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Analytical expressions are derived for the melting line and liguid equation of state of normal deuterium near
the triple point. Melting pressures were measured between the triple point and 20.4 K. These results combmed
with existing pressure measurements along the saturated liquid-vapor curve fix an accurate value, Typ=5 l18.723K,
for the triple-point temperature. Data for the iscthermal compressibility and thermal expansion coefficients of
the liquid were taken over the temperature and pressure ranges 18.8 to 21.0 K and 4 to 70 bar, respectively. The
liguid molar volume was measured at nine points below 20.4 K. All liquid PVT data are shown to be internally
consistent. Measurements of the volume changes on melting are also presented. The heat of fusion and the solid
molar volume at melting are deduced from these data. Also included are detailed comparisons of our results with
existing data. A critical appraisal is given of all measured thermodynamic quantities in this regime.

Key words: compressibility; deuterium; equation of state; melting pressure; ortho-para concentration; pressure-
volume-temperature (PVT); thermal expansion; thermodynamic properties; triple point.

1. Introduction

Interest in the properties of the condensed-phase hy-
drogen systems has continued for well over 50 years. As
early as 1935, Clusius and Bartholome [1]' published the
first comprehensive thermodynamic study of normal
deuterium (n-I;) in the triple-point region. These results
were followed by others [2,3] and included in the 1948
review article by Woolley et al[4]. Since that time, there
have been some additional measurements in this regime
[5,6], but most efforts have been toward establishing the
pressure-volume-temperature (PVT) relationship over
extended ranges of temperatures and pressures.

By 1959, an incomplete collection of fluid-phase den-
sity data was available at various intervals in the

About the Authors, Paper: The work reported on
was performed at the Los Alamos National Labora-
tory where L. A. Schwalbe, a physicist, remains and
from which E. R. Grilly, also a physicist, is retired.
The work was supported by the Fusion Target Fabri-
cation Group at Los Alamos.

'Figures in brackets indicate literature references at the end of this
paper.

temperature range from the triple point to 420 K and at
pressures to 3 kbar. Prydz [7,8] critically reviewed these
results, fit them to a modified Strobridge equation, and
derived analytical expressions for selected thermo-
dynamic properties.

More recently Mills et al. [9] measuvred simulta-
neously the molar volume and ultrasound velocity of
fluid n-D, in a piston-cylinder apparatus. The data
spanned temperatures of 75 to 300 K and pressures of 2
to 20 kbar. The resuits were fit to a Benedict-type equa-
tion of state, and analytic forms were derived for both
constant-volume and constant-pressure heat capacities
over these ranges. In a companion to this work, Lieb-
enberg et al. [10] reported measurements of the melting
line from 4 to 19 kbar and the corresponding changes in
the molar volume and longitudinal sound velocity.
From these data, they derived the entropy change on
melting, the adiabatic compressibility for the solid and
other thermodynamic properties.

Most work on solid deuterium has been done at low
temperatures and low pressures although the volume-
pressure dependence at 4 K was measured to 20 [11] and
25 kbar [12]. Recently, solid-phase isochoric equation-
of-state data were taken to 2 kbar [13,14].
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The purpose of this study is to supplement existing
PVT and melting data with accurate and precise
measurements’ in the region of the phase diagram near
the triple point. Data are presented for the pressures and
liquid molar volume of n-D; along the melting line from
the triple point to 204 K. The isothermal com-
pressibility and thermal expansion coefficients of the
liquid are given over the same temperature range and at
pressures between 4 and 70 bar. The combined liquid
data are fitted to an empirical equation of state and are
shown to be internally consistent.

Measurements of the volume changes on melting are
also presented. The heat of fusion and the solid molar
volume at melting are deduced from these data.
Throughout the discussion, we have included detailed
comparisons of our results with existing data and have
attempted to provide a critical appraisal of all measured
quantities in this regime.

2. Experimental

Our studies on n-D, were carried out with essentially
the same apparatus as that used earlier for similar work
[15-17] on *He and “He. The pressure cell, which was
referred to in previous descriptions [16,17] as “cell 1,”
consisted of three BeCu diaphragms that were welded
together at their circumference and separated by 0.3 mm
gaps (see fig. 1). The lower gap was connected to a
capillary tube and remained open to a room-temperature
helivm gas-handling system. With this arrangement P,
the pressure of the lower-cell volume, could be adjusted
or measured directly. The upper cell gap served as the
deuterium sample chamber; a fixed quantity of material

2Full data are available from the authors.

"

Dy SAMPLE
INLET
LEAD
He PRESSURE — WIRES
CAPILLARY
CAPACITOR
PLATES

SPACER

could be maintained in its volume V, by sealing the
low-temperature valve. The sample pressure P, was de-
termined from the deflection of the upper diaphragm.
Originally the deflection measurement was made with a
linear differential transformer [15], but the capacitance
technique was adopted because of its greater sensitivity
[17].

Changes in the volume of the sample chamber depend
upon changes in P,, P, and the bath pressure P, accord-
ing to the equation

AV, =(S,+SPAP,—SAP,—S AP, (1)
where §, and S are pressure sensitivity factors of the
volume changes to changes in the upper and middle
diaphragm displacements, respectively.

The pressure sensitivity factors for the cell were not
constants but varied reproducibly by 1 or 29 as P, and
P, varied between 0 and 70 bars, the highest working
pressures in this experiment. For the earfier helium mea-

surements, these variations did not critically affect the
results, but for the present work it was first necessary to
calibrate the system more precisely. To do this, three
separate sets of calibration measurements were run. In
each, the procedure first involved loading the sample
chamber with liquid p-H, at T=20.00 K and then
“bleeding” small amounts from the cell through the
valve and into a calibrated standard volume held nomi-
nally at room temperature. The quantity of material
drawn from the cell was then measured and the corre-
sponding changes in the sample volume AV, were calcu-
lated using the p-H, density values tabulated by Good-
win et al. [18]. According to eq (1), isothermal changes
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Figure 1—The pressure cell and
low-temperature valve assem-
bly.
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in ¥, under the constraints AP,=0, AP,=AP, and
AP,=0 yield the factors S, S, and S,-+3), respectively.

A consistent set of pressure sensitivity parameters was
obtained at 7" =20.000 K for the entire working range of
both upper- and lower-cell pressures. The quantities S,
and 8, that were used in the data analysis were accurate
to =+0.1%. Extrapolations of total volume mea-
surements to P =P =P,=0 absolute pressure deter-
mined V, the zero-pressure volume of the sample
chamber. The latter calibration was made at two sepa-
rate times: initially, before any of the deuterium work
was begun and again near its completion about 18
months later. The first set of measurements obtained an
average value 0.37477 cm® for six separate runs; for the
second set the average of five runs was 0.37426 cm®. In
the data analysis we used the mean of these two values,
V,=0.37452 cm’, and set an accuracy limit of +0.15%
for this quantity. This error includes the £0.1% uncer-
tainty of the original p-H, density data [18].

Equation (1) has no explicit temperature dependence
included. In this range, there are negligible effects intro-
duced by the temperature coefficient of the cell mate-
rial. The thermal expansion of BeCu should be compara-
ble to that of Cu. Rubin et al. [19] reported a linear
expansion coefficient of 6 X 10~% K~! for copper at 25 K.
The effects introduced by thermal expansion are, there-
fore, about an order of magnitude smaller than the
quoted uncertainties in our data. To check this explic-
itly, we measured thermal expansion coefficients of lig-
nid hydrogen in our cell. Hydrogen data were taken at
0.4 K intervals between 19.0 K and 21.0 K along six
isobars (5.48, 14.76, 28.52, 42.28, 56.05, and 69.81 bar).
The measured values agree with those that Roder et al.
[20] derived from the original density data of Goodwin
et al. [18].

The uniform sample temperatures required for this
study were maintained by holding the pressure cell as-
sembly immersed in a bath of liquid 20 K-equilibrium
hydrogen (e-H;). Temperatures were controlled by reg-
ulating the bath pressure with a Baratron’ Type
77H-1000 metal diaphragm gauge (0-1000 Torr range).
Bath pressures were obtained directly with an
18-mm-bore mercury manometer. The mercury column
heights were measured with a cathetometer, and stan-
dard corrections for the temperature and local gravity
constant were applied to these readings. From these
data the sample temperatures were calculated with the

*Certain trade names and company products are identified in order
to adequately specify the experimental procedure. In no case does
such identification imply recommendation or endorsement by the Los
Alamos National Laboratory or the Journal of Research of the Na-
tional Bureau of Standards, nor does it imply that the product is
necessarily the best available for the purpose.

saturated liquid-vapor pressure equation of Souers et al.
[21]:

In Py(torr)=10.57411—101.3378 T-!
454320051072 T—1.105632 X 1074 T2 (2)
This function is identical to that defined by the Inter-
national Practical Temperature Scate of 1963 (IPTS-68)
[22] although it is expressed in somewhat different form.

Temperature precisions of slightly better than 1 mK
were attainable with this procedure. From run to run,
with the possible exceptions noted below, the scale
seems to have been reproducible to within about +2
mK.

3. Results and Discussion
3.1 Melting Pressures

The melting pressures of n-D, were measured by clos-
ing the cell valve on a liquid-phase sample and in-
creasing P until the capacitance readings showed the
sample to be in the two-phase region. At each tem-
perature, capacitance readings were recorded for
several different P, values. Finally, the valve was opened
and the capacitance-pressure calibration was rechecked
against the piston gauge. The results are given in table 1.
Measurements were taken during four runs, each lasting
one week; each run represents a separate filling of e-H,
refrigerant.

It is important to note that all melting pressures re-
ported here correspond to the “first-freeze” character-
istics of the sample. The pressure-temperature mea-
surements were recorded for small solid fractions
{<5%) of the two-phase mixture. In a later section, we
discuss in more detail the problems involved with pre-
cision measurements of the sample pressure when larger
relative quantities of solid are present.

Values for the slope of the melting curve are plotted
in figure 2. Those obtained from run numbers 1, 2, 3b,
and 4 were derived from consecutive melting pressure
measurements. Those labeled “3a” were measured di-
rectly by temperature cycling a single sealed sample.
The plot indicates a nearly linear temperature de-
pendence for the slope. The melting line P,(T,) should,
therefore, be adequately represented by a gquadratic
function over this limited range. For the least-squares
fit, we chose an equation of the form

Po(To)=Pyp+A(Tu—Tp)+A(Ta—T) (3
where A4, and A, are fitting constants and P,, and T;; are
parameters that represent the pressure and temperature
values at the triple point. Our best fit gave 4,=38.884
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Table 1. Measured pressure and temperatures of normal deuterium along the melting line.

Run No.1 T, (K) Pu{bar) Run No.2 T.(K) Pu(bar) Run No.3 Tn(K) Pylbar) Run No.4 To(K) Pu(bar)
20.407; 69.61 19.504, 31.90 19.703, 4003 20.306, 65.16
20,206, 60.75 19302, 23.73 20407, 69.44 20.103;, 56.62
20,006 52.40 19,102, 15.72 20.204, 60.86 19.902, 48.24
19.805;, 44.02 18.902, 7.81 20.004, 52,48 19.699;  39.86
19.605;  36.10 20.007, 52.57 19.802, 44.08 19.504, 31.88
19.404, 27.88 19.804; 44.14 19.192; 19.40 19.301, 23.68
19.198, 19.61 19.603; 3593 19.000, 1175 19.100, 15.64
20.306, 65.29 19.402, 27.75 18.899, 7.69
20.107, 56.83 20407, 69.4 19.404, 27,79
19.906, 48.12 20.305¢ 65.10 19.195, 19,38
19,704,  39.79 20.205,  60.83 19.000, 1165
20,408, 69.87 20.105, 56.63 18.829, 4.88

19.906, 48.05 19.603; 36.04
18.828, 4.96

bar/K, A,=1.078 bar/K? and T,=18.7067 K with
P,=0.17 bar.

Grilly [23] reported a triple-point temperature of
18.73 K. The result obtained here 18.7067 K is consid-
erably lower. We attempted to fit eq (3) by varying only
A, and A, with T,,=18.73 K and P,,=0.17 bar held fixed,
but the results showed large systematic deviations. We
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Figure 2—The slope of the melting curve. Data from runs 1, 2, 3b, and
4 were obtained by subtracting consecutive measurements of the
melting pressure. Data from run 3a were measured by temperature
cycling a single sealed sample. The sclid line was obtained by
evaluating eq (4). The dashed line is the slope of the melting func-
tion given by Clusius and Bartholome [1].

believe the difference is due to impurity effects in the
actual fixed-point values of our sample lot. Mass spec-
trometric analysis of the sample material showed 0.75%
HD present with no detectable traces of Hj, N, or H;O
at the 50 ppm sensitivity level. Sample impurities in low
concentrations affect both triple-point parameters, but
within the resolution limits of this experiment, the tem-
perature 7}, is much more sensitively dependent on im-
purity effects than is the pressure P,,. Therefore, in the
final calculation we retained the fixed value P,=0.17
bar and allowed only T, to vary along with 4, and 4,.

Equation (3) with the above parameters describes the
melting line for our sample, but for pure n-D,, a pressure
correction must be applied. If this correction is propor-
tional to the HD concentration and to the difference in
pressure between the HD and D, melting curves, 0.6 bar
should be subtracted from P, in eq (3) to obtain the
melting pressure of pure n-Ds.

A plot of the deviations of our data from eq (3) is
shown in figure 3. With the exception of a few points,
mainly all from the first run, the data appear to lie within
+0.1 bar of the smooth curve. The precision of our
measurements is comparable to that of Bereznyak and
Sheinina [24], who measured the melting lines of e-H,,
n-H;, and e-D; over roughly the same pressure interval.
Their P,, measurements on e-D;, exceed ours on n-D; by
1.5 bar at 18.8 K and 2.3 bar at 21.0 K. (This difference
is similar to that observed between the melting lines of
e-H; and n-H,.) However, they observed a slope discon-
tinuity in their e-D; melting curve at T=19.02 K and
P=14.2 bar. Our data show no anomalous behavior
anywhere in the range 18.7067 to 20.400 K.

An analytic form for the slope of the melting curve is
obtained by differentiating eq (3) with respect to Ty

4Py _
dT.
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Figure 3—The deviations of the melting pressure data from the
smooth curve defined by eq (3).

We have included in figure 2 a plot of eq (4) with the
values A, A;, and T, found above. This function repre-

sents the data for the slope of the melting curve to

within -=0.5%.

Other melting data are available for comparison.
Among the earliest of these are the Clusius and Bar-
tholome [1] results on n-D,. These measurements extend
from the triple point up in pressure to about 100 bar.
Clusius and Bartholome employed a technique in which
the liquid sample was held at nominally constant pres-
sures while the surrounding n-H, bath pressure was
gradually lowered. The freezing transition temperature
was measured by observing the effect of the latent heat
of the sample on the cryogen bath pressure. Their
quoted temperatures were obtained from the measured
cryogen vapor pressure and the centigrade-scale, 8(P),
vapor-pressure equation of Keesom et al’ [25]. Absolute
temperatures, according to Bartholome [2], were then
calculated from the expression T(K)=#64273.15. Clus-
ius and Bartholome fit their results to a Simon-type
melting equation. This curve, corrected to the IPTS-68,
is seen to lic about 2 bar higher than the present mea-
surements.

Later studies have considerably extended the pressure
range for the deuterium melting line. Chester and Dug-
dale [26] measured n-H, and n-D, to 2.8 kbar, but their
results cannot be used for direct comparison here be-
cause the data were expressed only as melting pressure
differences between the two isotopes at the same tem-
perature. They observed a nearly constant difference of
1678 bar between 25 and 57 K.

Further results were reported by Mills and Grilly
[27,28] who used a blocked-capillary technique. Their
first data set [27], on n-H, and n-D, only, was limited in
pressure to 1.5 kbar because of embrittlement and crack-
ing failures in the measurement apparatus. However, a
later, improved system [28] allowed them to measure
pressures of n-H;, n-D,, and n-T, to 3.5 kbar. Their
deuterium samples had about the same HD concen-
tration as ours. Below 70 bar, the limit of the present
study, they obtained three points which we corrected to
IPTS-68 by adding 6 mK to their temperatures. Com-
parisor of these results with eq (3) shows their P,, mea-
surements falling lower than our smooth curve by 0.4 to
0.8 bar. A comparison of the melting curves obtained for
n-H, and n-D; shows a difference of about 170 bar near
20K.

Goodwin [29] proposed the empirical function

(Pa— P)/(Ta— Ty} =4 exp(—a/Tn)+ BT+ C (3)

as a universal equation for the melting lines of the three
hydrogen isotopes. For C =0, the constants 4, @, and B
were fixed from existing normal and para-hydrogen
melting data. The equation was then applied to n-D; and
n-T, using their respective triple-point parameters, T,
and Py, Goodwin adjusted the values of C to obtain best
fits to the melting data of the two heavy isotopes. At
pressures exceeding 100 bar, the function for deuterinm
was made to agree with the melting equation published
by Mills and Grilly [28] to better than 0.5%. Goodwin’s
equations for n-H, and n-D, differ in pressure by 169 bar
in the 20 K region.

Several years after this work was done, Younglove
[30] obtained additional melting data on p-H, and found
these to be systematically offset from Goodwin’s origi-
nal function [29,31]. At low pressures, Younglove's
melting pressures are about 0.4 bar lower than Good-
win’s, and at high pressures (ca. 130 bar) they are 1.2 bar
lower. It is, therefore, interesting to compare our mea-
surements on n-D, with eq (5). In doing so, we find the
temperature-corrected [32] form of Goodwin’s equation
to be about 0.5 to 0.8 bar lower than eq (3). However,
the earlier function refers to a triple-point temperature
of 18.72 K, which more nearly represents the pure n-D,
value than does our direct measurement of 18.7067 K.
The impurity correction of —0.6 bar discussed above
brings the two melting curves into nearly complete cor-
respondence. We suggest that Goodwin’s equation de-
scribes the melting pressures of pure n-D, to about =0.2
bar at pressures below 70 bar.

The only other melting curve available is that of Lieb-
enberg et al. [10]. Although the range of validity of this
experimental curve extends to 20 kbar, there are large
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(=40 bar) discrepancies in the low-pressure range of
present interest.

3.2 Triple-point Temperature

As we have mentioned, the physical significance of
T in eq (3} is that it represents an empirical triple-peint
temperature for our sample material, A review and dis-
cussion of existing triple-point data for deuterium is
presented separately [33].

Most of the earlier triple-point measurements were
derived from saturated solid- and liquid-vapor pressure
data. With this approach, separate empirical functions
are fitted to the data in both solid and liquid temperature
regimes. Simultaneous solution of these functions then
defines the two triple-point parameters. In general, this
technique allows Py, to be fixed with precisions com-
parable to those of the direct pressure measurements.
However, the temperature value at the intersection
point is difficult to find closer than about 20 or 30 mK
[33]. The greater relative uncertainty in I3, results from
the small difference ir. slope between the solid and liquid
vapor pressure functions.

Greater precision for T, can be obtained with supple-
mentary melting data because the slope of the melting
curve is very much larger than that of either the solid or
liquid vapor pressure functions. Even with a relatively
approximate estimate of the triple-point pressure, the
temperature T,, should be determined quite precisely.
(For example, an error of 25% in £, would offset T, by
only about 0.001 K.) By similar argument it is clear that
imprecise estimates of T\, taken as fixed parameters in eq
(3) should introduce systematic deviations in the re-
sidual plot corresponding to figure 3. We examined this
effect explicitly and found that significant deviations are
apparent in the fitting results for all fixed T}, values that
lie outside the range 18.7067+0.002 K.

