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1. Introduction
Indentation constitutes one of the most powerful test

techniques for the systematic investigation of defor-
mation and fracture responses in brittle materials. Inden-
tations can be used to evaluate critical mechanical pa-
rameters (toughness, hardness, elastic modulus) with
great simplicity and high accuracy. They can be used to
introduce controlled cracks into strength-test speci-
mens, and thence to obtain physical insight into failure
mechanisms. They can be taken as a base for simulating
"natural" surface damage processes such as particle im-
pact, abrasive wear and machining. In short, inden-
tations represent a model flaw system for quantifying a
wide range of mechanical properties, and as such de-
serve detailed study.

Recourse to some of the review articles on the subject

About the Authors, Paper: B. R. Lawn, who is with
NBS' Center for Materials Science, and D. B. Mar-
shall, are physicists. Their work was sponsored in part
by the U.S. Office of Naval Research, Metallurgy and
Ceramics Program, and their paper is also appearing as
a chapter in the Fractography of Glass, R. C. Bradt and
R. E. Tressler, editors, Plenum Press, New York (in
press).

[1-8]' reveals many facets of indentation analysis. For a
start, contacts may be considered either "blunt" or
"sharp," according to whether the local deformation
prior to fracture is elastic or elastic-plastic. The latter, if
relatively complex in its stress field characterization,
presents us with some of the more interesting new phe-
nomena in brittle fracture. Second, indentation events
can occur under either equilibrium or kinetic conditions
of deformation and fracture. Of these, the first lends
itself more readily to detailed fracture mechanics formu-
lation, but the second takes us closer to engineering
design problems associated with "fatigue" (delayed fail-
ure) behavior. Again, distinction may be made between
initiation and propagation stages in the contact fracture
evolution. Propagating cracks are better understood be-
cause they develop in the contact far field, where high
stress gradients smooth out. The ultimate crack config-
uration may nevertheless depend to a large extent on
exactly where in the near field the initiation occurs,
which in turn raises the question of availability of suit-
able starting nuclei (e.g., whether such nuclei are pre-
present or have to be created by the contact process
itself). We can devise many more categories for the
general indentation phenomenology, e.g., in accordance

'Numbers in brackets indicate literature references at the end of this
paper.
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with loading type (normal vs tangential) or loading rate
(static vs dynamic), attesting to a wide diversity in un-
derlying micromechanical processes.

Here we consider these facets in relation to the frac-
tography of glass. We begin with surveys of blunt and
sharp contact patterns, describing basic features of the
respective morphologies and outlining the essential frac-
ture mechanics procedures for quantifying these fea-
tures. If we pay more attention to the sharp contact
configuration, this is because of the relatively dominant
place it has occupied in indentation testing over the past
decade. We then consider the ways that contact-
induced cracks evolve when subjected to an ensuing
tensile stress, with their attendant implications on
strength and flaws. Finally, we look briefly at how in-
dentation experiments can be used to provide a base for
modelling surface damage processes related to wear,
machining, etc. In some instances we shall draw from
studies on materials other than glass, both to add to our
insight into certain fracture mechanisms and to help
place the broad topic of indentation fractography into a
wider perspective.

2. Blunt Indenters

If contact conditions remain entirely elastic up to the
onset of fracture the indenter is deemed "blunt" [11. The
classical example is the Hertzian cone fracture produced
by indentation of a flat surface with a relatively hard
sphere [9]. A detailed description of the evolution of
Hertzian fractures was first given by Frank and Lawn
[10]. Initiation occurs from pre-existing surface flaws in
the region of high tensile stress just outside the circle of
contact; the ensuing crack encircles the contact and
subsequently propagates downward and outward into

its fully developed (truncated) cone configuration. As
alluded to earlier, the second, propagation stage is much
easier to understand, and so we shall deal with it first.

2.1 Crack Propagation

Under normal loading in an isotropic material like
glass the Hertzian configuration assumes near-
axisymmetry [9-12]. Figure 1 shows top and section
views of such a crack formed by a steel ball of radius
12.7 mm on soda-lime glass [13]. It is apparent that the
configuration can be closely represented as the frustum
of a cone. Once formed, the cone crack remains stable,
although scme further, subcritical extension can occur
under sustained loading if moisture is present in the
environment.

It is this stability of the fully propagating cone crack
which makes for simplicity in the fracture mechanics
analysis. Further increases in the indenter load over and
above the critical value for "pop in" simply cause the
cone to expand its circular base in a controlled manner
[11]; i.e., the configuration satisfies the growth condi-
tions for simple penny-like equilibrium cracks, for
which there is a standard solution [14]

P/c 3 /2 -A 2c (1)

where P is the load, c is the characteristic crack size, K.
is the critical stress intensity factor for equilibrium ex-
tension (the "toughness") and A2 is a dimensionless con-
stant. Extensive data confirming the interrelation be-
tween P and c for glass are contained in References [1]
and [14]. It will be noted that eq (1) is independent of any
term relating to the initiation conditions; the propaga-
tion mechanics are determined exclusively by the prop-
erties of the far field.

Figure 1- Hertzian cone crack in
soda-lime glass: (a) view from
beneath fully loaded specimen
(light directed for specular re-
flection); (b) view in profile, af-
ter section-and-etch of unloaded
specimen. After reference [13].
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2.2 Crack Initiation

The precursor initiation micromechanics are more
subtle because of the extremely high tensile stress gra-
dients that exist about the contact circle [1,10,15]. It is
not enough to say that initiation will occur when the
surface tensile stresses reach the strength of the material;
indeed, such a criterion leads to a totally incorrect re-
lation between the critical contact load, Pc, and sphere
radius, r. In terms of the modern fracture mechanics
view, the crack evolves first as a shallow surface ring
around the contact circle, and then extends downward,
as the load increases, to a critical depth, at which point
the system becomes unstable [10]. Implicit in this de-
scription is that there is a sufficient density of pre-
existing surface flaws to guarantee the first stage of ini-
tiation, for the elastic contact conditions provide no
means for the self-generation of suitable crack nuclei in
the optimal tensile regions. (Contrast the sharp-indenter
case, later.) On the other hand, the actual size of the
starting flaw should not be a critical factor in the ini-
tiation condition, because of the stabilizing effect of the
inhomogeneous stress field.

Detailed fracture mechanics calculations confirm the
above description, and lead to the following expression
for the critical load to cone initiation [1,10,15,16],

PC =A rK,1/E (2)

where E is Young's modulus and Al is another dimen-
sionless constant. As expected, eq (2) is not dependent
on the starting flaw size. This flaw independence has
been verified by tests on glass surfaces with different

abrasion treatments [15]. The theory also predicts a lin-
ear relation between P, and r, first observed empirically
by Auerbach as long ago as 1891 [17]. "Auerbach's
law," so called, had aroused much interest because, in
combination with the Hertzian stress relation a- ccP/r2

[1,9], it implies a size effect in the critical stress level,
a-c c lhr. (Reversing the argument, if fracture were to
occur at a critical stress ac=const. we would expect
Pccr 2, in clear violation of eq (2).) Note that the size
effect is such that the necessary stress level increases as
the sphere radius is reduced, suggesting the likelihood of
some precursor "yield" as the indenter becomes
"sharper."

Again, our formulation here is based on the assump-
tion of ideal equilibrium conditions in the fracture pro-
cess. When moisture is present subcritical crack growth
can occur at K <Kc, and cone pop- in thereby enhanced,
in a rate-dependent way, at loads P <Pc. Experimental
studies of this environmental effect have been made
[18,19].

2.3 Some Variants From Ideal
Cone Fracture Configuration

There are several variants in the blunt-indenter crack
patterns that can be produced. We consider just two
examples here.

First, if the test material is not isotropic, homoge-
neous, or free of pre-existing residual stresses, de-
partures can occur from the ideal cone geometry, even
under axial loading. This is demonstrated in figure 2, for
sphere indentations on single crystal silicon surfaces
[20]. The broader feature of the surface ring crack is still
apparent, but now the influence of crystallographic an-
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Figure 2-Hertzian fracture traces on silicon single crystals, for three surface orientations. Surfaces were etched after indentation. After
reference [20].
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isotropy has imposed itself on the patterns. In this case
the crack path reflects the modifying effect of preferred
{ I I I I-plane cleavage on the tendency for the fracture to
follow tensile stress trajectories. Such effects may be
considered secondary insofar as eqs (1) and (2) are con-
cerned, necessitating only a re-evaluation of the con-
stants A, and A2 [20].

In the second example, we consider the changes in the
pattern that ensue when the indenting sphere is made to
slide across the test surface with frictional tractions.
Figure 3 shows a sliding-indenter track on soda-lime
glass [21]. Now not one, but several, intermittent (par-
tial) cone cracks are generated in the wake of the advan

a

500 gm

Figure 3-Partial cone crack damage track produced on soda-lime
glass by sliding steel sphere (left to right), friction coefficientf=O0.1:
(a) surface view; (b) profile view, after section-and-etch. After ref-
erence [21].

cing indenter. The superposition of a tangential loading
force, quite apart from altering the stress trajectory con-
figurations, profoundly enhances the level of tensile
stress (principally at the trailing edge of the contact
area) [221. These changes are not felt so strongly in the
propagation stage of fracture, since the far field remains
relatively insensitive to near-contact boundary condi-
tions. Indeed, the geometry of individual cracks in the
sequence may be simply regarded in terms of a simple
tilting of the normal cone, where the load axis is rotated
vectorially by the superposition of the friction force
onto the axial load component. Using this simplistic ar-
gument it can be shown that eq (1) transforms to

pIC312 =A2KCl(l +.t2)1/2 (3)

where f is the coefficient of sliding friction. We may
note the minor role of friction in this expression for
crack size; for a fixed normal load P, a superposed slid-
ing force at f= 1 increases c by only some 25%. The
initiation stage, however, is extremely sensitive to the
friction-induced stresses. In this case the critical load
equation, eq (2), is not so easily modified; solutions to
the base fracture mechanics integration formulas have
to be obtained numerically, and these solutions vary
dramatically according to specific starting assumptions
[23-25]. Suffice it to say that very small frictional forces
can produce very large reductions in Pc.

3. Sharp Indenters

We alluded in section 2.2 to the increased prospect of
some pre-fracture yield at the contact zone as the in-
denter tip becomes "sharper." In the extreme of zero tip
curvature we may expect the immediate contact stress
field to be determined by the plastic rather than the
elastic properties of the test material [1,26]. This transi-
tion in contact response is seen in the micrographs of
figure 4, for indentations on arsenic trisulphide glass
using (a) a steel sphere of radius 200 ptm and (b) a stan-
dard Vickers diamond pyramid. It is clear that the crack
patterns are of a type totally different from that de-
scribed in the previous section. In particular, the surface
traces of the cracks are radially, rather than circum-
ferentially, directed with respect to the contact area.
The irreversible deformation has therefore significantly
altered the nature of the tensile stress field. Moreover, it
is possible to generate these same radial crack patterns
on surfaces with the highest perfection, viz. pristine op-
tical fibers [27], so the deformation process not only
drives, but creates, the starting flaws. We consider these
aspects of the fracture process below, following a simi-
lar course to that in our discussion of the blunt indenter
case.

3.1 Crack Propagation

Let us now take a closer look at the crack pattern
generated in sharp contact. If we take top and side
views, as shown in figure 5 for a Vickers indentation on
soda-lime glass, we find there are two operative crack
systems [1]. Radial/median cracks (hereafter referred to
simply as radial cracks) extend on median planes con-
taining the load axis and an impression diagonal (where
stress concentrations are highest). Lateral cracks extend
from near the base of the subsurface deformation zone in
a saucer-like manner, roughly parallel to the specimen
surface. Under normal loading conditions both crack
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Figure 4-Radial crack patterns in
arsenic trisulphide glass pro-
duced by (a) steel sphere (radius
200 fm) and (b) Vickers dia-
mond pyramid.

types attain a penny-like configuration, in that their

fronts are near-circular (or semi-circular, in the case of

radial cracks). Thus on outward appearances we might

be led to conclude that the mechanics of crack propaga-

tion in the contact far field are really no different for

sharp indenters than for blunt indenters.

500 aLm--422~~~~~~~~~~,

Figure 5 -Vickers indentation in soda-lime glass: (a) surface view; (b)

side view. Radial and lateral crack systems are evident. Courtesy

B. J. Hockey.

However, if we take the trouble to follow the crack

evolution during the actual contact cycle we discover
some major differences between the two indenter types.
The sequence of views in figure 6, taken in polarized
light from beneath a Vickers indentation in soda-lime
glass, shows some of these differences [28]. It is apparent
that the radial and lateral crack systems both develop

primarily during the unloading half-cycle, and that this

development takes place more or less continuously. (As

the peak indentation load is reduced this tendency to
development in the later stages of the cycle is enhanced,
until at low loads, toward the threshold for initiation,
the entire evolution is confined to a narrow load interval

immediately prior to final withdrawal [29,30].) It is also

noted that the stress birefringence persists strongly in

the last frame of the sequence. The sequence in figure 6

was shot in an inert (dry nitrogen gas) environment; on

admitting laboratory air to the cracks at completion of

the cycle the radial arms showed rapid and substantial
post-contact growth, figure 7. These observations indi-

cate that it is now the inelastic rather than the elastic

component that dominates the driving forces on the

cracks.
Further clues to the evolutionary process can be

gained by inspecting the radial crack surface in side

view, e.g., after breaking an indented specimen [28].

Fortuitous crack-front markers, presumably due to per-

turbations in the indentation loading system, are evident
in the example shown in figure 8. By correlating these

markers with the radial traces in figure 6, it can be

deduced that crack extension during the loading half-
cycle proceeds only in the downward direction, the

surface component being almost completely suppressed.
The explanation for this non-symmetrical growth is that

the elastic component of the field, which is at full in-

tensity at peak load, is essentially tensile below the sur-

face but compressive at the surface. Unloading the in-
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Figure 6-Vickers indentation in
soda-lime glass, viewed from be-
neath indenter during loading
cycle (polarized light). Se-
quence represents stages (a) half
loaded, (b) full loaded, (c) half
unloaded, (d) full unloaded. Lat-
eral crack faintly visible in (d).
After reference [281.

[2F50 Am
rII_ 

Figure 7-Same indentation pat-
tern as in figure 6, (a) immedi-
ately after completion of contact
cycle, and (b) one hour later on
exposure to air.

denter is then equivalent to removing the elastic con-
straining stresses, leaving the crack system under the
exclusive influence of the inelastic component of the
field. This inelastic component acts to drive the cracks
radially outward, accounting for the expansion into the
ultimate symmetrical geometries on completion of the
cycle.

Once this final state is achieved the cracks do indeed
take on the universal propagation laws for penny-like
configurations. Now, however, these laws must accom-

modate the resiaual-stress component as an essential ele-
ment of the description. This can be done by regarding
the contact deformation zone as a central loading force
on the crack systems, for which a scaling analysis yields
the stress intensity factor

K,=XP/C3 12
(4)

where X is dimensionless constant. It will be noted that
we have not yet specified how this residual driving force
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Failure
origin

Post-
indent

arrest markers
Figure 8-Same indentation as in figure 6, showing view of median crack plane after breaking specimen. Arrest positions marked correspond

to stages (a)-(d) in figure 6. After reference [28].

develops; the underlying physical processes lie "buried"
in the scaling term X. Now, we have seen that the radial
and lateral crack systems persist in a state of (stable)
equilibrium throughout the unloading half-cycle, so we
may set Kr=Kc to obtain

P/c3 /2 =B 2Kv (5)

for the immediate post-contact configurations, where
we have put B2 = I/X to produce a formulation in direct
analogy to eq (1) for cone cracks. Data on radial cracks
in soda-lime glass and several other ceramics [31] show
that this relation is well satisfied over a wide range of
crack sizes, even in the suspect region of small cracks
where the size is not much greater than that of the
hardness impression (i.e., where the central point load-
ing assumption might be expected to break down). Data
on lateral cracks are not so extensive [32,33], and some
doubt remains as to how well eq (5) represents the me-
chanics of this system.

We have acknowledged that, in adopting a scaling
argument to derive eq (4), we necessarily sacrifice all
insight into the physical meaning of the X term. To
obtain some of this insight, we may usefully observe the
shape of the residual hardness impressions. The vital
clue here is that these impressions show evidence of
strong "elastic recovery" effects. With Vickers inden-
tations [34] this recovery is manifest as a "springback" in
the contact depth, or as a "pincushion" appearance of

the surface impression. With Knoop indenters [35] it is
apparent as a diminished minor axis relative to the major
axis. The extent of the recovery correlates with the ratio
of hardness to modulus, HIE. Figure 9 illustrates the
point with examples of Knoop indentations in soda-lime
glass and zinc sulphide [35], materials at the high and low
end of this ratio spectrum, respectively; the impressions
have the same nominal length in the two cases, but the
recovery of the minor axis is clearly stronger in the
glass. (In a material which shows no inelastic defor-

a50 X A

if Be:- f 5Q__

_ F x ;0- Ck~~~~~~I- 'O

Figure 9-Knoop indentations in (a) soda-lime glass and (b) poly-
crystalline zinc sulphide. The glass shows stronger elastic recovery
along the minor diagonal. (In unrecovered indentation, ratio of

minor to major diagonal is 1:7.) After reference [35].
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mation, such as rubber, this recovery would, of course,
be complete, and no impression would be left at all.) The
importance of these recovery phenomena in the context
of fracture is that they relate to the intensity of the
residual strain field about the contact area, and thence to
the X term in eq (4). In particular, they identify the
important material parameter, H/E, which is expected
to enter the formulation of this term. Unfortunately,
quantitative theories of the contact problem incorpo-
rating this parameter remain in their infancy, owing to
the general intractability of elastic-plastic stress anal-
yses. The only available solution thus far is for isotropic,
homogeneous materials which deform by shear-
activated, volume-conserving radial flow, a description
fitting soda-lime and other "normal" glasses [36]; this
solution is of the form X x (E/H)' 2 cc 1/B 2 , [37] so the
crack dimensions in eq (5) are no longer determined
uniquely by the material toughness.

3.2 Crack Initiation

Below some threshold in the loading, radial and lat-
eral cracks become suppressed. In glasses, the size of the
hardness impression at which this threshold occurs is
typically tens of micrometers, so it becomes difficult to
observe the actual crack initiation processes by con-
ventional optical microscopy. For this reason, we begin
our discussion in this subsection with observations on
another material, single crystal magnesium oxide, for
which the critical events preceding fracture operate on
a much larger scale.

Accordingly, figure 10 shows Vickers indentations on
the (001) surface of magnesium oxide [38]; the views in
(a) and (b) differ only in that the axis of the indenting
pyramid has been rotated through 45'. Radial cracks are

L_

evident as before, but note that these cracks do not
extend beyond the well-defined slip-plane traces on the
specimen surface. Now magnesium oxide is a relatively
"soft" material (i.e., low H/E), so the elements of flow
(in this case, dislocations) which accommodate the
penetrating indenter extend well beyond the immediate
hardness impression. The cracks we see are produced by
intersection of the slip planes, in much the way as envis-
aged in the classical Cottrell "pile-up" model [39,40]. In
other words, we are witnessing the initiation, and not
the propagation, stage of fracture. We may reinforce
this conclusion by noting that the cracks extend in iden-
tical directions for the two indenter orientations in fig-
ure 10; it is the slip-trace configuration, and not the
alignment of the stress-concentrating contact diagonals,
which dictates the fracture geometry. Moreover, the
cracks lie on { 1 l} planes, whereas the normal cleavage
plane for fully propagating cracks in the rocksalt struc-
ture is { 100}. Under such conditions our formulation for
well-developed patterns in section 3.1 no longer has any
basis and we must turn our attention to the mechanics of
the precursor deformation process.

It is interesting to investigate how far, if at all, we may
carry this description over to glass. We have mentioned
the experimental difficulties associated with the rela-
tively small scale of the hardness impressions in the
initiation region. These difficulties are compounded by
the relatively high value of H/E for glass, correspond-
ing to a much greater confinement of the deformation
elements within the immediate contact zone [37]; our
observational techniques must therefore be capable of
providing information on subsurface events. Some
progress has nevertheless been made in this direction,
notably by the examination of sectioned indentations
using high resolution microscopy [30,41-43]. Examples

A; ."' Figure 10-Vickers indentations
on (001) surface of single crystal
magnesium oxide. Edges of mi-
crographs are parallel to
< 100> directions. Courtesy
B. J. Hockey.
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of the pertinent detail that can be revealed in this way
are shown in figure 11(a) and (b) for soda-lime and
arsenic trisulphide glass, respectively. There are traces
of "shear faults" on the specimen surfaces, somewhat
analogous to the slip lines in figure 10, but now without
crystallographic features; the slip follows trajectories of
maximum deviatoric stress in the near-contact field [41].
The fact that we are looking at an amorphous material
here tells us that the fundamental faulting process is
radically different from that generally described in
terms of dislocation glide; not only does the classical
concept of a dislocation Burgers vector break down in
the non-crystalline structure but the operative shear
stresses (as inferred from the hardness value) are close to
the theoretical cohesive limit.

Whatever the true nature of the shear faulting mech-
anism, it is apparent that the process is severely dis-
ruptive, and therefore capable of generating centers of
intense stress concentration for crack nucleation and
growth. Indeed, close scrutiny of micrographs of the
kind shown in figure 11 shows that one can invariably
associate the initiation point of the radial and lateral
cracks with one or more (usually intersecting) faults.
Arguing along these lines, one may construct a sim-
plistic, two-step model for the initiation [30]: in the first
step, the stress concentration at the edge of shear fault
reaches a sufficient intensity to nucleate an embryo mi-
crocrack; in step two, the microcrack grows to some
critical instability point, whence pop-in ensues. For
equilibrium fracture conditions the initiation relation
may be determined once more by scaling principles [44],

Pc =B1 K./H 3

with B1 another dimensionless term. It is interesting to
compare this result with its counterpart for cone cracks,
eq (2); note that H replaces E as the controlling material
contact parameter, reflecting the change from elastic to
inelastic near-field conditions (notwithstanding the fact
that B1, for the same reasons as discussed in relation to
B2 in section 3.1, will depend on HIE).

As with cone cracks (Section 2.2), radial and lateral
cracks are susceptible to enhanced initiation at P<Pc
when moisture is present in the environment. Indeed,
this enhancement can be substantial, with reductions of
over two orders of magnitude in the threshold load
when the indentation test is run in water [45]. Moreover,
the initiation may now occur after, rather than during,
the contact cycle (once more attesting to the vital role of
the residual stress component), indicating that the effect
of the hydrolytic interaction is rate dependent. The the-
oretical description is complex, for it can involve either
of the two steps referred to above in connection with eq
(6), and these steps are not easily differentiated in the
kinetic data [30].

