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About This Topical Issue...
In the industrial society in which we live there is a growing need for rather complex measurement

techniques to characterize the properties of materials and manufactured articles and their defects both
during production and in actual use. Successful implementation of these techniques requires both a
basic understanding of the physical processes involved in such measurements and theoretical models
which relate measured quantities to actual material properties.

Current NBS efforts in this area are represented by the seven papers of this topical issue on
"Scientific Aspects of Non-Destructive Evaluation." These papers reflect three different types of
research. Three of them deal with new experimental techniques. Laser light scattering (Vorburger et al.)
provides an attractive alternative technique to stylus measurements as a probe of surface roughness.
Small angle neutron scattering (Hardman-Rhyne et al., Fields et al.) may be used as a unique probe of
the internal structure of materials which can provide reference standards for intercomparison with more
conventional non-destructive evaluation techniques. Three articles (those by Kahn, Simmons and
Wadley and Norton et al.) are not concerned directly with measurement but deal with the development
of mathematical models which will relate observed signals in electromagnetic, acoustic emission and
ultrasonic measurement systems to internal properties or defects in materials. The development of such
models is an important part of the science of measurement. The last article (Eitzen and Wadley) is of
yet a different type. It is concerned with the problem of acquiring a basic understanding of the acoustic
emission technique.

The seven papers in this issue, although they are representative, reflect only a small fraction of
current research activities at NBS in the areas of non-destructive evaluation. Other articles will appear in
following issues.

JohnW Cooper
for the Board of Editors
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An instrument has been developed to study surface roughness by measuring the angular distributions of
scattered light. In our instrument, a beam from a He-Ne laser illuminates the surface at an angle of incidence
which may be varied. The scattered light distribution is detected by an array of 87 fiber optic sensors
positioned in a semicircular yoke which can be rotated about its axis so that the scattered radiation may be
sampled over an entire hemisphere. The output from the detector array is digitized, stored, and analyzed in a
laboratory computer. The initial experiments have concentrated on measurements of stainless steel surfaces
which are highly two-dimensional and which yield scattering distributions that are localized in the plane of
incidence. The results are analyzed by comparing the angular scattering data with theoretical angular
scattering distributions computed from digitized roughness profiles measured by a stylus instrument. The
theoretical distributions are calculated by. substituting the roughness profiles into the operand of an integral
equation for electromagnetic scattering developed by Beckmann and Spizzichino. This approach directly
tests the accuracy of the basic optical theory.

Key words: angular distribution; diffraction; diffuse scattering; electromagnetic scattering; fiber optics; light
scattering; optical fiber; optical scattering; roughness; surface roughness; texture; topography.

1. Introduction

Optical scattering techniques have been used for a
long time to monitor the surface roughness of
industrial parts ranging from crankshaft bearings [111
to x-ray mirror prototypes [2]. These techniques lend
themselves to on-line surface inspection in industry
because they are intrinsically area-averaging, high-
speed methods. A single measurement can yield a
quantity that is closely related to some average
property of the surface roughness [3]. However,
optical scattering methods are almost exclusively used
in an empirical way because the quantitative deduction

About the Authors, Paper: T. V. Vorburger, E. C.
Teague, F. E. Scire, M. J. McLay, and D. E. Gilsinn
are with the Mechanical Production Metrology
Division ir. NBS' Center for Manufacturing
Engineering. The work on which they report was
supported by NASA and the NBS Office of
Nondestructive Evaluation.

of roughness parameters from optical measurements is
extremely difficult because of the complexity of
optical scattering itself. Empirical approaches [1,4]
have been developed which rely on the use of a
number of calibration surfaces with known roughness
parameters that are similar to the unknown surfaces to
be measured. These calibration standards enable the
operator to calibrate the surface measuring instrument
empirically. Although this comparator approach is
effective, we attempt here to derive optical scattering
quantities from more basic principles. Then perhaps,
optical methods could be applied to surface roughness
problems more generally and with a higher degree of
confidence.

This difficulty of understanding is particularly acute
for engineering surfaces where the, roughness heights
are typically in the range'between 0.1 and 1.0 jxm.
He-Ne lasers with wavelength X=0.6328 ,rm are
commonly used in such applications because of their
relative safety, good stability, ease of alignment, and
other features. However, this means that the
roughness heights are on the same order of magnitude
as the wavelength of light [5]. The mathematical
description is much more complicated in this regime
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than it is for optically smooth surfaces [6,7] where the
effect of surface roughness is a small perturbation on
the basic phenomenon of specular optical scattering,
i.e., where the surface basically functions like a mirror.

The present work is an attempt to develop a better
mathematical description of optical scattering
phenomena for engineering surfaces. The ultimate goal
of this work is an optical scattering apparatus for
reliable and routine measurements of roughness
parameters without resorting to specially fabricated
comparator standards.

After a brief experimental overview in section 2, we
discuss the apparatus in detail in section 3. There
follows an outline of the theory in section 4. Section 5
deals with the experimental results, and section 6
(Analysis) compares the experimental and theoretical
scattering distributions. In section 7 we discuss the
limitations of the present work as well as previous
work and probable future directions. Some
experimental notes are included as an appendix.

2. Experimental Overview

When a beam of laser light is reflected by a rough
surface, the radiation is scattered into an angular
distribution (fig. 1) according to the laws of physical
optics. The intensity and the pattern of the scattered
radiation depend on the roughness heights, the
roughness spatial wavelengths, and the wavelength of
the light [6-8]. In general, small spatial wavelength
components diffract the light into large angles relative
to the specular direction, and long spatial wavelength
components diffract the light into small angles. Most
surfaces have a broad range of spatial wavelengths,

Light
Source

AD
12

3-73

-74

Surface

Figure 1-Schematic diagram of a laser beam scattered by a rough
surface. The pattern consists of the overall angular distribution
envelope (AD) and a fine structure known as speckle. A simple
optical detection system is also shown. Detector 3 measures the
intensity in the specular direction. Detectors 1, 2, 4, 5 measure
other components of the angular distribution.

and the light is therefore diffracted over a range of
angles.

For very smooth surfaces, most of the reflected
light propagates in the specular direction. As the
roughness increases, the intensity of the specular beam
decreases while the diffracted radiation increases in
intensity and becomes more diffuse. In addition, the
angular distribution of diffuse radiation consists of a
fine grainy structure called speckle [9], which shows
up as intensity contrast between neighboring points in
the scattered field. Finally, the light wave may
undergo a change in its polarization state upon
reflection from the surface.

In this work, we study how the angular distribution
is related to the detailed topography of engineering
surfaces. In particular we explore the following
fundamental question: If the detailed surface
topography were perfectly known, could the angular
scattering distribution be predicted from available
optical scattering theories? If so, that basic knowledge
might lead to optical techniques for measuring the
roughness of surfaces without resorting to calibration
artifacts. If one cannot relate optical scattering to
surface roughness in this very straightforward way,
then it is likely that metrologists will be limited to
empirical approaches for the characterization of
engineering surfaces by optical scattering.

Our approach uses an optical instrument called
DALLAS (detector array for laser light angular
scattering), a stylus profiling instrument interfaced to a
minicomputer for accurate characterization of surface
topography, and a fairly elementary optical scattering
theory. Surface profiles measured by the stylus
instrument are substituted into the scattering theory to
generate angular distributions which may be compared
with those directly measured by DALLAS for the
same surfaces. We report here some preliminary
results with this equipment.

3. Apparatus

A block diagram of the twofold apparatus is shown
in figure 2. In the DALLAS experiment, a beam of
laser light illuminates the rough surface under test and
the scattered radiation is collected by an array of 87
detectors. The signals are sequentially routed by a
scanner to a digital voltmeter which functions as an
analog-to-digital converter. The resulting angular
distribution is stored in a desktop microcomputer and
may be compared with distributions generated from
the stylus experiment. In the latter system, a
commercial stylus instrument measures surface profiles
and stores them on a magnetic disk on a large

4



Figure 2-Block diagram of the ap-
paratus. The optical experi-
ment, DALLAS, is shown at
the top, and the stylus system,
at the bottom. Experimental
and theoretical angular distribu-
tions may be compared on the
desktop microcomputer shown
near the center.

minicomputer. Optical scattering distributions are then
calculated from these profiles and the results may be
transmitted to the microcomputer by a hardwired RS-
232 interface.

3.1 Optical Apparatus

The apparatus for measuring intensity distributions
as a function of scattering angle from surfaces is
shown in figure 3 and consists of an illumination
system and a detection system.

The illumination system consists of a 5 mW He-Ne
laser with linear polarization, a quarter-wave plate to
produce circular polarization, an automatic shutter,
and a rotating assembly of two mirrors, Ml and M2,
to direct the laser beam onto the specimen surface.
The angle of incidence may be varied by a stepping
motor which controls the angular position of Ml and
M2. The illuminated region of the specimen is a spot
approximately 2 mmX3 mm, depending on the angle
of incidence. The detection system consists of an array
of 87 detectors spaced 2° apart in a semicircular yoke

(diam = 164 mm) which is centered on the illumination
spot on the specimen. The yoke can be rotated about
one axis by a stepping motor so that the detectors can
sample practically the entire hemisphere of radiation
scattered from the surface.

Each detector consists of a lens, an optical fiber, and
a PIN Si photodiode with an integral op-amp circuit.
Each lens has a diameter of 4.4 mm and subtends an
angle of about 1.50 in the yoke. It collects the
radiation and focuses it onto the fiber which transmits
the radiation to the photodiode. The output voltage
signals from the op-amps are scanned by a 100-channel
scanner, digitized, and stored in the desktop
microcomputer using BASIC language software. At
present, a single angular scan of the 87 detectors takes
about 10 s and yields intensity distributions which span
over 5 orders of magnitude in intensity. That is, the
rms noise of the apparatus is approximately 50 WV,
and the saturation voltage of the detectors is about 9
V. The nonlinearity of two typical detectors was
measured by comparing their voltage outputs with
that of a highly linear, standard Si detector. Over a
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Figure 3-DALLAS in operation. Mirrors (Ml and M2) direct laser beam onto the surface of the specimen located under semicircular yoke
supporting the detection system.

dynamic range of 105 in input light intensity, the
nonlinearity of the output voltage was less than 2% or
50 xV, whichever is greater. The relative linearity of
the 87 detectors with light intensity (tracking) has also
been checked. Over 3 1/2 orders of magnitude of
light intensity, the output voltages track one another
with a standard deviation of 2% or 2.5 times the rms
noise, whichever is greater.

The 87-point angular distributions may be stored
permanently on magnetic tape cassettes or plotted on
the CRT of the microcomputer for comparison with
the angular scattering calculations predicted from
stylus data. Additional notes on the detection system
are given in section 8.

3.2 Stylus Apparatus

The stylus system has been described previously
[10-12]. It consists of a Talystep2 stylus instrument

2Certain kinds of commercial equipment are identified in this
article to specify adequately the experimental procedure. In no case
does such identification imply recommendation or endorsement by
the National Bureau of Standards, nor does it imply that the
equipment identified is necessarily the best available for the purpose.

interfaced to a minicomputer. As the stylus traverses
the peaks and valleys of the surface, the vertical
motion is converted to a time-varying electrical signal
which undergoes 12-bit A/D conversion. The result is
a roughness profile consisting of 4000 digitized points
that may be permanently stored on the magnetic disk.
The horizontal length of the profile is approximately
1.84 mm, and the point spacing is 0.46 pm. The
horizontal resolution of the instrument is approxi-
mately 1 Am, limited by the high frequency
falloff of the stylus response function.

The ultimate vertical resolution of the stylus
instrument is approximately 0.3 nm over the length of
the stylus profile. The vertical resolution of the
digitized profile may also be limited by the
quantization increment of the 12-bit A/D converter,
which depends on the magnification scale of the stylus
instrument controller. For the rougher surfaces, the
controller was set at a low magnification; the smallest
quantization increment was approximately 1.2 nm.

Each surface was sampled with 10 stylus traces
evenly distributed over an area approximately 3
mm X 6 mm. Hence, the total amount of topography
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information amounts to 40,000 digitized points for
each surface.

3.3 Specimens

A commercial set of four surface specimens [13] was
studied with both the stylus and DALLAS techniques.
Three of the specimens were specially machined to
produce highly two-dimensional roughness specimens;
that is, each surface has a fairly random roughness
profile in one direction and an essentially smooth
profile in the perpendicular direction. The fourth
specimen was very smooth in all directions on the
surface. The two-dimensional nature of the three
rougher specimens was quite important.

The specimens were oriented in the DALLAS
apparatus so that the roughness direction was in the
plane of incidence of the light; therefore, essentially all
of the scattered light was in the plane of incidence as
well. This arrangement has two beneficial effects: 1)
all of the scattered light may be detected by a single
scan of the detectors without having to rotate the
yoke, and 2) the complex, vector electromagnetic
scattering problem reduces to a scalar problem
[14-16]. Therefore, the use of these specimens reduces
a three-dimensional problem that is both theoretically
and experimentally complex to a two-dimensional
problem without any approximation. The basic
approximations of the optical scattering theory may be
tested in a fairly straightforward way.

4. Theory

The formulas used to predict the angular scattering
distributions involve a basic scalar theory of light
scattering which has been investigated by Beckmann
and Spizzichino [14] as well as others [17,18]. The
theory assumes that a plane wave of uniform intensity
illuminates the specimen surface and that the electric
field on the surface and its normal derivative can be
expressed in terms of a surface reflection coefficient
[14] independent of the local surface topography. The
geometry of this scattering problem is shown in figure
4. The surface is assumed to be two dimensional, i.e.,
rough in the x direction and smooth in the y direction.
The incoming plane wave is represented by the wave
vector K1 with angle of incidence 01 with respect to
the normal vector n of the mean plane of the surface.
The functional form for the incident electric field E1 is
given by exp(jKir). The scattered electric field is to be
evaluated for an angle 0O with corresponding outgoing
vector K, The vector r extends from some nearby
origin 0 to a point on the surface.

Figure 4-Schematic diagram of the scattering geometry showing the
incoming plane wave with wave vector K, and angle of incidence
0,, and an outgoing wave vector K, with scattering angle O. r is
the vector from the origin 0 to the point under consideration.
(Vector symbols are arrowless [and bold-faced] in the text; arrows
are used with such symbols in the caption to match the arrowed
symbols of the figure.)

With the foregoing considerations and assumptions,
the scattered electric field E can be calculated as a
function of scattering angle O, in the Fraunhofer zone
of the scattered radiation field. It is given by the phase
integral over the surface profile z(x):

E(O,)= C0o(1 +±cos(oi-O)) L e jv-rdX& CF,
E(O) = CoosO,+cos, Ij =Co0

(1)

where V= KrKs, L is the length of the illuminated
region along the x direction, and r=xi+z(x)k. The
vectors i and k are unit vectors in the x and z
directions, respectively, and r contains all of the
information concerning the surface profile, and in
detail,

Ver= Vx x+ V. z

= 2 -/X[(sinO,+ sin0,)x + (cosOj+ cosO,)z(x)]. (2)

The sign convention here is such that 0,=-Oi in the
specular direction. C. is a quantity which depends on
a number of factors such as 0, and E,, but is
independent of OS. The quantity F contains all of the
information concerning the shape of the angular
scattering distribution.

The plan of the experiment is as follows: measure a
surface profile z(x) point by point, then substitute this
profile into the integral, eq (1), to calculate a
theoretical angular scattering distribution. This
distribution may be compared with the one measured
in the DALLAS apparatus for the same surface. In
this way the adequacy of the scattering theory can be
tested. If the theory is inadequate, then one can
remove the various approximations one by one that
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have entered into it and perform the calculation with a
more elaborate integral.

5. Experimental Results

5.1 Optical Scattering

A typical set of angular distribution measurements
for one of the four surfaces is shown in figure 5. For
all of the surfaces the angle of incidence (AI) was
±30° with respect to the mean surface normal. We
assumed that the mean plane of the surface was the
one that gave rise to the specular beam in the angular
distribution. This consideration enables one to
determine the angle of incidence and the angles of
scattering with respect to the mean surface normal in
eq (1) if the angle of incidence and scattering angles in
the laboratory coordinate system are known. Figure 5
shows pairs of distributions for both +300 and -30'AI.
The difference between the members of a pair is a
rotation of the specimen of 1800 about the normal. The
deep holes in the distributions occur at the
backscattering angle where the mirror M2, which
directs the incident light towards the surface, also

shadows the detector array from the scattered light.
The close match between the members of each pair
suggests that there is very little directionality to the
roughness peaks and valleys and that the surface is
well aligned in the instrument. Two pairs of
distributions like these were taken for each of the four
specimens.

Distributions for the four specimens are shown in
figure 6. These were all taken with an angle of
incidence of +300. The values given for roughness
average Ra were calculated from the stylus data (sec.
5.2). The roughness average is defined as the average
deviation of the profile about the mean line [19]. There
are obvious changes in these distributions as the
roughness increases. The AD for the smoothest
surface has a strong specular beam at O0=-30' and
very little scattered light. For Ra= 0.20 ,tm, the
specular beam appears to have vanished but the
distribution still peaks strongly at the specular angle.
The results for the two roughest surfaces differ
significantly from the first two but are quite similar to
each another. This is to be expected since at high
roughness values (R 0 >A), the effect on the distribution
due to increasing roughness should approach
saturation.

PTB Specimen, 0.20 Vlm Ra

-80 -60 -40 -20 0
Scattering

Figure 5-Four angular scattering
distributions for a commercial
roughness specimen. The mea-
sured R0 was 0.20 jxm. For
each angle of incidence, AI= +
or -30°, distributions were
measured with the specimen
oriented at rotation angles
0=0° and 180° about the
normal axis to the specimen.
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PTB Roughness Specimens; Al = +300, + = 0°

10

Figure 6-Angular scattering data
for the set of four commercial
roughness specimens. Those
with R 0 = 0.20, 0.59, and 1.6 Am
are highly two-dimensional, i.e.,
the surface is essentially smooth
perpendicular to the plane
of incidence. The angular
distributions are normalized so
that each has the same total
intensity, which is obtained by
summing the signals from all
the detectors. Note that the
intensities are plotted on a
logarithmic scale.
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5.2 Stylus

Portions of the stylus traces taken for each specimen
are shown in figure 7. The traces were measured
without any electronic long-wavelength cutoff, and
the profiles are thus undistorted except for the high-
frequency cutoff of the instrument and convolution of
the profile with the stylus tip, which has a measured
width of less than 1 ,xm.

The quoted Ra values were calculated as the
average deviation of the profile around a least squares
straight line. For this calculation, the 1.84 mm trace
length was not divided into shorter sampling lengths
as is often done in surface metrology. Hence the R,
values include effects due to spatial wavelengths
limited only by the trace itself.

The three rough specimens were manufactured so
that the 2-D "random" roughness pattern repeats
itself. This is not evident in the profiles since the
periods of the patterns are 1.3, 4, and 4 mm,
respectively. Such a periodicity gives rise to very
closely spaced diffraction peaks in the angular
distribution, but this structure is not resolved by the
1.5° angular resolution of the detectors. Therefore, the
long periodic structure of the surface does not
significantly affect the measured angular distributions.

-40 -20 0 20 40 60 80

Scattering Angle

6. Analysis

The least squares straight line was subtracted from
the stored profile data from the stylus instrument to
yield a new digitized profile z(x). It was assumed that
the least squares line was equivalent to the x-direction
of integration in eq (1) and lay in the mean plane that
gave rise to the specular beam in the optical
experiment.

The profile data z(x) were substituted into eq (1)
and the value for the relative field strength F was
calculated for each angle 0. It was not necessary to
determine the constant C0 to determine the shape of
the scattering distribution. The value of (172 was
calculated to derive a quantity proportional to light
intensity. This quantity IF I2 was then averaged in two
ways to develop good statistics in the result:

Speckle Average. Figure 8 shows a close-up view of a
segment of the angular distribution projected on the
wall of the laboratory. The distribution consists of a
complex pattern of fine speckles [9] that vary greatly
in intensity from one point to the next. In our
apparatus, the average size of the speckles is roughly
0.1 mm or 0.040 [20] at the front surfaces of the
detector lenses. The lenses themselves span an angle of
1.50 (about 40% of the length of figure 8); therefore,
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100 200 300 400 500 600 700

Distance (plm)

Figure 7-Stylus profiles for the specimens which were studied by
the angular scattering measurements shown in figure 6. Note the
differences in the vertical scales.

each detector averages the intensity of a large number
of speckles. A single calculation of IF 12 from eq (1)
would only yield the intensity of a single point. Hence
for each detector angle O, it is necessary to average
over several closely spaced angles to derive reasonable
statistics for the overall pattern. In the present
experiment, we used seven angles in the plane of
incidence separated from one another by 0.05° and
centered about the nominal angle O.

Profile Average. The intensity distributions resulting
from the speckle average were then averaged over 10
surface profiles in order to achieve some measure of
area average which simulates the area averaging of the
light scattering approach. In the case of the 1.6 ptm Ra
surface, only nine surface profiles were used because
we subsequently discovered that one of the profiles
had anomalies in the data in several places. To
improve the statistics for this case, nine speckle values
were calculated instead of seven.

Figure 8-A segment of the
angular distribution projected
on the wall of the laboratory.
The specimen had R,,=0.20
,um. The photograph spans an
angle of about 3.5° from top to
bottom. The fine speckle struc-
ture is clearly shown.

As a result of the averaging procedure, the relative
intensity calculated for each value of Os is an average
of 70 integrals represented by eq (1) and takes
approximately 9 hours on a Perkin Elmer 3230
minicomputer. The resulting distributions are shown
by the dotted lines in figures 9-12 and are compared
with the measured angular distributions (solid lines).
The phase integral calculations successfully reproduce
the changes in the experimental distributions from one
surface to the next. The specular beam dominates the
pattern for the smoothest surface in figure 9. Both the
theory and experiment show the same amount of sharp
curvature near the specular direction in figure 10 and
the same rounded structure in figures 11 and 12. The
major difference between the model and the data is
that in all cases, the theoretical distribution falls below
the experimental one on the wings. The ratios between
the curves are as high as an order of magnitude at
some places. Nevertheless, it is gratifying that for
these regimes of roughness, the simplified theory can
predict much about the distributions.

