself. A simplex
is a geometric figure containing a number of vertexes equal
to one more than the number of dimensions of the factor
space. Each vertex locates a treatment combination in factor
space. Thus, the number of experiments required for a sim-
plex is k + I where, again, k is the number of factors. Thus,
a five, six, seven, or eight factor system would require only
6, 7, 8, or 9 experiments to define a simplex.

The second reason for the efficiency of the sequential
simplex method is that it takes only one or two additional
experiments to move the experimental design into an adja-
cent region of factor space. This is independent of the num-
ber of factors involved. When classical experimental de-
signs are used in this type of "evolutionary operation" mode,
a larger number of experiments (at least half of the factor
combinations in the pattern) is usually required to move the
experimental design into an adjacent region of factor space.

In our experience with the simplex, systems of up to 11
factors can be brought into the region of the optimum in only
15 or 20 experiments after the initial simplex has been
constructed.
B. Limitations

The simplex does have its limitations, however. The sys-
tem must be in "statistical control" if the simplex is to be
used-that is, the system should have only a small amount
of purely experimental uncertainty ("pure error"), It is rec-
ommended that after the initial simplex has been evaluated
and before the first simplex move is begun, the vertex giving
the worst response and the vertex giving the best response
be repeated two more times each to evaluate the reproduci-
bility of the system. If the reproducibility is good, then the
simplex will progress well; if the reproducibility is poor,
then the simplex will tend to wander. In this latter case,
steps should be taken to improve the purely experimental
uncertainty of the system; if this is not possible, then classi-
cal experimental designs offer advantages because of their
noise-reducing capabilities [39].

The system should not drift with time. However, changes
with time can often be detected and corrected for by running
periodic experiments at a standard treatment combination.
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The time of any one experiment must be relatively short.
It has been suggested that the reason factorial experiments
were developed before the sequential simplex was because
of the experimental environment, specifically the improve-
ment of agricultural crop yields. In this context, factorial

experiments offer a great advantage in that several experi-
ments can be carried out simultaneously and many results
can be obtained after only one growing season. If the se-
quential simplex were to be used to improve agricultural
production., only one move could be carried out each year
and it could take several decades to optimize production,

Finally, the simplex is most powerful for continuous
("quantitative") variables. It can be used for discrete vari-

ables where there are several levels-perhaps at least five or
six-and the Levels can be logically ranked. It can not be
used for unranked discrete ("qualitative") variables.

4. Systems Possessing Multiple Optima

Some research and development projects exhibit multiple
optima. A familiar analytical chemical example is column
chromatography which often possesses several sets of lo-
cally optimal conditions [40]. The reason for the existence
of multiple optima is related to the phenomenon of changes
in the order of elution with changing chromatographic con-
ditions. EVOP strategies such as the sequential simplex
method will operate well in the region of one of these local
optima, but they are generally incapable of finding the
global or overall optimum [23]. In such situations, classical
factorial-type experiments can be used to fit models which
in turn can be used to estimate the general region of the
global optimum, after which EVOP methods can be used to
"fine tune" the system. For example, in chromatography the
Laub and Purnell "window diagram" technique [40] can
often be applied to discover the general region of the global
optimum, after which the sequential simplex method can be
used to "fine tune" the system, if necessary [41-491.
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DISCUSSION
of the Stanley N. Deming paper, Optimization

C. K. Bayne
Computing and Telecommunications Division,
Oak Ridge National Laboratory.

I appreciate the opportunity to make comments on
Dr. Deming's paper. I will confine my comments to three
areas: 1) optumization applications; 2) strategies for screen-
ing experiments; and 3) the steepest ascent method.

1. Optimization Applications

In 1971, Rubin, Mitchell, andGoldstein[1]l surveyedthe
previous 25 years of major English language journals of
analytical chemistry under the index heading of "statistics."
This survey uncovered few papers in which experiments
were statistically designed. Similar results were found by
Morgan and Deming in 1974 [2] in their literature search
under the heading "Optim/" in Chemical Abstract and

'Figures in brackets indicate literature references.

Chemical Titles covering eight previous years. Nine years
later, Deming and Morgan [3] found 189 titles for the years
1962-1982 listed in Chemical Abstracts and Science Cita-
tion Index related to sequential simplex optimization. About
156 papers in this search are direct applications to chemical
problems. In a recent survey by Rubin and Bayne [4] for the
years 1974-1984, 65 applications of optimizations and re-
sponse surface methods were found to be related just to
analytical chemistry. These recent literature surveys indi-
cate that statistically designed experiments are becoming an
important part of chemical experiments.

Dr. Deming deserves a large share of credit for this in-
creased use of statistically designed experiments in chem-
istry. He has promoted experimental design by his many
publications, seminars, and lectures. The fact that he is a
chemist who has championed the statistical cause is to be
admired.
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2. Screening Experiments

The strategy for using screening experiments is influ-
enced by the cost of an experimental run. Here cost can be
interpreted as price of material, time required for an exper-
imental run, etc. For a high cost experiment, the strategy is
to run a screening experiment to identify the important fac-
tors followed by an optimization experiment using these
factors. An additional screening experiment is sometimes
performed to confirm that the important factors have been
properly identified. Dr. Deming is correct in stating that the
error rate for rejecting significant factors should have more
emphasis than the error rate for accepting non-significant
factors in the initial screening experiment. This conservative
approach can be accomplished by testing at a 0.20 or 0.25
significance level rather than the usual 0.05 significance
level.

The low cost experimental run situations may require a
different strategy. Dr. Deming advocates that first an opti-
mization using all factors be performed using a sequential
simplex method followed by a screening experiment to iden-
tify important factors at optimum conditions. For additional
factors, he points out that only a small increase is required
for the number of initial experiments which require K+ I
experiments for K factors, and no increase in the number of
experiments is needed to move into an adjacent region of the
factor space. However, the number of experiments for con-
vergence may increase rapidly with an increase in the num-
ber factors. Nelder and Mead [6] reported that the mean
number of experiments needed for convergence increases as
a second-order function of the number of factors. Even for
low cost experimental runs, the total number of experiments
required for optimization may be impractical.

When dealing with a large number of factors, two adjust-
ments to the sequential methods are suggested. First, use
small screening experiments for initial experiments; and
secondly, discard more then one vertex when moving into a
different factor region.

Using small screening designs for initial experiments is
suggested because execution of the initial regular simplex
can be tedious. For example, the step size fraction required
for one of the vertices in a four-factor regular simplex is
(0.500, 0.289, 0.204, 0.791) [6]. In practice, running an
experiment at the simplex vertices may either be difficult or
impossible. By allowing the factor levels to be either a low
or high level, initial screening designs can be easily run.
Screening experiments for initial designs are given in
table 1.

Changing only one vertex per experimental move may be
too slow when there are many factors. For these cases, more
than one vertex can be discarded to increase the rate of
convergence. The rule for simplex moves is modified to
delete more than one vertex by:

Table 1. Screening Experiments for Initial Designs.

Factors Runs Initial Design

2 or 3 3 or 4 Suimplex
4sKs7 8 Fractional Factorial
S•Ks ll 12 Placketc-Burman
12s;K 15 16 Fractional Factorial

K> t6 Fractional Factorial
or Plackett-Burman

2x(average of best vertices)-worst vertices.

To decide which are the best vertices and the worst vertices,
first rank the response from lowest to highest value. Next,
divide the responses into two groups with the lowest values
in one group and the highest values in the second group.
This division can be done K ways for K-factors. For each
division, calculate the average response for each group and
then take their difference. The division that has the largest
difference will indicate the best and the worst vertices. By
this method, the difference between the average responses
for the best and the worst vertices is maximized.

3. Steepest Ascent

In a literature search by Rubin and Bayne [4], few appli-
cations were found of the steepest ascent method advocated
by Box and Wilson [7] for optimization. This method max-
imizes the gain in the reponse and performs better than fixed
step size simplex method [8]. The main arguments against
the steepest ascent method are: the initial experiments re-
quire too many experiments, and the calculations are too
complex.

Although the steepest ascent method does require more
initial experiments, the total number of experiments may not
be as many as those for the simplex method. Worksheets
similar to those used for the simplex methods can be used to
alleviate calculation difficulties. Because steepest ascent has
the potential of out performing the simplex method, its use
should be encouraged.
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Fluorescence data can be rapidly acquired in the form of an emission-excitation matrix (EEM) using a novel
fluorometer called a video fluorometer (VF). An EEM array of 4096 data points composed of fluorescence intensity
measured at 64 different emission wavelengths and excited at 64 different excitation wavelengths can be acquired in less
than one second. The time-limiting factor in using this information for analytical measurement is the interpretation step.
Consequently, sophisticated computer algorithms must be developed to aid in interpretation of such large data sets. For

r number of components, the EEM data matrix, M, cam be conveniently represented as

r

M =Ex(i)y(i)
i=1

where x(i) and y(i)' are the observed excitation and emission spectra of the ii component and ax is a concentration
dependent parameter. Such a data matrix is readily interpreted using linear algebraic procedures.

Recently a new instrument has been described which rapidly acquires fluorescence detected circular dichroism
(FDCD) data for chiral fluorophores as a function of multiple excitation and emission wavelengths. The FDCD matrix
is similar in form to EEM data. However, since the FDCD matrix may have legitimate negative entries while the EEM
is theoretically non-negative, different assumptions are required. This paper will describe the mathematical algorithms
developed in this laboratory for the interpretation of the EEM in various forms. Particular emphasis will be placed on
linear algebraic and two-dimensional Fourier Transform procedures.

Key words: circular dichroism; eigenvectors; fluorescence; pattern recognition.

Introduction
Advances in computer technology and developments in

multiparametric detection devices have had a profound ef-
fect on developments in chemical analysis:'These develop-
ments have made it possible to expand the applicability of
several analytical methods to more complex systems. Multi-
component analysis by fluorescence spectroscopy is one
example of such a method.

About the Authors, Paper: Isiah M. Warner, S. L.
Neal, and T. M. Rossi are with the Department of Chem-
istry at Emory. The work they describe was supported in
part by the Office of Naval Research and the National Sci-
ence Foundation. Isiah M. Warner also acknowledges sup-
port from an NSF Presidential Young Investigator Award.

In the conventional fluorescence experiment, the sample
solution is irradiated with monochromatic light which pro-
duces molecules in the excited state when absorbed. As
these molecules return to the ground state, light with a
characteristic wavelength distribution is emitted. This distri-
bution of the emitted light is known as the fluorescence
emission spectrum. The fluorescence excitation spectrum is
the fluorescence intensity as a function of absorption wave-
length. At low absorbance (<0.01), the intensity of the
fluorescence emitted at a given wavelength is directly pro-
portional to the amount of light absorbed and therefore to the
concentration of the analyte in the sample solution.

These characteristic spectra make fluorescence spec-
troscopy inherently more selective than absorption methods
and provide qualitative as well as quantitative measure-
ments. For example, when the excitation spectrum of the
analyte only partially overlaps the excitation spectrum of the
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other components in the sample. the sample can he irradi-

atCd With Iight ot u wavelcngth which is only absorbed by

the anialytc. Since only thc analyte absorbs the incident

lighl, 11uorcscelnce will only be emitted by the anuliyc. in the

atisence oF svaergistic effects such as energy transter. This

technique is called selective excitation III' and can br used

qualitulively by acquiring the complete emission spectrum

oF the amnalyte or quantitatively by determining the analyte

concctratllion using the emission of a sample of known

concentration as a standard

This approach to mullicornlponent analysis can be ex-

pjandcd hy acquiring fluorescence spectra at several excita-

litu;l and lhissiton wave lenegths. Acquiring nultipie spectra

%ilhconenmtiiial i:rsll nleni atioa is altime-consuning pro-

cess. even wvai a microprocessor-cuntrolleu instrumneit. it

can require mnore than one hluE a) acquire the coimplete

Celtission spcctrUn ol a samlpile at 64 excitation wavelengthIs

USill- coCnvention al instrtnnenta tion- Many samples would

ulidergo signi ilicant pholodecomposition over such a1 perfid
of timel. Tic development of the vidcofluorometer kVF)

which rapidly acquires two di lensional Fluorescence data

has resolved this problem L21- lhis instrument uses poly-

chroni tit cxcitatuon and a silicon intensified target vidicon

detctlor I television cameral to acquire data in matrix format
v tihou mechanical scanning. i'he VF can acquire 64 emnis-

sio spectra genctatLed at 64 excitation wNavelengths in less

than I sccond. 'Therefore, data processing of this emission-

excitation matrix (EEM) is now the time-limiting step in the

anal yssS and requires the use of a computer for data reduc-
loll].

The rows of the lEM of a pure sample are multiples of

th emissicn spectrum of that compound, while the columns
are inulliples oiF te excitation speclruni. indicating Iha: the

EEMA is orbilinear buto Suc matalrices ire ideallv suited for

data reduction techniques such as factor analysis 131 and

pattern ;ccognition 141.
Another technique whose applicability is expanded by

multiplaramietic detection is fluorescence detected circular

dichioi sin (HC.') 15] The FDC'D spectrum is the difFer-

CIIce in die intCIsit) oF l'rHOnCscence produced by excitation

wsith leit and right citcularly polari/cd light recorded as a

fUnclion of the wavelcngth oD the exciting light Chiral

nloleculecs prelerentihlly absorh one form of circularly polar-
ized liglht. rhe FDCD spectrum reflects the structure of the

chiral lluorophore in a solution. A two-dimensional rapid
scannins2 Ftl)D spectrometer has been developed which

mcasurcs the FDCD at several excitation and emission

wavelnlgths 161. When these data are collected in matrix

irrinnat they are also uf bilinear form. However, the al-

goritliiris designed to resolve the spectra of components

rorn the EkM cannot be applied to this ellipticity matrix

sil:cC it mayv cbit-air. Ic gitimatc neg.tive values. Thi-

manuscript will discuss the strategies developed for the
qualitative reduction of tnulticonponcnt EEMS as well as
the alternative techniques developed lor multiconiponent
ellipticity matrices.

Eigenvector Analysis [7]

When the absorbance of a sample is less than 0.01, the

intensity of the f luorescence. 1I-. can be approximated by the
expression

I1=2.303 I,)cEbc (la)

where /4. is the intens ty of the incident radiation, 4,. is the

t1Lorescecne qLLcuntum efficiency 'the ttactian of absorbed

photons emitted as fluorcscencc). e is the molar extinction
coefficient. b is the thickness of sample cell and c is the
concentration ol the thuorophoie in the sample solution.
Each element. im;,, of the emission-excitation matrix. M.
represents the fluorescence intensity at wavelength A; that

was generated by excitation at wavelength A,. Therefore,
each of these elements can be generally expressed as

m,=2 .3034,J1 A )e(A. )3(A; )bc (2a)

where yIN, reflects the dependence of!, on the monitored

emission wavelength and 8(Xk) is a parameter which incor-

porates instrumental artifacts like sensitivity and signat col-
lection geometry Combining these terms based on excita-
tion and emission vavelength related variables results in a
simpler expression:

nrli a-LVY, t3ai

where(% is a scalar that equal s 2.303 &)I1 J srf is the excitation
term -iven by

1;=jo(k)etAd , (4a)

and vj is the emission term which is expressed

(5a)-J ~~~~~~~~~~~~~-

When the Yj are property sequenced. the array of . is a

representatton of the excitation spectrum and can be denoted

x in vector notation. Likewise, when the r, are properly

sequenced. the vector y represents the eistsiton spectrum.

Since the emission profile is independent of the exciting

wavelength, and the excitation profile is independent of the

monitored emission wavelengtht. the matrix M can clearly
be expressed as the vector product of x and y, multiplied by

a sCal-ar cOncentrLlion tern .e.

(6a)
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a sample containing "n" fluorescent compounds, the ma-
tris M is the sum of the EEMs of the individual components
provided synergistic effects are negligible. Thus, the n com-
ponent matrix can be expiessed as

11

M= E ax'ykr (7a)
k=l

A more convenient notation for M is

M=XY (8a)

in which the columns of the matrix X are the excitation
spectra, Xk, of the n components, and the rows of Y are the
emission spectra, Yk of the components. The concentration
term can be considered to be absorbed into either of the

matrices.
Qualitative analysis of the matrix M requires a determina-

tion of the number of independently emitting compounds,
i.e., the rank of the matrix, and the set of basis vectors Xk

and Yk which are the excitation and emission spectra of the
components. Eigenanalysis plays a significant role in both
determinations. Therefore, it is appropriate to preface the
discussion of rank estimation and spectral resolution with a
brief presentation of pertinent eigenanalysis principles.

An eigenvector is defined as any vector x which is a
solution of the equation

Ax = Xx (9a)

in which X is a scalar called the eigenvalue. The magnitude
of the eigenvalue is a consequence of the importance of the
information reflected in the eigenvector to the data in the
matrix. When the eigenvalue is large, then the factor repre-
sented by the eigenvector makes a large contribution to the
data. If it is small, then the contribution of the factor is
small. Therefore, when a matrix has a rank n which is
greater than 1, it has n eigenvectors and n eigenvalues.

Since the matrix M is bilinear, the covariance matrices,
MTM and MMT can be used to generate the eigenvectors.
The eigenvalues of the covariance matrices are the squares
of the eigenvalues of M, but apart from this small detail, it
is more expedient to use the covariance matrices to generate
the eigenvectors since the covariance matrices are always

square and symmetric.
As the preceding discussion indicates, rank estimation of

an ideal matrix (one that is noise-free) is straightforward,
simply determined by the number of non-zero eigenvalues.
However, experimental data matrices are not free of noise.
They can contain systematic or random errors superimposed
on the signal. For these matrices, there are several methods
of rank estimation [3,8]. When the signal-to-noise ratio is
high, it is possible to differentiate the eigenvalues associated

with fluorescence (primary cigenvectors) from those associ
ated with noise (secondary cigenvectors) by a direct Comll-

parison of their magnitudes. As the signal-to noise ralto
decreases, this approach becomes more difficult Another

method which will be described in a later section of this
manuscript is differentiation of eigenvectors based on their
frequency distributions, realizing that random noise in spec-
tral data usually will have higher frequency than the signal.

The other part of the analysis of M is the resolution of the
basis vectors xA and Yk from the matrix. An infinite number

of basis vectors exists for a given matrix, and resolving the
spectral vectors from the matrix is usually not possible with-
out a priori knowledge of the components. HFowever, the
eigenvectors arc an orthonormal basis For M and arc easily
generated. Since the eigcnvectors reproduce the nmtrix, M
can be expressed as

M=UV (10:1)

in which the columns of U aie the excitation eigenvectors,

u4, and the rows of V are the emission eigenvectors, vA . The
eigenvalues have been absorbed into one of the matrices.
Since the eigenvectors are an orthonormal basis, they often
contain negative elements even though M is theoretically a
non-negative matrix Emission and excitation spectra are
also theoretically non-negative. Therefore, the eigenvectors
can be transformed to possible spectral vectors by trans-
forming them to a non-negative basis set.

To perform this transformation, the values of the matrix
K and its inverse, K ;. which transform U and V to non-
negative matrices, must be found. This is algebraically
sound, since it is equivalent to multiplying U and V by the
identity matrix. This transformation is mathematically ex-
pressed as

M=UKK 'V. (I la)

This condition also ensures that the transformed vectors are
also a basis for M. The transformed excitation vectors are
the columns of the matrix U', and the transformed emission
vectors are the rows of the matrix V'. These matrices are
given by the equations

U'=UKa'O ( £2a)

and

V'=K-'V¢0. (13a)

The values of the elements of K and K - can be found from
the expressions for the elements of U' and V'. In the two
component case, the elements are given by
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it'1 1 = k,1luli+k 2 lu2 ii O ,

U= k2 2 U2i+kl2 u'1i0 I (15a)

V'1j = l/IkI(k 2 2 Vj-kl 2v2 1)¢0 , (16a)

and

V'2j = I/IkI(kjjv2j-k 2 lvi1 )Ž0 . (17a)

It can be assumed that k, I =k 22 = I without loss of generality.
The values for k12 and k2, can be found by solving these
expressions. It's clear from these expressions why this
method is only applicable to two component matrices since
the elements of K-l become non-linear for more than two
components. The boundaries for the values of k12 and k2l

given by these expressions are

min VU1 2kI232 max
v2j >0 v2j Ulj>O

-U2 i

Uji

min
Vlj >O

v2j ek~2l h max
Vlj U2i>O

-Uli
U2 i

(19a)

The accuracy of transformations performed with values
meeting these criteria has been shown to be a function of the
overlap of the spectra of the components. This is illustrated
in the ambiguity table in figure I which summarizes the
results of the transformation for the 16 possible spectral
overlap combinations for a binary mixture. It should be
noted that in 7 out of the 16 possible cases, at least one
spectrum of each component is correctly resolved. Close
inspection of the table shows that in cases where the spectra
of neither component are enveloped in both dimensions, at
least one of the spectra of each component is resolved unam-
biguously. Clearly, if both the emission and excitation spec-
tra of the two compounds have only partial overlap, all four
spectra will be resolved unambiguously from their mixture
matrix.

Emission Overlap
comp. 1
comp. 2

a.

4)

0
C
0
ti

(U

C,
0

x
'C

.in VI, - me. rnin... k,2 mmIi k, ma U mnn-m. Zn. Vh_ k_ _ mar __ min - ' _ h _ max mi. Y" 2 me. min h > kn > max
vi> 0 V un>O u v,,>O v2, u>O u, v> 0

V, u,,>O u,, v51>o v - u,,>o u,7

mlniL - k,, nmin I>l k, >max - min n " k > max " mInin _t 2>maxLv,1>O vI u2>o u
2
, vl,>O V,

1 U2,>o us, v,,>O vi usŽO uV, v,,>o vl u5,>O U7,

All spectra cerlaln. 1 spectrum of ea. comp. certain. 1 spectrum of ea comp. certain. All spect uncertain.
I spectrum of es. component 1 spectrum of ea component Both spectra of ea component
given by extreme k. given by extreme k. given by extreme ks.