3.3 Some Variants From the
Ideal Sharp Indenter Pattern

Let us look at some of the ways in which the some-
what simplistic descriptions in the previous subsection
require modification when dealing with non-ideal con-
tact systems.

Perhaps the most important of these non-ideal systems
is that involving "anomalous" glasses" of which fused
silica is the archtype [36]. These are glasses which de-
form by densification rather than by volume-conserving

Figure 11-Scanning electron micrographs of near-threshold Vickers indentations in (a) soda-lime and (b) arsenic trisulphide glasses. Specimens
prepared by indenting across preexisting hairline crack in glass surfaces, then breaking in order to obtain half-surface, and section views. After
references [8] and [43].
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flow. Figure 12 compares Vickers indentations in soda-
lime and fused silica glasses. The patterns for the two
glasses show clear differences, particularly in the near-
contact region. It appears that in fused silica the intense
local displacements induced by the penetrating indenter
generate the same kind of shear offsets at the contact
surface, but that these do not extend downward into the
material as they do in soda-lime glass [45]; anomalous
glasses do not contain the component of ionic modifiers
thought necessary to produce "easy paths" for slip,
along connected regions of terminal bonds [46]. Hence
the silica structure accommodates the indentation vol-
ume by "collapsing" its structure. This densification
mode is less disruptive, because it does not involve rup-
ture, but rather realignment, of the network bonds [46].
Accordingly, the intensity of the residual contact field is
much reduced in the anomalous glasses (a fact readily
evident as a diminished birefringence in views of the
kind shown in figure 6 [36]). In terms of eqs (5) and (6),
this means one must completely re-evaluate the way the
coefficients B. and B2 relate to H/E, although the forms
of the load/crack-size dependence remain unaffected.
Another manifestation of the reduced driving force for
radial and lateral cracking in anomalous glasses is the
tendency for some cone cracking to occur, as in figure
12(b), suggesting that the contact field in this case may
be more properly viewed as a hybrid of the blunt and
sharp extremes.

As a second example, we consider how the crack
patterns may be affected by inhomogeneities in the ma-
terial system. This could be an important consideration
in the development of new glasses with porosity or in-
cluded phases. The potential for significant crack-

R a
*~~~~~~~~~~av ¼,~J 

microstructure interactions can be most readily demon-
strated by reference to figure 13, which shows Vickers
indentations in alumina of three different grain sizes [47];
the sequence represents systems in which the radial
cracks are (a) much larger than, (b) comparable with,
and (c) much smaller than the scale of the micro-
structure. In cases (a) and (c) the crack patterns are well
defined, as though the material were effectively ho-
mogeneous, but in (b) it is difficult to distinguish any
true radial cracks at all. The implication here is that any
microstructural elements which exist on a scale com-
parable with that of the contact itself can have a pro-
found influence on the qualitative, as well as the quan-
titative, interpretation of the indentation crack patterns.

Finally, brief mention may be made of the effect of
translating a sharp indenter across the test surface, effec-
tively transforming the contact configuration from
"point" to "line" loading [48]. Such a transformation
changes the distribution, but not the nature, of the re-
sidual driving force on the crack. We show in figure 14
an end view, in polarized light, of a line flaw in soda-
lime glass to re-emphasize that this residual driving
force is by no means a minor factor. An analysis of the
linear flaw geometry leads to the result [48,49]

P/c =B;K2 (7)

as the analogue of the point-flaw relation, eq (5).

4. Indentations as Controlled Flaws
in Strength Analysis

Perhaps the most powerful of all applications of in-
dentation fracture mechanics is in the analysis of

R -- X - | _ ^ R
Figure 12-Vickers indentations in (a) soda-lime and (b) fused silica glasses in half-surface (top) and section (bottom) views. (Specimens prepared

in same way as those in Fig. 1 1.) Crack components indicated: R, radial; L. lateral; C, cone. After reference [36].
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Figure 13- Scanning electron micrographs of Vickers indentations in three aluminas, (a) grain size 3 jLrm, (b) grain size 20 pm, and (c) single

crystal (sapphire). After reference [47].

Figure 14-Line flaw in soda-lime glass, produced by tungsten carbide

glass-cutting wheel. End view, in polarized light, showing residual

stresses about track. After reference £48].

strength properties of brittle materials. For those con-
cerned with materials evaluation, indentation provides a

means of determining intrinsic fracture parameters with-

simplicity and accuracy. We shall make only brief refer-

ence to this aspect of the work in the sections below.

Indentations can also be used to simulate the way in

which naturally occurring surface flaws respond to ap-

plied stresses. It is here that most of our attention will be

directed. We shall find that the results of controlled-
flaw studies contain some surprises, particularly in re-

lation to the time-honored Griffith concepts of strength.

4.1 Crack Morphologies in Failure

Let us begin with a survey of the fracture mor-

phologies that result when the different indentation
crack types are taken to failure in applied tensile load-

ing. Our aim in this subsection is to make the reader

aware of some of the complications that may need to be
considered when interpreting strength data. In this en-

deavor, we confine ourselves strictly to qualitative de-

tails.
Our first example pertains to the failure from cone-

type cracks. Figure 15 shows such a failure, in this case

from a sliding sphere track in soda-lime glass [21]. The

test was carried out in an inert environment, so that

moisture-assisted subcritical growth did not occur. Fail-

ure initiated from the base of one of the deeper cone

cracks, and was spontaneous at the critical stress. In the

end view of figure 15 we see large steps flanking the

initiation point and curving around the cone base to-

ward the specimen surface. The resulting intersection at

the surface does not have a linear trace, but tails into a

cusp which points along the original direction of sliding.

It is clear that the fracture surface is far from planar,

indicating the complexity in growth evolution that a

curvilinear flaw will generally have to undergo as it

attempts to align its plane normal to the tensile axis. In

other words, we are dealing with a "mixed mode" frac-

ture configuration, where shear components contribute
to the crack driving force.

With radial cracks this issue of mixed mode loading

can be avoided by taking care to orient the indenter so

that principal median plane (i.e., the plane containing

the long diagonal in the case of Knoop indenters, or

either of the diagonals in the case of Vickers) coincides

with that of the maximum tensile stress in the subsequent

failure test. Now, however, a new and more far-

reaching complication becomes evident. We see this in

figure 16, which shows micrographs of Knoop inden-

tations in silicon nitride before and during application of

the stress (in this case, flexural) which leads to failure
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Figure 15- Failure from sliding-sphere track in soda-lime glass (fric-
tion coefficient 0.5): (a) surface view; (b) end view of fracture sur-
face. In this case failure initiated from the first partial cone in the
track. After reference [21].

[50]. The radial crack arms have clearly extended prior
to failure, contrary to the conventional notion that the
failure should occur spontaneously from an otherwise
invariant flaw configuration. Lest it be argued that such
precursor extensions could be due to moisture-assisted
slow crack growth effects (and we shall indeed demon-
strate below that slow crack growth can have a pro-
found influence on the failure conditions), it is pointed
out that the silicon nitride used in this work was chosen
precisely because it is immune to such effects [50]. The
same kind of response is obtained for silicate glasses
tested in inert environments (vacuum, dry nitrogen)
[51]. In view of our observations earlier concerning the
evolution of radial cracks during the unloading stage of
the indentation cycle (Sec. 3.1), we are led to conclude
that the prior growth stage is a manifestation of the
stabilizing influence of the residual contact stresses.

If the radial crack is not oriented normal to the tensile
axis, or if the failure test is not conducted under equi-
librium conditions, the added presence of mixed-mode
and slow crack growth effects makes interpretation of
the residual stress contribution somewhat less straight-
forward. These two complicating factors are apparent
in figures 17 and 18, for Vickers indentations on soda-
lime glass. In figure 17, the radial cracks were oriented
to lie at 45° to the ensuing stress, which was applied to

a

_ ~Flaw|

b

- 100 ALM

Figure 16-Growth of radial cracks from Knoop indentations in hot-
pressed silicon nitride: (a) strength test arrangement; (b) crack pat-
tern prior to and during stress application. After reference [50].

a level a little below that needed to cause failure [52].
The characteristic precursor growth is again in evi-
dence, but note that the tendency for alignment of the
cracks onto a plane of maximum tension is realized grad-
ually during this growth stage. All theories of crack
extension from inclined flaws based on the notion of
spontaneous failure predict that this reorientation event
should occur abruptly, producing a distinct kink in the
surface crack path [52]. In figure 18, the radial cracks
were oriented normally, but were taken to failure in
water at a prescribed stressing rate; the two cases shown
represent specimens (a) annealed before strength testing,
to remove the residual stresses, and (b) tested in the as-
indented state [53]. Although the pre-failure extension is
well in excess of that observed in inert-strength tests,
demonstrating that slow crack growth is no longer a
minor factor, it is far more pronounced in the specimen
where residual stresses remain operative.

All this is to emphasize the intractability of an exact
strength formulation for materials which fail from natu-
ral flaws. Traditional theories of strength are based on
highly simplistic descriptions of such flaws: given that
the flaws do indeed have the nature of true microcracks
(and even this may be open to question, particularly as
strength levels approach the theoretical limit imposed
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by cohesive forces, as they do in optical fibers), it is
generally taken that the mode of failure is strictly tensile
and, more significantly, that the sole driving force act-
ing is that due to the applied loading system. It needs to
be made clear that these descriptions are not based on
any direct experimental evidence; natural flaws are

small, rarely larger than 100 ,um in maximum dimension,
and the location of the critical member in a large popu-
lation is virtually impossible to predetermine. Frac-
tography in such cases is restricted to post-failure anal-
ysis, which is severely limited in the information it can
provide on flaw history.

Figure 17-Growth of radial
Mat cracks from Vickers inden-
W t tations in soda-lime glass during

i7 strength test: (a) prior to stress-
.- l$= 7_ ing; (b) during stressing. Inden-

tation in this case was oriented

with radial arms at 450 to pro-
spective tensile axis (horizon-
tally directed in this diagram) so
as to produce mixed-mode load-
ing.

Figure 18-Fracture surfaces of
Vickers-indented glass broken in
water at fixed stressing rate.
Contact load used to produce
the indentations in the two cases
illustrated was the same. Arrows
designate points at which failure
originated in the strength tests.
After reference [53].

As-Indented
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4.2 Strength Formulations

We have implied that the growth of flaws to failure is
generally more complex than conventional strength the-
ories would have us believe. In this subsection, we ex-
amine how the complicating factors, particularly those
associated with residual contact stresses, may be incor-
porated into a broader fracture mechanics analysis.

The generalization may be achieved by writing the
stress intensity factor for indentation cracks in the form
[5,51,54]

K-=4raC 1/2+xp/C3/2 (8)

where a-, is the applied stress and 4s is a dimensionless,
crack geometry term; the second term on the right of eq
(8) is the residual component defined previously in eq
(4). The condition for failure under equilibrium condi-
tions is that K =K.. In the traditional view the residual
term is ignored, whence instability occurs at the initial
crack size c =co when o-,,= a-0 , say,

cao=K/4Ico1/2. (9)

This result is applicable to cone cracks, or to radial
cracks after annealing, with due allowance for mixed-
mode effects in the t term [21,521. However, for non-
zero residual stresses instability does not occur until the
crack has first extended from c =co to a critical config-
uration c = cm, at which a-, = a-r,; this instability may be
determined from the equilibrium form of eq (8) by
putting dOa/dc =0, thus

a'm.= 3Kc/411cm 1 2 (lOa)

cm = (4XP/K.)21 3 . (1Ob)

Herein lies the formal description of the precursor stable
growth stage referred to earlier in relation to virgin
(non-annealed) radial crack systems, e.g., figure 16. It
may be pointed out that eqs (9) and (lOa) are of near-
identical form (notwithstanding the factor 3/4) insofar
as the relation between strength and critical flaw size is
concerned [551, so the intricacies of pre-fracture flaw
response may well pass unnoticed in the usual kind of
fractographic observations. Some of the newer flaw de-
tection techniques which are capable of characterizing
flaw configurations during testing (e.g., acoustic scatter-
ing [54]) seem to suggest that the second category above
is far more widespread than previously suspected, es-
pecially for surfaces with a contact-related history (ma-
chining, abrasion damage, etc.).

This influence of residual contact stresses can show
up in subtle ways, as in the aging of glass. In a classical
early study of this phenomenon, Mould showed that the
strength of freshly abraded glass surfaces tended to in-
crease gradually, typically by 30-40%, on prolonged
exposure to water prior to breaking [56]. The prevailing
view of this increase is that the crack tips are somehow
"blunted" by the environmental interaction. However,
if these studies are repeated under the same aging condi-
tions, but with Vickers flaws instead, we find that
strengthening occurs only while the cracks are actually
extending [53,57], e.g., as in figure 7. This means, of
course, that the aging process cannot be associated with
any explanation in which crack rounding dominates
crack lengthening. Now while the growth of the radial
crack is not expected to affect the strength (since a-,,, in
eq (lOa) depends only on the critical crack size cm and
not on the initial crack size cO), the growth of the lateral
crack can play an important role by relaxing the residual
driving force on the system, i.e., diminishing X in eq
(lOb). This interpretation is supported by the absence of
any analogous strengthening on abraded or indented
surfaces which have been annealed prior to breaking
[56,57]. The results here bear on the fundamental nature
of crack tips, implying that the intrinsic "sharpness" of
flaws is not easily negated, even under adverse corro-
sion conditions.

The above fracture mechanics analysis can also be
usefully adopted as a basis for design, in applications
where brittle components are exposed to severe in-
service contact conditions [2,4,51]. Thus for sharp, nor-
mal contacts eqs (lOa) and (lOb) may be combined to
yield

Arm = (3 /4 4/3'+X 1 3
)Kc4'

3/P 1/3 (11)

where P is now to be interpreted as the maximum load
that is likely to be encountered during the lifetime of the
exposed surface. Clearly, if a-m falls below the "labora-
tory strength" of the material, the potential exists for
strength degradation. Fortunately, the dependence on P
in eq (11) is weak, so the need for detailed information
on prospective contact conditions is not great. From the
material standpoint, toughness K, is identified as the
parameter to be optimized. It may be noted that an
equation of the same form as eq (11) (differing only in
the coefficient within the brackets) obtains for the coun-
terpart blunt contact case, as can be seen by combining
eq (9) with eq (1). Indeed, the formulation is readily
extended to sliding contacts [21,48], or to normal con-
tacts in impact loading [4,58].

Finally, controlled flaws can also be used to measure
material parameters to high accuracy, with all the atten-
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dant advantages of simplicity and economy character-
istic of indentation methods. For example, by inverting
eq (11) one can evaluate Kc in terms of strength and
indentation load (given, of course, an appropriate "cali-
bration" of the coefficient in this equation), without any
recourse to the measurement of crack dimensions [59].
Similarly, one can combine the K relation in eq (8) with
an appropriate crack velocity function to obtain
material-environment fatigue parameters (e.g., exponent
n in power-law velocity function) [53,60-62]. In all these
analyses a proper quantitative evaluation requires a full
accounting of the residual stress term. The controlled
flaw methodology can be extended into the sub-
threshold region, where important changes in the
strength behavior become apparent [27,63-65], although
the detailed micromechanical formalisms (the equiv-
alents of eq (8) for crack initiation) have not yet been
fully documented.

5. Erosive Wear and Machining

The cumulative effect of a large number of surface
contacts with small particles can lead to significant
amounts of material removal. Of the crack systems dis-
cussed in sections 2 and 3 it is the lateral which consti-
tutes the most effective chipping mode [1] (although the
cone crack can also be effective in this regard, especially
when overlap between adjacent contact sites is fre-
quent). These removal processes can be either highly
deleterious or highly beneficial, depending on whether
one is seeking to minimize or to maximize the removal
process; that is, whether one is concerned with erosive
wear [66-69] or with machining [70] properties.

Examples of surface removal damage are shown for
soda-lime glass surfaces impacted with sharp silicon car-
bide particles in figure 19 [69]. The lateral cracking
mode is clearly in evidence in the micrographs. In terms
of the characteristic surface crack radius c and hardness
impression diagonal a (recall that the lateral crack ini-
tiates from near the base of the deformation zone, the
depth of which scales with a), we may estimate the
potential chip volume for the i'th normal contact event
as

Vi = 7rc ~ai. (12)

This is the entry point for our indentation formalism.
The fracture relation eq (5) may then be invoked to
eliminate ci, and the conventional hardness relation PI
aa2 =H (a a geometrical constant) likewise to eliminate
a;, from eq (12). Accordingly, we obtain a volume re-
moval equation of the form

Figure 19-Erosion damage in soda-lime glass impacted with 150 1,m
silicon carbide particles at normally incident velocity 90 m s-': (a)
optical micrograph, showing multiple impact sites; (b) scanning
electron micrograph, showing single impact site. Lateral cracking is
clearly the dominant surface removal mode. After reference [69].

Vi = (o/j', 3 H 1/2)p 1
[/6 (13)

where o=w(HIE) (recall the dependence of inden-
tation constants on hardness to modulus, Sect. 3.1) is a
"wear coefficient." The simplest theories then proceed
on the tacit assumption that all such individual contacts
are of the same severity and are non-interacting, so that
the total volume removed is simply V=NV,, where Nis
the number of events. For contacts in impact loading, Pi
can be eliminated in favor of incident kinetic energy UJ
(via an appropriate contact equation) [58] to obtain an
erosion equation. The most important predictions of this
model, concerning the manner in which the removal
rate increases with contact load or energy and decreases
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with material toughness, have been confirmed in exten-
sive experimental studies on erosive wear in brittle
glasses and ceramics [66-69].

The procedure for constructing indentation-based
models for machining wear rates is basically the same,
with due allowance for a tendency to linear rather than
point contact geometry. The true nature of machining
damage, in terms of the essential interrelation between
the near-surface deformation processes and the ensuing
cracks, has only recently become clear, primarily as a
result of strength studies of the kind referred to in sec-
tion 4 [54,70]. Development of a detailed theory of ma-
chining, with proper account of such important extra-
neous influences as near-contact lubricants, tool
geometry, etc., awaits the next generation of indentation
analysts.
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A simple and economical procedure for accurate determinations of toughness and lifetime parameters of
ceramics is described. Indentation flaws are introduced into strength test pieces, which are then taken to failure
under specified stressing and environmental conditions. By controlling the size of the critical flaw, via the
contact load, material characteristics can be represented universally on "master maps" without the need for
statistical considerations.

This paper surveys both the theoretical background and the experimental methodology associated with the
scheme. The theory is developed for "point" flaws for dynamic and static fatigue, incorporating load explicitly
into the analysis. A vital element of the fracture mechanics is the role played by residual contact stresses in
driving the cracks to failure. Experimental data on a range of Vickers-indented glasses and ceramics are included
to illustrate the power of the method as a means of graphic materials evaluation. It is demonstrated that basic
fracture mechanics parameters can be measured directly from the slopes, intercepts and plateaus on the master
maps, and that these parameters are consistent, within experimental error, with macroscopic crack growth laws.
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Introduction
The increasing use of glasses and ceramics as struc-

tural materials has prompted the development of new
and accurate techniques for evaluating intrinsic fracture
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Department of Applied Physics in Australia's Univer-
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Center for Materials Science. Their paper will also
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Publication, Methods for Assessing the Structural Re-
liability of Brittle Materials, S. W. Freiman, editor.
Funding for the work was provided by the Australian
Research Grants Committee and the U.S. Office of
Naval Research (Metallurgy and Ceramics Program).

parameters. Chief among these parameters are the frac-
ture toughness, Kc, and the crack velocity exponent, n,
which respectively characterize the equilibrium and ki-
netic crack growth responses. In the context of brittle
design it is essential tq achieve an adequate level of
precision in such parameter evaluations. This is particu-
larly so in the consideration of component integrity un-
der sustained stresses and chemical environments,
where apparently minor uncertainties can translate into
order-of-magnitude discrepancies in lifetime predic-
tions.

A standard method of determining basic fracture pa-
rameters for design is to measure the strengths of repre-
sentative test specimens in flexure. However, for speci-
mens with typically as-received or as-prepared surfaces,
these strengths depend not only on the intrinsic material
properties but on the flaw distributions as well. It is then
not possible to investigate these two elements of the
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problem in any truly independent way. Evaluation of ma-
terial parameters becomes a mere exercise in statistical
data manipulation, with little or no physical insight into
the nature of the critical flaws responsible for failure
[1-2].' This probabilistic approach makes it difficult to
assess the relative merits of different materials from the
standpoint of intrinsic properties alone.

A controlled-flaw technique which effectively elimi-
nates the statistical component from strength testing has
been described in a series of recent articles [3-12]. A
single dominant flaw of predetermined size and geome-
try is introduced into the prospective tensile surface of
each specimen using a standard diamond indenter. The
specimens are then stressed to failure in the usual way.
With the indentation and flexure testing conditions held
fixed, any variations in the strength behavior can be
taken as direct reflections of the intrinsic material re-
sponse. The only need for statistical treatments then
resides in the trivial accountability of random scatter in
the data. Quite apart from the ensuing improvements in
data reproducibility, the indentation procedure confers
several advantages in strength analysis: (i) greater speci-
men economy, (ii) because the location of the critical
flaw is predetermined, closer observation of the fracture
mechanics to failure, and (iii) a reasonable simulation of
the damage processes that are responsible for a great
many brittle failures [13-15]. One apparent complication
attending the technique is the existence of a strong re-
sidual contact field about the elastic/plastic deformation
zone, necessitating the incorporation of additional terms
in the governing stress intensity factor. However,
closed-form solutions of the fracture mechanics formu-
lations are now available for both equilibrium [4] and
kinetic [16] conditions of failure; analytical deter-
minations of toughness and fatigue parameters from the
strength data may accordingly be made in as straight-
forward a manner as for "Griffith" flaws without the
residual stress term.

The capacity to control the scale of the critical flaw
via the indentation load is a potent tool in the in-
vestigation of material fracture properties. The load ac-
tually replaces initial crack size as a variable in the frac-
ture equations, thereby eliminating the need for onerous
measurements of crack dimensions (although some ob-
servations of crack growth are useful for confirming the
validity of the theory) [15]. Size effects in the micro-
mechanics may then be studied systematically: im-
portant changes in the nature of low-load contact flaws
have been thus revealed on reducing the crack size to

'Figures in brackets indicate literature references at the end of this
paper.

the scale of the deformation zone [171 or of the micro-
structure [189. Systematic variations in the load de-
pendence of indentation-strength characteristics can
also be used to evaluate pre-existing stress states in brit-
tle materials, e.g., in tempered glass [19]. Again, some
materials may produce ill-defined indentation patterns
outside certain ranges of flaw size, or be restricted in
specimen dimensions, in which case the geometrical re-
quirements of standard strength-testing procedures may
make it impossible to operate at a single contact load.
The theoretical analysis allows one to compensate for
any such changes in the working contact conditions,
effectively reducing all data to an "equivalent" load.