This value cannot be taken as the triple-point tem-
perature of pure n-I}; because the HD impurity intro-
duces some offset. Bereznyak et al. [34] published melt-
ing diagrams for mixtures of p-H,/0-D;, p-H,/7HD, and
0-D,/HD. The melting-temperature function of isotopic
concentration for the o-D,/HD system was found to be
nearly linear between the triple points of the two pure
elements. It is, therefore, reasonable to assume that a
small concentration of HD-impurity ¢(HD} in other-
wise pure n-D, will shift the observed triple-point tem-
perature from the pure-component value by an amount

ATtp =c({HD)[ Ttp(HD) - Tlp(n'Dz)] . (6)

Substituting 7,,(HD)=16.60 K, 7,,(n-D;)=18.73 K, and

c(HD)=D0.0075 into eq (6) yields a temperature shift of
AT,=-0.016 K.

There is another possible source of systematic error.
We noted earlier that our melting data are actually ob-
servations of the “first-freeze” behavior of the material.
Grenier and White [35] similarly measvred *“firsi-
freeze™ temperatures of deuterinm. But, they also mea-
sured melting temperatures of samples that contained
larger relative fractions of the solid phase, and for these
they reported differences of “a few millikelvin.” The
effect was attributed to variations of the srthe-para com-
positions of the solid and liquid phases. While this sug-
gestion may be true, we feel the data are insufficient to
warrant any firm conclusions. Recall that our direct
measurements of the melting curve slope (labeled “3a”
in Fig. 2) gave results that are consistent with those
derived from the differences of consecutive '‘first-
freeze” melting pressures. In our experimens, the melt-
ing characteristics were affected little by the relative
phase composition of the sample.

In view of these uncertainties, we feel that a triple-
point temperature of 18.72330.010 K for pure n-I, is
the most reasonable estimate from our measurements. 1f
this value is used in eq (3), the calculated P, values will
have been corrected for the HD impurity.

3.3 Liquid Ispthermal Compressibility

The isothermal compressibility 2 is calculated from
the measured change in the sample pressure AP, that
results when the lower chamber pressure is changed by
an amount AP at constant temperature. The expression
used in this calculation

)32

is easily derived from eq (1). In this equation, ¥, repre-
sents the average sample volume for the measurement.
For small changes in P, and P,, the sensitivity factors S,
and S; may be taken directly from the calibration curves.
However, to obtain more precise compressibilities for
the liquid, we chose to measure over larger pressure
intervals. This procedure requires the sensitivity param-
eters in eq (7) to consist of rather complicated weighted
averages of the measured S, and 5, functions.

A plot of the lignid isothermal compressibility mea-
surements along three isotherms is shown in figure 4.
The values obtained by extrapolating eight isotherms ta
the melting curve are represented by circles in the plot.
The estimated accuracy is about ==1%.

The functional behavior of these data suggests that
we consider a liquid equation of state of the form:

Y
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Figure 4-—Isothermal compressibility data for liquid n-D,. Solid
curves are isotherms calculated from eq (9) and the fitting constants
listed in table 1. The dashed curve represents eq (9) evaluated along
the melting line.

V(T.P)=VLT)P+PT)]™" (8a)
Vo(T)=exp[bo+b(T — Tp)-+bo(T — Ty,

+b5(T — Tp)'] (8b)

PT)=co-+c(T —Typ)+es(T — Tp) (8¢)

where 7;,=18.7067 K, and @ and the subscripted letters
b and ¢ are all constants to be determined by fitting eq (8)
and their derivative functions to the experimental data.

For the isothermal compressibility, we obtain the fol-
lowing relationship:

pa.p=—(

dln V) a ©)

oP ) P+PAT)

A fit of eq (9) to the compressibility data gives the
numerical values for the constants a, ¢, ¢, and ¢, listed
in table 2. In figure 4, the smooth curves depicted for
three isotherms and the liquid compressibility along the
melting line were calculated from eq (%) and these con-
stant values.

To our knowledge, there are no published com-
pressibility data in this temperature and pressure range

Table 2. Coefficients to egs (8), (9), and (11) that describe the equation
of state for the liquid.

a=0.12 c=152.0
bp=3.7408 o=—13.2
b1=00017 Cz=0.50
by =0.00028

5;=0.00001

that could be used for direct comparison. But, there
have been several measurements of liquid molar volume
at pressure and some estimates of compressibilities can
be calculated from these by taking first differences. Bar-
tholome [2] published volume data along three iso-
therms between 19.5 K and 21.0 K. Compressibilities
obtained from Bartholome’s raw data are too scattered
to allow any meaningful comparison, but those calcu-
lated from his smooth curves show qualitatively correct
pressure and temperature dependences. Quantitatively,
the agreement with our results is less satisfactory; com-
pressibilities derived from the earlier work typically lie
10 to 14% higher than those calculated from eq (9).

Friedman et al.[6] published molar volume data for
liquid normal deuterium at seven temperatures between
20.3 and 38.0 K and at pressures to 100 bar. Their vol-
ume measurements along the 20.33 K and 20.31 K iso-
therms were shown to agree reasonably well with the
earlier but less precise Bartholome [2] data. Com-
pressibilities derived from the Friedman 20.33 K data
are in =+ 1% agreement with values found from eq (9).
Those calculated from their isotherms at 20.31 K and
23.52 K scatter about our fitted smooth curves with an
average absolute deviation of about 6% and 4%, re-
spectively.

3.4 Liquid Thermal Expansivity

The isobaric thermal expansion coefficient « is calcu-
lated from the measured change in the lower-cell pres-
sure AP, that is required to maintain a constant sample
pressure P, when the temperature of the system is
changed by an amount AT. From eq (1) it follows that

178V SAP §_de
vieT/).— — -

VAT V\dT

where ¥, is again the average sample volume for the
measurement, and dP,/dT'is the temperature derivative
of the liquid p-H, vapor pressure calculated from eq (2).

Figure 5 is a plot of the liquid expansion data obtained
at six different pressures. We estimate the experimental
uncertainty for these measurements to be about +1 or
29%. The data precision was limited to some extent by
the temperature measurements but mostly by a slight

(10)

o=
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Figure 5 Thermal expansion data for liquid n-Ds, Solid curves were
calculated from eq (11) and the fitting constants listed in table 1.
The dashed curve represents eq (11) evaluated at saturated liquid-
vapor pressures and melting as indicated. Open cireles are calcu-
lated values from the fitted equation by Kerr [5].

nonlinearity in the pressure readout of the TI-144 bour-
don gauge used for measuring P. Occasionally some
hysteresis effects were observed in the deflection of the
cell diaphragm although these only occurred for the
initial points in either warming or cooling series of mea-
surements. Errors of about 6% were observed for such
artifacts, and these few data were discarded.

Differentiation of eq (8) yields the following expres-
sion for the thermal expansivity:

(T, P)=by+ 26T —Tp) +3b(T — T

—B(T.P)es+2e(T—Ty)] (11)

where 73,=18.7067 and B(T,P) is calculated from eq
(9). The constants g and the subscripted ¢’s are those
determined from the compressibility measurements.
These constraints assure that the identity

(#).=-(%).

holds and, thereby, provide a condition of internal con-

(12)

sistency that is automatically met if the expansivities can
be fitted to eq (11) by adjusting only b,, b, and &,.

Equation (11) was fitted to the thermal expansivity
data to fix the values in table 2 for the three additional
constants. Smooth curves corresponding to the pres-
sures of the six experimental isobars were calculated
from eq (11) and are plotted with the data. The dashed
lines in figure 5 represent the values along the vapor-
pressure and melting curves as indicated.

As before with the compressibilities, we found our
thermal expansivity measurements to be the only ex-
plicit data in this range. Here again, we have derived
estimates from the smooth curves that were fitted to
independent measurements of the molar volume [2,5].

Kerr [5] measured the molar volume of the liquid
along the vapor pressure curve. He combined his results
with those of Clusius and Bartholome [1] and fitted them
to a quadratic function of temperature. We calculated
thermal expansion coefficients from this function by dif-
ferentiation. The slight correction to constant pressure
was made with eq (9) and Grilly’s [23] vapor pressure
function. The results of this calculation, included in fig-
ure 5 as the series of open circles, agree reasonably well
with eq (11) near 19 K but deviate systematically with
temperature to more than 2% at 20.5 K.

Bartholome [2] presented measurements of the liquid
molar volume as a function of pressure along three iso-
therms, Again, we consider the smooth curves that he fit
to his raw data. The differences between these isotherms
at constant pressure were taken to calculate average
thermal expansivities in the two temperature intervals.
At low pressures there is satisfactory agreement with
our data. (Here, the consistency is reasonable if it is
recalled that Bartholome calibrated the volume of his
pressure cell along the vapor curve against the molar
volume data of Clusius and Bartholome. The latter mea-
surements were included by Kerr [5] in his quadratic fit,
and thermal expansion coefficients derived from this
function were shown to correspond closely to our
extrapolated measurements.) However, with increasing
pressure, the average thermal expansion coefficients cal-
culated from Bartholome’s data decrease much more
rapidly than ours do. At 70 bars they fall to about 50%
of our results.

3.5 Liquid Molar Volume

Data for Vi, the liquid molar volume along the melt-
ing curve, were obtained by a two-step operation. First,
the volume of a sealed liquid sample was measured at a
given temperature and two-phase pressure P,. The sam-
ple quantity was then determined by expanding the gas
into a standard volume at room temperature, The latter
measurement followed essentially the same procedure
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as that used for the calibration measurements of the cell
volume and pressure-sensitivity factors.

The results are listed in table 3. We estimate their
accuracy and precision to be about 0.035 and +0.003
cm’/mole, respectively. For all of the measurements
except one, the data were taken within about 6 h from
the time of the sample loading. The point at T\, = 19,000,
K was obtained from a sample that had been loaded and
held at that temperature for approximately 17 h before
the measurement. )

The results are plotted together as a function of tem-
perature in figure 6. Also included in the figure are three
. points that Woolley et al. [4] had compiled from earlier
* work [1,2]. The liquid molar volume measurements of

l

Table 3. Measured liquid molar volumes along the! melting curve.

Tu(K} Vim{cm®/mole)
18.8304 23.00,
19.0005 22,93,
19.201, 22.84,
19.403, . 22,764
. 19,604, 22,68,
; 19.8055 22.605
20.008, 22.53,
20.2045 22.45¢
20.4085 22,386
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Figure 6—Measurements of the molar volume of liquid n-D; at melt-
ing. The solid curve was calculated from eq (8) at the temperatures -
and pressures prescribed by eq (3). A :20.15% error is indicated for
these results. The liquid density function of Prydz [7] was evaluated
at the same points and the results are represented in the plot by the
dashed curve, Also included are three points that were tabulated by
Woolley et al. [4].
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Bartholome were discussed in the two previous sec-
tions. To obtain the points at 19.70 and 20.31 K, Woolley
evaluated Bartholome’s smoothed functions at the tem-
peratures and pressures prescribed by the melting curve
of Clusius and Bartholome [1]. The triple-point value,
23.14 cm®/mole, was taken directly from the work of
Clusius and Bartholome [1].

Prydz [7] used these and other earlier data to fit an
equation of state for liquid normal deuterium. We evalu-
ated the Prydz density function at temperatures and
pressures corresponding to our observed melting line.
The resulting curve, which is also plotted in figure 6,
adequately represents the earlier data. However, our
measurements indicate that the liquid compression
along the melting curve ‘is not nearly as great as the
Prydz function would suggest.

The liquid molar volume data were taken with the
parameters a, by, by, by, ¢q, €1, and ¢; in table 2 to fix the
remaining constant b,. With the full set of fitting param-
eters, eq (8) can be used to calculate liguid n-D; molar
volumes for any temperature and pressure within or
even somewhat beyond the ranges of the measurements.
The curve depicted in figure 6 was calculated along the
melting line defined by eq (3). The average absolute
deviation of the measured data from the calculated
curve is 0.0026 cm’/mole, which is comparable to the
estimated precision of the measurements.

We have shown in this and in the two preceding
sections that the isothermal compressibility, thermal ex-
pansion, and molar volume data for the liquid are all
well described by a single empirical equation of state.
This is a sufficient demonstration of the internal consis-
tency of these measurements. It remains now to com-
pare the predictions of this equation with independent
data, but first some comment should be given about the
effects of sample contamination.

Our volume data and their representation, eq (8},
were presented without any correction for impurity ef-
fects. The choice is somewhat arbitrary as to whether or
not these should be formally included. Some of the exist-
ing data were given as corrected values [5,36], but oth-
ers [1,2,6] were published without corrections as we
have done. The effects are not entirely negligible. For
our case, the only significant impurity was the 0.75%
HD discussed above. If we assume the volume cor-
rection is proportional to the HD concentration and to
the difference between the molar volumes of HD and
D,, we have

AV =c(HD) [V{(HD)— Fi(n-D>)]. (13)

The most recent density measurements on HD are those
of Rudenko and Slyusar’ [37], which extend from 16.6 to
35.5 K along the vapor curve. These data, combined



with extrapolated values from eq (8), yield a volume
difference of about 2 em’/mole. The correction to eq (8)
is then toward smaller values by an amount 0.015
cm’/mole. With the possible exception of some of the
earliest work [1,2], the extent of impurity effects in pre-
vious data is comparable to that estimated for our own.

Bartholome [2] published the earliest measurements
of the molar volume of n-D; at pressure. Bartholome’s
raw data scatter about the fitted smooth curves with an
average absolute deviation of 0.025 cm*/mole. The pre-
cision of these measurements is, therefore, roughly an
order of magnitude less than that typical of more recent
work [5,6]. The average absolute deviation of Bar-
tholome’s data from eq (8) is 0.073, 0.035 and 0.058
cm’/mole for the isotherms at 19.723, 20.346 and 21.032
K (IPTS-68), respectively. Although these differences
are probably no larger than the combined error for the
two experiments, the earlier data show significant sys-
tematic deviations from eq (8). As has been mentioned
the compressibilities derived from Bartholome’s work
are larger than our measurements by 10 and 14% at
T=20.346 and 21.032 K (IPTS-68), respectively. The
discrepancies may be the result of sample contamination
which we shall discuss later in more detail.

The later measurements by Friedman et al. [6] pro-
vide us with a more critical basis for comparison. Of
particular interest here are their tabulated results along
the isotherms at 20.31 and 20.33 K. We plotted these two
sets of volume data as functions of pressure and found
them to agree nearly identically. To compare these with
our results, we next included the corresponding iso-
therm calculated from eq (8). The plot of the calculated
values parallels the Friedman measurements but is uni-
formly lower in magnitude by about 0.05 c¢cm’/mole.
This discrepancy is larger than our estimated error but
probably smaller than the combined experimental un-
certainties. Although Friedman et al. gave no explicit
error limits, an accuracy comparable to our own
(%0.035 cm’/mole) is reasonable. With this assumption
the combined error is #£0.07 cm®/mole, and their vol-
ume measurements at 20.3 K are shown to agree with
our equation of state. A similar comparison was made
with their data at 23.52 K. At this higher temperature,
the difference between the earlier measurements and the
values calculated from eq (8) is no greater than 0.035
cm’/mole throughout the entire pressure range.

The Friedman data were presented without any ex-
plicit impurity corrections although the authors gave an
impurity level of 0.2 at % hydrogen (equivalent to 0.4%
HD), roughly half the HD-concentration of our sam-
ples. This result seems improbable because most avail-
able deuterium has the same impurity as our sample, and
they apparently made no special effort to purify their

material. Ultimately, the accuracy of their impurity
analysis (whether they had 0.4 or 0.8% HD) does not
change the overall conclusion. The correspondence be-
tween their data and ours is not significantly affected by
differences in contamination levels.

In a previous section, we mentioned that independent
measurements of the liquid volume are available along
the vapor pressure curve. These should provide useful
comparisons, but because our lowest working pressures
were between 4 and 3 bar, it is necessary to extrapolate
our results somewhat. To do this, we calculated a molar-
volume function of temperature by combining Grilly’s
[23] vapor-pressure equation for liquid n-D; with eq (8).
A plot of this curve is shown in figure 7. Also included
are the values Clusius and Bartholome [1] reported in
the range 18.80 to 20.53 K, the measurements Kerr [5]
made between 19.5 and 24.5 K, and the values found by
extrapolating the data of Bartholome [2] to the vapor
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Figure 7— Existing molar volume data for liquid n-D; along the satur-
ated vapor pressure curve. Direct measurements by Clusius and
Bartholome [1j, Grilly [36], and Kerr [5] are included with extrap-
olated values from the data of Bartholome [2] and Friedman et al.
[6]. The solid curve through these data was calculated from the
liquid equation of state of Prydz [7]. The lower curve was calcu-
lated from eq (8). The dashed portion represents an extrapolation
beyond our measured temperature range.
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pressure curve. As figure 7 illustrates, these results are
well described by the Prydz equation. However,
throughout the plotted range, the earlier values are all
consistently larger than those extrapolated from this
work. In the interval 18.7 to 20.4 K, the offset is approx-
imately 0.5%. About midway between the two curves
are the extrapolated values from the data of Friedman et
al. [6] and the direct measurement at 19.48 K by Grilly
[36].

If each research had +0.15%uncertainty, our results
agree with [6] and [36] but not with the others. The most
serious discrepancy appears to be that between Kerr’s
data and ours. Kerr published five measurements of the
molar volume between 19.5 and 24.2 K. His results at
19.31 and 21.14 X are larger than corresponding values
calculated from eq (8) by 0.13 and 0.10 em®*/mole, re-
spectively. Kerr stated that a mass spectrometric anal-
ysis of the sample showed it to contain 0.4 at % hydro-
gen (equivalent to 0.8% HD) as the only detectable
impurity. Fe corrected the data for impurities in the
manner described above. If we compare our corrected
data to his, the differences appear to be as large as 0.12
to 0.15 cm®/mole. No error limits were quoted for the
results Kerr presented, but if we assume an accuracy of
+0.15%, these data remain in substantial disagreement
with our calculated values.

The source of the large discrepancy is not clear. We
considered the possibility that some systematic error
may have arisen from either of the volume calibrations
at low temperature. Kerr calibrated his pycnometer
with “pure hydrogen” and the data of Scott and Brick-
wedde [38]. On this point Kerr’s report is somewhat
ambiguous because Scott and Brickwedde included
measurements on both liquid normal and para hydrogen.
However, both sets of these earlier data extend along
the saturated vapor pressure curve from 14 to 20.4 K.
They were obtained with the same experimental appara-
tus and, except for sample preparation, by the same
procedure. We may reasonably assume that they are
internally consistent. Therefore, regardless of the form
of hydrogen that Kerr used, we can check his cali-
bration against our own by comparing the respective
p-H; density standards.

‘1t was not necessary for us to do this explicitly be-
cause Roder et al. [39] made this very comparison only
a short time after the Goodwin data were published. To
do this, Roder first fitted the Goodwin data to low-
order polynomial expansions to represent both iso-
therms and isochores of the liquid density. These
smoothed functions were then extrapolated to the satur-
ated liquid-vapor pressure curve reported by Weber et
al. [40]. Roder finally combined these “derived” data in
the range 17.0 to 33.0 K with the Scott and Brickwedde

measurements and fitted the set to a single analytic func-
tion. They showed that deviations from the fitting func-
tion were of the same magnitude as the expected error of
the data. This overall consistency is taken to establish
the correspondence between our own volume cali-
bration and that of Kerr’s research. Whatever the source
of the discrepancy is in the deuterium measurements, it
does not arise from any disparity in the hydrogen densi-
ties used for the calibrations of the low-temperature
sample volumes.

It would appear from figure 7 that Kerr’s data agree
with those of Clusius and Bartholome [1] and Bar-
tholome [2]. The average deviation of the Clusius and
Bartholome results from our extrapolated function is
0.10 cm’/mole. But, there are several reasons to suspect
that these earlier data are too large by roughly 0.05
cm®/mole. The molar volume measurements that Clus-
ius and Bartholome made were only part of a rather
comprehensive thermodynamic study. In addition to
these data and among others, they included mea-
surements of the triple-point and, at one temperature,
the saturated liquid-vapor pressure. This information is
useful because the most likely occurring sample con-
taminants in the earlier work on deuterium are H, and
HD [33]. It is known that both impurities tend simulta-
neously to increase measured vapor pressures and to
depress observed triple-point temperatures. From the
results of these additional measurements it is argued [33]
that the sample lot of deuterium used by Clusius and
Bartholome was contaminated to higher levels than
were judged in their report. Estimates of either 1.0% H,
or 2.6% HD are proposed to explain the observed off-
sets in their results for the vapor pressure and triple-
point temperature. In either case, the corresponding val-
ues for AV calculated from eq (13) are approximately
0.05 cm’/mole.