M n > kn -U , .v, 1rinmn '> k,2 m,.mx Ud mlnZZ> k1 2 max - min £> k,, >max - min -i > kt, > ma'
,>0 V,, U,,>0 U1, V,,>O V u,ŽO U., V51>O y V, ,,>O U., V,s>O V2, u,,>o U,,

min _kL _ max -uI v > >max ' min max - mln _t > k ma -v,,>O vI, u25-O u5, v,>ov,1 U u,,> us, v,,>Ov,, u,,>0 us, v,1>Ov, - us>O u> ,
1 spectrum of Ca compb certine All spectra uncertain 1 spectrum of a. comp. certain. All spectr uncerlain.I spectrum of ea component Both spectra of ea component 1 spectrum of a. component 1 spectrum of ea comp. given
given by extreme k. given by exteme kWS. given by intermediate I. by ext. k. othar by nr k.

min I_ k5 _. maxr ' mmni'= kŽ =ma -' min.I > h,, > max - min '> k,, > max -Vs1>O V,, U,,>0 U, V,,V>O s, U,> u. V,> 0 V,, U,>O U,, V,,>O V,, u,,>O U,,

min 't2 K, > mar. _ min -i> k,, > max m min ' > h,,>max > m in > k > mar _v,,>O v,, Uu,>0 U, v,1>O V,, u5,>O u, v,1>O v,, - u,>() uT, v,,>O v,, u5,>O us,

1 spectrum of ea comp- certan. 1 spectrum of Ca comp. certain All spectra uncertain. All spectra uncertain.1 spectrum of ea component 1 spectrum of ea component Both spectra of ea component 1 spectrum of ea comp. givengiven by extreme k. given by intermediate k. given by exrme kWs. by ext. It, other by int. k.

mIin "I> k,, 2 max M min > k,n > mex - min-!> k, > max _ min V > > k,> max.u0,>O v2, u,>O u,, V2 >O V- u,,>O u, v2>O u,>O 0u VYi>0 Vs, U,>O U,i

min V, MU, -U" iV, _-U,, . -u,, . 2vmini v,. kZ, 2 .maxU_ m ni_,> K, > msx _ vmtnO v . , aX- > k> 2 -, u min v >l '> ,, > max 2-v,,>O VI, -Us,>0 u, v,1>0 v, ,Ix,>O u5, v,,>O v,, - u5 >O u, v,1>0v 1 u2,>0u 5

All specora Uncertain. All spectr uncertain. All spectra uncertaln. All spectra uncertain.Both spectra of ea component I spectrum of Ca comp, given I spectrum of aa comp. given Both spectra of ea component
given by extreme ks. by ext II other by int k. by ext k other by Int k. given by Intermediate ks.

Figure I-Ambiguity Table of Two-Component Excitation-Emission Matrix.
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Rank Estimation by Frequency Analysis
of the Eigenvectors (9]

The need to correctly determine the rank of a matrix for
qualitative analysis has been demonstrated previously. Most
rank estimation methods are statistical in nature and depend
on the correct evaluation of the variance in the data. The
method of rank analysis presented here uses Fourier Trans-
form Image Analysis and is based on the assumption that the
primary eigenvectors of an EEM (i.e., those associated with
the fluorescence) will contain information that is weighted
toward the low frequency Fourier coefficients since spectra
tend to be broad-banded. Similarly, the transforms of the
secondary eigenvectors will have larger high frequency co-
efficients. However, this manuscript is not a suitable
medium for a comprehensive presentation of the theory of
Fourier transforms. The reader is referred to any introduc-
tory text on the subject of Fourier analysis [10].

The Fourier transform is fairly simple to implement since
fast Fourier transform algorithms are routinely available for
use even on small computers. Since any continuous function
can be reproduced by addition of a series of sine and cosine
functions with various frequencies, amplitudes, and phases,
the forward Fourier transform is a method of determining
these frequencies, amplitudes, and phases from the func-
tion. The inverse transform reconstructs the time domain
function from the frequencies, amplitudes, and phases. The
discrete Fourier transform equation used to transform the
eigenvector to the frequency domain is

N-I
V(u) = I/N E v(x)exp-2nri(xu)1N (lb)

x=O

where u is the frequency domain coordinate, V(u) is the
Fourier transform of v (x), and N is the number of points in
the discrete approximation of the function. The complex
frequency domain function, V(u), is frequently represented
by the Fourier spectrum which is given by

(2b)IV(u)l = [V(U)2,,,+V(U)2,.g]112

u=ulim
Autim = E !V(u)I

u=ulim
(4b)

which is simply the sum of the frequency coefficients in the
section of the Fourier spectrum bound by ulim and -ulim.
The relative importance of this frequency region in repro-
ducing the time domain eigenvector, v(x), can be expressed
by calculating the percent of T which lies in this frequency
range. The parameter which represents the importance of
the range from ulim to -ulim is called %cAuiim and is calcu-
lated from the expression

%kAujim = Au 1im/T X 100 (5b)

When the value of ulim is well chosen, there is a marked
drop in the %Au.im for secondary eigenvectors. Table I
shows a table comparing the rank estimation by frequency
analysis to four statistical methods for matrices with ranks
greater than or equal to 3. The frequency analysis method
was the most accurate on the data tested here.

Eigenvector Ratioing [11]

This method was developed to resolve the spectra of
compounds from the ellipticity matrices of two component
mixtures. The presence of legitimate negative values in this
matrix produced a need for a different algorithm to analyze
this matrix despite its similarity to the EEM. The ellipticity
matrix, F, is also bilinear and can be expressed as

F=ST (Ic)

where the columns of the matrix S are the circular dichroism
(CD) spectra, Sk of the fluorophores in the sample, and the
rows of the matrix T, symbolized by the vectors tk. are the
emission spectra of those chiral fluorophores.

The CD and emission eigenvectors of F are also an or-
thonormal basis which span the matrix, F. The CD eigen-
vectors, qk, may be represented as the columns of the matrix
Q and the emission eigenvectors, Pk, as the rows of the
matrix P. Thus, F is also given by the equation

The area of the Fourier spectrum, T, is the sum of all the
frequency coefficients and is given by

N-1
T = E IV(u)I . (3b)

U=O

The segment of the Fourier spectrum bounded by +/-ulim
is denoted Aujim which is defined as

F=OP (2c)

assuming that the eigenvalues have been absorbed into one
of the matrices.

These eigenvectors must also be transformed to possible
spectral vectors. However, the CD eigenvectors should not
be transformed to a non-negative vector because the CD
spectral vectors are not always non-negative. However,
since the matrix F contains a finite amount of information,
if the correct emission spectral vectors are found, the corre-
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Table 1. Estimated numbers ot componems in text mixtures.

No. of Components Estiiiuiat io. or componems
Mixture No. Known REFAE Stalt Stau Slai3 Sca4

I 3 38 38 2 3* 4
2 3 3' 2 2 3* 4
3 3 3' 2 2 2 2
4 2 28 1 2* 2
5 2 2* 1 1 2* 3

,. 2 2* 2* 28 28 5
3 3¢ 3* 2 2 5

s 4 4* 3 3 3 5
9 5 58 3 3 3 5

1I 6 5 3 3 4 68

+ i doI..e. d i rocily o i ... cii2L rank
slit I I-l cmifllU pIxmtrblian.
l;, l l = Acrn .zc ,i , i 1,..:li..i
.i,.i3 < (i 1uq,,.i.d i1

Si,i14 -SiinuIlaid error loc

This is valid since

sponding CD spectral vectors are fixed and easily obtained.
In this algorithm, the elements of the matrix, K, which

transforms the emission eigenvectors to non-negative vec-
tors are sought. Then, the possible CD spectral vectors are
generated using the transformed emission vectors. The
transformied emission vectors are the rows of the matrix P'
which is given by

and

1=p'ptT(p'pT)-I -

This means that eq (Sc) is another
equation

Q'=Q'I -

(IOc)

representation of the

(1 Ic)

P'=KPŽ0 . (3cj

For a two component mixture the values of the elements of
K can be determined by expressing eq (3c) in terms of the
elements of the matrices and solving the resulting expres-
sions for the elements of K algebraically:

Pj, ' =kj Ipji +kIP2zO 20 r(4c)

Pj' =Ik2,, +k 21pliŽ0 . (5c)

Again, assuming that k1i=k,, = 1 the elements of K are
within the raiges defined by

mini Pi ak-1 12 max

P, <(0 P2Ž P2i >°

mmill -Pni 2k, max

P7j< 0 Pui Pi1>O

Pli

P2r

-Pi
Pli

These ranges are generfated because the sense of an inequal-
ity changes when hoth sides of the inequality are divided by

a negative nlmber
The possible CD spectral vectors are generated by solving

the following equation:

Q=FP`(P'P)- . (Sc)

Due to the weaker constraints on the transformation ele-
ments in this algorithm, non-converging ranges are gener-
ated for the values of the transformation elements. How-
ever, it was found that if either of the components is a sole
emitter in the monitored emission range, the value of the

transformation element needed to transform an eigenvector
to the spectra of the other component is usually given at an
extreme of one of the ranges in eqs (6c) and (7c). This is
because the values from the regions of sole emission best
meet the criteria expressed in eqs (6c) and (7c). Therefore,
except when the spectra are totally coincident at the base-
lines at least one spectrum of each component is often re-
trievable using this technique. Figure 2 shows an ambiguity
table that was generated to illustrate the usefulness of this
algorithm.

This algorithm has also been tested on EEMs and it was
found that this technique can be used with either set of
eigenvectors: the emission eigenvectors (as it is with the
ellipticity matrix) or the excitation eigenvectors. The results
can be summarized hy an ambiguity table similar to the one
in figure 2 which had excitation overlap on the vertical axis.
The ambiguity table using only one axis is more ambiguous
than the earlier table (fig. I) using both axes. These results
do not conflict with those found using eigenvector analysis
on the EEM. "Multiplying" the two ambiguity tables gener-
ated by this algorithm yields the table generated for eigen-

vector analysis, verifying the validity of both methods.
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Emission Overlap

Figure 2-Ambiguity Table of Two-Component Ellipticity Matrix

Conclusions

This manuscript has provided an overview of qualitative
analysis techniques developed for matrix formatted fluores-
cence data. Qualitative analysis of matrices was shown to
generally consist of three basic procedures: rank estimation,
determination of unknown component spectra, and screen-
ing of expected compounds. The techniques outlined here
only addressed the first two phases of the problem but they
represent only a portion of the methods that have been
developed to fill these requirements. The methods presented
here successfully attack the stated problems within the
framework of the limitations described.

Rank estimation by frequency analysis can sometimes be
more accurate than statistical methods for evaluation of
spectral data. It would be useful to develop a criterion where
the algorithm will automatically select a useful range for
differentiating the secondary eigenvectors from the primary.

In the present approach, eigenvector analysis and eigen-
vector ratioing are limited to binary mixtures. Few real
samples are binary. These methods must be extended to
higher order mixtures.

These techniques have been developed for use with fluo-
rescence data, but are generally applicable to other forms of
matrix formatted data. Some of the algorithms require that
the data matrix be bilinear in form; however this is a charac-
teristic of many types of data. For example, diode array
detection of liquid chromatography and absorption kinetic

data using a diode array detector are bilinear in form.
Clearly, there is a need for further development in this area.
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Humans differ from other animals most remarkably in
their ability to learn. It is clear that although throughout the
history of mankind technological learning has taken place,
although until three or four hundred years ago change oc-
curred very slowly. One reason for this was that in order to
learn something - for example, how to make fire or cham-
pagne - two rare events needed to coincide: (a) an informa-
tive event had to occur, and (b) a person able to draw logical
conclusion and to act on them had to be aware of that
informative event.

Passive surveillance is a way of increasing the probability
that the rare informative event will be constructively taken
note of and is exemplified by quality charting methods.
Thus a Shewhart chart is a means to ensure that possibly
informative events are brought to the attention of those who
may be able to discover in them an "assignable cause" t11'
and act appropriately.

About the Author, Paper: George Box, who is with the
Research Center for Quality and Productivity Improvement
at the University of Wiconsin-Madison, and R. Daniel
Meyer are both Statisticians. The work they describe was
sponsored by U.S. Army Contract DAAC 29-80-C-0041
and National Science Foundation Grant DMS-8420968.

'Figures in hrackets indicate literature references.

Active intervention by experimentation aims, in addition,
to increase the probability of an informative event acuawll
occurring. A designed experiment conducted by a qualified
experimenter can dramatically increase the probability of
learning because it increases simultaneously the probability
of an informative event occurring and also the probability of
the event being constructively witnessed. Recently there has
been much use of experimental design in Japanese industry
particularly by Genichi Taguchi [2] and his followers. In
off-line experimentation he has in particular emphasized the
use of highly fractionated designs and orthogonal arrays and
the minimization of variance.

In the remainder of this paper we briefly outline some
recent research on the use of such screening designs.

1. Use of Screening Designs to
Identify "Active" Factoring

Table I shows in summary a highly fractionated two-level
factorial design employed as a screening design in an off-
line welding experiment performed by the National Railway
Corporation of Japan [2]. In the column to the right of the
table is shown the observed tensile strength of the weld, one
of several quality characteristics measured.
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The design was chosen on the assumption that in addition
to main effects only the two-factor interactions AC, AG,
AH. and GH were expected to be present. On that supposi-
tion, all nine main effects and the four selected two-factor
interactions can be separately estimated by appropriate or-
thogonal contrasts, the two remaining contrasts correspond-
ing to the columns labelled el and e, measure only experi-
mental error. Below the table are shown the grand average,
the 15 effect contrasts, and the effects plotted on a dot
diagram. The effects plotted on normal probability paper
suggested that, over the ranges studied, only factors B and
C affect tensile location by amounts not readily attributed to
noise.

If this conjecture is true, then, at least appoximately, the
16 runs could be regarded as four replications of a 22 facto-
rial design in factors B and C only. However, when the
results are plotted in figure I so as to reflect this, inspection
suggests the existence of a dramatic effect of a different
kind-when factor C is at its plus level the spread of the data
appears much larger 3 than when it is at its minus level.
Thus, in addition to detecting shift in location due to B and
C, the experiment may also have detected what we will call
a dispersion effect due to C. The example raises the general
possibility of analyzing unreplicated designs for dispersion
effects as well as for the more usual location effects.

2To facilitate liter discussion we have set out tie design and labelled the levels
somewhat differently from 121.

3
Data of this kind might be accounted for by the effect of one or mor variables

other than B that affected tensile strength only at the "plus level" of C (only when the
alternative material was used), Analysis of the eight runs made at the plus level of C
does not support this possibility, however.

+ . e

4F40 42 44 46 4
C-

2. Rationales for Using
Screening Designs

Before proceeding we need to consider the question, "In
what situations are screening designs, such as highly frac-
tionated factorials, useful?"

2.1. Effect Sparsity. A common industrial problem is to
find from a rather large number of factors those few that are
responsible for large effects. The idea is comparable to that
which motivates the use in quality control studies of the
"Pareto diagram." (See, for example, [31). The situation is
approximated by postulating that only a small proportion of
effects will be 'acti'e" and the rest "inert". We call this the
postulate of effect sparsity. For studying such situations,
highly fractionated designs and other orthogonal arrays
[2,4,5,6] which can screen moderately large numbers of
variables in rather few runs are of great interest. Two main
rationalizations have been suggested for the use of these
designs; both ideas rely on the postulate of effect sparsity
but in somewhat different ways.

2.2. Rationale Based on Prior Selection of Important
Interactions. It is argued (see for example [71) that in some
circumstances physical knowledge of the process will make
only a few interactions likely and that the remainder may be
assumed negligible. For example, in the welding experi-
ment described above there were 36 possible two-factor
interactions between the nine factors, but only four were
regarded as likely, leaving 32 such interactions assumed

0 42 44 46

04
0O

4 0 42 4 4

0

46 40 4 2 4 4 4 6

L

Figure 1-Tensile strength data as
four replicates of a 22 fac-
tonal design in factors B
and C only.

B-Drying Period
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negligible- The difficulty with this idea is that in many
applications the picking out of a few "likely" interactions is
difficult it not impossible. Indeed the investigator might
jUstiiiadly protest that, in the circumstance where an exper-
winent is needed to determine which first order (main) effects

are important, it is illogical that he be expected to guess in
advance which effects of second order (interactions) are
illportant.

2.3. Projective Rationale Factor Sparsity. A somewhat
different notion is that of Jatcror sparsity. Thus suppose that,
of the k factors considered, only a small subset of vaguely
known size d, wsshose idenfit is, however, unknow tsn , will be
active in providing main effects and interactions within the
subset. Arguing as in 18], a two-level design enabling us to
study such a system is a fraction of resolution R =d + I (or
in the terminology of 161. an array of strength d) which
produces complete factorials (possibly replicated) in every
one of the (K) spaces of d=R - I dimensions. For example.
we have seen that on the assumption that only factors B and
C are important. the welding design could be regarded as
four replicates of a 22 factorial in just those two factors. But
because the design is of resolution R =3 the same would
have been true for any of the 36 choices of two out of the
nine factors tested. Thus the design would be appropriate if
it were believed that not more than two of the factors were
likely to be "active".

For further illustration we consider again the 16-ruti or-
thogonal array of table I and. adopting a roman subscript to
denote the resolutions of the design, we indicate in table 2
various ways in which that array might be used. It may he
shown that

(a) If we associated the 15 contrast columns of the design
with 15 factors, we would generate a 2h-'I A design providing
two-fold replication of 22 tactorials in every one of the 105
two-dimensional projections.

(b) If we associated only columns 1. 2. 4. 7. S. 8.N 13.
and 14 with eight factors we would generate a 211v4 design
providing two-fold replication of 2' factorials in every one
of the 56 three-dimensional projections.

(c) It we associated only columns 1, 2. 4. 8. and I5 with

five factors we would generate a 254; design providing a 24
factorial in every one of the four-dimensional projections.

(d) If we associated only columns 1 2, 4. and 8 with four
factors we would obtain the complete 2' design from which
this orthogonal armay was in fact generated.
Designs (a), (b). and (c) would thus be appropriate for
situations where we believed respectively that not more than
2. 3. or 4 factors would be active 4. Notice that intermediate

41he designs give partial covcrage ot a larger number of [actors. for
::ampIc t[8l I 9161)) 56 of the 7)0 four-di ncontl projCetions of tMe 2t,4
yield a oull factorial it, four variables.

Table 1. A fractional two-level design used in a welding experiment showing observed tensile strength and effects.

Kind of Welding ikds
Period of Drying
Welded Material
Thickness
Angle
Opening
Current
Welding Method
Preheating

Factor
column bomber

D H eI . B GH AC A a AH e 2 AG J
0 1 2 3 4 5 6 7 0 9 10 11 12 13

Tensile
B C strenath

14 15 kg/.a

1 + - +

2 * t _ _ _
3 4 _ + _ _
4 + + 1 4 -
5 + - - + +
t6 + + _ +
7 -t _ + - +Rou d + + + - *

1O + - _ _ -

11t + _ + -_
12 + + + t -
13 + - -+ 4
14 + * - - +
15 + - + -

16 + * + + +
Eflect 43.0 .13 -. 15 -.30 -. 15

+ ± _ - + -F - +

- + -F - - + + +

_ _ _ _ - - - +

-~ ~ -_ + + -

* - - - * + -

- + - _ + _ + -

* + + - - - - -

+ + - + _ _ + _

- + I- + + _ _ _

+ - + + - _ -

_ - - + + + + -

_ - + + - - + *

+ - - +- + - -

- +- - + - +- - +

+- 4 + + + + + +

.40 -.03 .38 .40 --05 .43 .13 .13

_ -

- + -
_ + +

I + -

+- + +

-.3 4- 4 .1
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A:
B;
C:
0:
E:
F:
G:
Hi:
3:

43.7
4U.2
42.4
44.7
42.4
45.9
42.2
40.6
42.4
45.5
43. 6
40.6
44.0
40.2
42.5
46.5



Table 2. Somne alternative uses of the orthogonal array.

coltxIrm 1 2 3 4 5 6 7 8 9 It I 1 32 1 14 15

a) 28iv
II '. . I

[d}) 25"

Ed) 24 

values of k could be accommodated by suitably omitting
certain columns. Thus the welding design is a 21'ji5 arrange-
ment which can be obtained by omitting six columns from
the complete 2h`' t . Notice finally that for intermediate de-
signs we can take advantage of both rationales by arranging,
as was done for the welding design, that particular interac-
tions are isolated.

A discussion of the iterative model building process [9]
characterized three steps in the iterative data analysis cycle
indicated below

E identification fitting -diagnostic checking
__-_______________________

Most of the present paper is concerned with model identifi-
cation - the search for a model worthy to be formally enter-
tained and fitted by an efficient procedure such as maximum
likelihood. The situation we now address concerns the anal-
ysis of fractional designs such as the welding design in the

Column

above context when only a few of the factors are likely to
have effects but these may include dispersion effects as well
as location effects.

3. Dispersion Effects

We again use the design of table I for illustration, There
are 16 runs from which 16 quantities-the average and 15
effect contrasts-have been calculated. Now if we were also
interested in possible dispersion effects we could also calcu-
late 15 variance ratios. For example, in column I we can
compute the sample variance s - for those observations
associated with a minus sign and compare it with the sample
variance sr2+ for observations associated with a plus sign to
provide the ratioF,=st /s2 . If this is done for the welding
data we obtain values for InF; given in figure 2(a21 It will
be recalled that in the earlier analysis a large dispersion
effect associated with factor C (column 15) was found, but
in figure 2(a) the effect for factor C is not especially ex-
treme, instead the dispersion effect for factor D (column 1)
stands out from all the rest. This misleading indication oc-
curs because we have not so far taken account of the aliasing
of location and dispersion effects. Since 16 linearly inde-
pendent location effects have already been calculated for the
original data, calculated dispersion effects must be functions

5In this figure familiar annal theory sirificance levels ar also shown. Obviously
henecessry siaumptiof are not satisfed in this case but tiese rcrcenages Frevtde

a rough indication of massnitudec

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Effect
-In F.

a 

D H el G F GH AC A E AH e2

2.72 -.14 -.10 .41 .37 .50 .26 .25 .23 .37 .42

C(15)

| iIIi;
-1 0 1 2 1

AG J B

.17 .13 .13

D( 1)

0.1%

-.03 1.01 .23 1.06 -. 89 .64 -. 70 -.71 .65 -. 90 1.07

-1

2 la,a a so

0

H(2)

a a
I1

2

.12 1.63 -.19 2.92

C(C15)

i

SI

Figure 2-Welding experiment log dispersion effects (a) before, and (b) after elimnination of location effects for B and C.

498

C

.51

b 0

I



of these. Recently [I'll a general thleory of location-
dispersion abasing has been obtained for factorials and frac-
tional factorials at two levels. For illus:-ation, in this partic-
ULarCexample it tUnS out that the following identity exists for
the dispersion effect F1 , -hat is the F ratio associated with
factor D and hence for column 1 of the design,

Table 3. Caceulatsdeffee- frora a 2if desigr h'inaisstutr
assarmr~g tiree futor and higher nade 'cittttctkas regligihleinjection
molding expertmenL

T, = -0.7 + 1 mold terMp.

T2 = -0.1 + 2 msoisture content
F.=

t2- 3}2 + 4_5* 6ny+8F i [ i2- ;3)2+( _5)2
(2+3)2 +(4+SV+(+7) 2 -(+ 9)2+(io+l 1)2+(12+ 13)2+(14+15)2

(1)

T3 = 5.5 + 3

T4 = -0.3 + 4

holding pressure

cavity thickness

booster pressure
Now (see table 1) 14=lB=2. 15 and f5=C=1. 10 are the two
largest location effects, standing out from all the others. The
extreme vaLue of F] associated with an apparent dispersion
effect of factor DWl' is Largely accounted for by the squared
sum and squared difference of the location effects B and C
which appe;ar respectively as the fast terms in the denomina-
tor and numieratot of eq (1) . A natural way to proceed is to
compute variances from the residuals obtained after elimi-
nating large location effects. After such elimination the alias
relations of eq (1) remain the same except that location
effects from eliminated variables drop out. That is, zeros are
substituted for eliminated variables. Variance analysis for
the residuals after eliminating effects of B and C are shown
in figure 2(b). The dispersion effect associated with C (fac-
tor 15) is now correctly indicated as extreme. It is shown in
the paper referenced above how, mnore generally, under
circumstances of effect sparsity a location-dispersion model
may be correctly identified when a few effects of both kinds
are present.