7. Discussion

7.1 Limitations in the Present Work

A large number of approximations has entered into
the simplified theory of eq (1). Improvements to the
preliminary analysis will involve removing each of
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Figure 9-Data vs. calculation for
the mirror-like surface with
Ra=0.005 ,um. The distribu-
tions are normalized in the
same way as those in figure 6.
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these approximations and observing how the
agreement with the data is affected. We outline some
of these possibilities below in terms of one
experimental limitation and three model limitations:

1) It is possible that the stylus profiles should be
taken with better horizontal resolution, i.e., there may
be structures in the true surface profile with spatial

PTB Specimen,0.005pm Ra

-80 -60 -40 -20 0 20 40 60 80

Scattering Angle

PTB Specimen,0.20m Ra

-40 -20 0 20 40 60 80

Scattering Angle

wavelengths between 0.4 and 1.5 pm that were not
sufficiently resolved by the stylus instrument with its
high spatial frequency cutoff of 1 pm. These
structures may contribute significantly to the optical
scattering. In fact, they would tend to increase the
scattering on the outer wings, since short spatial
wavelengths scatter light into large angles.

11
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PTB Specimen, 0.59ym Ra

Figure 11-Data vs. calculation for
the R,-=0.59 ,um surface.

-80 -60 -40 -20 0 20 40 60 80

Scattering Angle

PTB Specimen, 1.6 jHm Ra

Figure 12-Data vs. calculation for
the Ra= 1.6 ptm surface.

-80 -60 -40 -20 0 20 40 60 80

Scattering Angle

2) Equation (1) is the result of an integration by
parts [21]. It neglects an additive contribution from the
end points, 0 and L. This approximation seems valid
provided the length L is much greater than X, but
perhaps the approximation fails at low scattering
intensities, where destructive interference due to phase

cancellation effects in the scattering pattern is very
high.

3) The preliminary analysis neglects any con-
tribution from shadowing. It assumes that every
point on the surface profile is illuminated with uniform
intensity and contributes to the scattering at every
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angle 0. However, it is likely that at grazing
scattering angles, the outgoing wave from certain
valleys is blocked by the peaks, and it is also possible
that some of these valleys are shadowed from the
incoming beam as well. The former effect probably
tends to reduce the radiation scattered into the wings
of the distribution, whereas the latter probably
broadens the angular distribution by adding a degree
of amplitude modulation to the already phase
modulated outgoing wave.

4) It has been assumed in eq (1) that the electric
field quantities on the surface are not functions of the
local surface topography. This assumption implies
several other assumptions, for example, that the
reflection coefficient is not a function of either local
slope or local curvature and that the electric field at
each point on the surface is not affected by scattering
from other points. All of these simplifications seem to
be good ones for metallic surfaces where the reflection
coefficients are fairly high, the surface slopes and
curvatures small, and the significant roughness
wavelengths much greater than X. If some of the
approximations were invalid, that might result in
significant polarization effects in the angular scattering
distributions. We have done experiments with linearly
polarized light on the 0.59 and 0.20 ptm surfaces and
have found no significant differences between the
angular distributions for s- and p-polarized incident
beams, further suggesting that the simple theory may
be valid for these surfaces. However, in view of the
current differences between data and calculation, the
breakdown of these simplifications and assumptions
must be more carefully investigated, and more
rigorous theories of electromagnetic scattering [22-23]
should be applied to the roughness regime studied
here.

7.2 Previous Work

Our experiment is a direct test of the Beckmann-
Spizzichino optical scattering theory for engineering
surfaces where the roughness heights are the same
order of magnitude as the wavelength of light. With
the capabilities for measuring angular scattering
distributions and storing and analyzing surface
profiles, we have all the components for determining
the level of complexity needed for a valid description
of the optical scattering from these surfaces. Several
previous studies on engineering surfaces [24-27] have
correlated optical scattering measurements with
roughness parameters such as Ra or the rms roughness
Rq [19] obtained from stylus instruments, but they have
not investigated the effects of the surface profiles

directly. Chandley [28] and Thwaite [29] took a middle
approach by comparing optical results with statistical
functions generated from stylus profiles. Chandley
compared the autocorrelation functions predicted
from optical scattering distributions with those
measured by stylus; Thwaite compared the power
spectral densities calculated from stylus profiles with
optical scattering distributions directly. However,
both approaches involved theoretical assumptions that
are not needed in the present work.

Experiments involving measured and calculated
scattering distributions have been done for optical
surfaces by Elson, Bennett, and Rahn [30,31]. Their
work differs from ours in that the theory they used is
more straightforward. Since the rms roughness Rq was
much less than X in the optical regime, first order
Rayleigh theory could be used to analyze the optical
scattering effects due to surface roughness. On the
other hand, their experiments posed different kinds of
difficulties from the present work. Optical surfaces
generally produce low-intensity angular distributions
that are strongly peaked in the forward direction near
the specular beam, so the angular resolution and signal
resolution requirements for their apparatus were high.
Despite these differences, the agreement between
theory and experiment for the previous studies is
comparable to that observed here.

7.3 Future Directions

Our work is a preliminary step in the study of
engineering surfaces by optical scattering. Once this
direct scattering approach produces agreement with
experiments for ideal, two-dimensional surfaces, its
validity must be tested for real, anisotropic surfaces
produced by many kinds of processes such as milling,
grinding, and lapping. For these surfaces, there is a
certain amount of light scattered slightly out of the
plane of incidence, so the geometrical problem is only
approximately two-dimensional. Highly isotropic
surfaces such as those produced by shot blasting or
electron-discharge machining must also be studied. In
those cases, the scattering problem is truly three-
dimensional.

Finally, in order to use the optical scattering
techiques for characterizing surfaces, comparisons
with direct scattering methods are not sufficient. The
inverse scattering problem must be solved adequately
so that surface parameters such as Rq may be derived
in a reliable way solely from optical scattering data.
This is where the speed and resulting economic
benefits of on-line optical methods will be realized.
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8. Appendix: Experimental Notes

8.1 Calibration

The calibration of the 87 detectors is an important
part of the operation of the apparatus. The relative
sensitivity can vary by as much as a factor of 3 from
one detector to the next. Therefore, at the beginning
of each day's run, the system is calibrated in the
following way. The specimen table is dropped below
the center of the yoke, and a fixture with a flat mirror
is inserted into the rotating mirror assembly. The
surface of this mirror is located at the center of the
yoke, but the mirror rotates with the M1, M2
assembly. This setup allows a laser beam of constant
intensity to illuminate each of the detectors in turn as
the mirror assembly is rotated. The 87 signals from the
detector array are collected in this way and stored as a
set of normalization data. The signals collected in the
subsequent data runs are then normalized by dividing
each detector reading by the corresponding
normalization datum. The relative sensitivities of the
detectors, when normalized in this way, are equal to
within approximately ±2% (1 standard deviation), a
figure which includes the variation in sensitivity from
one day to another.

In addition to the variation of sensitivity among the
detector channels, there is an offset voltage signal at

zero light level, which is constant with time but which
varies from one detector to the next. Since the
magnitudes of these offset signals are between 20 and
100 mV, and measurements are made which may be as
small as 10 pV, these light-off signals must be
subtracted from those measured with the light on.
Therefore, each calibration run or data run actually
consists of taking the difference between two scans of
the detectors, a background scan measured with the
laser beam diverted by a shutter, and a signal scan
measured with the laser beam turned on.

8.2 Stray Light

A certain amount of stray light enters the detectors
due to reflection from the ends of the optical fibers
themselves. Approximately 1% of the light entering
each lens is reflected from the fiber located at the
focal point and refocused back to the surface. For a
sharply peaked angular distribution, the effect
influences the signals in the backscattered direction as
shown in figure 13. The dotted line was taken under
conditions which allow the light reflected from the
detectors near -30°, the specular direction, to
propagate to the detectors located near the
backscattering angle of + 30°. The solid line was taken
by placing a dark mask to block the detectors near

PTB Specimen, 0.20 plm Ra, Al = +30°

1

Figure 13-Two angular distribu-
tions that show the effects of re-
flected stray light. The data
shown by the solid line were
taken with a dark shield
masking the detectors around
the specular beam when the
backscattered detectors were
scanned. The data represented =

by the dotted line were taken .

without masking and show a
small shoulder in the backscat-
tered direction.

.1

.01

.001

.0001

.00001
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Scattering Angle
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-30° as those near + 30° were being scanned. The
solid line represents a true angular distribution
whereas the dotted line includes a shoulder around
+ 30° due to the reflected stray light. All of the
experimental distributions shown in figures 9-12 were
measured with the masking approach. The difference
between the curves of figure 13 is approximately a
mirror image of the angular distribution itself but
lower in intensity by about 2 1/2 orders of magnitude.

It is important to note that this effect is significant
only when the yoke is positioned vertically, when the
angular distribution is sharply peaked, and when the
surface is highly two-dimensional, so that most of the
stray light is scattered by the surface back into the
plane of incidence again.

In future experiments, we plan to model the effect
of this reflected light on the detector signals and
perform the appropriate subtractive massage on the
measured angular distributions to correct for it.

The authors are grateful to K. M. Kunz, D.
Medved, A. W. Hartman, J. Geist, E. F. Zalewski,
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C. Summers and R. Lach, for the construction of a
number of components. We would also like to thank
S. A. Holliday for assistance during the early stages of
the project, H. M. Helfer for photography of the
apparatus and the angular distribution patterns, S.
Morris for assistance in the preparation of the
manuscript, and E. Marx, G. Blessing, and D. R.
Flynn for valuable suggestions while the manuscript
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Introduction

Small angle neutron scattering (SANS) techniques
are used to study microstructural phenomena in the
range of 1 to 104 nm in size. Since they cover a wide
range of sizes, these techniques are particularly useful
in studies of ceramic processing and distributed
damage in ceramics. While many metal and alloy
systems have used SANS techniques, few experiments
have been published on ceramic materials. This is not
surprising considering the difficulties inherent in
analyzing SANS data on these materials. Often
ceramics have several microstructural components
such as residual voids from the sintering process,
inclusions or impurities from starting materials, second
phases, and microcracks or cavities from temperature
and/or pressure treatments, as well as dislocations
present in the material. All these effects produce small
angle neutron scattering. It is important to either
eliminate all effects except the one of interest or to
identify the effects through complementary studies
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a chemist, and N. F. Berk and E. R. Fuller, Jr.,
physicists, are with the NBS Center for Materials
Science. The work reported on here was supported
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A101-77-CS5-1017).

that use other techniques such as electronic or optical
microscopy. While these complementary techniques
can identify defects, voids, and second phases, SANS
can quantify these effects throughout the bulk of the
materials in a nondestructive way due to the general
nature of neutrons.

Neutrons are an excellent nondestructive probe of
microstructure because the thermal neutron energies
are very low and neutrons are not absorbed in most
materials. Since the neutrons primarily interact with
the nucleus of the atoms, the neutron beam is highly
penetrating without disturbing the sample. This allows
us to examine the bulk of the material whereas x-ray
and other techniques are more sensitive to surface
phenomena. One strength of neutron scattering is its
dependence on the chemical elements present in the
material through a quantity called the coherent
scattering length, b [1]'. Since b values vary in an
unsystematic way from one element to another,
differences between elements with similar atomic
numbers can be detected, e.g., aluminum and
magnesium or iron and manganese (see table 1).

Magnetic and isotope behavior can be studied with
SANS techniques. Neutrons have a magnetic moment
which interacts with the electrons in the material. The
magnetic and structural properties of many ferrites
and rare earth garnets have been examined with
neutron scattering. Isotope studies involving hydrogen

Numbers in brackets indicate references at the end of this paper.
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Table 1. Bound values of coherent scattering length, incoherent scattering cross-section
elements and isotopes (from Ref. [1])

and absorption cross-section for

Element Incoherent Absorption
Atomic or Nucl. Scattering lengtha scattering cross-section cross section for X = 1.8 A
number isotope spin b(10-" cm) 0-ir,(barn) rab,(barn)

1 'H
'H=D
'H=T

2 'He
4He

3 Li
6
Li

7Li
4 Be
5 B

"'B
"B

6 C
12e

"3C
7 N

"4N
15N

8 0
160

17o

9 F
10 Ne
11 Na
12 Mg

24mg
2 5

Mg

2
6

Mg

13 Al
14 Si
15 P
16 S
17 Cl

35C

18 A
3

6
A

19 K
39K

20 Ca
4"Ca
44Ca

21 Sc

1/2 -0.3740 (1)
1 0.6674 (6)

1/2 0.50 (3)
1/2 0.62
0 0.30 (2)

-0.203 (5)
1 0.18+0.025i

3/2 -0.233
3/2 0.78 (4)

0.535 (6)+0.021i
3 0.14+0.11i

3/2 0.60
0.66484 (13)

0 0.665
1/2 0.60

0.936 (2)
1 0.94

1/2 0.65
0.5803 (5)

0 0.580
5/2 0.578
0 0.600

1/2 0.566 (2)
0.46

3/2 0.363 (2)
0.5375 ( 4 )b

0 0.55
5/2 0.36
0 0.49

5/2 0.3446 (5)
0.41491 (10)

1/2 0.513 (1)
0.2847 (1)
0.95792 (8)

3/2 1.18
3/2 0.26

0.18 (2)
0 2.43

0.371 (2)
3/2 0.37

0.490 (3)
0 0.49
0 0.18

7/2 1.215 (13)

and deuterium are also possible because the neutron
scattering behavior of these elements is very different.
This capability is often used in biological or polymer
research.

This paper will discuss several NBS experiments on
ceramic materials with a greater emphasis on SANS
techniques rather than the actual pertinent values
obtained. The main intention here is to emphasize the
advantages and limitations of these techniques and to

spark interest in further SANS ceramic research
studies. We will divide the measurement discussion
into three parts, as follows: 1) the diffraction limit
which includes small particles or defects in the range
of 1 to 100 nm, 2) the multiple refraction limit which
includes large particles and defects, usually 20 ,um or
greater, and 3) the beam broadening region which lies
between these two limits. However, preceding this
discussion are two sections, one on the SANS

18

79.7
2.0

1.2
0
0.7

0.7
0.005 (1)
0.7 (2)

<0.018
0
1.0
0.46 (12)

<0.015
0

0
0.0004

<0.11
1.75 (3)
0.04 (3)
0

0
<0.01
<0.017
<0.23
0.012 (4)
5.9 (3)

0.27 (12)
0
0.38 (11)

<0.06
0
0
0.446 (23)

0.33
0.00046

5500
<0.007
71

945

0.010
755

3813

0.0033

1.88

<0.0002

<0.01
<2.8
0.505
0.063

0.230
0.16
0.2
0.52

33.6

0.66

2.07

0.46

24



Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering lengtha scattering cross-section cross section for X= 1.8 A
number isotope spin b(10-'2 cm) cr 1in(barn) crabs(barn)

22 Ti
46Ti

47 Ti
48Ti

49Ti
0'Ti

23 V
5"V

24 Cr
52Cr

25 Mn
26 Fe

54Fe
56Fe

57Fe
58Fe

27 Co
28 Ni

58Ni
6"Ni
6'Ni
62Ni

64Ni

29 Cu
63cu

15cu

30 Zn
64Zn

66Zn
68Zn

31 Ga
32 Ge
33 As
34 Se
35 Br
36 Kr
37 Rb

85Rb

38 Sr
39 Y
40 Zr
41 Nb
42 Mo
43 99Tc
44 Ru
45 Rh
46 Pd

-0.337 (2)
0 0.48

5/2 0.33
0 -0.58

7/2 0.08
0 0.55

-0.0385 (1)
7/2 -0.038

0.3532 (10)
0 0.490

5/2 -0.373 (2)
0.954 (6)

0 0.42
0 1.01

1/2 0.23
0 1.54 (68)

7/2 0.278 (4)
1.03 (1)

0 1.44
0 0.28

3/2 0.76
0 -0.87
0 -0.037

0.7689 (6)
3/2 0.67
3/2 1.11

0.5686 (3)
0 0.55
0 0.63
0 0.67

0.72 (1)
0.81858 (36)

3/2 0.673 (2)
0.795 (4)
0.677 (2)
0.791 (15)
0.708 (2)

5/2 0.83
0.69 (1)

1/2 0.775 (2)
0.70 (1)

9/2 0.7050 (3)
0.695 (7)

9/2 0.68 (3)
0.721 (7)

1/2 0.588 (4)
0.60

instrument at NBS and the other on the theory, that
will provide some background.

Instrument

The SANS instrument at the National Bureau of
Standards is described in detail elsewhere [2];

however, a schematic of the major components is
shown in figure 1. The characteristics of the SANS
instrument are given in table 2. The wavelength, X,
can be varied from 0.4 to 1.0 nm by selecting the
appropriate speed of a rotating helical-channel
velocity selector. This is particularly important in
beam broadening experiments because the wavelength

19

2.71 (22)
0

0

5.8

0
4.97 (5)

1.90 (3)
0
0.6 (2)
0.22 (16)
0
0

5.22 (8)
5.0 (6)
0
0

0
0
0.51 (4)

0.08 (1)
0
0
0

<0.5
<0.2
<1.6
0.27

<0.5

<0.4

4.0
0.15 (1)

<0.3
0.0063 (6)

<0.6

<0.1
1.2
0.093 (9)

4.98

3.1

13.2
2.53

37
4.8

3.77

1.10

2.80
2.45
4.3

12.3
6.7

31
0.7

1.21
1.31
0.18
1.15
2.7

122
2.56

156
8.0



Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering lengtha scattering cross-section cross section for X= 1.8 A
number isotope spin b(10-"2 cm) o-,j_(barn) 0rabd(barn)

47 Ag
'07Ag
'09Ag

48 Cd
"3Cd

49 In
50 Sn

"l "Sn
l117 Sn

""8Sn
"9Sn

122 Sn

124 Sn

51 Sb
52 Te

120Te
123 Te

12'Te
125Te

53 I
54 Xe

'35Xe
55 Cs
56 Ba
57 La

139La
58 Ce

40Ce
42'Ce

59 Pr
60 Nd

"42Nd

'44Nd
"46Nd

62 Sm
'49Sm

152sM

"54Sm
63 Eu

'53Eu
64 Gd

'5'Gd
'60Gd

65 Th

0.602 (2)
1/2 0.83
1/2 0.43

0.37+0.16i
1/2 -1.5+1.2i

0.408 (4)
0.6223 (4)

0 0.58
1/2 0.64
0 0.58

1/2 0.60
0 0.64
0 0.55
0 0.59

0.5641 (12)
0.543 (4)

0 0.52
1/2 0.57
0 0.55

1/2 0.56
5/2 0.528 (2)

0.488 (3)

7/2 0.542 (2)
0.528 (5)
0.827 (5)

7/2 0.83
0.483 (4)

0 0.47
0 0.45

5/2 0.445 (5)
0.780 (7)

0 0.77
0 0.28
0 0.87

7/2 -1.9+4.5i
0 -0.5
0 0.96

0.68
5/2

1.5
3/2 4.3 +4i
0 0.91

3/2 0.738 (3)

dependency of the neutron scattering is a necessary
part of the analysis. Longer wavelengths are also
useful in diffraction measurements where larger sizes
(>0.5 nm) of particles or voids are being examined
and when multiple Bragg scattering from the crystal
structure of the material is to be avoided. A cold
source is important in SANS facilities because
measurements can be obtained at higher wavelengths

in a reasonable time interval. The function of a cold
source is to lower the neutron thermal equilibrium
temperature in the reactor, which shifts the peak
intensity to higher wavelengths. Therefore X values of
1.5 to 1.8 nm can be used routinely and data can be
collected at X= 1.0 nm more quickly. The SANS
facility at NBS is adding a cold source and will
increase the power of the reactor to 20 MW (June

20

0.49 (4)

0.022 (5)
0

63

2450
20000

196
0.625

0

0
0
0
0.17 (12)
0.6 (4)
0

5.7
4.7

0

4.6
2.5
1.87 (17)

-0
0
0
1.6

11 (2)
0
0
0

0
0

0

7.0
74
2.7X 106

29
1.2
9.3

0.77

11.6
46

5600
41000

210
5.5

4300
450

49000
-254000

0.77
46



Table 1 (Continued)

Element Incoherent Absorption
Atomic or Nucl. Scattering lengtha scattering cross-section cross section for X= 1.8 A
number isotope spin b(10-" cm) o-Cj.(barn) crabs(barn)

66 Dy
160Dy
161Dy
162Dy

163Dy

"64Dy
67 Ho
68 Er
69 Tm
70 Yb
71 Lu
72 Hf
73 Ta
74 W

182w

183w

184w

1
8 6

w

75 Re
76 Os

188os

1890S

'90Os

192oS

77 Ir
78 Pt
79 Au
80 Hg
81 Tl
82 Pb
87 Bi

90 232Th

91 23'Pa

92 U
235U

238u

93 237Np
94 239Pu

240pu

242pu

95 243Am
96 2'Cm

1.71 (3)
0 0.67

5/2 1.03
0 -0.14

5/2 0.50
0 4.94

7/2 0.85 (2)
0.803 (3)

1/2 0.705 (5)
1.262 (12)
0.73 (2)
0.777 (14)
0.691 (7)
0.477 (5)

0 0.83
1/2 0.43
0 0.76
0 -0.12

0.92
1.08

0 0.78
3/2 1.10
0 1.14
0 1.19

1.06 (2)
0.95 (3)

3/2 0.763 (6)
1.266 (2)
0.889 (2)
0.94003 (14)

9/2 0.8495 (12)
0.85256 (14)

0 1.008 (4)
1.3
0.861 (4)

7/2 0.98
0 0.85

1.06
0.75

0 0.35
0 0.81

5/2 0.76
0 0.7

a Coherent scattering lengths for the eiements are mostly best values recommended by Koester (1977). Complex scattering lengths relate
to X =I A. All entries without quoted errors are to be considered with caution as their accuracy is uncertain. Incoherent scattering cross
sections for nuclei with zero spin have been set equal to zero.

1984). Both of these additions will increase the
neutron flux at the sample significantly and will result
in shorter measurement times.

There are two types of collimating apertures which
define the beam direction and divergence. One type
consists of a pair of cadmium pin hole irises, one after
the velocity selector and another before the sample
chamber. The other collimation system is for higher

resolution measurements and consists of a set of
channels in cadmium masks which effectively
converge the neutron beam to a point at the center of
the detector. The multiple sample chamber is
computer controlled and can be used under vacuum.
Single samples can be studied as a function of
temperature from 12 to 1600 K. Horizontal and
vertical field electromagnets are also available. Sample
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Figure 1-A diagram of the NBS small angle neutron scattering facility including computer capabilities (Ref. [2] is source).