This paper illustrates a procedure for representing the
intrinsic strength properties of brittle materials on an
indentation "master map." A suitable "normalization"
scheme incorporating indentation load into the plotting
coordinates allows for the reduction of all inert and
fatigue strength data on to "universal" curves for the
various test materials. In this sense the scheme is remi-
niscent of that developed earlier by Mould and South-
wick [20], except that their use of relatively ill-defined
abrasion flaws necessitated a totally empirical approach
in the data reduction. On our master map the position of
a given curve may be taken as a graphic indicator of the
intrinsic toughness and fatigue susceptibility. Quan-
titative determinations may accordingly be made of KX
and n without recourse to statistically based theories of
strength.

Background Theory

Stress Intensity Factor for Indentation Cracks

The starting point in the analysis is the stress intensity
factor for an indentation crack of characteristic dimen-
sion c produced at peak contact load P and subjected to
subsequent applied tensile stress ca-. For "point" flaws
produced by axially loaded indenters the general form
of this stress intensity factor is [4]

K = XP/C3 /2 + i Crc1/2 (1)

where X and if are dimensionless parameters. The sec-
ond term in eq (1) is the familiar contribution from the
applied field; e depends only on crack geometry, here
assumed to be essentially "penny-like" [21]. The first
term is the contribution from the residual contact field;
for materials which deform irreversibly by a constant
volume process

X =e(E1H)
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approximately [22], where E is Young's modulus, H is
hardness and e is a numerical constant.

In the event of any pre-existent stress acting on the
crack a third term would have to be included in eq (1)
[4,91. Other than to note that this potential complication
needs to be heeded when preparing the surfaces of test
specimens we shall consider it no further in our mathe-
matical derivations.

Equilibrium Solutions: Inert Strengths

eliminate all terms in crack size, and then combined with
eq (2) to yield

(5)

This expression conveniently relates the test variables
on the left side to the material properties, primarily the
toughness, on the right side. We emphasize once more
that this formulation is contingent on the absence of all
spurious pre-present stresses.

Equilibrium conditions of crack growth are closely
realized experimentally by testing in an inert environ-
ment. In terms of fracture mechanics notation the crite-
rion for equilibrium is that K i=K,; if dK/dc <0, the
equilibrium is stable, if dKldc >0, it is unstable. Now it
is evident from eq (1) that K for given values of P and -a,
passes through a minimum in its functional dependence
on c; thus at subcritical configurations K(min)<Kc
there is a stable and an unstable equilibrium, to the left
and to the right of the minimum, respectively [16]. In an
inert strength test, a, is increased steadily until these
two equilibria merge at dK/dc =0, which defines the
critical variables

Cm = 3Kc/4*lIcm" 2

Kinetic Solutions: Dynamic Fatigue

When cracks are exposed to moisture or other inter-
active environmental species, extension can occur in the
subcritical region, K<K,,. The major characteristic of
this kind of extension is its rate dependence, which is in
turn highly sensitive to the crack driving force. The
basic equation of kinetic fracture accordingly takes the
form of a crack velocity v (K). In the interest of obtain-
ing closed-form solutions to the ensuing fracture me-
chanics relations we choose the empirical power-law
function [23]

v = vo(K/K)'
(3a)

c,, =(4XP/Kf' 3 (3b)

at which crack growth proceeds without limit. We may
note that any relaxation of the residual stress field, as
reflected in a reduction in X (or, more specifically, in k in
eq (2)), will cause Crm to expand and cm thence to con-
tract.

It can be shown that the ideal indentation crack is in
a state of equilibrium immediately after completion of
the contact cycle [22]. The size of this crack is found by
setting a=0, K=K, in eq (1);

co= (XP/1K)2'3 . (4)

From eq (3b) we have co=0.4 0cm. On subsequently ap-
plying the tensile stress, the crack extends stably from c0
to cm, whence spontaneous failure ensues at a-, ,,m [4].
In reality, deviations from this ideal behavior are ob-
served; relaxation effects can cause cm to contract, as
already mentioned, and subcritical, moisture-assisted
crack extension within the residual contact field can
cause c0 to expand, to co' say. Nevertheless, unless the
condition co•<c is violated, some precursor crack
growth will still precede failure, in which case ad, re-
mains a measure of the inert strength.

Equation (3) may then be conveniently rearranged to

(6)

where v0 and n are material/environment parameters.
Materials with lower values of n are said to be more
"susceptible" to kinetic crack growth effects.

The most practical loading arrangement for the sys-
tematic study of rate effects in strength properties is that
of "dynamic fatigue," in which the time differential of
stress is held fixed up to the point of failure, i.e.,
&,i=cr,/t =const. We may thus combine eqs (1) and (6)
to obtain a differential equation for this stressing config-
uration,

dc/dt = v0 [XP/Kcc3 + qi&,,c "2t/K']. (7)

This equation has to be solved at given P and &r, for the
time to take the crack from its initial configuration,
K=K(c6), to its final configuration, K=Kc, at which
point the stress level defines the dynamic fatigue
strength, G-a=t-f [16];

(8)

where

n'=3n/4+1/2 (9a)

A= (27rn ') 1"
2crm.,'C/Vo. (9b)
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The solution in eq (8) is identical in form to that for
"Griffith" flaws (X=O) [23]. However, the slopes and
intercepts from a linear plot of log arF against log d-a are
very different in the two instances. In the present case
(X#O), n' and A' may be regarded as "apparent" fatigue
parameters, in the sense that transformation equations
are required to convert these to "true" crack velocity
exponent and coefficient terms. Thus, eq (9a) may be
inverted to obtain n directly from n', and eq (9b) simi-
larly (in conjunction with measured values of o-m and cm)
to obtain v0 from V'. It is again seen that initial crack size
does not enter the results, as long as the condition CO<Cm
remains operative [9].

Implicit in the derivation of eq (8) is the usual assump-
tion that the prospective test surfaces are free of spuri-
ous stresses. The introduction of such stresses leads to
nonlinearities in the dynamic fatigue plotting scheme,
thereby destroying the basis for the above analysis
[9,10].

It is convenient at this point to incorporate the inden-
tation load as a working test variable into the dynamic
fatigue relations. Whereas n' in eq (9a) is independent of
all test variables, A' in eq (9b) can be expressed as an
explicit function of P via the quantities Arm and cm in eq
(3). In this way we may write

(10)

where Ap is a modified intercept term, totally indepen-
dent of P, given by

Ap = (2irn 't/ 2(3K /44i)f(Ke/4X)("'-2)/3/Vo (11)

Equation (10) tells us that fatigue data obtained on one
material but using different indentation loads will fall on
different straight lines, mutually translated but without
change of slope. Now by inserting eq (10) into eq (8) we
may appropriately modify the dynamic fatigue relation,
thus

crfP/3 =(X&P)tI(n'+ 1) (12)

such that by plotting log (arP`/ 3) against log (6aP) all
data should fall on to a universal fatigue curve. This plot
would, of course, cut off at a limiting level on the ordi-
nate corresponding to the inert strength plateau defined
in eq (5). The procedure for evaluating crack velocity
parameters from the slopes and intercepts of such repre-
sentations is the same as before, but with eq (10) serving
as an intermediary to eq (9).

Kinetic Solutions: Static Fatigue

Of more practical interest from a design standpoint is
the issue of component lifetime under fixed stress rather
than stress rate. Ideally, it would seem desirable to for-
mulate a universal static fatigue relation in direct anal-
ogy to eq (12) retaining, as far as possible, the same
adjustable parameters. Lifetime predictions could then
be made from dynamic fatigue data alone, without hav-
ing to resort to delayed failure experiments. This formu-
lation may be achieved in two steps. First, eliminate
stressing rate in favor of time to failure, &a = mrltf. This
step introduces the lifetime concept without yet altering
the status of eq (12) as a dynamic fatigue relation. Then,
convert to equivalent static fatigue variables by re-
placing crf with a-A, i.e., the level of the invariant applied
stress, and tf with (n'+ l)t, [16]. The resulting static fa-
tigue relation is

(13)

We reiterate here, at the risk of laboring the point,
that the variables P, O-A and tf in eq (13) relate to pro-
spective static fatigue conditions, whereas the parame-
ters n' and Ap are adjustables, as defined by eqs (9) and
(10), to be determined from dynamic fatigue data.

Experimental

Materials Selection and Preparation

The materials in this study were chosen in accordance
with two major criteria: first, they should cover a range
of toughness and crack velocity characteristics, as deter-
mined by independent fracture techniques; second, they
should be of some technical importance. Table 1 lists
these materials and their pertinent properties.

All specimens were prepared in the usual manner for
strength testing. However, particular attention was paid
to surface preparation, bearing in mind our repeated
assertion that pre-existing stress states can greatly influ-
ence the interpretation of strength data. The glass speci-
mens were therefore annealed [19] and the ceramics
surface-polished to a mirror finish with diamond paste
[10] to ensure removal of any such stresses.

Indentation and Strength Testing Procedure

All specimens were routinely indented centrally
along their length using a Vickers diamond pyramid
indenter to produce dominant flawvs for the subsequent
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Table 1. Materials used in this study.

Independent parameters Indentation parameters

E H Kc i KX n log V0
Materials

(sources footnoted) GPa GPa MPa ml MPa ml msr'

Soda-Lime Glass' 70 6.6 0.74* 16-19* 0.97 18 -1.6
Borosilicate Glassb 89 6.5 0.77* 31-37* 1.2 36 1.6
Fused Silica' 72 7.6 0.81* 38* 1.2 44 2.2
Synrocd 190 10.3 1.9 - 1.8 35 0.2
P.Z.T.' 88 3.1 0.87 - 1.0 43 -0.5
Aluminaf 400 16 4.4 46* 3.8 59 1.7
Silicon Carbide8 435 24 4.1* 118* 3.7 222 8.4
Glass Ceramich 108 8.4 2.5* 63,* 84* 2.2 117 5.0

'Determinations by other workers. (See references, below).
'Schott-Ruhrglas GMBH 111,31,32].
'Schott-Ruhrglas GMBH [11,31,32].
'Schott-Ruhrglas GMBH [31,331.
dSynroc B, Australian Atomic Energy Research Establishment [34].

failure tests. The Vickers geometry was chosen both for
its proven capacity to produce well-defined radial crack
patterns and for its general availability in hardness test-
ing facilities. The glasses were indented at several loads,
ranging from 0.05 to 100 N, whereas the ceramics were
each indented at single loads, 10, 20, or 100 N. In all
cases the radial cracks extended well beyond the central
hardness impression, but never to a length in excess of
one tenth the specimen thickness.

The indented specimens were then broken in four-
point flexure [24] in a universal testing machine at con-
stant crosshead speed. Care was taken to center the
indentation on the tension side, with one set of radial
cracks aligned normal to the long axis. The breaking
loads were recorded using conventional strain gage and
piezoelectric load cells [10], and the corresponding rup-
ture stresses thence evaluated from simple beam theory.
Inert strengths, am, were measured in dry nitrogen or
argon or silicone oil environments, with the crosshead
running at its maximum speed. Dynamic fatigue
strengths, af, were measured in distilled water over the
allowable range of crosshead speeds. At least six speci-
mens were broken in each strength evaluation, from
which means and standard deviations were computed.

Measurement of Critical Crack Dimensions

For the purpose of confirming the necessary condi-
tion that the initial crack size co should never exceed the
instability value cm for equilibrium failure, and for veri-
fying certain aspects of the fatigue solutions presented
earlier, an optical examination of representative critical

'Lead Zircon Titanate, Plessey Australia.
tF99, Friedrichsfeld GMBH [35].

JNC203, Norton Co. [7,361.
hPyroceram C9606, Coming Glass Co. [7,10,37,38].

indentations is recommended. The technique used here
was to place three indentations instead of one on a given
test surface, and then take the specimen to failure under
inert conditions [10]. On the understanding that all three
indentations must have had nearly identical growth his-
tories, the procedure leaves two "dummies" in the bro-
ken test piece from which to measure the required crack
dimensions. The Vickers geometry proves particularly
useful in this technique, for while the set of radial cracks
perpendicular to the tensile direction provides a mea-
sure of cm, the set parallel to this same direction remains
free of external stress and hence provides a measure of
cO.

In all materials studied in this work some precursor
crack growth was indeed found to occur prior to failure.

Results

Inert Strengths and Toughness

In this section we begin by examining the dependence
of inert strength on indentation load for the three glasses
studied. With this dependence established, we then in-
vestigate how the inert strength data may be reduced to
a composite toughness parameter for all of the test mate-
rials.

Figure 1 accordingly shows a-., as a function of P for
the glasses. The straight lines are best fits of slope - 1/3
in logarithmic coordinates, as per eq (5). This same de-
pendence has been confirmed elsewhere for several
other brittle materials [7,18,25,26].

Values of the composite parameter armP"/3 are thus
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Figure 1- Inert strength as function of indentation load for the silicate
glasses. (Data courtesy of T. P. Dabbs).

evaluated for each of the glasses and ceramics, and are
plotted as a function of (H/E)" 8 K, (from table 1) in
figure 2. The straight line is a fit of logarithmic slope 4/3
in accordance with eq (5), using a "calibration" value
(3/4jY)(l/4e)'' 3 =2.02 from an earlier, more comprehen-
sive study [7]. The trends in figure 2 appear to be in
reasonable accord with prediction, although some devi-
ations are evident, particularly for the fused silica and
borosilicate glasses. Estimates of the "indentation
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Figure 2-Inert strength parameter o,,P"' as function of toughness
parameter (H/E)"'K, for the glasses and ceramics.

toughness" obtained directly from amP"1
3 by inverting

eq (5) are included in table 1 for comparison with the
independently determined values.

Dynamic Fatigue and Crack Velocity Parameters

We consider now the dynamic fatigue responses,
again beginning with the glasses to examine the func-
tional influence of contact load, and outline the pro-
cedure for determining the exponent and coefficient in
the crack velocity function.

Figure 3 shows these responses for the glass com-
positions in water. The straight lines drawn through
individual sets of data at fixed P are best fits to eq (8),
regressed for each glass on all the data consistent with
the intercept relation eq (10). Thus we obtain families of
lines of constant slope, with systematic displacements to
lower strength levels with increasing load. Analogous
plots are shown in figure 4 for the five ceramics in the
same water environment, but now for a single load in-
each case. The inert strength limits are included in all
plots as a reference baseline for assessing the degrees of
fatigue.

From the regressed slopes and intercepts we obtain
values of the apparent fatigue parameters n ' and X' in eq
(8). Inversion of eq (9) (together with the inert strength
data) then allows us to evaluate the true crack velocity
parameters, n and v0. These evaluations are summarized
in table 1; comparisons may be made in this tabulation
with independent measurements of the crack velocity
exponent.

Master Maps

We have set the base for determining universal frac-
ture curves for the materials studied, and thence to con-
struct master maps. We do this for dynamic and static
fatigue conditions in turn.

The presentation of the dynamic fatigue results on a
single master map requires conversion of all data to
appropriate load-adjusted variables afP t/3 and 6rP in eq
(12). Figure 5, an appropriate composite of all data thus
converted from figures 3 and 4 (but with error bars
omitted for clarity), is such a map. Each material is now
conveniently represented by a universal curve, indepen-
dent of the contact loads used to obtain the data. The
curves plotted in this diagram represent numerical solu-
tions of the basic fatigue differential equation, eq (7),
obtained for the ranges of P and &ea covered experi-
mentally for each material, using the inert and kinetic
parameters already determined along with the measured

458

a Fused Silica

* Borosilicate
- Soda-Lime

I

l



400

200 W

C
P 0.05N

Soda-Lime Glass/Water
0.1N

/ 1/ 0.2N F//
0.4N

0.7N

/ /<i>/B/ ~ ~~~~1.5 F//-/77

/P<0< + 3.5N 1"/z/7

1 ON 0777N177/

50 F

100 K

25

a-

.C

a,C

.2
CZ

LI.

160

80 _

10-2 100 102 104

Stress Rate, 6a8MPa s' 1

160

'Ua.

CL
C

C

U-

ro

.2

1;

cL

106 108

Fused Silica/Water

P = SN W//////7

1 0N F//i/7/7//

20N r//n////
50N mf////

40 _

20
10-2 100 102 104

Stress Rate, 6a8MPa s-l

10s 108

initial crack sizes [10]. The fact that the curves regen-
erated in this way are effectively coincident with the
data is, of course, no real surprise, since the regression
analyses used in the parameter evaluations were per-
formed in accordance with the solutions of the differ-
ential equation in the first place. An exercise of this kind
nevertheless serves two useful purposes: (i) to confirm
that the solutions referred to, which are of closed form,
are indeed reasonably reliable, and (ii) to show how
closely the curves remain linear in the fatigue region,
and then plateau out at the inert strength levels, amP",3

(fig. 2).
The equivalent construction for static fatigue is ob-

tained from the constant stressing rate results using the
rationale described earlier in the derivation of eq (13).
Thus we generate the plots shown in figure 6 directly
from the best-fit values of n' and X' (or more strictly, via
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Figure 3-Dynamic fatigue responses of glasses indented at different
loads. The hatched bands indicate inert strength levels. (Data cour-
tesy of T. P. Dabbs).

eq (10), XP) determined by the data regressions shown in
figures 3 and 4. Cutoff levels on the abscissa again corre-
spond to inert strength limits. Because the construction
in figure 6 is not obtained this time from regenerated
solutions of the basic differential equation, we are unable
to plot the curved transition between the fatigue and
inert regions; however, the abruptness of the corre-
sponding crossover points in figure 5 suggests that we
may reasonably ignore any such curvature in the life-
time maps.

Discussion

Quantitative Evaluation of Fracture Parameters

The scheme presented here for reducing fatigue data
to universal curves for any specified material/
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environment system, and thence for constructing master
maps to facilitate comparisons between these curves,
provides an attractive route to simple, accurate, and
economical evaluation of fracture parameters for de-
sign. In the following subsections we discuss how these
constructions may be used as a quantitative tool for
parameter determinations in different regions of the
curves.

Inert Strength Levels. The position of the inert
strength cutoff level, O-mpl/3, may be taken as an indi-
cator of material toughness, Kc. Intrinsically tougher
materials will therefore exhibit cutoffs further toward
the top of a dynamic fatigue map (fig. 5) and toward the
right of a static fatigue map (Fig. 6).

It should be emphasized that the correspondence im-
plied here is not exact. To clarify this point we may
invert eq (5) to obtain an explicit expression for tough-
ness,

KC=(256*3e/27)"/ (E/H)l"3 (MP1/3 )3 /4. (14)

Thus, Kc depends on the elastic/plastic term E/H as
well as on trmP"3 . On the other hand, since E/H varies
only between 10 and 25 over the range of materials listed
in table 1, the use of an invariant, representative mean
value < (E/H) "8> = 1.50 in eq (5) would lead to errors
of no more than 10%. Another potential source of dis-

crepancy lies in the implicit assumption that geometrical
similarity is preserved in the indentation pattern from
material to material, as reflected in the constancy of the
parameters e and *. We have already pointed out that
relaxation effects in the residual contact field can lead to
reductions in the e term. Systematically low values of e
will also be manifest in materials which deform by other
than a constant-volume process or exhibit plastic pile up
at the impression edges [22]. Fused silica and boro-
silicate glass, which tend to deform by densification [27],
fall into this category, thereby explaining the tendency
for the data points representing these two materials to lie
above the general trend in figure 2. Finally, it has been
taken as given that the radial crack patterns are always
well defined, and in the materials used here this gener-
ally has been found to be so. But in materials where the
microstructure is comparable in scale with the inden-
tation event, ihe symmetry of the crack pattern can
become severely disrupted [8,28], with consequent vari-
ations in both e and 4.

It may be argued that the "effective" toughness reck-
oned from the cutoff position on a master map, while
perhaps not an accurate measure of its macroscopically
determined counterpart, nevertheless may more closely
characterize the response of "natural" flaws. This is
certainly likely to be so where the strength-controlling
flaw in a component is created by a surface contact

461

800

Q

co 400
a.

° 200a,

E
CD

cm 100
L

0)
I-

( 50

25



Figure 6-Static fatigue master
map, generated from figure 5.
See table I for key to materials.
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event, as in sharp-particle impact or in a machining
operation. In this sense the master map approach might
well be expected to serve more appropriately as a source
of design parameters than the more conventional meth-
ods involving large-scale fracture specimens.

Fatigue Curve Slopes. We have noted from eqs (12)
and (13) that the slope of a universal fatigue curve is a
measure of the intrinsic susceptibility to slow crack
growth. Thus materials with lower values of the crack
velocity exponent n, and hence of n', eq (9a), will have
greater slopes on dynamic fatigue master maps and, con-
versely, lower (negative) slopes on static fatigue maps.

As with the toughness, certain caution needs to be
exercised when using master map data to determine n
values. This is because in applying the inverted form of
eq (9a),

n =4n '/3-2/3, (15)
it is implicit that certain necessary conditions are met.
The most important of these is the proviso co'<Ccm, which
we have considered at some length in this work. It is
interesting to note that if this proviso is satisfied even the
"anomalous" glasses which deform by non-volume-
conserving processes may be analyzed in terms of eq
(15); the fatigue properties are not sensitive to the origin
of the residual contact field, as long as this field is of
sufficient intensity to generate some precursor crack
growth [11]. If such a precursor stage were not to be
evident in the failure mechanics the "apparent" term n'
would tend closer in value to the true n [5,9,12,13]. A
second condition that needs to be met is that the flaws
should indeed be produced in axial loading; other inden-
tation loading systems, e.g., linear translation, give rise
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to flaws which are governed by a transformation equa-
tion with coefficients significantly different from those
in eq (15) [12,16].

It is seen in table I that the exponents obtained from
this study agree well with the independent deter-
minations for the glasses, but not for the ceramics. The
relatively good agreement in the case of the glasses is
attributable in part to the "model" behavior of this class
of materials: transparency, isotropy, absence of micro-
structural complication, and ease in specimen prepara-
tion are factors which contribute to this behavior. Also,
the n values of the glasses are comparatively low, so
fatigue effects show up more strongly. This last point,
coupled with a growing realization that conventional
testing techniques used to obtain macroscopic velocity
data are themselves subject to uncertainty (particularly
the double torsion specimen [29]), could account for the
discrepancies evident in the data for the ceramics.