4. Analysis of Unreplicated
Fractional Designs

Another important problem in the analysis of unreplicated
fractional designs and other orthogonal arrays concerns the
picking out of "active" factors. A serious difficulty is that
with unreplicated fractional designs no simple estimate of
the experimental error variance against which to judge the
effects is available.

In one valuable procedure due to Cuthbert Daniel [11,123
effects are plotted on normal probability paper. For itustra-
dton table 3 shows the calculated effects from a 2tsV design
used in an experiment on injection molding [13, p. 371].
These effec:s are plo::ed on normat] prtab-ity paper in
figs-e 3.

Art a erraive lB aw2 siat Epprach 1] 4 is as ho.- aws: let
T11,72 .,7i be standardizedc' effects with

Tl = e if effect inert

Tj =e +±ri if effect active

OFP lhne-hwl andt mnied tsso and hue sleld designsft eo cxampit, this analysis
is arnied eat after the effects are scaled so that they all have equal variances.

= -0.1 + 6 cycle inte

0.6 & 7

ve =

gate size

1.2 + a screw speed

T9 = Tf 2 a -0E 6+ 1.2 + 3.7 - 4.8 + 5.6

TIO 2 St13 s 0.9 + 1.3 + 2.7 + 4.6 + 5.8

T11 . T1.4 5 -0.4 4 1.4 + 2.8 + 3.6 + 5.7

212 a1.5 s 4.6 + 1.5 + 2.6 + 3.8 + 4.7

E14 - T1.7 = -0.2 + 1.7 + 2.3 + 6.6 + 4.5

T15 = Tl. = -0.6 + 1.6 + 2.4 + 3.5 + 6.7

-4

8 12

-S __et-- - __
----_-_ L

4-2 0 6

Filgun 3-Normal plot of effects. tnjectioit molding experiment.
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Figure 4 -(a) Welding experiment. Posterior probability that factor i is
active (a = 0.30, k = tO). b) Sensitivity analysis for posterior
probability (a = .15 - .45, k = 5-15). ( b )

e N.c2), r; -N!3.a) 2 2=! 2

Suppose the probability that an effect is active is a.
Let al,.) he the event that a particular set of r of the v

factors are active, and let Tf,) be the vector of estimated
effects corresponding to active factors of a1,). Then, [15]
with p(a¢c I/a the posterior probability that T11) are the
only active effects is:

P[a r)IT, o~k ix f W { -- ) sP~atl~aitlt l-am { - k2) 5 

where S,,)=T r)T(,) and S=T'T. In particular the marginal
probability that an effect i is active give T, a and k is
proportional to

a 1,)
i tc tie

ak I 1 _{ _|) s(
I-al V 2) 51

A study of the fractional factorials appearing in
17,12.13]. suggested that u might range from 0.15-0.45
while k might range from 5 to 15. The posterior probabilities

computed with the (roughly average) values. a=0.30 and
k1=10 are shown in figure 4(a) in which N denotes the
probability (negligible for this example) that there are no
active effects. The results from a sensitivity analysis in
which a and k were altered to vary over the ranges men-
tioned above is shown in figure 4(b).

It will be seen that figure 4(a) points to the conclusion that
active effects are associated with columns 3. 5 and 12 of the
design and that column 8 might possibly also be associated
with an active factor. Figure 4(b) suggests that this conclu-
sion is very little affected by widely different choices for a
and k. Further research with different choices of prior, with
marginization with respect to k, and with different choices
of the distribution assumptions is being conducted.

5. Allowance for Faulty Observations

Recent work E 16] has shown how a double application of
the scale-contamination model (both to the observations
themselves as well as to the affects) can make it possible to
allow for faulty observations in the analysis of unreplicated
factorials or fractional factorials.
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Vijayan Nair
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and

Michael Frenklach

Department of Materials Science and Engineering
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Nair: The paper by Box and Meyer deals with some
interesting problems that arise in the off-line quality con-
trol methods introduced by Taguchi (see Taguchi and
Wu [Ilfj. My comments will be restricted to the first
part of the paper, viz. estimating dispersion effects.

1) Estimating dispersion effects for quality control
In industrial experiments designed to detect important

factors that affect the quality of a manufacturing/
production process, the estimation of dispersion effects
is as important as the estimation of location effects. In
fact in situations where there are readily identifiable
signal factors (see [1]), the primary goal is in estimating
dispersion effects. The location effects, in this case, play
the role of nuisance parameters. Le6n, Shoemaker and
Kackar [2] offer an excellent discussion of the statistical
formulation of the parameter design problem in indus-
trial experiments.

2) Effect sparsity
The Box-Meyer techniques exploit the notion of ef-

fect sparsity to obtain "replicates" in an unreplicated
experiment. It is likely that in most cases only a few
factors are highly significant. However, in many situ-
ations, one could also expect many of the other factors
included in the experiment to have sizeable effects. This
is particularly true when a fair amount of the informa-
tion about the process is known and is used in the selec-
tion of the factors. In such situations, one could not
reasonably expect to estimate both location and dis-
persion effects from an unreplicated experiment.

' Michaad Frenklacl's contribution to the subjec stems from work performed
in the Departnsent of Chemical Engineering, Louisiana State University.

2 Figures in brackets indicate literature references.

3) When to log?
Box suggests using log[S 2(i-)/S 2Q +)1 as a pre-

liminary estimate of the dispersion effects. An alterna-
tive method would be to take log of the squared re-
siduals and do ANOVA with an additive model for the
log of the scale parameters. This is the type of analysis
usually done in experiments with replications. Some ef-
ficiency calculations suggest that the Box-Meyer anal-
ysis is more efficient when there are only a few large
dispersion effects and less efficient when there are many.

4) Iterating
It is possible that during the first step of the iteration

(which does an unweighted analysis) some significant
location effects are not detected. So after the dispersion
effects are estimated, the location model should be re-
fitted for all the factors.

5) Transformations
In replicated experiments, the quasi-likelihood mod-

els of Nelder and Pregibon [3] allow one to determine
the transformations under which the location effects and
the scale effects are approximately additive.
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Frenklach: Professor Box presented a method of
analysis of factorial designs for detection of main effects
and faulty observations. The approach is analytical and
provides numerical measures for what previously has
been approached graphically. The availability of the
analytical algorithm is important for computerization of
the analysis.

The central hypothesis of the method is what the
authors call effect sparsity, which states that usually
only a small number of input and control process vari-
ables would have a significant effect on the process
response(s). This situation appears to be true not only in
experimental environments but also in computer mod-
eling of various industrial processes and natural phe-
nomena. Mechanistic models usually take the form of
differential equations for which no analytical solution is
available. The model may contain a large number of
(physical) parameters and it is not always obvious from
a simple inspection of the computational results what
effect each parameter has on a given response or re-
sponses. Sensitivity analysis has been used to reveal this
information. Among other techniques, the use of screen-
ing factorial designs for sensitivity analysis of computer
models has been suggested by Box et al. 1978; Frenklach
1984; Frenklach and Bornside, 1984; Miller and Fren-
klach, 1983; and Morris and Mitchell, 1983 [1-5].

The present experience with chemical kinetic mod-
eling, for example, is as follows. Due to technical diffi-
culties of instrumentation, there are only a few experi-
mental responses available, typically one or two. The

cases studied indicate that it is a very small number of
chemical reactions, out of hundreds of reactions com-
prising the model, whose rate coefficient values, within
their uncertainty intervals, have significant or "active"
effects on the experimentally verifiable model re-
sponses. These are exactly the conditions of effect spar-
sity discussed above. Thus, the method presented by
Box is well-suited not only for "real" experimentation,
but also for computer modeling.

Computations, however, do not have random errors.
Does this fact simplify and economize the analysis?
Should special methods and designs be developed or
existing ones modified for a most efficient use in screen-
ing analysis of computer models?
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Although real polymers involve the sequential addition of monomers having fixed bond lcngrhs, fixed bond angles
and some freedom of rotation about single bond, the properties of polymers over large length scales can be modeled
by treating the polymer configuration as that of a random walk formed by the monomer units. Serious complicatons
arise in the theoretical description of these polymers because of excluded volume constraints which prohibit different
monomers from occupying the same position in space. This polymer excluded volume problem has been modeled in
terms of a simple continuous random walk with short range repulsive interactions. The expansion of polymer properties
in this repulsive interaction can readily be shown by dimensional analysis to involve an expansion in a large parameter,
in the limit of long polymers. The renormalization group method is utilized as a systematic means for resuming this
divergent perturbation expansion. The theory proceeds by analytically continuing the treatment to continuous range of
spatial dimensionalities to expose and regularize the singularities in the analytically continued theory. The renormaliza-
tion group approach is described from a heuristic physical standpoint and extensive comparisons arc provided to show
how it quantitatively reproduces vast amounts of dilute solution polymer properties with no adjustable parameters.

Key words: experiment comparison; modeling; monomer units; polymer properties: random walk: repulsive interaction.

The study of the configuration statistics of polymers in
dilute solutions presents problems of interest to analytical
chemists, chemical physicists, engineers and applied mathe-
maticians. Roughly half of the American chemical industry
is involved with polymers, and analytical chemists are con-
cerned with the characterization of their properties. Dilute
solution physical properties are used to determine the
molecular weight and general shape and architecture of the
polymer. Hence, the availability of a quantitative theoretical
description of the dependence of dilute solution physical
properties on solvent characteristics, molecular weight,
temperature, and branching is an important aid in character-
izing and understanding the properties of polymers.

About the Author, Paper: Karl F. Freed is with the
University of Chicago's James Franck Institute and Depart-
ment of Chemistry. The work he describes was sponsored in
part by the National Science Foundation.

The interest of polymers to applied mathematicians lies in
their mathematical description in terms of interacting ran-
dom walks.[t]' This mathematical representation of a poly-
mer chain can be motivated by visualizing the polymer as a
sequence of bonded monomer units. Each new monomer,
added to the chain, is attached by a chemical bond of fixed
length, generally having fixed bond angles with respect to
the previous bond. However, there is considerable freedom
of rotation about the individual bonds thereby generating a
large number of configurations for this idealized random
walk polymer model [21. The individual bond angle rota-
tions represent random variables describing the chain con-
figurations, so that when the number of these random vari-
ables, corresponding to the possible bond-vectors, gets large
enough, the central limit theorem requires that the probabil-
itv distribution for a vector between the ends of the chain
must tend to a limiting Gaussian [1,2]. The random walk

'Figures in brackets indicate literature references.
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configurations of an idealized polymer permit two different
segments of the polymer to occupy the same position in
space, something which is not possible for real polymer
molecules. Hence, real polymers are described in terms of

interacting random walks with an excluded volume interac-
tion prohibiting the multiple occupancy of monomers at the
same place in space.

Experimental methods of polymer characterization in-
clude light scattering, osmometry, sedimentation, viscome-
try. etc. When the polymer concentration c approaches zero;
osmometry provides the determination of the molecular
weight Ml of the polymer, while small angle light scattering
yields the polymers' radius of gyration RG. The limiting
slope of the light scattering intensity as a function of concen-
tration in the zero angle limit provides the polymer second
virial coefficient A2 which measures the effective volume
that a polymer excludes to other chains. The translational
diffusion coefficient D is written for c-0 using Stokes' and
Einstein's laws in terms of hydrodynamic radius RH by

D=kTI6l1rRH where T is the absolute temperature, k is
Boltzmann's constant and -lu is the solvent viscosity. If 7]

designates the viscosity of the polymer solution, the intrin-
sic viscosity E'n)=l'O(m-To)/c gives another measure of
the volume occupied by a single polymer chain.

All of these large scale observables for polymers provide
different measures of the overall size and shape of the poly-
mer. These properties are often found to vary with the poly-
mer molecular weight in the form of a power law KM"
where the proportionality factors K and the exponents a
depend on the polymer, solvent, and temperature as well
being slowly varying functions of M. It is the goal of a
comprehensive quantitative theory of polymers [3] in dilute
solution to explain the variation of K and a with the
polymer-solvent system and the temperature over the full
experimentally accessible range.

Because large scale polymer properties like RG0 A2, D and
(11) are measures of large scale or long wave length polymer
properties, the theoretical description of these polymer
properties does not require a detailed treatment of the short
range microscopic details of the polymer such as the specific
bond lengths, bond angles and hindered rotation potentials.
Rather, it suffices to employ apparently simple models to
capture the essential large length scale characteristics of
long chain molecules 13-7].

The above noted popular random flight model of poly-
mers treats the chain as having a set of effective monomer
units sequentially number 0, 1, ... , at the spatial positions
ro, rl, ... , r,. Because the properties of interest involve
large distance scales and implicitly large n, the central limit
theorem allows us to take the individual bonds to have an
effective Gaussian length distribution [1,2] with an rms

value of i. The excluded volume interaction is modeled by
introducing a short range repulsive contribution to the en-

ergy when a pair of segments occupies the same position in

space. This model then describes the dimensionless (free)
energy associated with a chain configuration {rkJ of the
form [ [-4]

H/kT=(d(2j2) 3 jr, rj_112
zi=l

n

+(%/2) > 6iri-ri
1 j= 0

(I)

where ij3 is the volume excluded by an effective segment
due to the presence of another. The spatial dimensionality is
d, and it is convenient to consider the description of poly-
mers as a function of the dimensionality of space where
normal solutions involve d=3 while the case d=2 is associ-
ated with polymers at a surface or an interface.

The probability distribution function for the chain config-
uration {rk} is governed by the Boltzmann factor exp(-H!
kT. Each of the monomer units in (1) describes the center
of mass position of a collection of several actual monomers
in the real polymer. This coarse -raining is permissible
because we are interested in long wavelength polymer prop-
erties. The first term on the right hand side in (i), therefore,
represents the entropy of the polymer chain configuration
associated with the many internal degrees of freedom in
these coarse grain effective units [1-3]. Retention of only
this term yields the simple Gaussian chain model of poly-
mers at the theta temperature, a simple model for which the
long wavelength polymer properties are easily evaluated.
The entropic or elastic energy accounts in the model for the
connectivity of the polymer chain.

The second term on the right hand side of (1) contains a
pairwise sum over all the effective monomers and thereby
converts the simple Gaussian chain model into a true many-
body problem. The complexity of the treatment of excluded
volume is readily seen by expanding exp(-HikT) of (l) in
powers of Por and evaluating polymer properties as a formal
power series in Po. This excluded volume perturbation
theory is readily shown [2-7] to be an expansion in the
dimensionless quantity P3ol-dn"2 with e=4-d. Hence, for
high molecular weight polymers where n is large, the expan-
sion is in a large parameter as long as 3ol -d<n cEo 2 and d<4.

Consequently, the perturbation theory alone is of little use
except very near the theta temperature where the empirical

Po vanishes. The power law dependence of polymer proper-
ties on the molecular weight also indicates the difficulty of
using these perturbation expansions in powers of Po since it
is hard to see how a few terms in such an expansion, in a
large parameter, can simply be resumed in order to provide
the empirically observed nonanalytic power law dependence
with fractional and often continuously varying exponents as

a function of temperature.
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Renormalization group methods are designed specifically
to effect the resummation of such asymptotic expansions in
a large expansion parameter [3-10]. The theories work by
analytically continuing the mathematical description to con-
tinuous dimensionality d in order to exhibit the singularities
of the perturbation theory as a function of dimensionality
[4-10]. As in analytic function theory, the singularities gov-
ern the dominant properties of the functional dependence on
excluded volume and chain length and thereby enable re-
summation of the asymptotic perturbation expansion.

The process begins by noting that the perturbation expan-
sion becomes a controllable one by expanding in powers of
Po and of E. This e expansion method yields for instance

n"l2= 1 +(E/2)ln(n)+(E2/8)1n2(n )+..., (2)

so that when n is large, a small e can be chosen such that
Eln(n) is a small expansion parameter. This procedure
makes the perturbation expansion a mathematically well
behaved method of computation, but it remains to show how
perturbation expansions can be usefully applied to real d=3
or d=2 polymers. The renormalization group method ac-
complishes the analytic continuation to d=3 by focusing on
the nature of the singularities of the perturbation expansion
in powers of excluded volume for large scale polymer prop-
erties. The condition that the observable properties of poly-
mers mathematically exist for d=4 leads to a resummation
approach which is embodied in the renormalization group
equation that summarizes the general analytic dependence
of large length scale polymer properties on the molecular
weight and excluded volume interaction.

This renormalization group equation has implicit within it
a coarse graining length scale L that plays several important
roles. First, L is a phenomenological parameter which is
used to average out short length scale properties of the
theoretical model which are irrelevant in the description of
large length scale polymer properties. Comparison with ex-
periment shows L to characterize a correlation range along
the chain for excluded volume interactions [4]. Roughly
speaking, a portion of the chain of length L interacts with the
remainder of the polymer as if this portion were effectively
a hard sphere. When the excluded volume is weak, L is
comparable to the size of the polymer, so there is effectively
no excluded volume interaction. At the other extreme of
strong excluded volume, L approaches an asymptotic limit
[II] which can be taken as a useful empirical definition of
the step length 1.

The theoretical analysis uses a continuum limit of the
energy (I) in which the Gaussian chain model alone would
lead to Wiener integrals [I] and where the excluded volume
term must be appended with a short distance cut off to
remove counting of self-excluded volume interactions [3-9].
The double perturbation expansions in 0o and e are fairly
straightforward albeit extremely tedious for the polymer

properties of interest. The renormalized theory involves
polymer properties on a coarse grain length scale L in a

region far from that for which perturbation expansions are
valid. The physical properties are described in terms of the
renormalized excluded volume 3 and renormalized chain
lengths N replacing 130 and the chain length nI of the pertur-
bation theory which is strictly valid only for 0I very small.
The details of the renormalization group method are too
lengthy [3-10] to discuss here, so we turn to a description of
some of the major results of the theory.

For instance, consider properties Q for linear, ring, star
and comb polymers like the radius of gyration or the hydro-
dynamic radius, etc., that naively scale as the pth power of
the polymer radius. The Gaussian chain value for this prop-
erty is written as QO=GQ<S2>ol 2 with <S 2 >O=Nll6 the
Gaussian chain square radius of gyration RG. The property
Q0 is assumed to be known since it is relatively easily
evaluated using the Gaussian chain model. An approxima-
tion to the second order renormalization group calculation in
d=3 yields [7,11]

Q = {[Qo (I + 32z/3)P'8[l + aQ(32zl3)1(t + 32z/3)], z<0.75

Qo(6.441t( 2 v-)(It + aQ), 7>0.75 (3)

where v=0.592 to order E
2 and aQ is a pure number that

depends only on the property Q and emerges only from a
first order calculation in e. The variable z is an empirical
parameter which is often observed to depend on molecular
weight and temperature in the form z =AM t12[1 -(O/T)] with
A a polymer and solvent dependent quantity and 0 the theta
temperature where A2 vanishes.

Perturbation expansions in excluded volume are effec-
tively expansions in a parameter like i. Expansion of (3) in
i shows the expansion coefficients to be growing rapidly
with the power of z. Hence, eq (3) represents the results of
a rather sophisticated resummation of the perturbation ex-
pansion in powers of i based in fact on only the first two
terms in the series and an analysis of the singularities of this
perturbation expansion as a function of the dimensionality
of space. A slightly different form of the prediction emerges
for quantities like second virial coefficient which vanish at
the theta point, and the reader is referred to our previous
papers for these simple analytic formulas [7,11].

Figure I provides an example of the comparison between
theory and experiment [ 12] for the interpenetration function
+(i) defined by

A2= (4 ir<S 2>)3 12(NA 12M2 )d!(7) (4)

as a function of the radius of gyration expansion factor
defined by

oU2,=<S2>1<SI>, . (5

505



T1

1 2 3 4
3

better than that presented in figure 1. The situation is some-
what more complicated for the dynamical properties RH and
[q] where our theoretical calculations show that the effec-
tive exponents a in good solvents often depend on an addi-
tional parameter, called the draining parameter [13]. We
believe that the success of this renormalization group de-
scription of the excluded volume dependence of dilute solu-
tion properties will enable us to describe polymer properties
in a variety of mathematically more complicated and physi-
cally very interesting situations such as the properties of
polymers in interaction with a surface or interface, the prop-
erties of polyelectrolyte solutions where polymers have a
distribution of charges and there are small counter ions in
solution, and the properties of polymer mixtures in solution.

Figure I-Comparison of theories 121 and experiment for variation of k[
with a3 [31. The figure is reproduced from Yamakawa [2] with the
parameter free RG predictions added. Data points from Norisuye et al.

[141 are O for polychloroprene (PC) in CCI4 at 250C, 6 for PC in
n-butyl acetate at 250C, and C for PC in transdecalin at various temper-
atures. Similar data 115] and agreement with theory is available for
polyisobutylene, polystryrene and poly-p-methylstyrene in various sol-
vents. The curves (l)-(3) represent older theories as reviewed by Ya-
makawa [21.

The renormalization group prediction is given by the solid
line marked RG, whereas the other lines represent older

theories [2] which lack systematic mathematical guidance
and therefore which are unable to predict the physically
obvious fact that l must lead to a universal value in the limit
of large chain expansion or equivalently large excluded vol-

ume interaction z.
An important feature of figure I is that the theoretical

curve is obtained with absolutely no adjustable parameters,
and that it is also derived using purely analytical methods.
Hence, its derivation is in the true spirit of analytical chem-
istry, using the methods of mathematical analysis to pro-

vide quantitative descriptions of the properties of chemical
systems. This type of work merges the disciplines of analyt-
ical chemistry and applied mathematics and is therefore at

the heart of the goals of chemometrics.
Renormalization group calculations have been performed

for a wide range of polymer properties [ 12] in dilute solu-
tions for linear, ring, star, and block copolymers. The agree-
ment between theory and experiment is generally as good or

I am grateful to Jack Douglas for comments on the

manuscript.
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Few scientific disciplines depend so heavily on tech-
niques based on the central limit theorem and associated
expansions in orthogonal polynomials as does crys-
tallography. Ever since the pioneering work of Wilson
[1,2 ],' and Karle and Hauptman [3-5], the central limit
theorem has played a vital role in translating crys-
tallographic scattering data into structural information
and, indeed, it is built into many computer routines for
this purpose. As we will show, when the central limit
theorem is applied to data from unit cells with a consid-
erable variation in the atomic weights of the constituent
atoms it can lead to serious qualitative errors. That this

About the Authors: George H. Weiss is an applied
mathematician and Uri Shmueli is a chemist.

is true is well known to crystallographers who have
made heavy use of Edgeworth and related expansions to
correct zeroth order approximations based on the cen-
tral limit theorem [5,61. It is not generally appreciated,
however, that serious errors can persist even with these
correction terms, provided that atomic heterogeneity is
sufficiently great. This suggests the value that may be
attached to exact results when these are available and
are readily computed. This paper reports on recent ef-
forts we and several collaborators 17-11] have made in
this direction.