Table 2. Characteristics of the SANS instrument at 10 MW reactor
power

Wavelength:
Collimation:

Minimum Q:
Q range:
Sample size:

Flux at sample:

Detector:

Variable from 0.48 to 1.0 nm, AX/X=0.25
Single pair of circular irises or 7 to 9 channel
converging beam collimation
0.006 A- at X=0.6 nm; 0.004 A-' at X=0.9 nm
0.004 A- to 0.5 A-'
0.4 to 2.0 cm pin-hole collimation; 1.6 cmX 1.6
cm or 2.2 cm diameter-converging collimation
1-30 mm thickness (uniform)
104 to 2 X 105 n/cm2-sec depending on slit sizes
and wavelength
64 cmx64 cm position sensitive counter with
8X8 mm2 resolution

sizes are usually 1.0 to 2.5 cm in diameter and 2 to 30
mm thick. Uniform thickness is essential for analyzing
the results. The scattered neutrons are detected on a
64 cmX64 cm position-sensitive proportional counter
with a spatial resolution of 8 mm in each direction and
is divided into 128 columns and 128 rows. A dedicated
minicomputer processes the signals from the detector
and stores the data. The data are recorded on floppy
disks for archival storage and are transferred to a
larger computer for analysis, and they can be viewed

on an interactive color graphics terminal as well. The
angle between the incident beam and the scattered
beam is the scattering angle, E, (see fig. 2). The
magnitude of the scattering vector Q is (47r/X)sin E/2
which is approximated 27rE/k in the small angle limit.

Theory

This section is a very brief discussion of some of the
theoretical considerations that are particularly
germane to ceramics applications of SANS. Excellent
reviews [3-5] of SANS formalism and practice exist
for the interested reader.

The nature of small angle scattering from a
monodisperse population of spherical particles or
voids is determined by the phase shift p that a plane
wave suffers in traversing a single particle;

p = (47r/X)AnR, (1)

where X is the neutron wavelength, R is the particle
radius, and
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Figure 2-A schematic diagram of key components used for the small angle scattering measurements.

An = AbX2/27T, (2)

is the index of refraction of the particle or void
relative to the matrix medium, which is assumed to be
homogeneous and thus, acting alone, to produce no
angular divergence in the neutron beam. In eq (2), Ab
is the relative scattering length density or contrast of
the particle (or void) with that of the matrix material:

Ab = -ceib/ V(e3ibmatrix, (3)

where the sum is over the coherent scattering lengths
bi of the material formula unit for a crystalline unit
cell, Kell is the unit cell volume, and where bmatrix is
defined by the analogous average for the matrix
material. Thus combining eqs (1) and (2) the phase
shift parameter p can be written in the useful form

p=2AbRX, (4)

which shows the three independent factors on which
it depends: 1) material contrast Ab, 2) particle size 2R,
and, 3) neutron wavelength X.

In the limit of small phase shift, p < < 1, single-
particle scattering is described by the Born
approximation, or equivalently, the Rayleigh-Gans
model, which in SANS is identified with small angle
diffraction. In this limit the neutron differential cross-
section-i.e., the relative probability for scattering into
angle E which is equal to 20-is exactly expressed as
the Fourier transform of the single-particle density
self-correlation function, which is sensitive to the
details of particle shape and size. The diffractive
regime theory and measurement are usually described
in terms of the scattering wavevector

Q = 2vE/X, (5)

which absorbs all of the X-dependence of the
scattering; in particular the width of the scattering in
the Q-representation is inversely proportional to
particle radius but independent of X, so that in the
angular representation, the root mean square, rms,
angular deviation of scattered neutrons is proportional
to X and is inversely proportional to the particle
radius. Moreover, as p approaches zero, the single-
particle total cross-section o-,-i.e., the integral of the
differential cross-section over all angles-becomes
proportional to the particle geometrical cross-sectional
area multiplied by p

2 and thus also tends rapidly to
zero. As a result, the mean-free-path length

1= 1/D-, (6)

where D is the number of scatterers per unit volume,
becomes much larger than sample dimensions-except
for very dense systems or for very thick samples. This
has two important (related) consequences: 1) the
relative probability for scattering becomes small so
that the observed intensity is the sum of an unscattered
"incident" beam, broadened only by instrumental
resolution, and a much weaker scattered beam which
contains the particle size and shape information; and 2)
incident neutrons effectively have only one opportuni-
ty to be scattered by individual particles while
traversing the sample so that the scattered component
of the observed neutron intensity is simply the N-fold
multiplication of the single-particle scattering from N
particles-i.e., contributions from multiple scattering
and coherent interparticle interference are negligible.
(We simply note here that interparticle interference
can be an important effect in small angle diffraction
from dense systems of scattering particles or voids.)
Typically, the diffractive regime is considered to
apply to particles of radius less than 0.1 im, and
cr= =7rR2p 2/2.
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In the opposite limit, p>> 1, the scattering from a
single particle is well described by ray optics with
each particle refracting neutrons as a lens. In this
regime the rms angular deviation of the neutron beam
produced by a particle is independent of its size and
determined only by the relative index of refraction
which, recalling eq (2), is proportional to X'.
Moreover, the total cross-section Cr approaches the
geometrical limit 2Xcross-sectional area (-=27rR2),
so that the mean-free-path length becomes comparable
to the average interparticle spacing. In probabilistic
terms every particle scatters, and as a result: 1) the
observed intensity is not separable into an unscattered
"incident-beam" and a weak, scattered part-in effect
the incident beam is broadened beyond instru-
mental resolution without "residual" scattering;
and 2) multiple scattering effects dominate this
"beam broadening" which means that the particle
size influences the measurement indirectly-but
substantially-through its influence on the macro-
scopic configuration of scatterers (e.g., the mean
particle spacing for fixed volume fraction). Generally,
the refractive regime is reached by particles larger
than 10 Jxm.

For intermediate values of the phase shift, p - 1, the
scattering is not well described in terms of either
limiting case or as a simple combination of diffractive
and refractive effects. A plot of -/7rR2 vs p in figure 3
suggests the effective extent of the intermediate or
"cross-over" p-regime connecting these extremal
behaviors. The diffractive regime is confined to the
immediate neighborhood of the origin while the
refractive asymptote, defined by the dotted line, is
approached only slowly for large p. In work described
elsewhere [6] we have developed a synthesis of a
general formal expression for the single-particle
scattering cross-section, for unrestricted p, as derived
by Weiss [7] with the multiple-scattering formalism of
Snyder and Scott [8], modified for the relevant "pin-
hole" geometry of the typical SANS instrument. We
find that for p- 1, the relevant regime for many
ceramics applications, the predicted neutron intensity
as a function of scattering angle is approximately
Gaussian, an informal characteristic of multiple-
scattering phenomena, with a standard deviation
estimated by AE

AE = [T/l(X)' 1/2EO(X) (7)

where T is the sample thickness, I is the mean-free-path
length as defined in eq (6), and EO is a measure of the
rms angular deviation produced by a single particle. In
eq (7) we have indicated the implicit wavelength

4.00

3.00

bl'- 2.OC

[.00

O.OC
0 2 4 6 8 l0 12

p

Figure 3-The oscillatory variation of the total neutron cross-section
scattering o- as a function of the phase shift p. In the multiple
refraction limit p=27rR2 (Ref. [7] is source).

dependence since a plot of measured AE vs X is the
most effective means of determining the nature of
beam broadening. In this regime 1 is inversely
proportional to X2 and E0 is approximately linear in X
(the E0 behavior thus suggesting the approach to the
single-particle diffractive limit), so that the overall
variation of AE is approximately quadratic in X. A
similar expression applies to the refractive regime,
p> >1, where 1 becomes independent of X while EO
varies approximately as X2, thus giving AE a similar
wavelength dependence as for pa 1 but one that arises
from a different "mechanism" and which depends in a
very different way on R. An application to experiment
is discussed below.

Experiment

Diffraction and beam broadening measurements are
quite different and are usually obtained in different
configurations of the SANS instrument. Diffraction
experiments probe for microstructural phenomena in
the range of 1 to 100 nm. The SANS detector is
usually located directly behind the sample so that the
incident beam is centered in the middle of the
detector. The experiment generally requires 6 to 12
hours and a beamstop is used to eliminate scattering
from the incident beam. Sample thickness (2 to 6 mm)
is kept small to minimize multiple scattering effects.
Absorption and incoherent neutron scattering should
be reduced for best results in most SANS experiments
with ceramic materials.

The beam broadening effect is wavelength (X)
dependent and the resulting widths are most sensitive
to X at X greater than 0.7 nm. Typical experiments
require only 3 minutes to 2 hours depending on X, the
void or particle size, density and thickness of the
sample and are similar to transmission measurements.
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It is important to determine the exact center of the
neutron scattering; therefore, the incident beam is set
off to one side of the detector without a beamstop.
This can be done without harming the detector
because the peak intensity is greatly reduced in the
broadened state. Cadmium foil can be used to reduce
the scattered beam intensity over the entire detector to
further ensure the safety of the detector; nevertheless,
care should be taken when obtaining data without a
beamstop. The samples should be measured at three
wavelengths or more for best results. Also thicker
samples, 5 to 30 mm, are desirable to increase the
number of scattering events.

Hydrogen and B'0 or naturally occurring boron are
generally undesirable in elastic neutron scattering
experiments so that deuterium and B" are often
substituted for these elements respectively. B'0 absorbs
neutrons and can be used to stop the chain reaction in
nuclear reactors. Therefore SANS measurements of
boron containing ceramic materials should have less
than 10% B and be 3 mm or less in thickness. If these
conditions are not possible then the materials can be
made with B" which is relatively inexpensive and easy
to obtain. Hydrogen has a large incoherent scattering
component that reduces the signal-to-noise ratio in the
data. Ceramic binders containing hydrogen and
ceramics containing water are difficult to measure.
Usually heavy water (D20) can be used if water is
required in the sample. The coherent scattering
lengths (b), incoherent scattering cross-sections, and
absorption cross-section values for the elements and
isotopes can be found in table 1, taken from Kostorz
[1]. It is worthwhile to avoid elements or isotopes with
high neutron absorption or high incoherent scattering
cross-section values.

Diffraction Region

Most SANS experiments are in the diffraction
region and in ceramics are concerned with
inhomogeneities such as voids, cavities, microcracks,
precipitates, sintered porosity, inclusions, nucleation,
and growth of second phases. In principle it is possible
to determine quantitatively particle size, shape, size
distribution, surface area and other microstructural
values. Examples of SANS experiments with ceramic
materials include the following: formation and growth
of heterogeneities in glass by A. W. Wright [9], creep
cavitation in sintered alumina by R. A. Page and
James Lankford [10], growth and coarsening of pure
and doped ZrO2 by A. F. Wright, S. Nun and N. H.
Brett [11], microcracks in sintered YCr03 by E. D.

Case and C. Glinka [12], and Fe and W inclusions in
hot pressed SiN 4 by K. Hardman-Rhyne, N. F. Berk
and N. Tighe [13]. The results of the two last-named
works will be discussed briefly.

It is preferable to have a two-component system
such as the matrix material and precipitates or voids.
One way to avoid multiple component systems is to
run a control sample which was done in the YCrO3
microcrack experiment [12]. YCr03 is a material which
is sintered around 1750 'C, thereby establishing its
microstructure (porosity, grain size, etc.) but which
undergoes an apparent phase transition around
1100°C. Thus if the material is quenched from above
1100 'C, microcracks as well as pores are present in
the final material. However if the material is annealed
at 1050 'C the microcracks can heal and only the
pores remain. Thus by subtracting the neutron
scattering data of a healed YCr03 sample from that of
a microcracked sample, a third scattering distribution,
due only to the microcracks in the material called
IDIFF' can be obtained. These data are analyzed to
determine several microstructural parameters.

Both SANS and elasticity measurements were
collected on these samples which allowed the mean
crack radius and crack number density to be
calculated. The total surface area of the microcracks
was estimated by using high Q data which was
normalized to the scattering from water. Figure 4
shows the logarithmic function Of IDIFF versus the
scattering vector Q. The solid line is a Porod [14]
functional fit which describes the data at large
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Figure 4-Open circles are the net scattering due to microcracks
from a 7 mm thick specimen of YCr03 plotted on a logarithmic
scale versus the scattering vector Q. The curve is a least-square fit
of a Porod law (Ref. [12] is source).
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Q(Q>0.03 A-') and can be expressed in the following
form:

Ia dy 2-
h - - - v

S
Q 4

(8)

where dl/dfl is the macroscopic cross-section, V the
sample volume seen by the neutron beam and S the
total surface area of the scattering centers.

Because the Porod function does not apply to low
Q region, other functional forms of the scattering
cross-section must be used. For sharp-edged, randomly
oriented scattering centers of any given geometry, a
Guinier [15] function can be used at small Q values;

dfl (Ab)2 VP2 exp ( RG 2 Q 2 /3) (9)

where Vp is the volume of the particle (or scattering
center) and RG is the particle's radius of gyration with
respect to its center of gravity. However a better
functional fit to the data can be obtained by assuming
that the scattering from microcracks is modeled after
randomly oriented thin disks [14] of thickness 2H,
diameter 2a;

dY _ V N 2(Ab)2

dfl V
2

Q 2a2 exp (-Q 2H 2/3)

where Np is the number of microcracks and
QH< l< <Qa. This low Q fit to the data (IDIFF) can
be seen in figure 5. Various microcrack parameters
have been calculated and agree well with other similar
parameters in the literature [12] and are as follows:
crack number density (4.7X 108 cm-3), surface area (1.5
cmXl0 3 cm), crack aspect ratio (1.5 to 3.5X10-3),
volume fraction (2.6X 10-3), and crack opening
displacement (250 A). The mean crack radius is 5.7
,um which corresponds well with the measured grain
size of 6 ,um and is consistent with a model of
localized stress induced microcracks.

Although optical and electron microscopy can
identify small defects (<10 ,um) in advanced ceramic
materials, SANS can quantify the size, shape and
distribution of these defects in the bulk of the material.
Hot pressed, MgO doped Si3N4 is an example of a
complementary study with SANS and transmission
electron microscopy, TEM. TEM studies of this
material clearly showed small, approximately spherical
inclusions in Si3N4 that were identified as Fe and W.
There was no evidence of pores, microcracks or
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Figure 5-The data points are the low Q scattering from microcracks
in a 7 mm thick specimen of YCr03 . The curve is a least-squares
fit to the data of the scattering function for randomly oriented
thin disks of thickness 2H (Ref. [12] is source).

microvoids from the TEM observations, but the
sample had not been temperature treated where voids
are more likely to appear.

Pores larger than 90 nm can be detected by
examining transmission data collected at two or more
wavelengths remembering that the higher wavelengths
are more sensitive to porosity effects. Focussing
collimation was used to examine the wavelength
dependency of the neutron scattering as shown in
figure 6 and no wavelength-dependent beam
broadening was observed. This is consistent with
observations from TEM and other characterization
methods which suggest that this sample of Si3N4 is
fully dense with little or no porosity. Therefore we
assume the SANS data reflect information relevant to
the Fe and W inclusions that are present.

The small angle neutron scattering of the inclusions
at X=0.9 nm is plotted as exponentially spaced
intensity contour lines for the two dimensional
detector (see fig. 7). There is a beamstop located in the
center of the detector (solid circle) where the intensity
is greatest and decreases as the distance away from the
center increases. The intensity of the scattering is
usually expressed as a function of Q, given in units of
inverse angstroms (10 A= 1 nm and 1 A-'= 10 nm-').
Background and transmission corrections must be
made to the raw data. Since the contour plot (fig. 7)
indicates the scattering is isotropic we have circularly
averaged the corrected data and plotted logarithm of
intensity versus Q for the Fe and W inclusions in Si3N4
(see fig. 8).
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Figure 6-Comparison of direct beam scattering (blank sample) with the scattering from the Si3N4 sample at several wavelengths.
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Figure 7-Exponentially spaced intensity contour plots from the two-
dimensional SANS detector of the Si3N4 sample at X=0.9 nm.

Most SANS analyses include one or both regions
indicated in figure 8. Often the intermediate region
will be included in one of these regions or treated

Figure 8-Logarithm of neutron scattering intensity of Fe and W
inclusions in Si3N4 versus scattering vector, Q, in reciprocal
angstroms. The two regions (1 and 2) denote the Guinier and
Porod regions, respectively.

separately as was the case in the thin disk model for
YCr03 microcracks. Region 1, shown in figure 8 and
expanded in figure 9, is the Guinier region where the
logarithm of the intensity has a Q2 behavior. A
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separating the two phases. Thus, for a population of
spheroidal particles a is a characteristic of average
particle size (a=4/3 Rs). A Debye et aL fit (solid line)
to the data (squares) at X=0.55 nm is shown in figure
10. The correlation length a for the Fe and W
inclusions in Si3N4 is 21.2 nm. A complicating factor in
this study is the wide distribution of inclusion sizes
and the difference in Ab of Fe and W.

3000

2500

0.35

Figure 9-Plot of the Guinier fit (solid line) to the data (squares) at
X=0.76 nm.

Guinier fit (solid line in fig. 9) to the data (squares) at
X=0.76 nm yields a radius of gyration (from eq (9)) of
18.6 nm which is related to the average radius of the
Fe and W inclusions. If we assume the inclusions are
monodispersed and spherical in shape, RG=(3/5)1/2 Rs
so that the average particle radius is 24.0 nm. In this
scattering region the neutron intensity is limited by the
larger dimensions of the scattering particles. The
Guinier approximation is valid over a range of
QMAxRG<1.2 . In our case the maximum Q is 0.017 A
and QMAXRG- 3 which extends outside the Guinier
approximation range although the logarithm of the
intensity has Q2 behavior in this region.

Region 2 in figure 8 is called the Porod region and
has a QA4 dependence. The Porod region is more
sensitive to smaller dimensions of the scattering
centers and results in a characteristic Porod length
which measures a surface to volume ratio if absolute
intensities can be determined. Since the Porod region
is valid for high Q values only, other similar
functional forms have been used to extend the Porod
region to lower Q values. One such form is the Debye
et al. model [16] which assumes scattering from a two
phase material. The particles or voids can be random
in size, shape, and distribution throughout the
material. The scattering cross-section from this model
is given by

dY, 8ir Va3(Ab)2

dn - (I + Q2a2)2 11)

The correlation length X
inhomogeneity length [14], l
volume to surface ratio

a is equal tc
-=4V/S where
of the total

) Porod's
V/S is the

interface
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Figure 10-Plot
X=0.55 nm.

0.14

of a Debye fit (solid line) to the data (squares) at

Further SANS diffraction experiments of distributed
damage due to stress and temperature are expected as
this technique becomes familiar in ceramic research.
These results, coupled with failure tests, optical and
electron microscopy, can help in understanding and
improving the structural reliability of advanced
ceramic materials.

Multiple Refraction Region

A few experiments have been published on multiple
refraction effects in nonmagnetic materials, yet it
remains unclear if these effects have been observed.
Nevertheless, two papers discuss these phenomena in
some detail. Weiss [7] studied the neutron beam
broadening effect of several materials including
bismuth, magnesium, and carbon black. Moreover he
demonstrated the full width at half maximum as a
function of scattering angle, called AE, from neutron
beam broadening depends on T 1/2, X2, Ab, and s,
where T is the thickness of the sample and s is a
parameter describing the particle or void shape, and is
independent of R the radius of the particle or void.
The experimentally determined AE was compared to
theoretical values obtained using the von Nardroff
multiple scattering formula for spheres and for random
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surfaces [17]. The von Nardroff formula assumes the
measured angular distribution to be Gaussian. But this
is true only if the single particle scattering angle
distribution falls off faster than Porod behavior (E-4),
which generally is not the case. This is consistent with
the behavior of the observed intensity which one
approximates as Gaussian at small angles, but which
falls off much more slowly at large angles.

P. Pizzi [18] collected neutron scattering measure-
ments of Si3N4 materials at various densities and heat
treatments to detect microvoids from multiple
refraction effects. Two samples were reaction bonded
with densities of 2.28 and 2.49 gm/cm 3 and several
were hot pressed with densities from 3.03 to 3.19
g/cm3 . Plots of intensity versus Q (or K) for the
reaction bonded and hot pressed Si3N4 at two
wavelengths (fig. 11) reveal wavelength dependency
suggesting the presence of multiple refraction neutron
scattering. Results for three Si3N4 samples with
densities of 2.28, 2.46 and 3.18 gm/cm 3 give radius
values for the voids of 3, 5 and 2.7 ,tm respectively.
This would indicate phase shifts, p of 4.6 to 8.6 (see
fig. 2) which probably fall within the intermediate
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Figure 11-SANS from two samples of Si3N4 measured at X=0.8 and
1.0 nm. The scattering vector K is the same as Q in this paper.
Densities of the two samples were 2.46x 103 and 3.18X 103 kg/m 3 ,
respectively (Ref. [18] is source).

beam broadening region between the diffraction and
multiple refraction limits.

Beam Broadening Region

Porosity is a critical aspect in the densification
process of a sintered ceramic material. To elucidate
the extent of such porosity, a quantitative study with
SANS has been conducted at NBS to determine
average pore size. Rather than restricting the SANS
measurements to the typical 1 to 100 nm size regime of
SANS diffraction, we have explored the neutron beam
broadening region by extending the SANS characteri-
zation into the tens of micrometer size regime. This
extension of SANS technique to larger sizes is an
important result because it allows a greater overlap of
SANS characterization with other NDE techniques.

Two samples of YCr03 were fabricated from pure
powders by isostatic pressing at 207 MPa (30,000 psi);
one sample was then sintered [19]. The density of the
"green" compact (the unfired ceramic) was approxi-
mately 57% of theoretical density and that of the
sintered material was approximately 94%. The starting
ceramic powder, with approximately 30% of
theoretical density, was also examined. Since beam
broadening measurements are wavelength dependent,
SANS experiments were taken at six or seven
wavelengths of the following: 0.485, 0.545, 0.625, 0.70,
0.80, 0.90, 0.95, 1.0 nm. The results reveal a striking
difference between the samples as illustrated in figures
12 and 13 which are SANS spectra for the sintered
and "green" compact specimens respectively. The
sintered material (fig. 12) shows little wavelength
dependence but the "green" compact reveals dramatic
beam broadening which is strongly wavelength
dependent (see fig. 13). This dependence is illustrated
in figure 14 by plotting the normalized intensity versus
scattering vector Q for five wavelengths.

The direct beam is wavelength independent with
respect to the scattering angle, E and is defined in part
by the instrumental collimation. Beam broadening data
can resemble a Gaussian distribution at low Q values
where the full width at half maximum, AE can be
determined by the Gaussian standard deviation
parameter 0G as shown below:

I=I exp (-Q2/2&r2)

For full width at half maximum AQ=2.355 -G.

Since Q=2.7rE/X, the AE=0.3748 XOAG.