Fatigue Curve Intercepts. The intercept terms in the
master map representations do not have such a simple
interpretation in terms of basic fracture parameters.
This is clear from eq (11); Xp is a function of several
quantities. Given the fatigue slope and inert strength
evaluations as described in the two previous subsec-
tions, along with a direct measurement of the critical flaw
size cm, Xp effectively determines the crack velocity co-
efficient v0. Due to the compounding of errors (particu-
larly from the n' exponent), determinations of this kind
are subject to gross uncertainty. There accordingly
seems to be little value in trying to retain v0 as a design
parameter, particularly since the A' terms, which can
usually be determined to within 15% from dynamic fa-
tigue data, may be used directly in lifetime formulae. In
studies of the basic physics and chemistry of crack
growth, of course, v0 remains a useful coefficient for
scientific analysis.

Practical Implications of Master Maps

The major appeal of the master map construction ad-
vocated here lies in the provision of a graphic indicator
of the intrinsic toughness and fatigue properties of brit-
tle materials. Each material is represented by a universal
curve, the relative position of which determines the
merit of that material for structural applications. The
marked superiority of such materials as silicon carbide
and alumina become vividly apparent in the maps of
figures 5 and 6. Useful distinctions may also be made
between materials which cross over within the data
range, e.g., soda-lime glass and PZT. On the basis of
straight inert-strength testing we might reckon the first
of these as the stronger material, whereas for applica-

tions involving sustained stresses it is the second which
would tend to the larger lifetimes. Such crossovers
would not be so obvious from the raw fracture mechan-
ics parameters. It will be appreciated that this kind of
intercomparison is made on the basis of "equivalent"
flaw sizes: in this respect the indentation method,
through its control over the flaw severity via the con-
tact load, is unique in its capacity for reducing strength
data to a common denominator.

In arguing the merits of this approach we do not mean
to imply that it is only the intrinsic fracture properties
which play an important role in the determination of
component strengths and lifetimes; the effective sizes of
the naturally occurring flaws which ultimately cause
failure must also be known. Our procedure, by intro-
ducing flaws greater in severity than any of these natural
flaws, automatically excludes information concerning
the latter from the data. What our scheme effectively
allows us to do is to determine the intrinsic parameters
in a truly independent manner. All necessary extrinsic
flaw parameters should be obtainable from straight-
forward inert strength tests (run at a single stressing
rate), in the form of the usual statistical distribution
functions. Lifetime predictions for as-prepared com-
ponents could then be made without ever having to
accumulate vast quantities of fatigue data [2]. In adop-
ting this strategy one needs to keep in mind the strong
influence that any persisting residual stress concen-
trations associated with the original initiation processes
(in our case the elastic/plastic deformation) might exert
on the subsequent flaw evolution. In the absence of in-
formation as to this aspect of flaw characterization steps
should be taken to design conservatively, on the basis of
"worst-case" configurations wherever possible. This
last point is dealt with in greater detail in reference [25].

It has been indicated at several points that the exis-
tence of any spurious stresses incurred during the me-
chanical, chemical, or thermal history of a material
would necessitate a third contribution to the starting
stress intensity factor in eq (1), with consequent devi-
ations from the currently determined toughness and fa-
tigue relations. The fact that such deviations were not
observed in the materials studied here may be taken as
evidence that this potential complication has been suc-
cessfully avoided. Again, it may be well to emphasize
that it may not be so simple to confirm the elimination of
spurious stresses from surfaces whose strengths are con-
trolled by natural flaws, particularly in materials with
typically wide flaw distributions; nor, of course, may we
wish to eliminate them, bearing in mind that these
stresses are most often compressive.

Finally, a comment may be made concerning the con-
venience of indentation load as a variable for in-
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vestigating fundamental flaw size effects. By system-
atically reducing the load we can produce correspond-
ing smaller flaws, thereby providing a link between
macroscopic and microscopic crack behavior. Any
change in the nature of the indentation flaw will then
become evident as deviations from universal plots,
much as just described in relation to the spurious stress
influence. In this way it has been possible to demonstrate
that indentation flaws in glasses undergo an abrupt tran-
sition in properties below a threshold load (correspond-
ing to a flaw size= ztm): above this threshold the macro-
scopically determined laws of crack growth remain
perfectly valid, regardless of scale, provided that the
residual contact term is duly accounted for [11]; below
the threshold the universal curves no longer apply, and
failure becomes dominated by initiation micro-
mechanics [17,30]. The indentation technique should
prove similarly useful for studying size effects in ce-
ramics, particularly for polycrystalline materials with
relatively coarse microstructures.

Conclusions

1) The indentation-flaw technique provides an attrac-
tive route to the evaluation of intrinsic fracture parame-
ters. Coupled with independent determinations of natu-
ral flaw distributions, the approach offers the prospect
of accurate lifetime predictions with optimum specimen
economy.

2) The control over the nature, shape, and above all,
the size (via the contact load) of the indentation flaw
allows for the derivation of a universal fracture formu-
lation. Each material is represented by a single curve
which incorporates the toughness and fatigue proper-
ties. Composite plots of these curves produce master
maps, affording a simple graphic format for materials
comparisons.

3) The inert strength cutoff on such a master map is
a measure of effective material toughness. For "well-
behaved" materials this effective toughness is consistent
with macroscopically measured KI values. In cases
where inconsistency is observed the toughness reck-
oned from indentation data may provide a more reliable
indication of the response of the typical natural flaw.

4) The slope of the fatigue curve on a master map is
a measure of the susceptibility of a material to subcritical
crack growth. The crack velocity exponent determined
from this slope is an apparent value, n', which is con-
verted to the true value, n, via a simple transformation
equation.

5) Deviations from universality on a master map indi-
cate an extraneous influence in the fracture mechanics,
e.g., spurious stress states, microstructure/crack inter-
actions, and threshold size effects.

The authors thank T. P. Dabbs for providing raw
fracture data on the glasses, and L. Respall and S. J.
Mann for their help with specimen preparation.
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The thermodynamics of stressed crystals that can change phase and composition is examined with particular

attention to hypotheses used and approximations made. Bulk and surface conditions are obtained and for each
of them practical expressions are given in terms of experimentally measurable quantities. The concept of
open-system elastic constants leads to the reformulation of internal elastochemical equilibrium problems into
purely elastic problems, whose solutions are then used to compute the composition distribution. The atmosphere

around a dislocation in a cubic crystal is one of several examples that are completely worked out. The effects
of vacancies and their equilibrium within a solid and near surfaces are critically examined, and previous formulas

are found to be first order approximations. Consequences of the boundary equations that govern phase changes

are studied with several examples. Finally, problems connected with diffusional kinetics and diffusional creep are

discussed.
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Introduction

The literature of the thermodynamics of solids spans
more than a century and has appeared in many fields. It
has been marked by long controversies, some even re-
garding the very existence of equilibrium under condi-
tions of nonhydrostatic stress. The resulting concepts
and relations have been used in applications to global
equilibrium problems, and as local equilibrium condi-
tions in nonequilibrium problems of diffusion, creep,

About the Authors, Paper: F. C. Larch6, a member
of the faculty at the Universit6 de Montpellier, and J.
W. Cahn, who is with NBS' Center for Materials
Science, are frequent collaborators in scientific pa-
pers. This paper, which is also appearing in Acta Met-
allurgica, is presented here through the courtesy of
Acta Metallurgica and its publisher, Pergamon Press.

electrochemistry, and phase changes. The formulations
have been gradually generalized to include multi-
component anisotropic solids, containing vacancies and
other defects, that are nonhydrostatically and non-
uniformly stressed. Considerable attention has been
given to multi-phase systems and to conditions of equi-
librium at interfaces between phases that are in mechan-
ical and thermal contact, that can exchange matter and
under conditions of slip or no slip (incoherent and co-
herent, resp.). In view of the importance of the field, a
clarification of the controversies seems in order.

Thermodynamics lends itself to many formulations
based on different definitions, conventions and no-
tations. When properly done, all these formulations
should identify the same measurable quantities and give
identical relationships among them. Discrepancies arise
when the formulations differ in assumptions made about
the behaviour of matter. There are also many sim-
plifications that may not be valid or necessary. Invalid
assumptions have been made about the laws of
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thermodynamics and about the conditions for equi-
librium. We will examine the main formulations for their
assumptions to find their range of validity. Whenever
possible we will identify the most general formulation
and show how the other formulations follow as special
cases, compare predictions, and identify sources of dis-
crepancies. But since general formulations are often
more cumbersome to apply, we will examine a set of
simple applications to display how one uses the main
results in this field.

It may be worthwhile to categorize broadly the main
controversies and to illustrate with one simple example
how they arise. These center around: 1) the question of
the existence of equilibrium if diffusion is permitted; 2)
the various methods of distinguishing solids from fluids
in a formulation, these involving models of solids and
constraints on the variations that can occur in solids; 3)
the definitions of chemical potential of species inside
solids, since in some formulations one cannot arbitrarily
add atoms to the interior of a crystal without removing
other atoms or destroying vacancies; 4) how one formu-
lates the conditions for equilibrium when the familiar
minimum Gibbs-free energy which works only for con-
stant hydrostatic pressure is inapplicable, and when so
many different chemical potential conventions have
been proposed; and 5) clear distinctions between the
accretions that can occur at surfaces and at interior de-
fects, such as climbing dislocations, and the addition of
atoms to sites inside of crystals.

In addition, there are a variety of simplifications with
obvious limitations on the applicability of the results.
Among them is one, homogeneity, which has led to
major misconceptions. Many situations will lead to ho-
mogeneous systems at equilibrium, but if one requires in
tests for equilibrium that all variations keep the system
homogeneous, one may constrain the system unneces-
sarily.

With these controversies in mind, let us examine the
simple example of a solid cylinder containing one or
more components and a straight axial dislocation. Let us
first ignore surface effects and let the cylinder be infinite
in all directions. Let there be no restriction on diffusion.
If the solid is crystalline, an equilibrium will be reached
with the dislocation retained in which the solid is het-
erogeneously and nonhydrostatically stressed. If the
solid is multicomponent, it will also be compositionally
heterogeneous. The system can reach an equilibrium
which of course means that all diffusional flow has
ceased, in spite of the shear stresses and the hetero-
geneity.

If the cylinder had been a highly viscous liquid in
which the dislocation had been introduced by a cutting,
displacing, and welding procedure, the dislocation

would disappear on annealing. Equilibrium would not
be compatible with shear stress or heterogeneity. It is
apparent that crystallinity imposes restrictions on the
variations that lead to a different type of equilibrium.

Even in a one component solid, there will be a gra-
dient in the Helmholtz-free energy density at equi-
librium. Any definition of a chemical potential, which
for a one-component system reduces to the local free
energy per atom, cannot subsequently be used by asser-
ting that such chemical potentials must be constant at
equilibrium or, if not constant, will lead to diffusional
fluxes. Care must be exercised in the definition of chem-
ical potentials in one or multicomponent systems to en-
sure that they are useful.

The constraint which crystallinity imposes in this ex-
ample is that some of the atoms cannot be moved at will
without a counterflux of some other species, including
vacancies, to take their place in the crystal structure. At
the surface and at the core of dislocations capable of
climbing, this constraint does not apply and atoms can
be inserted or removed at will.

To illustrate the importance of separate equilibrium
conditions at surfaces, let the cylinder in our example
have a finite radius and permit surface rearrangement.
An equilibrium shape could be reached where transfer
of small amounts of any species of atoms from one sur-
face location to another does not change the appropriate
free energy. This would be a thermodynamically sta-
tionary state in which all fluxes would cease, but it
would be metastable or possibly unstable equilibrium
because moving the dislocation out of the cylinder
would lead to a lowered energy.

2. What Is a Solid?
Formulations of thermodynamics differ considerably

in how the essential aspects of solidity are represented
mathematically. Many authors purporting to deal spe-
cifically with solids reach conclusions that are the same
as for very viscous liquids that may take a long time to
reach an equilibrium that does not support shears.

Various models, composed of springs and dashpots,
have been proposed to represent the viscoelastic behav-
ior of matter. Whereas the Maxwell model creeps con-
tinuously under load, the Meyer-Kelvin-Voigt [I]' solid
reaches a mechanical equilibrium when the load is en-
tirely carried by the spring. The elements of these solids
do not dissolve or diffuse, and Gibbs [2] devised a model
of a solid that did both.

Gibbs introduced the idea of a solid component which
does not diffuse. Like Mayer-Kelvin-Voigt's solid, it

'Figures in brackets indicate literature references at the end of this
paper.
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can deform elastically but it always retains its con-
nectivity. In addition Gibbs considered surfaces, where
he did permit the solid to grow by accretion or to shrink
by vaporization, to melt or to dissolve into contacting
fluids. He also incorporated the concept of a fluid corn
ponent which can diffuse and distort the solid. He fully
developed the thermodynamic properties of such a
solid, including its equilibria, and revealed a variety of
surprising properties. Since the solid component was
not involved in any chemical variations except at the
surface, there was no need to define a chemical potential
in the solid. When the solid was equilibrated with a
fluid, the chemical potential of this solid component in
the fluid was readily calculated. One important result
was that the chemical potential in the saturated fluids in
contact with a homogeneously stressed solid depends on
the orientation of the surface. There is thus not only no
need to define a chemical potential of the solid com-
ponent, but it does not seem to be definable. The fluid
component on the other hand has a defined chemical
potential that is constant at equilibrium throughout all
phases even if they are heterogeneously stressed. Gibbs'
solid is therefore quite active chemically and yet it is
different from a fluid. The key was the solid component.
Even though this component can dissolve, essential
solid properties are obtained.

Gibbs was strongly influenced by the law of definite
proportions and required his solid component to be a
single element or a stoichiometric compound. If it was a
compound, the chemical potential in the saturated fluids
is calculated even if the compound dissociates or reacts
with the solvent. Modern examples of Gibbs solids are
polymer fibers which also can absorb solvent molecules,
and silicate glasses in which the silicate network is the
solid component while modifier ions can diffuse about.
A very good example of the kind of equilibrium Gibbs
was able to calculate is the bending of a damp wooden
beam in which the water redistributes at equilibrium and
affects the compliance. Li, Darken, and Oriani [3]
pointed out that mobile interstitials in metals at tem-
peratures where the substitutional atoms did not move
was a valid metallurgical example of a Gibbs solid with
a fluid component. An example of the equilibria of a
dissolving Gibbs solid occurs in stressed electrodes. The
equations predict the effect of elastic stress on the elec-
trode potential [4].

Solid state diffusion of every component is counter to
the strict definition of Gibbs' solid component. As a
result most thermodynamic formulations that permit un-
restricted diffusion to take place do not ascribe to the
solid any property that differs from a viscous fluid. As
the example in the introduction points out, unrestricted

diffusion consistent with our knowledge of the solid
does permit new kinds of equilibria.

Gibbs' solid component, because it did not diffuse,
served as network for defining displacement and hence
strain, as well as the local composition of the fluid com-
ponent. The local energy and entropy density were
functions of the local strain and composition. What was
needed was a network which continued to define un-
ambiguously the same place in the solid even if all atoms
were capable of diffusing. In crystalline structures, the
lattice serves this function, and a thermodynamics has
been developed. Robin [5] has simply let the lattice itself
be the solid component, and has found that "component
differences" become the exact analogues of Gibbs' fluid
components. Instead of modifying Gibbs' concept we
have defined a network solid as one in which there is an
unambiguous method of locating the same place after
diffusion, and where the thermodynamic properties are
functions of the strain and local composition defined by
this network [6]. Gibbs solid component is one example
of such a network; the lattice is another example.

Most of our work has been with simple crystal struc-
tures in which there is one type of substitutional site and
one type of interstitial side. Atoms of a given species are
assumed to be either substitutional or interstitial. The
substitutional sites served as a network. Bravais solids
where lattice sites are occupied by substitutional atoms
are an example. Recently attention has focused on spe-
cies which could occupy both interstitial or substi-
tutional sites [7], and this has led to the generalization of
structures in which many different sites are occupied in
a unit cell and where a particular species can occupy
several sites. One can even include the case where no
species occupies the origin in the unit cell which serves
as network marker.

In crystal structures, the network imposes what we
have called the network restriction. A site exists, regard-
les of the species that occupies it, or even if it is empty.
Atoms exchange among sites

AI+Bj=Aj+B[ (2.1)

where I and J are different types of sites: Sites that are
mostly filled are occupied by what are called substi-
tutional atoms, while sites that are mostly vacant are
occupied by what are called interstitial atoms.2

2The term interstitial compound is an unfortunate term in which the
interstitials are merely small atoms fully occupying a site in the struc-
ture [8]. The usual definition of interstitials, that these are atoms oc-
cupying sites that are mostly empty, has important consequences in
thermodynamic formulations. An empty substitutional site is called a
vacancy, while empty interstitial sites are usually ignored, since their
concentration or activity in, e.g., the law of mass action, hardly differs
from unity.
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Vacancies are capable of diffusing or reacting with
atoms on other sites. Letting B be a vacancy, (2.1) be-
comes

Vl+Aj=A 1 + V1 (2.2)

where I and J are different sites. If I is an interstitial site,
this can also be written

A,=A 1 + V1. (2.3)

One of the main results of the network restriction is
that there is no need to define separate chemical poten-
tials of individual network species. Within the crystal
only their differences are ever needed.

The network is unambiguously defined only as long as
the structure is not severely distorted. The network can
be modified at surfaces and dislocations and these have
led to special equilibrium conditions. Of particular inter-
est is the fact that there are differences between solid-
fluid interfaces and solid-solid interfaces regarding equi-
librium conditions. Two types of solid-solid boundaries
have been treated [10]: incoherent interfaces where
there are two independent networks with no re-
lationship between them and coherent interfaces where
there is an exact correspondence between network sites
in the two crystals, and a connectivity across the inter-
face that survives the distortions of a phase change that
transfers sites from one crystal to the other. Thus many
restrictions in Gibbs' solid have been eliminated. Mod-
ern understanding of solid solutions, crystalline defects,
and diffusion have been incorporated. In addition, solid-
solid equilibria, interfaces, and phase changes have been
considered.

3. Derivations of Usable
Equilibrium Conditions

3.1 Thermodynamic Formulation

The basic two laws of thermodynamics are quite gen-
eral and applicable not only to all equilibrium conditions
but also in specifying what cannot happen in non-
equilibrium conditions. They often are cumbersome to
use, but from them special conditions have been derived
(such as constant temperature at equilibrium) that are
easier to apply. In addition, there are certain restrictions
or constraints that occur commonly that permit even
simpler specialized but rigorously applicable procedures
to be developed. A good example is the Gibbs free en-
ergy. Under the special restriction that temperature,
pressure, and the mass of various species be held con-
stant, it can be shown that the laws of thermodynamics
reduce to the simple condition that the Gibbs free en-

ergy monotonically decreases to a minimum. For these
common restrictions, it is not longer necessary to start
from the basic laws. For equilibrium, one begins with
the minimization of Gibbs free energy knowing that this
is fully equivalent to the basic laws. The procedure is a
general one, subject only to the easily verifiable re-
strictions on temperature, pressure, and mass. The re-
strictions are important. When temperature decreases
(as in an endothermic reaction held adiabatically), pres-
sure increases or mass is added, the Gibbs free energy
can increase and has lost it usefulness as a simple condi-
tion for equilibrium.

Whenever we encounter new restrictions or con-
straints, it is necessary to return to the two basic laws to
find new conditions for equilibrium that are general,
subject only to the restrictions or constraints. It is im-
portant that the restrictions or constraints are verifiable
and that they be general enough to include many im-
portant situations, but not so general as to lead to cum-
bersome conditions. The procedures for finding simpler
equilibrium conditions subject to new restrictions or
constraints are straightforward and if done with mathe-
matical rigor, need only be done once. Applications
then follow from these derived conditions. The deri-
vation often identifies the useful free energy. It is dan-
gerous to assert conditions for equilibrium under new
restrictions (some type of free energy to be minimized or
some potential to be constant) without a derivation that
begins with the basic two laws.

There are various derivations in the literature. They
differ in the model of "what is a solid" expressed in
terms of restrictions on possible variations. They also
differ on whether or not they require homogeneity.
They differ on whether they begin with the basic two
laws, or with some derived law.

It is not difficult to start with the basic laws used by
Gibbs: "For the equilibrium of any isolated system, it is
necessary and sufficient that in all possible variations in
the state of the system which do not alter its entropy, the
variation of its energy shall either vanish or be positive"
[9, p. 56]. It is quite straightforward to permit the system
to be heterogeneous.

Since the general state of a solid is heterogeneous, the
energy, entropy and mass of its various components will
be integrals over the volume, and the minimization pro-
cedure is done by standard variational calculus. Such a
formulation permits the solid to change its shape by
elastic deformation or by a process of network mod-
ification which we will call either accretion, dissolution,
or phase change.

These methods of variational calculus were used by
Gibbs every time the system under'consideration was
not homogeneous; the influence of gravity [9, p. 144],
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stressed solids [2], surfaces [9, p. 238], multiphase sys-
tems [9, p. 64], etc. A variational statement of the first
and second laws of thermodynamics for the multi-
component network solid has been carried out [6]. It
very neatly produces all the conditions for
equilibrium-mechanical, thermal, and chemical-in
the bulk and at the interfaces. There is usually no need
to assume linearity, ideality, or isotropy. The derived
equations identify and define important functions and
usually can be manipulated to suggest methods of mea-
surement.

The imposed constraints are incorporated into the
formulation as Lagrange multipliers and this introduces
quantities which must be constant throughout the sys-
tem at equilibrium. Since sites in a unit cell or a network
exist whether occupied by atoms or not, vacancies ap-
pear as a conserved species within a network. We for-
mulated three different rules for the transfer of material
across an interface [10]. Network sites could be added or
subtracted to the solid at solid-fluid and at incoherent
solid-solid interfaces. At a coherent solid-solid interface,
a single network describes both solids, and during phase
changes, sites are transferred but do not change their
relative locations.

3.2 State Variables and Notations

The procedure outlined can be followed once the
state variables have been identified. With network sol-
ids, a strain can be defined. The energy density is as-
sumed to be a function of that strain (either the usual
small strain, or the deformation gradient to include the
cases of large strains), of the entropy density, and of the
density of the various atomic or molecular species.

The choice of the strain or deformation gradient as a
state variable that describes the mechanical state of the
solid by no means exhausts the possible choices. Con-
tinuum mechanicians and others [11-141 have described
much more complex solids, where higher gradients of
displacement or composition come in the picture. We
feel that our choice is sufficient to describe many metal-
lurgical materials. In any case, thermodynamics uses as
input data the results of measurements of mechanical
and thermal properties, and inadequate specification of
state variables would become apparent.