Two general classes of probabilistic methods are used
to deduce structural information from radiation in-
tensity diffracted from crystals, the so-called intensity
statistics and direct methods of phase determination. In
order to make this exposition self-contained, we will
sketch how such information can be derived from data
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on intensities in a particularly simple case, and refer the
interested reader to two monographs that give detailed
accounts of these subjects in more general cases [12,13].
The arrangement of atoms in a unit cell of a crystal is
most often restricted by the space group to which the
crystal belongs [14], and in the general case, only the
arrangement within the asymmetric part of the cell
needs to be determined. The intensity of the diffracted
radiation can be represented in terms of structure factors
F(h), where the vector h and its components (h,k,l), the
orders of diffraction, specify the geometric relation be-
tween incident and scattered beams and their relative
orientation to the basis vectors of the lattice of the dif-
fracting crystal [14]. The structure factors are Fourier
coefficients of the (periodic) density function of the scat-
tering matter, and both their magnitude and phase are
required in order to reconstruct the density-i.e., the
actual atomic arrangement. Thus, F(h) is in general a
complex quantity, which we write as
F(h) =A (h) + iB (h). The function F(h) can be expressed
as a sum of contributions from individual atoms in the
unit cell as

F(h)= =Xfj exp(27rihjrj)= Yif oexpOi)

intensity statistics alone. A centrosymmetric unit cell is
one in which, for every atom located at rp, there is an
identical one at -rp Consequently if we write
F=A +iB where

A=X3fjcosO, B=XfsinOQ (2)

it follows that B sO by symmetry in the presence of
centrosymmetry. When the unit cell is
noncentrosymmetric B is not necessarily equal to 0.
Hence the value of F can be represented as a one-
dimensional random walk in P1I and by a two-
dimensional random walk in P 1. In what follows we will
use the physics notation that " < > " denotes the average
of the variable contained in brackets. It will also prove
convenient to work with the normalized structure fac-
tor E=F/<1F2'>l which, since <F>=0, has the
property that < I Et I > = 1. Wilson's argument uses the
central limit theorem to deduce the pdf of scattered
intensities. In P 1, for which B 9O, the form of the pdf of
E that follows from the central limit theorem is

p(IE I)=(2/1r)l exp(-E2 /2).
(1)

where rj is the location of atom j, the fj are so-called
scattering or form factors which can be approximated,
in the normalized-structure-factor representation (see
below), by the atomic numbers of the corresponding
atoms, and O1 =27rh r1 . The space of h is surveyed by
varying the orientation of the crystal with respect to the
incident beam.

Since F(h) is a complex quantity, it can be represented
as a vector in a plane which is the sum of n vectors, the
j'th being fj exp (iQOj). The fundamental difficulty faced
by crystallographers is that only the magnitude IFI is
measurable (although some recent work may change
this situation [15]), and the phase of F(h) must be in-
ferred indirectly. To do so, one can establish a corre-
spondence between the vector F and a random walk
first studied by Pearson [16]. Using theorem of Weyl
[17], one can show that if the components of r are ratio-
nally independent, i.e., there exists no vector of integers
m such that m-r=integer, then the set of angles, {Oj},
can be regarded as consisting of independent random
variables, each of which is uniformly distributed over
the interval (0,1)[17]. Thus the properties of theF(h) can
be determined using probabilistic methods, as was first
pointed out by Wilson [1,2].

For a typical and important case in which proba-
bilistic techniques allow one to derive structural infor-
mation, consider how one can distinguish between cen-
trosymmetric and noncentrosymmetric (space groups
PI and PI, respectively) unit cells on the basis of

(3)

The corresponding pdf for the two dimensional case
for unit cells without a crystallographic center of sym-
metry is

p(IE I)=2IE Iexp(- IE 2). (4)

The qualitative difference between eqs (3) and (4) thus
allows the experimental distinction to be drawn purely
on a comparison of intensity data with the two forms for
the pdf.

Notice, however, that the use of the central limit the-
orem presupposes the validity of certain assumptions,
the major one of which is the presence of a large number
of atoms in the unit cell and the second of which is that
the fj appearing in eq (1) should not exhibit too great a
heterogeneity. The first of these assumptions holds for
most crystalline materials of interest, but the second
may be violated particularly when there are a small
number of atoms that are considerably heavier than the
majority of atoms comprising the molecule. When this is
the case it is customary to replace, e.g., eq (3) by the
Edgeworth series

p(JE 1 )=(2/7r)2 exp(-E'/2)f 1 + MaœH,( E 1\/-2)1 (5)

where the n 'th coefficient, a. is expressible as a linear
combination of the moments of A in eq (2) and H,(x) is
the n 'th Hermite polynomial. These are readily calcu-
lated for the simpler space groups [18], and all space-
group results are available for fourth, sixth, and eighth
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moments(19,20j. Furthermore, the Edgeworth expan-
sion may also not be too useful in the presence of ex-
treme heterogeneity. This is illustrated in figure 1 in

which the asymmetric unit of a cell in Pi consists of 14
carbon atoms and one uranium atom, with a ratio offs
approximatelv equal to 15Q Wiith 0 or 2 nacrments the
Edgeworth series fails to reproduce the maximum and
the 4 and 8 moment approximation locates the maximum
quite far from its actual position. It is therefore desirable
to have an exact easily computable representation for
the pdf which is robust with respect to changes in
atomic heterogeneity.

Just such a representation was first suggested by
Barakat in a study of the freely jointed chain as a model
for polymer configurations [21] and of laser speckle [22].
Let us write gj =f /(ZJ;'2) so that

where

a, ==f g(A)cos(rT•) oA±=r %(A (T

cClr (9)

where C(ow) is the characteristic function generated by
g(A). The Fourier series in eq (8) corresponds to a sam-
pling theorem [23] for pdrs with a compact support.
When the unit cell is noncentrosymmetric so that B =O

in general, it is more convenient to expand the pdf of

IE I =(A2+B1)i in a Fourier-Bessel function series

(10)p(lEE mom . Dfu(yjAEJIS)

E =igj cxpirO1)=A +zB (6)

and let us set

where the yj are successive roots of Jc(y>=O and the
coefficients, DX, are

Dj = C(y/S )/I()

so that -5S <A(5S. As an example we consider the
case of a centrosymmetric unit cell for which B = 0. The
pdf of A, g(A), has the property that it can differ from
zero only in the interval S2>A2 . Within this interval we
will expand g(A) in a Fourier series:

g()=_ t{t+2- a, cos75r)} (N

C-Mc

again written in terms of the characteristic function.
Two questions that require an answer relate to the

advantage of representations such as those in eqs (8) or
- 10) and the feasibility of numerical evaluation of the
series. In the absence of atomic heterogeneity, or when
there Ls a very large number of atoms in a unit cell, the
central limit results are perfectly adequate for crys-

_
I-

( a

0.50 0.75

A

1.0 0 0.25 0.50 0.75
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Figure ta-(a) Apisoxitiationm to the exawt pdf giA) (devoted by tEe solid Rie; fec a unit cell in spzcaa group Pt coms-stm oF :4 c-anon

atoms and a single uranium atom (atomic weLght ratio [i 2:I) in the asymmetric unit, For convenience Am, has been set equal to 1L Note

that the pdf is symmetric around A =0. The approximations are a Gaussian (---) and the Gaussian corrected by two moments ( --. ). (hJ

Approximations to the same pdf as in figure la by an Edgeworth series using 4 moments (---) and s moments (.- -.).
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tallographic applications. However, when there are
fewer than about 40 atoms in the unit cell combined with
one or two outstandingly heavy atoms, one has to con-
volve the Gaussian with the appropriate pdf for the
heavy atoms [12]. In principle, using the series of eqs (8)
and (10) finesses this difficulty, provided that the con-
vergence properties are not overwhelming. In practice,
in the case of intensity statistics we have found no prob-
lem in evaluating the Fourier or Fourier-Bessel function
series, requiring no more than about 40 terms for the
most extreme amounts of heterogeneity, and many
fewer terms in the absence of heterogeneity. The evalu-
ation of the analogous series for direct methods can
present much tougher numerical problems, as we will
see. Finally, a problem not so far discussed is the ease
with which expressions for the characteristic function
can be calculated. We have found that it is not too
difficult to evaluate the characteristic function for all
but a handful of space groups whose structure factor is
found in the International Tables 124]. As an example, let
us write the structure factor for PI as

,'2
A =2 1 gIgcoso,

where the g1 are known and the Oj are uniformly distrib-
uted in (0,27r). The characteristic function is

e2
C(Q)=(exp(2iei I cos;6)k

(13)

I/2
==1

(12)

Again the numerical problems associated with this rep-
resentation were not severe and allowed us to generalize
the theory first presented by Rogers and Wilson for the
equal-atom case [9,25]. It is possible though alge-
braically messy to generate the orthogonal polynomials
corresponding 10 the Rogers-Wilson pdf, but the Fou-
rier series representation is relatively straightforward.
One can also analyze partially bicentric structures using
the same techniques [10.

Our present development of Fourier representations
of crystallographic pdf's has led us into the examination
of direct methods in which one is interested in the joint
pdf of several, usually correlated, structure factors. One
of the simplest examples of these is the so-called X,
relationship [13,26], in which one uses the joint pdf of
E(h) and E(2h) to determine the probability that the
phase of E(2h) is positive given a knowl-edge of E hl{
and ?E(2h) . For simplicity we consider structures in
PI letting E(h)=E and E(2h)=G. Then

p (E, G) = 14SL2 , Y 5J. "rF-
(17)

cosC yE-cos(o -)

where

C'2C(&)q,ro2)= (expi idE+z i o-)IC = rLIC, (0 bc'J

in which since
where

(18)

./I
G=2X gj cos(2OJ)

C9(x)= exp(2iag 2 cosO))
(14)

exp(2iog1 cos9)a9=J.(2wg , ).

Other examples merely test one's ability to evaluate inte-
grals. For example, we have recently examined the Foi-
rier representation of the pdf of the intensity for a unit
cell in PI in which there is an auxiliary or non-
crystallographic center of symmetry located at d, so that
a single atom located at rj generates one at -r, and
-rjt2d [9,10]. In this case one can show that

.4
A(h)=41YIg1 cos(21rh.d)cos[27rh.(r1 -d)]

and the corresponding characteristic function is

c b,. 1 I, (1 J0 (4cg, cos6j)dO.

CJ(o .co2)=9- f exp[2igj{co dcos6-+&-cos2O)J d

2 +ij(19)

where R. and 1, can be expanded in terms of Besse]
functions as

R1 ( 1i,&)) =Jt(2g 1 d)J0(2gj2) + 2 I

(- 1) m J4 (2gOjW )J 2 m(2gjwt2)

(15)
(20)

J(wi,oi2)= 2 2 (-1) "J+ 2(2gJ03i)J2.+1(2g.e)2 )*

From eq (18) it follows that C( :.o)R(re),,0.)
16 +I(o.,o°) whereR and Ican be cocmputed from theR 1

(16) and If. The probability that G is positive given E can
now be written exactly as
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p+(2hlh)=Rl +:) (21)

where

O X 5 tc VI os y 77E )sEniyG5 )sa§ =i1 --

r=% {1 +2LAR(5'1 )0cos( + Cos (%5)]
(22)

4 2 ( t)cos(PTE)cos(fiG)l .
The exact eq (21) should be compared to the much

simpler approximation furnished by the use of the cen-
tral limit theorem [26],

p+(2hlh) [ I1+tanhQt2 2 { GRE 2_1-

where
c./2

0. = 2= g' a'm=1 I7I

(23)
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Figure 2-A graph of the exact expression for p + (2h I h), the proba-
bility that the phase of E(2h) is positive, as a function of E((+ + +)
compared to the approximation provided by eq (23) (the solid
curve) for a molecule with the assumed composition C,0 Kr, in the

(24) asymmetric unit, The magnitude, I E(2h) 1, was chosen equal to 1.75
for this example.

Although eq (23) and generalizations of it are much used
in the crystallographic literature, there has been no real
test of its accuracy in the presence of heterogeneity,
since until now there has been no attempt to calculate
the exact pdf. A comparison of the result of evaluating
eq (21) with that obtained from eq (23) for an assumed
composition C3,Kr 2 in the half unit of a Pl structure is
shown in figure 2 for G = 1.75 [11]. A substantial differ-
ence between the two predictions is immediately evi-
dent. Further evidence of the inaccuracy of eq (23) in
the presence of atomic heterogeneity is provided in fig-
ure 3 where we examine the effects of the variation in
atomic weights for a unit cell in which the half unit is
C,0X2, where X varies. In the absence of heterogeneity
eq (23) provides perfectly satisfactory results, but its
utility decreases considerably with an increase in the
atomic weight of the X atom.

We are presently examining the analogous properties
of the 52 relationship, in which one determines proba-
bilistic relations between phases from properties of the
joint pdf of E(h), E(k) and E(-h-k), which requires
the evaluation of higher order Fourier series by the
same basic techniques. While this investigation is very
similar both in spirit and results to those for X, discussed
in the last paragraphs, it appears to be much more diffi-
cult to evaluate the series for the pdf of the three-phase

invariant, 4P, defined in terms of the phases of the triplet
of structure factors E(h), E(k), E(-h-k), by

4> = 0(() + O(k) + +P(- h - k). (25)

To convey some notion of the difficulties we point out
that the characteristic function to be evaluated is

Cj(w)=(exp {igj(0 1A, +0,2 Bi+l4 2+C4B 2+w5 A3
+O3683% (26)

where E(h)=Ai+iB,, E(k)=A2 +iB,, E(-h-k)=
A3 +iB3,. A detailed evaluation of C,(w) results in the
expression

6 i 6
R1(w)= 11 Jo(f5k)+ 2 Y (- 1)" II J4m050k)

6

n,=O k=I

C(w)=R(w)+-i(w)=l Cj(w)=Tl (R1+il) . (27)
I

The resulting expression for the pdf of 4' is in terms of
sevenfold Fourier series, each coefficient of which is an
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FIgure 3-This figure shows the effects of heterogeneity nap +(2h I by
as a function of the ratio of atomic numbers, p=ZJZ, for a mole-
cule with the composition CtX 2. The + + +'s are the exact results
and the solid lines are the approximation of eq (23). The values
chosen are (a) I E)I=IE(2h)l=1.5, 0b) IE(h)=IE(2h)I=2.0,
(c) IEOh)= IE(2h) 1 =2.25. Note that the approximation is always
on the conservative side, It is not known whether this is always true.

infiite series of the form shown in the last equation.
Whether the resulting calculations can be made in a
reasonable amount of time remains to be seen, but the
difficulties to be overcome are exemplified by this prob-
lem.

A final word is in order about the philosophy behind
the series of projects that we have undertaken. It would
hardly be sensible to want to eliminate methods based on
the central limit theorem that have served crys-
tallographers so well in the past. However, it is useful to
establish the limitations of these methods by having
more exact representations available. Indeed we have
explored such limitations in the case of tests based on the

51 relationship as indicated earlier and are presently
considering more complicated crystallographic tech-
niques. Furthermore, as the processing of crys-
tallographic data becomes more and more automated it
becomes increasingly attractive to have exact, rather
than approximate formulae in the computer. We hope,
in the coming years, to explore the feasibility of doing
this for a variety of techniques, as well as contributing to
the development of further ones based on the avail-
ability of exact representations.
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DISCUSSION
of the Weiss-Shinueli paper,
Fourier Representations of Pdf's
Arising in Crystallography

E. Prince

Institute for Materials Science and Engineering
National Bureau of Standards

This interesting paper by Drs. Weiss and Shmueli
represents a substantially exact solution of a problem
that has concerned crystallographers for more than 35
years, the analysis in terms of atomic structure of x-ray
diffraction data. (Similar information can be obtained
from the diffraction of electrons and neutrons, but, for
reasons that are both experimental and theoretical, this
information is mainly used to supplement that obtained
from x-ray diffraction, which remains the basic tool of
the structural crystallographer.) The observed intensity
in x-ray diffraction is given by

I=SL IF(h)

where S is a scale factor, L is a geometrical factor, and
F(h), commonly called the structure factor, is the Fou-

ier transform of the electron density in a crystal. It may
be written in the form

F(h)=Jfp(r)exp(277ih r)dr.

The density function, p(r), in a crystal is periodic in
three dimensions, so that it can be represented as a con-
volution of a function consisting of 8 functions located
at the nodes of a space lattice and a density defined in a
small region known as a unit cell. Because of the period-
icity the Fourier transform has appreciable values only
at the nodes of a lattice in transform space, called by
crystallographers the reciprocal lattice. Because it is a
physical quantity, p(r) is non-negative, and, further-
more, because a crystal is composed of atoms, it can be
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represented as a sum of functions that are, at least to a
good approximation, spherically symmetric about a fi-
nite set of nuclear positions. If we designate by /; the
Fourier transforms of these atomic functions, the Fou-
rier transform of the crystal can be written

F(h)= fI jrexp(27rih-rj),

which is the conventional structure factor formula.

If it were possible to measure the values of the struc-
ture factor throughout transform space, it would be pos-
sible to compute the inverse transform and determine
the density function, p(r), directly. However, F(h) is, in
general, a complex quantity, and, because it appears in
the intensity formula only as I F(h) 1 2, only its amplitude
can be measured, and that only within a finite region of
transform space. In the early days of structural crys-
tallography this "phase problem" was treated by using
chemical intuition to devise a trial model for which F
could be calculated and then, using the calculated
phases along with the observed amplitudes, to compute
a density map. If the crystallographer was lucky, this
map would show a sufficiently clear picture of the struc-
ture to suggest adjustments to the model, and several
iterations of the process would converge to a structure
that made chemical sense. In the days before high-speed,
digital computers these computations were done on me-
chanical desk calculators using tabulated sines and co-
sines written on strips of cardboard known, after the
two British crystallographers who introduced them, as
Beevers-Lipson strips. The process was very laborious,
and a single structure analysis could consume many
months.

In studies, beginning in the 1940s, of the structures of
boron hydrides chemical information to suggest a rea-
sonable starting model was often not available. Even if
the crystal possessed a center of symmetry, so that the
imaginary parts of the contributions to F from pairs of
atoms would cancel, thereby constraining F to have real
values, the number of possible combinations of signs in
the density summation could be enormous. It was real-
ized, however, by Harker and Kasper [1]' that many of
the sign combinations would result in violations of the
non-negativity condition on the electron density, and
they were able to derive a number of inequality condi-
tions that must be satisfied by certain combinations of F
values in order to keep the density positive. The use of
the Harker-Kasper inequalities in the solution of the
structure of decaborane, BH, 4, in 1950 by Kasper,
Lucht, and Harker [2] was the first successful applica-
tion of direct methods to the determination of a crystal
structure using diffraction data alone.

' Figures in brackets indicate literature references.

The Harker-Kasper inequalities were applicable only
to centrosymmetric crystals, with their resultant real
values of the structure factors. In view of the amount of
labor involved in the computation of a density map it
was certainly important to be able to determine whether
a crystal did in fact have a center of symmetry. In the
late 1940s this problem was attacked by Wilson and his
coworkers [3]. In the limit of a large number of identical
atoms distributed at random in the unit cell, the con-
tributions of the individual atoms to F are random walk
steps, and the central limit theorem can be invoked to
show that the distribution of F is approximately normal
with zero mean. IF 12 is then distributed as X2 with one
degree of freedom if the crystal has a center of sym-
metry and with two degrees of freedom otherwise. The
presence of other symmetry operations, such as rotation
axes or mirror planes, constrains certain subsets of the
structure factors to be real, so that statistical tests on the
observed intensities can be an aid to determining the
proper symmetry group for a crystal.

The Harker-Kasper inequalities may be viewed as a
limiting case of a more general problem, which may be
stated as follows: Given the magnitudes of a set of
structure factors and the phases of a subset of them, (It
is always possible to assign the phases of three structure
factors arbitrarily. This merely defines the origin.) what
are the probability density functions for the phases of
others? Harker and Kasper identified particular cases
where a discrete phase could be assigned with unit
probability. The more general problem was attacked by
Hauptman and Karle2 in a long series of papers, begin-
ning in the early 1950s [4], in which they have devel-
oped increasingly powerful methods for defining nar-
row ranges within which phases are likely to lie with
high probability.

Most of the statistical methods that have been devel-
oped for determining a structural model are based on
assumptions similar to those used by Wilson (1949),
namely, that the crystal was composed of a large num-
ber of nearly identical atoms located at random within
the unit cell. There is, however, another limit in which
the solution of the phase problem is well known. This is
the case (such as a simple metal) where the unit cell
contains only one atom. In this limit all structure factors
are identical in both magnitude and phase. Structure
studies of very large molecules, such as proteins, have
depended heavily on the preparation of crystals in
which the unit cell contains one heavy atom, or a few at
most, along with the very large number of atoms of
carbon, nitrogen, and oxygen. The distribution of in-

2 While this discussion was in press, the importance of the work of
Hauptman and Karle was recognized with the announcement that the

1985 Nobel Prize in Chemistry was awarded to them.
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tensities in this case cannot be similar to that in either
limiting case, but must rather represent some sort of
intermediate situation. Crystallographers have used var-
ious approximate methods to treat these real situations,
and the results are strongly dependent on the validity of
the approximations. The results given here by Weiss and
Shmueli provide an accurate solution to which the ap-
proximate methods may be compared, and for this rea-
son they are of tremendous interest to the crys-
tallographic community.
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1. Introduction

We are concerned with the following mathematical prob-
lem: a finite state Markov process in continuous time is
aggregated, by which we mean that its states are grouped
into a smaller number of aggregates. The Markov process is
assumed to be in equilibrium. One is not able to observe the
process itself, but only what aggregate the process is in as
time goes along. From the aggregated process we wish to
draw inferences about the underlying Markov process. How
much can we learn? This is a rather general question and
more sharply defined questions can be asked. For example,
to what extent is the graph structure of the Markov process
identifiable? Are some aspects of it identifiable and some
not? (By the graph we mean a diagram showing the states
and the interconnections between them, but not the numeri-
cal values of the transition rates.) Can some graph structures
be ruled out as incompatible with the aggregated process? If

the graph structure is known or hypothesized a priori, what
functionals of the various rate constants can be identified?

These are questions of identifiability. There are also prob-
lems related to the efficient statistical use of observation of
the aggregated process over a finite time interval.

Problems such as these arise in modeling and data analy-
sis for biophysical studies of gating mechanisms in ion chan-
nels in muscle and nerve cell membranes. The next section
of this paper briefly describes the biophysical context. In the
third section we summarize the mathematical results that we
have been able to obtain and discuss their implications and
possible applications. In the fourth section we make some
concluding remarks and mention several open questions.

2. Biophysical Background

Ion channels are transmembrane proteins with the ability
to open a pore through which ions can flow with high con-
ductance; in the absence of such pores, the lipid bilayer
membranes of cells are virtually impermeable to most
charged particles. Most channels are either voltage "gated"
(controlled), such as the sodium channel in nerve axons,
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which is the fundamental non-linear circuit element in-
volved in the propagation of nerve impulses, or chemically
gated, such as the post-synaptic acetylcholine receptor. We
have already reviewed the biophysical context [I]' and a
broad review of ion channels is now available [2]. We shall
therefore confine ourselves here to an illustrative example.