In the later high-pressure experiment [2], Bartholome
calibrated the volume of his cell with both liquid hydro-
gen and liquid deuterium. Absolute volumes were calcu-
lated from the measured mole contents by using the
density data of Onnes and Crommelin [42] for hydrogen
and Clusius and Bartholome [1] for deuterium. The re-
sults obtained from the two calibrations reportedly
agree to within 0.03%. This is interesting because the
Onnes and Crommelin data are known now to be high
by about 0.05 cm’/mole [38]; the agreement suggests
that the deuterium results of Clusius and Bartholome
(and Bartholome [2]} are also high by the same amount.
The discrepancy is exactly that estimated above from
considerations of impurity effects. If the Clusius and
Bartholome data are corrected for this suspected con-
taminant, their measurements are seen to agree almost
identically with the direct measurement of Grilly [36]
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and also with the extrapolated data of Friedman et al.
[6]. For the Clusius and Bartholome measurements, an
error limit of +0.04 cm’/mole is not an unreasonable
estimate, given the combined uncertainties of the data
and the impurity correction. If this limit is assumed,
their results are seen to be consistent with our own data
even after the 0.015 cm’/mole 1mpur1ty correction is
applied to the latter.

To summarize this discussion, we have examined
several series of measurements of the molar volume of
liquid n-D,. Some of these were direct measurements
along the saturated liquid-vapor pressure curve [1,5,36]
while others were made along isotherms at pressure
[2,6]. The individual results were compared directly
when possible and by extrapolation when not. Gener-
ally, the values prescribed by our equation of state are
lower than those obtained from earlier measurements.
Comparisons with independent measurements of the
molar volume show our work to be consistent with that
of Friedman et al. [6], which are the more precise of the
existing data at pressure. At the vapor-pressure line, we
find that our extrapolations are consistent with the data
of Clusius and Bartholome [1] if these are corrected for
a substantial impurity effect. However, there is a signifi-
cant difference between the molar volume mea-
surements of Kerr [5] and corresponding values calcu-
lated from our equation of state. We examined the
possibility that some error may have arisen from incon-
sistencies in the hydrogen density data used as standards
in the volume calibrations, but we were unable to sub-
stantiate this hypothesis. The source of the discrepancy
between Kerr’s results and ours is unknown.

3.6 Other Related Data

Most of the previous discussion has involved direct
comparisons of our data with those of others. There are
also indirect data comparisons worth considering. One
quantity that is often discussed is the isochoric tem-
perature derivative of the pressure, (2P/37T)y. An anal-
ytic form for (aP/aT)y can be derived in either of two
ways: eq (8a) can be inverted to express the pressure as
a function of temperature and volume, and the desired
function is obtained by differentlatlon Or, the result can
be calculated directly from the identity

Py _a

°T), B
and eqgs (9) and (11). In either case, we estimate an
uncertainty of +29% for this calculated quantity.

In figure 8, we have plotted (a2/aT}y for our liquid
data along the melting curve as a function of tem-
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Figure 8—Plot of (aP/2T)y for liquid n-D, along the melting line
defined by eq (3). The upper solid curve was.calculated from eq
(14). The dashed curve was calculated from eg (15). The lower
solid curve represents the empirical function for (22/37), given by
Prydz (7).

perature. For comparison, we have also included results
calculated at the same temperatures and pressures from
the (aP/3T), function given by Prydz [7]). The curves
show two obvious dissimilarities. First, they differ in
magnitude by approximately 209. Second, the Prydz
function shows a large positive curvature, whereas our
(aP/2T)p results are more nearly constant with only a
slight positive slope and curvature, The magnitude and
funetional behavior of our (8P/8T)y is consistent with
that deduced by Friedman et'al. [6] from their liquid
PVT measurements. In particular, they found their data
best described by the reciprocal volume relationship

aP 674
(a_f‘),, 1434 7

where the molar volume ¥, is taken in cm®/mole’and
(aP/aT)yis given in bar/K. In figure 8, we have plotted
the results obtained from eq (15) with the liquid molar
volume data in table 3.

Thus far, we have only discussed equation-of-state
data although these alone are not sufficient to describe
the thermodynamic properties ‘of a §ystem. Supple-
mentary thermal data are necessary for complete infor-
mation. In connection with the present work, it is, there-
fore, interesting to briefly review the existing
calorimetric data. -

The earliest specific heat measurements on liquid
n-D, were published by Clusius and Bartholome [1].
Their data, over the temperature range 19.4 to 21.7 K,
were later found to be about 8% lower than those of
subsequent measurements [35,43]. Kerr et al. [43] con-

(1)
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cluded that some systematic error may have affected the
carliest liquid results, Today, the liquid heat capacities
of Clusius and Bartholome remain a matter of historic
interest but are no longer given as preferred data [44].

Subsequent calorimetric measurements were reported
by Kerr et al. [43] on 0-D, (2.2% para) in the range 19.9
to 22.8 K and by Grenier and White [35] on 78.6% para
at three temperatures between 19.9 and 22.1 K. The
results of these two experiments agree to within 1 or
2%. Grenier and White considered this discrepancy rea-
sonable in view of the uncertainties involved in the inde-
pendent investigations. They further concluded that any
effects of ortho-para composition are negligible in this
temperature and pressure range.

Still later, Brouwer et al. [45] measured the specific
heat of liquid n-D, as part of an extended study of the
liquid phase separation properties of the n-D,/Ne binary
system. Their results for pure n-D,; apparently extend
over the entire range 20 to 30 K because they present a
difference plot of the raw data from a fitted smooth
curve. Curiously, Brouwer et al. did not explicitly in-
clude the analytic function in their publication, although
they did tabulate values that were calculated from it at
0.2 K intervals between 24.0 and 27.4 K.

In each of these four experiments, the actual measured
quantity is the heat capacity along the saturated vapor
pressure curve, which we denote as C,,. From these
data, the familiar isobaric quantity C, can be derived
from the relationship:

aF\ fdP
"P—Cﬂt“’(ﬁ)p(?f)w

where (dP/dT),, is the slope of the vapor pressure
curve. The second term in eq (16) may be calculated
from egs (8a) and (11) and the temperature derivative of
Grilly’s [23] saturated liquid-vapor pressure function.

For temperatures below about 23 K, the second term
in eq (16) contributes less than 1% and could be ne-
glected, but at higher temperatures there is a significant
difference between C, and C,,. We, therefore, calcu-
lated C, explicitly for each of the later sets of mea-
surements discussed above [35,43,45]. The results were
then fitted to a quadratic function to yield

(16)

C,(T,P,;)=22.16+0.73(T —18.73)

+0.044(7 —18.73)% 1))
We find that eq (17) reproduces the “corrected” Bro-
uwer et al. [45] tabulated data to well within 1%. The C,
values corresponding to the Kerr et al. [43] mea-
surements likewise fall in this range except, perhaps, for

the highest temperature result, which may be lower by
slightly more than 19%. However, at roughly this same
temperature, the Grenier and White [35] measurement is
seen to fall about 2% higher than the smooth curve. We,
therefore, postulate that eq (17) describes to within
+1% the isobaric heat capacity for the liquid-along the
saturated vapor pressure curve from the triple point to
27 K.

Corresponding values at higher pressures are calcu-
lated from

P
CP(T,P)=CP(T,PV,,)—I /3T dP  (18)
Py

where a closed-form expression for the second term is
derived from eq (8). Equation (18) illustrates that the
qualitative effect of increasing pressure is to decrease
C,. For example, at T'=20.4 K and P =70 bar, the calcu-
lated heat capacity is about 9% lower than its value at
the same temperature on the vapor curve.

There are no independent measurements of C, at pres-
sure that could be checked against eq (18) directly, but
there are data for Cy, the specific heat at constant vol-
ume. Bartholome and Eucken [3] measured C, for liquid
n-D; in the temperature range 19.5 to 23.5 K. In prin-
ciple, these results could be compared with C,,. and our
equation of state by calculating

a*(T.P)
B(T.P)

where the first term on the right-hand-side is obtained
from eqs (17) and (18) and the second from eqs (8a), (9),
and (11).

There is, unfortunately, some ambiguity in the inter-
pretation of the earlier results. To understand this, it is
helpful to think of Cpin terms of temperature and molar
volume as the independent variables. The difficulty is
then clear because Bartholome and Eucken did not ex-
plicitly include the sample density along with their tem-
perature and specific-heat measurements. From the re-
ported volume of the sample chamber (3.5 cm®) and the
amount of material used for the liquid measurements
(0.171 moles), we might infer the value ¥=2047
cm®/mole, but at this density we see from figure 6 that
a sample could not exist in the liquid state over much of
the quoted temperature range. We cbserve from eqs (3)
and (8) that at 19.65 K the liquid molar volume must
assume some value between 22.655 cm’/mole at the
melting line and 23.310 cm*/mole at the saturated liquid-
vapor pressure.

Despite this ambiguity, there is some useful informa-
tion available. The measurements of Bartholome and
Eucken [3] are plotted in figure 9. If we assume these

Cu(T,P)=C(T,P)—T V(T,P)

19)
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Figure 9 — The isochoric heat capacity data of Bartholome and Eucken
[3]. The solid curve was calculated from eq (19) for the liquid
density at 19.65 K on the melting line.

data were terminated by the onset of freezing at 19.65 K,
a sample volume of 22.655 cm’/mole is implied. The
solid line plotted in figure 9 is the C} curve prescribed
by eq (19) for this molar volume,

The calculated curve agrees reasonably well with the
direct measurements. In the range 19.7 to 21.0 K the
heat capacity results are reproduced to within 5%. At
higher temperatures the curve follows the mea-
surements and seems to corroborate the observed weak
temperature dependence that Bartholome and Eucken
observed in deuterium. This agreement is somewhat for-
tuitous, however. The slope and curvature of the func-
tion defined by eq (19) is very sensitive to the values
chosen for b; and b; in eq (11), much more so than are the
results obtained from fitting our data. Below about 20 K
the calculated Cy remains little affected by the choice of
these two parameters, but at temperatures near 24 K, the
results can vary by as much as 20%.

Finally, we compare experimentally measured socund
velocities in the liquid with those calculated from

Brp T az(T,P)) 0)

1
M ( V(T.P)~ CuWT,P)

where M =4.0282 gm/mole is the molecular weight of
deuterium, and u is the longitudinal sound velocity. The
term in parentheses is calculated from egs (8a), (9), (11),

(17), and (18).

Bezuglyi and Minyafaev [46] published the first ultra-
sound velocity measurements on liquid n-D,. Their re-
sults along the vapor curve at 7=19 and 20 K are
plotted in figure 10. Subsequent measurements by Wan-
ner and Meyer [47] extend from the triple point both
along the melting line to about 24 K and along the
saturated-vapor-pressure curve to nearly 26 K. Data
from the lower portion of their measured temperature
ranges are included in the plot. Typical error limits for
these experiments are 0.5 to 1.0%.

To compare with these direct measurements, we have
included the results calculated from eq (20) and our own
data. Sound velocities corresponding to our measured
temperature range are indicated in figure 10 by the solid
line segments. The dashed portions represent calculated
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Figure 10—Liquid sound velocity measurements by Bezuglyi and
Minyafaev [46], Wanner and Meyer [47], and Pashkov and Kon-
ovodchenko [48]. Also included in the plot is the semiempirical
result that [48] derived from multistructure theory and the data of
Prydz et al. [8]. Equation (20) was evaluated both along the satur-
ated vapor pressure curve and at melting, The solid lines represent
these results in the temperature range of the present experiment.
Extrapolations of eq (20) are shown as the dashed portions.

values in the extrapolated regions. We estimate roughly
+2% uncertainties for these results. In the range below
20.5 K, the experimental measurements and the calcu-
lated curves agree. There is even a reasonable corre-
spondence among the results along the vapor curve as
high as 22 K. However, along the melting line in the
extrapolated range above 20.5 K there is a significant
divergence. This discrepancy may indicate a systematic
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error in our measurements, but it may also be an artifact
introduced by the particular functional form chosen to
represent our equation of state.

Finally, we mention the work of Pashkov and Kon-
ovodchenko [48] who measured sound velocities at
three temperatures: 22.00, 26.00, and 29.00 K. At 22.00
K they obtained 998.8, 1105.0, and 1193.8 m/sec at pres-
sures of 0.605, 50.66, and 101.33 bar, respectively. Cor-
responding velogities calculated from eq (20) are 983,
1114, and 1241 m/sec, respectively. At the two lower
pressures there is satisfactory agreement between the
measured and calculated values, but at 101.33 bar the
difference is nearly 49 and is in the same sense as the
divergence indicated at high temperatures along the
melting line.

3.7 Volume Change on Melting Heat of Fusion,
and Solid Molar Volume

The volume change on melting (freezing) AV, was
measured by sealing the sample chamber with liguid
n-D,. At constant temperature, the lower cell chamber
was first pressurized to freeze the sample and then de-
pressurized to melt it. The volumes of the solid and
liquid at the melting pressure were determined quite
precisely from the abrupt slope discontinuities in P, as
observed in the calibrated capacitance measurements.
The results presented in table 4 are expressed as
AVt Vi the volume change normalized to the liquid
molar volume at the melting pressure. An uncertainty of
about +0.0005 is estimated for these data.

Equation (8) was used to calculate AV, the absolute
volume changes. The resulis are plotted in figure 11
together with the single value, 2.66 cm’/mole, that Clus-
ius and Bartholome {1] quoted for the triple point. Bar-
tholome [2] published the only other direct mea-
surements at these temperatures. His average values,
2.16 and 1.98 cm’/mole at 20.31 and 20.97 K re-
spectively, are much smaller than our data. The AV,
measurements by Liebenberg et al. [10] were carried out
in a much higher range, 75 to 164 K. The results were

Table 4. Measured volume changes on melting (freezing),

TlK) AVu/Vin(freezing) AVu/ Vin(melting)
18.83 0.1171 0.1171
19.00 0.1156 0.1156
19.20 0.1144 0.1146
19.40 0.1128 0.1131
19.60 0.1120 o112
19.80 0.1111 0.1112
20.00 0.1099 0.1102
20.20 0.1090 0.1091
20.40 0.1078 0.1081
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Figure 11—Measurements of the volume changes on melting. In-
cluded with these is the triple-point value derived by Clusius and
Bartholome [1] from their measurement of the heat of fusion. The
dashed line is an extrapolation of the empirical function given by
Liebenberg et al. [10] to represent their high-temperature data.

fitted to an empirical function of temperature. The
dashed curve in figure 11 represents this function ex-
trapolated to the triple-point region. The agreement be-
tween Liebenberg’s extrapolation and the Clusius-
Bartholome measurement is fortuitious.

The data presented here are relevant to some inter-
esting questions first raised more than a decade ago. In
1973, Roder [49] speculated that hydrogen may exhibit
a solid phase transformation near the melting curve at
some temperature between 15 and 26 K. The suggestion
was made as an attempt to explain certain anomalies
observed in solid molar volume [50] and heat capacity
data. Independent measurements of the polarizibility
{30,51,52] and sound velocity [46,47] in the solid phase
also showed inconsistencies that seemed to corroborate
his hypothesis.

At the same time that Roder’s work appeared, Man-
zhelii et al. [53,54] found that solid hydrogen undergoes
an abrupt, but reversible, increase in density with in-
creasing temperature at about 14 K and 30 bar. They
attributed the effect to a solid phase transition. For a
time, the proposed explanation drew some criticism
[13,14], but supporting evidence was later obtained from
detailed measurements of the hydrogen melting line
[24]. A small cusp-like singularity was observed near 14
K and interpreted as the intersection point of the solid-
solid phase line. Mills [55] concluded that the equi-
librium line of the solid hydrogen transformation must
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have negative slope, but the structure of the high-
temperature form is still uncertain, X-ray diffraction
studies at 16 K and 100 bar [56] suggest the change may
be to an fcc structure, but the possibility of an iso-
morphic hep transformation has not been dismissed en-
tirely [24].

Our volume-change measurements are relevant in this
context because the solid phase transition is apparently
not limited to pure p-H, alone. Manzhelii et al. [54] and
Bereznyak and Sheinina [24] discovered that the phe-
nomenon is independent of the ortho-para concentration
of hydrogen. Observed irregularities in the melting line
of e-D, [24] further suggest that similar transformations
may be characteristic of the heavier isotopes as well.
The effect is apparently also present in hydrogen-helium
mixtures [57]. It is, therefore, reasonable to expect some
indication of a solid phase transformation in the melting
properties of n-D;. Yet, as we mentioned earlier, there
are no anomalies observed in our measurements of the
melting curve. Nor do we observe any jump-like singu-
larities in the data for the volume change on melting.

Manzhelii et al. [53,54] measured a density discon-
tinuity of 0.15% in solid hydrogen. If a comparable
difference in density were present between two solid
phases of n-D,;, we would expect to see a step in the
curve representing our results in figure 11. The high-
temperature solid phase should, by analogy, be more
dense. The volume change from the liquid would be
greater, and the step would be positive with increasing

temperature. The discontinuity would occurat about 19K

and be about 0.0 3 cm’/mole in magnitude. There is no
obvious indication of such a step discontinuity in figure
11, Although it could be that the precision and density
of our data are not sufficient to resolve the effect, it is
difficult to dismiss the observed regularity of the melt-
ing pressure measurements. Our result does not directly
contradict any existing data. At this time there is no
evidence for a solid-solid phase transformation in solid
ﬂ-Dz.

From measurements of the melting curve and the ac-
companying volume changes, the heat of fusion AH; of
n-D; can be calculated with the Clausius-Clapeyron
equation

AP

AH= dT,,

N 21)

Dwyer et al. [58] directly measured the heat of fusion of
solid p-H; and found their results to be well described by
a linear function of the melting pressure. Although they
offered no explanation for this simple behavior, it sug-
gests that we attempt a similar representation. A least-
squares fit to our calculated heats of fusion gives

AH;=197.22+0.179P, (22)

where the melting pressure P, is in bars and AH; is in
J/mole. The average absolute deviation of the data from
eq (22) is 0.17%. No better fitting results are obtained by
including quadratic or other high-order terms to the
empirical function.

Calculated AH;are plotted as a function of pressure in
figure 12. Included in the plot is the earlier direct result
by Clusius and Bartholome [1], which is seen to be con-
sistent with the present measurements. An extrapolation
of eq (22) to the triple point yields a value of
197.25+0.40 J/mole. Kerr et al. [43] obtained
196.94+-0.40 J/mole for the heat of fusion of o-D, at the
triple point. Measurements on 80% p-D, by Grenier and
White [35] give an average value of 197.41:-0,40 J/
mole. The general agreement among these independent
data indicates that beyond the nominal error limits of
+0.40 J/mole there is no measurable dependence of the
heat of fusion on ortho-para concentration in deuterium.
The only inconsistent results are those presented by Bar-
tholome [2] whose data on n-D, show AH; decreasing
with increasing temperature.

The molar volume ¥, of the solid along the melting
line can be derived from the equation
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Figure 12—Data for the latent heat of fusion derived from eq (22).
Included with these is the single direct measurement on n-D; by
Clusius and Bartholome [1].
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where the liquid molar volume F, at the same tem-
perature and pressure is determined from eq (8). Calcu-
lated ¥V, corresponding to the measured values of
AV../Vinin table 4 are plotted in figure 13. Also included
in the plot are two points that Woolley et al. {4] derived
from the work of Clusius and Bartholome [I] and Bar-
tholome [2].