Only small strain theory will be explicitly used here.
The relations that are valid without this approximation
have been derived [10, 15], and effects that might mod-
ify the small strain results will be mentioned and dis-
cussed in the course of this article.

The reference state for strain in the solid is quite arbi-
trary. It can be at zero stress, or under hydrostatic pres-
sure, and at any arbitrary constant composition. It
merely serves to identify the same point x' in a solid

after composition change and strain. For many elastic
energy equations, a convenient reference state is zero
stress. There are also useful standard states for thermo-
dynamic quantities. These are often at hydrostatic stress
that is not zero and at definite compositions. As a result
there are advantages to be flexible about the reference
state for strain. We will try to point out in each applica-
tion which reference state we have used.

When the point x' of a solid is displaced by u, the
small strain is defined by3

Ey = 1 2(uij + Uj, i). (3.1)

A change of reference state from x' to x"(x') where
x"-x'=v leads in the small strain approximation to a
new strain EX given by

E, =E,1 + l/ 2(vij +v1j, ). (3.2)

The density of energy, entropy and component I are
respectively denoted by c, s, and p1. Because the elemen-
tary volume of solid is affected by its state of strain,
densities per unit volume in the deformed state always
contain a strain effect. As such they are not very con-
venient to use. Much better variables are the densities
per unit volume in the reference state. These will be
noted by primed symbols. The relations between primed
and unprimed densities are

E'/E=S'/S =pf/pi=p/po = ...

= VolVo= I +Ekk

(3.3)

(3.4)

where p0 is the molar density of lattice sites, and its
inverse V0 is the molar volume of lattice sites.

All of our chemical densities pi and pi will be atomic
or molar densities (moles/volume). This is especially
preferred to mass densities when we consider vacancies
as a species. It is useful to introduce dimensionless com-
position variables

C==pi/po=p1 /po.

This is the classical mole fraction for single-site substi-
tutional alloys. For an interstitial alloy with no va-
cancies on the substitutional sites, c, given above is the

3All vectors and tensors are expressed in terms of components with
respect to an orthonormal axis system. Small subscripts like i andj are
understood to have value 1, 2, or 3. Repeated indices are understood
to be summed (Einstein convention) and subscripts preceded by a
comma are derivatives, e.g.

EJ =E i+E22 +E33

Un =au,/axj
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molal composition. The mole fraction c, is then

cl =pi/(po+Pi)= CA/(l + cl).

which reduces to c, at small concentration. We will drop
the distinction between cl and a,.

M,1 =-M, 1 ; M1,=0. (3.9)

In the case of equilibrium with a fluid, MIK is equal to the
difference in chemical potential of I and K in the fluid

M[=14L_ ,.L (3.10)

3.3 Lagrange Multipliers

From the entropy constraint comes the standard con-
dition that the temperature is everywhere equal to a
Lagrange multiplier, and is therefore constant. It allows
us to define a Helmholtz free energy density by a Leg-
endre transform

f'=E'-Os' (3.5)

which we subsequently use because it is more con-
venient in many practical applications.

From the conservation of mass conditions come La-
grange multipliers that differ substantially from stan-
dard fluid equilibrium, a direct consequence of the net-
work constraint. As with fluids, conservation of N
chemical components lead to N Lagrange multipliers
that are constants at equilibrium. Whereas for fluids they
can be identified with N chemical potentials, for a sys-
tem consisting of a network solid containing N substi-
tutional species only N-I quantities can be identified
with physical processes replacing one specie with an-
other on a site. The quantities thus identified with La-
grange multiplier differences we have called diffusion
potentials. The notation is MIK, where K is the de-
pendent species. Vacancies are considered a species that
can be ignored in some applications. Because of their
definition as Lagrange multipliers, the MIK, like the tem-
perature are constants, and take on a precise local mean-
ing everywhere within the system

MIK=constant everywhere within the system.

=(1/po) (af'/aC1K)6,Eij. (3.6)

Since the c, are not independent, we have introduced the
differential operator

(W/aCIK) = (al/aC)c lIK (3.7)

for a unit composition increase of species I, an equal
decrease in species K, holding the composition of all
other substitutional species on that site fixed. For bin-
aries we drop the subscripts and adopt the convention
c=cl and (a/ac12)=(a/ac).

From this definition we have

MIJ+MJK+MK[=O (3.8)

If the vacancy is chosen as K, we have

(3.11)

It might seem natural to use the Ml,, and keep the for-
malism of hydrostatic thermodynamics. This has been
done in a number of formulations [7]. However, it has
practical drawbacks (see sect. 5.5), and we have found it
preferable to keep the flexibility of choice for the de-
pendent species K.

The Nth Lagrange multiplier which we will call I"K

cannot be identified in many problems. It is eliminated
from all equilibrium calculations for internal equilibrium
of a crystal away from surfaces and dislocations that can
climb. It also is eliminated from all equilibrium calcu-
lations at coherent boundaries. Only in fluids, at inco-
herent boundaries and climbable dislocations can we
identify , Kwith the chemical potential of the K specie.

The chemical potentials of interstitials are constant
and equal to the chemical potentials of the correspond-
ing species in the other phases,

M, =1FL, (3.12)

We shall see in section 5, where multisite solids are
considered, that there is no need to differentiate be-
tween substitutional and interstitial sites. An increase of
composition of the interstitial species I, holding the
composition of all other interstitial species fixed, results
in an equivalent decrease of vacancies on interstitial
sites. But unlike vacancies on substitutional sites, va-
cancies on interstitial sites always have a concentration
close to the total number of possible sites and can be
dropped from consideration. In order to standardize and
simplify the notation, we also call these chemical poten-
tials diffusion potentials, and in order to simplify the
notation in the various expressions, MIK is understood to
represent all diffusion potentials.

The restriction in the number of potentials necessary
to calculate an equilibrium is a direct consequence of the
crystalline nature of the solid and therefore should apply
to the same solid under hydrostatic stress. In this case it
can be shown (Appendix 1) that the previous equations,
together with the boundary conditions to be discussed
thereafter, are strictly equivalent to the standard condi-
tions for equilibrium between fluids.
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3.4 Mechanical Equilibrium

The variational calculus gives us [6,10] the very stan-
dard form of the mechanical equilibrium equation. It
states that the divergence of the stress tensor is zero

Tij j = 0. (3.13)

This equation is also true for the large strain case, but the
derivative is with respect to variables x rather than x', a
distinction that is not made in the small strain approxi-
mation. Large strain forms involving x' have been ob-
tained [15].

3.5 Interface Conditions

Along each interface, there are conditions for me-
chanical equilibrium, and a condition for phase change
equilibrium. They both depend on the nature of this
interface.

3.5.1 Solid-Fluid Interfaces

For solid-fluid interfaces, the mechanical equations
state that the normal is a principal direction of stress.
The principal value associated with it is equal in mag-
nitude to the pressure in the liquid and opposite in sign.
The pressure is here the classical thermodynamic pres-
sure, which is positive in fluids, and the convention for
stress is such that the stress corresponding to a tension is
positive.

The phase change equation can be written

f-I Yp 1= -P (3.14)

meaning. Once all the equilibrium equations are written
they will have a specific meaning, or are eliminated. In
a fluid a) is equal to minus the pressure, and thus because

LJ.LK =I1K eq (3.15) could be rewritten

cos = coL (3.17)

We should emphasize that these equations are between
unprimed quantities, that are usually not convenient to
use for solids. The conversion follows eq (3.4) and gives

co`s=-P(l +Ekk)- (3.18)

3.5.2 Incoherent Interfaces

Along an incoherent solid-solid boundary, the equi-
librium equations are

Tq n a = caon a

T9 n /3 = &A3 X

(3.19)

(3.20)

ac~o, = &).(3.21)

where n q (resp. n A) are the components of the normal to
the interface oriented from a to /3 (resp. /3 to a). They
all contain o) and hence the Lagrange multiplier MaK.

Equations (3.19) and (3.20) imply that the normal is a
principal stress axis and that in this case a) is the value of
that principal stress. Multiplication of (3.19) by n a and
summation over i gives

ca)"= T~jan qan aIa.. 9.aafl (3.22)

From (3.20) we can obtain a similar expression for ad.
Therefore (a and de are identified for this problem.

Using the definition of so we obtain

where p.' are the chemical potentials in the fluid, while
the pi and f pertain to the solid. Because of the (N-1)
equalities (3.10)

f-I 7- M1K P-fLK'P0=-P
I=AK

(3.15)

Because MKK=O the summation over all species is the
same as the summation over all species but K. We can
therefore drop the restriction and adopt the notation
that E; without any qualification means summation over
all species I. To simplify notation it is convenient to
define the cl) function as

Wof-IMIK PI-P'KPO (3.16)

where p.K is the Lagrange multiplier associated with the
K"h species. At this stage neither a) nor I'K has physical

(3.23)

Substituting this value of p,. in (3.21) and (3.19) gives the
equivalent system of equations

ptK = VO(f a-IMIKPa - Ti nn a)

= VO( f A - IM 1 plq- Tj~n Pn A)

Tn q =- T-qn T Inkn n i

(3.24)

(3.25)

Equations (3.24) and (3.25) contain only known quan-
tities and are the usable ones. Equation (3.23) can be
interpreted as a definition for the chemical potential of
the K species and this potential is constant along the
interface. Along an incoherent interface we can then
calculate a chemical potential for every specie, some-
thing which is not possible at any other location within
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the bulk of the a and /f phase. Let us note that each side
of eq (3.24) depends on what specie is chosen for K.
Because the expression

7MKI pI a'- I = IMIK(cI-C])

is independent of K, the equation itself is independent of
this choice. A comparison of (3.23) and (3.15) shows the
similarities between solid-fluid and incoherent solid-
solid equilibria.

3.5.3 Coherent Solid Interfaces

In a coherent solid-solid equilibrium, the mechanical
boundary conditions

Tin 7 = - (3.26)

indicate that the tractions (but not necessarily the stress
tensor) are continuous across the interface. If the same
reference state for strain is chosen for a and /3 the phase
change equation (Appendix 2) reads

VOa -YMIKC± V N(- T7Ini rin+2QTjkn a~nL)

4.1 Geometric Variables

The lattice constants are readily-determined non-
linear functions of composition, temperature, and stress.
From the lattice constants in the reference state we can
compute po. From a comparison of the lattice shape in
the actual state and the reference state, we can compute
the strain, or, if the strain is large, the deformation gra-
dient. Since the actual state and the reference state are
usually chosen to be at the same temperature but not
necessarily at the same composition, the strain E# is a
sum of a contribution due to composition change with
no change in stress, E£, and one due to stress. The gen-
eral case when neither contribution is isotropic has been
treated [15]. The tensor E£6 is subject to the same crystal
symmetry restrictions as the thermal expansion tensor
[17]. For the present we will concentrate mostly on the
isotropic case. Defining k such that

E5=k8& (4.1)

and assuming Hooke's law of linear elasticity we can
write

= VOf - MIKC '+ V6o-Tjwn nj93

+2flT7qn~nPO)

where Q./ is the small rotation tensor

Qfk = I(U4.:-,0-. (3.28)

For this type of interface equilibrium, the Lagrange
multiplier gLK has disappeared from the equations. In
contrast to the two cases treated before, no definition of
individual chemical potentials for each species arises,
even at the interface. As we will see none are needed to
solve problems. This is a direct consequence of the re-
strictions in a fully coherent phase change, where no
network site is created or destroyed.

4. The Data Base

We have identified a number of important thermo-
dynamic quantities that determine the state of a system,
and a number of functions of these state variables that
enter into the equations of equilibrium. We now examine
how one might determine these quantities from the usual
quantities that are measured and available in com-
pilations. They turn out to be identical to those used in
ordinary solution thermodynamics and elasticity.

EU= (k - VTkk)8 + EVTV7 (4.2)

(3.27) The dilatation Ekk is given by

Ekk = E Tkk + 3k. (4.3)

In cubic crystals, E, is also isotropic, so that the formula
in eq (4.1) is still valid.

The constant po appears repeatedly in various formu-
las because elastic energy naturally appears as energy
per unit volume, whereas other energies will be per
mole. po is the conversion factor that transforms one into
the other. Its inverse VO is the molar volume of the
lattice sites. Combining (33), (3.4) and (4.3) we have for
isotropic solids I

YO,,;Y=OPO= I + E vTk& +3k2V0/V5p6p0 l+ h~3k (4.4)

The derivative of E£ with respect to composition in
binary allows also occurs commonly

'n5=dE,3/dc. (4.5)

For systems with orthogonal axes

,qi =(alnai/ac) (no summation) (4.6)
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where the ai are the lattice parameters. When E£ is iso-
tropic

Chemical potentials are assumed known at a hydrostatic
pressure P, and composition cl, c2 , ....

3j =(dk/dc)86i=j}r8,. (4.7)

In binary isotropic and cubic systems qj is also related to
the partial molar volumes

(4.8)

If r is constant

k =(c -co)(V, - V2 )/3 Vo (4.9)

where co is the composition of the reference state chosen
to measure the strain. It is to be emphasized that the
anisotropic and nonlinear versions of these equations are
readily available [15].

4.2 Thermochemical Quantities

The two important quantities to be determined aref'
and MIK. There are several convenient paths of integra-
tion from a hydrostatic state, where these quantities can
be determined with standard thermodynamic methods,
to the actual stressed state. We begin with the differ-
ential off'

df '= TijdE5 -s'dO+pO6MIKdcl. (4.10)

The function 4', defined by a Legendre transform

(+'=f '- Tjj Ey (4.11)

proves to be useful. Its differential

d+'= -EojdTj-s'dO+pO6MIKdc, (4.12)

permits us to deduce the following Maxwell relation

-Po(aMlK/a T)c, =(aEUJ/aCIK)Tk,.

Hooke's law at constant composition is

tij = Cujl, (*I e- EL)

(4.13)

(4.14)

or

E# = E± + Sijk, Tk, (4.15)

where the CQjkj are moduli of elasticity, and the Syk, com-
pliances. Both are composition and temperature de-
pendent. From (4.15) we deduce

aCIK) TkaCIK)\c+I) TV,. (4.16)a7clKx T,k aCD le aCIK)

MAYr(P,cl, C2, ... ) = I(Pci c2 .... )
- &K(PC C2 ..... ) (4.17)

It is customary to define standard chemical potentials A',
and activity coefficients such that

g 1(P,c)= 1p4j(P)+RO In yicl (4.18)

where y! is chosen for convenience. Depending on the
problem, it is chosen to approach 1 either for dilute or
concentrated solution. Vacancy potentials also are fit to
this convention. Since Mt(Paj=0, where Lt is the equi-
librium vacancy concentration at P,

PkV(P)= -RB In yvv (4.19)

where yv is the vacancy activity coefficient. If it is con-
stant, the chemical potential of vacancies under pressure
P can also be written

1 .(P,c,) =R 0 ln(c,/&.) (4.20)

The expressions for the chemical potentials are intro-
duced into eq (4.13) and the resulting expression inte-
grated along a constant composition path to the stress
Ty. For a binary solution

M12(Ti 5,c)= 4(P)-g2°(P)+R 6 In '/IC
72(1 - c)

V0 dSiuTl VO dk 2iakkp
- Vom3Ty 2 dcYTjTkf±Y 2dc -V1~qP _ PV (4.21)

If the solid is isotropic, this expression becomes

M1 2 (Tijc)=M?(P)- A1 1 (P)+R 6 In- >C--- V-O4 Tkk

+L2° d- (V.)(7-kk)2 _VId (I + V)TTsi-g3 Vo0 qiP2 dc Et 2' dc tIC\

+ 3Va d (I -2v\ 2
2 d £}kE (4.22)

These expressions contain terms both linear and qua-
dratic in stress. They simplify considerably when the
elastic coefficients are not composition dependent.
Equation (4.22) for instance becomes

Mj2(Tjj,c)= ,u°1(P)-tt°2(P)+RO0 In (lcY20 C)

- VOq(Tkk + 3 P). (4.23)
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To obtainf ' we calculate O' with eq (4.12). It is first
integrated along a path of constant composition, from
pressure P to stress Tij. Using Hooke's law (4.15), this
gives

4Y(Tqjc )- '(P,c) =-2S jjkTUTk,-EkcTkj

+ kSpkP
2-£kP (4.24)

and using (4.11)

f '(T 1 ,c) -f '(PC) =-SokTT,- _SjjkkP
2

4.25)

Since under hydrostatic stress, the familiar liquid ther-
modynamics is valid, the Helmholtz free energyf '(P,c)
is known. It may be obtained from the more commonly
tabulated molar Gibbs free energy Gm by subtracting
PVo and dividing by VO. This gives

f '(P,c)=poG.n-Pp/po. (4.26)
Since

p6/pO= I +Ekk =1 +£E5 c -SjjkkP (4.27)

- C d (V)(T )2+ C I (I +_) T_

2 dc ( E ) I (4.31)

When the elastic coefficients are not composition de-
pendent, this becomes

VJf '-M1 2 C = °(P)+R -In 72(1 -C)+ JO'[-P(1 +3k)

_ v()2 +v _3(1-2V) 2

2E kk+2E D) lo 2E

+ C 7(Tk-k + 3P)]. (4.32)

In a crystal of arbitrary symmetry, this expression is

Vof '-M,2c =p2(P)+R 6 In 72(1 -c)+ Vo[-P(l +Ekk)

+ 12 SijklTTk - 2 Sgkk P +CqijTj

one obtains, after replacement of Gm by its value as a
function of composition

f '(P,c)=po{c[g?(P)+R 6 In 71yc]+(l -c)[j02(P)

+R6 In 712 (-c)I}-P(l+E4kk)+SjkkP1. (4.28)

Combination of (4.25) and (4.28) gives the final result

f'(T,fc)=pO{c(4d1(P)+RO In y7c1+(l-c)[)2(P)

+R O In 2(l -C)]}-P(l +Ekck)

+ .Sijk_ TijTA_1_jSjkkp (4.29)

For an isotropic solid, this relation becomes

f '(Tjj,c)=pO{c[k(P)+RO In 7jc]+(l-c)[1p(P)

+R 6 In 72(1-C)]}-P(l +3k)- IE (Tkk)2
2£

+ 2E Ti.T. . 2Ev'P (4.30)

Because it always appears in the boundary conditions,
the expression for the quantity VOf '-M 12C is useful.
Combining (4.22) and (4.30) we get, in the isotropic case

VOf '-M 12C =g2(P)+R 6 In 72(1-c)+ VO4-P(l +3k)

v l+v 3(1-2v) 22Ek)' Tj 3e + CT(Tkk + 3P) 2£~~

+C2 dS,,kl -2 P 2].
+- , TVTM+ CW'AP - C dk

2 c 2 dc
(4.33)

Expressions (4.21) to (4.23) apply to substitutional bi-
nary solutions. For interstitial binary solutions the inte-
gration along a constant composition path from the hy-
drostatic stress to the stress Ty using (4.13) gives the
elastic terms identical to those in (4.21) to (4.23). Be-
cause there is no network constraint or interstitial con-
centration we use (3.12) for Ml and obtain for dilute
interstitial solutions

Ml(T7j/c)=po(P)±RO In 7Ic-Vo77jTqJ

_ dc T,,T VkP'qk Vk dS P2 (4.34)

Equations for the special cases of isotropy and constant
elastic coefficients are like (4.34) except that the elastic
terms take the forms they have in (4.22) and (4.23). We
will see in section 5.7 that there is no need to distinguish
between interstitial and substitutional solutions. Had we
chosen the vacancy on the interstitial site as component
2 we could have obtained (4.34) directly from (4.21) by
noting that 02=0 for the vacancy.

5. Internal Equilibrium

The study of internal equilibrium requires the simulta-
neous solution of the equations of elasticity and those of
chemical equilibrium. The method we have found useful

476



recognizes that the strain is a function of stress and
composition. But the composition at equilibrium with a
given diffusion potential is determined by the local stress
alone. Thus the strain at a given diffusion potential is a
function of stress alone. If we obtain this stress-strain
function, we can solve these problems as if they were
ordinary elastic problems, without any further regard to
chemical problems whose effects are now implicitly ac-
counted for.

There are several derivations. The simplest and most
easily generalized for large strains and nonlinear effects
parallels in its first steps the thermodynamic methods
used to derive the relationships between isotropic (ad-
iabatic) and isothermal elasticity. In the first section we
review the main results and then apply them to various
problems.

5.1 Open-System Elastic Constants

After a straightforward manipulation of partial deriv-
atives, the following expression, valid for a two-
component solid, is obtained (Appendix 3)

(af)= adi ) n + j taj~k(m, (5.1)
afk" d ac r"n

Making the usual small strain approximations, and an
expansion of the strain around Ty, = 0 produces the con-
stant chemical-potential form of Hooke's law

for substitutional binary solutions, the open systems
compliances, for isotropic solids are given by

E* =E/(l +X'£E)

v* =(v - 2 E)/(l +Xq'E)

(K-')*=3(1-2v*)/E*=K -+9x72 (5.6)

G*=G

where K is the bulk modulus and G the shear modulus.
Far away from spinodals and critical points, the ex-

pression (5.3) is not very sensitive to the composition. It
is then appropriate to use the values of the open-system
constants, at a composition near the average com-
position of the specimen. The elastic coefficients be-
come constants, and the elastic part of the problem is
now independent of the compositional part. For a closed
system, the obvious choice is the average composition.
For a system that is in contact with a chemical reservoir,
the composition at equilibrium under zero stress is usu-
ally a good choice. In the case of a very high average
stress, the equilibrium composition at some high pres-
sure may be more appropriate. With such replacement
of the composition in (5.3) or (5.4) to (5.6), all the solu-
tions of ordinary linear elasticity become directly appli-
cable to elasto-chemical problems.

(5.2)

The coefficients of the stress have been called open-
system compliances, S* and are related to the constant
composition compliances S by

S rYkr = SJ + V /0TJ'lkIac )OM m, (5.3)

where (aM,2 /aC)0 is evaluated at Tm, =0 and where all
the quantities except Vo are functions of c. The second
order terms that are neglected in this expansion have
been discussed [15]. Introducing the notation

/X=P°aM ) T-O (5.4)

i.e.,

5.2 Finding the Composition Field

Finally, even though we have eliminated the com-
position to solve the elastochemical problem, the com-
position field is easily obtained from the solution. At
constant diffusion potential, composition is uniquely de-
termined by the local stress. For a binary for example
(4.21) can be solved for the composition

7iC -0 =constant X exp[elastic terms/R 01 (5.7)

where constant=exp[R{M, 2 - ((- ,a2)}/R 0]. (5.8)

A useful linearized version of eq (5.7) is obtained by
linearizing the elastic terms of that equation or of (4.21)
to (4.23) and differentiating at constant M12, P, and 6.
Using (5.5) this gives

c ( aln c

for interstitial solutions, and

/x X~C(1 c)(l + aln c )

dc/X=,jjdT,
(5.5)

(5.9)

or

c = Co+ XlluTu (5.10)

where co is a constant of integration and is the com -
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position that an element of unstressed solid would have
if it were in equilibrium with the system.