(12)

(13)

(14)
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Figure 13-SANS spectra for a
"green" compact of YCr03 at
three wavelengths: 0.545, 0.7,
and 0.9 am. Plotted is the
scattering intensity versus a
linear column slice through the
center of the neutron scattering
plane (as indicated by the row
number).
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Figure 14-Normalized scattering
intensity versus scattering vec-
tor, Q, for neutron scattering
from a "green" YCr03 compact
at five wavelengths.
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The full width at half maximum for the direct beam,
Eb, was determined for two different collimating
conditions. In the fine pin-hole geometric configura-
tion (12 and 8 mm) the Eb is 4.62X10-3 10 5 radians
which was used in the YCr03 materials. The beam
broadening experiment of Si3N4 shown in figure 6 was
obtained under focussed collimation conditions and
the Eb is 3.882X 10-3 rad. ± 10-6. The AE value contains
both the beam broadening scattering and that due
strictly to the direct beam, thus the direct beam,
Eb, must be subtracted from the experimentally
determined value, E.

(15)

Zn
z
w
I-

0.03
Q (A')

An example of the data (squares) and Gaussian fit
(dashed line) for the "green" compact of YCrO3 at
X=0.625 nm is shown in figure 15.

Although the qualitative aspects of the data clearly
demonstrate a strong effect of ceramic processing on
the neutron scatterers population in these materials,
quantitative measures of the particle or void size,
shape and size distribution are less straightforward.
Moreover the Ab, X and probably R values
correspond to phase shifts well within the intermediate
range of values for which the neutron scattering is not
expected to be analyzable by multiple refractive
behavior alone. Therefore, a generalized beam

Figure 15-Normalized intensity versus Q from a "green" YCrO3
compact at X=0.625 nm. The squares are the data with the direct
beam and the dashed line represents the Gaussian fit to the low Q
region. The triangles are the theoretically derived beam broaden
data points which do not include the direct beam. The solid line is
the Gaussian fit through this data fit.

broadening theory [6] relevant for this region and
multiple refraction has been developed to quantitative-
ly analyze the SANS data for densified ceramics and
other distributed defects in this size regime. Figure 15
contains a generated data set from the theory
(triangles) and the Gaussian fit to these data points
(solid line). The AE does not contain the direct beam
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portion. The radius, void (or particle) density ratio
and shape factor can be obtained from this theory,
which can be expanded to consider particle packing,
polydispersivity and various shapes of particles and
voids other than spheres. Excellent agreement of data
and theoretical values for AE can be seen in figure 16
and table 3. The average radius void size in the YCr03
"green" compact material is 0.17 ,um and has a void
density ratio of 0.42 compared to the overall density
ratio of 0.43.

0.06

0.05

0.04 _

w 0.03

0.02 _

0.01'
O.-4 0.6 0.8

Table 3. As values for YCrO3-"green" compact where Ab=
5.277 X 10-4 nm 2 , void density ratio =0.42, T= 12.2 mm, R=0.17
Jim

Ac (radians)
X (nm) Data Theory

0.485 0.01156 0.01137
0.545 0.01525 0.01611
0.625 0.02038 0.02028
0.7 0.02660 0.02645
0.8 0.03598 0.03617
0.9 0.04700 0.04711
0.95 0.05338 0.05322

figure 17. The two runs were reproducible with an
apparent small distribution of powder sizes present.
The average diameter value is approximately 1.4 Am
(or R=0.7 Am) and agrees well with the R value
obtained from the SANS analysis of 0.74 Am. The
data (squares) and theory values (circles) for R=0.74
,um are shown in figure 18. If we assume that multiple
refraction effects only are present, then a fairly good
fit to the data using von Nardroff formula for random
spheres can be obtained (triangles and dashed line in
fig. 18). However the number of scattering events
determined from this fit is 33.4 which requires R to be
62 Atm. This is clearly outside the range of possible
radius values for this material.
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Un
:E

1.0

X (nm)

Figure 16-Full width at half maximum, Ae (in radians) versus the
wavelength, X, for voids in the "green" compact of YCrO3 . The
squares are the data and the circles are the Ae values derived
from theory. 50 30 20 10 6 4 3 2 1.5

Equivalent Spherical Diameter (Am)

1 0.80.6

A powder sample of YCr03 was examined to
compare previously determined average particle size
values with that obtained from SANS experiments.
The YCrO3 powder particles were ultrasonically
dispersed and magnetically stirred at a temperature of
32 'C [20]. A plot of the cumulative mass percent
versus the equivalent spherical diameter in pum,
determined by sedimentation methods, is shown in

Figure 17-Size distribution of YCrO3 powder particles. A plot of
cumulative mass percent versus the equivalent spherical diameter
by ultrasonic dispersion technique.

The general beam broadening theory and SANS
technique allows us to study the densification process
in a nondestructive way. It is being extended to study
the sintering of spinels (MgAl 204) as a function of
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Figure 18-Full width at half maximum, Ac (in radians) versus X for
YCr0 3 powder particles. The data (squares) theoretically derived
values (circles) and multiple refraction results (triangles) are
given.

temperature. Although the spinel powders have been
heated at 1300 'C for 12 hours, very little sintering has
occurred (fig. 19) but sintering effects are apparent
after only 3 hours at 1500 'C. Nevertheless the
material is not fully sintered in that the Eb of the direct
beam (the blank) is significantly smaller than the E of
the spinel at 1500 'C. In situ as well as other ceramic
processing experiments are expected to fully develop
the capabilities of this new approach in SANS. It
should be of interest to other material disciplines such
as magnetic broadening effects, pores in metal alloys
and colloidal chemistry.
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Creep damage in polycrystalline metallic materials can be attributed to cavitation and cracking along the
grain interfaces. Theories of creep cavitation that have been developed in recent years are reviewed. Further
evaluation and/or refinement of these theories has been retarded by a lack of an experimental counterpart.
Small angle neutron scattering studies (SANS) provide one experimental tool which is complementary to
others. SANS done at NBS and elsewhere have shown that this technique is suitable for studying nucleation
and early stage of growth of creep cavities. This would provide the impetus to further progress in this area.

Key words: creep cavitation; creep crack growth; creep damage; creep fracture; high temperature failure of
metals; small angle neutron scattering.

1. Introduction

At high temperatures and low stresses, metals often
fail with an elongation of only a few percent and only
a small reduction in area [1]1. This phenomenon occurs
even in normally ductile materials like copper and
nickel [2]. When metals which have fractured under
the above conditions are examined microscopically, it
is found that they have cavities and cracks distributed
throughout the specimen along grain boundaries as
shown in figure 1. The failure mechanism associated
with these cavities is therefore referred to as
intergranular creep fracture. It is the dominant

About the Authors, Paper: All four authors are
members of organization units within NBS' Center
for Materials Science. E. R. Fuller, Jr. and T.-J.
Chuang are with the Inorganic Materials Division,
R. J. Fields is with the Fracture and Deformation
Division, and S. Singhal is a member of the
Center's Reactor Radiation Division. The work on
which they report was supported by the NBS
Office of Nondestructive Evaluation.

mechanism of long-term fracture of both 304 stainless
steel and 2-1/4 Cr-l Mo steel, as shown in figure 2
[1,3-7], and of many other commercial alloys.

The cavities usually contain inclusions or second
phase particles, apparently having nucleated on them.
The cavities, once nucleated, grow by the diffusive
movement of atoms from the cavity onto and along
the grain boundary [8] as shown schematically in
figure 3. This mechanism is equivalent to the stress-
directed condensation of vacancies on the cavity. The
migration of atoms (or of vacancies) results in the
extension of the specimen-allowing the applied force
to do work. Most of this work is dissipated by the
diffusive fluxes associated with the redistribution of
matter [9]; some, however, is stored as the energy
associated with the newly created surface area of the
cavities. If the load were removed, the specimen
would contract as the cavities shrink by sintering.
However, it is the nucleation and growth of these
cavities that is of interest here as more and more of
the grain boundaries are consumed and fracture
eventually occurs.

As will be shown, theoretical progress in modeling
creep cavitation has greatly outstripped the experimen-
tal advances or measurements in this field. At present,
there are several viable models that can predict the
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Figure 1-(a) Intergranular cavitation in copper tested at 600 'C
viewed edge-on in an optical microscope. (b) Intergranular
cavitation in iron tested at 600 C, viewed in a scanning electron
microscope on a grain boundary which is exposed by a low
temperature fracture.

accumulation of damage and the time-to-fracture.
Experimental measurements clearly supporting one
model or, at least, rationalizing the differences
between models, have not been available. Indeed, most
experiments have focused on the stress dependence of
the time-to-fracture (an integrated result), and have

10 10

FAILURE TIME (seconds)

Figure 2-Fracture mechanism maps for 304 stainless steel and 2; Cr-
I Mo steel showing the regions of stress and temperature in which
intergranular cavitation occurs.

given little attention to size distributions of cavities
and their time dependence. Furthermore, this lack of
experimental measurements for small cavity size
distributions has hindered refinement of the various
theoretical models.
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Figure 3-Schematic illustration of the stress-directed flow of
material from the cavity surface onto the grain boundary.

In this paper, we present small angle neutron
scattering (SANS) results which show that SANS is
quantitatively sensitive to these small cavities. These
results indicate that SANS may be the new technique
to answer many of the pressing questions arising from
existing theoretical treatments of creep cavitation. To
understand what these questions are and how they
have arisen, we first give a brief review of the
theoretical developments in this area of fracture.

Historically, developments in creep cavitation have
focused primarily on the stress dependence of the
time-to-fracture, which, unfortunately, is not directly
related to the cavity size information obtained by
SANS. To indicate this connection, we demonstrate
for several of these models how cavity size varies with
time under stress. Following this review, we briefly
discuss several experimental techniques for obtaining
information on creep cavitation damage and conclude
with a section describing our SANS measurements for
a 304 type stainless steel.

2. Modeling of Creep Cavitation

On the basis of the few available experimental
observations, Hull and Rimmer [10] developed a basic
model for creep cavitation. They assumed that the
cavities are spherical and that diffusion of matter away
from them is achieved predominantly by grain
boundary diffusion. According to Fick's first law, the
flux, J, of matter from the cavity to the grain
boundary is

J=- (Db/kTf1)Vp. (1)

where Db is the grain boundary diffusivity, fi is the
atomic volume, and Vp. is the gradient of chemical
potential. To obtain this last quantity, Hull and
Rimmer assumed that the chemical potential is -°af
midway between cavities and -2yj1/r at the periphery
of a cavity, where °a is the applied stress, ys is the
surface energy, and r is the radius of the cavity. By
assuming a linear variation in chemical potential
between these two points, they obtained the following
expression for the flux:

J=(Db/kT) ( a-2ys/r }2DbOa/kTI (2)

where I is the distance between voids and 2yl/r is
assumed to be much less than the applied stress. The
area through which this flux occurs is 2 7rr8b, where 5b

is the effective grain boundary thickness. Since each
atom that leaves the cavity increases the cavity's
volume by fQ, the total flux results in a net volume
flow of matter,

d V/dt = 4 7rrDb~b caQ/kT/ (3)

away from the cavity and onto the grain boundary.
If the cavities are spherical, this volume flow of

matter results in a size rate of cavity growth of

dr/dt=Db~bcafi/kTir (4)

Integrating this result, the time development of the
cavity size is given by

r= [(2Dbb/l)(craQf/kT)t+ ri2]1/2

=[(2Dbab/0(0a1/kT)] 1/2tl/2 (5)

where ri is the initial cavity radius, which here is
assumed to be much smaller than the current cavity
size, r, at time t. Hull and Rimmer bypassed this result,
eq (5), and calculated directly the time-to-fracture, tf,
as the time for the cavities to grow to one-half their
separation, 1/2, where they coalesce and failure ensues.
Thus, their final result was

tf = ( 3 /8Db8b)(kT/0raf)

(6)
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where p(=,32 /12) is the number of cavity nuclei per
unit area of grain boundary and /3 is a geometric
factor related to the coordination number of nearest-
neighbor cavities (for example, /3 = 1 for a square array
and /3=(4/3)1/4 for an hexagonal array). Although the
time-to-fracture and its stress dependence are the
important parameters from an engineering perspective,
the intermediate result of cavity size as a function of
time, and also of cavity size distributions, are the
important quantities when making a nondestructive
assessment of creep damage for remaining lifetime.

Speight and Harris [11] objected to the assumption
of a linear variation in chemical potential which is a
direct consequence of performing the above, one-
dimensional calculation. Since the cavitation occurs in
one plane, a two-dimensional calculation is required
and this does not lead to a linear variation. Actually,
Hull and Rimmer [10] realized this and had carried out
an elegant calculation for the time-to-fracture in the
appendix of their pioneering paper. In that appendix,
they assumed a two-dimensional, square array of
equal-sized, spherical nuclei. The solution for this
geometry did not result in a linear gradient of
chemical potential. Despite this modification, the
calculated time-to-failure differed from the above
equation, eq (6), only by a constant factor.

A further modification to the above model was
suggested by Vitovek [12] who pointed out that as the
cavities cover the boundaries, the stress on the
remaining ligaments goes up. Then the assumption
that the chemical potential is determined at all times
by the applied stress must be dropped in favor of a
stress that increases as the internal, loadbearing area
decreases. Harris et al [13] make this adjustment as
well as that suggested by Speight and Harris [11]
earlier, and find that the Hull and Rimmer model
predicts 2

2 In deriving the equation which ultimately leads to their form of
eq (7). Speight and Harris [11] assumed that the stress midway
between cavities is given by the remote stress, or by an adjusted
ligament stress [13]. This is a valid approximation for small cavities;
but as their results show, the stress can vary substantially across the
grain boundary ligament for larger cavity sizes. Accordingly, in this
regime the remote stress should be equated to the average stress on
the grain-boundary ligament. This modification was first suggested
by Raj and Ashby [14] and their model equates the remote stress to
the average stress in the circular catchment area surrounding each
cavity. This idea should be extended over the entire grain boundary
area which includes the area excluded by the close packing of
circles. We have made this modification in writing both eqs (7) and
(9).

tf= tHR( 57T -140-7r/32 )/60

=tHR/1 3 .6 (for a hexagonal array) (7)

where tHR is the combination of material parameters
(Db, 8

b' 1, fi) and experimental variables (0-a and T)
that represent the time-to-failure in the simple Hull-
Rimmer calculation presented above [see eq (6)]

tHR=(P/8 DbAb)(kT/a-afl) - (8)

In addition to the integrated result of eq (7), Harris et
at. [13] also give a cavity growth relationship, which
for short times has the form

t/tHR =(2/3)x 3ln(1/x) (9)

where x is the normalized cavity size (2r/1). Although
this relationship cannot be inverted analytically to
give the time dependence of the cavity size, one can
easily demonstrate that initial cavity growth rates and
cavity sizes are faster for this modified Hull-Rimmer
model than for the simple calculation, eq (5).

One fault of the Hull-Rimmer model, whether in its
simple or modified form, is that the cavities are
assumed to be spherical. Only very small cavities are
ever observed to be spherical. Usually, they are
ellipsoidal or lenticular in cross-section. As the cavities
grow, their shape frequently becomes more eccentric
and they sometimes resemble long, thin cracks. An
ellipsoidal cavity consumes more grain boundary than
a spherical cavity for the same volume flux. This
means that the above model, which assumes spherical
cavities, will generally overestimate the time-to-
fracture.

The reason for crack-like cavities is apparent. The
shape of a growing cavity is determined by the
interaction between volume or boundary diffusion (the
growth mechanism) and surface, volume, or vapor
diffusion (spheroidizing mechanisms). Surface diffu-
sion is generally the dominant rounding influence,
while grain boundary diffusion is the principal growth
mechanism. As the cavities enlarge, spheroidizing
mechanisms become less effective and the cavities
become more eccentric or penny-shaped.

Chuang and Rice [15] consider a crack-like creep
cavity advancing at a steady state velocity v along the
interface between two grains by the diffusive transport
of atoms into the boundary ahead of the tip. They
assume that spheroidization of the cavity is
accomplished by surface diffusion, and that the cavity
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grows under steady-state conditions so that it retains a
constant profile which is described by a crack-tip
radius of curvature, rtip, and a crack opening width,
2w, a few radii back from the crack tip. Solving the
surface diffusion problem they find that the crack half-
thickness is given by

w=0.98 V/2-yb/yS [D0 857y1/kTv] 1 /3 (10)

where y, and Yb are the surface free energy and grain-
boundary free energy, respectively; D, is the surface
diffusivity; and 8, is the thickness of the surface
diffusion layer (i.e., the surface density of diffusing
atoms times the atomic volume). The radius of
curvature adjacent to the crack tip is given by

rtjP=0.93[D,'yl/kTV]1/ 3/V'23/

=0.95w/(2-yb/y,). (11)

Since Yb is usually about one-half ys (corresponding to
a dihedral angle of about 760), eq (11) becomes
approximately

w=1.57rtip

=1.20[D,8,yJ1/kTv] 11 3. (12)

This shows that the faster a crack grows, the
thinner it becomes. Alternatively, the crack velocity at
a given temperature is inversely proportional to the
third power of the crack thickness. Hence, the time-to-
fracture for thin cracks or cavities is much less than
that for spherical cavities. Chuang et a!. [16] extend
this analysis to calculate the time-to-fracture when the
life is determined by the growth of cavities whose
shape is determined by the interaction of spheroidizing
and growth mechanisms. They find that

tf (= kM sQy32 ) ('\/2
~35Ds8sf1l~a3

Y

where

- 40VAl(DsA/D ) -
F= C3 ysV2 s-yb/y, q (14)

and qc 0.6 is the average value of a slowly varying

function of the cavity size [16]. Equation (13) has two

limiting forms which depend on the relationship
between a combination of material properties and the
applied stress level. At one extreme, failure time is
independent of grain-boundary diffusion and varies as
the inverse third power of stress

(15a)tf ( 8kTl: 3) (2_ ,/J_)3/2
f 35~Ds8sf~l(a3

when o-a<0. 8 (ys/l)(Dbab/Ds8s); whereas at the other
limit, failure time is controlled by both surface and
grain-boundary diffusion and varies as the inverse 3/2
power of stress

t~5DfjJ kT 273 I5Y )DBSb3I1
(R5DS~Q l 27 J t Ca "bib) I

when a-a> 150 (I1)

(1 5b)

(Db8bA '

VDSaS J

This concern over the stress dependence of the
time-to-fracture arises from a discrepancy between the
theoretical predictions and experimental fact. The Hull
and Rimmer model [10], and Speight and Harris
modifications [11,13], predict that the time-to-fracture
should vary inversely with the first power of stress.
Indeed, experiments by Raj [17] have indicated that
this may be the case in bicrystal specimens. However,
as shown above, the Chuang et aL. model [16], which
considers cavity shape, predicts that under certain
conditions the fracture lifetime will be inversely
proportional to a power of applied stress between 3/2
and 3. Thus, cavity shape can play an important part
in determining how quickly a component will fracture
by grain-boundary cavitation. By pre-nucleating
cavities in silver and other metals, Goods and Nix [18]
found times-to-failure that varied inversely with
approximately the third power of stress, thus
providing extremely strong experimental support for
the theory of Chuang et aL [16].

Despite this support for the Chuang-Rice model
[15,16] by creep lifetime measurements on pre-
cavitated metals, the situation is not as clear-cut for
the case where cavities are nucleated naturally on the
grain boundaries. Experimental creep fracture work
generally indicates a stronger inverse power-law stress
dependence than given by either the Hull-Rimmer
model or the Chuang-Rice model. To illustrate this
dependence, creep fracture results for various metals
and alloys [19-22] have been analyzed and are
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presented in table 1. The stress exponent, n, given in
this table is defined by the equation

tf= Boan (16)

where B is a constant of proportionality. The weakest
stress dependences occur for the longest tests or at the
highest temperatures, where n is found to be about 3
or 4; but for shorter times-to-fracture, n becomes quite
large.

Table 1. Stress dependence of time-to-fracture for selected metals.

Metal T/TM' tf n Reference

316 S.S. 0.54 4-20 yr 3.6 Simmons and
0.60 2 w-6 mo 3.8 van Echo [5]

0.54 1 d-6 mo 6.3
0.60 1 d-2 w 5.3

0.54 i h-3 h 14.3
0.60 i h-I h 12.5

304 S.S. 0.52 1-3 yr 3.8 Simmons and
van Echo [51

lCr J Mo Steel 0.45 1-10 yr 3.7 Bennewitz [19]

Lead 0.50 1-5 yr 3.0 Gohn et al. [20]

Tungsten 0.83 1-10 d 4.4 Conway et al. [21]

Iron 0.48 10 h-l w 10.1 Fields et al. [1]
0.54 3 h-l w 9.0

Copper 0.31 3-9 w 13.5 Carreker and
0.52 2 d-l w 4.1 Hibbard [22]

T/TM is the homologous temperature, where TM is the melting
temperature; and the stress exponent n is defined by tfcr oa".

Although, as discussed above, the predominance of
experimental evidence is related to the power of the
stress dependence, there are at least two other
important distinctions between the two models that
are amenable to experimental investigation. The first is
the density of cavities on the grain boundary, as
defined, for example, by p(cc 1/12). In the Hull-Rimmer
model, both the time-to-failure and the time required
to grow to a given cavity size are proportional to p31 2

(see eqs (6) and (9), respectively); whereas in the
Chuang-Rice model, this dependence varies from p-1"2

to p 514 depending upon the applied stress and the
material properties as defined by the two limiting
cases (see eq (15)). The other distinction between the
two models is the cavity growth rate. The Hull-
Rimmer model predicts a complex time dependence as
prescribed by eq (9); whereas for small cavities, the
Chuang-Rice model predicts a constant cavity growth

rate or a linear time dependence of the normalized
cavity size3 ,

(2r/!)= 1 6 t/3 5tcR (17)

where tCR is the time-to-failure as given by either eq
(13) or one of its limiting forms, eq (15).

Based on these differences, alternative experimental
techniques, such as small angle neutron scattering
measurements, might help to elucidate the nature of
cavity nucleation kinetics and cavity growth rates by
providing information about cavity size distributions
and how they evolve with time.

Returning, however, to the concern over the high
powers of the stress dependence, Dyson [23], Rice and
Needleman [24], and Rice [25] introduced the idea of
constrained cavity growth to explain this. At high
growth rates, the atoms diffusing away from the
cavities cannot be distributed uniformly along the
grain boundary. This effect locally unloads the regions
around the cavities. Growth then requires the time
dependent plastic straining of the matrix (i.e., creep) to
counteract this load-shedding. Using this idea, the
constrained cavity growth model predicts the
Monkman-Grant [26] relation:

tf i = constant (18)

where is5 is the steady state creep rate. This relation is
a commonly found experimental result. The high
powers listed in table 1 might then be explained by
this constrained cavity growth model.