<

P ' | — ; | '
208 '
SOLID n-D, MOLAR VOLUME

L ALONG THE MELTING LINE 4
NEY
= 204 —
O
=
o L i
=
D
-J
o 202 o -
18
<
[} r \\ 7
= WOOLLEY e# af

200~ 4 NEELSEN ~g
¥ YARNELL ef o/,
I I 1 I 1 l 1 I 1 |

. 0 20 40 &0 80
3 PRESSURE {bors)

- Figure 13 Data for the molar volume of solid n-D; along the melting
curve derived from eq (23). The dashed line was derived from the
equation of state of Diriessen, et al. [14]. Also included are two
points compiled by Woolley et al. [4] and two neutron diffraction
results [64,65]. :

The functional behavior of these data suggests 2 sim-
ple linear relationship. A least-squares fit gives

Vel Py)=20.337—0.0053P, 24
where V,,(Py) is in cm’/mole and the melting pressure
P, is in bars.. The average absolute deviation of the data
from'eq (24) is 0.015%. No improvement is obtained by
including a quadratic term in the fitting polynomial. We
estimate the accuracy of thlS expression to be about

»30.04 cm*/mole. P

Within our range of measurements eq (24) describes
the data quite well, but it cannot be used reliably for
extrapolation. A better representation is obtained by fol-
lowing some of the earlier work on p-Hj. Dwyer et al,
[59] first measured the molar volume of solid p-H, along
the melting line at pressures up to 340 bar. Younglove

[30] later corrected portions of these data and fit the
solid densities to a linear function of melting tem-
perature. A similar least-squares fit to the present data
gives

Pu(T1n)=0.03913340.00053627,, (25)
where py,(T) is the density of solid n-D; along the melt-
ing curve in moles/cm’. Equations (24) and (25) both
describe our measurements with comparable accuracy
and precision, but eq (25) may provide a useful repre-
sentation for the solid density to temperatures as high as
27 K. In the following discussion, we examine the con-
sistency of eq (25), first with independent measurements
on the low-pressure solid and then with various extrapo-
lated data at higher pressures. We conclude this section
with a discussion of the existing measurements of the
dielectric constant of the solid and liquid phases.

An extrapolation of eq (25) to the measured triple
point yields a density corresponding to V,.,m(Ttp_ 18.7067
K)=20.342+0.04 cm’/mole. It is possible to compare
this value with the result of existing x-ray [60], electron
[61], and neutron scattering experiments [62-65] on the
low-pressure solid.

For our discussion, the most important of this earlier
work is the single-crystal neutron diffraction study of
Nielsen [64]. These data include lattice parameter mea-
surements on .0-D, along its saturated vapor pressure
curve from 5 to 18 K. From the hcp lattice constants
that Nielsen reported at 5 K, we deduce a molar volume
of 19.94 cm’/mole. With increasing temperature, expan-
sion of the material in the a and ¢ directions was ob-
served to be uniform within the limits of experimental
uncertainty. Nielsen gave an analytical expression for
the thermal expansion; from it we calculate for o-D, a
molar volume of 20.41 cm?/mole at 18.7 K. Next, we
apply the prescription of Driessen et al. [14] to calculate
the small volume difference between ortho and normal
deuterium at this temperature and density. The final
result for solid n-Ds, 20.39 cm’/mole, is larger by about
0.05 cm®/mole than that found by extrapolating eq (25).
However, if the lattice measurements are accurate to
+0.05%, the uncertainty in the corresponding molar
volume is #0.03 cm®/mole. A small additional error is
involved with the extrapolation to 18.7 K. When these
uncertainties are combined with those of the present
study, the neutron diffraction result is shown to agree
with our triple-point value.

Nieisen [64] published the only measurements on
large single-crystals. The remaining work includes
powder-diffraction data [60,62,63,65] and one set of
measurements on relatively thin samples grown on a
cold substrate [61]. We have included a compilation of
these results in table 5. All of the data were taken at
temperatures lower than the triple point, but we have
included corrections to the corresponding solid molar
volumes of n-D; at 18.7 K in the manner described
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Table 5. Compilation of existing measurements of the molar volume of solid deuterium.

Measured Molar volume
References Sample Temperature molar volume corrected to 18.7 K*
(% para) {cm*/mole) (em®/mole)
Mucker et al. (1965) [62] 33% 13K 20,08 (£0.12)° 20.39+0.12
neutron powder diffraction 2% 13K 20.08 (£0.12)° 20.41+0.12
Schuch and Mills (1966) [60] 33—-65%"° L3K 19.8040.204 20.28::0.20
x-ray powder diffraction
Bostanjoglo and Kleinschmidt (1967) 33% 42K 19.90=0.11 20.37+0.11
[61] electron powder diffraction
Mucker et al. (1968) [63] 3% 129K 20.02 (2-0.12)° 20.330.12
neutron powder diffraction 33% 102 K 19.91 (£0.12)¢ 20.33+0.12
63% 20K 19.74 (:=0.12)¢ 20.320.12
80% 105 K 19.84 (x=0.12)° 20.37=0.12
80% 42K 19.85 (*0.12) 20.46+0.12
Nielsen (1973) [64] 29 50K 19.94 (0.03) 20.39:-0.04
single-crystal neutron diffraction
Yarnell et al. {1975) [65] 2% 42K 19.994::0.013 20.45+0.03

neutron powder diffraction

This calculation is done in three steps. First, the measured molar volume is corrected according to the prescription of Driessen et al. [14] to
the value corresponding to zero percent parg at the same temperature. Next, the temperature correction is made to 18.7 K using the analytic
expression for the linear thermal expansion by Nielsen [64], Finally, the o-D; volume is corrected at 18.7 K to that of n-D; again according to
reference [14]. We assume a error of =0.03 cm’/mole for this caleulation. The accuracy limit in column 5 is taken as the square root of the sum
of the squares of the error limit in column 4 and the assumed error in the temperature cosrection.

YEstimated error assumes +0.005 A uncertainty in ¢ and =0.005 in c/a.

*No trend was observed in the hep molar volume with pare concentration,

dWe set the uncertainty limit equal to the observed data scatter.

*The +0.6% volume error was calculated from the quoted ::0.2% uncertainty in the nearest neighbor distance.
The 40.15% volume error was calcylated with an assumed 0.05% uncertainty for the lattice parameter measurements.

above. Generally, the corrected data are consistent with
the extrapolated results of the present measurements.
However, there are relatively large experimental uncer-
tainties associated with most of the earlier work [60-63].
The data of Nielsen [64] and Yarnell et al. [65] are more
precise. As we mentioned above, the solid molar volume
obtained by extrapolating eq (23) to the triple point
agrees with Nielsen’s measurements, but it is 0.11
cm’/mole lower than the corresponding value inferred
from the work of Yarnell.

At higher pressures, the most instructive comparisons
are made using the solid equations of state established by
Driessen et al. [13,14]. This work was based in large part
on their measurements of the isochores of solid n-H, and
n-D, to pressures up to 2 kbar at the melting line. The
molar volumes were not measured directly but were
determined by correlating the isochore data with exist-
ing measurements at 4.2 K for both H; and D, [12] and
along the melting line for H, [59]. The equations of state
for p-H; and o-I), are presented in tabular form, and
corrections to arbitrary ortho-para mixtures are accom-
plished by straightforward calculation.

A direct comparison of our data to those of Driessen
et al. is not possible. Their lowest density isochore cor-
responds to 19.851 cm®/mole, which is slightly beyond
the range of our data, However, they did extrapolate
their equation of state to low pressures. We interpolated
their tabulated values to calculate the molar volume of
n-D, at the temperatures and pressures correspending to
our melting line. The results are plotted in figure 13. The
+0.42% uncertainty was taken from figure 22 of their
paper [14]. Our measurements agree with the extrapo-
lated results of Driessen et al. within the combined error
limits. However, we note that the most reliable of the
low-pressure diffraction work [64,65] is more nearly
consistent with the extrapolated equation-of-state than it
is with eq (25). .

Driessen et al. quoted a value of 19.95 cm®/mole for
0-D; at zero temperature and pressure. This corre-
sponds closely to the volume, 19.94+ 0.03 cm’/mole,
that Nielsen measured directly at 5 K. According to the
equation of state, this isochore should intersect the melt-
ing line at 90.7 bar. The corresponding melting tem-
perature, 20.90 K, was used in eq (25) to calculate an
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extrapolated density, and from this we obtain the molar
volume 19.8710.04 cm’/mole. Nielsen’s measurement
corrected to the normal spin mixture at 20.90 K becomes
19.92::0.03 cm’/mole. Again, the two results agree
within experimental error.

In addition to his low-pressure data, Nielsen measured
the lattice parameters of hep o-D; at 5 K and 275 bar.
From these lattice data, we calculate a molar volume of
18.64+0.03 cm*/mole, which is consistent with the
Driessen et al. analysis at that temperature. (Existing
P-¥ data at low temperatures [12] were fitted to the
Birch equation. At this solid density, this equation yields
a pressure of 271.5 bar.)

According to eq (19) of reference [14], the isochore at
18.64 cm®/mole intersects the melting line at 422.5 bar.
At this pressure the melting temperature, 27.45 K, in eq
(25) yields a molar volume of 18.57+0.04 cm’/mole,
which agrees with 18.63+0.03 cm’/mole, the Nielsen
volume corrected to 33% para at 27.5 K. Equation (25)
is thus seen to reproduce the extrapolated results of the
neutron diffraction measurements within the combined
limits of experimental error for the two experiments.
This equation may, therefore, provide a useful repre-
sentation for the solid density along the melting line to
temperatures as high as 27 K.

There have been a few measurements of the dielectric
constant of solid [52] and liquid [66,67] n-D,. It is in-
structive to discuss these results in terms of the molecu-
lar polarizability of the material. To do this, it is neces-
sary to combine the dielectric data with independent
measurements of the sample density. The polarizability
P can then be calculated from an expression such as the
Clausius-Mossotti equation

W fe—1
_ 3V (e—1 26
Py 47rNa(e+2) (26)

where N,=6.0225x10% molecules/mole and ¥ is the
molar volume.

We first apply eq (26) to the existing liquid data. Ko-
gan et al, [66] measured the dielectric constant of liquid
n-D; along the saturated vapor-pressure curve from the
triple point to 20.4 K. From their 12 data points and the
corresponding liquid molar volumes computed from eq
(8), we calculate an average value of Py =7.9371x10%
cm’® with a standard deviation of 0.001410~* cm’.
This result agrees with those derived from similar data
reported by Constable et al. [67] in the range 18.9 t0 23.0
K. From their 22 measurements, we calculate an aver-
age of 7.9330x 10~* cm® with a standard deviation of
0.0077x10~% cm?.

To cur knowledge, the only solid phase measurement
on n-D, is that published by Wallace and Meyer [52].

Their value, e=1.3324, was obtained from a single sam-
ple under the melting pressure at 21.1 K. The molar
volume of the sample is calculated from eq (25) to be
V...=19.825 cm’/mole. These values substituted into eq
(26) give Pr=7.8388x10"* cm’ which is about 1.2%
lower than the values derived from the liquid data,

The large difference between the derived polar-
izabilities for the solid and liquid phases is probably
artificial. The melting pressure at 21.1 K is only 99.4 bar
according to eq (3}. There should be no significant
change in the liquid polarizability at this temperature
over the limited pressure interval between the vapor and
melting curves. Udovidchenko and Manzhelii [51] mea-
sured isothermal compressibilities of solid p-H, to pres-
sures as high as 180 bar. They assumed a pressure-
independent molecular polarizability in their data
analysis. The results agree with the compressibilities
that Driessen et al. [14] later found from their isochoric
measurements.

Again, there is probably little if any difference be-
tween the molecular polarizabilities of the solid and lig-
uid phases at 21.1 K on the melting line. Once more, our
justification derives from independent work on p-H,.
Younglove [30] first measured the dielectric constants of
solid and liquid p-H, along the melting line. Although,
these data suggest a possible difference of 0.4%, sub-
sequent measurements by Wallace and Meyer [52] and
Udovidchenko and Manzhelii [51] have not supported
Younglove’s findings. The later experiments obtained
solid- and liquid-phase polarizabilities that are identical
to within 0.1 to 0.2%, an accuracy limit imposed by the
available solid density data. The large apparent differ-
ence in the deuterium polarizabilities suggests to us that
more careful measurements of the dielectric constant
are required for both solid and liquid in this pressure
range.

3.8 Solid Thermal Expansivity
and Isothermal Compressibility

Measurement accuracies of solid-phase properties are
severely constrained with the present technique. The
problem derives from the nonplastic-flow character-
istics of the solid and a rather sensitive dependence of
the experimental results on the homogeneity of the sam-
ple density. For measurements of both thermal expan-
sivity and isothermal compressibility, it is necessary to
measure changes in the sample volume that result from
unequal deflections of the upper and middle diaphragms
of the pressure cell (see Fig. 1). Volume changes of the
thin disk-shaped solid always introduce radial variations
in the compression. As P, is increased, for example, the
middle diaphragm is displaced upward, and the sample
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is compressed to a higher density at the center than
around the periphery.

For liquids, the distortion of the sample geometry is
no problem. Reasonably accurate results were even ob-
tained earlier on solid helium [16,17], although hyster-
esis effects, particularly at the lowest temperatures indi-
cate similar problems. With solid n-DD;, we cannot
assume that our samples were free of internal strain even
after several hours equilibration near the two-phase re-
gion. We observed that density gradients persisted in
sufficient degree to preclude all but very approximate
measurements of a and S for the solid.

We tried a number of approaches to defeat the prob-
lem but could only obtain reproducible results by allow-
ing long (2-10 h) relaxation periods with the solid at
temperatures and pressures near the melting curve. Typ-
ically, in the melting pressure range 20 to 70 bar, the
isothermal compressibilities decreased from about 3.8 to
2.0 10~* bar~' with increasing P,. Thermal expan-
sivities were in the range 2.4 to 2.6 X 107°K~! for melt-
ing temperatures between 19.2 and 20.4 K.

These results are somewhat inconsistent with our
solid molar volume data. Consider the equation

_ 1 stm)_B _ asm
Val\dPy /7" dPu/dT,

where 8., and o, denote respectively the isothermal
compressibility and thermal expansivity for the solid at
melting. The quantity on the left-hand side of this equa-
tion represents a coefficient of compression for the solid
along the melting curve. It can be calculated from the
fitted curve of eq (24); the resulting values increase from
2.61X 10 * bar™" at the triple point to 2.65x 10~* bar™"
at 70 bar. The average measured values over the pres-
sure range 20 to 70 bar, Bn=2.73x107* bar”},
e =2.56% 10" K~!, and dP,/dT,,=41.5 bar K™, yield
the value 2.11 X 10~* bar~' for the right hand side of eq
@2mn.

Estimates of the solid-phase properties are available
from the Driessen et al. [14] equation of state. Although
their tabulated equation is for 0-D,, the compressibility
and thermal expansion coefficient for n-D, can be calcu-
lated from the information provided. In the temperature
range 18.7 to 21.0 K, the differences between the differ-
ential quantities of 0-D; and n-D, are less than 1%. At
the triple point, we calculate a compressibility for solid
n-D, of 4.28'107* bar~' and a thermal expansion of
about 5.3 1073 K~!, At T,=20.5 K, the corresponding
values are about 12% lower.

An indirect estimate of the solid thermal expansivity
can be made from some of the data that we have already
discussed. Consider the temperature change of the lig-
uid enthalpy along the melting curve

@7

dH, d?,
dT'lm = CP,Im + l/]m d_T'm (1 - Tmalm)-

(28)

It this expression Cp, denotes the isobaric heat capacity
of the liquid at the melting line. The right-hand side of
eq (28) can be evaluated from eqs (4), (8), (11), and (17).
At the triple point we obtain dH,,/dT,=91.51:1.0J/
mole K.

The enthalpy of the solid at melting H,, is equal to the
liguid enthalpy minus the heat of fusion. We may, there-
fore, write

stm__dHlm_d(AHf) g-&y
dT,  dT, dpP, dT,

(29)

The second term evaluated from eqs (4) and (22) con-
tributes an amount 7.0%0.5 J/mol K. The combined

results in eq (29) gives dH,/dT,=84.5=1.2 J/mol K.

Clusius and Bartholome [1] and Kerr et al. [43] mea-

sured the specific heat of the solid along the vapor pres-

sure curve. These data extrapolate to the triple point to
yield Cpm=11.020.1 J/mole K. This value combined’
with dH,./dT,, V.. from eq (25), and dP./dT,, at the
triple point give g, =3.810.6 X 107° K™, This indirect
estimate of the solid thermal expansivity lies about mid-
way between the value derived from the work of
Driessen et al. [14] and our direct result.

We began this section with a brief discussion of the
problems that we met in applying our technique to solid
samples. It is appropriate to conclude with some sug-
gestions for improving the method. As we mentioned
earlier, the major problem derives from the design of
our pressure cell. Impressed changes in the sample vol-
ume always introduce radial inhomogeneities in the den-
sity. For solid deuterium, the very thin disk-shaped ge-
ometry of the sample combines with an inherently large
internal friction. Together, they allow substantial pres-
sure gradients to persist for prohibitively long periods of
time.

We were unable to improve our results by annealing,
even when this was done at pressures and temperatures
very close to melting. We feel the only possible solution
is to redesign the cell in a way that minimizes the radial
density gradients. For example, it may be possible to
construct a cell with a sample chamber thickness that is
very nearly proportional to the displacement of the di-
aphragms. If this can be done, it is clear that changes in
the sample volume will induce density gradients in the
axial rather than the radial direction. Sample distortions
can never be totally eliminated, but they should be far
less severe in a carefully designed, lens-shaped sample
than they were shown to be with our geometry.
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3.9 Further Observations

Finally, we discuss the effects of para to ortho con-
vergion and their possible influence on the PVT results.
We ran a number of experiments to measure such effects
explicitly in both hydrogen and deuterium. For both
isotopes, spin compositions were determined from the
thermal conductivity of the gas samples [68]. On solid-
liquid mixtures of n-H, the measured time rate of
change in x,, the para mole fraction, was dx,/d¢=0.01
h~'. This result agrees with the self-conversion rate
given by Woolley et al. [4]. Measurements of the melting
pressure Py and the liquid molar volume F; (close to the
melting curve) as functions of time gave dP,/d¢=0.06
bar h™' and d¥V/Vde=7X 107> h~'. These results di-
vided by dxy/dr gives dP,/dx,=~6 bar and
d¥\/ ¥, dx,~7 x 10~*, which are consistent with previous
results: P, (p-H,) — P,(n-H,) from the data of Woolley et
al. [4], Mills and Grilly [28], and Goodwin and Roder
[31]; ¥i(p-Hy)— ¥i{n-H,) by Scott and Brickwedde [38]
and Wallace and Meyer [69].

For liquid n-D,, the rate of self conversion, dx./df,
was estimated by Woolley et al. [4] to be 5x 10~ h~!,
For the solid, Motizuki [70] calculated the value 5 10~*
h~! which is in the range 2 to 8 10~* h~' that Grenier
and White [35] obtained by direct measurement. We
measured the conversion rate of n-D, several times in
our cell. The results for dx,/dt were between 1 and
3% 10~* h~' for observation periods of 60 to 90 h. The
data are reasonably consistent with the earlier the-
oretical and experimental work. The conversion rates
are small, and we feel that our PVT measurements are
not significantly influenced. The following numerical
estimates should illustrate this point.

One effect of self-conversion is an increase in P, at
constant temperature. We noted in previous discussion
that the melting pressures reported by Bereznyak and
Sheinina [24] on 0-D, exceed ours on n-D, (33.3% ortho)
by about 2 bar. This difference scales to 6 bar for
Ax,=1, which is similar to the difference in P,, between
pure ortho and para hydrogen. For the self-conversion
rate  dx,/df=2%10"* h~', we should obsetve
dP,/dr=1.2X 107" bar/h.