For the isotropic case this becomes

C-CO=XQ TO (5.11)

Had we linearized about a hydrostatic pressure P the
result would have been

C-C(P)=rXl(Tkk +3P)

There are several ways of evaluating the constants in
(5.8) or (5.10), but basically they are all methods of
evaluating M,2 at equilibrium. If the system is in contact
with a materials reservoir with specified M12 the answer
is straightforward. If it is equilibrated with a fluid phase,
eq (3.10) applies. If the composition and stress are speci-
fied at some point in the system, eq (4.21) can be used.
This occurs in some problems where almost all of the
solid acts as a reservoir in the sense that most of it is
homogeneous in composition and stress, and that trans-
fer of components to small inhomogeneously stressed
parts of th& system hardly affects the composition of the
homogeneous part.

For the typical case of a closed heterogeneous system
the overall composition is specified. At equilibrium the
diffusion potentials become a constant whose value must
be determined as part of the solution. This is a standard
procedure in the method of Lagrange multipliers. Equa-
tion (5.7) is a one-parameter family of composition pro-
files. For each assumed value of the parameter M12, we
can determine the overall composition by integration.
The one that satisfies the specified composition is the
solution and this fixes M, 2.

This procedure is simplified if linearization of (5.7) to
give (5.10) is valid. Using this to obtain co from
which we can obtain M12. We use the conservation of
mass for the entire solid of total volume (1' in the refer-
ence state and average composition c

fcdV'=n'&. (5.13)

Substituting (5.10) we obtain

co fC-iQt f Tj dV' (5.14)

which can be substituted into (4.21) to (4.23) to obtain
M12. Once co is known we have the composition profile
of the inhomogeneously stressed system

c-c=X7qjj(Tj-I| TajdV') (5.15)

or

c-c ii Mj TO

where Tj is a component of the volume averaged stress,
and X and A are evaluated at c. This is the linearized
equation for composition in a closed system.

5.3 Internal Equilibrium of Vacancies

We consider a single component solid with vacancies
as the second component. If, as is often assumed [18],
there is no relaxation around a single vacancy at any
level of applied stress and the elastic constants do not
depend on vacancy concentrations, the diffusion poten-
tial My,, given by eq (4.23), is a function of composition
only. Therefore a constant diffusion potential would
imply a vacancy composition field that is constant re-
gardless of the stress distribution. Even with these as-
sumptions we will later see (sec. 6.2) that the local equi-
librium vacancy concentration at the interface does
depend on stress at the interface.

A more realistic model assumes relaxation. Let the
partial molar volume of vacancies differ from the molar
volume of the species. If the elastic constants do not
depend on vacancy concentration, eq (4.23) yields with
P=O

M,, =MO +RO In lc(P,-TI) Tkkl/3 (5- 16)

At equilibrium, this is constant, leading to a vacancy
concentration field given by (with c,< 1)

C, =&,, exp(VIOITkk) (5.17)

where c, is the equilibrium concentration of vacancies at
P =0.

5.4 Dislocation Atmospheres

5.4.1 Atmosphere Around a Dislocation
in an Isotropic Solid

Let us consider a substitutional two-component in-
finite isotropic solid, with a negligible concentration of
vacancies. A straight edge dislocation with a Burgers
vector of magnitude b is located in the solid along the z
axis. If the sizes of components I and 2 are different,
there will be a segregation around the dislocation. This
problem has been solved, considering one of the atoms
as a defect [191. This means that its concentration has to
be relatively small. Indeed in many cases only vacancies
or interstitials are considered. These are unnecessary
restrictions as we shall see.
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Far from the dislocation, the solid is at composition co,
and is stress-free. Therefore we can think of this far-
away solid as a chemical reservoir. The solid with the
dislocation and its atmosphere has the same diffusion
potential as the stress-free solid at co. For convenience,
we choose the solid at co as the reference for strain. Since
we have shown that under small strain approximation,
the elastic part of the problem is equivalent to a constant
composition problem with the open-system elastic coef-
ficients, eq (5.6), the stress field, with the atmosphere
present, is given by

- Gbsin4Tr= 40=27r(l-v*)r

Gb coso ~~~(5.18)
27r( - v*)r (.8

T -Gb vsing
ZZ7r( - V*)r

and the composition field is, to a first approximation,
using eqs (5.11) and (5.18)

(1 + v*)Gb sinck
AC =-X (1-v*)7rr (5.19)

(These equations correct an algebraic error in reference
[6].) Replacing the open systems constant by their val-
ues, we finally obtain

- Gb (1 +x7)E)sinq
Trr aTq'0= 2,jr(l1-V +2X7)EB~r

T Gb (I + XE)cos4
4 2n7r(l -v+2x'q 2E)r

T -Gb (v_-xq2E)sin
ir(l-v+2x71fE)r

Ac=- Xi(l +iv)Gsinc (5.20)7r(1-v + 2x-q2E)r

where the subscript 0 has been dropped from all the
variables since all of them have to be evaluated at com-
position co, including the Burgers vector magnitude. In
our case (substitutional solution), X is given by eq (5.5)
and 7 by (4.7) and (4.8).

We first note that, since X is positive for a stable solid
solution, the stresses are decreased, by a fraction of the
order of Xt 2E. This factor tends to zero for highly dilute
solutions. But for a concentrated solution, it can be sig-
nificant. Taking an ideal solution, cr=O.5, po6=105 mol
m-3 , RO?=10 4 Jmol-, E=U101 Nm-2 , and =r0. l gives
a value of 0.25 for XvE. This change in the stress field,

which is readily obtained here, has, to our knowledge,
not been calculated within the framework of the defects
model.

At low concentration, the following approximation
holds

X=CcoV6R 0

and

C V 1 -V 2 )
X7= 3R60

and we can neglect 2Xq2 E in comparison to (I - v)
obtaining thereby the classical point-defect solution

AC-co(V- V2)(1 + v)Gbsin4
-~ 37rR 6(l-v)r

But it is to be emphasized that the composition eq (5.7)
can be solved exactly by numerical methods. Our result
is more general in that it includes in a self-consistent way
all the interactions that may be present, specifically in
concentrated solutions, between the defects themselves
and the defects and the matrix. In particular, it takes into
account the nonideality of the solid solutions in a phe-
nomenological way that is model independent. If no
measured value is available for the activity coefficient
function yl, specific statistical mechanical models
[20-22] can of course be used and the result directly
introduced in the value of X.

5.4.2 Dislocation Atmosphere in a Cubic Crystal

Analytic expressions are rarely known for the elastic
fields caused by point-forces in a medium of arbitrary
symmetry [23]. Hence the usual integral methods for
calculating atmospheres cannot be used. On the other
hand the introduction of open system compliances is not
restricted to isotropic solids, and formulas have been
developed for the most general elastic solids [15]. Be-
cause the elastic field has been found for several cases of
dislocations in these non-isotropic single-component
crystals, the concept is most valuable.

By a simple substitution of the open-system elastic
coefficients, the same elastic calculations are valid for
solid solutions equilibrated to constant diffusion poten-
tials. The composition fields are given to first order by
eq (5.10) or more exactly from the solution of eq (5.7).
We shall treat the case of a [11 1 screw dislocation in a
cubic crystal. The X3 axis is along the dislocation, the x2
axis is along [1101 and x, along [112]. The stress field has
been given by Steeds [24]. Because the equations are
rather long, we shall derive only the composition field.
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In cubic crystals, the change in composition with stress
is given to first order by

AC =XIITkk (5.21)

as for the isotropic case. At constant composition, Tkk

has the value

Gb 8s44 sin 34)
Tkk 4V r(-8 cos 305(12-8)S(3s1 -2S) 2)

with

S =S1 ]-S,2-s4/2

a factor which is zero for isotropic crystals,

2S2
T(s, 7+ s. + 5S /6)

and the sj are the standard two indices compliances,
referred to the cube axis. For cubic crystals, the open
system compliances are

S7-s =S + Xq72

S.0 =s..

therefore

related to the stress, as in the usual theory of elasticity.
But this law has a smaller range of applicability than in
the constant composition case. The thermodynamics of
solutions introduce nonlinear terms in the stress-strain
law. When the strain is expanded as a function of stress,
we have identified four second-order effects [15]: (a)
non-linear stress-strain laws at constant composition,
due, for instance, to rearrangement of interstitial atoms
into sites that become nonequivalent under stress; (b)
change of compliances with composition; (c) deviation
from Vegard's law; and (d) non-linearity of the solution
thermodynamics. The first two effects have been con-
sidered within the framework of defects theories. It does
not seem that the two others have been treated [25].
Since solutions of non-linear elastic problems have been
found [26], they can be used, with the second-order
open-system compliances, to find second-order effects
on dislocation atmospheres.

5.5 Internal Equilibrium of a Binary Substitutional
Solid With Vacancies

We have seen in section 4 that, for a binary substi-i and]j < 3 (5.23) tutional solid with vacancies, in equilibrium with a fluid,

i and j>3 the following is true

M, v =1 (.,,L(5.25)

Mill =,(12 (5.26)S*=S

and

9*= 2s2 +S6
8 9(st, +s44+5SI6j

Combining (5.21), (5.22), and (5.23), we obtain the com-
position field

AC- 9X1b8*s44 sin 3- (524)4\/mrr(l _8*cos234))(1- 8*)'2S(3s fl-25)(.

where all the constants that depend on the material have
to be taken at co, the composition far away from the
dislocation. This result, obtained by a simple algebraic
manipulation, has, to our knowledge, never been ob-
tained by other methods.

5.4.3 Dislocation Atmospheres: Nonlinear Effects

At constant diffusion potentials, when the com-
position changes from the unstressed to the stressed
state are small, we have shown that the strain is linearly

where uA1 and 2L are the chemical potentials of species 1
and 2 in the fluid. It seemed therefore rather natural to
use these equations, which have the same form as those
for fluid equilibrium, rather than the mathematically
equivalent

M 12 =gt 1- (5.27)

=-HE (5.28)

From a theoretical point of view, there is no difference.
Although these equations are valid for nonlinear in-
homogeneous and anisotropic solids, we give as an ex-
ample expressions for constant elastic coefficients and
isotropy

M1 =MtV +R 0 lnYic c - VTkk
V=C OV, 3V6'

M1 2=M%± RO In~ln7 -VI- V2T
)2'Y2C2 3 Vo6Tk

(5.29)

(5.30)

The concentration of vacancies is small compared to cl
and c2. Measurement of c,, -y, and P. are therefore sub

480



ject to potentially large errors. These affect eqs (5.25),
(5.26), and (5.28) but not (5.27). For computational pur-
poses, it is then better to use the second formulation.
Besides, if we are only interested in the composition c,
and C2, we can neglect the vacancies and use only eq
(5.30) for equilibrium calculations. By keeping the flex-
ibility of choice for the dependent substitutional species,
we can eliminate species whose concentration has been
found to have a negligible effect on the chemical behav-
ior of the solid solutions, including vacancies, even if
they are essential to the mechanisms by which chemical
equilibrium is attained.

5.6 Multisite Solids

Up to this point, we have focused our attention on
crystalline solids that are most common in the metal-
lurgical world, where there is only one substitutional
site, that is highly occupied, and an interstitial site that is
lightly occupied. But in many instances crystals have
several non-equivalent sites, occupied by mixed species
of atoms or molecules or vacancies. The fraction of
empty sites can vary for each type of site from 0 to 1. In
the description we can of course eliminate sites that are
and remain empty. They don't contribute to the energy
or entropy of the system. For all other sites, we can
describe their status by the densities of the atoms and the
densities of vacancies on each of them. As for the substi-
tutional site with which we have been dealing in the
preceding section, there will be a constraint condition:
the total density of atoms and vacancies is constant for
each site. Using the method described in section 4, it can
be shown that at equilibrium, the diffusion potentials are
constant, equal on all sites, and equal to the correspond-
ing difference in chemical potentials when equilibrated
with a fluid

MlK =MmK .. =MYK =gI-vK (5.31)

where the superscripts label the different sites. There are
cases where there is no species K that is present on all
sites, or where it is not convenient to use the same K-
species for all sites. The formulas can easily be trans-
formed, using eqs (3.8) and (3.9)

MIK+MKJ=JMU. (5.32)

If a species is not present on one site, it cannot be used
as the dependent species on that site, and its diffusion
potential equation drops from the set of eqs (5.31). The
vacancies are to be considered as a species, since an
exchange of an i-site vacancy for aj-site vacancy pro-

duces no change of state, exactly as the exchange of a K
atom on an i-site with a K atom on aj-site.

Equations (5.31) govern the equilibrium partitioning
of I atoms on the different sites. If only the total density
is of interest, one can interpret eqs (5.31) differently.
They state that along an equilibrium path, the Helmoltz
free energy density is only a function of the total density
of the (N- 1) independent species.4 Calling MIK the com-
mon value of the diffusion potential for each site, we
have

df' =s 'dO + 1M[Kdpt. (5.33)

Equation (5.33) shows that the formulas developed in
the preceding section can also be applied, with the total
density of each species as composition variables (or the
ratio ph/po, po being a chosen total density, like the total
density of sites, or the density of sites I, (I= 1, ..., v)
whatever is most useful).

In the equations used in section 5, the interstitial site
was sparsely occupied, and we used eq (4.34) for the
diffusion potential of this species. But rigorously its dif-
fusion potential is Ml,, where v represents the vacancies
on interstitial sites

M 1,=MtV +RO InYlCl +elastic terms.
7,V Cy

(5.34)

If there are v interstitial sites per substitutional site, yVc,
tends to one as c, tends to v. Therefore, in dilute inter-
stitial solutions

MAli,=I+R6 In 'ylcI+elastic terms (5.35)

which is the expression we have used. In almost all
cases, site occupancy is either high or low. Phase trans-
formations occur before intermediate occupancy is
reached. But hydrogen in metals is an important case
where the occupancy can span all the possible com-
position field without a phase change. In such cases, the
rigorous diffusion potential has to be used. Equations for
the internal equilibrium between sites have been given,
with the preceding approximation by Li et al. [27]. It is
clear that there is no need to make the distinction be-
tween interstitial and substitutional atoms. A single for-
malism with multisite occupation is possible and avoids
the confusion that can arise if a specie occupies both
substitutional and interstitial sites [7]. For most metal-

4 When a function F(x1 , x2, . . ., XI) is such that, for all values of the

xi,

aF/ax, = aF/ax2= ... = aF/ax,

then Fis a function only of the sum (x,+xz+. . . xI).
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lurgical examples, species do seem to occupy only one
site.

We next turn to phase change equilibrium at solid-
fluid interfaces. The case of a stoichiometric compound
already illustrates the principal features. Let species A
completely occupy a equivalent sites a per unit cell,
species B b equivalent sites ,3, etc. Because there is only
one species on each site we cannot define a diffusion
potential. In the liquid each species has a well defined
chemical potential. The equation for equilibrium is

f-(aA± + b4 + chc. . )pO= -P (5.36)

where po is the total density of sites in a unit cell. This is
a straightforward expression of chemical equilibrium for
the dissolution of the compound AaBbC, . . ., which
continues to hold under stress. It is Gibbs' eq (393) [9]
since he quite clearly considered solids to be compounds
(CP) and defined a single chemical potential ,aci for
them in the fluid even if they dissociated

1 CP =aJLA+b)tB+cuC+. (5.37)

In defining put" there is a rigid adherence to a law of
definite proportions dictated by the numbers of equiv-
alent sites fully occupied in the crystal structure.

If we now let the a sites be occupied by several spe-
cies I, J, K including vacancies we obtain diffusion po-
tentials. Choosing species K as the counterspecies the
equilibrium equation is

f -Po2M1KCI-po(a4L+b ut . .)=-P. (5.38)

The term in the parenthesis is the chemical potential for
the stoichiometric compound KaBbCC . . .. There are
obvious advantages to choosing K to be the major spe-
cies on site a. If site a is a lightly occupied interstitial site
the compound is BbC, . . . and 4K is set to zero.

If several sites are each occupied by more than one
species the equations are not changed if a different spe-
cies is chosen as counter species for each site. If the same
species is chosen as counter species of several sites the
terms combine. In particular if the same counter species
K is used for all sites we obtain

f-PoY I MIKC I-(a+b+c+ -... )KpO= -P. (5.39)[ a
Summing over all sites we obtain

f-PpoYMIKcI-(a+b+c+. .. ).KPO=-P. (5.40)

This is identical with eq (3.15) if we redefine po in terms
of atom site density instead of unit cell densities.

6. Interface Equilibria

In this section we illustrate various aspects of equi-
libria involving three kinds of interfaces that stressed
solids can have but ignoring capillary effects. Most of
our examples will be uniformly stressed, and have only
as many components as are necessary to illustrate the
points to be made. When the solid is multicomponent
and nonuniformly stressed, the interior equilibria can be
solved by the methods of the open-system elastic con-
stants of the previous section. This converts a multi-
component elastic and thermochemical problem into an
elastic problem alone, although possibly a nonlinear
one.

6.1 Change of Solubility With Stress

Our first example is a Gibbs solid-a pure substance
for instance-in equilibrium at pressure P with a fluid in
which it can dissolve along a flat interface. Forces are
applied to the solid so that its state of stress is now Tij.
To maintain mechanical equilibrium, one of the prin-
cipal values of Tqj is -P, and the corresponding prin-
cipal direction of stress is normal to the fluid-solid inter-
face. What is the change in the chemical potential of the
fluid necessary to keep the system in chemical equi-
librium? The only equation, besides mechanical equa-
tion, is the boundary conditions, eq (3.18) which be-
comes for a one component linear elastic solid

f '-Htpo=-P(l +Ekk). (6.1)

Following Gibbs [9, p. 196], we compare this equi-
librium with that of the same solid phase equilibrated
under hydrostatic stress with the same fluid. Using bars
to indicate the values of the thermodynamic quantities
in this equilibrium we write

(6.2)

Subtracting these two equations, we obtain

f'-f'+ P(Ekk-Ekk)=P(O /- ) (6.3)

(f '-f') is the elastic energy stored in the solid on going
from pressure P to stress state Ty and P(Ekk -Ekk) is the
work done on the solid by the liquid. The l.h.s. of eq
(6.3) is thus the work that has to be done to bring a
hydrostatically stressed solid to the nonhydrostatic state
while surrounded by the liquid. It is necessarily positive,
and the fluid in equilibrium with a nonhydrostatically
stressed solid is always supersaturated with respect to
precipitating a hydrostatically stressed solid by the
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amount given in (6.3). If we let cL and CL be the concen-
tration of the solid component in the fluid in equilibrium
with respect to the nonhydrostatically and hydro-
statically stressed solid, we can use eq (4.32) to obtain

p6R1 0 ln(YLCL/trtL) = -V(Tkk)2+ + 1S TIYTi

RB In-1l c) -VYri(t,+t 2 )=RO In CL). (611)R t 1'Cl-__c) CV L(l -CL) -611

As usual, this system of equations can be solved numer-
ically, or, if the changes are small, we can linearize the
equations and solve with Cramer's rule.

+ 3 (1-2 v)P2 + 1- 2 v TkkP (6.4)

Let t1 , t2, and -P be the principal values of stress. If
the change in solubility is small, and the solution is dilute
or ideal, we get

CL-CL 1
CL 2p&R BE

x [t+ t'-2vtt 2+2(1-v)(t+t 2 +P)P]. (6.5)

Because -1 <v < 1/2, the right hand side of eq (6.5) is
positive, except of course when t 1=t 2= -P, where it is
zero. The solubility of the solid in the liquid is always
increased when a stress is applied to the solid. The solu-
tion is supersaturated with respect to a hydrostatically
stressed solid at pressure P, a classical result that was
derived by Gibbs.

We now turn to the case of a two-component solid in
equilibrium with a melt. We have two conditions for
equilibrium

f _LPtL Zp2=-P(l +Ekk)

6.2 Vacancies Equilibrium in a One- Component Solid

Consider a cylinder of isotropic hydrostatically
stressed solid in contact with a fluid in which it cannot
dissolve at pressure P, with an equilibrium concen-
tration of vacancies t,. A load is applied that produces a
stress whose components are Tz,, Trr = T00. We want to
calculate the equilibrium concentration of vacancies
along the surfaces S. and S,. Since the components of the
solid don't appear in the fluid, there is no equation like
(3.12). But the phase change eq (3.15) applies, and in this
case since p.K is identified with /4 =0, the equation be-
comes

Vof '-(l -cr)Ml = -PVO(l +Ekk) (6.12)

where -P is the normal traction. Let us first adopt
Herring's simplifying assumptions that (a) there is no
volume relaxation around vacancies, (b) there is no
change in elastic constants with vacancy concentration,
and (c) the solid obeys the law of dilute solutions. Using
(4.32) we get (i) under pressure P

(6.6)

M[2 = ALl _Q- H(6.7)

We compare again to the equilibrium of the solid with
the fluid under pressure P.

f-p~pl-~p;=22 -P(l +kk)

M 12= L LAL

(6.8)

(6.9)

° (P)X+R 0 ln&, =0 (6.13)

(ii) under stress, along S,

gi(P)+R 0 lnc + Vo[ -- 2 E(2Trr+ Tzzf

+ lS Y(2Trr2+ T.2)+3(l;E2V)p2I

Subtraction of (6.8) from (6.6) and (6.9) from (6.7) gives
two equations for the change of composition in the fluid
and the solid to maintain equilibrium under stress.

Assuming for simplicity (i) P=0, (ii) terminal solu-
tions (i.e., both solid and liquid are dilute solutions), (iii)
no change in elastic coefficients with composition, we
get

RB In(± c+ Vol I2(tl+t21+(t 2t2)n\ 11 + Q[ 2 Eh± 2+ 2E

+c,(t,+ti)]=RO In( ICL) (6.10)

=V6T[1+ 1-2v(2 T+Tn)] (6.14)

(iii) under stress, along Sr

,±(P)+R 0 lnc, + VD[-P-1 v(2Tr,+TT,) 2

+ 1 + V (2 T,,'+ Tz2)+ l3(1-2v) 2]

=, Tr" l 1-2v + (2 T,,+Tz)1
= Io, E I2, Z) - (6.15)
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It is quite clear that c< and c: are different, unless
Tr= T22, i.e., when the system is under hydrostatic
stress. Since we have assumed no relaxation around va-
cancies, iq=0, and therefore according to eq (4.23), M,
is different on S, and S,. As a result, a vacancy flux will
appear. This is further discussed in section 8.4.