The above models all assume that all nucleation
occurs at the onset of loading and that all the nuclei
begin to grow at the start of the test. Greenwood [27]
shows that most experimental data are consistent with
a model in which the number of cavities is a linear
function of strain, i.e., nucleation occurs throughout
the life of a specimen. Indeed, the fact that Goods and
Nix [18] had to prenucleate cavities to obtain the
Chuang result indicates that nucleation is an important
step in the creep fracture of some metals. This is
another area where a technique such as small angle
neutron scattering can be expected to provide vital
information regarding this creep failure mechanism.

To include continuous nucleation in their analyses,
Raj and Ashby [14] consider quantitatively two

3This equation is derived in the same spirit as Chuang et al. [16]
calculated the time-to-failure.
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models for nucleating new cavities throughout a test:
one without grain boundary sliding, and one with
grain boundary sliding. Without grain boundary
sliding, subcritical or embryonic cavities can become
stable and grow by being thermally activated over the
nucleation barrier. In this case, they applied classical
nucleation theory. The change in free energy on
forming a cavity is calculated by balancing the energy
released when the applied forces do work against the
energy absorbed by the creation of new interfacial
area:

AG= -r3Fv(i)o-a± + 7 [(4)-ytFb(4')] (19)

where Fs and Fb are the functions that relate the
surface area of the cavity and the grain-boundary area,
respectively, to the cavity radius squared; Fv is a
similar function for the cavity volume; and j is the
cavity dihedral angle given by arccos (yb/2 y5). Using
the definitions of the functions Fv, F, and Fb, eq (19)
has been shown to have a maximum at a critical radius
[14]

rc = 2 yS/ 5/a (20)

below which cavities tend to shrink and above which
they tend to grow. Substituting this critical radius into
eq (19), gives the activation energy for nucleation:

AG. = 4Fv(i)o-a/2 = 4y/Fv()/ 5oa2 . (21)

The area density of critical nuclei, i.e., those that
prefer to neither shrink nor grow, on the grain
boundary is

Pc =pmaxexp[-AGc/kT] (22)

where Pmax is the maximum density of possible
nucleation sites there. The nucleation rate can be
obtained from pc by multiplying eq (22) by the time-
dependent probability, P(t), of adding one vacancy to
a critical nucleus. Raj and Ashby [14] derive P(t) from
the vacancy jump frequency and from the probability
of finding a vacancy at the perimeter of a critical
nucleus. They obtain

P(t)=(41TrYs/o0a)(Db8b/flX3) exp[craW/kT] . (23)

By combining eqs (21), (22), and (23), the nucleation
rate is found to be

A = (41T PsDb8,/.a41 )(PrnaxP)

The dominant term in the above equation is
exp(-l/a-5

2 ). How does this term in the nucleation rate
affect the time-to-fracture? To obtain the time-to-
fracture, it is necessary to perform a double
integration over time because nucleation occurs
simultaneously with cavity growth. Since exponential
arguments are unaffected by integration, the strong
stress dependence of nucleation will be carried into
the time-to-fracture. Such an exponential dependence
on stress can mimic any power-law dependence of the
form

tf=B a-a- (see eq (16)),

regardless of the value of n, over certain ranges of
stress.

The second type of nucleation mechanism examined
by Raj and Ashby [14] is based on grain boundary
sliding. If there is an inclusion on a sliding grain
boundary, then this sliding is either accommodated by
flow of atoms around the particle or else a gap opens
up. Accommodation is possible at low stresses leading
to low sliding rates, but as the stress and sliding rate
increase the flow intensification at the inclusion also
increases until cavity nucleation occurs. Thus, the
nucleation rate and the number of nuclei are
dependent on strain and strain rate. Since the rate of
fracture is proportional to the rate of nucleation, an
additional stress dependence similar to that for the
strain rate will enter the expression for the time-to-
fracture. In this way, nucleation considerations can be
used to predict the Monkman-Grant relation.

3. Experimental Techniques
to Study Creep Cavitation

We have discussed four theories: Hull and Rimmer
[10], coupled grain boundary and surface diffusion
controlled growth [15], constrained cavity growth
[23], and continuous cavity nucleation [14]. Of the
numerous theoretical works on creep cavitation, the
models discussed above are the ones supported by
experiment. To some extent, the above models are
mutually exclusive. While it is likely that under
different experimental circumstances, different models
are appropriate, the situation is confusing. Most often,
support for one model over another is determined
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from the stress dependence of the time-to-fracture.
Considerably more persuasive support would come
from direct measures of cavity nucleation rates and
subsequent cavity growth rates.

Attempts to experimentally measure these two
quantities have not been conclusive. The two most
common techniques are metallography and density.
Metallographic techniques include microscopy tech-
niques ranging from optical measurements on polished
surfaces to transmission electron microscopy (TEM)
measurements on thin foils. The optical techniques
suffer from a lack of resolution and the difficulties
inherent in preparing a surface without grossly
altering the cavities. The TEM studies usually have
had difficulty finding any cavities due to the limited
material volume which is sampled in each TEM
specimen. When a cavity is found, it is not clear that it
is representative of typical cavities in the material.
Another metallographic technique is to fracture a
specimen along its grain boundaries at low
temperature after it has been crept at elevated
temperature, and to measure the cavitation in a
scanning electron microscope (SEM). This is the most
successful of the metallographic techniques. It is
always a concern, however, that the low temperature
fracture surface has selected the most heavily
cavitated boundaries and may not be representative of
the overall cavitation.

High precision density measurements usually
employ Archimedes' principle. Since the buoyant fluid
will probably penetrate surface cracks, this technique
will be mainly sensitive to bulk cavitation. This
technique can only tell the total volume of cavities.
For this reason, it cannot be used to study continuous
nucleation, which requires a knowledge of cavity size
distributions.

Two new techniques for studying the cavitation
phenomenon are small angle neutron scattering
(SANS) and x-ray topography or x-radiography.
SANS work has already been performed at NBS and
other laboratories. These initial studies have
demonstrated that SANS is very sensitive to cavitation
and may be the most powerful technique yet tried for
studying nucleation of creep cavities. X-ray techniques
have not been tried yet, but they may provide
information concerning the shape and growth rate of
creep cavities measured in-situ.

SANS is performed by measuring the angular
dispersion of an initially collimated beam of
monochromatic neutrons. This dispersion can be
related to the size and size distribution of scattering
particles, or cavities, by using elements of established
diffraction theory. In addition to the present studies,

SANS studies have been carried out on creep-
damaged stainless steel [28], superalloys [29], and
copper [30]. In every case, the scattering was observed
to increase as the damage increased. The interpreta-
tion of the results for the stainless steel and the
superalloys was clouded by changes in the precipitate
size distribution that occurred during the test.
Furthermore, the scattering in the stainless steel was
attributed to cavities although other techniques, such
as TEM, never revealed the presence of creep cavities.
SANS studies of creep cavitation at NBS to date have
centered on 304 stainless steel. As will be discussed
below, the use of unstressed reference specimens and a
carbide stabilizing heat treatment have virtually
eliminated the ambiguities arising from precipitate
redistribution during the test. Also, microscopic
studies have revealed intergranular cavities in
specimens that have been tested long enough to grow
the cavities to resolvable sizes. Therefore, it is valid to
attribute the neutron scattering to cavitation.

4. SANS Study of Cavitation
in 304 Stainless Steel

304 stainless steel used in high temperature
applications consists mainly of austenite grains and
grain-boundary metal carbides. The carbide-austenite
interface at the grain boundary is a preferential site for
cavity nucleation, which at high temperatures can be
readily activated with low applied stresses by creep
deformation and/or grain-boundary sliding. The
resulting cavities then grow, link, and ultimately cause
failure. The early stages of this process are extremely
slow and the creep cavities, due to their small size, are
not easily detectable or quantifiable. It is these early
stages of nucleation and cavity growth that are
examined here through the use of small angle neutron
scattering.

The structure after cavitation consists of grain-
boundary cavities and two material phases (austenite
and carbides). The unequivocal determination of
cavity size, or size distribution, from a SANS spectra
requires that the creep-induced changes in the carbide
volume fraction, size distribution, and spacial
distribution do not contribute significantly to the
scattered intensity. By adopting special experimental
procedures, the effects due to the carbides could be
minimized. The following two procedures were
employed:

1. All samples were given a stabilizing heat
treatment of 40 h at 775 0C prior to creep
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testing. This resulted in a very coarse and
stable carbide distribution.

2. A heat-treated, but unstressed, reference sample
was placed in the furnace with each creep
specimen. In each case, the SANS spectra of
the unstressed sample was subtracted from
that of the stressed specimen to obtain the
SANS spectra of the creep damage.

The SANS studies were carried out at the NBS
reactor facility using a converging collimation and a
neutron wavelength of 0.625 nm. With this choice of
collimation and wavelength parameters, a scattering
vector (Q) range of 0.05 to 1.5 nm'1 (0.005 to 0.15 A-l)
could be measured in these experiments. This Q range
measures the scattering contribution of the inhomoge-
neities in the size range of 4 to 120 nm. Detailed
theory and procedures for analyzing SANS data have
been described by Kortorz [31]. A few relevant
features will be discussed here. If the scattered
intensity is denoted by I, the differential scattering
cross-section is given by

dY/dfl =cI/MTd (25)

where d is the sample thickness, M is the total monitor
count (or scattering time), T is the sample
transmission, and c is a combination of experimental
constants related to the SANS facility. Creep damage
is related to the difference in differential scattering
cross-sections between the crept sample (C) and the
reference sample (R):

-a da] =c[Ic/McTcdc-IR/MRTRdR] . (26)

Accordingly, all intensities in the following discussion
have been normalized by sample thickness, transmis-
sion, and scattering time. We now assume that the
entire difference in scattering is due to creep cavities
alone. This is justified by the use of the special
procedures described above. Figure 4 shows a
scattering pattern for one set of creep and reference
samples. This figure shows, as did all the samples, that
the crept sample scatters more strongly than the
reference sample. This result supports the assumption
that cavities are the predominant scattering feature,
because carbide coarsening would show up as
decreased scattering. The data are replotted in figure 5
as the difference spectra.

One parameter of major interest is the growth of
average cavity size as a function of time under load. A
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Figure 4-SANS spectra for a 304 stainless steel specimen which was
deformed under a 145 MPa tensile stress at 600 'C for 1493 h
(specimen C-21) and for an undeformed reference specimen
(specimen R-21).
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Figure 5-SANS difference spectra from
scattering due to creep-induced cavities.

figure 4 showing the

Guinier analysis [31] was performed on spectra like
figures 4 and 5 to obtain an average cavity size.
Guinier showed that for a randomly distributed
monosized, spherical heterogeneity, the intensity (1)
and scattering vector (Q) relationship can be described
by the equation

I=I0 exp[-R8 2 Q2/3] . (27)

Here Rg is the radius of gyration of the cavities and
for spherical cavities it is related to the cavity radius
(R) by the equation

R=V5/3R9 - (28)
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If the cavities are not of one size, then the utility of
the Guinier approximation is limited to a very small Q
range near zero. Figure 6 is a Guinier plot (log I
versus Q2) for the difference spectra of figure 5 giving
information about the creep cavitation damage. It is
clear from this plot that cavities in this material must
have a nonuniform size distribution, as a straight line
in these plots can be fitted only over a narrow Q
region near the peak. The cavity diameter obtained by
this procedure normally overestimates the contribu-
tion of large cavities, yet it is a very useful parameter
to study cavity growth as a function of creep time
while degradation is in progress. Using a least square
fit subroutine, the above equation for I was fit to the
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Figure 6-Plot of the Guinier region for the difference spectrum of
figure 5 showing the creep damage in specimen C-21.

Table 2. Growth of creep cavities as a
stant stress in 304 stainless steel.

function of time at con-

Sample Creep parameters Average cavity
diameter-Guinier

Applied stress Time (h) approximation (nm)

C-21 145 MPa 745 34.6
(21 ksi)

1493 77.0

C-18 124 MPa 789 26.6
(18 ksi)

1537 76.3

data points in the relevant Q range. A set of
experimental data points and the regression lines are

5000 shown in figure 7. (Note that this figure is plotted as I
versus Q, so that the regression line is not straight.) A
reasonably accurate fit was obtained in the selected Q
range for this specimen as well as for the other creep

500 specimens. The average cavity sizes derived for the
>- various stresses and times under load at 600 'C are

100 Z shown in table 2.z
50 Z Table 2 shows that doubling the creep time at the

Z same stress apparently doubles the average cavity size,

10 apparently in agreement with the Chuang-Rice model,
5 which predicts a constant cavity growth rate. Figure 8

shows cavity size as a function of creep time. If we
include a point at the origin, the linear time

5 dependence in the growth rate of the cavities is again
apparent, but in the absence of more data points, only
a limited significance can be attached
figure 8. Specimens have been tested
times and their SANS spectra will
shortly.
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From table 2, we see that specimen C-21, which was
stressed at 145 MPa (21 ksi), has a higher average
cavity size after 750 h than specimen C-18 which was
stressed at 124 MPa (18 ksi). After 1500 h, we find
that the average cavity size at these two stress levels is
not too different. This could indicate that for longer
creep times the size growth of cavities is less sensitive
to small changes in applied stress. A more likely
possibility, as noted by Weertman [30], is that when a
sizable fraction of cavities grows large enough to
scatter at Q values below the minimum resolvable Q
in the experiments, the average size and volume
fraction deduced from the standard SANS analysis are
highly underestimated. Recent efforts have been made
to extend SANS measurements to larger size ranges
[32], for which other techniques have enough
resolution to be effective. In this overlapping size
range, SANS and these other techniques can be
compared with each other to provide some assessment
of their validity in the nonoverlapping size ranges.

The most important development demonstrated here
is that we are capable of measuring cavities at early
times when they are only 20 to 30 nm in diameter.
This must be close to the nucleation event. No other
technique, that we know of, is capable of resolving
this initiation phenomenon. Further work should
provide direct experimental information that will test
the assumptions of the models discussed previously.
Since these models are to be used for predictive
purposes, they must be verified. SANS currently
appears to be the best technique to characterize creep
damage in order to test these theories.

5. Conclusion

Numerous theories of creep cavitation have
developed over the years. The evaluation and further
refinement of these theories has been impeded by a
lack of experimental research in this area. Small angle
neutron scattering studies at NBS and elsewhere have
shown that this technique may provide the necessary
tool for studying nucleation and early growth of
cavities. Such a development would provide the
impetus to further progress in this field.

We wish to thank S. M. Wiederhorn and T. R.
Shives for reviewing this paper and for their helpful
suggestions.
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Calculations are presented for the impedance of a coil as it is moved in the vicinity of a v-groove crack
in the surface of a metallic slab. The coil is modeled as a pair of parallel wires, oriented parallel to the crack,
carrying equal and opposite currents. The inhomogeneous electromagnetic fields in the air above the slab and
in the metal are determined by the boundary integral equation (BIE) method. This approach leads to a pair of
coupled integral equations for the tangential components of the electric and magnetic field vectors on the
surface of the slab containing the crack. The solutions, which are obtained by standard methods of
discretization, are valid for arbitrary ratio of crack or coil dimensions to skin depth. Illustrations are
presented of the Poynting vector distribution over the surface of the metal, including the crack faces. A plot
of the complex impedance is given in the form of a coil scan across the crack.

Key words: boundary integral equations; crack detection; eddy currents; electromagnetic NDE;
nondestructive evaluation.

1. Introduction

In the design of electromagnetic NDE systems for
the detection and examination of cracks or other
defects in conducting materials, it is necessary to have
a quantitative description of the electric and magnetic
fields in the vicinity of the defect. In practice, the
fields are produced by an exciting coil, the impedance
of which is used to provide the detection signal. (The
voltage induced in a secondary pickup coil may also
be used.) In previous work by the author [1,2]1, the
fields in the vicinity of a crack were calculated for
models based on excitation by a spatially uniform
applied ac magnetic field such as would be found in
the interior of a solenoid. The present work offers an
improved description of the fields through the
introduction of nonuniformity of the applied field due
to finite coil size and the inclusion of coil position
relative to the crack.

About the Author, Paper: Arnold H. Kahn, a
physicist, is part of the Nondestructive
Characterization Group in the NBS Metallurgy
Division. The work on which he reports was
supported in part by the NBS Office of
Nondestructive Evaluation.

Recently there has been significant activity in the
development of theoretical modeling in electromagnet-
ic NDE. The finite element method has been applied
by Ida and Lord [3] to the cylindrical geometry of
reactor tubing. Studies have been presented by Auld et
al., Kincaid et al., Bahr, and others [4] on experimental
and theoretical considerations of crack detection and
coil design. A principal difficulty is the calculation of
signals when the electromagnetic skin depth and crack
size are of comparable magnitude, which is the domain
of greatest sensitivity. The two-dimensional model of
this paper represents a contribution toward the
solution of this problem. A full three-dimensional
treatment may be possible as new computing
capabilities are developed [3].

2. Description of the Model and
Theoretical Formulation

The calculations described in this paper are based
on the following model: We consider a flat surface
with an infinitely long, symmetrical v-groove
representing a surface crack in a slab of metal. Below
the surface, the material is homogeneous and uniform
in conductivity. A pair of wires carrying equal and
opposite currents is located above the slab and is
oriented parallel to the crack. The wires are
infinitesimal in thickness and infinite in extent. This
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simplified model of an eddy-current testing configura-
tion allows a two-dimensional calculation of the
impedance signals due to the crack. The calculation
will allow for the effect of crack dimensions; coil
dimensions, elevation, and displacement; and the
material parameters of the metal. This is an improve-
ment over calculations in which the exciting field is
spatially uniform.

By solving for the electromagnetic fields first on the
surface of the metal and then at the exciting wires, we
obtain the impedance due to the presence of the
metallic region. If the problem is solved for a plane
surface without the crack, then the additional
impedance due to the crack may be obtained by
subtraction. Also, by solving for different positions of
the wires representing the detection coils, we may
obtain the impedance signal on traversing the crack
and also the signal due to liftoff effects.

The model is illustrated in figure 1. The circles
above the surface represent the wires, with + and -
indicating the direction of the impressed current Ie-',
where a) is the angular frequency and t the time. The
current is held at fixed amplitude Io, according to the
usual procedure for eddy-current NDE. In the figure
additional parameters are shown: A is the separation
between the wires, H is the height of the coil above
the plane, P is the center position of the coil relative to
the crack, D is the depth of the crack, and F is the
half-width of the crack opening.

Because of the symmetry of this two-dimensional
model, the electric and magnetic fields may be derived
from a vector potential, A, which has only one
component, A, [5], where the z-direction is parallel to
the wires and the crack. If the wires were not parallel
to the crack, a full three-dimensional analysis would be

Figure 1-Configuration of model
and parameters for the calcula-
tion of the impedance signal Metal Slab
due to a crack. /

necessary. The vector potential is thus of the form
A(x,y)e-'', where A is complex to represent phase
relations with respect to the exciting current.

In the region above the conductor the vector
potential satisfies a Helmholtz equation. However, at
the frequencies of eddy current testing the transit time
for wave propagation across the region of the crack is
negligibly small and a quasi-static approximation is
satisfactory. Thus, in the region above the metal slab
the vector potential satisfies the Laplace equation,

V2A=0, (1)

except for the singularities at the wires. Below the
surface, in the metallic region, the Helmholtz equation
is obeyed,

(V2+k2)A =0, (2)

where

k2=icrwu (3)

is the square of the propagation constant, C- is the
electrical conductivity, and pt is the magnetic
permeability. Here too, displacement currents are
neglected, in this case because the ohmic currents
represented by the k2 term are so much larger. At the
boundary surface, including the faces of the crack, the

PA

2F

\ AN H

D Crack Depth A Wire Separation

2F Crack Opening H Wire Elevation

P Wire Position Relative
to Crack
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usual conditions of continuity of tangential E and H,
and normal B and D must hold. In terms of the vector
potential, these conditions are equivalent to the
continuity of A and 1/ aA/an, where aA/an is the
normal derivative of A at the interface. To summarize,
the vector potential must satisfy the Laplace equation
in the upper region, the Helmholtz in the lower
region, and conditions of continuity at the interface,
and it must approach the known form of the impressed
field in the vicinity of the source wires.

The method of solution selected in this paper is an
extension of the boundary integral equation (BIE)
approach [6,7]. This method, usually applied to a
single region, has been used by the author [2] in eddy-
current problems involving excitation by a uniform ac
field. In the present application the method leads to a
pair of coupled Fredholm integral equations of the
first kind, as follows:

By application of Green's theorem we express the
vector potential in the upper region in terms of the
source fields and the values of A and its normal
derivative aA/an on the bounding curve:

A(r) = J'(r)+ a-G(rS')A(S')dS'

- S G(rS') A-n') dS'. (4)fGrS)an (4

in which dS' is an element of arc in a planar cross-
section normal to the surface of the metal. In the
above, £' is the vector potential due to the source
wires as if the metallic region were absent. The two
integrals give the change due to the induced currents
below the boundary. They are taken over the
boundary f is the unit normal vector pointing out of
the upper region. The remaining boundary closure at
infinity makes no contribution since the fields decay
with sufficient rapidity. Green's function for the
Laplace operator is given by

G(r,r')=-l1/2i log j r-r' j; (5)

carry the exciting current, I, parallel and anti-parallel
to the z-direction, respectively. In the metallic region

A(r)=- f a$ (rS') A(S')dS'

+ f y(r,S') an( )dS', (7)

where $ is now the two-dimensional Helmholtz
Green's function,

$9 (rr') = (i/4)HO1'1(k Ir-r' I), (8)

where Ho0 l) is the Hankel function of the first kind,
order zero. It, too, has a logarithmic singularity and
satisfies the Helmholtz equation with a source,

(V2+k2) $(rr')=-8(r-r'). (9)

This latter Green's function contains the complex k
and represents a damped outgoing cylindrical wave at
large values of r-r'. In eq (7) we have retained the
same direction of the normal vector f; hence the
unusual sign convention on the right hand side.

The BIE method prescribes letting r approach the
surface to obtain the fields on the bounding surface.
When we let r=S, a well-defined expression is
obtained if we use the Cauchy principal values for the
singular integrals and replace A on the boundary by
A/2. For nonmagnetic materials A and aA/an are both
continuous across the boundary, and we shall so
restrict the present calculations. The resulting BIE's
are

iA(S) - a G(SS') A(S)dS'Jan' AS)S

+ f G(SS') LA(S') dS =J5(S) (10)

it satisfies

V2G(rr') = -8(r-r'),
() (S) +r a -n (SS')A(S')dS

(6) 2\-' ± an' AS)S

where 8 is the two-dimensional Dirac delta function.
For the two-wire case treated in this paper, the source
field S has the form

S(r) =IO[G(ri)-G(ri e s)],

where r+ and r- are the positions of the wires which

- f 5 (S,S') aA(S') dS'=0 (1 1)

This is a coupled pair of equations for unknowns A(S)
and aA(S)/an on the interface. We may look on the
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inhomogeneous term Y(S) as the driving force for the
system. When A and aA/an are found on the
boundary, then the field A may be constructed at any
point above the interface by application of eq (4), or
below the interface by application of eq (7).