Another effect of conversion is an increase in the
molar volume of the sample. An estimate of the frac-
tional change in the liquid volume can be calculated
from the equation -

e

7= Ax, )

v/

where B, is the compressibility of the liquid, x, is the

fraction of the parae spin modification in the mixture, and
Py is an effective pressure introduced by the electric
quadrupole interactions of the para species. We estimate
the value (8 Py/8x,) s p=12.3 bar from table 1 of Driessen
et al. [14]. For liquid compressibilities on the order of
7% 10~*bar~", we calculate AV)/ V=8 X 10~ for Ax,=1,
which is ‘also similar to H,. Thus in n-D; with
dx,/dt = —dx./dp, we expect the rate
dVy/Vde=2x 10" h~!,

The longest times taken for the various measurements
were 1 h for the liquid a and 8, 10 h for solid a and S,
and 20 h for A¥,,. The longest time of low-temperature
exposure before P, and ¥} measurements were made was
12 h. Thus, in all cases the effects of ortho-para con-
version are within the quoted accuracy limits of the
data. It is nonetheless interesting to compare the values
of P, and V) at the beginning and at the end of the long
runs (60 to 90 h) involving AV,

Again, with an assumed conversion rate of 2X 10~
h~!, we expect a fractional volume change in the liquid
to be roughly 1.6 10~* for an 80-h period. Volume
changes of this magnitude are easily measured in our
apparatus. Indeed the observations include such results,
but there were also some changes that are much smaller
and, in two cases, some large volume decreases (1.7 to
1.9 10~%). However, volume losses were also observed
in the p-H, measurements, where no conversion occurs,
and these can be explained by a loss of the sample
through a leaky cell valve.

For the melting pressure this self-conversion rate
should produce an increase of about 0.10 bar for n-D,
during an 80-h period. Actual measured values, shown
in table 6, vary from —0.39 to 40.38 bar. The large
decreases in P, are not easily explained. If they were to

4

Table 6. Observed changes in the melting pressures of samples that had
been held at low temperatures for 50- to 70-h periods.

T(K) Seq. No.! APy (bar)
18.83 9 0.00
19.00 5 —0.39
19.20 8 —0.28
19.20 11 0.10
19.40 4 0.31
19.60 ] —0.01
19.80 3 —0.06
19.80 12 0.19
20.00 7 —0.30
20.20 1 0.24
20.20 2 —0.03
20.40 10 —-0.33
20.40 13 0.04
20.40 14 0.38

!Chronological order of the measurements,
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be ascribed to bath temperature decreases, the AT
would have to be on the order of 10 mK, which is far
greater than our expected precision of a millikelvin or
two.

There is evidence in some cases that a high initial
measurement of P, could have been made before the
sample was adequately cooled; however, in other cases
this explanation is unreasonable. For example, after the
first run at 19.2 Kwas completed, we saw that a large
decrease (AP,= —0.28 bar) had occurred in the melting
pressure. We replaced the original sample with a fresh
charge of n-D, from the storage bottle. The melting
pressure of the second sample was then measured, and
the result agreed with that obtained from the first sam-
ple when it was originally admitted to the cell and pres-
surized to cause freezing. The result removes the possi-
bility of some kind of slow cooling of the cell, but it
introduces the possibility of inadequate time for the lig-
uid to be cooled or changed in some way with time.

Despite the lack of evidence for two solid structures
in n-D,, we did consider this possibility in connection
with our observed melting pressure changes. If the
Gibbs-energy functions of two solid phases are approxi-
mately equal, it should be quite easy to pressurize a
liquid sample to the metastable solid form. It can be
shown in this case that the observed P, will be higher
than that corresponding to the stable phase. At constant
temperature the solid may then revert to the equilibrium
structure, and as it does, the observed melting pressure
will decrease. This argument is seen to hold for tem-
peratures both above and below the assumed solid-solid-
liquid triple point.

Although, as we mentioned, there is no direct evi-
dence for more than a single solid structure in n-D,, we
did observe some curious behavior with p-H, in cur cell.
Recall that Manzhelii [53,54] reported volume decreases
of 0.15% in solid p-H, with small increases of tem-

perature. In p-H, and n-H,, Bereznyak and Sheinina [24]
observed kinks in the freezing curve near 14.9 K. Simi-
larly, in our PVT apparatus, we cbserved AV =—0.07%
in solid p-H, with slight increases of temperature. We
also found the melting pressure of p-H; to decrease with
time at rates of about 0.005 bar h~'. Over time periods of
60 h, P, decreases of approximately 0.3 bar were ob-
served, similar to our measurements on n-D,.

If this similarity supports the possibility that two (or
more) solid phases exist in n-D,, there is contrary evi-
dence as well. In one of the long runs at 204 K, a
melting pressure change of —0.33 bar was observed.
After the run was completed but before the low-
temperature valve was opened, the sample was held in
the liquid phase for over an hour to assure that all of the
solid had melted. The liquid was then refrozen and the

melting pressure was again measured. The resulting
value was identical to that obtained from the melting
process only an hour before. This experiment tends to
eliminate the possibility of a solid structure change with
time. At best, it could indicate that such a change is fast
when an “old” liquid is used. At this time, the anomalous
changes of the melting pressure are not well understood.

4, Summary and Conclusions

The purpose of this study has been to provide an
accurate and precise determination of the equation of
state of n-D, in the region of the phase diagram near the
triple point. We began by presenting measurements of
the melting line. These data range in temperature from
the triple point to 20.4 K. The melting pressures were fit
to a quadratic function of temperature. The average
deviation of the points from the smooth curve is about
0.1 bar, which is comparable to the precision of the
measurements. The observed regularity of these data
contrasts to the anomalous behavior reported in similar
studies [24] on p-H,, n-H,, and o-D». The results of the
earlier work were interpreted as evidence for the exis-
tence of solid-solid-liquid triple points in these systems.
While this may be true, there appears to be no firm
indication of a similar phenomenon in n-D,.

We combined our melting data with existing vapor-
pressure measurements to establish an accurate triple-
point temperature. The result was corrected for the HD
impurity measured by mass-spectrometric analysis. The
value T;,=18.723=0.010 K was given as the triple-point
temperature of pure-phase n-D,. A detailed comparison
of this result to existing data is given elsewhere [33].

Data for the isothermal compressibility and thermal
expansivity of the liquid were collected in the tem-
perature range 18.8 to 21.0 K and at pressures between
4 and 70 bar. We compared these with estimates of
corresponding values derived from existing molar vol-
ume data [2,5,6]. The most accurate and precise of these
earlier data [5,6] gave results that agree with ours to
within a few percent. We also presented measurements
of the molar volume of the liquid, which were made at
nine points along the melting line. The combined liquid
data were then fitted to a single empirical equation of
state. The purpose of doing this is twofold. First, a de-
scription of the data by a single function is sufficient
demonstration of their internal consistency. Second, the
equation of state can be used to extrapolate beyond the
limited range of the data and also to predict certain
quantities that were not measured direcily. This allows
us to make indirect data comparison that would not
otherwise be possible,
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As an example of this, we began by interpolating our
equation of state to compare the molar volume with
existing measurements [2,6] at pressure. We then extrap-
olated the equation to the vapor-pressure curve where a
number of direct measurements of the liquid molar vol-
ume [1,5] exist. The analysis was finally extended by
incorporating some of the existing calorimetric data for
the liquid [35,43,45]. This additional information al-
lowed us to compare our results with existing sound
velocity [46-48] and isochoric heat capacity mea-
surements [3]. The overall conclusion of the analysis is

that our measurements agree with the best available data

for differential quantities, such as the compressibility,
1(3P/aT)y, and sound velocity. However, small but sig-
nificant uncertainties remain in the scale of the liquid
data. Our volume measurements agree with those of
Friedman et al. [6], but extrapolations of eq (8) to the
vapor curve yield values that are at least 0.10 cm*/mole
lower than the measurements of Kerr [5].

Results for the volume change on melting were then
given. These were followed by a brief review of the
existing evidence for a solid-solid phase transition in
hydrogen. The behavior of our volume-change mea-
surements showed no irregularities that would indicate
a similar behavior in n-D,.

From the volume-change measurements and the slope
of the melting curve we derived the corresponding
heats of fusion and fitted them to a linear function of
pressure. These results agree with existing mea-
surements at low pressures [35,43]. Finally, we derived
salid molar volumes along the melting curve. The corre-
sponding solid densities were fit to a linear function of
the metting temperature. This empirical function was
extrapolated to both low and high temperatures to com-
pare with existing data. We found that our extrapo-
lations are consistent with values derived from the best
existing solid-phase data [14,64].

We attempted to measure compressibilities and ther-
mal expansion coefficients in the solid. The results of
these measurements were found to be somewhat incon-
sistent with our solid densities along the melting curve.
We briefly discussed the compressibility and thermal
expansion coefficients that can be derived from the tabu-
lated equation of state that Driessen et al. [14] presented.
These results appear to be more nearly consistent with
the observed solid compression. Finally, we derived an
indirect estimate of the solid thermal expansion from a
variety of data that had been presented earlier in the
discussion. This calculation gave a higher value than we
obtained from our direct measurements but lower than
that deduced from the extrapolated equation of state.

The paper concluded with our unexplained obser-
vations of the changes of the melting pressure of the

confined sample with time. We noted that these changes
were opposite from what might be expected of the ef-
fects of ortho-para conversion.

The authors wish to thank Dr. R. L. Mills for par-
ticipating in valuable discussions on topics in this paper
and R. Jay Fries of the Laser Fusion Target Fabrication
Group.
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contribution to the single-ion activity coefficients. Caleulations have been performed on aquecus sulfuric acid,
acetic acid, hydrofluoric acid, cadmium chloride, copper sulfate, and sodium carbonate, Properties which have
been calculated are the excess Gibbs energy, the osmotic coefficient, the mean ionic activity coefficient, and
Frank’s single-ion activity coefficient function. Agreement between calculated and measured properties has

been obtained up to molalities of ~1.0 mol kg™'

Key words: acetic acid; activity coefficient; cadminm chioride; copper sulfate; eguilibrinm; excess Gibbs
energy; hydrofluaric acid; models of solutions; osmotic coefficient; sodium carbonate; suifuric acid.

1. Introduction

Equilibrium models have been used [1—15]' both for
the prediction and for the correlation of activity and
osmotic coefficient data in agueous elecirolyte solu-
tions. These equilibrium models are particularly appro-
priate when one is dealing with solutions which exhibit
association, complexation, hydration, or hydrolysis.
When applied to such splutions, they are superior to the
use of a model that assumes the electrolyte in solution to
be a fully dissociated strong electrolyte. A variety of

About the Anthor, Paper: Robert N. Goldberg is
with the NBS Chemical Thermal Dynamics Di-
vision. The research reported orn was carried out at
NBS under the sponsorship of the NBS Office of
Standard Reference Data and the U.S. Department
of Energy.

! Figuras in brackets indicate literature references at the end of this
paper.

approaches has been used in these equilibrinm models
for treating these various types of equilibria in solution
and for the calculation of the activity and esmotic coef-
ficients. Several different types of functions for the cal-
culation of the electrostatic contribution to the activity
coefficient of the ions in solution have also been used.

The purposes of this paper are to 1) describe a pro-
cedure for (a) the calculation of activity and osmotic
coefficients in aqueous solutions that uses a generalized
approach for treating the equilibria in solution, and (b)
the calculation of the Gibbs energy properties, 2) clarify
the distinction between the stoichiometric and species
guantities, frequently a source of confusion in the litera-
ture, and 3) explore the effects of parameter variations in
the model on calculated values of the thermodynamic
properties as applied to several representative types of
electrolyte solutions. Using the equilibrivm model, one
can also calculate the values of the activity coefficients
of individual ions. This permits one to then calculate
values for Frank’s [16] single-ion activity coefficient
function.
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2. The Model

A fundamental idea used here is the distinction be-
tween the stoichiometric components of which a system
is composed and the particle constituents, or species,
which are introduced to account for the properties of a
solution. Stoichiometric quantities will be designated by
“st” when not otherwise clearly indicated. Species or
particle quantities will always be designated bya * = ”
placed over the quantity. For example, for the solution
formed from 0.1 moles of pure H,S04¢) and 1 kg/M,
moles of H,O{¢), the stoichiometric molality of HSC,
is m{H;S0,)=0.1 mol kg, m(SOL)=0.1 mol kg™,

and m (H*)=0.2 mol kg~! if one views the electrolyte
as being completely dissociated. However, if one con-
siders the equilibrium: 502~ (aq}+ H™(aq)=HS0; " (aq),
adopts a K of 99 for it [17], and uses a Debye-Hiickel
type expression (see eq (5)) for the activity coefficients
of the 1ons with a B parameter equal to zero, one calcu-
lates mHT)=0.134 mol kg~', A(50; )=0.0342 mol
kg™, MHSO7)=0.0658 mol kg ', and A:(H,50,)=0.0

* Throughout this paper the activity will always have units of mol
kg~ The equilibrivm constants, formed as products and quetients of
activities, will have units of mol kg ', or kg mol ', or, for symmetrical
reactions, will be dimensionless. For sake of brevity, the units for
equilibrium constants will be omitted.

GLOSSARY

Reman

activity

constant equal to 1.2 in Pitzer's
equation

hydration number

molality/mol kg~

amount or moles of substance

pressure

number of moles of species Sy
participating in a given reaction

charge

an anion

Debye-Hiickel constants;
An=34,=1.17642 kg'* mol™""*
at 298.15 K

parameter in the Debye-Hiickel
equation

a cation

ionic strength

Gibbs energy

equilibrium constant

molar mass/kg mol ™!

number of species in solution,
equilibria, components, and, re-
spectively, species in the k™ equi-
libriam

R gas constant

Sy the j* species in
zquilibrium

temperabure

mole fraction

.:_-Nr:ag:.-.- [
»~

o
=
&

LR

N, N, N, My

the k*

3

Greek

¥ activity coefficient

Sjj Kronecker delta; Sij=1 if l.=_],
8;=0 if i=£j

G Frank's single-ion activity coeffi-
cient function

Ay pair-wise interaction parameter

Pk triplet interaction parameter

v ion number

E extent of reaction variable

¢ osmotc coefficient

¢ rational osmotic coefficient

Superscripts

ex excess

id idesl

st stoichiomerric

a standard valus quantity

* the property of the pure
substance

- a species quantity

Subscripts

a an anion

c a cation except when used with
capital Roman &V as IV,

e sec Roman NV,

ijk a species or used as indices; also
see N, under Roman

4 a component

m see 4, under Roman

r a reference cation or anion

5 seg N, nnder Roman

1 waler

.l mean onic

b see A, under Roman
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mol kg~". Physical quantities other than amounts of sub-
stance can also be viewed as particle quantities. In par-
ticular it is the distinction between G and G* which
forms the basis of the model presented herein.

The general system to be considered is formed from 1
kg/M,; moles of water and n.{# =2 to N;) moles of
other components. In terms of a particle model, the
system can be viewed as being formed from #, moles of
water and A (i=2 to /N;) moles of particles or species.
The amount of water (i} will always be designated by a
subscript “l.” The components and the species other
than water will be designated by subscripts ¢ and ““i,”
respectively, with i and ¢ 2.

Each component ¢ in the solution is represented as

Cf’ e Af: where C and A are the reference cations and
ani(c;ns, rc;spectively. The charges of the cations and an-
ions are z,. and z,,, respectively; the ion-numbers are
v, and v, respectively. It is important to note that the
choice of reference species is arbitrary; e.g., for a solu-
tion of aqueous sulfuric acid, the reference species could
be selected as either two H™ ions and one SOZ- ion or as
one H* ion and one HSO7 ion. In the former case,
sulfuric acid would be represented as (H*),(SO}™), and
in the latter case as (H*},(HSO7),. While the choice of
reference species is arbitrary, it will not affect the
amounts of the various species one calculates given the
same set of equilibrium constants and allowed spe-
cies.However, as will be seen later, the choice does
affect the values of several of the stoichiometric thermo-
dynamic properties.

The Gibbs energy of the solution in the stoichiometric
representation is given by

NC
G=(mTkg)Gl+(Ez(v(chc+v!aGt’a)m! M
where m ¥ is the molality of water in pure water and G,
and G, are, respectively, the chemical potentials of the
reference cation and anion of the ¢ component in the
solution. In terms of an equilibrium or species model of
the solution, the Gibbs energy is given by

NS

G = Elﬁ,-G,- (2)
If the equilibrium model is accurate, the Gibbs energy of
the solution calculated using eqs (1) and (2) will be
identical and the chemical potentials and the activities of
the i species will be the same in both the stoichiometric
and species representations. The development to follow
will start with a description of the solution in terms of
the equilibria assumed to be present in solution, an as-
sumed expression(s) for the activity coefficients of the
solute species in solution, and the calculation of the
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activity of the water using the Gibbs-Duhem equation.
It is important to note that there may be several equi-
librium models of a solution which yield agreement with
calculated properties. Thus agreement between calcu-
lated and measured properties does not, in the absence
of direct molecular information, prove the correciness
of the model used.

The equilibria in solution are described by a series of
chemical equations:

N

‘Eltjk Sjk=0, k =1to Ne (3)
1=

where S, is the j** species in the k” equilibrium, Ny is the
number of species in the k* equilibrium, N, is the total
number of equilibria, and ¢ is the number of moles of
species Sj, participating in a given equilibrium; #; is pos-
itive if S;, is a product and is negative if Sy is a reactant.
The equilibrinm constants are:

4)

Ny "
=1 4}
K, 78,

k=1to N,

where & is the activity of species Sj. Since & is equal to
the product of the molality of the i" species (/) and its
activity coefficient (§,), the complete formulation of the
equations which describe the equilibria in solution re-
quires that some assumptions(s) be made concerning the
form of the §/'s (i»2) in seolution. In this paper two
different expressions for the 4/'s will be used:

n i’i= _Am Eizl‘rl/z/(l +le/2) (5)

and
€n = —BAy[P7?/ (141" +(2/b) € n (1 +bIH)] (6)

Equation (5) is the Debye-Hiickel equation with an ex-
cluded volume or “ion-size” parameter 2 in the denom-
inator. Equation (6) is the leading term of Pitzer’s ex-
pression for 4, [18]; he has set b equal to 1.2. 4, and 4,
are Debye-Hiickel constants, where 4, =34,=1.17642
kg'? mol~"? at 298.15 K. Equations (5) and (6) can be
extended by the addition of the expression:

z

N, N, N N
; hUmJ—f—E = kEI Mijkd?2#1y

i=1 j=1

(M

4

It
-

where A; and py are, respectively, the interaction pa-
rameters for pairs and triplets of particles. We shall later
return to the subject of the extensions of egs (5) and (6)
and to several other aspects of the choice of an expres-
sion for 4;. It should be noted that [ is calculated as



s

i 2}
2

M2

I=(1/2)1_ )

We have formulated the equilibrium equations using
an extent of reaction variable £. Thus, the amount of the
i* species in solution is given by

Ne
R=(mtkg)but 3 (Ve By +vemn by)

Ne Dy
+k§l j§1 £, i»l ®
where £, is the extent of reaction variable for the k*
equilibrium and & is the Kronecker delta; r is an integer
which serves to identify the reference cation and anion
of each of the components in the solution. The first
summation term on the right side of eq (9) specifies the
amount of species i which is formed in the absence of
any equilibria in solution; the second summation term
specifies the contributions, which may be positive or
negative, to the amount of species i in solution from the
equilibria in solution. If the water is a participant in the
equilibria in solution, #, must also be calculated using the
above equation. Hydration numbers can be introduced
directly using
NS -~

=" (eq (N — 2 Ak (10)
where # (eq(9)) is the amount of water calculated using
eq (9) and #; is the number of waters of hydration at-
tached to the i* species. If the water participates in the
equilibria in solution or if hydration numbers are intro-
duced, A kg~' will not be equal to m*. The Ay are given
by

m=n(mt/ Ay, i»2 (11)
The activities of the species are given by
&=, 1>2 (12)

Thus in a model where hydration is introduced, both r;
and &; will be affected by chariges in both 4, and #; (i>2).