Making the further assumption that P=0, and ne-
glecting quadratic terms in stress, subtraction of (6.13)
from (6.14) and (6.15) gives

In (c,/cM,) = VOT,,/R 0 (6.16)

ln(c/fl,)= VoTG /R 6.

This is Herring's [18, 28] well-known formula: to first
order in stress, only the normal pressure affects the equi-
librium vacancy concentration at an interface. We will
get the same results, whether this interface is a solid-
fluid interface or an incoherent solid-solid interface.

The order of magnitude of the quadratic terms can be
easily obtained by making Trr=0 so that linear terms
disappear in (6.15). We obtain, along S,

ln(cv/&)= VoT)/2ER 0. (6.17)

Within the small strain approximation, this effect is less
than 1 % of the effect on S,. But there are cases where it
might be significant (cf. sec. 8.4).

Conditions (a), (b), and (c) can easily be removed
through the use of the general formulas developed in
section 4. As an example we treat the case where there
is a volume relaxation around a vacancy. Using (4.32),
assuming P = 0, and following the above procedure, we
get, to first order in stress

ln(cv/lc,)=R V[T,,-,(2T,,+ T.)] (6.18)

In(c v 0, TR.. - 7(2Trr+Tz)]. (6.19)

The corrective term, proportional to 71, contains the
trace of the stress tensor. As such other components
than the normal pressure influence the vacancy concen-
tration at ,a particular interface, if elastic relaxation
around vacancies are taken into account.

6.3 Using Open-System Elastic Constants for
Multicomponent Phase Equilibrium

For the general multicomponent phase-equilibrium
under stress, the fact that the MIK are constant gives
(N-1) relationships between stress and composition. As
shown earlier, it is possible to solve these equations for

composition as a function of stress and obtain the strain
E5, that results from composition changes. The result is
a stress-strain relation at constant MIK. This relationship
was used to solve elastic problems within a single phase
as if it were composed of a single component.

These same relationships apply to each individual
phase in a multiphase equilibrium, but the phase change
boundary conditions of section 3.5 contain a similar cou-
pling between stress and composition. In the present
section we shall demonstrate that by using open-system-
elastic constants, the compositional part of these equa-
tions can also be eliminated. In fact this method allows
us to treat multicomponent equilibrium as if each phase
were a one-component purely elastic part of the system,
and that for such a solid, the w) function is equal to the
elastic energy apart from a constant (cf. eq (3.16)). Fi-
nally once the elastic problem has been solved, the com-
position field is obtained by the methods of section 5.2.

We will use as an example binary isotropic linear sol-
ids, although the proof can be made for a multi-
component anisotropic system. We shall further assume
constant elastic coefficients, and that, at zero stress and
potential M12, the composition is c. Let Ac be the change
of composition due to a change of stress. Expandingf '
around the unstressed state we find using (3.6) and (5.4)

f '(Tij,c +Ac)=f '(O,c)+p6Ml2Ac +(Ac)V/x

(6.20)- (Tkk + EV TijTy2

Let us consider the function

(6.21)f'*=f'(0,0-_)2E*( + 2E*TjT

where we have added to the free energy of the solid
under zero stress and at potential M,2 , an elastic energy
computed with open-system elastic constants at M12 . Re-
placing these constants by their values (5.6) we obtain

f '* =f '(0,c) + l+ vTYTU- Vj(Tkk)2 + Xt(Tkk)42 (6.22)

But the change in composition Ac is given by (5.11) so
that (6.22) can be written

f '* =f '(Oc) + 2 + TsjTxj-(Tkk)'+ (Ac)/2X. (6.23)'2E " 2E
The function ['-pO(c +AC)MI12 1 that appears repeat-
edly in the phase change boundary equations (cf. (3.24)
and (3.27)) is thus obtained as

f'-po(C-+iAC)M12 =f '*-PCM12 (6.24)
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Or, if we replace M12 andf '(O,c)

f '-PO(C +Ac)M2=-gj-(Tkk)2

+ 2E V TiTyj - pg2(0,c )-

cients SiikI and adiabatic elastic coefficients S'tI is a well
known thermodynamic result [17]

so@k{=SYkZ as

(6.25)

Thus the various phase change boundary conditions are
expressed in terms of an open-system Helmholtz free
energy for each phase. This free energy has the same
form as a Helmholtz free energy of a one-component
phase. Its elastic constants are the open-system elastic
constants of section 5.1. The reference state of each
phase is the unstressed multicomponent phase with the
same value of M. Its composition is c in (6.24) and (6.25),
its lattice parameter is used to define strain, and its con-
stant composition elastic constants are to be used in eqs
(5.3) or (5.6) to calculate the open-system constants.

By examination of (6.25), we can see that the use of
these open-system constants allows us to treat, as far as
the stress is concerned, any multicomponent system just
as if it were a one-component system. Thus elastic solu-
tions developed for one component inclusions, for in-
stance [23], can now be used for similar multicomponent
inclusions.

After finding the stress field, the results of section 5.2
can be used to obtain the composition field.

An interesting consequence of the preceding results
occurs in a binary system in which both phases have the
same conventional elastic constants. In an infinite single
component system the Bitter-Crum theorem [16] holds.
There is no elastic interaction between particles. The
system is degenerate with respect to particle shape and
dispersion. In a binary system if the X or 71's differ, the
open system elastic constants would differ even if the
conventional elastic constants did not. As a result there
is now elastic interaction between particles that is en-
tirely the result of the compliance due to composition
changes.

7. Partial Equilibrium-Local Equilibrium

When the general conditions for equilibrium are not
satisfied, the system will tend to equilibrium. The rates
of various processes are usually so different that in the
time scale of an experiment we may often assume that
some processes have reached equilibrium while others
have not occurred at all. In this section we briefly dis-
cuss these partial equilibria. When processes are too fast
for thermal and chemical relaxation, we obtain the re-
sults of classical adiabatic elasticity. The relation be-
tween isothermal constant composition elastic coeffi-

=SUk/ +aij aa*, 6C (7.1)

aj is the thermal expansion coefficient, and C' the heat
capacity, both at constant stress.

When thermal and elastic equilibration occur but
without diffusion or interface motion, we have classical
isothermal elasticity. Comparing eqs (5.3) and (7.1) we
note that they are quite similar except that temperatures
instead of compositional derivatives are used. Thus the
relationship between adiabatic, isothermal, and open-
system elastic constants is one of increasing equi-
libration first with thermal and then with materials res-
ervoirs.

Diffusion of some species, e.g., interstitials, often is
orders of magnitude faster than that of other species.
Such a partial equilibrium, called paraequilibrium [29],
is often reached in phase transformations of multi-
component alloys. Only hydrostatic cases seem to have
been treated. When stresses are important the mod-
ification from corresponding binary interstitial alloy
problems seems straightforward.

Interface processes, crystal growth or dissolution and
grain growth all involve network modification pro-
cesses that may be quite slow. Grain boundary sliding
may not occur. For calculation of such partial equilibria,
the corresponding equilibrium equations must be sup-
pressed. Polycrystalline averages of the properties can
be used to obtain corresponding averages for stress and
composition fields.

The most common partial equilibrium occurs when
all processes except diffusion have relaxed to equi-
librium. The only suppressed condition is that MIK need
be constant, but M1 K remains continuous across all inter-
faces that have reached equilibrium. This partial equi-
librium is called local equilibrium at interfaces.

Many experiments are done under conditions where
partial equilibrium is maintained while some or all of the
remaining variables are observed while they relax to
equilibrium. The laws of most of the relaxation pro-
cesses have been studied. Interface relaxation is compli-
cated and often nonlinear. On the other hand, heat flow
in response to thermal gradients is coupled with elas-
ticity and constitutes the subject of thermoelasticity.
Diffusion in response to nonuniformity of the MIX is also
well understood, regardless of whether the origin of the
gradients in MIK are from composition gradients, stress
gradients or interface conditions. The next section ex
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amines a set of problems involving diffusional equi-
libration under isothermal conditions with local equi-
librium assumed.

8. Diffusional Kinetics and Creep

Many problems of diffusion involve stress. In dif-
fusional creep the applied stress is the motivating force
for the diffusion. Compositional heterogeneity results in
a self-stress that affects diffusion in a way that is too
often ignored in the diffusion calculation. As we have
seen, stress affects the diffusion potential and interface
equilibrium conditions. It has an effect both on the rate
and direction of the diffusional flux within each grain
and on the boundary conditions to the diffusion equa-
tions at each interface.

Often only some of the effects of stress have been
considered, or approximations have been made that ig-
nored effects of the same order or larger than the effects
considered. In this section we will examine the effects of
stress on .diffusion and creep, inside the grains and at
interfaces, and with both applied stresses and the self-
stresses that arise from the compositional in-
homogeneity.

We begin with a formulation for multicomponent dif-
fusion that is consistent with our thermodynamic formu-
lation and has the proper invariances with respect to
arbitrary choices of the species K. We then examine
problems of inhomogeneous stress when the network is
unaltered. Much of this was the subject of a recent over-
view [30] in which a hierarchy of increasingly difficult
problems was discussed. We next turn our attention to
diffusional network alteration phenomena, such as creep
and phase change, both under applied stress and self-
stress. Because of the importance of vacancies in this
problem, interesting phenomena occur even in one-
component systems. We reformulate and simplify the
general equations to examine a few problems of dif-
fusional creep in a one-component system with va-
cancies.

B., is a mobility, function of composition and stress at a
given temperature. It has been shown that the Bi, are
independent of the choice of the species K. There are
(N-1) chemical species plus vacancies. There are
(2N-1) independent network restrictions on the B11

1B1 , = 0

IBu=0

(8.2)

(8.3)I=l,...N.

As a result there are (N-1)2 independent coefficients
which is the expected number of phenomenological co-
efficients for the diffusion of (N-1) interacting species
without a network constraint. It is also the number ex-
pected for (N-1) interstitial species. For a one-
component solid with vacancies there is only one term

JI=-Jy=Bv, grad Mr,. (8.4)

Similarly for the diffusion of a single interstitial species
there is one term

-J. 1 =B grad M,. (8.5)

For a two-component substitutional solution there are
four independent B. With vacancies as the K species the
M,, terms disappear and we have

-J4 =B,, grad M,i+B, 2 grad M2 , (8.6)

-J 2 = B2, grad Ml, +B22 grad M2,

-j= B,, grad M!, +B,2 grad M2 ,

with the restrictions that

B., +B2, +B,1 =0

B]2 +B22 +BV2 = 0.

Using species 2 as the K species we have the same coef-
ficients in different combinations with the diffusion po-
tential M

8.1 Multicomponent Diffusion in Isothermal
Network Solids

As shown in [31] the invariant formulation of substi-
tutional multicomponent diffusion flux J, in an iso-
thermal isotropic or cubic network solid' is given by

N
-J.-= BI grad MJK I=l,...N. (8.1)

- =1

'The reference geometry for diffusion is usually the unstressed state.
With the notation we have used, the fluxes should be noted with a
prime. Since there is no confusion possible, we shall drop it here.

-J1= B,1 grad M,2+B,, grad M,2 (8.7)

-12=B 2 1 grad M12 +B 2. grad VM2

-J,=Bl grad M12+B,, grad jV, 2.

The knowledge that B remains the same in various
formulations should permit flexibility both in gathering
data and in formulating and applications.

Stress affects both B and M in the flux equations. B is
affected by the level of stress alone. We expand about a
stress state which can be either zero
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BJK&j =BJK#(C,0) +B Kgik, (c,O)Tk, +. . .

or some other convenient state TO

Bj.,j(c,0,T) BYKJ(c,8,T0 )

+B JKijkl (c,0,T )(Tk1-Tk1 ). (8.9)

The gradient of M depends on the stress and the stress
gradient. From the Maxwell eq (4.13) the coefficient of
the stress gradient is the strain produced by a unit com-
position change

(a Tij ) ( 1 JK)7 Tkl (8.10)

which is precisely defined and readily estimated from
lattice parameter-composition data. For cubic or iso-
tropic cases

aMJK/a T.,= - VOJij (8.11)

and

V7MJK=R 0[(VCJ/cJ)--(VCK/CK)I- VDpJKV(trT). (8.12)

Strictly this should be at the actual stress, but in most
cases data for unstressed crystals should be adequate,
and lead to a linear formulation. Combining (8.1) with
(8.12) and retaining only terms linear in Twe obtain for
cubic or isotropic cases

-J -A 1 (VtrT)+po E DlJ(K0Vc. (8.13)
J-AK

The factor pO needs to be introduced since the c are
defined to be dimensionless rather than molar densities,
where

A, = V6IlBniJK

DI.T(K) = Yo U R OBIJ -+- (8.14)

Because diffusion fluxes and gradients are independent
of the choice of K, Al and the Bj can be shown also to
be independent of that choice, but to be consistent the
DU(K} must depend on the choice in the way shown in
(8.14). To avoid large uncertainties in the DIJ(K) it is
again clearly advantageous to choose K to be the major
species, rather than vacancies.

8.2 Diffusion Without Network Changes

Conservation of matter is expressed by the equation

pO I, +divJI=0. (8.15)

Compositional heterogeneity produces a long-range
stress field and changing compositions change this field.
Since stress and stress gradients affect B and M, the
stress and diffusion equations have to be solved simulta-
neously. It has been common to ignore this mutual inter-
action and to study either the stress resulting from dif-
fusion or the effect of stress on diffusion alone. When the
ignored effects are small, this is valid, but for most cases
it is not.

A straightforward technique for solving the stress and
diffusion equations has been developed [30]. As in sec-
tion 5 the relationship between elastic stress and an arbi-
trary composition field often remains solvable and can
be used to eliminate stress from the diffusion equation.
Plastic stress accommodation would render this tech-
nique invalid.

A hierarchy of increasingly complicated problems
was examined for cases of diffusion in binary alloys in
which there was no applied stress. All stress was due to
compositional heterogeneity alone.

The mutual interaction in most cases is a major factor.
In the case of spinodal decomposition, it can change the
sign of the diffusional flux and is responsible for the
metastability between the chemical and coherent spin-
odal [32]. The stress effect is so long ranged that com-
positional heterogeneity can affect diffusion elsewhere.
Fick's law which states that the flux depends only on
local gradients is often not valid. Because this stress
effect is proportional to the local concentration it can be
neglected in dilute solutions.

Interface boundary conditions for diffusion in inter-
stitial solutions have been examined for cases in which
the network is chemically inactive. The boundary con-
dition is a simple continuity of M at a fixed location in
the reference state. It depends on the level of stress at
the boundary. For local equilibrium eq (5.7) is applica-
ble.

8.3 Diffusion with Self-stress and Phase-change at the
Boundary

In our previous work [30] on the effect of self-stress
on diffusion the network was conserved at the bound-
ary. There are many metallurgical problems, such as
diffusion controlled phase growth, where the network is
not conserved, but where equilibrium prevails at the
interface. This equilibrium is governed by eq (5.7) and a
phase-change equation that depends on the nature of the
boundary.

Self-stress is what we call the stress that is the result
of sample heterogeneity. Generally its value at a point is
a function of the composition distribution everywhere.
For special geometries its value becomes a simple ex-
pression involving principally the local composition,
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and the effects of self-stress on the thermodynamic vari-
ables can be expressed in terms of the local composition
only reducing self-stress problems to composition prob-
lems.

One such geometry is the semi-infinite solid with con-
centration fields that are functions only of the distance
from the surface. We will consider the case of a semi-
infinite couple, with diffusion in a and ,3, and an inco-
herent boundary. Under pressure P, the equilibrium
compositions are ea and c. When diffusion takes place,
the compositions are ca and c I far away from the bound-
ary, and e' and c- at the boundary (fig. 1). We shall
further assume, for simplicity, that the pressure P is zero,
and that the diffusing sample is under zero external pres-
sure. This implies that the tractions are zero at the ct-,3
boundary. We also assume no change of elastic constant
with composition for either phase. Under these hypoth-
eses, the mechanical equilibrium at the interface, eq
(3.25), is always fulfilled. Equations (5.7) and (3.24) be-
come, using (4.22) and (4.32)

WOa O ]°a + na-'o~ Teat

=Oa-I8 +R0 In A)-VONn "k' (8-16)

+I +V TijaTia +a aTa ]

=W°21'+ R In [7:2(l-cP)]

+ V010 - 16(T$k )2+ 1 +Ep TGTijjO+e0qT~kk] (8-17)

At equilibrium under zero pressure, these equations
become

1tO- -I-W2+RO In ju(lea)=I1 1¾

±RO In -fje

'~02(l - c) (8.18)

,tLa+RO ln[y'2(1 - 2")] =jxt2±+R0 In [ey:(l-ca)]. (8.19)

We first have to find the stress field. In a half-space
specimen, we have found [30] that its trace depends only
on the local composition

Tkk = -2Y X (c o)

Tink =-2YX(C -co)

(8.20)

(8.21)

and

u°a±+R 0 ln[ya2( -c-)] + Vr1 a I Ea(Takk )2

Where Y=E/(l-v). Introducing these values in
(8.16) and (8.17), and after subtraction of (8.18) from
(8.16) and (8.19) from (8.17), we obtain the system of

Figure 1-Compositions in a self-
stressed diffusion couple with an
incoherent interface. The com-
positions far away from the in-
terface are co and c9. The self-
stress generated by the
composition gradient has shifted
the equilibrium composition at
the boundary to ca, M from-their
unstressed phase diagram values
of c", c$.
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equations to solve for ca and c .As we have seen before,
it can be solved numerically or, if (Ea-co) and (ca-car)
are small, it can be linearized, and the resulting system of
equations solved by Cramer's rule.

Under the assumption that there is no normal stress
across the a-/3 interface, a common tangent construc-
tion is possible (see Appendix 4 for the demonstration).
To the Helmholtz free energy per mole we have to add
the elastic energy per mole, which is just a function of
the local composition. Its value is

fe- l VoE Va-ca 2

an interface, new phenomena appear, in particular dif-
fusional creep. In this section, we consider only one-
component systems, where these effects are not ob-
scured by the phenomena previously described in this
chapter. We first formulate the creep as a boundary
value problem and then turn our attention to specific
creep problems.

The Partial Differential Equation

The flux of vacancies J is given by

(8.22) (8.23)

where VO is the molar volume at composition co. The
construction is shown in figure 2. This type of construc-
tion has been used by Hillert [33] for the case of massive
transformation, in which it is proper to assume that the
phase which is forming is homogeneous, and by Purdy
et al. [34] for diffusion-induced grain boundary mi-
gration.

8.4 Effect of Vacancies: General Formulation

When vacancies, in addition to providing a mech-
anism for diffusion, also interact with the stress, and
provide a means for creating or destroying network at

(D

LLz
LUJ

LU
LU

U-

where By is a tensor function of the temperature 0, c, (the
concentration of vacancies) and the stress. An expansion
around T=O gives

(8.24)

The coefficient of order 0 is given by

Bq =Dbcv(l -c,)/R Opo (8.25)

where Dy is the self-diffusion matrix. Usually it is not
very much dependent on the vacancy concentration.

The tensors Bq and B!, being properties of a crys-
talline material follow the rules of crystalline sym-

Figure 2-Common tangent con-
struction that gives the com-

position of figure 1. The un-
stressed free energies (heavy
lines) are shifted by an amount
equal to the elastic energy
VoEq2 (c-co) 2 /(l-v) to give
the light curves. The common
tangent construction gives c"
and C.

COMPOSITION
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metries. For isotropic materials

BR =B 0 5q (8.26)

and

B 0 =c9 (l-c,)D/R Op6. (8.27)

The tensor B,j,, has the same form as an elastic tensor
for an isotropic material

Bk, ITkI=3Tkk8k+7Tij (8.28)

where A and y are two constants. This equation reveals
that if the tensor Bj is stress dependent, it introduces a
stress-coupled anisotropy in an otherwise isotropic dif-
fusion coefficient.

Neglecting second order effects in stress in M,1 , that is
assuming that the elastic coefficients do not depend on
vacancy concentration, the gradient of the vacancies
diffusion potential can be written

RO r amly,](,,_",T
(VI),'= C I- [I + al (c, - V PkIkI,.(8 .29 )

If dilute solution laws apply, this equation simplifies into

RO Tkkf
(MM)j =-(CVX - VOqklTk,,

cv
(8.30)

which, for isotropic material becomes

ac, =s +DV2 c,.
at

(8.35)

Initial Conditions. The initial conditions consist in a
given vacancy concentration field. For steady state,
these conditions are not needed. They are unimportant
at long times, as long as a steady state can be reached.
Boundary Conditions. The boundary conditions depend
of course on the problem that is treated. The most useful
seems to be given by an equilibrium condition along all
surfaces of the solid. Written for an isotropic solid, con-
stant elastic coefficients, a reference pressure P = 0 (with
an equilibrium vacancy concentration cj), dilute solu-
tion behavior, and a reference composition c, =0 for
strain, this reads (eqs (3.18) and (4.31))

L 4,U (o)+RO Inc,=-PVol+ E2 Tkk+3cvlv)

-Vol I V (Tkk)2 +lIV TiYTi(l-(CIr)vTkk] (8.36)

or

ROl In(c,/1,)= -PVo/(I +1 2 v Tkk +3c,,q)

- Vol- I (TkkYI+ ,TTj-(1 -CvhvTkk] (8.37)

VMV, =(R 0/c)Vc - Vo'xjV(trT). (8.31)

The conservation equation is expressed as usual

p, ac +Ju =spO6 (8.32)

The source and sink terms, which is the number of va-
cancies created per unit volume, come, for instance,
from the vacancy source at a moving dislocation. The
complete diffusion equation for vacancies is obtained by
combining [8.23] with 18.32]

P°ac =pas + [By(Mj),j]j. (8.33)

In an isotropic solution, one gets

Since c, <l, these equations can be simplified into

uv (o) +R lnc n= -P1o(1 + E Tkk)

-Vol[I (Tkk)2+1 SVTejTj 1 -vTkkj. (8.38)

Because it is the dominant term linear in stress, the
r.h.s. is usually-PVO. Only this term was taken into
account in Herring's theory of diffusional creep. We
shall see in the next section cases where the quadratic
terms are important for new effects.