The ultimate objective is the determination of the
impedance per unit length induced in the wires by the
presence of the metallic region. The time-average of
the power per unit length delivered by the exciting
wires is given by the complex expression

P= 1 f E'.J*da,

where J is the (constant) current density in the wires,
E' is the electric field at the wires produced by the
induced currents, and da is an element of cross-
sectional area normal to the wires. E' is derived from
the vector potential A' of the induced currents,

A '=A-Y,

by the usual relation

E'=iwA'.

Hence, for a set of idealized line-wires, denumerated
by the index i, we have

P= -IIi*icoA.

Connection with conventional circuit parameters can
be made by expressing P in terms of the currents,
voltages per unit length, and impedance per unit
length of the wires. Under the constant current
assumption of eddy current testing, we have

3. Numerical Treatment

The coupled integral equations are solved by an
application of the method of moments [8]. The
solution is expressed as a linear combination of a finite
set of basis functions with unknown coefficients. The
coefficients are determined by requiring that the
integral equations be satisfied at a number of points
equal to the number of unknown coefficients; i.e.,
point-matching is used.

For the basis functions, the elements F shown in
figure 2 were used, after the method of Harrington [8].

1i.r

F
0.5 F

0.0

//////
//

/ \

SN-1 SN SN+1

Figure 2-Triple-pulse hat function F used in the numerical calcula-
tions. The illustration shows the function F(S-S,). The dashed
line is the common triangular hat-function.

We approximate the solution for the vector potential
and its normal derivative on the interface by the finite
sums:

A(S) = YAi F(S-S,)

where V, is the voltage per unit length induced in the
ith wire and Z 1 is the extra impedance in the ith wire
due to induced currents in the metallic region. Finally
we obtain

Zi=i)A,/I,

for the impedance per unit length in the ith wire,
caused by the induction. Now Ai is evaluated at the ith
wire and can be computed by use of Green's theorem
after A and aA/an have been found on the interface.
Thus we have a method of computing the extra
impedance seen by each wire due to the presence of
the metal below. These impedances may now be
calculated with and without a crack being present.

aA(S) = N F(S-S,)
an (13)

These expansions are introduced into the integral
equations, eqs (10) and (11). The integration over each
element is carried out by use of the midpoint rule for
the entire integrand of each flat section of the
fundamental element, except when the Green's
function is singular, i.e., when Si=Sj.

When a singular integrand occurs in the evaluation
of eq (10), the integration of the logarithmic Green's
function is performed exactly. When a singular
integrand occurs in eq (11), the dominant logarithmic
part of the Hankel function is used for the evaluation.

The width of the elements is not restricted. It was
found practical to use a fine grid where the solution
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was large or varying rapidly, and a coarse grid
elsewhere. With these approximations and the point-
matching, the coupled integral equations are reduced
to a linear algebraic system of the form:

1 l (aG )]Aj2ian..-

+ jQ(anA (14)

E[la +(LG) ]E aY an j

k -an =0 (15)

In these equations, each doubly-subscripted term
corresponds to that part of the integrations of eqs (10)
and (11) connecting element j and matching-point i.

The calculations were first attempted with square
pulse functions as the basis set. It was found that the
solutions were unstable in the vicinity of the crack
corners and near the location of a grid-size change.
The use of the triple pulse element is equivalent to
doubling the number of points in a pulse function
calculation, but applying the constraint that the
solution at each point be averaged with its two nearest
neighbors. In addition to reducing the dimensions of
the needed matrices, this has a smoothing effect and
leads to solutions which are stable as the grid size is
decreased. The triple pulse basis function may be
looked upon as an approximation to the common
triangular hat-function, shown in figure 2 by the
dashed line. The hat-function yields a piecewise
trapezoidal approximation to the solution which
would be superior to the present form, but its
application is precluded because of nonintegrability

Figure 3-Poynting vector on the
surface of a metallic slab in the
absence of a crack. The
coordinate x is along the flat
surface of the metal. Distances
are in units of the skin-depth
and the Poynting vector is in
units of Lo&) 10-3-. The exciting
wires are located at ±0.5 8 and
are at an elevation of 0.5 8.

when multiplied by the Hankel functions of the
integrand. The solution of the linear equations was
obtained by Gaussian elimination without pivoting.
The logarithmic singularities of the Green's functions
associated with the diagonal elements of the matrices
allow this economical simplification. The solutions
were considered to have converged when further
refinement produced an insignificant change in the
physical results, usually about 1 percent. Typically the
dimension of the square matrices ranged from 200 to
300.

4. Coil Impedance in the Absence
of a Crack

The radiation field of an oscillating dipole above a
conducting earth was a problem first attacked
successfully by Sommerfeld [9]. Analytical solutions
have been given for finite coils by Dodd et al. [10,11].
These solutions are in the form of integrals over
various Bessel function arguments. Numerical
evaluation is possible; analytic evaluation is in terms of
asymptotic series. The same methods can be applied to
this problem of a pair of parallel wires over a plane.
However, the approach of this publication is readily
applicable in the absence of a crack. Solving an
integral equation requires a greater computing effort
than evaluating an integral solution for the lesser
problem. However, it is quite useful to have the
programs available as a byproduct of the crack case.
In this section we examine the results of calculations
for the parallel wire coil above a flat conducting half-
space, calculated by the boundary integral equation
method.

In figure 3 we show the results of a typical
calculation. For this case, and all others reported here,

FLAT SURFACE
-Y , , I I I I I

X-COORO
6.0
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lengths are in units of the skin depth 8, where

8 =\/2/-colto, (16)

and the symbols under the radical are the same as
before. The complex Poynting vector S, represents the
time average of the complex energy flux, in our
application, across the surface of the conductor. In the
units we are using, we have

S= 1ExH*

2 26 o A an (17)

where A and aA/an' are calculated by solving the
coupled boundary integral equations. While our
principal interest is in the impedance change of the
exciting wires, the Poynting vector plots show a
detailed picture of the radiation field. The plots are
useful for assessing the convergence of the
calculations as well as for showing the regions of the
test material where the significant absorption and field
penetration take place.

5. Coil Impedance With a Crack

The presence of the crack adds two more
parameters to the required inputs to the calculation.
We treat only a symmetric v-groove crack which we
specify by its depth and the half-width at its mouth.
The calculations are performed in the same way as
without the crack, with the only difference being that

the needed matrices are larger in dimension and
somewhat more complex in preparation. The
algorithms for the solution are identical to those of the
previous case. The output of the program is the
impedance per unit length of the wires, with the crack
present. In addition we may inspect the complex
Poynting vector on the surface of the crack as well as
on the flat surface of the test material.

For the initial investigations we selected a crack
depth of 2.0 6 and an opening of half-width 0.25 8.
The coil wires were taken as having a separation of
1.0 8 and at an elevation of 1.0 6 above the plane.
These dimensions correspond to the physical situation
of a No. 30 AWG wire insulated pair in close contact,
elevated one radius above the contact with the plane,
and driven at a frequency of 110 kHz. The relevant
parameters for this model applied to aluminum are
given in table 1.

Table 1. Parameters for model calculation based on aluminum
at 110 kHz.

Resistivity p 2.82X 10-8 fl.m(20 °C)
Conductivity o-(= 1ip) 3.54X107 fl- tm
Skin depth 8 0.255 mm
Crack depth (=28) 0.51 mm
Crack half-opening (8/4) 0.064 mm
Wire radius (8/2) 0.13 mm

The calculations were performed for a range of values
of the parameter P, the location of the coil center
relative to the crack. Figures 4, 5, and 6 show the
Poynting vector for the values P=2.5 8, 0.5 8, and 0.0

FLAT SURFACE CRACK FACES

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 -2.0156 0.1000 2.6tG6
X-COORD S-COORD

Figure 4-Poynting vector on the surface of a metallic slab with a crack. The coordinate S is along the faces of the crack, which is shown as
folded open in the right-hand figure. The shaded band indicates the location of the v-groove crack. The lateral distance between the coil
and the crack, P, is 2.0 8 and the half-opening, F, is 0.25 8. All other parameters are as in figure 3.
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FLAT SURFACE CRACK FACES

-1 0 0.0 1.0

X-COORD

00

D L_

9 N-

1- woo e ---

Figure 5-Poynting vector on the surface of a metallic slab with a crack. The lateral distance between the coil and the
of 0.80 8; all other parameters are as in figure 4.

FLAT SURFACE CRAC

-5.0 -4.0 -3.0 -1.0 D.C

X-COORD
1.0 2.0 .0 A.0 5.0 .0

- 9)

I0,

O. 4O _ _

-2.0155

crack, P, has the value

XK FACES

0 .0000
S -COORO

2.0156

Figure 6-Poynting vector on the surface of a metallic slab with a crack. The lateral distance between the coil and the crack,
0.0 8; all other parameters are as in figure 4.

6 respectively, illustrating the deformation of the Inside the crack, the Poynting flux deca:
fields as the coil is brought up to the crack. These approximately one skin-depth. This i
figures correspond to the same wire separation and opposite behavior to that which occurs in
elevation as in figure 3, the case with no crack. uniform H-field parallel to the crack [2].

Qualitative examination of the figures shows that in the Poynting vector is greatest at the tip
the presence of a crack, a portion of the integrated at the corners.
Poynting flux is "stolen" from the nearer of the peaks From a series of calculations like thi
in the field distribution. The Poynting flux at the impedance per unit length was obtained i
corners is somewhat increased over the value that positions of the coil. The phase and mag
would occur at that position if no crack were present. impedance are shown in the plots of fig
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Phase of Coil Impedance

L Phase W/O Crack
I I I

0.0 1.0 2.0 3.0 4.0 5.

Position of Coil Center (6-units)

Magnitude of Coil Impedance

I 'I I 
I 7

obtained from these curves by computing a differential
scan corresponding to the coil pair separation.

0

The author wishes to express his thanks to Dr. B.
Auld and Dr. C. Fortunko for most valuable
discussions concerning crack detection. He is also
grateful to Dr. S. Gershovits for interesting
suggestions.
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A theoretical framework is developed within which it is possible to predict the dynamic elastic
displacement field (acoustic emission) for a phase transformation in which there is a change of both crystal
structure (elastic constants) and shape (density). An integral equation is presented for the acoustic emission
displacement field due to formation of inhomogeneous inclusions. This integral equation is solved by
expressing the source in multipolar form and using the Eshelby equivalent inclusion method to estimate the
dynamic multipolar coefficients. Expressions for the source of elastic radiation are explicitly calculated for
small isotropic spherical and ellipsoidal inclusions embedded in an isotropic matrix. These expressions are
used for qualitative interpretation of recent experiments on martensitic transformations in steels and for
identifying the information that may be deduced about transformation dynamics from quantitative
measurements of acoustic emission.

Key words: acoustic emission; martensitic phase changes; twinning.

1. Introduction

Acoustic emission (AE) is the term used for the elastic waves generated by abrupt localized
changes of stress in a solid [1]1. The waves propagate from the source of stress change to cause
transient (nano-millisecond) surface displacements of a sample. These transient displacements may
be detected with ultasonic transducers and are known as acoustic emission. Acoustic emission is
then a method for observing rapid dynamic material processes with elastic waves. The slower,
quasi-static changes of stress are not usually considered sources of acoustic emission even though
their surface displacements are incorporated (as a limiting case) in theoretical formulations of
acoustic emission [2]. These static displacements, normally measured with extensometers, are the
basis of routine mechanical property measurements.

Acoustic emission has begun to be extensively explored as a tool for the investigation of the
micromechanisms of deformation and fracture during mechanical testing [3]. It has also found
increasing application as a nondestructive evaluation (NDE) technique for detecting and locating
flaws in mechanical structures that are subjected to stress and the premature failure of which
would have catastrophic consequences [4]. More recently, it is being considered a candidate
technique for in-situ monitoring of materials processing because acoustic emission signals are
emitted through some of the mechanisms by which a material responds to process variables [5].
These mechanisms may include both benign processes (e.g., phase transformations) and malevolent
processes (e.g., cracking).

About the Authors, Paper: J. A. Simmons is a research mathematician and H. N. G. Wadley a
metallurgist in the NBS Center for Materials Science. The work on which they report was
supported by the Defense Advanced Research Projects Agency under DARPA Order No.
4275.

' Figures in- brackets indicate the references at the end of this paper.
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It has been speculated that the measurement of acoustic emission from benign mechanisms
during materials processing could provide much needed in situ information about materials
processing. There is current interest in using this information in tandem with recently developed
process models to develop improved feedback-controlled systems for materials processing. (The
malevolent mechanisms of acoustic emission, e.g., cracking, have already received and continue to
attract attention as potential quality control indicators [6]).

As an example of the possible use of AE for phase transformation monitoring, consider some
system where above a temperature T1 phase A is the stable phase and below T1 phase B is stable.
Then, for T<T 1 material composed of the A-phase may lower its free energy by undergoing a
phase change to B. Usually, the new phase has a different crystal structure so that there are
changes of elastic modulus and density as well as a shape change associated with the
rearrangement of atoms in the transforming volume. These changes may generate acoustic
emission or internal stresses which give rise to local plastic flow and subsequent acoustic emission.
If a transducer is used to detect the acoustic emission from such phase transformations, useful
information may be obtained about the temperature, pressure, etc. at which the phase change
occurred [7]. Furthermore, the dynamics and crystallography of the phase change are also
contained-, convolved with the sample and instrumentation impulse response -in the signal. The
use of appropriate analysis methods may enable the measurement of hitherto unobserved aspects
of phase changes. Such measurements would, because of the passive nature of this monitoring
technique, emanate from phase changes unmodified by our attempts to observe them.

The majority of phase transformations occurs at a rate controlled by diffusion. This,
unfortunately, is sufficiently slow (compared with the time for elastic waves emitted by the
transformation to communicate with the sample boundaries) that no detectable
acoustic emission is observed. Thus, diffusion-controlled phase changes, while often
resulting in significant stress changes, cause mainly quasi-static surface displacement and no direct
acoustic emission (as is usually the case with bainite and pearlite formation during cooling of low
alloy steels [8]). In these cases acoustic emission is not a viable candidate for microstructure
control during processing.

There is, however, an important class of phase transformations for which atomic diffusion is
not rate controlling. These include the martensitic transformations in which the change of crystal
structure is accommodated by a so-called "diffusionless" shear transformation. Diffusion, if it
occurs, is over a very short range; of the order of the lattice parameter. The velocity at which the
transformation may propagate varies enormously from one alloy to the next, but in some systems
velocities of - 1000 ms-' have been reported [9]. This implies that the formation of a typical 30 ptm
length of martensite in some alloys is formed in as little as 30 ns. In this time, elastic waves only
propagate -0.1 mm and transient sample displacements are observed [8,10] as the sample returns
to mechanical equilibrium.

Despite the reporting by several workers [8,10] of intense acoustic emission during some
martensitic transformations, effects of micromechanism (transformation velocity, volume, etc.)
upon acoustic emission have not been studied. Even during the simpler processes of deformation
twinning, there have only been a few tentative correlations made between micromechanism and
acoustic emission signal [11,12]. A part of the problem has been the absence of a rigorous theory
relating the properties of the dynamic elastic wavefield (acoustic emission radiation) to the
dynamics and crystallography of atomic motions during phase transformation or twin growth. It is
our purpose here to begin to apply recently developed elastodynamic techniques to the prediction
of acoustic emission signals from phase changes and twinning.

2. Theoretical Framework

Consider an idealized transformation to consist of a small region of phase A (with density p
and elastic moduli C) undergoing a change of crystal structure to form a region of phase B with a
density p+A&p and elastic moduli C+A&C. We assume that if the region B could be cut out of the
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matrix, its shape would be determined by a linear transformation ,3* applied to the original region
of phase A. In elastodynamics, a transformation involving both a change of moduli and shape is
referred to as an inhomogeneous inclusion. The calculation of the dynamic elastic wavefield for
the inhomogeneity problem is complicated by:

* Coupling of the wavefields from density and modulus changes.
* Internal reflection and mode conversion of elastic waves at the inhomogeneity boundary.

* Doppler effects for high transformation velocity ('20% speed of sound).

We find the acoustic emission from inhomogeneous inclusions by recourse to certain simplifying
assumptions. We make the assumption that the inhomogeneity is small in comparison with the
wavelengths of interest.2 Thus, reverberations within the inhomogeneity are at frequencies above
those of interest. It is also assumed that the linear velocity at which the transformation progresses
through the austenite is '20% of the shear wave speed so that a sub-sonic approach may be used.
Complications, such as transformation stress induced plastic deformation, twinning of martensite,
autocatalytic phenomena, and polycrystalline anisotropy of the matrix are, for the present, put
aside.

The theoretical framework we use is based upon the equivalent inclusion problem studied by
Eshelby [13] and applied first to acoustic emission by Simmons and Clough [14]. As our starting
point we use eq (A32) from ref. [14] to express the farfield elastic displacement field for an
ellipsoidal inhomogeneity undergoing a self-similar (constant aspect ratio) change of shape. The
ellipsoid volume is V,(t) where fl(r) denotes the region transformed (fl has the value one inside
the inhomogeneity and zero elsewhere), as shown in figure 1.

Matrix Q, c

VQ Surface Q5

Boundary at t > t, A/ Boundary at to < t <t

Figure 1-An ellipsoidal inhomogeneity undergoing a self-similar change of shape.

An elegant and simple way to consider the phase transformation problem is to generalize the
stress and strain tensors to contain both space and time coordinates. We thus have four
dimensional stress and strain tensors:

(I 1 ('12 O'13 -PV UL I U 1,2 U 1,3 VI

[(,]- = IO21 O22 (23 fPV2 and [u^]= U2,1 U2,2 U2,3 V2

_QJ LcO31 O32 O3 3 -pV3 LU3,1 U3 ,2 U3,3 V3

2 We believe this to be reasonable. For example, if a region 10 jtm in dimension transforms, its fundamental resonance

frequency will be -300 MHz. The upper frequency of acoustic emission measurement is normally S10 MHz.
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where vi is the velocity in direction xi and pv, is dynamic momentum. A hat ( ^ ) above a
subscript indicates the subscript runs from 1 to 4 where 4 represents the time dimension.
The four dimensional stiffness is denoted in the matrix by:

O- = CNkI Uk,j for ij, k, l = 1, 2, and 3

and

CO"k4 = Ci4 k3 = _P 8 43 8 ik.

For the inhomogeneity it is denoted by:

aok = (C+AC)Ukl Ukj for ij, k, 1 = 1, 2, and 3

and

(C+AC)ik 4 = (C+AC)i 4 k3 = -(P +AP) 84) aik

We use the fact that the difference in moduli (AC) between the inhomogeneity and
surrounding matrix is constant over fl(t) to write eq (A32) in the form:

um(r t) = -f C dr d7 Term 1

+ f f Gmi,4@jkt kT)APUk,4(r`,T) d ?t dT Term 2

+ f fG. i,38X, t-r)(c+'±c,)+ A k? Ak7 Tr)fU',T)d ?'dT Term 3

f f GmiJ)VX@t7tT)'Ci~k? 1.8i @',r)d t dT Term 4 (1)

where:

um(,t) is the displacement at ? as a function of time in direction xm (valid both inside and outside
the inhomogeneity). Gmi (,?',t) is the dynamic elastic Green's tensor representing the displacement
at ? in direction x as a function of time (t) due to the application of a force impulse in direction xi
at (?',O). The subscript, j, denotes partial differentiation with respect to the x; coordinate.
130 is the pre-existing elastic distortion and j8* the stress-free strain for the
transformation; in the phase change problem, the term 83* (the "plastic velocity" component
which contributes to shape change emission but not that due to momentum) is taken to be zero.
The new elastic distortion is /+3 + 8* where /3S is the total distortion (elastic and plastic).

In eq (1), the acoustic emission is given by the change of stress:

Aci@,t) = (C+AC)(10o+18TJ3*)_C16o

|(C+AC)(,/T8/,*)+ACl/° for fl(?,t)=I

IC(/T W*) for n(V,t)=O (2)

It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress-

58



It can be seen in eq (1) that the acoustic emission arises from changes associated with the stress-
free strain (term 3), and the interaction of the change in modulus with the pre-existing strain (term
4). These sources act upon the modulus changes (static and dynamic) to create further changes
(terms 1 and 2). It should be clear that eq (1) is very general and describes both the acoustic
emission of the phase transformation and the scattering of elastic waves (,30 now time varying)
from inhomogeneities.

A difficulty with eq (1) is that the Green's tensor depends upon ?-?'. Thus, a different Green's
tensor must be used between each source point and the receiver. To overcome this problem we
approximate the solution to eq (1)-for inhomogeneous transformations of fixed magnitude in the
presence of a relatively constant applied stress-by the use of multipolar expansions. These
simplify the dependence of the Green's tensor on ?-?'. If the source is small in size ('20% of the
shortest wavelength of interest) there is only a small error associated with using a multipolar
expansion obtained by representing the Green's tensor in a Taylor's series about i,% the centroid
position. In this exposition we retain only the first term in the expansion, but higher order terms
can easily be incorporated. Equation (1) then becomes:

Umrt) = - ACijkl J j(mi, ?(i t -,T)[ J uki (a ,IJd jIdr

+ AP rGmij#,?O'to r)[ f U,4(r;',r)d V ]dr

+ r Gmi 0,@,,t-'r) r(C+ AQCkl J1ri ( ', r)d ?-ACi)k? { A (o',,r)d ijdr (3)

In terms of the Heaviside Green's tensor GH (displacement at At due to a stepfunction in force
at ?',O) we can express eq (3) as:

UmJt) = $ G.H,?O(,,t-T) [ -4 AC 1k, f Uk,, (?',r)d ' ldr

+ f G1,40,t-T) Ap fuk 4(T)didT

+ X GmiA@,t-r) d [(C+AC)ijkl 1 ',)d '. k f-/C3jkl r ,)d1']dT (4)

Equations (3) and (4) have the physical interpretation that the acoustic emission at i?,t is
obtained from a dynamic multipolar source (in our truncated expansion considered dipolar) at the
inhomogeneous inclusion. When an inhomogeneity is present, the magnitude of the source has a
"feedback" component on the right hand side of the equation. It is this feedback component that
complicates the inhomogeneity problem.