The present work started with the desire to extract infor-
mation from experiments on the chemically gated acetyl-
choline receptor. Chemically extracted protein is incorpo-
rated in an artificial lipid bilayer membrane separating two
compartments containing electrolyte solution. The voltage
difference between the two sides of the membrane is fixed,
and the current through the membrane is measured. In the
presence of an agonist (chemical stimulant, such as acetyl-
choline), the current is found to fluctuate randomly between
two levels, reflecting the open or closed state of the channel.
(Great pain is taken to arrange to have only one active
channel, as shown by the absence of time intervals with
current a multiple of the minimum quantum.) It is known
that the agonist must bind to the channel to permit opening,
and the time scale for channel opening and closing is much
shorter than the time scale for agonist binding, as shown by
chemical kinetics studies, so the simplest kinetics would be
a Markov process with three states: C, has no bound agonist
and the channel is closed, C2 has bound agonist and the
channel is still closed, and 0 has bound agonist and the
channel is open, and transitions Cl*C 2 -0. The transition
C2 -0 is visible in the experiment as a jump in electric
current through the membrane. The transition C,-C 2 ,
which involves the binding or dissociation of agonist, is
invisible because it does not involve a change in channel
conductance. Under these circumstances, we have the sim-
plest example of an aggregated Markov process, with aggre-
gates {Cl, C 2} and {O}. We would like to see if the scheme
Cl<C 2c0 is consistent with the data, and, if it is, we
would like to estimate the four transition rates in the scheme
from the data. In this particular case, it is easy to see, using
the results described in the next section, that the transition
rates can be estimated from the data, and in fact it is suffi-
cient to use the one dimensional densities for this purpose.

The model we have just described is radically oversimpli-
fied and inconsistent with experiment. One feature which is
accessible via these experiments but not via agonist binding
studies is that the one dimensional density for the channel
open "state" (actually, aggregate) is the sum of at least two
exponentials [3]. According to the next section, this demon-
strates the existence of at least two open states O and 02.

The aggregates are now {Cl, C2J and {0, °2}- We would
like to accept or reject schemes like Cl-C 2*0 1 *02 ,

{Cl*C2e0 1, C2 02 }, and Cl-C 2 -0 1*0 2 -C2. The
theorems of the next section imply immediately that the one
dimensional densities contain all the information available if

1Numbers in brackets indicate literature references.

any of these schemes is correct, that the third scheme, which
contains a cycle, is not identifiable, and that any of these
schemes can be excluded if correlation if observed between
two consecutive durations of channel opening, which it is
[4,5].

3. Results
We first introduce some notation. P(t) will denote the

transition matrix of the Markov process. We will assume
throughout that the process is in equilibrium. As is standard,
we let

Jim P(t)1I
Q=tio t , where I is the identity matrix.

The aggregates will be indexed by lower case Greek letters;
n. is the number of states in aggregate a. We order the states
so that states in the same aggregate are contiguous, and we
partition the matrix Q into sub-matrices Q0 p. We will as-
sume throughout that the submatrices Q., are diagonaliz-
able, which holds if the law of detailed balance is valid for
the system.

Supposing that the process enters aggregate a at time
t=0, we denote the probability density of the length of time
T spent in that aggregate before leaving by fe,(t). It is shown
in [6] and [1] that

fa(t)= 'rrse Qatq.

where q. =2:p QpuRup is a column vector of nu ones, and
Ttar is a row vector giving the probabilities that aggregate a
is entered via each of its states.

Under the assumption that Q., is diagonalizable this one
dimensional density can be re-expressed as:

n.

f,,()= Eta'e-xx,.
i=1

An implication of this result is that a lower bound on n.
can be obtained by counting the number of exponential
components. This result has been widely used in channel
gating studies by fitting experimental results to sums of
exponentials and judging how many exponentials to include
by a chi-squared statistic.

Two dimensional densities can also be used to obtain
information about the Markov process. It can be shown that
the density of spending a length of time s in aggregate a and
then a length of time t in aggregate ,3 is

n, n,

Jap5(s~t)=1 Y, a.dge-x&s`Pi
i=lj=l

(Here we use i and j as indices, not powers. ) it is noteworthy
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that the same exponential parameters occur in both the one
and two dimensional densities. This might be used to judge
the plausibility of an underlying Markov process model.

The matrix of linear coefficients with ij entry a4,p yields
information about how the aggregates are interconnected:
Theorem A. [7] LetAp=p[a$J be the matrix of coefficients
of a two dimensional density above. Then the rank of Act is
less than or equal to the rank of QB==pBp say, and AWB
depends on at most pQp(n+npB pp) parameters. The rank
of Q<p is less than or equal to the smaller of: the number of
states in a which are linked directly to states in 13, and the
number of states in X which are linked directly to states in
a. It may be possible to empirically obtain a lower bound on
the complexity of interconnection by fitting two dimen-
sional densities and using chi-square tests. We hope to im-
plement and test such a procedure in the future.

Higher dimensional densities can be considered also. The
following theorem shows that under certain conditions no
more information about the process can be obtained from
these densities, however.
Theorem B. [7] If, for each aggregate a, the eigenvalues

are distinct and a' *Ofor all i, the higher dimensional
densities fao ... , (to, . . . 4t), r>l are completely deter-
mined by the two-dimensional densities.

Thus, in principle, all the available information about the
underlying process can be extracted from the two dimen-
sional densities if the hypotheses of the theorem are satis-
fied. By counting the number of independent parameters
involved in the two dimensional densities, we have the
following theorem:
Theorem C. [7] Under the assumptions of Theorem B, the
finite dimensional distributions depend on at most L:
p~p(n.+np-pcp) parameters. a, B

Thus for example, if there are two aggregates, there is
information on at most 2p(n,+np-p) parameters. If a
model depends on more than this many parameters, its
parameters are not uniquely identifiable.

Theorem A above suggests one way to study the complex-
ity of interconnection between two aggregates. Labarca et.
al [5] have also used certain correlation functions for this
purpose. For a particular aggregate a, say, the sequence of
dwell times in that aggregate, T 1 , 2,T.... is a stationary proc-
ess, and it can be shown that the covariance function of that
process is of the form given in the following theorem:
Theorem D. [1] The covariance function is of the form

M-I
r'.(k)= 2, UKilk

i=1

where OicKi<l and k#FO and where M is the rank of the
matrix Q. * which is composed of the off-diagonal blocks
corresponding to aggregate a in the matrix Q. If M=],
r(k) =O for k*O.

The rank of Q, - is less than or equal to the smaller of: the
number of states in alpha which are linked directly to states
in any other aggregate, and the number of states in other
aggregates which are linked directly to states in a.

Correlation functions can thus be used to obtain informa-
tion similar to that in the two dimensional densities as in
Theorem A. In the case that there are more than two aggre-
gates, the two dimensional densities contain finer informa-
tion, however, since a lower bound on the rank of each of
the matrices Qp which constitute Q. can be obtained.

It is interesting that the covariance function of Theorem
D is of the form of the covariance function of a moving
average-autoregressive process, although the stationary
process is distinctly non-Gaussian. It may well be that tech-
niques developed for order estimation in the time series
literature can be used to estimate M. Labarca et al. [5] were
primarily interested in testing whether M was greater than 1,
which is relatively simple since the large sample distribution
of the empirical correlation coefficients in the case M = I
can be used.

4. Further Considerations

We believe that although the results summarized in the
previous section are useful, there are still many open and
interesting questions.

We have developed some necessary conditions for identi-
fiability which can sometimes be used to conclude that hy-
pothetical models are unidentifiable. It would be useful to
have checkable sufficient conditions as well.

Our analysis applies to stationary Markov processes. The
nonstationary case is of both theoretical and practical inter-
est, and we hope to consider that situation in the future.
Records from the sodium channel are typically nonstation-
ary because of the presence of an absorbing inactivated
state.

We have only begun to explore practical consequences of
our results for the analysis of experimental data [3]. It is
tempting to consider estimating the two dimensional distri-
butions and basing further analysis on them. Horn and
Lange [8] have proposed likelihood analysis of sample paths
and Horn and Vandenburg [9] have applied these techniques
to data from the sodium channel. Advantages of their ap-
proach are that it is applicable to nonstationary data and
multi-channel data. The likelihood method is computation-
ally intensive, however; Horn uses an array processor on a
VAX 11/730 and reports that days of computer time are
necessary. An analysis based on the two dimensional distri-
butions would be much faster; it is not clear what loss of
statistical efficiency would be incurred.

Finally, it would be desirable to develop more data-
analytic and model-free methods for analyzing experimental
records to give qualitative insights that might suggest phys-
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ical mechanisms. Labarca et al. [3] have used box-plots to
advantage in analyzing data from the chloride channel.
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Chemometrics and pattern recognition had their start in
chemistry in the late 1960's. Two areas of application ap-
peared almost simultaneously, those being learning ma-
chines and project dendral, both applied to spectroscopic
interpretation. The former originated in my research group
at the Ugiversity of Washington and have been carried on by
us, and my two students, Peter Jurs and Bruce Kowalski,
and the latter was developed at the Stanford Artificial Insti-
tute by a consortium from Chemistry and Computer Sci-
ence. Over the past 15 years a variety of applications have
occurred which include the following list and probably oth-
ers: statistics, modeling and parameter estimation, resolu-
tion, calibration, signal processing, image analysis, factor
analysis, pattern recognition, optimization, artificial intelli-

gence, graph theory and structure handling, and library
searching.

The most recent review of the area by Michael DeLaney
listed 438 journal articles and books. This was an Analytical
Chemistry article which covered the last two years of activ-
ity. Clearly, pattern recognition and its applications now
have an established place in chemistry.

The topic of this presentation is, however, not what has
happened up to the point. Rather it is what will happen in the
forseeable future. I believe that the three most important
areas of future development will be expert systems, rela-
tional data bases, and robotics. We will talk a little about
each one of these and then go on to deal in detail with what
may soon become one of the most, if not the most, sophis-
ticated tool that the experimental chemist has ever acquired.

An expert system is, simply stated, a piece of software
that behaves like an expert. The origin of expert systems
were instruction manuals that told you what to do based
upon what you encountered in a step by step fashion.
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Almost everyone is familiar with manuals on "How to
Fix Your Chevy Station Wagon," etc. These are non-
mysterious, and sometimes non-useful, written recipies de-
signed to lead you by the hand through a repair, construc-
tion, gourmet meal preparation, ecc., that an expert could do
but you could not, at least on your own. Of course, the
quality of such systems depends on the knowledge of the
expert, and on the successful transfer of that knowledge
from that expert to the author and from the author to you.

The modem expert system is usually a computer program
that attempts the same thing, with the same limits of suc-
cess. That is, the quality is dependent on the knowledge of
the expert, the successful transfer of that knowledge from
that expert to the author and from the author to the user. It
is a little more, however, because the machine can use your
input to do computations, etc., and while all of this could be
done with a programmed manual, it certainly is faster by
computer and potentially more accurate. There is less
chance of you failing to follow the directions for correct use
than in a written expert system.

Relational data bases are collections of data that interre-
late along traditional and non-traditional lines. In a sense,
the relational data base is the social scientist's dream. Given
a set of descriptors for each entry, the relational data base
allows very easy cross correlations such as, how many chil-
dren in Miami who had braces before the age of 12 also have
maternal grandparents alive in Manhattan. Again, a rela-
tional data base was always possible with pencil and paper,
or even better with three-by-five cards, but it can be greatly
facilitated in a computer. However, the use is still defined

by the selection of the descriptors and the quality of the
queries.

A robot, according to one handy dictionary, is "a machine
devised to function in place of a human agent." This is quite
a broad definition and could refer to an automatic ticket
dispenser at a parking garage, an autopilot operating from an
inertial guidance system in a jet airplane, or a computer
interfaced with an autoanalyser at a clinical laboratory.

It is my contention that it is now possible to combine
existing robotics and artificial intelligence software to create
a system that will generate its own expert systems using
relational data bases. The data will be in the chemical do-
main and the system I describe we are calling the Analytical
Director. Simply stated, the Analytical Director will be an
artificial intelligence/robotic expert system for the analytical
laboratory. The Analytical Director will develop, test, im-
plement, and interpret chemical analysis procedures. It will
learn from its own experience, and that of others, and it will
communicate what it has learned to others.

The subject of this research is neither automation nor the
robot's roll in automation, but rather EXPERT laboratory
management working through a combination of robotics and
artificial intelligence. We propose to combine robotics and
artificial intelligence into an expert system for the analytical

chemistry laboratory. We propose to demonstrate that an
Analytical Director can develop, test, implement, and inter-
pret chemical analysis procedures. It is a misconception that

the best use of robots will be exhaustive testing of possible
solutions to problems. While computationally exhaustive
methods are often quite successful, they are rarely useful to
analytical chemistry. Artificial intelligence is required for a
real breakthrough in automated laboratory methodology.

Consider the following analytical problem which might
arise from a relatively simple problem.

Given:
10 possible components to a mixture
10 reagents
10 possible temperatures
10 pH values

If each reaction combination were chemically independ-
ent, that is, if the results of any combination could be
learned by a linear addition of the separate tests, then 10,000
procedures could be carried out to determine the entire sys-
tem. This might be feasible if, for example, each test could
be completed in one minute. (This would require just about
one week of continuous work assuming the robot suffered
no maintenance problems or other delays.)

However, chemical reactions are not usually independ-
ent. For example, if one of the components were Fe(ll) and
two of the reagents were CSN- and citrate ion, there would
clearly be complex equilibria interactions. If we redo the
calculation considering from I to 10 possible components,

from I to 10 possible reagents and any combination of 10
temperatures and 10 pH values, it requires 1.63 x 1015 tests.
Again carried out at one minute intervals, assuming the
robot could work through the entire set of procedures with-
out interruption, 3. lOx 109 years would be needed. Experi-
mental design methods might achieve a few orders of mag-
nitude improvement but nothing like the 10 orders of
magnitude necessary to make this approach feasible.

Furthermore, in real analytical situations the number of
variables and dimensions is often much greater. It is clear
that analytical chemistry cannot be done by exhaustive trial
and error. Therefore, if robotics is to have any real effect
upon the field an intelligent robot must be created that can
choose meaningful experiments and profit from its experi-
ence, as well as the experience of others.

We propose to construct such a system and test it initially
on a very limited analytical problem to prove chat artificial
intelligence can be used to seek efficient paths to complex
analytical problems without resorting to exhaustive trial and
error. To do so our first model system will be very simple,
involving 3 ions, 5 reagents, 2 temperatures and 3 pH's.
This system can be exhaustively tested with 4320 proce-
dures. Assuming I minute tests, 3 days would be required.
Exhaustive testing of this model system will produce a set

of observations that will facilitate the development and test-
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ing of generalized data structures and optimization routines
to be used by the Analytical Director for more complex
problems. For complex problems, the Analytical Director
must develop artificial intelligence methods that circumvent
the testing approach.

We have selected a developmental domain that is a closed
system of simple analytical chemical problems. The domain
will be wet and photometric analysis of simple cations. The
set of manipulative skills required is purposely limited to the
abilities of the Zymark system, and the chemical reactions
and spectrophotometric measurements possible limited

to those that can be performed with the available equipment.
This way, we plan to be able to test thoroughly the creative
capabilities of the artificial intelligence programs to be de-
veloped for the Analytical Director. We have further se-
lected the domain of water analysis for an advanced test of
the Analytical Director. Only by using an unbounded prob-
lem will we be able to demonstrate the true capability of the
Analytical Director.

Given a set of standards, reagents, and manipulative
skills, the Analytical Director will develop its own set of
tests for each individual cation. These data will be stored in
a relational data base keyed on ions, reagents, conditions
and results of spectroscopic measurements. It will be as-
sumed initially that no chemistry is known for these ele-
ments or reagents. After developing possible individual
tests, these tests will be cross compared to identify likely
interfering reactions. Tests will be characterized by their
quality as defined by time, expense and reproducibility. As
the best compromise of these components is a value judg-
ment, an adjustable value coefficient will be developed.
Then possible mixture methods will be systematically tested
and compared for success. As this proceeds the relational
data base will continue to expand. Finally, new unknowns
will be introduced into the system to test the ability of the
Analytical Director to adapt to new circumstances. At this
point literature information will be added to the data base.
The Analytical Director will thereby "learn" from the expe-
rience of others. Further, the Analytical Director will report
developed procedures for possible use by others.

In summary, the Analytical Director will be a self-
generating expert system. I believe that such systems will,
in the future, provide all the advantages of pattern recogni-
tion, expert systems, and relational databases in experimen-
tal settings. Problems will continue to be defined by human
beings, but more and more the laboratory will design, exe-
cute, and evaluate its own experiments.
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1. Introduction

Compartmental models are widely used in many fields
of science and engineering-pharmacokinetics, bio-
chemistry, physiology, radioactive isotopes and tracers,
to name a few. The basic equations of a typical (linear)
compartmental model with k compartments are

k

dxi/dt=ci± 2 (Cix 1 -c1 x9C-cotxy, (1)
1= 1,1i'

O<t < , i =, ... , k; where cej are nonnegative constants
(called the "turnover rate constants"), compartment 0
denotes the environment, and xi =xi(t) is the amount of
material in compartment i at time t. Lettingf%=co and
f 7=ciixj for j#AO, fy represents the mass flow rate to
compartment i from compartment j. Under certain as-
sumptions (cf. [3], [12])', integration of differential eq (1)
leads to

k

x 1(t)=,i + I aye-Z, (2)
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i=l, ..., k; where X,.. . Xk are positive constants
(called the "decay rate constants") depending only on
the turnover rate constants cqi, and fi and al are non-
negative constants.

Noting that it is often not possible to have accurate
and complete measurements from all the compartments,
Berman and Schoenfeld [2] considered the degrees of
freedom in choosing a compartmental model compatible
with the data when measurements are incomplete. In
particular, when one can only measure aggregate input-
output kcharacteristics so that one observes only

x(t)= Ixi(t), then one can only identify the rate

constants X,, Xk of the model (2) from the equation

x(t)=B + XA e -X'I
=1='

(3)

where B = E 13E and A1 = I a,. In pharmacokinetic ap-

plications, Wagner [10] has shown that many basic
quantities of interest can be expressed in terms of the
parameters of the reduced model (3), the use of which
he recommends in lieu of the full model (2) whose spec-
ification usually leads to ambiguities in these applica-
tions because of noisy and incomplete measurements.

The difficulties in model formulation and identi-
fication are compounded when the measurements are
not only incomplete but also are subject to error. This
leads to the question of assessing, on the basis of noisy
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and incomplete observations, how much information
there is in the data for model identification. If the
amount of information is found to be inadequate for
meaningful specification of the full model, then it may
be more useful to work with a reduced model or directly
with certain scientifically important characteristics
(functions of the parameters) of the model.

Since both eqs (2) (for the individual compartments)
and (3) (for the whole system) express the response as a
polyexponential function of time t, the statistical prob-
lems in the present context are basically those of param-
eter estimation for polyexponential regression models.
We discuss herein 1) the information content in the data
from these regression models, and 2) estimation of
model parameters and certain functions thereof.

2. Noisy Data and Information Content

Consider the polyexponential regression model

k

yp=13+±ajexp(-Xryti)+fi, i=l, .. 1 n, (4)
>=1

where the ej represent random errors. The errors e, are
usually assumed to be independent random variables
with zero means. Letting O=(k,, ..., X; a, .a , /3)
and

foQt)=j8+aje-'l'+.,.+ake-k'

common models for Var(c) are:

(i) Var(c,) o-' (constant variance error model),
(ii) Var(ej) =fo(tQ)o 2 (constant coefficient of

variation model),
(iii) Var(Ej)=f0 (1j)a' (Poisson-typeerror model),

Statistical methods for estimating the unknown pa-
rameters of the regression function try to "average out"
the random errors in various ways. Assuming that ob-
servations are taken at equally spaced times t, =( - l)A
and that n=(2k+l)m, the method of Lanczos
[6, p. 273] and Cornell [4] uses the sample means

rn-I
I1=m- y1(r=1..._,2k+1)

to estimate the moving averages , =m i fM(tO) of
?=(r- In

the regression function. Replacing p, -Itr- I bY.y,-r
in Prony's algebraic equation defining 4,=e`-AmA, solu-
tion of the algebraic equation then gives the estimate of
X1. This method therefore tries to average out the ran-
dom errors by introducing the new parameters ja, and
using the sample means i. to estimate jw,.

Since the y5 are strongly consistent estimates of Pt' it
follows that the Cornell-Lanczos method is consistent,
as was established by Cornell [4]. However, Lanczos [6]
gave an example to demonstrate "surprising numerical
snags which may develop on account of the exceedingly
nonorthogonal behavior of exponential functions." The
true regression function in Lanczos' example is

f0 Q)=0.0951 e<-'+0.8607 e 3 '+1.5576 e-5 1 (5a)

On the basis of 24 successive decay observations in the
time interval (0,1.2] of the form 2.51, 2.04,..., 0.07, 0.06,
which are accurate up to 1/2 unit of the second decimal,
and assumming knowledge of ,3 0 and k = 3, the pre-
ceding method gives the fitted model

foQ)=0+0305 e-'5 an2202 e ani (5b)

Although the true parameters are disappointingly far
from their estimates, the fitted function (5b) is remark-
ably close to the true function (5a), and one cannot
distinguish between the two models within the errors of
the measurements.

An alternative method to estimate the unknown pa-
rameters is that of least squares. The estimate 6 of 8 is
the value of '} that minimizes

S()=I wily, -t0ff, (6)

where the w, are suitably chosen weights. Note that

2Xw1Ef0 (ti) -f,(ti)]. (7)

Moreover, if the weights wi are so chosen that wi Var (e,)
are bounded, then

a

YwJfor(ti) -A(tjA]1 =

0(T:wj~f0(ti)-Ar(tj)h w.p. 1 (8)

(with probability 1) as

(9)

The quantity d(6,y)(=E{S(y)-S(O)}) defined in (9) is
a measure of the separation (distance) between v and the
parameter vector 0 reflected by the data. When the E
are normal N(0,l1/wj) random variables, 1/2 d(0,y) is
the Kullback-Leibler information number and the least
squares estimate coincides with the maximum
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likelihood estimate. Thus, the least squares method av-
erages out the errors ei in the weighted sums

1w1 [f0(t,)-f(j)]c,/d(0,y) for all choices of y under
consideration. Consistency of this method under as-
sumption (9) is therefore an immediate consequence of
(7) and (8) if there are only finitely many such choices
among which one is the true parameter vector, and its
extension to infinite parameter spaces involves addi-
tional compactness arguments (c£f [7], [111).

Since fQ) is linear in the parameters ,3, a, ... , ak,

least squares estimates of these "linear" parameters are
given by the standard formulas in multiple linear re-
gression theory for every fixed X=(X,, .. , Xk). For fixed
A, define

min
2w, kj[V -

'=1l- j

(+ ale '' +...+ae )]' (10)

and the original least squares problem is reduced to that
of minimizing S *(A.) involving only the decay rate con-
stants X,.., A. This approach, suggested by Golub and
Pereyra [5] and Osborne [8], has the great advantage of
reducing the dimensionality of the parameter vector
from 2k +I to k. Using this approach to fit a two-
compartment model to the Lanczos data, Varah [9] has
recently shown that S*(X,,X2) (with equal weights) has
ill-conditioned Hessian matrices and is very flat over a
broad region containing the minimum.

We now show how a global analysis of the least
squares function S*(X) enables us to assess how much
information there is in the data to specify the model. Not
only does such analysis provide a relatively stable nu-
merical algorithm for finding the least squares estimates
of the model parameters, but it also sheds light on the
range of models that are compatible with the data.