To obtain a numerical solution of eq (4), it is neces-
sary to make some initial guess for the activity of water
if it is a participant in the equilibria in solution; we have
generally used a value of unity. Thus, having formulated
the simultaneous nonlinear eq (4), which neces-
sarily include eqs (8) to (12) and eq (5) or (6), one is left
with a numerical problem to obtain a self-consistent
solution of these equations. It is assumed that, while
stich a solution may be difficult to obtain for large sys-
tems, a unigue solution does exist and that one now has

values for f, /i, and #; for i1 and for ¥; and 4; for i>2.

The activity of the water can now be calculated by
application of the Gibbs-Duhem equation stated in
terms of excess properties of the species

NS
mdGy=— 3 #dGy (13)
Use of eqs (11) and (13) leads to
NS
m¥dGs= —_§2 Ard G (14

It is also necessary to adopt some conventions concern-
ing the limits of &, and ;. The conventions used herein

Ny .
are &—1 and, for i>2, ¥—1 as _:‘2,2 m—0; also, ¢ (i>2)

is defined to be equal to unity®. These conventions, to-
gether with the definitions of the activity &, the activity
coefficient ¥;, and the definition of the excess Gibbs
energy of the i* species given in the following equations

&=expl(Gi—GV)/RT] izl (15)
Yi==ai/ iz2 (16)
and
G#'=G,— G i>1 an
lead to’
GP=RT ¢#%; ~(18)

The introduction of eqs (5) and (18) into eq (14) yields
G =24 RT/mtB)[(1+BI'?)

—28n(1+B1")— 1+ B (19

Similarly, one obtains, using eq (6) instead of eq (5), the
relationship

G* =24, RT/m¥) [P*/(1-+bI'™)] (20)

We now consider an ideal reacting solution in which
4 (i>2) is equal to unity at all temperatures, pressures,

3 This is the convention most frequently used in the description of
aqueous electrolyte solutions. It is based upon the molality scale. A
different convention based upon the mole fraction scale is commonly
used for the description of non-electrolyte solutions.
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and compositions and which also allows for the pres-
ence of both equilibria and hydration in solution. Appli-
cation of the Gibbs-Duhem equation to such a solution
leads to

nafi=—3 p/mi 1)
and this in turn with eq (15) leads to
-~ Ns
Gi=G3—(RT/m?) Z (22)

Since an excess property is defined as the difference
between the real and the ideal, it follows from egs (15)
and (22) that

Ne
£ nty=GP/RT — (2 /m 1) (23)

If the equilibrium model is an accurate representation of
the solution, @ is equal to . We thus have a procedure
for the computation of the activity of the water which
starts with an equilibrium model of the solution and an
assumed expression for the activity coefficients in the
solution. Since it is necessary to make an initial guess as
to the value of the activity of the water, the calculation
should be repeated using the value of & from the pre-
vious iteration until convergence to within a given toler-
ance in its value is obtained. The (stoichiometric) os-
motic coefficient is calculated as

NC
b= (m ’f‘/b}.=2 vemg)€na, (24)

where m, is the stoichiometric molality of component
£ and v, is equal to (v .+ v,,). Note that v, is unity for
a non-electrolytic component and that, as stated earlier,
the value of the osmotic coefficient is dependent upon
the choice of the reference species selected for each
component in the solution.

The stoichiometric activity coefficients can be calcu-
lated using the principle that the chemical potential is
independent of any representation of it. Equating &, to
a;, the stoichiometric single-ion activity coefficient is
given by
2%

')’liit =/ m i

where m? is the total stoichiometric molality of the i
species in solution. The mean ionic activity coefficient

of component ¢ is given by

(26)

_ v Veyls
Ver=(ysl -yl eo) "¢

As was the case for the osmotic coefficient, the value of
the mean ionic activity coefficient is dependent upon the
reference species selected for a given component,

Other stoichiometric Gibbs energy properties can be
calculated in addition to the activity of the water, the
osmotic coefficient, and the mean ionic activity coeffi-
cient of the #” component. Additional properties of the
water are calculated as follows:

Ne
F=RT {na+(RT/m¥) & vem, @n
G|=G?+RTZ?H1; (28)
n=a/X, 29
and
&, =(£na)/(£nX) (30)

Note that egs (29) and (30) are definitions of the activity
coefficient of the water (7)), and of the rational osmotic
coefficient (¢,.), respectively. These two quantities have
not been frequently used in the literature. The properties
of the solutes are:

G¥=v,RT ny,s. 3D
Ye=exp(GF/RT) (32)
Qr=MsY¢ (33)
G,—G2=RT na, (34

and
dex=Mexyry (35)

where the mean ionic molality of component ¢ is de-
fined as

Mo ={(Vrem ) (v sy ) e}V e (36)
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Finally, the total properties of the solution are

Ne

Go= 3 n,G5* (37)

and

Ne
G—G°= 3 n/(G,~G2) (38)

Equation (27) is the stoichiometric analogue of eq (23).
Equations (29) and (30) are, respectively, the definitions
of the activity coefficient of the water and of the rational
osmotic coefficient. The steps used in the overall com-
putational procedure are summarized in figure 1.

It is interesting to consider the consequences of the
ideal behavior of all of the solute particles in the species
representation, i.e.,, =1 for i>2. Application of egs
(21), (23}, and (24) to such a solution leads to

NN
d)=i=2 mi/’=2 v, me (39
Application of egs (25) and (26) leads to
Y e ={Mo/mo)" (i /my) (40)

If the stoichiometric and species representations are
identical, then ¢» and y .. will be equal to unity. This is

the case when there are no chemical interactions (i.e.,
association, hydration, or hydrolysis) present in solution
and the stoichiometric reference species chosen are the
only ones present in solution.

An additional interesting feature of this model is that
properties of individual ions and species are calculated
(eq (25)). Unlike the stoichiometric properties given in
eq (24) and eqs (26) to (35), there are presently no experi-
mental data available with which one can compare these
calculated values. Frank [16] has defined a quantity §.
characteristic of single-ion properties for a binary elec-
trolyte:

Bu=(y /)" (41)

The definition is easily extended to multicomponent sys-
tems as was done for the case of the mean ionic activity
coefficient (see eq (26)) and values of §,.. can also be
calculated if the equilibria in solution are known.

An alternative way of viewing this model uses the
definition of the excess Gibbs energy

G"=G—G" 42)

and its analogue for the species representation

Figure 1 — Steps for the calculation of the amounts of species in solu-
tion and of the stoichiometric Gibbs energy properties of the solu-
tion.

12, Calculat'e the other stoichiometric
properties, eqgs (27) to (35).

11, Calculate ¢ using eq (24) and y..

using eqs (25) and (26).

10. Make a choice of stoichiometric reference
species.

9. Ifais equal to the initial guess of a,, go to step 10;
if not, return to step 6.

8. Calculate a;=a, eq (23).

7. Calculate

T, using eq (19) or (20).

6. Solve eqs (4) in a manner self-consistent with eqs (8) to (12) and with

eq (5) or (6).
5. Make an initial guess for a,.

4. Choose an expression for 7, eq (5) or (6).

3. Specify the values of K, eq (4).

2. Specify the stoichiometric amounts of each component in the solution.

1. Set up the equilibrium egs (1).
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G*=G -G “43)

Since the Gibbs energy is independent of representation,

Gex:Gex+Gid_Gid (44)

Similar equations hold for G$*, ¢ >1. From the defini-
tion of ideality,

GP=G34+-RT & mitn (45)

Equations analogous to the foregoing expression and to
eq (39) exist for the stoichiometric components of a
solution. Thus, introduction of eqs (22) and (45) and
their stoichiometric analogues into eq (44) yields

Ns
G*={3 #G7}

+ (BT —RT(S f/m D]

N
+2 A(BI+RT £ nih)}

— {n[G*—RT(Z yom /mD)] (46)

N
—|—(§2 e o (GE+RT £ nv, my)

Vet AG A+ RT Enpun )]}

Note that G$= 0 in the above equation.

The three terms in {  } on the right side of eq (46)
correspond, respectively, to G, G, and G'. Inspection
of the terms for G shows that the differences between
these quantities involve two factors: 1) a difference in
Gibbs energies, i.e., G{ terms multiplied by »; and #;, and
2) entropic terms, i.e., the (RTEn; £ nim) terms for the
solute particles and the (RTZm;) terms for the solvent.
If one views G™ as the electrostatic or ionic contribution
te G, the stoichiometric excess Gibbs energy is seen to
also consist of energetic and entropic -contributions
which are formally accounted for with this model.
While 2q (46) couid be used to compute G¥* directly, it
is numerically preferable to use the computational
scheme putlined earlier (see fig. 1).

In this paper, two different expressions have been
used for 4 (see eqs (5) and {6)). While classical thermo-
dynamics has little to say about the correctness of either

of these or any other choices for ¥, it does impose cne
important constraint or: such a choice, namely that

(G 3R) 1, =(0GF/ 3R 1., 47)
or equivalently,
(a n ?i/aﬁj);;p,u#i:-(a £n '}\’j/a&f_)r‘u."iﬂ (48)

Thus, while it is tempting to try to assign a different
value of Bor b to each species in a solution in egs (5) and
{(6), respectively, to do so would violate eqs (47) and
(48). However, the extension of eqs (5) and (&) using eq
(7) does not vioclate this thermodynamic constraint.
Note that the use of eqs (5) or (6) for §; does not allow
for the introduction of specific-ion effects attributable to
long-range electrostatic interactions. These effects can
be introduced by the use of eq (7). Specific-ion effects
attributable to chemical equilibria are accounted forin
the equilibrium part of the model. Expressions other
than those in eqs (5) and (6) could be used to represent
the electrostatic part of ¥.

The long range electrostatic contributions to the
Gibbs energy properties are introduced via eq (5) or (6)
and the use of an equilibrium model. Other interactions
accounted for in this model include: 1) chemical inter-
actions, 2) hvdration, and 3) volume exclusion effects.
The atiractive chemical interactions are accounted for
by the use of the equilibrium constants for the processes
which describe the equilibria in solution. These pro-
cesses can involve ion-pairing, complexation, and hy-
drolysis. The effects of hydration are accounted for
either by the introduction of equilibrium constants for
specific reactions involving hydration or by the use of
hydration numbers for each species in solution. The use
of hydration numbers reduces the value of 7, in eq (10)
which in turn has consequent effects on the 7, T, ¥, G,
and other properties. Volume exclusion effects are rep-
resented by the &2 or 4 parameter in eqs (5) or (6). Short
range repulsive forcés between particles can also be ac-
counted for using the My and/or u;; parameters. It is
worth noting that there are similarities in the effects that
changes in certain parameters have on thermodynamic
properties. Specifically, an increased value of B {or b) is
similar to the introduction of a positive A; or py; and also
to the introduction of hydration effects. Physicaily this
should be the case since the excluded volume for a hy-
drated ion is larger than for one that is not hydrated.
Also, a negative A is similar to an association between
particles i and j. The remainder of this paper will discuss
the application of this model to several agueous salt
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solutions containing representative types of chemical
interactions.

3. Results and Discussion

We now compare the resulis of caleulations using this
model with experimental data and examine the results of
perturbing the various input parameters in the model,
i.e., the single-ion activity coefficient expressions, the
assumed equilibrium canstants, and the assumed state of

0.1

T T T 1 Ll T 1
0000 0,025 0050 0075 0100 0125 0150 0175

molality/ (mol kg 1)

0,200

Figure 2—Clockwise from above, calculated activity coefficients, os-
matic coefficients, and excess Gibbs energies of aqueous H:S0, at
258,15 K as a function of molality. K 4 is varied: 99 for the solid line,
89 for the dashed line, an 109 for the dotted line. Equation (6),
Pitzer's expression for 4. was used in calculating each of the
curves, The jons were considered to be unhydrated.

hydration of the species in sclution. To do this, calcu-
lations have been made on the following aqueous elec-
trolyte solutions: sulfuric acid, acetic acid, hydrofluoric
acid, cadmium chloride, copper sulfate, and sodium car-
bonate.

The results of calenlations on aquecus sulforic acid
are shown in figures 2 through 4, where the chemical
equilibrium considered is

H*(aq)+ SO3~(aqy=HSO07(aq} (A)
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Figure 3— Comparison of calculated osmotic coefficients for aqueous
H,S0, at 298.15 K. The squares are the correlated values of Pitzer,
Roy, and Silvester [10]. The solid line was calculated using a value
of K4 =99 and Pitzer’s expression for ;. The dashed and dotted
lines were calculated using the same value of K 4 and values of B
equal to zero and 2.3 respectively, in a Debye-Hiickel expression
for % (eq (5)). The ions were considered to be unhydrated.

The value of K, is 99 at 298.15 K [17]. It is seen that the
calculated values of y.., ¢, and G** are relatively insen-
sitive to moderate variations in X, up to molalities of 0.2
mol kg~!. However, as seen in figure 3, significant
changes in the osmotic coefficient are produced by per-
turbing the value of the B parameter. Use of a value of
B equal to 2.5 in a Debye-Hiickel expression for ¥; (see
eq (5)) produces good agreement with the experimental
osmotic coefficients (the squares in fig. 2d) up to a mo-
lality of ~0.2 mol kg~'. The effects of variations in
hydration numbers is shown in figure 4. The minimum in
the osmotic coefficient curve cannot be produced by
variation in the B parameter, but, as seen in figure 4, a
minimum is observed when hydration is introduced.

The equilibrium considered in the description of
aqueous acetic acid (HAc) is

H*(ag)+Ac (aqQ)=HAcaq) ,K=5.96x10" (B)

For aqueous hydrofluoric acid, the equilibria are

\d
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1.00
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0.85

0.70 0.75
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T T T T
0.0 0.2 04 0.6 0.8 1.0
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Figure 4 — Calculated osmotic coefficients of aqueous H,SO; at 298,15
K in which the extent of hydration of the ions is varied. All three
curves were calculated using a value of 99 for K ; and a Debye-
Hiickel expression for 4; with B equal to 2.0. The dotted line was
calculated assuming that alt of the ions were not hydrated. The
solid and dashed line were calculated, respectively, by assuming all
three ions (H+, SO}~, and HSO3Z) to be hydrated with three and
four waters each. The squares are from the correlation of Pitzer,
Roy, and Silvester [10].

H(aq)+F~(aq)=HF%aq) ,K=144X10* (C)

and
K =271

HF(aq) + F~(aqg)=HFz(aq) (D)

For aqueous cadmium chloride the stepwise equilibria
considered are:

Cd**(ag)+Cl~(aq)=CdCl*(ag) ,K=85 (E)
CdCI*(aq)+Cl-(aq)=CdCl(ag) K =271 (F)
CdCiYaq)+Cl-(aq)=CdCl3(aq) ,K=0.33 (&)

and

CdCl3(ag)+Cl(aq)=CACE" (ag) & =4.3X107* (H)
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The equilibria considered for aqueous copper sulfate
are:

Cu**(aq)4-80~(aq)=CuSO(aq) ,K=250 ()
CuSO0{(aq) + Cu** (ag)=Cu,Sitaq) K=5 ()
CuSOXaq)+SO;~(a)=Cu(SO:E(aq) K=5 (K)

For aquecus sodium carbonate the equilibria considered
are:

CO;™(aq) +H,O(£)

=HCO3(aq)+0H (ag) ,K=216x10"* (L)

HCO73(aq)=COYaq)+O0H " (2q) K =2.34X 10~* (M)

1.0

“”-k\::nmr
£ [N s

=] 2 o =

T T T T
a0 0.2 0.4 0.8 0.8 1.0

molality/ (rmol kg ~1)

Figure 5— The osmotic coefficients of aquecus acetic acid at 273. 15 K.
The squares are the experimental osmotic coefficients reported by
Harris, Thompson, and Wood [21]. The solid curve was calculated
using a value of Kg=15.96 10¢ which was obtained from the val-
ues of AG*, AF*, and AC; for process (B) given by Larson and
Hepler [19]. The solid curve was also calculated using either Pit-
zer's 4 or a Debye-Hiickel 4; where B varied from zero to 2.0. In
this figure and in all subsequent ones, the ions were considered to
be unhydrated.

and

HO(/)=H"(a)+0H (ag) K=10x10"% (N)

All of the above equilibrium constants refer to a tem-
perature of 298.135 K with the exception of the value for
process (&) which refers te 273.15 K. The Gibbs ener-
gies of formation given in the NBS Tables of Chemical

Thermodynamic Properties [17] were used to calculate
the above values for equilibria (C), (D), (K), (L), and

~ (M). The value for process (B) was calculated from the

data for acetic acid tabulated by Larson and Hepler [19];
the values for processes (E), (F), (G}, and (H) are those
given by Reilly and Stokes [12]; and the values for pro-
cesses (I), (), and (K) are those given by Pitzer [9]. The
Debye-Hiickel constants recommended by Clarke and
Glew [20] were used in all calculations.

The results of the calculations are shown in figures 5
through 9. For acetic acid, since the species ionic
strength (7} is very low (it has a value of 0.044 mol kg™*
at I*=1.0 mol kg~'}, the choice of the expression for ¥;
makes very little difference. Near agreement with the
experimental osmotic coefficients is obtained to a
molality of =0.2 mal kg™". The difference between the
measured osmotic coefficients and the calculated ones

=]
-

a o a o o

0.5

=] C o
T T T 1
0.0 0z 04 0. 08 1.0

molality/ (mol kg ~ %)

Figure 6 — The csmotic coafficients of aqueous HF at 298.15 K. Values
of K.=1442 and K; =2.63 were used to caleulate the solid curve
together with Pitzer's expression for %;. The squares are from the
correlation of Hamer and Wu [22).
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can be attributed to the formation of dimers and trimers
of acetic acid [21] and cannot be explained either by the
introduction of hydration or by the use of different B
parameters in eq (5) or by the choice of a different
expression for ;.

For aqueous HF, CdCl,, CuSO,, and Na,CO;, agree-
ment of calculated with measured properties can be ob-
tained to molalities between 0.6 and 1.0 mol kg~ by the
variation of the B parameter in eq (5) and, for the case of
CdCl,, using only eq (6) for ¥ Neither the use of eq (5)
nor eq (6) is able to produce the minima in the calculated
values of ¢ or . which is observed for many electro-
lyte solutions. These minima can be produced, however,
either by the introduction of hydration or by the use of
eq (7) to extend the equations for ¥; It should be noted
that for Na,COj; solutions the osmotic coefficient does
not approach the usual limit of unity as m* approaches
zero mol kg™'; instead it approaches a value of 1.395
[14]. This is a consequence of eq (39) and the presence of
equilibria (L), (M}, and (N).

Calculated values of 8. are shown in figure 10. The
fact that values of 8. for acetic acid and for copper
sulfate are essentially unity is attributable to a very near
cancellation of terms in eqs (25} and (36). It should be
noted that the value of &.. for Na,CQ;, unlike the other

=

T T T
0.4 0.6 0.8 1.0

molality/ (mol kg 1)

Figure 7— The activity coefficients of aqueous CdCl, at 298.15 K. The
successive formation constants given by Reilly and Stokes [12]
were used in doing the calculations. The solid line was calculated
using Pitzer's expression for ¥i and the dashed line was calculated
using the Debye-Hiickel #; with B set equal to 2.0. The squares are
based on the measurements of Reilly and Stoke [12].

systems shown in figure 10, does not approach a value of
unity as the molality approaches zero mol kg~!; the
minimum value of &, for Na,CO; occurs at a molality of
0.0040 mol kg~'. While there are presently no experi-
mental values of 8. available with which to compare
our calculated values, this property is potentially mea-
sureable [24].

In summary, an equilibrium model for aqueous solu-
tions has several important applications: 1) the Gibbs
energy properties can be reliably estimated at low
molalities if the appropriate equilibrium constants are
known, 2) an equation of state can be generated which
is appropriate for a particular type of solution, 3)
amounts of species in a given solution can be calculated,
4) single-ion activities can be calculated, and 5) as was
done here, effects of variations in the equilibria, state of
hydration, and electrostatic contributions to the Gibbs
energy properties can be investigated. A natural exten-
sion of this model is the calculation of enthalplies, heat
capacities, and volumes of aqueous solutions.