The solution to this integral equation is still not possible unless recourse is made to a final
simplifying approximation. The one commonly used in scattering problems, the Born
approximation, consists of replacing id on the right hand side of eq (1) or eq (4) with the values of
xi obtained from eq (1) without terms 1 and 2 (the homogeneous problem). We feel this weak
scattering approximation is less appropriate here because of the large differences in modulus that
may occur between the inhomogeneity and matrix.
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Once it is recognized that the source appears to be a force multipole located at the centroid of
the inclusion, we can use information about the static case and the assumption of ellipsoidal shape,
which has not yet been needed to approximate the value of the source strength. To understand
how we apply such a quasi-static approximation, consider a point outside but near the ellipsoid Q2.
Suppose we were to stop the growth of the inhomogeneity at some time t*. Then, after a short
time, the longitudinal and transverse wavefronts generated by the dipole before t* would pass
through the point and from then on the point would only experience the static displacement
associated with the presence of a static multipolar force combination.3 Thus, the multipolar density
M(t,t*) describing the dynamic motion must be consistent with that of the static case, M'(t*), i.e.:

Lim M(t,t*) = M-(t*)
t-otl

where it is assumed that t, is sufficiently _reater than t* that the process "comes to rest." The
physical distinction between M(t,t*) and M'(t*) arises from the feedback effects of the growth
dynamics and multiple reflections within the ellipsoid. We shall ignore these dynamic feedback
effects and correct only for those feedback effects produced by the static component of the dipole
field. 4

To obtain the static correction, i.e. the value of M(t*), we know that 18* has a fixed value
throughout fl(t). We assume 130 to be fixed and constant in the region of fl(t) and recall that
G6(i ,?4) = Lim GH(Vi,t). Then, we replace GH by G' in eq (4) and integrate the source terms
with respect to time to give:

U-(?,t)=G.,j'( t O,) [(C+÷C)#k q k*1 Vl(t*) -ACi& k/IVfl(t*)+ f Uk,#Xet*))]df (5)

The solution to this problem is well known from the equivalent inclusion method of Eshelby
[13]. In fact, for an ellipsoidal region, u'k is constant over the ellipsoidal region if 3* and 183 are
also constant (it is also true that it is a polynomial in ?', if the strains are polynomials in ?'). The
effective dipole density associated with the inclusion can then be easily derived.

Using a six-dimensional vector terminology (such as the Voight convention) where vectors
are symmetric 3 X 3 matrices, one can easily show that (now replacing t* by t):

Ad-(t)=[I+AC D']-[(C+AC)I3*-AC 13] Vn(t) (6a)

and

ao,4 (t)=O , 5 (6b)

3 If the body in which this occurs has external boundaries (either free surfaces or regions of different p) then wavefronts
are reflected from the boundaries and will pass through both our chosen point and the surface of the ellipsoid. We ignore
the effect of these reflected wavefronts on the acoustic emission from the inhomogeneity.

4In ref. [141 a slight extension of this assumption, called the retarded density approximation was developed. In that
assumption, the expanding ellipsoid was broken into two regions, an inner region, in which the full static feedback
correction is applied, and the outer "shell" region of the ellipsoid, in which no feedback correction is applied.

5 We have already assumed I3;4=0. The only term that might then contribute to Ao-i would arise from the
term Apfnuk 4 ('T)d

t which occurs in eq (3). Here, we have ignored this term, which arises from momentum effects
associated to density changes in the inclusion. An alternate approach, analogous to the Born approximation, would be to
modify the value of d as calculated from eq (6) by including its own "homogeneous" dynamic density contribution.
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where

um(?,t)= J. Gmij"(VA -T)AC ay(j)dT 2 G G ,Jtt-r)i\,(T)dr

k= A(Dijk,+D'ilk)

Dykl = 87r { [GIk(ejI e Gjk

I01I=1

Glk(e) = [CijkejgY'I

For an elastically isotropic spherical inclusion [15]:

Dijkl= 6p F8ik8jl+ 8iI 3jk- (1-) (a y 8 kl+ 8lk~jl+ 8il 8Jk)]

and for the disc shaped anisotropic inhomogeneity with disc unit normal iy [16]:

Diyk! = A[ViV Gjk(;0) + VjV Gik(0i)]

For an isotropic matrix, eq (7f) becomes:

= [ 18jk+(X+PO)vivk

(vX V

p 8ik+ (A + uV~vk

VVk +
+t j + (A+ )v I

so that, for instance, if v, = 8,3

-i 3 8i38k3
8 l3

aiklv o +2,t

and [I +AC D]-1 arises from the inverse of the Voight matrix:

A+2,u

1 O

X+2pt 0
O

0 

0 8C 113 3 0 0

X+2,u 8C2233 0 0

0 X+2t,+AC 3333 0 0

0 8C1 23 3 X+2jt 0

0 0C1333 ° X-
0 0C2333 ° 0
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P VkVi 1
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3. Discussion

The theoretical framework outlined above has several consequences for those interested in
studying the dynamics of twinning and martensitic phase changes. The above model shows that
the acoustic emission signal contains information about six properties of a martensitic
transformation (or twin):

1. Volume of region transformed (of martensitic lath)
2. Dilatational strain
3. Shear/rotational strain
4. Habit plane
5. Internal stress magnitude (through its interaction with AC)
6. Duration of the reaction

In fact, from eq (6)

Ao-(t)=[I+ AC D]- [(C+ AC),/*-AC /30)]Vn(t).

Ignoring directionality and concentrating upon the magnitude of the stress components of a
dipolar source, we see that acoustic emission is proportional to the volume of material that
transforms and is linearly related to the transformation strain and pre-existing (residual) stress. If
AC is sufficiently small we can ignore the terms in AC leaving the simple relation for acoustic
emission in a homogeneous medium:

A0t)=X ,8* VflQ). (9)

Returning to the example in the introduction, we can now enumerate some potential
applications for acoustic emission during the phase transformation: 1) If the transformation is
accompanied by cracking one should find it possible to distinguish Ao- signatures of cracking from
those of the transformation itself. 2) It should also be possible for one to distinguish between
different morphologies of martensitic (lath, plate or needle) based upon their different VQ
distributions. 3) If one monitors a local area in the material one could observe the evolution of
residual stress. 4) Under "ideal measurement conditions" one can directly deduce the shape
change tensor and habit plane dynamically and perhaps gain a deeper understanding of
autocatalytic phenomena in which secondary martenstic transformations (with possibly different
habit planes) are stimulated by the first transformation.

Equation (9) can be used to deduce the smallest volume of martensitically transformed
material detectable by acoustic emission. It is known that the smallest displacements detectable by
an acoustic emission transducer is 10-'4 m. This corresponds to a dipole of 3 X I0O- Nm strength
with 30 ns risetime buried 25 mm below the receiver [2]. Using values of 200 GNm- 2 and 0.2 for C
and 18* gives a minimum detectable volume of 1 ,tm3.

We can use the above results to comment on the work of Speich and Schwoeble [8] who
monitored the acoustic emission of SAE 4300 series steels with systematically varied carbon
content during transformation to martensite, as shown in figure 2. They demonstrated that
acoustic emission was able to accurately determine the martensitic start (Ms) temperature of the
steel. In addition, their data shows a distinct correlation between carbon concentration and
acoustic emission per unit volume of sample for which they did not account.

From eq (6) we can speculate that the cause of the correlation could be due either to the
increase of transformation strain (13*) or an increase of individual martensitic nucleations
associated with a change of martensite morphology with increasing carbon content. This may be
further compounded by a consistent change of bulk residual stress with increasing carbon content
or a change in reaction time whose accompanying frequency shift could affect instrument
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Figure 2-Acoustic emission per unit volume as a function of temperature measured during the cooling of low alloy steels of
variable carbon content [8].

sensitivity. Change in lath morphology producing more (but smaller) emissions with increasing
carbon content seems the most likely, but detailed metallographic studies are required.

4. Summary

An elastodynamic formulism has been used to obtain a solution for the acoustic emission from
dynamic phase transformations where there is a change in the new phase (inclusion) of both shape
and elastic constants. Explicit solutions for small ellipsoidal inclusions with anisotropic elastic
constants are given for an isotropic matrix. This framework is used to explain how acoustic
emission could be used for monitoring martensitic phase changes.

We thank J. W. Cahn and J. W. Christian for valuable discussions.
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Two ultrasonic techniques for reconstructing the internal temperature distribution in metal bodies-time-

of-flight tomography and dimensional resonance profiling-are described. An analysis of the tomographic

reconstruction of temperature (including ray refraction effects) in a cylindrical body is presented together

with initial experimental results. Dimensional resonance profiling is a new technique that allows the

reconstruction of a one-dimensional distribution of temperature in a structure from measurements of its

resonant frequencies. While time-of-flight tomography is well suited for measuring temperature in a

cylindrical geometry, a combination of dimensional resonance and (a restricted form of) tomography is the

best method for measuring temperature profiles in the more practically important rectangular slab geometry.

Key words: dimensional resonance; metals processing; process control; temperature distribution sensor;

tomography; ultrasound.

1. Introduction

The development of a temperature distribution
sensor would be an important step in improving the
productivity and quality of metals processing and
reducing its energy needs. This has been recognized
by the American Iron and Steel Institute [1]', and a
collaborative program of research with the National
Bureau of Standards has been initiated to develop a
sensor capable of providing internal temperature maps
(to within 20 'C) with 20 mm spatial resolution or less
for a variety of metals processing situations.
Anticipated applications include measuring the
internal temperature distribution in steel ingots during
reheating and monitoring the temperature profile of
steel strands as they are withdrawn from a continuous
caster. Because of the limited time available for
making the measurements, an ideal sensor should be
capable of reconstructing temperature reliably with a

About the Authors: S. J. Norton, L. R. Testardi,
and H. N. G. Wadley are with the Center for
Materials Science in NBS' National Measurement
Laboratory.

minimum of measurements to avoid interfering with
production processes.

We report here on two distinct but complementary
ultrasonic techniques for reconstructing internal
temperature in metals and other materials: time-of-
flight tomography and a new method which we call
dimensional resonance profiling [2,3]. We identify the
experimental and theoretical advantages and limita-
tions of the two techniques for various geometries
likely to be encountered in practice, and we propose a
combination of the two exploiting their particular
strengths for the most important practical geometry,
the slab of rectangular cross-section.

The measurement of internal temperature by
tomographic or dimensional resonance methods is
based on the experimental observation that the
velocity of sound in metals varies in a predictable way
with temperature [4]. From room temperature to the
melting point, the velocity of sound in austenitic steel
and aluminum alloys decreases approximately linearly
with temperature with a slope on the order of -1 m
s-'/'C. A similar behavior is observed for ferritic
steels, although it is somewhat complicated by the bcc
to fcc phase change. In the temperature reconstruc-
tions reported below, we have assumed for simplicity
a linear relation between temperature and velocity
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over the temperature range of interest. However, the
use of a piece-wise linear relationship, with a change
in slope over a higher range in temperature to
approximate the bcc to fcc phase change, was found
to introduce no serious complications during
reconstruction.

2. Time-of-Flight Tomography

The measurement of the time-of-flight (TOF) of an
ultrasonic pulse along a path penetrating a steel
sample, for example, gives the line integral of the
reciprocal sound velocity along that path. The path
length divided by the TOF is also the average velocity
along the path, and in fact could be used simply to
compute the average temperature along that path.
However, many TOF measurements over multiple
intersecting paths, when employed as input to a
tomographic algorithm, can be used to reconstruct a
cross-sectional image of the sound velocity within the
sample. Using the predetermined velocity-temperature
relationship for the metal, the velocity map may then
be converted into an image of internal temperature. In
this section, we consider the application of tomogra-
phy to two simple object geometries-cylindrical
billets and rectangular slabs-representative of those
found in metals processing.

2.1 Cylindrical Billet

We have, for simplicity, examined the TOF
tomography problem for a cylindrical steel billet
under the assumption that the temperature distribution
is also cylindrically symmetrical. 2 A crucial advantage
of the assumption of circular symmetry is that the
number of TOF measurements required for satisfacto-
ry spatial resolution is reduced perhaps two orders of
magnitude below that of the general case (i.e., under
no symmetry assumptions). For the symmetrical case,
the unknown temperature reduces to a one-
dimensional function of radius. This simplification is
important because a hostile measurement environment
and time constraints impose severe limits on the

2 When the shape of the billet is cylindrical and the boundary
condition on the surface is symmetrical, this assumption is probably
quite reasonable if the billet 'has been cooling for a short time. This
is because heat-flow theory predicts that any initial asymmetrical
spatial frequency components of the temperature damp out faster
than the low-order symmetrical components [6]. As a result, the
temperature tends rapidly toward a symmetrical distribution as the
asymmetrical temperature gradients attenuate. (We assume
throughout this paper that the thermal conductivity of the body is
uniform.)

number of TOF
be conveniently and
processing.

measurements that can
reliably performed during

2.1.1 Theory

To measure temperature, our main task is to
reconstruct the radial velocity profile v(r) of the
cylindrical billet. The velocity is then converted to a
temperature profile T(r) using, for example, a linear
relationship between velocity and temperature of the
form

T(r) = T0+b[v(r)-v0 l, (1)

where T0, v0 and b are experimentally-determined
constants.

To recover the radial velocity distribution, a single
"fan beam" measurement (i.e., paths radiating outward
from one source and ending at an array of receivers) is
sufficient. Let r. denote the measured TOF over a
path Lm, as illustrated in figure 1. Suppose TOF
measurements are obtained over M distinct paths
penetrating the cylinder. Then

m=1, 2,...,M. (2)

The number M will be small because of time
constraints and the difficulty in making each
measurement during processing. Since the angular
range over which the TOF data are measured may be
limited and sparsely sampled, an important factor in
selecting a reconstruction algorithm is how well it
performs with only limited data.

With a complete set of path-integral measurements
amp a variety of tomographic algorithms could be used
for recovering v(r). Among these are the convolution-
backprojection, Fourier inversion, and algebraic
reconstruction techniques (ART) [5]. Convolution-
backprojection, while computationally fast and well
suited for commercial x-ray tomography, was not used
here. This algorithm does not generally perform well
when the data are limited in angle and/or are sparsely
sampled; severe aliasing artifacts often result under
these conditions. Fourier inversion is the Fourier-
domain equivalent of convolution-backprojection and
offers no advantages.

A second disadvantage of these "direct" approaches
is that a priori constraints are not easily incorporated.
This is undesirable because much a priori information
is potentially available in the tomographic temperature
problem, such as surface temperature, or a priori
bounds on the range of the internal temperature
distribution or the smoothness (gradient) of the
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Receivers

Figure 1-Cylinder cross-section
with ray paths diverging from a
single ultrasonic source. The
temperature distribution is as-
sumed to have cylindrical
symmetry.

Propagation
path Lm

Source

temperature distribution. Another constraint is
imposed by the thermal conductivity equation, which
the temperature distribution must obey. Thus,
reconstructions obtained at different times are not
independent but are coupled by the heat flow
equation. If one has a priori information on a
temperature distribution at some initial time (e.g., that
the temperature was initially uniform), then it might
be possible to exploit this information to place bounds
on the temperature or its gradient at subsequent times.
We mention other beneficial effects of a priori
constraints in a later section.

In contrast, the iterative ART algorithms are
generally less susceptible to limited-data effects and
allow incorporation of a priori information. We have
found, however, that for the cylindrically-symmetric
problem, for which the number of unknowns is
relatively small, the complexity of an iterative
technique is unnecessary.

For these reasons, none of the above algorithms is
particularly well-suited for the simple cylindrical
reconstruction problem. Instead, a "series expansion"
algorithm was used and found to be both a natural
approach in terms of imposing constraints (such as
surface temperature, if known) and an effective way of
reducing the number of unknown image pixels (or
basis functions; see below) to an absolute minimum.
The latter advantage is of fundamental importance
because it implies a corresponding reduction in the
number of measurements.

The series expansion technique consists of
expanding the unknown profile (i.e., the reciprocal
velocity) in a suitable set of basis functions, where
"suitable" means that a truncated expansion (to, say, N
terms, where N is small) provides a satisfactory

approximation to the unknown profile. That is, we
expand the reciprocal velocity using N basis functions

N

v(r) a,4O(r),n0 - = 1
(3)

where {f (r)} is a basis set orthogonal on the interior
of a circle of radius R (the radius of the cylinder). We
consider two choices of basis functions below,
although, for an infinite basis set, any choice would
suffice to expand l/v(r). However, as noted, the
choice of {4,,} will be dictated (in part) by how well a
truncated series can be made to approximate l/v(r) for
0<r<R.

Inserting eq (3) into eq (2) and interchanging orders
of summation and integration gives

N
7m = X anD>mn, m = 1, 2,.. .,M,

n=1

where

(D.,, = 0n(r)dl.
Lm

(5)

Once the basis functions 4n(r) are chosen, the matrix
elements <hymn can be numerically computed and stored.
Our problem then reduces to solving the linear system
eq (4) for the unknown coefficients an, where the rm
are measured. Upon solving eq (4) for an, eq (3) gives
the reconstruction of the reciprocal velocity l/v(r),
which in turn can be substituted into eq (1) to obtain
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the temperature profile T(r). Generally, to mitigate the
effect of measurement errors, many more TOF
measurements (M) than unknowns (N) are desirable.
In this case, eq (4) will be over-determined, and it is
natural to compute the pseudoinverse (the minimum-
norm least-mean-square-error solution) of eq (4). To
illustrate this, write eq (4) in matrix form:

,r= Saa, (6)

where P is an M by N matrix (M>N), a is the
N-component coefficient vector and r is the
M-component measurement vector. Minimizing the
mean-square-error E=eTe, where e= 4a-ir, results in
the pseudoinverse of eq (6), given by

i = ((D (<t>T44>)- 0(7)

where T denotes transpose.
In our work, two candidate basis sets {ive}, Bessel

functions and "ring functions," were studied. Both are
orthogonal in the sense that

R
I 0j"r),P.(r)rdr = N,,B. ,

where Nn is a normalization constant. They are
defined as follows:

1) Bessel function basis:

"(r,)=JO(k,,r) , (8a)

where J0(-) is the zero-order Bessel function and
kn is the n-th root of JO(kR)=0.

2) Ring function basis:

The Bessel basis is a particularly interesting choice
because Bessel functions are smooth over the circular
domain, and we recall that the solution to the thermal
conductivity equation in a cylindrical geometry is also
given by a Bessel function series [6]. This suggests that
the Bessel basis is a natural choice for the temperature
reconstruction problem with circular symmetry and
that the approximation (3) may even provide a good
fit when truncated after the first few terms. This is
because the higher-order terms in the series solution to
the conductivity equation are exponentially damped
with time. As a result, after a relatively short cooling
time, the temperature profile increasingly resembles a
single Bessel function, in which case only one term in
eq (3) may be sufficient to approximate the profile.

The ring basis on the other hand provides a discrete
or "staircase" approximation to the temperature
profile, and thus does not provide the characteristic
smooth temperature profile expected.

2.1.2 Simulations and Experiments

In our initial examination of the tomography
problem, we performed computer simulations of
temperature reconstructions. The following procedure
was used: As a first step, we compute a hypothetical
temperature profile by solving the thermal conductiv-
ity equation for a cooling cylinder. We assume in the
simulation a thermal conductivity of 304 stainless steel,
a 6-in-diameter cylinder, and an initially uniform
temperature of 400 'C. Using the velocity-temperature
relation, eq (1), we convert the radial temperature
distribution into its corresponding velocity
distribution. Given this hypothetical velocity profile,
simulated TOF measurements are generated by
numerically integrating the reciprocal velocity along
M propagation paths. These simulated TOF values are
then used to compute M values of a, by direct
inversion of eq (6), i.e.,

a -=1>lr

O(r) = ringn(r)

where

ringn(r)= = 1 for rn <r~rn

and rn=Rn/N, n=0, 1,...,N.

(9)

(8b) In this case, the number of measurements Tm equals the
number of unknowns a", and since 4 is full rank,
direct inversion is possible. The resulting a is inserted
into eq (3) to obtain the reconstructed velocity profile.
The temperature reconstruction is then obtained by
substituting the velocity into eq (1). When the Bessel
function basis was used, the computed temperature
profile was found to be almost indistinguishable from
the original temperature distribution for cooling times
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longer than several hundred seconds.3 The values of
M used usually needed to be no larger than 2 or 3 for
a good fit, thus confirming our earlier expectation that
the Bessel basis is excellent for fitting temperature
profiles, at least for an idealized cooling cylinder and
after moderate cooling times.

Unfortunately, the matrix inverse ¢-1 is ill-
conditioned, and on introducing random errors into rm
on the order of a few tenths of a microsecond
(corresponding to a 1:200 relative error), significant
fluctuations in the calculated temperature profile
(±50'C) resulted. The ill-conditioning problem
became more dramatically apparent when real TOF
measurements were obtained from a 6-in-diameter
stainless steel cylinder. This cylinder was initially
heated to 400'C and TOF measurements were
generated by exciting 25 ns duration elastic wave
pulses with a focused 30 mJ pulsed Nd:YAG laser.
The received pulses were recorded with a PZT
transducer coupled to the cylinder with a fused quartz
buffer rod [7].

Eleven TOF measurements were made at increasing
angles away from the cylinder diameter (fig. 1).
Because of the limits on the accuracy of the
measurements in this initial experiment, an attempt at a
direct inversion using eq (9) failed for M>2. When
more measurements were used, thereby increasing the
order of the matrix 1, the problem becomes
increasingly ill-conditioned.4 To verify that the
reconstructed velocity distribution was consistent with
the measured TOF values, we computed numerically
the TOF values over each ray path using the
reconstructed velocity distribution. The computed
TOF values agreed with the measured TOF values to
within 0.001 pts or better, thereby confirming that the
errors are not of a numerical origin, but arise due to
uncertainty in the measurements themselves. Sources
of uncertainty include the finite precision in measuring
the TOF (about ±0.05 As), as well as other sources of
error, such as variable grain anisotropy which affects
wave propagation in the steel.

3The ratio between the coefficients multiplying the second and
first Bessel functions in the series expansion of the heat-flow solution
is exp(-14.7at/R 2 ), where a is the thermal diffusivity of the metal
and R is the cylinder radius. This number gives us an indication of
how fast the second- and higher-order terms attenuate with time
relative to the first term, and thus how soon the first term will
dominate. In our case, a/R 2 =6.4x lO-4 s'; letting, for example,
t=200 s, the above ratio is 0.15.

4A singular value decomposition of 1 shows condition numbers
ranging from 3 to 105 as the number of unknowns varies from 2 to
11 and depending on the choice of basis functions. The condition
number provides an upper bound on the amplification of errors in
the inversion process.