To fix the ideas, consider the Poisson-type error
model Var(e. =f0 (t,)ar2 , in whichf 0 (t) is large, at least
during the initial portion of the sampling times, as is
often the case in tracer measurements. For large f0 (tj),

log yj =log f0t6+log{l + Ecf6 (t)}

= log MO(ti) + 71{/VVO(0 ))', (1 1)

where rj = c,(f6t?))2 has mean 0 and constant variance
it. This suggests that fo(t,) can be estimted with small
relative error when f0 (tj) is large. Therefore we intro-
duce "ideal" weights of the form w* = I/max{(tj),C},
where C is some large constant, and define the actual
weights

w1= l/maX{fa(tj),C}, (12)

where fo(t ) denotes some initial estimate of fA(t) such

that foQ) is proportionally close to ft) if f(t) is large.
With this choice of weights wi, we define the least

squares function S*(L) by (10) and study its global and
local properties by using both discretization and gra-
dient methods. The idea is to partition the k-dimensional
parameter space A (set of all possible values for X) into
a finite number of subregions. The minimum S*(XD) in
each subregion D is found by standard gradient-type
(such as the Marquardt or Fletcher) algorithms. The
minimum of S *(X) over all subregions D then gives the

least squares estimate A (5*(S2=V1 5*(A)). Moreover,

those values of S*(Xn) that are proportionally close to
S*(A) also give a range of models compatible with the
data,

Figure I illustrates the results of this analysis in the
regression model

yj-= 100 e+" 1000 e 5 "'+e1 , i=1, ..., n, (13)

where n =50, tj=(0.0l)i, and the Ei are independent nor-
mal random variables with zero means and
Var(cj)=Ey,. Here X,1=1, At2=5, a,=100 and a2= 1000
are the unknown parameters, and /3=0 is assumed
known. The initial estimates 79(t1 ) in the weights (12),
where we set C=30, are obtained by using the Cornell-
Lanczos estimate of 0. Prior knowledge of the in-
equality constraints O<X,<4 and 4cX2<10 is assumed,
and we divide this parameter space into 24 unit squares.
In 100 simulation experiments performed, we obtained
results similar to those in figure 1. In figure 1 reporting
one such simulation, S*(XD) is shown inside each unit
square D, near the minimizing point XA which is repre-
sented by a small triangle. The solid triangles denote
those X, whose S*(X. ) values lie within 10% of the
minimum value, which is underlined in the figure. At the
true parameter vector X=(1,5), S*(A)=51.5, which dif-
fers from the minimum value of 47.1 by about 9%. The
curves represent the contour S*(X)=52, so that S lies
within 10% of its minimum value in the region between
the curves.

The wide range of models compatible with the data in
figure I is in sharp contrast to figure 2, where in addition
to the data during the time interval [0,0.5] of figure I we
took 75 additional observations (generated by the model
(13)) at equally spaced times in the subsequent period
(0.5,1.25). In figure 2 there is a relatively small range of
parameter vectors A whose S*(AL) values are near the
underlined minimum value at the least squares estimate
I , which is remarkably close to true parameter At=(I,5).

Regarding S(y)-S(0) as an estimate of the "informa-
tion distance" d(0,y)=Iw,"Ve(tj)-f,(t,)] 2 , we can use it
to assess the compatibility of the modelf, with the data.
To illustrate this idea, consider the 14 models repre-
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sented by solid triangles in figure 1, whose 5* values lie
10% of the minimum value of 47.1. We tabulate below
S(y)-S(O) for each of these 14 values of y. In addition,
the corresponding information distances d(O,y) and

d*(Oy)=Z&(tf)-f,(rj)]1fo(tj) are also tabulated for
comparison. Note that d4*(O,y) is remarkably close to
d(O,y); moreover, d*(Oy) is so small (in good agree-
ment with 5(y)-S(0)) that f,(t) is within 2% offo(t)
over the observed time range 0.01r<0.5 in each of the
14 cases.

S(m)-S(O)
0
0.2
4.0
0.5
1.1
0.8
1.3

d(O,y)
0.63
3.18
1.67
2.72
5.2t
3.01
1.20

d*O6,y)
0.63
3.25
1.69
2.78
5.28
3.06
1.23

S(y)-S(D)
1.0
1.8
2.1
2.0
3.0
4.5
3.9

d(O,y)
2.20
1.58
2.80

d(O,-y)
2.24
1.61
2.84

2.11 2.14
\t61 1.69

0.06 0.06
0.67 0.63

In the case of normal N(0,l1/w) random errors ej,
exp{- 1/2 (S(y)-S(&))} is the generalized likelihood
ratio for testing Hi:O=y. We can also construct con-
fidence regions for 0 by using contours of the function

Figure 1.
52.2

60.2

3 4 A1

5(y), as will be shown elsewhere. In this connection,
Bates and Watts [I] recently proposed another useful
method involving parameter transformations to im-
prove the standard asymptotic approximations for con-
structing confidence regions.

The separation of the full parameter vector 0 into its
linear and nonlinear components is not only of com-
putational interest, but it also has basic statistical impli-
cations. Analogous to the preceding paragraph, in the
case of independent N(O,l/w,) random errors,
exp(-1/2(S*(X)-4S(;Q))} is the generalized like-
lihood ratio for testing whether X is the true vector of
decay rate constants, with j3, a,, -.. , ak as the nuisance
parameters. This idea can be easily extended to simulta-
neous equations (2) defining k-compartment models,
where we have

y~t)=: + !¾e aje-Y'+ct), v= 1, k.
/=1

We can similarly define

SYRIA)= mn k w()yt-1vXLv l
Ml ' 2=1
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and interpret exp{-1/2(S*(Q)-S*(X))}
alized likelihood ratio for testing whether
vector of decay rate constants on the basis
all k compartments.

2

as a gener-
X is the true
of data from

3. Decay Rates and Their Estimation

Consider the polyexponential regression model (4).
As illustrated in figure 1, one often encounters a wide
range of rate parameter vectors (X,, ..., 4L) that are
compatible with one's data. In such circumstances, since
there is not enough information to estimate the individ-
ual rate constants, it is more meaningful to consider
them in a combined characteristic, such as the fractional
rate of decay

r(t)=lim 8-'{l-f 0(t+8)/f 0(t)}=-(d/dt) logfo(t)

at different time points t of interest. Letting XO=0 and

a0 =/3, the logarithmic derivative of fo(t)= aj e i is
given by - I times 10

3 4 Xi

k k
r(t)= Y p,(t)X1, wherep 1(t)=aje-'Xiu/Za e -'.

i=0 = 
(14)

Thus, r(t) is a convex combination of the rate constants
Xi, with the proportional size of the 1th exponential term
as the natural weighting factor for the decay rate A,.

To estimate r(r) at a particular time point r within the
range of sampling times, we propose to balance "global
information" from all sampling times (leading to
weighted least squares estimates described in sec. 2)
with "local information" from only the sampling times
near 7. We start by using the method of section 2 on all
the data to find a region A0 of rate parameters (XA, . .., Xk)
that are compatible with the data. To choose a vector in
A, that will provide the best estimate of r(i-), we note
that the logarithmic derivative - r(r) is a "local" quan-
tity involving only sampling times near r, and it is there-
fore reasonable to weight the observations not only by
their variability but also by how far their sampling times
are from i, putting more weight on sampling times near
7. With this new set of weights w,(T), we calculate the
(constrained) least squares estimate 8(r) of the parame-
ter vector 0, under the constraints XcA0 and aj>0(i=0,
1, ..., k). Substituting the unknown parameters in eq (14)
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by these least squares estimates, we obtain the estimate
?(r) of r(r).

A detailed discussion of the procedure sketched
above, together with a comparative study of this ap-
proach and the popular curve-peeling methods for com-
partmental analysis (cf. [12]), will be presented else-
where.

The author thanks Dr. Hung Chen for helpful dis-
cussions.
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DISCUSSION
of the T. L. Lai paper,
Regression Analysis of Compartmental Models

T.-H. Peng

Oak Ridge National Laboratory

One of the major tasks of marine geochemists is deter-
mining the uptake by the sea of CO2 derived from the
combustion of fossil fuels. Until valid models of the
general circulation of the ocean are constructed, this
task will have to be done with box models calibrated
through use of the distribution of natural radioisotopes
and transient tracers.

We need to explore how sensitive the uptake of fossil
fuel CO2 is to the basic design of these models and how
the design can be improved by simultaneously fitting the
distributions of several tracers. Five different 11-box
thermocline circulation models of the temperate North
Atlantic were constructed for this purpose.* Anthro-
pogenic tritium, 3He, and radiocarbon are used as trac-
ers to calibrate these models. The temporal input func-
tions of these tracers differ considerably from one
another. So also do the geographic patterns of their
inputs and their geochemistries in the sea.

Using the basic equation of the box model [e.g., eq (1)
of T.L. Lai's presentation at this conference] and the

finite difference method of computation for mass bal-

ance in each box, these thermocline ventilation models
with differing circulation patterns were calibrated to
yield a tritium distribution similar to that observed dur-
ing the Geochemical Ocean Section Studies
(GEOSECS) survey in 1973. These models were then
run for 'He and bomb-produced 4C. While the models
differ significantly in their ability to match the observed
3He and 14C distributions, these differences are not large
enough to clearly single out one model as superior. This
insensitivity of tracer to tracer ratio to model design is
reflected by the nearly identical uptake of CO, by the
various models. This result also suggests that the uptake
of CO2 by the sea is limited more by the rates of physical
mixing within the sea than by the rate of gas exchange
across the sea surface.

- Research of the application of box models for the geochemical
modeling of oceans was supported jointly by the National Science
Foundation's Ecosystems Studies Program under Interagency Agree-
ment DEB 8115316 and the Carbon Dioxide Research Division, Of-

Eice of Energy Research, U.S. Department of Energy, under contract
DE-ACO5-840R21400 with Martin Marietta Energy Systems, Inc.
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One of the most important problems in chemical analysis is the interpretation of analytical data. The difficulty of this

task has been further compounded by the data explosion. Chemical information relevant to the particular analysis

problem is hidden within excessive amounts of data, This problem could be alleviated through knowledge and control

of the information content of the data. Information theory provides a means for the definition, evaluation, and
manipulation of quantitative information content measurements. This paper provides a general review of some of the

basic concepts in information theory, including history, terminology, entropy, and other information content measures.
The application of information theory to chemical problems requires some modifications. The analyst is usually only

interested in a subset of the information (data) which has been collected. Also, this relevant chemical information is

dependent upon not only the informational goals of the problem, but the completely specified procedure as well. This

paper reviews chemical applications of information theory which have been reported in the literature including applica-

tions to qualitative analysis, quantitative analysis, structural analysis, and analytical techniques. Measures of informa-

tion and information content and figures of merit for performance evaluations are discussed. The paper concludes with
a detailed discussion of the application of information theory to electrochemical experiments and the empirical determi-

nation of the information content of electroanalytical data.

Key words: chemical analysis; chemical information; data explosion; electrochemical experiments; information
content measurements; information theory, chemical applications

Introduction

Data interpretation is one of the most challenging prob-
lems of chemical analysis. Both the data-rich and the data-

limited cases stress the need for efficient methods to extract

chemical information from the available data. Data-rich

analyses result from the ability of modem chemical instru-

mentation to generate enormous amounts of data in short

periods of time. The current trend towards more exotic

About the Authors, Paper: Sam P. Perone and Cheryl
L. Ham are with Lawrence Livermore's Chemistry & Mate-

rials Science Department. The work they describe was sup-

ported by the Office of Naval Research apd the Lawrence

Livermore National Laboratory

hybrid instruments buries the chemical information even
deeper within the data. Alternatively, data-limited analyses
often result from limitations in appropriate sensors, accessi-
ble techniques, time, and manpower. The need for efficient

methods to extract chemical information is superseded only
by the need to acquire information-rich data.

Improving accessibility of chemical information empha-
sizes the importance of good experimental design and re-

quires a re-evaluation of the traditional approach to chemi-
cal analysis. The typical approach involves using

foreknowledge about the samples to choose an anlytical

procedure. The analytical procedure, which may involve
more than one analytical technique, is used to produce as
much data as possible which is collected for later analysis.
Data interpretation is performed by the analyst using as
much intuition and background knowledge as possible. In
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the data-rich case, emphasis is often on data reduction. The
data-limited case emphasizes information extraction.

A more efficient and desirable approach to chemical anal-
ysis would be to maximize the amount of information ob-
tained relevant to the current problem, while minimizing the
amount of analytical effort, time, and collected data, The
evaluation, selection, and optimization of analytical proce-
dures need to be investigated further, In order to study this
problem, a method for the quantification of chemical infor-
mation must be defined. This paper reviews some relevant
information theory concepts and describes applications to
chemical analysis. Illustrations have been taken from the
literature, as well as from our own recent work, to demon-
strate the value of applied information theory for optimized
chemical analysis methods.

Information Theory Concepts

Information theory [1-4]1 is concerned with the study of

information and its transmission. The earliest information

theorists studied the encoding and decoding of secret codes.
Modem work on information theory can be traced back to
the 1920's beginning with Carson's study of frequency

modulation. Nyquist determined the minimum bandwidth
required for the transmission of a definite quantity of infor-
mation. Hartley established a definite bandwidth-time
product required for the tranmission of a definite quantity of

information. However, most of the present work in informa-
tion theory is based upon probablistic models of communi-
cation developed by C.E. Shannon in 1948 [5]. Simply

stated, the basic principle is that a message with a high
probability of random occurrence conveys little informa-
don. The most information is conveyed by the message that

is least likely to spontaneously occur.
This principle is formalized by the concept of entropy

which equates information and uncertainty. Entropy is a
quantitative measure of the amount of information supplied
by a probabilistic experiment. It is based upon classical
Boltzmann entropy from statistical physics. Shannon's for-
mula, eq (1) defines the entropy or the average information

N

HaV=Iav= P(xi) log2 p(xi) , (1)

to be equal to the weighted average of the specific informa-
tion for each event in the system under consideration.
Specific information [61 is information conveyed by the
occurrence of a particular event and is quantified by the
-log 2 of the probability of the event (p(xj)). Entropy is
limited by a maximum of log2 N (Hartley's equation), where

Figurcs in brackets indicate literature references.

N is the number of events, when considering a set of mutu-
ally exclusive but equally probable events [1,6,7]. For ex-
ample, consider the measurement of three distinguishable
intensity levels. If the probabilities of measuring these lev-
els are 0.25, 0.30, and 0.45, respectively, the averge en-
tropy would equal 1.5 bits. The amount of specific informa-
tion conveyed by the measurement of each level would
equal 2.0, 1.7, and 1.1 bits, respectively. Notice that the
least likely level to be measured does indeed convey the
most information. The maximum entropy is equal to 1,6
bits. A thorough treatment of the mathematical basis of
entropy and its properties is given in a book by Mathai and

Rathie [21.
Redundancy [6] is the difference between the maximum

information and the average information eq (2). Relative

N

Id =10g2 N - p(xi) log2 p((x) (2)

redundance is the ratio of the redundance to the maximum
information [6]. Relative information content is the ratio of
the actual average information to the maximum information
[11. Redundancy can then be expressed as the remaining
fraction not due to relative information [1]. In the above
example there is 0.1 bit of redundancy and 0.062 relative
redundance. If the actual average information is equal to 1.4
bits, the relative information content is equal to 0.88 and the
redundancy equals 0.12.

Types of Information

The concept of information as used in information theory
refers to the choice or uncertainty of outcomes when regard-
ing distinguishable elements with respect to some random
mechanism. Information is a system based upon elements
that have been agreed upon for the representation of infor-
mation (characters) and the relationships between them
(codes). It is not a measure of meaning as used in the usual

sense, which implies a subjective evaluation. The concept
of information as used in chemical analysis encompasses the
uncertainty regarding the quantity, identity, chemical struc-
ture, or properties of the analyte of interest.

Preinformation or foreknowledge [1] is the prior knowl-
edge concerning the occurrence of events. The information
conveyed by the occurrence of more than one independent
event is simply the sum of the information conveyed by each
event individually. However, if the occurrence of a second

event is dependent upon the occurrence of the first event, the
foreknowledge of the first event reduces the amount of in-
formation conveyed by the second event. Therefore, the
amount of information conveyed by a series of events within
the system under consideration is always less than or equal
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to the sum of the information conveyed by each of the events
separately.

Preinformation is probably the most commonly used in-
formation theory concept in chemical analysis. Chemical
preinformation [8] is information that is known prior to
performing the current analysis. It may result from experi-
ence, preliminary analyses, etc. It is used to reduce the
effort required to solve the analytical problem. Preinforma-
tion may be quantified through the use of entropy-based
measures [8]. The uncertainty before the analysis for a dis-
crete variable, such as chemical identity, is quantified by the
use of the a priori probabilities for identification in Shan-
non's equation (eq 1). The uncertainty for a continuous
variable such as concentration or signal intensity is ex-
pressed by integrating the a priori probability density func-
tion over the range of interest eq. (3).

H(X)=-f p(x) 10g2 P(x) d (3)
xI

Joint information [I] is information that is provided by
more than one event. It can be quantified by substituting the
joint probability of occurrence for the events into Shannon's
equation (eq 1). In the case of independent events, the joint
probability of occurrence is simply the product of the a
priori probabilities of occurrence. For nonindependent
events, it is the product of the a priori probability for the
first event with the conditional probabilities for the other

events.
Mutual information describes the amount of information

in one event that determines the state of another event. It
may also be thought of as the average amount of information
required to distinguish members of different classes, Isen-
hour et al. [9] investigated the relationship between mutual
information and classification in the determination of chem-
ical functionality for 200 compounds based upon binary
encoded (peakino peak) infrared spectra. Mutual informa-
tion was calculated as the difference between the total aver-
age entropy and the average conditional entropy. The total
average entropy is the average amount of information re-
quired to distinguish between the 200 spectra under consid-
eration. It is calculated as a weighted average of the proba-
bility of occurrence of a peak maximum for each spectral
interval using Shannon's formula (eq 1). The average condi-
tional entropy is the average amount of information required
to distinguish between members of the same class. Average
conditional entropy is calculated as the sum of the class
conditional entropies weighted by class size. In the case of
two separable, equally probable classes, the independent
mutual information is equal to one bit. A value for mutual
information greater than one bit implies the inclusion of
redundant information in the data. The square root of mutual

information was shown to be linearly related to the maxi-
mum likelihood classification ability.

Figures of Merit

The application of information theory concepts to chem-
istry is most familiar in the evaluation of analytical methods.
Figures of merit such as accuracy, precision, and detection
limit have long been used to evaluate the attainment of
informational goals such as concentration, resolution, and
sensitivity, respectively. Figures of merit are measures of
goal achievement for completely specified procedures that
can be used for evaluating, selecting, and comparing analyt-
ical procedures. Other quantifiable factors that can be used
to determine the applicability of analytical procedures to a
particular problem include sensitivity, selectivity, speed of
analysis, personnel requirements, and cost of the analytical
procedure.

Grys [10] described five new functional concepts: accu-
racy, limit of detection, firmness, efficiency, and cost,
which result in judgements of acceptibility of analytical
methods. Accuracy is expressed in terms of recovery and
reproducibility. The contribution due to recovery can be
calculated by summing the percentage of different losses
throughout the whole procedure. Reproducibility is ex-
pressed by the ratio of the full range to 100 times the ideal
range.

Limit of detection is the concentration of a sample that
gives a reading that is equal to twice the confidence half-
interval for a series of ten determinations of the blank test
value determined to 99% certainty. It is measured in mg per
kg, or ppm, and is given by multiplying the standard devi-
ation by 2.17, a factor that is determined from the t test for
t0 01 and n = 10.

Firmness is an index of the effects of different factors
upon the results. It is equal to the total deviation from
expected values caused by the presence of equimolar
amounts of interfering substances or connected with 5%
changes in optimum reaction conditions such as acidity or
reagent concentrations.

Efficiency provides information about the time consump-
tion during the course of the whole procedure. It is ex-
pressed as the time of effective labor for one sample in
minutes divided by 100.

Cost is a measure of the expenditure of materials and
equipment used for the analysis of one sample by a new
method in relation to the least expensive method. The cost
of any desired method by which the analysis can be per-
formed may be substituted for that of the least expensive
method. It is given by dividing the ratio of the cost of the
new method to the old method by 1000.

Eckschlager [11] discussed two informational variables,
time-information performance and specific price of informa-
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don, which can be utilized in the evaluation and optimiza-
tion of analytical methods. Time-information performance
[12] can be rewritten as the ratio of information content to
the time required for the analysis, including the analysis
itself plus the time required to prepare the equipment for the
analysis of the next sample. The time required for analysis
can be partitioned into two segments, the basis time and the

time required for the performance of N parallel determina-
tions. The specific price of the information [11] is defined
as the ratio of the cost of the analysis to the amount of
information obtained through simultaneous determination of
N components.

Danzer and Eckschlager [13] defined a general measure
of information efficiency as the product of efficiency coeffi-
cients that are based upon the ratio of the value of the
variable characterizing the properties required for the solu-
tion of particular analytical assignments to the actual value
that the method provides. A ratio greater than one implies
that more of the property is required than is provided by the
method and the efficiency coefficient is assigned the value
of zero. Otherwise, the efficiency coefficient is assigned the
value of the ratio. They also defined a measure of infornia-
tion profitability as the ratio of the information efficiency to
the specific price of the information. Results for the deterni-
nation of manganese in low-alloy steels were tabulated for
seven analytical methods: titrimetry, potentiometric titra-
tion, photometry, atomic absorption spectrophotometry, op-
tical emission spectroscopy, optical emission spectrogra-
phy, and optical emission spectrometry. The results
demonstrated that information efficiency and information
profitability are not always correlated. For example, al-
though potentiometric titration has almost five times the
information efficiency of titrimetry, both methods have the
same information profitability when the duration of the anal-
ysis should be less than one day.

Informing Power

Informing power is a measure of the amount of informa-
tion available in a given analytical procedure. The concept
was developed by Kaiser [14] with respect to spectrochem-
ical methods of analysis eq (4) as a function of the resolving

Pimf= | R(v) log2 S (v) - (4)
fV. ~~~V

power, R(v), the maximal number of discernable steps for
the amplitude, S(v), and the spectral range, v. to Vb. If the
resolving power and the maximal number of steps are fairly
constant over the spectral range under consideration, in-
forming power reduces to eq (5). For example, a grating

Pinf=Rav logo SV, In (vbdv) (5)

spectrograph system with a resolving power of 2X 105, a
spectral range from 2000 to 8000 A, and 100 discernable
steps in measured intensity levels at each wavelength would
have an informing power of 2x 106 bits. It is obvious that
here the resolving power is the most important factor in
maximizing informing power. In the case of a nondisper-
sive, monochromatic method, resolving power between
peaks at different wavelengths is not applicable and inform-
ing power is simply the log2 of the number of discemable
amplitude steps at that wavelength. For example, 100 dis-
cernable intensity steps yields an informing power of 7 bits.
The informing power for the corresponding polychromatic
method is that for the monochromatic method multiplied by
the number of frequencies. If the number of steps is different
for each of the different frequencies, then the informing
power is the same as for a collection of monochromatic
methods, and the log2 of the number of steps is summed
over each of the different frequencies

Fitzgerald and Winefordrer [15] extended the application
of informing power to time-resolved spectrometric systems
with the addition of a second resolving parameter, R,. If
both resolving powers and number of discemable steps are
nearly constant over the range, then informing power re-
duces to eq (5) multiplied by R. In (t21t1 ). For example, an
atomic fluorescence spectrometer with an average resolving
power of 3000 over a spectral range from 200 to 500 nm

;with an averge of 200 discernable intensity steps has an
informing power of 5.7x 104 bits. The informing power is
increased to 9.7x Ihibits for a range of 10-9 (tj) to 10-6 se
with a measurement time limited by the lifetimes of the
excited species of 10' sec (t2) and a 8! of 10- 9 sec (R.
equals (t2 -,t)/Br). Comparisons of the inforning power for
a single beam molecular absorption spectrophotometer, nor-
mal molecular absorption phosphorimetry and time-
resolved phosphorimetry showed an increase in the inform-
ing power by a factor of two for the normal phosphorimeter
over the spectrophotometer. The addition of a time resolu-
tion element to phosphorimetry increased informing power
by a factor of 450. The addition of a time resolution element
to atomic fluorescence spectrometry increased the informing
power by a factor of 170. Informing power was also used to
compare analytical methods as well as to compare analytical
instruments. A general photon counter was shown to have
an informing power three times larger than that for an analog
synchronous detection system.