The author thanks Drs. Graham Morrison, Ralph L.
Nuttall, and, in particular, Robert H. Wood, for useful
and stimulating discussions on the topics of this paper.
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molality/ (mol kg ~1)

0.8 1.0

Figure 8—The osmotic coefficients of aqueous CuSCOs at 298.15 K.
The squares are the experimental data of Miller ¢t al [23]. The three
curves were obtained using values of Kz=250 and Kr=Kg=5.
The solid line was calculated using Pitzer's expression for ¥; the
dashed and dotted lines were obtained using the Debye-Hiickel %;
with B set equal to 2.0 and 5.0, respectively.
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Figure 9—The osmotic coefficients of aguecus Na,COy at 289.15 K.
The squares are from the correlation of Vanderzee [14]. The solid
line was calculated using Pitzer’s expression for 4; and values of
K, Ky, and K from reference [17)]. The dashed line was calcu-
lated using these same values of K and a Debye-Hiickel §; with B
equal to 1,0,
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This paper describes the design, construction, and testing of a probe for the measurement of electric current
in a circuit. This measurement is performed by using Faraday rotation produced in a beam of polarized light that
encircles the current-carrying conductor. Such a probe is an absolute instrument whose calibration only depends
upon the Verdet constant of the rotative medium and is independent of the dimensions or positions of the light
path relative to the current. The time resolution of the probe is the optical transit time about the closed path and

can in practice be reduced to a few nanoseconds.

Key words: absolute instrument; electric current; Faraday effect; measurement; polarized light; Verdet constant.

1. Introduction

The Faraday effect, known for over a century, has
been applied extensively in the measurement of mag-
netic fields and, more recently, in the measurement of
electric current. A Faraday effect current probe offers
several advantages, especially for the current mea-
surements in high-voltage circuits. Since measurement
information is conveyed by variations in the intensity of
an optical signal, the probe can be perfectly insulated
electrically from the measurement and recording cir-
cuitry either by the free space propagation of a light
beam or the transmission of the signal via fiber optics.
Indeed the probe need not interrupt the circuit in which
the current is being measured; it need only be close
enough to be affected in a controlled way by the mag-

About the Authors, Paper: While W. Caton remains
associated with Maxwell Laboratories, J. Katzenstein
is now with the University of California at Irvine. The
work on which they report, performed while both
were at Maxwell, was carried out for the Defense Nu-
clear Agency, U.S. Department of Defense, under
contract DNA001-79-C-0019.

netic field produced by the current. A second advantage
of the Faraday effect current probe is the possibility of
its being an absolute instrument because calibration can
be made to depend solely upon the Verdet constant of
the rotative medium. For diamagnetic media, the Ver-
det constant is determined by the dispersion curve of the
medium and does not depend upon temperature.

A great deal of work has been done to develop Far-
aday effect current probes. Hebner et al. summarized
this work up to 1977 [1]". The difficulties with the cur-
rent probes can be summarized as owing to 1) cali-
bration errors and, 2} limited dynamic range, signal-to-
noise ratio, and the effects of optical detector sensitivity
variations.

The principal source of the first set of difficulties lies
in the fact that the magnetic field arising from the
current flow in an arbitrary circuit, in general, has a
spatial variation. Hence, the calibration of the probe
involves geometric factors such as the shape and dimen-
sions of the probe and its position relative to the circuit.
The second set of difficulties stems from the relatively
small value of the Verdet constant for most media and
the concomitant small value of the rotation for cur-
rents of the magnitudes encountered in electric utility

IFigures in brackets indicate literature references at the end of this
paper.
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transmission lines, The schemes [1] proposed to improve
this situation, such as null-secking feedback devices,
etc., generally lead to expensive, complicated, and less
than satisfactory devices. In spite of these problems,
satisfactory Faraday probes for use on utility trans-
mission lines have been realized [2,3,4].

The geometric factors in the probe calibration can be
eliminated by designing the optical path in the rotative
medium so that it encircles the current. Since the Far-
aday rotation angle & is proportional to the line integral
of the magnetic induction B along the path {, we can
write for a closed light path

0=V §Bed (1)

where FV, the constant proportionality, the so-called
Verdet constant, is characteristic of the rotative medium
and is usually expressed in the units of minutes of arc per
gauss-centimeter. From the circuital statement of Am-
pere’s law, we replace the circuital integral $Bed! by
4mi

10
the path of integration. The resulting Faraday rotation is
thus

where / is the current in amperes that is enclosed by

4

BEE

Vi )

The Faraday rotation in such a current probe depends
only on the Verdet constant of the rotative medium;
geometric factors do not enter. Current probes based on
this principle have been developed [3,4], using optical
fibers as the rotative medium. Unfortunately, optical
fibers which rigorously preserve the state of polar-
ization transversing them are at present beyond the state
of the art.” Since the Verdet constant of the fiber core
material (essentially fused quartz) is very small, a large
number of turns of the fiber around the conductor is
needed to obtain a measureable rotation which greatly
increases the stray birefringence due to fiber strain and
curvature. To minimize these effects, the radius of cur-
vature of the fiber turns is kept as Iarge as possible which
increases the overall size of the probe. As the optical

Presently single mode optical fibers have been produced with dif-
ferent propagation velocities for right- and left-hand polarized light.
[9] Since these two modes of propagation have different phase veloc-
ities, there is no intermixing of the modes due to fiber imperfections
and the relative phase of the two circular modes of propagation is
preserved. If such fibers could be made with cores of high Verdet
constant glass which should in principle pose no difficulty, then a
Faraday rotation current probe making use of only a few turns could
be produced with a concomitant low transit time and short time
resolution.

transit time of the fiber coil gives the time resolution of
the current variations such a fiber optic probe would be
unsuitable for measuring fast-rising currents. In spite of
these problems, however, Faraday effect current mon-
itors have been developed for use on high voliage utility
transmission lines and offer a cost-effective alternative
to conventional current transformers. At the relative
low frequencies present in these lines, the decreased
time resolution of these fiber optic probes poses no prob-
lem.

The second set of problems, dynamic range; signal-to-
noise ratio etc., can be addressed by designing the probe
so that the number of complete Faraday rotations at the
maximum value of current is large. In our work this
required no particular effort as the peak current was in
the mega-ampere range. The advantage of this mode of
operation can be seen from the following discussion.

The light entering the Faraday probe is rendered
plane polarized by use of a suitable device (unless a laser
emitting plane polarized light is used as a source) and the
emerging light passes through a second polarizer or an-
alyzer before entering the detector.

The intensity of light on the detector for an incident
intensity of f; is given by

I=I, cos’(0+x) (3)

where Yy is the angle between the transmission axes of
the polarizer and analyzer.

Two different methods of handling Faraday effect
signals can be used depending upon whether the value
0(i) at peak current is very much less than =,

In the latter case, the usual practice is to make use of
a differential analyzer such as a Wollaston prism which
separates the entering light into two beams of intensity
1, and I which are polarized orthogonally to each other
[4,5]. The analyzer is oriented at 45° with respect to the
transmission axis of the polarizer. The intensities of the
transmitied beams for a Faraday rotation angle of the
are

I;=1, cos’(6 —45°)
L=1; cos*(@+45°). 4

The sum and difference of these two intensities and
their quotient are computed giving

L1 .
S_I|+Iz_Sln 28, 5

or using eq (2) we have for 8«w

r=81—gm-. (6)
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Note that the result is independent of the intensity of
the light or the sensitivities of the two detectors pro-
vided that the latter are equal.

An alternative method of measurement useful when
0(i,n) > is to use crossed or parallel analyzers (X =0 or
/2). The signal is then

I(t)=1, sin’6(t) Crossed polarizers

I(t)=1I, cos’8(t) Parallel polarizers ¢)]
or

1%Fcos 2 8(z)

) (7a)

1=1I

The upper sign is for crossed polarizers which, using eq

(2), gives
8w
1 —cos{ —Fi(t)
(210 4) . (®)

I(t)=10

The signal given by eq (8} can be inverted numerically
to obtain { as a function of f.

The accuracy is determined by the precision with
which the phase of the cosine can be determined from
the record of 8(t) which depends upon the signal-to-
noise ratio. If we call this phase uncertainty Ad, then the
relative error € is

P __Aié_ ,.__,_A_i 9)
TaN+GT N
where N is the total number of cycles of Faraday rota-
tion. Thus even though a relatively large value of Ad is
obtained due to a poor signal-to-noise ratio, the error in
the current measurements can be made small by making
N large. It is assumed, however, that Ad is not so large
that a change of sign of the time derivative of the phase

. d
cannot be detected. Such a reversal in {g occurs when

i attains an extremum.

Variations in peak amplitudes of the Faraday signal
due to noise, source intensity, detector sensitivity, or
transmission fluctuations can be averaged out by nor-
malizing all maxima except those associated with the
excess fraction of a cycle. These effects will thus only
affect the accuracy with which the excess fraction can
be measured.

If the value of i, can be made sufficiently small so that
i,=Af the allowable current error, then the signals can
be handled purely by digital techniques. The value of
the current can thus be evaluated by simple pulse count-

ing. The reversal in sign of %? can be detected by using

a Wollaston prism or similar analyzer crossed with the
input polarization direction to obtain the two outputs
given by eq (7} thus providing a phase reference. Such
digital processing would eliminate most of the second
class of problems in the use of Faraday probes. The
problem is now that of reducing i, to a sufficiently low
value to obtain a probe of required accuracy for currents
of the magnitude encountered in electric power trans-
mission. This in turn requires the development of polar-
ization preserving optical fibers of high Verdet constant
(see footnote 2).

2. Design of a Faraday Current Probe

We have designed and tested a Faraday current probe
based on the principle of the preceding section. It is
designed to measure currents of up to 4 MA rising to
their maximum value in times of the order of 50 ns.

Even if polarization preserving fibers were available
their use in this application would be impossible since
the low Verdet constant of these fibers would require
many turns. The resulting long optical transit time and
poor time resolution would obscure completely the de-
tails of the current waveform. In addition, only a few
cycles of Faraday rotation would be obtained so the
relative error given by eq (9) would be large.

We selected as the Faraday rotative medium a high
density flint glass, Schott type SF-58. This glass has a
Verdet constant of 0.082 min/gauss-cm and a refractive
index of 1.907 at the wavelength of the helium-neon
laser, 6328 A. This glass has a very low residual bi-
refringence and a high transmission for the He-Ne laser
wavelength. An alternative choice considered was one
of the terbium-doped glasses. These glasses have a large
Verdet constant of the order of 0.2 min/gauss-cm. We
decided against using one of these glasses, because 1)
they are very costly and, 2) their Verdet constants vary
with temperature since the glasses are paramagnetic.
While the diamagnetic glasses such as SF-58 have lower
Verdet constants, the values of these constants are ap-
proximately constant, independent of temperature vari-
ations. As the current required to produce a rotation of
180°, i,, is ~10* A for SF-58, the number of cycles of
Faraday rotation at the expected peak currents of 2-tc 4
MA will be 20 or more. Thus a larger value of Verdet
constant, while useful for reducing the relative error,
was really not needed for this application.

The closed light path within the rotative medium was
realized by multiple total internal reflection (TIR)
within the rotative medium. As is well known, a TIR
introduces a phase shift between the components of po-
larization parallel and perpendicular to the plane of inci-
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dence. Hence, if the incident light is plane-polarized, the
reflected light becomes elliptically polarized. This ellip-
ticity would lead to a Faraday signal in which the ampli-
tude as well as the phase varied with time unlike the
simple expression, eq (8). The numerical inversion of the
Faraday signal would thus be more complicated and the
effects of noise more severe.

A very simple solution to this problem has been found
by Kard [6]. He showed that a quarter-wave coating
(corrected for angle of incidence) on the TIR interface
whose refractive index was the geometric mean of that
of the subsirate and the external medium (usually air or
vacuum} would compensate the phase shift and the re-
flected light would remain plane polarized if the inci-
dent light was polarized. This solution is applicable only
to cases for which the angle of incidence on the interface
is less than the critical angle, i.e., some of the light must
enter the coating and be totally reflected from the
coating-vacuum interface. For the SF-58 glass of refrac-
tive index 1.907, a magnesium fluoride coating of refrac-
tive index 1.38 is almost a perfect match and is a very
satisfactory material for making a durable optical coat-
ing of very precisely controlled thickness. The critical
angle of the coating-substrate interface is arcsin (1.38) !
or 46.4°. Thus a coat of MgF, will effectively compen-
sate the ellipticity for TIR at an angle of incidence of
45°, We have tested such coatings and found that a very
good null of the reflected light can be obtained with an
analyzer for any arbitrary azimuth of the incident polar-
ization.

Another fundamental problem in the design of a
closed-optical-path Faraday rotator is that of mirror re-
version. As is well known, the rotation sense of light
reflected in a mirror is changed. Thus a magnetic field in
the same direction will produce rotation in the opposite
sense after mirror reflection. Indeed it was just this
property that enabled Faraday to discover the very
small effect that bears his name with the relatively feeble
magnetic fields available to him in 1845. The sense of the
rotation of the plane of polarization induced by a mag-
netic field changes sign when the relative direction of
the field and the light propagation is changed. Thus if
the light after traversing the rotative medium is reflec-
ted from a mirror back along the field direction, the
change of sense of rotation due to mirror reversion is
compensated by the reversed sense of the Faraday effect
and the two rotations add rather than cancel as happens
in the case of ordinary optical activity. Thus Faraday
was able to amplify the effect by multiple passes be-
tween mirrors and obtain a measurable rotation with a
field of only several hundred gauss,

In ourprobe, however, the relative direction of the field
and the light propagation remains unchanged. Thus if

we number the segments of the light path between re-

flections in order, we can write for the total rotation
8=V[[Bed/ — [Bed!]. (10)

odd-numbered even-numbered

segments segments

Hence, in order to realize the Faraday rotation appro-
priate to the current linking the light path, it is necessary
to design the probe so that the even-numbered segments
of the light path are as short as possible and criented as
nearly as possible normal to the magnetic field direction.
The contribution of the second integral in eq (10) can
then be neglected.

Figure 1 is an isometric projection of the Faraday
rotation probe design that meets these requirements. It

DASH DOT
LIGHT PATH

Figure 1—Optical path of Faraday effect current probe.

consists of four rectangular parallelepipeds of SF-58
glass; two of which have surfaces at each end at 45° to
the direction of the edges, and two have 90° faces at one
end and 45° inclined faces at the opposite end. The latter
pieces form the initial and final segments of the optical
path, the 90° faces being the entrance and exit windows.
The four pieces are cemented or clamped together as
shown. The odd-numbered segments form a closed path
in the form of a square when projected into a common
plane. The even-numbered segments are the short seg-
ments normal to the plane of the ring between succes-
sive 45° faces. These segments are much shorter than the
odd-numbered segments forming the projected closed
square. Furthermore, if the path of the current is rig-
orously perpendicular to the plane of the ring, the mag-
netic field will be normal to the short even-numbered
segments, and the contribution of the second integral in
eq (10) will be zero.
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When dealing with rapidly varying currents, the con-

tribution of the even-numbered segments can also be
reduced to zero by enclosing the ring in a conducting
shell with an equatorial slit insulated against the voltage
developed by the flow of skin currents in the shell.
Provided this insulation requirement can be met and the
skin depth of surface currents is less than the shell thick-
ness, only equatorial components of magnetic field can
penetrate the shell, and the condition of zero con-
tribution of the even-numbered segments can be main-
tained for any orientation of the plane of the ring. The
situation is quite similar to that encountered in the use of
a Rogowski coil; an error in the current measurement
results from the inclination of the plane of an unshielded
Rogowski coil with respect to the current. This error
can likewise be eliminated by shielding the coil by a
conducting shell with an equatorial slit.

The 45° inclined faces are all coated with quarter-
wave MgF, coatings to compensate for the ellipticity
induced by total internal reflection. It is noted that these
coatings are unnecessary if there is no Faraday rotation
in the short sections as would be the case of a shielded
rotator. The double reflections interchange the perpen-
dicular and parallel components so that the phase shift is
compensated provided no rotation occurs between re-
flections. This is a well-known property of an Abbé
prism formed by two 45° faces whose azimuthal
directions differ by 90°.

Figure 2, the assembled probe, shows the glass ring,
the conducting shield, the Banning type polarizers, and
the lenses for coupling the input and output beams into
optical fibers. The entire cavity can be pressurized with
SF, for insulation in high voltage applications.

Optical fibers bring the light from the He-Ne scurce
to the ring and return the Faraday rotation signal to the
detector, both of which can be located in a screened
room remote from the high current being measured.
Note that since the ring is placed between crossed polar-
izers, residual birefringence in the fibers and Faraday
effect in the fibers due to stray fields do not affect the
measurement, The optical fibers thus function solely as
a convenient means for conveying the light to and from
the ring.

3. Experimental Results

The Faraday probe was tested by use of the discharge
of a capacitor bank through a straight conductor, the
shield furnishing a coaxial return circuit. The bank,
which consists of 15 2,25 uF capacitors in parallel, is
connected to the current probe through a parallel plate
transmission line with a shorting bar linking the rotator
ring. The bank could be charged to 40 kV maximum.

FARADAY —T1|
RGOTATION
PROBE

=/

Figure 2—Drawing of assembled probe showing the glass rotator,
input and output lenses and polarizers and positioners for input and
output fibers.

The discharge current waveform of such a circuit is a
damped sine wave. We obtain this waveform by inte-
grating the voltage signal from a small magnetic pickup
coil located in a hole in one plate of the transmission line
close to the thin mylar dielectric layer that separates the
two plates of the transmission line. Unfortunately this
coil was inaccessible and the area and number of turns
are not known so the absolute value of current could not
be measured directly. We can obtain a relatively crude
estimate of this value, however, by measuring the period
and logarithmic decrement of the waveform. Knowing
the value of capacitance C, and the charging voltage,
Vi, of the bank, we can compute the total inductance
L =0.0523 uH and the circuit resistance R =17 m{},
From the elementary relationships for a simple LRC
circuit

Vo —ar.
I_wLe sinewt (11a)
=[] “_ERZ’ (11b)

we can determine the peak discharge current at the first
maximum for a given initial charging voltage. The accu-
racy of this determination is poor because of errors in
the measurement of the period and especially the loga-
rithmic decrement from the waveform.
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Using the value of the Verdet constant V' =0.082 min/
gauss-cm at 632 A given by the supplier of the glass we
can use eq (2) to compute i, the current increment re-
quired for a complete cycle of Faraday rotation i.e., a
complete fringe. The value of i{,= 1.035X 10’ amps/
fringe. We can obtain the number of half cycles of Far-
aday rotation N plus the excess fringe fraction AN from
the waveform of the Faraday rotation signal. If 4 be the
normalized amplitude of the Faraday rotation signal at
time ¢ the excess fringe fraction is given by

AN =%arcsin (A3, N integer, (12a)

AN:(-_% arcsin (4 ‘ﬂ)), N half odd integer, (12b)

taking the principal value of the arcsin function. Note
that /V is either an integer or one-half times an odd
integer and that AN varies from zero to one-half.

The corresponding current at time ¢ is then just

1) =6 [N +AN (D). (13)

The above treatment is valid provided the current has
not reached an extremum prior to {. An extremum is
characterized by the failure of the Faraday rotation sig-
nal to complete a cycle, i.e., the signal reaches an ex-
tremum at an intermediate amplitude and by a marked
reduction in frequency. Following such an extremum,
the number of half-cycles iV, following the extremum
should be subtracted from the number of half-cycles NV,
prior to the extremum to obtain

i=[(N\—N;)—ANYi, (14)

or generalizing to several extrema
i=[N\—N:+Ny—Ny+—-N,—N)FAN]ir. (15)

The sign of the excess fractional fringe AN is taken
positive for an even number of extrema and negative for

an odd number. Note that the excess fractional fringe
immediately before and after an extremum just cancel
each other.