Network modification along the surfaces due to the
vacancy flux is simply given by

ac- =s +DV DVo6 lR7vcVTk- CADVv2 Tkk
at C, RO_ RO0

n' at 0 (8.39)

(8.34)

where we have neglected the stress dependence of By.
When the relaxation of the lattice around a vacancy can
be neglected, the last two terms of the r.h.s. disappear,
and one obtains the simple equation

where the x are the coordinates of a point of the inter-
face. This equation tells us that the shape of the speci-
men changes as diffusion takes place, due to the vacancy
creation and annihilation at the surfaces.

Stress Equilibrium. Up to now we have been concerned
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with the diffusion equation. Stress equilibrium in this
quasi-static model obeys the partial differential equation
(3.13)

Ti >! = 0 (8.40)

with proper boundary conditions. In most problems
they will be given in terms of tractions along the surface.
It is important to note that, because of the network
modifications there, they are specified on a changing
(and usually unknown) surface.

To specify the problem fully in term of stress, we need
the Beltrami-Mitchell equations [11,30]. For isotropic
materials, the expression is

(I +v)Tkk+ Tkk,y +Ei[ ±_Vaij(Cj,kk +(Cv),u 0. (8.41)

8.5 Some Creep Problems

8.5.1 Herring's Classical Problems:
Diffusional Viscosity of a Polycrystalline Solid

Let us first show that with Herring's assumptions and
approximations [18] the equations presented in section
8.4 become identical to his starting equations. Only
steady state is considered. There is no volume change
associated with a vacancy (i.e., the average volume of a
vacancy is equal to the atomic volume). This implies
71 = 0; therefore the interactions between stress and com-
position appear only in the boundary condition per-
taining to network modification. Furthermore all terms
nonlinear in stress are neglected, and the reference pres-
sure is zero. The solution of atoms and vacancies is ideal
(i.e., there is no interaction with vacancies and their
concentration is very small). Finally, there is no source
term within a grain.

With these approximations, the diffusion eq (8.33) be-
comes

V2MAl = 0. (8.42)

The expression for the diffusion potential is

Mi,= 4(0)-g2(0)±R l 0ne(l-cv)Jcv] (8.43)

and the boundary condition (8.29) becomes

g'y(O) +R 0 Inc, =-PVo. (8.44)

Subtracting (8.44) from (8.43), and neglecting In(l -c,),
one gets

M a=j-P6

This is the boundary condition used by Herring (his eq
(2)) for the partial differential eq (8.42) since our P
equals his -Pit. The stress equilibrium equation is the
same, and he implicitly used condition (8.37) to get the
rate of displacement of the interface (e.g., to go from (3)
to (4) in his paper). Thus within the assumptions explic-
itly spelled out at the beginning of this section, we re-
cover Herring's equations and boundary conditions.

His solutions combined a mean field (the average of
the stress tensor within a grain is equal to the applied
stress) and a perturbation analysis (the shape of the grain
does not change as diffusion proceeds).

The formulation of the problem with fewer assump-
tions is possible using the equations of the previous sec-
tion which contains important additional terms in the
diffusion eq (8.33) and boundary conditions (8.29). We
next explore a few problems chosen to illustrate the
physical consequences of these additional terms.

8.5.2 Quadratic Effects

Usually the linear term of the r.h.s. of (8.36) is the
dominant one, but, whenever the specimen surfaces are
all immersed in a fluid of constant pressure, this term is
constant and at steady state does not contribute any
gradient. Under these conditions the higher order terms
are the only ones present. We consider two examples in
which we approximate condition for which P is constant
over the surfaces of interest.

The first treated by Roitburd [351 is a pore in a speci-
men under uniaxial stress in which he examined the
shape change by vacancy fluxes that redistributed mate-
rial around the pore. Other vacancy sinks and sources
were assumed so far away that fluxes between them and
pores could be neglected. Because P in the pore is con-
stant, the effects depend entirely on the quadratic terms.
The result of the calculation is that a spherical pore will
distort to an oblate spheroid with the minor axis along
the stress axis. Because this conclusion arises from qua-
dratic terms the same result is obtained regardless of
whether the specimen is under tension or compression.

A closely related problem is a long single crystal rod
of nonuniform cross section under a uniaxial load ap-
plied at the ends. If the characteristic length of the non-
uniformities is short compared to the specimen length,
we may examine the redistribution of material along the
lateral surfaces by vacancy flux and ignore the fluxes
between these surfaces and the specimen ends. Along
the surface P is again constant. If we assume 7q, = 0 and
that the elastic constants are independent of c,, (8.36)
becomes

(8.45) 1,4(o)+R0Ilnc=-V4- IV (Tkk)2+ Iv TYjTj]. (8.46)
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The r.h.s. is minus the elastic energy of the solid. Let us
note that the rod is unstable to necking. A small inden-
tation (or any change in cross section) will produce a
higher stress at its root (or at the minimum cross sec-
tion). Vacancy flux will remove material from the root
(or at minimum cross section) and deposit it nearby at a
place of lowered elastic energy. The rod is unstable to
necking by diffusion creep regardless of whether it is
under tension or compression. This is the same result as
Roitburd's pore,which can be considered an internal
notch.

This counterintuitive result is consistent with thermo-
dynamics. Consider the work done by the loading sys-
tem, applied force times distance moved. The compli-
ance of a rod with nonuniform cross section increases if
the rod necks down, and thus the load system does work
on the specimen. Conversely if the rod were to become
more uniform under load, its compliance would de-
crease and it would have to do work on the load system.
This would be in violation of thermodynamic principles.

Another interesting result of eq (8.46) is the case of a
uniform rod, in which we again can ignore the ends as
vacancy sources or sinks. The equation states that for
-q, =0 and elastic constants independent of c, the equi-
librium vacancy concentration is a maximum at zero
stress, and is lowered equally by tensile and compressive
stresses. This result is again understood if we realize that
the cross-section will be reduced if vacancies leave the
system, increasing the specimen's compliance. The re-
sult will be modified if we assume that the elastic con-
stants are a function of c, and if we let ij, differ from
zero, but for small changes it will not affect the sign.

8.5.3 Balancing Quadratic and Linear Effects.
The 27r Wedge Disclination

Linear effects do not automatically dominate qua-
dratic effects. An interesting example where both are
present and cancel identically is a hollow tube com-
posed of a 27r wedge disclination in which there is a
pressure difference between the inside and outside of the
tube.

To form the 27r wedge disclination we take a rectan-
gular sheet of a perfect single crystal, bend it into a tube
and weld the seam to insure perfect matching of lattice
planes (fig. 3).

At this stage there are tangential compressive stresses
at the inner surface and tensile stresses at the outer sur-
faces. MI, at the two surfaces is the same because the
stresses at the two surfaces have the same magnitude.
Because of this the system reaches a vacancy equi-
librium in this heterogeneously stressed system in which
vacancy gradients and stress gradients combine to give
a constant M I, throughout.

Now apply a pressure difference between the inside
and outside and permit vacancy flow. It is readily shown
that in spite of the pressure difference the value of MI, at
the inner surface equals that at the outer surface. In the
presence of the higher pressure at the inside there is a
change in elastic free energy density, a reduction at the
inner surface and an increase at the outer surface, and
vice versa if the sign of the pressure difference is
changed. The elastic energy is quadratic in the stress,
but the change in stress due to the imposed pressure
difference is linear in AP. The result is that the linear
terms in P in MI, cancel identically the changes in the
quadratic terms in the tangential stresses. The linear and
quadratic terms balance identically to give the same MI,
at the two surfaces. Again an equilibrium is reached in
which Ml, is constant throughout and vacancy concen-
tration gradients compensate for stress gradients.

This surprising result that the 27T wedge disclination
will not creep by vacancy flow even when there is a
pressure difference can also be understood by consid-
ering the consequence of the transfer of an entire plane
of atoms from the inside to the outside. If we start with
either of the flat single crystal plates and create the
disclination we see that the tube is the same whether the
atom layer is transferred or not (fig. 3).

9. Summary and Conclusions

We have reviewed and applied the thermodynamics
that has been developed for multicomponent multiphase
stressed crystalline solids. We have found equilibria in
which the solids were neither homogeneous in stress nor
in composition. We have considered equilibria for three
types of multiphase contact: solid-fluid, incoherent, and
coherent solid-solid. We have also examined simple non-
equilibrium cases where potential gradients determine
diffusion. Diffusional creep in particular was used to
illustrate the importance of a full thermodynamic treat-
ment.

Crystalline solids differ fundamentally from liquids in
that they posses long range three-dimensional trans-
lational order. This implies that we can define a lattice
and site occupancy. The number density and type of
sites is known, and a local change in composition can
only be made by redistributing atoms and vacancies
among these sites. This fundamental restriction in the
interior of a crystalline solid introduces important dif-
ferences between the thermodynamics of solids and
those of liquids. Because these restrictions apply at co-
herent boundaries but not at other boundaries, we find
different equilibrium conditions at the various bound-
aries.
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The equations that result from the thermodynamics
consists of a set of coupled partial differential equations,
algebraic equations and boundary.conditions for stress
and composition. For the kinetics, the diffusion equa-
tions are added. Although full nonlinear and large strain
formulations exist, we have concentrated on examples
where the essential features were displayed with small-
strain approximations and linearized thermodynamics.

The thermodynamics has resulted in identifying and
precisely defining the important phenomenological
quantities needed for predictive calculation. The defini-

Figure 3-Radial vacancy fluxes
that remove layers from the in-
ner surfaces and deposit them on
the outer surface of a 2nT wedge
disclination do not enlarge the
disclination and therefore no
work is done by any pressure dif-
ference. To see this, consider the
cross section (c) of 27r wedge
disclination made by elastically
bending the perfect crystal (a)
into a circular cylindrical shell
and joining the ends. The 27r
wedge disclination after radial
diffusion is unchanged because it
can be made from (b) which is
identical to (a) except for trans-
lation of bottom layers to top. It
will therefore reach the same
equilibrium geometry in the
presence of the pressure differ-
ences.

P=O

tions in particular are important and much of the contro-
versy in the literature is judged to be the result of inad-
equate definitions of quantities. Furthermore the
necessary data needed for evaluating the equations turn
out to be computable from classically measured quan-
tities, such as free energies of hydrostatically stressed
solid solutions, elastic coefficients, and lattice parame-
ters.

One important method for solving the equilibrium
equations uses the notion of open-system elasticity. This
method eliminates the composition variable from the
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system of equations, and leaves a purely elastic problem
to be solved. Central to the method are the open-system
elastic constants, and in this paper we show that the
same technique applies to multiphase solid equilibria.
With this technique a large number of elastochemical
problems are now solved because they become identical
to solved problems of chemically.homogeneous elastic
solids. Once the stress field is known, only algebraic
equations have to be solved to obtain the composition in
the solid. As an example of the use of this concept, we
have solved the dislocation atmosphere (stress field and
composition field) in an isotropic and a cubic solid, auto-
matically taking into account in a self-consistent way the
thermodynamics of the solid solutions. Another exam-
ple is the inclusion problem, although we have not
found in the literature the shapes that satisfy the phase
equilibrium boundary condition other than sphere, cir-
cular rod, and plate.

The question of the need for defining separate chem-
ical potentials for each chemical species inside the solid
has been a subject of controversy ever since Gibbs. We
hope that we have shown that problems of equilibria can
be solved without defining or using them. Gibb's famous
example of a homogeneously stressed solid which gave
three different chemical potentials when equilibrated
with three fluids each at a pressure equal to minus a
principal stress should alert everyone to the danger of
attempting a definition. Of course our Ml, could be con-
strued to be a chemical potential of the Ith specie, but
we prefer for clarity to retain the vacancy as the counter
specie.

Questions of species that occupy more than one site
needed to be addressed. As our section 5.6 shows, the
classical notion of chemical reactions among species on
different sites very nicely resolves any confusion. Treat-
ing interstitials as atoms occupying sites that are mostly
empty resulted in a unified treatment and clearly demon-
strated the principle. From this more general treatment
we showed it is possible to develop a treatment in which
interstitials require a different and more convenient for-
mulation.

We have supplemented an earlier overview on the
effect of self-stress on diffusion by adding boundary con-
ditions that permit phases to grow or shrink at the inter-
face.

Diffusional creep is an important field in which the
linearized and simplified treatment of Herring was an
important first step. However Herring's definitions
were not precise and this has led to much later con-
fusion. We have presented a detailed derivation of a
fuller treatment in which each term is fully defined and
related to the data base. To emphasize the importance of
the nonlinear terms, which Herring alluded to, but dis-

carded, we gave two examples each of which seems
counterintuitive but thermodynamically correct: a long
rod which in compression is unstable to necking by
diffusional creep, and a tube composed of a perfect 27r
wedge disclination which does not bulge by radial va-
cancy flux even when there is a pressure difference be-
tween the interior and exterior. The former is a case
where Herring's linear term is zero and we must resort
to the quadratic terms, and the latter is a case where the
linear term identically cancels changes in the quadratic
terms. The fuller equation contains several other terms
usually ignored in creep theories that also can become
important.

Capillary effects (surface strain and surface free en-
ergy) are not included. A formulation exists for some
types of interfaces or specific geometries [36,37]. The-
ories of equilibrium of stressed solids with capillarity
effects for the three types of interfaces considered here
are being developed [38].

Although the elastic energy is usually small compared
to the free energy change resulting from a composition
change, there are domains where the interactions of
composition and stresses are likely to be important. Self-
stresses resulting from the presence of defects or hetero-
geneity of the material can have sizable consequences.
The depression of the consolute critical point and the
spinodal is a well known example. In systems without
critical points coherent equilibrium is also strongly af-
fected. Coherent phase diagram features have recently
been found [39,40] that differ markedly from incoherent
phase diagrams. The equations that could be used to
calculate these phase diagrams have been obtained in
sections 3 and 4.

Interesting consequences originate from the long
range nature of the elastic forces. For instance this intro-
duces non-local effects in the diffusion equation. Under
hydrostatic pressure, a multi-phase incoherent dis-
persion at equilibrium is degenerate with respect to the
shape of the phases, i.e., the equilibrium is independent
of the shape of the precipitates. Under a more general
state of stress (coherent precipitates, for instance), this
simple result is no longer valid. The equilibrium equa-
tions have to be solved on an unknown boundary and
the equilibrium shape is to be determined as part of the
solution (a so-called free boundary problem). With the
use of the open-system elastic constants such problems
can be expressed as a purely elastic problem. The phase
equilibrium boundary condition is the one that makes
the problem different from classical elastic inclusion
problems for which a shape is imposed. The solutions of
the elastic equation of general shape will not be consis-
tent with the phase equilibrium boundary condition.
The catalog of the shapes that produce an elastic field
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that in turn satisfies this condition has not yet been
found. The introduction of capillarity would modify this
condition. Work has been done on the subject [41].

We are grateful to W. C. Johnson and R. F. Sekerka
for helpful discussions and criticism. We are especially
grateful to M. Hillert for questioning the need to treat
interstitials differently from other species. Out of our
discussion with him the ideas of section 5.6 evolved. J.
Hirth kindly called our attention to misprints in [37]
which have been corrected in this article.
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Appendix 1. Solid-Liquid Equilibrium Under Hydrostatic Stress

We consider the case of a substitutional binary solid. In equilibrium with a fluid under hydrostatic
stress (for instance if it is entirely surrounded by the fluid), the mechanical equilibrium eqs (3.13) and
(3.14) implies that the stress is equal to

Tjj=-P85 (Al.1)

where P is the pressure in the fluid. The stress being uniform, the constancy of the diffusion potential
implies that the composition is uniform. Therefore the solid is uniform. The boundary condition

f-gfpu-42P 2= -P (Al.2)

can be combined with the equation for the diffusion potential

(Al.3)
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to give

Ld=(f+P +p2 M, 2)Vo (A1.4)

A2=f ((P-pIM12)VO (Al. 5)

Because the solid is uniform, these expressions are valid everywhere. The quantities on the right hand
side of (A1.4) and (A1.5) depend only on the value of the state variables. Let us call them gtl and gt.

--_~(f +P +PlM12) Vo (Al.6)

A2=(f+P-p 1M 12 )V 0 (Al.7)

Elimination of M,2 between these two equations gives

f = -P+pIFjI+p2 42

and, because of the uniformity, we can multiply by VD to get the total Helmholtz free energy

F= -PV0+Nj4±+N2y2

where N1 and N2 are the total number of moles of components I and 2 respectively. The differential
off' is

df '= TjdEj +M12dp'

M 12 is replaced by its value obtained from (Al.6) and (Al.7). Using the definition of pi, and after
multiplication by V0, one obtains

dF=-PdVo+pl dN,+g2dN2

Therefore

91- WN)F,N

2( aN) V.N"

We have recovered all the classical formula for fluid-fluid equilibrium. Despite network constraints,
a solid under hydrostatic stress behaves as if it were a fluid.

Appendix 2. The Boundary Conditions for Coherent Phase Change:
Small Strain Approximation

The full large strain boundary condition for coherent phase change is [15]

Ct)Ja _(d113-n'a(FaT P re (af Da/aF)sena=O (A2. 1)

where the same reference state is chosen for both phases. The superscript T stands for transpose and
F is the deformation gradient. (af '/aF) is the first Piola-Kirchoff tensor TR. It is related to the Cauchy
stress tensor T by

TR -JT-(F -) (A2.2)
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where J is the determinant of F. In the small strain approximation, the displacement tensor is given,
to first order in the derivatives u1 j, by [11]

F=I+E +Q+O (U 1,j) (A2.3)

where E is the small strain tensor, (eq (3.1)), fl the small rotation tensor, and I the unit tensor. To the
same approximation, its inverse is given by

F-'=I-E-fl+0(u,?j) (A2.4)

Using these equations we get

n'o(FTeTR)on'= n'(I+E -f)eTo(I-E+Q)on' (A2.5)

+O(ujj)

Dropping terms of order u j, and since, for an arbitrary 3 X 3 tensor

n'oAon' =n'oATon'

we finally obtain

n'-(FTrTR)*n' = n' *T*n'- 2n' of *Ton' (A2.6)

Since the same reference state has been chosen for a and /3, the following equalities hold

pj=pocll; pa =pocp
Ja=p6/pa JR= po/p (A2.7)

Using (A2.7), (A2.6), and (A2. 1) we finally obtain

Yof -yMIKC~a+ Vo [-Tijaniania±2flyaTjan!anea] (A2.8)
= o M-MIKC I+ VO [-xj n+2flij"Tjk nAk]

=VI' -7MIKC"+ VI [-Ty n n±12fljj.kTnnjf]

The various terms are seen to be energies per mole of lattice sites. It is then easy to make a change
of reference volume (like the stress free state for each phase). To the level of approximation used in
linear elasticity this won't affect the VO f ' terms. But it does affect the terms linear in Tij.

Appendix 3. Derivation of the Open-System Elastic Stiffness and Compliance Tensor

All the calculations are done at constant temperature, so that all the partial derivatives are
understood to be at constant temperature. We first treat the case of a binary solid, then generalize to
a multicomponent solid.

A3.1 Binary Solid

To simplify the notation we take p' to be pl. The differential of the stress can be written

dTi= ( al)OdEk, + (L) dp (A. 1)

or
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dTjf1 - dEkJ+Kag )dMl2 (A3.2)

The differential of the diffusion potential is

dMIl2=( aM 2) dp)+(a2) dEy (A3.3)

Replacing dp' from (A3.3) into (A3.1) yields

dT 1= ~ JaM 12 a/(M12 E
ai' j [(B~ ap' h,,k aEj ,p/(/ ap' / E,, ( d.k!

+ [(Ofi)Ea a I).,2 I CIM2 (A3.4)

and the coefficient of the term dEk, is the (ikl) component of the open-system stiffness tensor.
Using the stress-strain relationship (4.14) and the Maxwell relation

( T) ..j(aA12) (A3.5)

one gets

(aMi=) dC*jkljkl+ d (Eky EkI) (A3.6)

The value of M 12 as a function of Ejj rather than Tij is obtained from (4.14) by using

SJk, Cklmn = 8Am 8jn (A3.7)

Neglecting strain dependent terms, we finally get

C *kd =Cykj Ci j .cmnCpq71nmn 7lpq (A3.8)

Because of the linearity, we have

S *0kl Clktmn =Aim5jn (A3.9)

where S *j>, are the open-system compliances. Combining (A3.8) and (A3.9) gives

Sijk =Siskr+POxg 'qkI (A3. 10)

where By are defined by (4.4).

A3.2. Multicomponent Solids

We follow the same derivation as above. The differential of the stress tensor is

d Tij = ( ) IJ+dE #,K (pL dp (A3. 11)

The differentials of the potentials are

dMIK= = (aMIK) dp,+ aM) d.E (A3.12)
3*AK aPflj K aEjj4 (A3i2
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dp; can be obtained from this system of linear equation by Kramer's rule

dp '[I# (dI(aMK J)p dEq)Aij]/D (A3.13)

where D is the determinant

D =aMIK
ap JK

and All is the minor of the (OMIK/apjK) term of D. Replacing dpj by its value in (A3.1 1) and using the
Maxwell relation

(apl)EZ / ( aMIj )pj (A3.14)
ap EkI' \~1 a E ijP

we get

( aEki) i( ( aD 19iK api) Aq (A3.15)a~kI aEkjI--O - A 3 (315

Using (A3.9), Hooke's law, and neglecting strain dependent terms we finally get

S *jk, =Sijkl+- (I ! aC)( a jc (A3.16)X I, ~K a 1 ac3

where X is the determinant

X=pO' I aMIKIaM1j

and Al, the minor of the (IJ) term of X/po.

Appendix 4. A Common Tangent Construction

Let gk be three unit vectors normal to each other, such that g' is the normal to the interface, with
components gkj. The vectors Xk are defined by

?I j =Ea f j (A4. 1)

Since the determinant 1 1 has the value 1 the system of equations (A4.1) constitute a valid linear
change of variable. Using the chain rule, we obtain, considering the ek as fixed

(afd)E pj T/J(kXkIknj (A4.2)
aE EkIpj 

After multiplication by j and summation on j one gets

TLe us di th (A4.3)

Let us define the free energy 4' by
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(A4.4)

=f '-7T nj Eik nk (A4.5)

and it is easy to show that

M ( af' ( aX'
MI = T_ -) \ pK4kT (A4.6)

The conditions for equilibrium at an incoherent interface (eq (3.24)) can be written

f Y.c a c(a f _TYanan aVa

_ -Tijin#n9PV.O (A4.7)

where quantities such as f are justf 'v;, i.e., quantities per mole of lattice sites.
If the normal pressure is zero, so that Ty nj=O it becomes equivalent to

a; aElaac : ( ~ A, (A4,8)

which together with

MlK = ,K

which can then be written

so taha ( cction (A4.9)

show that CIK can be obtained by a tangent construction to Xwhich, in this case is just equal to f
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