Yost extended the application of informing power to
tandem mass spectrometry [16,17], a method capable of
generating enormous amounts of data. In the case of a
quadrupole mass filter, the minimum resolution element, bx
is constant rather than the resolving power, R (x). Informing
power can then be calculated as shown in eq (6). A quad-
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rupole mass spectrometer with unit mass resolution, a mass
range of 1000, and an ion intensity range of 212 bits would
have an informing power of 1 .2X 104 bits. The addition of
another resolution element produces a double integral in the
informing power equation that is equivalent to the the
product of the informing power of the two elements. The
addition of a capillary gas chromatograph with a nearly
constant 105 theoretical plate resolution over a one hour
analysis time, results in 6.6X 106 bits of informing power.
The addition of a second quadrupole mass spectrometer with
the same characteristics results in 1.2 x 107 bits of informing
power. The combination of a capillary gc/ms/ms system
results in an informing power of 6.6X 109 bits, an increase
by a factor of 5.5 X 105 over the original quadrupole mass
spectrometer. The effect of experimental parameters on in-
forming power was also demonstrated by Yost [16,17]. The
variables associated with the collisionally activated dissoci-
ation process are potential resolution elements. Energy- and
pressure- resolved ms/ms has an informing power of
3.6x 109 bits.

The informing power metric can also be applied to elec-
trochemistry. Using a current range of -20 to +20 1iA that
can be measured to within .005 IiA yields 4X 103 discem-
able steps. Eq (6) can be used to calculate the informing
power for a cyclic staircase voltammetry (CSCV) experi-
ment in which each current pulse is sampled and analyzed.
An experiment with a staircase step of 13.5 mV (8x) and a
potential range scanned from 0.0 to -1.73 V yields
3.1 x 103 bits of information.

Boudreau and Perone [18] demonstrated quantitative res-
olution in programmed potential step voltammetry for over-
lapped peaks with 30 mV separation between half wave
potentials. If only resolved peaks are analyzed and the
smallest resolution is 30 mV, the informing power is
1.4x 103 bits. The addition of a time resolution element
increases the informing power for electrochemical methods.
Taking 45 equally spaced current measurements on each
step at a sweep rate of 1.00 V/sec for the CSCV experiment
increases the amount of information to 3.5x 107 bits. The
amount of information obtained from CSCV experiments
can be easily manipulated by changing or adding resolution
parameters.

Informing power can be used as a figure of merit for a
completely specified method or system. Although the in-
forming power of instrumental techniques may seem exces-
sive when compared to the maximum information as calcu-
lated by Hartley's formula, it must be remembered that
informing power is simply a measure of the maximal num-
ber of bits of information available in the procedure, not
necessarily the useable or necessary amount of information.

Limitations in informing power arise from differences be-
tween practical and calculated resolving power. The lack of
independence between the bits of information, noise, and
interference result in the reduction of the useful informing
power. Informing power can be partitioned into the amount
of information required for the solution of the problem and
the amount of redundant information required to provide a
given level of confidence.

Information Content

One of the most important concepts in information theory
is that of informational gain or information content [19].
This is equal to the change in entropy due to the experi-
ment and is quantified by the difference between the en-
tropy using a priori probabilities and the entropy using a
posteriori probabilities eq (7). The use of Shannon's

I(X 1Y)=H(X)-H(XIY) (7)

formula eq (1) to calculate the entropy does not guarantee a
non-negative information content. However, another infor-
mational measure eq (8) always results in non-negative

N

I(XIy)=- p(X1Iy) 1lg2 [P(XiJY)Ip(XX)]
i

(8)

values. For equal a priori probabilities, information content
as calculated by Eqs (7,8) are equivalent. Since information
content as discussed above can only be established after the
analysis, these measures cannot be used as a quality crite-
rion for selecting an analytical procedure. However, they
can be used to evaluate the performance of a procedure.

Measures of information content has been applied to in-
formation theory models of structural analysis, qualitative
analysis, quantitative analysis, trace analysis and instrumen-
tal analysis. Eckschlager and Stepanek have published a
book [7] and a review article [8] on the application of infor-
mation theory to analytical chemistry.

Structural Analysis

One of the most difficult analytical tasks is the unambigu-
ous determination of chemical structure. However, applica-
tion of information theory to structural analysis is based
upon a relatively simple entropy model [8] and an informa-
tional measure introduced by Brillouin [20]. The input con-
sists of a finite number, no, of equally probable identities
such as functional groups or conformational arrangements.
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The output is a portion of a signal that corresponds to the
identity, such as an IR band, NMR peak, or MS m/z peak,
encoded only as to its presence or absence. The number of
possible, but as yet undistinguished, structural arrangements
is n, where 1 •CnO•n and n = 1 for an unambiguous determi-
nation of the structure for the analyte.

The uncertainty prior to analysis can be expressed by
substituting the a priori probabilities into Shannon's equa-
tion eq (1). Since the a priori probabilities are qual, that is
l1/no, then the situation reduces to the case of maximum
information (Hartley's equation) and the uncertainty is equal
to log2 no. The uncertainty after analysis is equal to log2 n.
The decrease in uncertainty due to the analysis corresponds
to the informational gain eq (7) and is equal to log2 (no/n).
It assumes its maximum value in the case of the unambigu-
ous determination of the structure and is equal to log2 no.

Qualitative Analysis

The input for the model of qualitative analysis consists of
a set of discrete identities, Xi, where i = 1,2,. - no. If the
output consists of a number of discrete, equally likely iden-
tities, the limiting case of Shannon's equation (Hartley's
equation) can be used to calculate the entropy, and the
information gained can be expressed by a ratio of the num-
ber of possible components before and after the analyses
eq (9). [7]. For example, consider the case of an addition of

f(p,po)=1og 2 (nodn) (9)

HCI to a solution that contains only one of a list of 25
possible cations, three of which can be precipitated by HCI-
The information gained as evidenced by a precipitate would
be equal to log2 (25/3) or 3 bits. The lack of a precipitate
would imply an informational gain of only 0.2 bits. To
consider various combinations of components, the total
number of possible combinations is given by eq 10, where

M M
no=X' nm(M)=L [M!/(m!(M-m)!)] (10)

In In

M is the total number of components, and is divided into
groups of in components. In the case of a solution that
contains from one to six cations, the total number of combi-
nations is equal to 53. If two of them can be precipitated by
HCI, there are 15 combinations in which neither cation is
present and the information gained is 1.8 bits. For the 38
remaining cases in which either one or both cation is
present, as evidenced by the appearance of a precipitate, an
informational gain of 0.5 bit results.

In the case of instrumental or chromatographic qualitative
or identification analyses, the output is a set of discrete
signals in positions Yj, where j = 1,2,. . .m and m 2no [8].
The entropy can be expressed by Shannon's formula eq (1)
and reaches a maximum when all of the possible identities,
Xi, are equally likely. It is equal to zero when one identity
is confirmed and the others are excluded, as would be the
case for the a posteriori entropy for an unambiguous identi-
fication. The interpretation of these signals leads to an input-
output relationship for the system that is represented by a set
of a posteriori conditional probabilities, p (xi jyj). The inter-
pretation of these signals is also dependent upon preinfor-
mation represented by the a priori probabilities that may be
calculated by Bayes theorem eq (11) [19].

p(xJiY)[P(x0)P(YkM)/[Zl p(X,)p(Yxt,)] (I 1)

The information content of an analytical signal is defined
as the decrease in uncertainty eq (7). In the case of unam-
biguous determinations, H(XIY)=0 and I(XIY)=H(X), and
H(X) is also considered as the information required for
unambiguous determination. However, most qualitative or
identification procedures are chosen so as to minimize the
uncertainty in identification for every possible signal. This
is quantified by the informational measure of equivocation.
Equivocation [8,19] is a measure of the expected or average
value of the uncertainty after analysis eq (12). Equivocation

E=H(XIY)= p(yj) H(Xlyj)
j.

(12)

and information content are complementary quantities, their
sum equaling the entropy of the identification procedure.
For an "ideal" procedure or an unambiguous determination,
equivocation equals zero and information equals entropy.

Cleij and Dijkstra [21] demonstrated the use of informa-
tion content and equivocation in the evaluation of thin-layer
chromatographic procedures. Information content and
equivocation were calculated for the identification of DDT
and 12 related compounds for 33 different TLC systems.
Calculations of the equivocation for the combinations of two
TLC systems showed that the best combinations are not
produced by combinations of the best individual TLC sys-
tems. This reflects the correlation between the best individ-
ual TLC systems.

Another method for quantifying information content is
from the perspective of the possible signals rather than the
possible identities [19]. Signal entropy, H(Y), is the uncer-
tainty in the identity of the unknown signal and can be
quantified by substituting the probabilities of measuring the
signals into Shannon's equation, eq (1). The conditional

536



entropy, H(Yjxj), is the uncertainty in the signal if the com-
pound is known to be xi. It can be considered a measure of
noise and is given by substituting the conditional probabili-
ties into Shannon's equation eq (1). Expected values for
entropy and information content can be expressed in a man-
ner analogous to that shown above. Also, since entropy is
strong-additive [2,19], information content can be ex-
pressed in terms of the signal entropies.

Dupuis and coworkers [22,23] applied these methods to
gas-liquid chromatography. The information content for 10
stationary phases used in gas-liquid chromatography was
calculated on the basis of compound identification by re-
trieval of retention indices from a compiled library for a set
of 248 compounds [22]. The information content per
column ranged from 6.5 to 7.0 bits. The information content
for combinations of columns is dependent upon both the
number of columns and the sequence of columns. Ten se-
quences of the 10 columns yielded an information content of
43.3 bits. The study was expanded to include 16 gas-liquid
chromatography stationary phases [23]. The complete data
set of 248 compounds, a subset of 48 aliphatic alcohols, a
subset of 35 aldehydes/ketones, and a subset of 60 esters
were explored. For all four sets of compounds, combina-
tions of stationary phases that yielded the most information
consisted of one nonpolar phase plus one or more polar
phases.

Van Marlen and Dijkstra [24] calculated the information
content for the identification of binary coded mass spectra
by retrieval and determined the optimal sequence of masses
which contained the most information. A set of approxi-
mately 10,000 low resolution mass spectra were binary en-
coded using a threshold intensity level of 1 % of the intensity
of the base peak. Masses greater than 300 did not yield any
additional information. Individually, masses of 300 or less
contained from zero (m/z=3,4,5,6,7) to one
(m/z=29,40,51,53,57,69,77) bit of information. The opti-
mal mass sequence of 120 masses contained 40.9 bits of
information, demonstrating the obvious redundancy in the
binary coded spectra. The optimal mass sequence is depen-
dent upon the distribution of the peaks. A set of 200 binary
coded alkane spectra yielded 9 bits of information for 25

selected masses.

Quantitative Analysis

The model for quantitative analysis is a two-stage model
[8]. The input is a continuous distribution that produces a
eontinuously variable signal. In the second stage, the signal
specified by both position and intensity is decoded into
results. The distribution of the results for parallel determina-
tions is generally normal. Preinformation indicates that con-
tent of the component lies within a specified range of x0 to
xl so the a priori probability density is that of a rectangular

or uniform distribution. The information content is consid-
ered a divergence information measure that represents the
error term in the measurement of the inaccuracy of the
preinformation [7,8]. If the results confirm the a priori
assumptions for the component, the information content is
given by eq (13). The effect of a systematic error,

I (p,pO)=log2 [(xl-x0)/(aV'r;)] (13)

8, reduces the information content by factor of 82 /2ar2 [7].
The use of parallel determinations, np, and the estimate of
a-, s, results in eq (14), which utilizes the student's t test at

I(p,pO 0) =log 2 [(xl-xO)np/(2st(v)] (14)

the significance level of 0.038794. This level of signifi-
cance is chosen so that twice the t value at infinity equals
N/F2r as the number of degrees of freedom approaches
infinity. The information content as measured by eq (14) is
the practical form of eq (13) since usually only the estimate
of the standard deviation is known.

Poisson distributed results can be approximated by a nor-
mal distribution with the population mean, >±, equal to the
constant representing the average number of random points
per unit time, X, and the population standard deviation, ar,
equal to <. This changes the equation for information
content to that shown in eq (15) [25]. However, this

(15)

approximation is less valid for small values of lambda.

Trace Analysis

The model for trace analysis [7,81 is essentially the same
as for quantitative analysis except that the output signal is
often barely distinguishable from the background noise. In
the first case, the information content of the component to
be determined is less than or equal to the detection limit of
the analytical method and the only conclusion is that the
content is somewhere between zero and the detection limit.
The a posteriori probability distribution is equal to the in-
verse of the detection limit of the method. The information
content is given as the log 2 of the ratio of the highest esti-
mated content of the component to the detection limit for the
component. In the second case where the content of the
component to be determined is greater than the detection
limit, the content can be determined quantitatively. The a
posteriori probability distribution is a shifted log-normal.
distribution. This information content differs from the infor-
mation content of the first case by the addition of log2
[V/ku27re] term, where nP is the number of parallel
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determinations and k is the asymmetry parameter for the
shifted log-normal distribution. If the mean value for the
determination is close to the detection limit, a truncated
Gaussian distribution is used to describe the a posteriori
distribution. The information content can be calculated as a
function of the highest estimated value, the mean value, the
standard deviation, the frequency, and the distribution func-
tion. The information content for both the log-normal and
the truncated Gaussian distributions converge to log2 [x1/
uVr ].

Electrochemistry

Perone and coworkers have examined the effects of vari-
ous experimental parameters on the qualitative information
content of electrochemical data [26-31]. Because pattern
recognition methods were used to obtain structural classifi-
cation information empirically, an empirical measure of in-
formation gain was used to assess the effects of experimen-
tal parameters. This involved defining an appropriate figure
of merit with which to measure the extent of informational
goal achievement. Changes in information content are then
determined by observing changes in attainment of the infor-
mational goal.

Byers, Freiser, and Perone [28,29] analyzed 45 com-
pounds using cyclic staircase voltammetry. The data set
consisted of 19 nitrobenzenes, 9 nitrodiphenyl ethers, and
17 ortho-hydroxy azo compounds. Of the nitrodiphenyl
ethers, 4 were strong herbicides and 5 were either weak or
nonherbicides. The informational goals for the problem
were the classification of the 45 compounds by their struc-
tural type and the classification of the 9 nitrodiphenyl ethers
according to herbicidal activity. Seven experimental vari-
ables, percent ethanol in the solvent, pH, surfactant concen-
tration, number of cycles, scan rate, mercury drop hang
time, and sampling time were varied in a fractional factorial
design to generate a complete data base of collected cyclic
staircase voltammograms and cyclic differential capacity
curves [28] for subsequent analysis [29]. Faradaic and ca-
pacitive variable effect curves were calculated from the
data. The average entropy for the three classes was 1.5 bits.
The maximum entropy was 1.6 bits. The figure of merit for
the informational goals was the percent correct classification
as achieved by k-nearest neighbor analysis. For the struc-
tural characterization studies, the best overall percent classi-
fication ranged from 76% using capacitive variable effect
features to 93% for both capacitive variable effect features
and faradaic variable effect features. Overall accuracy for
structural classification using the faradaic variable effect
curve features ranged from 67% for percent ethanol to 93%
for number of cycles. For the herbicidal prediction using
variable effect curve features, the percent correct classifica-
don ranged from 78% for pH, faradaic sampling time, ca-

pacitive scan rate, and drop hang time to 100% for %
ethanol, surfactant, faradaic number of cycles, and scan
rate.

Barnes and Perone [30] studied the enhancement of
chemical process information through experimental design.
A simple model of controlled potential electrochemical
processes based upon the Cottrell equation [31] was devel-
oped and implemented. The informational goal was to deter-
mine the effects of input voltage sequence, data collection
fraction to analyze, and preprocessing scheme upon the
determination of the diffusion coefficient. The figure of
merit for goal achievement was based upon the least squares
criterion function. Three input voltages, 180 mV step, pseu-
dorandom binary sequence with peak voltage, (E-Eo), of
180 mV, and white gaussian noise with mean of 90 mV and
variance of 3 mV, were presented to the model. Compari-
sons of the identification results for the three inputs showed
that the diffusion current model is fairly insensitive to the
input sequence. Closer inspection of the model reveals that
the anodic current is overwhelmed by the charging current.
Therefore, the best input sequence for the model is that
which is most easily generated.

In order to investigate the effects of timing, 3,000 data
points corresponding to three milliseconds in time were
generated using a step input. The least squares identifier was
applied to I msec intervals of data both with and without the
removal of charging current effects. When the charging
current was present, the best results were obtained for the
analysis of data taken after 10 time constants of the charging
network. With the charging current removed, the best re-
sults were obtained with data taken within the first I msec
interval when the amplitude of the anodic current and the
signal to noise ratio are maximized. The best preprocessing
scheme included filtering of unneccessary measurement
components from the signal of interest, such as the removal
of the charging current and signal averaging.

The application of information theory concepts to analyt-
ical chemistry can illuminate methods to increase the effi-
ciency of chemical analysis. Early work shows encouraging
promise for these types of applications. Optimum conditions
have been established for obtaining structural, herbicidal
activity, and diffusion coefficient information from voltam-
metric data. It hs been demonstrated that the informational
goal(s) will dictate the most favorable choice of experimen-
tal conditions. The use of objective systematic information
enhancement methods can highlight experimental parame-
ters that are often traditionally overlooked.

References

[1] Young, John F., Infonnation Theory, Butterworthi London, (1971).
(2] Mathai, A.M., and P.N. Rathie, Basic Concepts in Informtation The-

ory and Statistics, John Wiley & Sons: New York, (1975).
[31 Guiasu, Silviu, Information Theory with Applications, McGraw-Hill

538



International Book Company: New York, (1977).
[4] Pierce, John R., An Introduction to Information Theory: Symbols,

Signals, and Noise, Second Edition, Dover Publications, Inc.:
New York, (1980).

(5] Shannon, C.E., BeH System Technical Journal, 27, 379 and 623
(1948).

[6] Malissa, Conveners H., and J. Rendl, Z. Anal. Chem., 272, 1(1974)
English version: I.L. Mam, Talanta, 22, 597 (1975).

[7] Eckschlager, Karel, and Vladimir Stepanek, "Information Theory as
Applied to Chemical Analysis", John Wiley & Sons: New York,
(1979).

[8] Eckschlager, Karel, and Vladimir Stepanek, Anal. Chem., 54(11),
1115 (1982).

[9] Ritter, S.L.; S.R. Lowery, H.B. Woodruff and T.L. Isenhour, Anal.
Chem., 48(7), 1027 (1976).

[10] Grys, Stanislaw, Z. Anal. Chem., 273, 177 (1975).
[11] Eckschlager, Karel, Anal. Chem., 49(8), 1265 (1977).
[12] Danzer, K., Z. Chem., 15, 326 (1975).
[13] Danzer, Klaus, and Karel Eckschlager, Talanta, 25, 725 (1978).
[14] Kaiser, H., Anal. Chem., 42(2), 24A (1970).
[15] Fitzgerald, J.J., and J.D. Winefordner, Rev. Anal. Chem., 2(4), 229

(1975).
[16] Yost, R.A., Spectra, 9(4), 3 (1983).
[17] Fetterolf, D.D., and R.A. Yost, Int. J. Mass Spectrom. Ion Proc-

esses, 62, 33 (1984).

[18] Boudreau, P.A., and S.P. Perone, Anal. Chem., 51(7), 811 (1979).
[19] CleiJ, P., and A. Dijkstra, Fresenius Z. Anal. Chem, 298, 97 (1979).

[201 Brillouin, L., "Science and Information Theory", Academic Press:
New York, (1962).

[21] Cleij, P., and A. Dijkstra, Fresenius Z. Anal. Chem, 294, 361
(1979).

[22] Dupuis, Foppe, and Auke Dijkstra, Anal. Chem., 47(3), 379 (1975).
[23] Eskes Arie, Foppe Dupuis, Auke Dijkstra, Henri De Clercq, and

Desire L. Massart, Anal. Chem., 47(13), 2168 (1975).
[24] van Marlen, Geert, and Auke Dijkstra, Anal. Chem., 48(3), 595

(1976).
[25] Eckschlager, K., Coll. Czech. Chem. Conmmun., 41, 2527 (1976).
[26] Perone, S.P., ACS Symposium Series, 265 (Comput. Lab.), 99

(1984).
[27] Burgard, D., and S.P. Perone, Anal. Chem., 50(9), 1366 (1978).
[28] Byers, W. Arthur, and S.P. Perone, Anal. Chem., 55(4), 615 (1983).
[29] Byers, W. Arthur, B.S. Freiser, and S.P. Perone, Anal. Chem.,

55(4), 620 (1983).
[301 Barnes, Freddie, and S.P. Perone, unpublished results, personal com-

munication from Freddie Barnes, September 1984.
[31] Bard, Allen L., and Larry R. Faulkner, "Electrochemical Methods,

Fundamentals and Applications", John Wiley & Sons: New York,
(1980).

DISCUSSION
of the Perone-Ham paper, Measurement and
Control of Information Content in Electrochemi-
cal Experiments

Herman Chernoff
Statistics Center
Massachusetts Institute of Technology

The Shannon theory of information has had a profound
impact in science and technology. Shannon defined infor-
mation in terms of the reduction of uncertainty which, in
turn, was measured by entropy. He was concerned mainly
with the use of information to measure the ability to transmit
data through noisy channels, i.e., channel capacity.

Statisticians have developed other, somewhat related, no-
tions of information. In statistical theory, the major empha-
sis has been on how well experimental data help to achieve
the goals in the classical statistical problems of estimation
and hypothesis testing. These measures serve two useful
functions. They serve to set a standard for methods of data
analysis, methods whose efficiencies are measured in terms
of the proportion of the available information that is effec-
tively used. They also serve to design efficient experiments.