We can thus calculate the fringe number to the first
current maximum at various charging voltages and the
value of current at the first maximum using the value of
i given above. These are compared in table 1 with those
using eq (11) and the bank parameters. As one might
expect the agreement is rather poor due mainly to the
inaccuracy of the current determination from the oscil-
logram using eq (11) as mentioned before. What is more
significant is the value of the current per fringe obtained
by dividing the calculated current by the fringe number.
The resulting values differ by less than 2%. Further-
more, if only the last three values are considered, the
deviation from the mean is less than 19%. This might be
expected from eq (9) since only the excess fraction de-
pends upon the amplitude of the Faraday rotation signal
and this makes an increasingly small contribution to the
total current as the number of half fringes increases.

Figures 3, 4, and 5 respectively show the Faraday
rotation signal for a charging voltage of 20 kV, the
corresponding magnetic pickup coil signal after integra-
tion, and the waveform obtained by numerical inversion
of the Faraday signal. This latter waveform is virtually
identical to that of the integrated magnetic pick-up coil
signal,

4. Conclusions

We have designed, constructed, and tested a current
probe based upon the Faraday rotation angle of polar-
ized light produced by propagation of the light along a
light path encircling the current to be measured. Such a
probe is an absolute instrument whose calibration de-
pends upon the Verdet constant of the rotative medium
independent of the dimensions or position of the light
path,

The claim for an absclute instrument is not based
upon our rather limited experimental work. This work

Table 1.

No. of Faraday

Bank Voltage Fringes to First

Maximum Current
Calculated from

Maximum Current
from Faraday Effect

Current per Fringe, In
Using Calculated

Current Maximum Circuit Parameters Nx1.035% 10* Current
Kv N kA kA kA
15 3.41 kys) 353 94.4
20 4.63 419 479 92.7
25 5.83 537 603 92.1
30 7.00 644 667 922.0
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Figure 3— Faraday rotation signal.
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Figure 4 — Bank discharge waveform corresponding to Faraday rota-
tion signal in figure 3 obtained with a magnetic pickup coil and
integrated.

had to be curtailed because of a lack of funding and

really constitutes only a proof of principle. This claim

rests upon the elimination of positional and geometric
factors in the calibration of the probe and the fact that
the Verdet constant of a diamagnetic medium depends
only upon the dispersion curve of the medium and is not
affected appreciably by mechanical or temperature ef-

fects [8].

It is true that the subtractive contribution of the even-
ordered light path segments does complicate the claim
of insensitivity to positional and geometric factors. Our
design of the probe addresses this question by 1} en-
suring that the odd-ordered segments alone make up the
complete circuital path, 2) making the even-ordered
segments as short as possible and orienting them as
nearly as possible normal to the magnetic field direction,
and 3) using a suitable conducting shell to shield out the
poloidal magnetic field components which alone can
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Figure 5—Numerical inversion of Faraday signal in figure 3.

contribute to the line integral of the field along these
even-ordered segments.

As mentioned before, we rejected the use of the rare-
earth doped glasses for use in the probe even though
their Verdet constants are three times those of the di-
amagnetic glasses employed. This was on account of the
temperature dependence of their Verdet constants.

This probe is intended for measurement of very fast
transient currents in the mega-ampere range for which it
is well suited. For slower varying currents of smaller
magnitude, this type of probe can still be used by in-
creasing the number of circuital paths either by multiple
light transits or the use of multi-turn optical fibers [2,3].
Since the time resolution is limited to the light transit
time between polarizers, the increase in current sensi-
tivity is realized at the price of a longer resolution time.

We wish to acknowledge John Shannon, Mark
Wilkinson, and Norman Rosioker of Maxwell Labora-
tories, Inc., for their many valuable discussions; Leslie
Vargady of Metrooptics Company, Glendora, CA, for
the skillful and dedicated design and fabrication of the
rotator ring; Lawrence Houghton and David Lischer of
Maxwell for their devoted assistance with the experi-
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mental work; and Clifford Fowler, also of Maxwell, for
developing the algorithm for the numerical inversion of
the Faraday signal.

References

[1] Hebner, R, E.; R. A. Malewski and E. C. Cassidy, Proc. IEEE 65,
part 2, p. 1524 (1977).

[2] Massey, G. A.; D. C. Erickson and R. A. Kadlec, Applied Optics
14, 2712 (1975).

[3] Smith, A. M. Applied Optics 17, 52 (1978).

[4] Papp, A. and H. Harms, Applied Optics 19, 3729 (1980).

[5] Aulich, H.; W. Beck, N. Douklias, H. Harms, A. Papp, and H.
Schneider, Applied Optics 19, 3735 (1980).

[6] Harms, H., and A, Papp, Applied Optics 19, 3741 (1980).

[7] Kard, P. G. Optics and Spectroscopy 6, 339 (1959),

[8) Becker, R. Theorie der Elektrizitat, Vol. II, p. 142-150, B. G.
Teubner, Leipzig and Berlin 1933,

{9 Barlow, A. J; J. J. Ramskov-Hansen and D. N. Payne, Applied
Optics 20, 2962 (1981).

272



JOURNAL OF RESEARCH of the National Bureau of Standards
Vol. 89, No. 3, May-June 1984

A Head-Space Method for Measuring

Activity Coefficients, Partition Coefficients, and Solubilities

of Hydrocarbons in Saline Solutions

Stanley P. Wasik, Frederick P. Schwarz, Yadu B. Tewari, and Michele M. Miller
National Bureau of Standards, Gaithersburg, MD 20899
and

J. H. Purnell
University College of Swansea, Swansea, Wales, UK

Accepted: February 2, 1984

An apparatus s described which measures the equilibrium distribution of a hydrocarbon between a gas and
aqueous phase. Soluble hydrocarbons are extracted from an aqueous salt solution by very small bubbles of
hydrogen generated electrolytically from a gold electrode located at the bottom of a cylindrical cell. The
partition coefficient is determined from the volume of the aqueous solution and the solute concentration in the
head-space after a measured volume of hydrogen has bubbled through the cell. The concentration of the solute
in the head-space is measured by gas chromatography. The observed distribution is supplemented by vapor
pressure and molar volume data and can be used to calculate the solubility and the activity coefficient of the
solute in the aqueous phase. The partition coefficient, activity coefficient, and solubility for 18 alkylbenzenes in
aqueous 0.5 M NaCl at 25 °C were measured by this method.

Key words: activity coefficient; aqueous solubility; head-space; partition coefficient.

Introduction

A knowledge of the equilibrium properties of aqueous
hydrocarbon solutions is valuable in several fields. In
water pollution control, such information is helpful in
devising abatement processes [1]!, in modeling natural
water systems [2], in designing toxicity experiments, and
in developing analytical methods. In petroleum re-

About the Authors: Stanley P. Wasik, who like his
fellow NBS authors is a research chemist in the Bu-
reau’s Center for Chemical Physics, did some of the
work reported on here while on sabbatical leave at
the University College of Swansea where J. H.
Purnell is a professor ot chemistry and a researcher.

! Figures in brackets indicate literature references at the end of
this paper.

search, it is useful for understanding how hydrocarbons
migrate and accumulate to form oil deposits [3]. In biol-
ogy, a knowledge of how hydrocarbons behave in aque-
ous solutions is important for understanding the effects
of hydration on the configuration of biopolymers [4]. In
chemisiry, experimental data on these systems are
needed for testing models of water and aqueous solu-
tions [5].

These aqueous solutions can be characterized by de-
termining the concentration of a particular hydrocarbon
in both the solution and the vapor in equilibrium with
solution. The ratio of the solute concentration in the two
phases is a stoichiometric equilibrium constant, com-
monly called the partition coefficient, K. The solubility
may be determined from the value of X and the solute
saturation vapor pressure. Another thermodynamic
property of interest is the solute activity coefficient
based on volume fraction, y,, which may be calculated
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from the value of K, the solute molar volume, and the
solute saturation vapor pressure. This property is of par-
ticular importance in developing correlations based on
some additive property of the solute, such as molar vol-
ume or carbon number, since 7y, depends only weakly on
temperature and varies significantly less with solute
structure and configuration than does the corresponding
correlation with solubilities or with the mole fraction-
defined activity coefficient, ..

We have previously described a method for mea-
suring K using a head-space technique [6, 7, 8] which is
best suited for measuring X in the range 1—10. We now
report a method without limitations on the value of K.
In this method, the soluble hydrocarbons are extracted
from aqueous salt solutions by very small bubbles of
hydrogen generated electrolytically from a gold elec-
trode located at the bottom of a cylindrical cell. The
partition coefficient is determined from the volume of
aqueous solution and the solute concentration in the
head-space after a measured volume of hydrogen has
bubbled through the cell. The concentration of the hy-
drocarbon in the head-space is analytically determined
by conventional gas chromatography. The partition co-
efficients, solubilities, and activity coefficients for 18
alkylbenzenes in aqueous 0.5 M NaCl at 25 °C measured
by this method are reported here.

Experimental

Figure 1 shows the extraction cell. The compartments
A and B have internal volumes of 50 and 40 ml, re-
spectively. The two compartments are connected by
means of a 14 mm o.d. glass tube with a 10 mm o.d.
coarse porosity glass frit on one end. A silicic acid plug
is precipitated on the compartment B side of the frit to
prevent the flow of liquid from one compartment to
another and to provide low resistance for the flow of
electric current. The gold electrode (! mm o.d. wire) in
compartment A is positioned by means of a septum held
in a 1/4x 1/4 in union fitting. This electrode has a spiral
configuration to provide a large surface area. The elec-
trode in compartment B is a straight segment of 1 mm
0.d. platinum wire.

The extraction cell is immersed in a bath controlled to
#+0.02 °C. The thermometer used in this work was
calibrated with an accuracy of =0.01 °C by the National
Bureau of Standards. The head-space is sampled by a gas
injection valve thermostated at 150 °C. The 1/8 in o.d.
stainless steel tube connecting the extraction cell with
the valve is heated to 150 °C by a heating tape.

The chromatographic column is a 15 m<0.5 mm i.d.
SCOT column prepared with finely ground di-
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Figure 1—Extraction cell compartments A and B have internal
volumes of 50 and 40 ml, respectively.

atomaceous earth on a fused silica support and coated
with a mixture of m-bis(m-phenoxy phenyl) benzene and
Apiezon L. The effluent is monitored by a hydrogen
flame detector with an electronic integrator measuring
peak areas.
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A constant current power supply with a stability of
1/10,000 provides electrical current to the extraction
cell, The volume of hydrogen plus water vapor, ¥V, bub-
bled through compartment A is calculated from the
equation

V =(it/2F) [RT/( pa—Pw)} 4y

where i is current; ¢, the time in seconds; F, the Far-
aday constant; R, the gas constant; pa, the atmospheric
pressure; and p,,, the vapor pressure of the aqueous solu-
tion at temperature T(K).

The aromatic hydrocarbons used in this study had a
stated purity of 99.9 mole %. The water used in the
preparation of solutions was doubly distilled over potas-
sium permanganate.

Procedure

A mixture of several of the alkylbenzenes was pre-
pared such that their partial pressures at 25 °C were
approximately the same. Five ml of the mixture was
gently stirred with 100 ml of aqueous 0.5 M NaCl for 2
h and then allowed to stand overnight. Compartment A
was filled with the aqueous solution leaving only a small
volume of head-space (< 1.0 ml) above the solution. The
volume of the solution was determined from the weight
of the cell before and after filling and from the density of
the solution. Compartment B was filled to the same level
as compartment A with 5% v/v H,SO, solution. The
extraction cel} was then immersed in the constant tem-
perature bath for 1 h before electric current (0.2—0.4
amp) was passed through the cell. A small volume of the
head-space (0.3 mL) was injected into the gas chro-
matograph via the gas sampling valve for analysis. The
alkylbenzenes were chosen so that there was a baseline
separation for each peak. The peak areas were recorded
along with the time of sample injection. This procedure
was repeated every 10 min until the peak areas were
approximately 1/100 their original value,

In order to measure the peak area corresponding to
the solute saturation vapor pressure three columns were
constructed of stainless steel tubing, 2.5 mm i.d. and 0.5
m in length. The solid support was Chromosorb W
(60—80 mesh) with toluene, ethylbenzene, and n-
propylbenzene as the stationary phase, respectively.
Each column was immersed in the constant temperature
bath, and helium saturated with water vapor was al-
lowed to flow through it before being sampled for anal-
ysis.

Thermodynamic Background

Consider a known volume, ¥, of aqueous salt solu-
tion of hydrocarbons in a cylindrical vessel containing a
gold electrode at the bottom. Connected to this vessel

by means of a glass fritted disc is another vesse] contain-
ing an aqueous solution of H,SO,. When electric current
with the appropriated polarity passes through the cell,
hydrogen in the form of very small bubbles is evolved at
the electrode in the vessel containing the aqueous solu-
tion, and oxygen is evolved at the other electrode, Wa-
ter vapor and the dissolved hydrocarbons in the aqueous
solution are equilibrated with the hydrogen bubbles.
The hydrocarbon concentrations in the head-space are
measured by means of gas chromatography. We may
assume that the concentration of a particular hydro-
carbon in the head-space is proportional to its concen-
tration in the aqueous solution. One then has the re-
lationship

th'(v) =Ki Cki(v) (2)
where C,;(v) and Cy,(v) are the concentrations of the / th
hydrocarbon in the aqueous solution and in the head-
space, respectively, after a volume ¥ of hydrogen plus
water vapor has bubbled through the cell and X; is the
proportionality factor. Under equilibriom conditions K
would be the partition coefficient. Conservation of mass
requires that the ratio of Cy,(¥"), corresponding to the
passage of volume V, to its value, C,;(0), at zero hydro-
gen volume is given by the expession

In [Cu(F )/ CriO)]=—V/(VL K}) €))
The peak area for the /™ hydrocarbon, 4;(V ) may be
expressed as

AV )=, Cuy(V V, )
where o; is the instrument sensitivity constant for the /™
hydrocarbon and V; is the volume of the gas sampling
valve sample loop. Substituting for C,,(¥ ) in eq (3),
In [A(V )Y/ A)]=~V/V, K, (5)
A plot of In A,(F ) versus ¥V {or time) should thus be
linear if K;is constant, and the slope will give the value
Of K[.
The attainment of equilibrium of the dissolved hydro-
carbons in the aqueous solution with the hydrogen bub-
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bles depends on the size of the bubbles and the contact
time. Hydrogen bubbles generated electrolytically are
" less than 0.1 mm in diameter. Under these conditions the
bubbles are small enough and the contact time with the
solution long enough that equilibrium would be ex-
pected before the bubbles reached the surface, and the
measured K, should be the partition coefficient.
During the course of the measurements water is con-
tinually being removed from the generating cell as satur-
ated water vapor. For measurements near room tem-
perature the amount of water removed is very small
(<0.1%); hence, no corrections are made for this effect.

Activity Coefficient

The partition coefficient K; may be defined as

_Cul)_ () RT 6

=G =\72) P, ©
where 7, is the number of moles of the /' hydrocarbon,
P, is the partial pressure of hydrocarbon at temperature
T, R is the gas constant, and V. is the total volume of
aqueous solution. The partial pressure (P;) may be ex-
pressed in terms of volume fraction-based activity coef-
ficient (y4) as

B =v4:d; P} €))]

where P} is the saturated vapor pressure of the solute
and ¢; is the solute volume fraction combining egs (6)
and (7) we get

RT
K, =
Ty aVi P?

(8)

where F; is the molar volume of the /™ hydrocarbon at
temperature 7.

Solubility

In order to calculate the hydrocarbon aqueous solu-
bility from X values, it is essential that the hydrocarbon
concentration in the aqueous phase be proportional to its
concentration in the gas phase, P,/RT, up to the solute
saturation vapor pressure, p?, i.e., a two-phase system,
liquid solute and aqueous solution saturated with solute.
Under these conditions

K=C:RT/p* 9)

where C}, is the solubility of the solute temperature T
When liquid hydrocarbon is present at equilibrium with
an aqueous phase, it will dissolve some water. The
amount of water dissolved is so small, however (the
solubility of water in all hydrocarbons at 25 °C is well
under x =0.01) that no correction need be made for its
effect on the hydrocarbon’s vapor pressure.

Results and Discussion

Ln A(V) versus ¥V plots (eq (5)) for some al-
kylbenzenes in which the initial aqueous solution was
saturated with the solute indicate that the propor-
tionality between solute concentration in the gas phase
and aqueous phase holds up to the solute saturation
concentration in the aqueous phase (solubility) and that
eq (9) may be used to calculate solubilities for these
compounds. Values for In 4; (0} (time equal to zero)
were obtained from the saturation vapor pressure at
25 °C using pure solute.

The partition coefficients were calculated from the
slopes of the InA,(V) versus ¥ plots for the al-
kylbenzenes. These values are given in table 1 along
with values of the solute activity coefficients calculated
via eq (8). For comparison, values of the solute activity
coefficients calculated from solubility data measured us-
ing the generator column method [10] are given in the
same table. The good agreement between the two sets of
data justifies the assumption made in deriving eq (7), i.e.,
v+7=1 for an apolar solute in equilibrium with an aque-
ous phase.

The head-space method proposed in this paper may
be used to measure K for any type of compound. The
largest error in the measurements comes from mea-
suring peak areas. Since one needs to know the peak
area at time 7, as well as the peak area corresponding to
the saturation vapor pressure, the average error in the
partition coefficients is approximately 1.5%.

The method has a disadvantage in that X can be mea-
sured only in salt solutions since some electrolyte is
required in the solution to conduct the electrical cur-
rent. In order to determine K in pure water, X must be
measured in salt solutions of differing concentration, C,,
and then extrapolated to zero salt concentration using
Setchenow’s expression

log(K*/K* Y=k,C, (10)

where K" is the solute partition coefficient in water, K
is the solute partition coefficient in salt water of concen-
tration C,, and £, is the salting-out coefficient.
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[4]
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Table 1, Partition coefficients, solubilities and activity coefficients for alkylbenzenes in aqueous 0.5 M NaCl at 25.0 °C.

Py V; Kaorw Crx 10/ log ¥e

Solutes {mm) (mL/mole) (M)

Benzene 95.18 89.4 3.474+0.03 17.76 2.799
Toluene 28.45 106.9 2.740.,02 4.19 3.349(3.292)'
Ethylbenzene 9.51 123.1 2.19x0.02 1.12 3.861(3.809)
1,2-Dimethylbenzene 6.62 121.2 3.52+0.02 1.25 3.820(3.735)
1,4-Dimethylbenzene 8.84 123.9 2.24+0.02 1.06 3.882
n-Propylbenzene 3.43 140.1 1.53+0.01 0.282 4.403(4.419)
Isopropylbenzene 4.64 140.2 1.200.001 0.299 4.378(4.260)
1,3,5-Trimethylbenzene 2,61 139.6 201001 0.282 4.405
1,2,4-Trimethylbenzene 2.096 137.9 2.78+0.02 0.313 4.365
2-Ethyl-1-Methylbenzene 2.521 137.1 2.6620.02 0.361 4.305
3-Ethyl-1-Methylbenzene 2.999 139.7 1.69:£0.02 0.273 4,419
n-Butylbenzene 1.011 156.8 1.184:0.01 0.0642 4,997(4.952})
Isobutylbenzene 1929 158.1 0.677+0.01 0.0702 4,955
sec-Butylbenzene 1.873 156.4 0.870£0.01 0.0876 4,863
t-Butylbenzene 2.208 155.6 1.13+0.01 0.134 4.681
1,3-Diethylbenzene 1.134 156.1 1.22+0.01 0.0744 4,935
1,2-Diethylbenzene 1.043 153.2 1.81+0.02 .1015 4,794
1,4-Diethylbenzene 1.051 156.4 1.260.01 0.0712 4,953

! The values in brackets are calculated from experimental solubility data using the equation ve=(C¥ ¥)~! where V;is the molar volume of

the solute [10].
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