For the problem of estimation, Fisher introduced the
Fisher Information which we now define. Suppose that it is
desired to estimate a parameter 0 using the result of an
experiment which yields the data X with the densityf(x 10).
The Fisher Information for 0 corresponding to X is given by
the matrix

J =x(O)=EO(Y YT) (1)

where Y is the score function defined by

Y=Y(X,0)=8[logfX(xi0)]1 (2)

If 0 is a multidimensional vector, J is a nonnegative definite
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symmetric matrix with the additive property

lX~z(n)=l%(n)+lz(n) (3)

if X and Z are independent. As a consequence

Ix~x .... x(O)=nls(O)=nJ (4)

if the left subscript refers to the independent replicaton of X,
n times. For such an experiment, it has been shown, under
mild regularity conditions, that the Maximum Likelihood
Estimate (MLE) 0 will be approximately normally dis-
tributed with mean 0 and covariance matrix J- '/n for large
n. Moreover, the Cram&r-Rao theorem states that one can-
not expect to find a reasonable estimate that does better.

Some implications of the above paragraph are illustrated
by three simple examples below.

Example 1. Mean of a Normal Distribution.

Let X be normally distributed with mean 0 and known
variance ar2, and let X1 ,X2 ,...,X, be a sample of n independ-
ent observations on X. It is easy to show that JX=o- 2 and
that the MLE TI=X=n- 1 (X 1+...+X,) is normally dis-
tributed with mean 0 and variance a.2/n. However, the
statistician, who fears for outliers and may wish to use a
more robust estimator than the sample mean, may prefer to
use T2, the sample median, It can be shown that T2 is
approximately normally distributed with mean 0 and vari-
ance rra2/2n for large n. The equation

r2 0`2 Tr1(5)

n, n2 2

implies nI/n 2=2/1r=.64 which is a natural measure of the
efficiency of T2, indicating that, with TI, we need only 64%
of the data to achieve the same accuracy as with T2. If the
effective waste of 36% of the data seems excessive, the
statistician can improve on efficiency with little sacrifice of
robustness, e.g., by using the upper and lower quartiles as
well as the median, or by using trimmed means.

Example 2. Experiments With Information Matrices.

Let 0 =(0 1 ,0 2 )T, and let X and Z be two experiments with
information matrices

Jx= 3 4 andJz=l43 -3|

It is desired to estimate 01 using replications of either (X,X)
or (Z,Z) or (X,Z). Let J1I be the upper left member of J1

which measures the (asymptotic) variance of 01, the MLE of
°1. Then

J% 16 8-1 '

J~Z=11 -86 -86 11 ,

Jxx =0.286,

Jzz =0.286,

and

Jxz =0. 125.

This clearly indicates, that in the presence of nuisance
parameters such as 02, one may squeeze much more useful
information out of a combination of two equally informative
experiments than by repeating one of these two or, in this
case, even four times.

Example 3. Estimate Safe Dose Level in Probit Model.

For an experiment at does level d, the probit model at-
tributes the probability of a response to be

p(d,O)=c1[(d -4)1/] (6)

where 0=(pL,ar)T, 'D is the standard normal cumulative dis-
tribution and the "safe" dose level to be estimated is defined
as IL-2.87a. If one is permitted to select a sequence of n
dose level, dI,d 2 ,...,d, with which to challenge n subjects,
the optimal choice or design, for estimating gi-2.87a can
be shown to assign about 23% of the doses at level
d= p.+ 1.57a and the remaining 77% of the doses at level
d=pg-l.570.

This optimal design illustrates several points.
1. This design is locally optimal, i.e., it requires a

knowledge of 0 to provide the best estimate of a function of
0. Superficially, it seems silly, for if we knew 0, we would
not need to estimate it. In fact, it indicates that as data
cumulates, one knows more about 0 and can sequentially
use that information to provide improved experiments.

2. In this experiment, the repeated use of one dose level
do would provide only an estimate of the function p (dO)
and would yield no other useful information about 0 or
xL-2.87a. At least two dose levels are required. What is

,somewhat surprising is that no more than two dose levels are
required for an optimal design. A more general theorem
states that if it is desired to estimate r functions of k parame-
ters upon which the distribution of the data depend, then an
optimal design can be constructed using at most k+(k-1)
+ ...(k -r + 1) of the available (elementary) experiments.

3. The optimal design is not necessarily a practical one.
Most investigators would be interested in using a variety of
dose levels as a means of checking the basic model. Theory
permits us to measure the loss of information inherent in the
use of practical, but suboptimal designs, so that one can
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decide on whether the loss is so extravagant that other alter-
natives should be considered.

We mention briefly that for testing hypotheses, there are
several measures of information which are of potential use,
depending on the type of problem. Perhaps the most useful
measure is the Kullback-Leibler Information (KL)

I; (0,Aw)=ff(xl0) log g dx (7)

which, measures two important aspects of the ability to use
a sample of n observations on X with distribution f(x), to
discriminate between the hypotheses Hpf(x)=f(xlO) and
H2 :f(x))=f(x14,).

The Kullback-Leibler Information is additive as is the
Fisher Information but it is not symmetric since, Ix(0,4,) is
not generally equal to Ix (4,,0). For large samples, it is
possible to find tests which, for fixed type I error probabil-
ity ax=P(reject H 1IHI), have the type 2 error probability
f3=P(accept HIjH 2) approach 0 at a rate determined by 1*.
We have, roughly

V-*eakmc~o (8)

Another property of KL is that for optimal sequential testing
as the cost c, per observation, approaches zero, the expected

costs R (0) and R (4') associated with the sequential proce-
dure when HI and H2 are true, satisfies

R(0)--c log c/lI(),4,)

R(4,)--c log cllx(4,O) (9)

This implies that if we suspect Hl is true, we should select
the experiment which maximizes I*(0,0 and if we suspect
that H2 is true, we should maximize I*(<>,0). Here again, as
in the estimation problem, we are in a position to improve
the experimental design as information cumulates, and our
belief in HI or H2 increases.

To return to chemical experimentation, one should point
out that an experimental set up which yields vast amounts of
bits of information is not very useful if the analysis of the
data does not make efficient use of the data. To discriminate
between two alternatives requires only one bit of effective
information in the Shannon sense. The choice between ex-
periments which yield 1,000 and 10,000 bits must involve
how much effective information is readily available from
the analysis.

Some bibliography on the uses of information in statistics
is contained in Chemoff (1972).

[1] Chemoff, H., Sequential Analysis and Optimal Design SIAM mono-
graph 8, SIAM, Philadelphia (1972).
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Chromatographic fingerprinting of complex biological samples is an active research area with a large and

growing literature. Multivariate statistical and pattern recognition techniques can be effective methods for the

analyisis of such complex data. However, the classification of complex samples on the basis of their chro-

matographic profiles is complicated by two factors: 1) confounding of the desired group information by experi-

mental variables or other systematic variations, and 2) random or chance classification effects with linear

discriminants. We will treat several current projects involving these effects and methods for dealing with the

effects.
Complex chromatographic data sets often contain information dependent on experimental variables as well as

information which differentiates between classes. The existence of these types of complicating relationships is

an innate part of fingerprint-type data. ADAPT, an interactive computer software system, has the clustering,

mapping, and statistical tools necessary to identify and study these effects in realistically large data sets.

In one study, pattern recognition analysis of 144 pyrochromatograms (PyGCs) from cultured skin fibroblasts

was used to differentiate cystic fibrosis carriers from presumed normal donors. Several experimental variables

(donor gender, chromatographic column number, etc.) were involved in relationships that had to be separated

from the sought relationships. Notwithstanding these effects, discriminants were developed from the chro-

matographic peaks that assigned a given PyGC to its respective class (CF carrier vs normal) largely on the basis

of the desired pathological difference. In another study, gas chromatographic profiles of cuticular hydrocarbon

extracts obtained from 179 fire ants were analyzed using pattern recognition methods to seek relations with social

caste and colony. Confounding relationships were studied by logistic regression. The data analysis techniques

used in these two example studies will be presented.
Previously, Monte Carlo simulation studies were carried out to assess the probability of chance classification

for nonparametric and parametric linear discriminants. The level of expected chance classification as a function

of the number of observations, the dimensionality, and the class membership distributions were examined. These

simulation studies established limits on the approaches that can be taken with real data sets so that chance

classifications are improbable.

Key words: classification effects; multicomponent spectra; pattern recognition.

Profiling of complex biological materials with high
performance chromatographic methods is an active

research area with a large and growing literature, e.g.,
[1-10]'. Such chromatographic experiments often yield

About the Authors, Paper: P. C. Jurs, B. K. Lavine,
and T. R. Stouch are with the Department of Chemistry
at The Pennsylvania State University. The work they
describe received support from the National Science
Foundation and the Environmental Protection Agency.

chemical profiles containing hundreds of constituents.
These chromatograms can be viewed as chemical fm-
gerprints of the complex samples. Objective analysis of
the profiles depends upon the use of multivariate statisti-
cal methods. In this regard pattern recognition tech-
niques have been found to be of utility.

Pattern recognition methods have been used to dis-
tinguish between individuals in a particular diseased
state and normal individuals [7-10]. These methods
attempt to classify a sample according to a specific prop-
erty (e.g., diabetic vs normal) by using measurements
that are indirectly related to that property. Mea-
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surements related to the property in question are made.
An empirical relationship is then derived from a set of
data for which the property of interest and the mea-
surements are known (a training set). Such a relationship
or classification rule may be used to infer the presence or
absence of this property in objects that are not part of
the original training set.

For pattern recognition analysis, each chromatogram
is represented as a point, X=(x, , x2 , x,,..., xd) where
component x; is the area of thejth peak. A set of chro-
matograms is represented by a set of points in a d-dimen-
sional Euclidean space. The expectation is that the
points representing chromatograms from one class will
cluster in one limited region of the space separate from
the points corresponding to the other class. Pattern rec-
ognition is a set of methods for investigating data repre-
sented in this manner in order to assess the degree of
clustering and general structure of the data space. The
four main subdivisions of pattern recognition meth-
odology are mapping and display, discriminant devel-
opment, clustering, and modelling [11-14]. The
ADAPT computer software system [i 51 has routines in
all these areas, and many were used in the two example
studies below.

An assumption in pattern recognition is that the abil-
ity to categorize the data into the proper classes is mean-
ingful. Successful classification is thought to imply that
a relationship between the measurements or features and
the property of interest exists. However, classification
based on random or chance separation can be a serious
problem. For example, the probability of fortuitously
obtaining 100% correct classification for a two class
problem using a nonparametric linear discriminaut can
be calculated from the following equation

d
P=2 > Cf-' /2'

1,o (I)

where C, '-=(n-l)!/[(n-1-i)IiIJ, n is the number of
objects in the data set, and d is the dimensionality or
number of descriptors per object [16,17J. Figure I
shows a plot of P versus the ratio of the number of
objects to the number of descriptors per object (n/d) for
n = 50. The only assumption made concerning the data
is that it be in general position, that is, none of the d + I
data points should be contained in a (d - I)-dimensional
hyperplane. When nid is large, the probability of
achieving complete separation due to chance is small.
As the number of descriptors approaches the number of
objects used in the study, the probability of such an
occurence increases. When n/d=2, the probability of
complete separation is one-half. Such classifications
arise due to chance and are not due to any relationship
between the objects in the data set. A linear discrminant
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Figure I-The probability of complete separation into classe by a
nonparametric. linear discrirninant function versus the ratio of the
number of objects to the number of descriptors per object.

function developed with an inappropriately small nid
will probably have no predictive ability beyond random
guessing.

If n/d > 3, the probability of complete separation due
to chance is small [ 1 8, 19]. However, classification rules
using linear discriminants are often developed using
training sets that are not completely linearly separable.
Recently, Stouch and Jurs have reported Monte Carlo
simulation studies [20] assessing the degree of fortuitous
classification for such situations. Figure 2 is a plot of
results obtained in hundreds of Monte Carlo experi-
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Figure 2-Plot of the percentage of correctly classified patterns versus
the ratio of the number of descriptors per pattern to the number of
patterns. Each plotting character represents the mean of a number
of Monte Carlo experiments.
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ments. It shows the percentage of objects correctly clas-
sified versus the d/n ratio. The patterns used to develop
this curve were random, and equal class sizes were used.
The percentage correctly classified for a given din
value can only be due to chance. Although the proba-
bility of obtaining 100% correct classification for
nid > 3 is small, chance classification success rates range
between 85% and 95%. The influence of the class mem-
bership distribution upon chance classification was also
investigated, and unequal class sizes lead to even higher
success rates due to chance. Figure 3 shows the cumu-
lative probability of achieving any degree of separation
due to chance for evenly-divided classes for three values
of nid. At nid =5, the probability is 50% that 77% of
the objects will be correctly classified due to chance.
Chance classifications can be a serious problem in linear
discriminant analysis of chromatographic fingerprint
data. Hence, the results obtained with real data sets must
be compared to the results achievable by chance in or-
der to assure that meaningful relations have been discov-
ered.

A second complicating aspect of the classification of
complex samples on the basis of their chromatographic
profiles is the confounding of the desired group informa-
tion by experimental variables or other systematic vari-
ations. If the basis of classification for patterns in the
training set is other than the desired group difference,
unfavorable classification results for the prediction set
will be obtained despite a linearly separable training set.
The existence of these types of complicating re-
lationships is an inherent part of fingerprint-type data.
We will discuss several current projects involving these
effects and methods for dealing with them.
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Figure 3-Plot of the cumulative probability of achieving amy degree of
separation due to chance versus that degree of separation. Three
values of n/d are shown. Evenly divided training sets were used.

Cystic Fibrosis Heterozygotes vs Normal
Subjects

The first study involves the application of pyrolysis
gas chromatography (PyG0) and pattern recognition
methods to the problem of identifying carriers of the
cystic fibrosis (CF) defect [21]. The biological samples
used in this experiment were cultured skin fibroblasts
grown from 24 samples obtained from parents of chil-
dren with CF and from 24 presumed normal donors. A
typical CF heterozygote pyrochromatogram is shown
in figure 4. The pyrolysed fibroblasts were analyzed on
fused silica capillary columns with temperature pro-
gramming. For each subject, triplicate pyro-
chromatograms were taken.

The 144 pyrochromatograms were standardized us-
ing an interactive computer program [22]. Each pyro-
chromatogram was divided into 12 intervals defined by
13 peaks that were always present. The retention times
of the peaks within the intervals were scaled linearly for
best fit with respect to a reference pyrochromatogram.
This peak matching procedure yielded 214 standardized
retention time windows. Each pyrochromatogram was
also normalized using the total area of the 214 peaks.
This set of chromatographic data-144 PyGCs of 214
peaks each-was autoscaled so that each PyGC peak
had a mean of zero and a standard deviation of one
within the entire set of pyrochromatograms.

To apply pattern recognition methods to this over-
determined data set, the necessary first step was feature
selection. The number of peaks per chromatogram must
be reduced to at least one-third the number of indepen-
dent PyGCs in the data set, so at most 16 peaks could be
analyzed at one time. For the final results of the analysis
to be meaningful, this feature selection must be done
objectively, that is, without using any class membership
information.

For experiments of the type that we are considering
here it is inevitable that there will be relationships be-
tween sets of conditions used in generating the data and
patterns that result. One must realize this in advance
when approaching the task of analyzing such data. One
must isolate the information pertinent to the patholo-
gical alteration characteristic of CF heterozygotes from
the large amount of qualitative and quantitative data due
to experimental conditions that is also contained in the
complex capillary pyrochromatograms.

We have observed that experimental variables (cell
culture, batch number, passage number, donor gender,
and column identity) can contribute to the overall classi-
fication process. For example, a decision function or
classification rule was developed from the 12 peaks
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Figure 4-A representative pyrochromatogram from the CF study. The peak identities are those assigned using the peak-matching software.
The major peaks are those with assignments that are multiples of 100.

comprising interval three. The CF PyGCs were linearly
separable from the PyGCs of the presumed normal do-
nors. However, when the points from this
12-dimensional space were mapped onto a plane that
best represents the pattern space (the plane defined by
the two largest principal components), groupings re-
lated to column identity were observed. Furthermore,
classifiers could be developed from these 12 peaks that
yielded favorable classification results for many of the
experimental variables.

Notwithstanding the effects of the experimental vari-
ables described above, a discriminant or decision func-
tion has been developed from the PyGC peaks that sep-
arates the pyrochromatograms of CF heterozygotes
from those of presumed normal subjects, by and large,
on the basis of valid chemical differences. The devel-
opment of such discriminant is described in detail below.

The 65 peaks that were present in at least 90% of the
PyGCs were used as a starting point for the analysis. We
assessed the ability of each of these 65 peaks alone to
discriminate between PyGCs with respect to gender,
passage number, and column identity. Twelve peaks
that had larger classification success rates for the CF vs
normal than for any other dichotomy were selected for
further analysis. This procedure identifies those peaks
that contain the most information about CF vs normal as
opposed to the experimental variables. We were at-
tempting to simultaneously minimize both the proba-
bility of chance separation and that of confounding with
unwanted experimental details. A classification rule de-
veloped from these 12 peaks using the k-nearest neigh-
bor procedure correctly classified 906 of the PyGCs in
the data set. Variance feature selection [23], combined

with the linear learning machine and the adaptive least-
squares methods [24], was used to remove 6 of the 12
peaks found to be least relevant to the classification
problem. A discriminant that misclassified only eight of
the pyrochromatograms (136 correct of 144, 94%) was
developed using the final set of only six peaks.

The contribution of the experimental parameters to
the overall dichotomization power of the decision func-
tion based on the six peaks was assessed by reordering
experiments. The set of PyGCs was first reordered in
terms of donor gender, and classification results indistin-
guishable from random were obtained. Similar studies
were done for passage number and column identity, and
comparable results were obtained. The results of the
reordering tests suggest that the decision function based
on the six PyGC peaks incorporates mainly chemical
information to separate the pyrochromatograms of the
CF heterozygotes from those of the normals.

The ability of the decision function to classify a simu-
lated unknown sample was tested using a procedure
known as internal validation. Twelve sets of pyro-
chromatograms were developed by random selection
where the training set contained 44 triplicates and the
validation set contained the remaining 4 triplicates. Any
particular triplicate was only present in one validation
set of the 12 generated. Discriminants developed for the
training sets were tested on the PyGCs that were held
out. The average correct classification for the held-out
pyrochromatograms was 87%. This same internal
validation test was repeated except that members of
the held-out sets included triplicate samples analyzed on
the same column or grown in the same batch of growth
medium. The average correct classification for the held-
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out pyrochromatograms in this set of runs was 82%.
Although the classification success rate of the decision
function was diminished when we took into account
these confounding effects, favorable results were still
obtained.

Recognition of Ants by Caste and Colony

Chemical communication among social insects can be
studied with chromatographic methods. For example,
evidence regarding the role of cuticular hydrocarbons
in nesmmate recognition came from a study of the Myr-
mecophilous beetle [251. The data generated in such
studies can be complex and may require multivariate
statistical or pattern recognition methods for inter-
pretation. Presently, we are analyzing gas chro-
matographic profiles of high molecular weight hydro-
carbon extracts obtained from the cuticles of 179 red fire
ant (Solenopsin invicta) samples. We are using pattern
recognition methods to seek relations with social caste
and colony. Each sample contains the hydrocarbons ex-
tracted with hexane from the cuticles of 100 individual
ants. The hydrocarbon fraction analyzed by gas chro-
matography was isolated from the concentrated hexane
washings by means of a silicic acid column. Evidence
regarding the role of cuticular hydrocarbons in nest-
mate recognition came from a study of the Myr-
mnecophilous beetle :25]. A gas chromalographic trace
of the cuticular hydrocarbons from a S, invicta sample is
shown in figure 5. The hydrocarbon extract was ana-
lyzed on a glass column packed with 3% OV-17 using
temperature programming.

Five major hydrocarbon compounds were identified
and quantified by GC/MS analysis: heptacosane
(ii-C 2 ,HB,), 13-methylheptacosane, 13,15-dimethyl-
heptacosane, 3-methylheptacosane, and 3,9-dimethyl-

, a 32 48 64
NhO..

heptacosane in the order of elation from the OV-17
column used. An internal standard was used for quan-
tification. Each chromatograrn was normalized using
the weight of the collected ants.

Several questions have been addressed in this study:
1) Are the hydrocarbon patterns characteristic of indi-
vidual colonies? 2) Does the overall colony hydro-
carbon pattern change with time? 3) Are the hydro-
carbon patterns significantly different for the social
castes? In this study, ant samples were obtained from
five different colonies (E, J, P. Q, R), three different
castes (foragers, broods, and reserves), and for four dif-
ferent time periods (the first three in spring and summer
and time period four in the winter).

The first step was to use mapping and display methods
[12,17] to examine the structure of the data set. Methods
used included principal components mapping and non-
linear mapping [141. In figures 6 and 7 the results of
principal component mapping experiments for colonies
l and Q are shown. Colony J includes samples from time
periods one through three, whereas colony Q is repre-
sented by ants from all four time periods. Colony J has
9 and colony Q has 12 members from each social caste.
Pattern groupings according to time period and caste
can be seen in figures 6 and 7. The first two principal
components account for 96.2% and 97% respectively of
the total cumulative variance in the two plots shown.
Mapping experiments of this nature were also carried
out for samples from a particular caste or time period,
and pattern groupings with respect to colony identity,
social caste, and temporal period were observed.
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Figure 6-Plot of the two principal components of The five GC peaks
for colony J. The elipses show groupigs of samples by time period.
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Table 1. Percentage of chromatograms correctly classified by
colony for several two-way classifications.

Colony No. in Colony in Second Group
Colony E I P Q R All

E 36 - 98 100 100 100 95
J 27 - 100 100 100 98
P 36 - 100 100 99
Q 35 - 73 85
R 36 - 82

gression have been employed in this study. The results
obtained using these techniques support the conclusions
drawn from the pattern recognition experiments. In
summary, the OC traces representing ant cuticle ex-
tracts could be related to colony identity, social caste,
and time period using pattern recognition methods.

Figure 7-Plot of the two principal components of the five GC peaks
for colony Q. The foragers are separated from the reserves and
broods by the linear discriminant.

Discriminant analysis studies were also performed. In
one study the data set was divided into three categories
according to the social caste of the pooled ant sample.
Linear discriminants were developed using the areas of
the five GC peaks. The hydrocarbon patterns of the
foragers were found to be very different from the
broods and reserves. In fact, information necessary to
discriminate foragers from broods and reserves was pri-
marily encoded in the concentration pattern of the first
GC peak. A similar study was undertaken for time pe-
riod, and the fourth time period was found to be very
different from time periods one, two, and three. During
time period four the ants are in a state of hibernation,
whereas time periods one, two, and three correspond to
the spring and summer months.

The hydrocarbon profiles were also found to be char-
acteristic of the individual colonies. Linear decision sur-
faces were developed from the five GC peaks, using an
iterative least-squares method. The purpose was to sepa-
rate one colony from another or one colony from all
other colonies. The results of these discriminant analysis
experiments are summarized in table ]. The first row of
the table shows that colony E could be separated from
colony J by a discriminant that achieved 98% correct
classifications (63 correct out of 64 samples) and that
colony B could be separated from all the remaining
colonies by a discriminant that achieved 95% correct
classifications (162 correct out of 170). Colonies Q and
R could not be separated well by this method. In addi-
tion, multivariate statistical methods such as multi-
variate analysis of variance and stepwise logistic re-

The authors thank J. A. Pino, J. E. McMurry, and R.
K. Vander Meer for their helpful contributions.
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