Another possible source of error is ray bending due
to refraction. We show in the Appendix one method
of estimating the error in a TOF measurement
contributed by ray refraction. For the small
temperature gradients encountered in our initial
experiment (=50'C/cm), we found that the TOF
errors due to refraction were quite negligible. Longer
propagation paths and higher temperature gradients
could, however, make ray bending effects significant,
in which case some compensation for refraction would
be needed for accurate reconstructions. Refraction
effects in ultrasonic tomography have been discussed
in the literature, and a first-order correction to the
TOF due to refraction has been reported [8]. Iterative
correction approaches have also been proposed [9].

It was also found that the ring basis set generates a
better conditioned matrix P than the Bessel basis set.
Thus, in some sense, the ring functions constitute a
more "linearly-independent" set than the Bessel
functions, and as a consequence, the measurement
errors are generally amplified by a greater factor for
the Bessel set than for the ring set. Although the
Bessel basis provides a smoother fit, the ring basis
evidently has the advantage of improving the
numerical conditioning of the inversion problem.

As a next step, the pseudoinverse eq (7) was used to
compute a smaller number of unknowns (N) than
measurements (M). Using all 11 measurements and
solving for far fewer coefficients reduced the ill-
conditioning to some extent, but error amplification
still precluded solving for more than three coefficients.

Figures 2a and 2b show reconstructed temperature
profiles using the pseudoinverse, eq (7), and all 11
measurements. The squares indicate measured values
of the internal temperature (±2 'C accuracy) obtained
with a thermocouple probe.' In figure 2a, a Bessel
function basis set was used in which the series
expansion [eq (3)] was truncated at two terms. In
figure 2b, the ring basis set was used, again with only
two terms retained. An attempt to use more than two
or three terms resulted in a poorer approximation to
the true temperature profile.

We suggest two fundamental approaches to
reducing the degree of error amplification in the
inversion problem. Increasing the precision of the
TOF measurement is the first requirement. Faster
digitization rates, reduced noise and greater receiver
bandwidth should all contribute to an improvement in

5The noticeable difference between the temperature at the surface
and at the four interior points is probably a consequence of the short
cooling time of the cylinder (a few minutes), as well as the failure to
heat the cylinder uniformly prior to the measurements.
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the temporal resolution in the TOF measurement. We
estimate that a minimum relative accuracy in the TOF
measurement of approximately one part in 103 is
needed for acceptable accuracy (±20 C) and
resolution (<20 mm) in the tomographic reconstruc-
tion. For the 6-in cylinder used in the initial
experiment, this represents an error of about 30 ns in
the TOF. This TOF error corresponds to a path-
length error of 0.15 mm, and so path lengths must also
be measured to this sensitivity. Since the relative TOF
error decreases in proportion to the length of the path,
the longer path lengths expected in larger structures
will help ease this exacting path-length precision.

The second approach to reducing error amplifica-
tion is to use regularization or other numerically-stabi-
lizing methods to reduce ill-conditioning. One such
strategy is to impose a priori constraints on the
solution. An important example of this is to constrain
the boundary value to match the surface temperature,
provided the surface temperature can be measured.
Simulations demonstrate that such a surface constraint
is effective in improving numerical stability. Another
approach is to minimize the mean square error subject
to a smoothing constraint on the velocity profile,
which can be regarded as a form of regularization. A
singular value decomposition of the matrix cD,
combined with a judicious elimination of the smallest
singular values, is also a potentially effective way of

Figure 2-(a) Two-term Bessel
function reconstruction of
the temperature profile. The
squares indicate the measured
temperature. (b) Two-term ring
function reconstruction of the
temperature profile.

1.0

improving the numerical conditioning of the inversion
problem [10].

Ill-conditioning of this kind is not peculiar to the
series-expansion approach to tomography; in fact,
error amplification is characteristic of all inverse
problems. In general, when more terms in the series
expansion (i.e., more unknowns) are retained, the more
ill-conditioned the problem becomes, and the factor by
which errors are magnified rapidly increases. This
illustrates a fundamental trade-off between spatial
resolution and the attainable accuracy in the
reconstructed temperature. For a given uncertainty in
the TOF measurements, only a finite number of
unknowns (i.e., terms in the series) can be reliably
computed. An attempt to compute more than this
results in an error amplification so large as to seriously
degrade the accuracy of the reconstructed tempera-
ture.

2.2 Rectangular Slab

In this section, we examine the possibility of using
TOF tomography to reconstruct the internal
temperature of a slab with rectangular cross-section
(fig. 3). If the slab thickness is small relative to its
height and breadth, the temperature gradient will be
predominantly normal to its larger surface (i.e., the
isotherms in fig. 3 will run parallel to the x-y plane
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Figure 3-Slab cross-section with sources and
receivers on opposite surfaces. The isotherms
are assumed parallel to the surface.

KY
Receivers

with the gradient pointing in the z-direction). To a first
approximation, it is reasonable in this case to regard
the temperature as a function of z only, with negligible
variation in the x and y directions. This approximation
again represents a major simplification in the
reconstruction problem, because the unknown tempera-
ture profile is now only one-dimensional.

Unfortunately, if the isotherms run truly parallel to
the edges, as assumed, a tomographic scheme will be
ineffective if the sources and receivers are constrained 6

to lie on either side (fig. 3). Line integrals over
different paths intersecting the parallel layers sample
the various layers in precisely the same proportion;
the resulting system of equations is consequently
linearly dependent, and any attempted inversion to
recover the different velocities in the parallel layers
will fail.

This problem is fundamental, and no tomographic
algorithm, whether analytical or iterative, will succeed
here. An equivalent interpretation of the "non-
invertibility" of the measurements is this: With the
sources and receivers on opposite sides, no
propagation path lies parallel to the slab surface. In
reconstruction-from-projections theory, this condition
defines a so-called "limited-angle problem," and the
well-known central slice theorem [5] predicts that the
spatial frequency component corresponding to
variations in the slab in the z-direction cannot be
recovered from the limited-angle measurements. In
particular, propagation along paths parallel to the slab
surface are required to retrieve this component.

On the other hand, a limited form of tomography
may be used if we restrict the possible temperature
profiles to a particular form or shape. If this shape has

6 This statement also applies if the sources and receivers lie on one
side of the slab and the paths are defined by reflecting the pulses
from the opposite surface.

one undetermined parameter, one TOF measurement
will suffice to compute it. As an example, suppose we
assume a symmetrical profile with the shape of a half
sine wave. That is, if the slab thickness is L, we
assume a temperature profile of the form

T(z)= T(0)[l +a-sin(7rz/L)J , O<z<L

where T(O)=T(L) is the surface temperature, which,
for simplicity, we assume can be measured. The
undetermined parameter, a, can then be recovered
with a single TOF measurement; we see that the
center temperature (z=L/2) is T(0)(1 +a).

Finally, an alternative, or complement, to this
approach is the method of dimensional resonance
profiling which is capable of recovering the spatial
variations in temperature in the z-direction. This is
described next.

3. Dimensional Resonance Profiling

This technique represents a novel approach to
reconstructing a one-dimensional inhomogeneity in the
elastic modulus and density of a body from
measurements of its resonant frequencies [2,3]. An
analysis reveals a simple relation between the
coefficients of a Fourier expansion of the modulus and
density and the measured values of the fundamental
and overtone frequencies. The theory as developed
thus far treats only the one-dimensional problem, and
experiments successfully demonstrating the technique
have been performed to date on a thin brass rod. For
the case of a slab, the dimensional resonance approach
should in principle allow one to reconstruct (from
thickness resonance frequencies) the thickness varia-
tions of the modulus and density, from which the
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velocity of sound may then be computed. The
thickness velocity profile can then be converted to
temperature in the usual way. The theory of
dimensional resonance is outlined below; a more
complete treatment may be found in [2,3].

3.1 Theory

Consider a one-dimensional object of length L along
the z-axis, where O<z<L. Assume stress-free boundary
conditions, and that the variations in the modulus and
density are small relative to their dc components.
Then the n-th order normal mode (dimensional
resonance) is approximately

u(z,t)= V/2/L cos(n7rz/L)cos(&ot) ' (10)

where u(z,t) denotes displacement and co,, is the
(perturbed) resonance frequency. Represent the spatial
variations of the linear elastic modulus by the Fourier
series

ML(z)=M1 +Y, MLcos(m7rz/L), O<z<L, (11)
m=l

and the linear density pL(z) by a similar series (the
superscript L stands for "linear," meaning ML and pL

have units of modulus and density per unit length). If
the acoustic damping is small, we can equate the time-
averaged kinetic energy (KE) and potential energy
(PE) of the structure:

rL _ L _
KE = { _pLid2& = PE = _X MLE2dZ (12)

2 2

where E=au/az is the strain and the over-bar denotes
time average. Substituting eqs (10) and (11) into eq
(12) gives to first order in small quantities

[(' PO~ ) ,2 ( 13)+ L 2~

___ PO Wn__ _

where (in = (n)ri/L)(M 1/p')"
2 are the resonant

frequencies associated with the dc values of the
modulus and density, ML and p0.

Equation (13) equates the 2n-th Fourier coefficient
of the modulus and density to the shift in the resonant
frequency of the n-th mode. We see from eq (13) that
by measuring the shifts in the resonant frequencies, we
obtain the even-order coefficients of the Fourier
expansion of the inhomogeneity in modulus and

density.
One limitation of the dimensional resonance

technique is that only the even-order Fourier
coefficients are recoverable; i.e., the anti-symmetric
part of the variation is not measurable from the
resonant frequencies alone. A second limitation is that
the dc values of the modulus, MOL and density, pL, are
not directly measurable from eq (13). However, the dc
modulus under certain conditions may be obtained
from a single TOF measurement along the z-direction
(provided dispersion is properly accounted for), and
the dc density can be estimated from the mass of the
object [2,3].

The first limitation is potentially the more serious of
the two. However, when it is reasonable to assume
that the temperature distribution is symmetrical about
the center, the dimensional resonance approach is
potentially effective in recovering the internal
temperature profile through the short dimension of a
slab. Dimensional resonance also has the advantage of
employing relatively low-frequency standing waves,
and is thus less susceptible to signal-to-noise loss
arising from high ultrasonic attenuation in hot steel
with large grain size. This technique is also
exceedingly well-behaved numerically compared to
the inherent ill-conditioning of two-dimensional
tomography.

3.2 Experimental Result

Figure 4 shows the reconstructed temperature
distribution along a brass rod (36 in long with a
diameter of 0.25 in) heated near its center. In this
experiment, extensional waves were excited and
detected in the rod using a noncontact, electromagnet-
ic (eddy-current) transducer at one end; a phased-
locked loop was used to measure the resonant
frequencies to a precision of several parts in 105. A
more detailed description of this experiment can be
found in [3].

The reconstruction in figure 4 was performed using
the five lowest dimensional resonances. Because the
actual temperature distribution was relatively smooth,
the calculated profile from only five terms in the
Fourier series agreed with the true temperature profile
to within 5% at all points along the rod.

4. Discussion

We have seen that time-of-flight tomography
represents one approach to reconstructing the radial
temperature profile in a cylindrical body. Dimensional
resonance, as thus far studied, is a one-dimensional
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Figure 4-Dimensional resonance reconstruction of

the temperature distribution along a rod heat-
ed near its center.
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technique, but its generalization to two dimensions is
now under study. The successful extension of
dimensional resonance to the symmetrical cylinder
could provide an alternative to tomography in that
geometry. This success will depend particularly on
how well the symmetrical resonances can be resolved
and the difficulty in separating them from the
asymmetrical modes.

Although dimensional resonance has been tested on
thin rods, it has not yet been demonstrated on a slab.
Owing to diffraction effects within the slab, we expect
a reduction in the signal-to-noise ratio and the
resolvability of the resonances, but the simple one-
dimensional theory should still apply. If these
problems are not too serious, dimensional resonance
may be the method of choice in this geometry since a
conventional tomographic approach to reconstructing
the "stratified" slab will fail, as noted earlier.

On the other hand, the limited tomographic
approach may be used if we restrict the temperature
profile to a simple shape with one undetermined
parameter. This approach fails of course to recover
the "fine structure" of the temperature profile, if it
exists. Often, however, it may be reasonable to assume
that the temperature profile is smooth and
symmetrical, in which case the limited tomographic
approach may be sufficient, particularly if an accurate
estimate of the center temperature is all that is needed.

Appendix

To estimate the error in a TOF measurement due to
ray refraction, consider the simple example of a linear

Length (inches)

velocity gradient in the y-direction:

v(o)=vo+yvy , (Al)

where vy= av/ay is the velocity gradient and v0 is the
(constant) velocity along the x-axis. Let the source and
receiver lie on the x-axis separated by the distance I
(fig. 5). In the absence of refraction (vY= 0), the pulse
will propagate along the x-axis with TOFo= I/vo.

For the linear velocity gradient, given by eq (Al),
the refracted path can be shown to be the arc of a
circle intersecting the source and receive points.
Defining D as the radius of the circle and 00 as the
angle between the x-axis and the tangent to the circle
at the source point (fig. 5), the ray path is given by

y(O) =DcosO-Dcos0 ,

x(0) =Dsin0 +Dsin00 ,

(A2)

(A3)

for -000<00. Snell's law, for the linear gradient eq
(Al), may be written

V~cos0 = VCos00 . (A4)

Substituting eq (Al) into eq (A4) and the resulting
expression for cosO into eq (A2), gives the relation

v0 =DvYcos0 0 . (AM)

73

25 36

I
1

lI



Refracted path

-a

x Receiver

Figure 5-Refracted ray produced
by a linear velocity gradient
increasing in the y-direction.

D

From figure 5, we also have

1= 2Dsin 0,

The TOF over the refracted path is

TOFR o DdO
00 v(6)

From eqs (A4)
that

The second term on the right is the relative TOF
error due to refraction (to first order in lID).

(A6)

and (AS), we have v(0)=DvYcos0, so

T O E ~I 0 dO _~ r ± sin0 0TOFR = - cb° o = - In [lsn
VY f-o0 co Vy 'L-sin0 0j

1 Fl+l/2D1= -In LI]
vy, 1-1/2Dj

Squaring and adding eqs (A5) and (A6) results in

D = [(1/2)2 +(VOIV )2j 1/2

Assuming D> >1, we can insert eqs (A8) into (A7)
and expand the result to first order in lID, giving

TOFR =TOFO[ - I (vYl/v0)2] (A9)
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In the mid-1970's a program of fundamental research was initiated at NBS to improve the scientific
understanding of acoustic emission. Many individual results of this research have been reported in the
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research programs, and outline the research that will be required in future years.
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1. Introduction

Acoustic emission (AE) is the name given to the
transient mechanical waves spontaneously generated
by abrupt localized changes of strain within a body.
Dislocation motion and crack growth are the
mechanisms by which these strain changes occur
during growth of flaws in materials; even minute
crack propagation or plastic deformation results in
elastic waves which can cause surface motion of a
body. This surface motion is sometimes of sufficient
amplitude to be detected by tsensors (transducers)
attached to the surface; the sensors convert a
mechanical disturbance to a voltage-time waveform.

The surface motion due to an AE source contains
information about both the location and characteristics
of the source. Although this has been assumed for

About the Authors, Paper: D. G. Eitzen is leader
of the Ultrasonic Standards Group in the
Mechanical Production Metrology Division, part of
the NBS Center for Manufacturing Engineering,
while H. N. G. Wadley leads the Nondestructive
Characterization Group in the Metallurgy Division,
NBS Center for Materials Science. The program on
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and the Electric Power Research Institute.
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some time, it has been proved only recently [1,2]1.
Using arrays of transducers and triangulation
algorithms based on differences in signal arrival time,
AE sources can be detected and located; however,
their characterization is much more difficult.
Nevertheless, by processing the received signals using
newly developed methods, it is possible to extract
additional information about the source. The AE
technique, then, offers the potential of assessing and
monitoring structures such as pressure vessels and
piping, aircraft, bridges, etc., where a very high level
of integrity is required.

Part of the potential of the AE technique was
recognized early in the study of acoustic emission, and
the first documented application to an engineering
structure was published in 1964 [3], only 11 years after
the first major laboratory investigation of the
phenomenon by Kaiser [4]. It is important to realize
several points. In the mid-1970's industrial experience
with AE had been accumulated over a relatively short
time compared with established nondestructive
evaluation (NDE) techniques. Not until now has
sufficient experience been gained to assess the
usefulness of AE for NDE. During the early
applications of AE, the technique was used without a
full understanding of its physical basis. Some mistakes
were made and, together with enthusiasm and
commercial pressure in the early days, these led to

'Figures in brackets refer to references at the end of this paper.
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extravagant claims for the technique, inappropriate
tests and uncritical interpretation of data. In the
inevitable disillusionment that followed in the mid-
1970's the temptation was to dismiss the technique
itself rather than to question the validity of the early
experiments. More realistically, there was insufficient
reliable evidence to make a valid scientific judgment
then.

On the one hand, the technique did successfully
solve some very important problems such as leak
detection, the determination of regions of structures
which require further detailed inspection, and the
acceptance testing of glass fiber reinforced structures.
Thus, even in its mid-1970's form AE was
undoubtedly a cost-effective monitoring technique for
certain industrial applications. Table 1 [5] gives some
idea of the scope of these successes.

The Electric Power Research Institute and the
National Bureau of Standards among others recogniz-
ed certain key impediments to the development of the
AE technique for monitoring the integrity of
structures such as nuclear pressure vessels. These
impediments included a lack of AE test data inter-
changeability; lack of a mathematical framework and
physical understanding of the AE process; and an in-
ability to determine the characteristics and significance
of the AE source event from the processed AE signal.

Table 1. Number of production tests monitored by acousti
7.1.78-7.1.79 only.)

The NBS program on acoustic emission commenced
in November 1975 and had a goal of developing a
basis for quantitative AE inspection and monitoring.
The purpose of this paper is to describe, in one place,
many of the research results that came out of this
program (together with supporting results from a
similar collaborative project at A.E.R.E. Harwell) and
their potential impact on field applications. It is also to
point out the remaining (more difficult) problems now
limiting the potential of the acoustic emission method
of assessing and monitoring the condition and integrity
of high performance structures.

2. Framework for the Approach
and Theoretical Formulation

The sequence of events giving rise to a detected
acoustic emission signal can be summarized in the
manner shown in figure 1. This figure showing the
processes of source generation, evolution, signal
transduction and signal processing is also essentially an
outline of this paper. An event takes place within, or
near, the surface of a structure. This event, considered
the AE source, causes a dynamic force (or stress) field
at the particular location (Link I). The force field
change is propagated as a mechanical disturbance

tc emission [5]. (Total up to 7.1.79; numbers in brackets

Shop Pre-service In-service On-line
hydrotest (installed) (requalification) monitoring*

Chemical/petroleum vessels t 32 [5] 4 [0] 382 [88] 12 [4]
Chemical/petroleum systems -- 3 [0] 50 [0] 3 [2]
Chemical/petroleum components

and pipingt 1548 [8121 34 [28] 57 [25] 14 [8]
Nuclear reactor vesselst 24 [1] 4 [0] 5 [2] 4 [0]
Nuclear power plant systems -- 22 [0] 9 [0] --

Nuclear components and piping 8 [0] 22 [1] 1037 [26] 99 [64]
Nonnuclear power plant components 2 [0] 5 [2] 17 [16]
FRP vesselst 595 [135] 47 [14] 75 [70] 12 [121
FRP components and piping 23 [23] 303 [300] 12 [12] --

Storage tanks 46 [1] 29 [6] 68 [14] 1 [0]
Cell liners -- -- 12 [0] 4 [0]
Rocket cases (missiles, etc.) 208 [2] -- -- --

Autoclaves 2 [0] 1 [0] 33 [18] 11 [3]
Misc. pressure vesselst 17 [11] 2 [0] 107 [30] --

Misc. components 2860 [360] 4 [3] 240 [240] 230 [34]
Structures (bridges, cranes, etc.) -- 14 [12] 85 [14] 4 [1]
Heat exchanger tubing (ft) 231,000 -- 500 [500] --

Liquid and gas pipelines (ft) 58 [5] 1000 [0] 517,000 [46,000] 2002 [2000]
Drill pipe (ft) 961,000 [961,000]

*On-line surveillance of operating systems or components.
'Excludes experimental vessels.
ITested separately from a system test.
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Figure 1-The causal chain of acoustic emission signal analysis.

throughout the structure (Link II). The sensor, usually
a piezoelectric transducer mounted at a particular
location on the structure, detects the disturbance and
produces an output voltage as the detected AE signal
(Link III). The goal of AE signal analysis, then, is to
identify through a proper choice of signal processing
and display (Link IV), the character and significance
of the event (Link V).

Achieving this goal is difficult, even though the
final output of the detected and amplified signal-a
time-dependent voltage-can be recorded and process-
ed, and this is because the characteristics of the source
are essentially unknown in as much as they are
modified by the structure and sensor. The wave
propagation in the structure is affected by interaction
with material properties, inhomogeneities, geometrical
arrangement of free surfaces, and loading conditions.
The complexity of these interactions usually forbids
detailed analysis. Furthermore, conventional sensors
are made of piezoelectric ceramic materials. Although
the electromechanical conversion process of a
piezoelectric element is understood in principle, the
determination of the mechanical-electrical transfer
function of individual transducers has not been
possible in the past [6]. In summary, in the mid-1970's
the signal flow through the AE system chain was
viewed as though completely inside a black box. Only
the output signals were available for processing, and

experimentally, only the loads applied and the specific
geometry of the specimen were subject to control.

The first requirement of theory was the develop-
ment of a framework for the quantitative description
of acoustic emission from defects and other sources.
To begin this, we note that AE consists of elastic
waves generated by the release of stored elastic
energy. The literature on elastic waves from a
dynamic source in an elastic body extends over the
fields of dislocation theory [7-9], dynamic fracture
[10], and theoretical seismology [11,12]. Since the
waves due to AE have the same character as
earthquakes except for the scale, the study of acoustic
emission is similar to seismology.

2.1 The Transfer Function Formalism

The framework for describing the acoustic emission
process was developed using a Green's function
approach. This approach was specialized to localized,
"pseudopoint" sources which admit a transfer function
formalism over a restricted bandwidth, called the
"informative bandwidth." In essence this permits the
replacement of the convolution integral of a Green's
function and a stress history in the time domain with
the product of a transfer function and the transform of
the stress history in the frequency domain. Viewed in
the frequency domain, information is transmitted
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independently, frequency by frequency, so that
filtering and other digital signal techniques can be
employed to separate useful signals from noise. The
virtues of using a frequency method for source
characterization have also been discussed by Stephens
and Pollock [13] and by Tatro [14].

After an AE disturbance occurs, the wave character
of the disturbance is altered by propagation through
the structure, and is further modified when the local
wave disturbance is converted to a voltage by a
transducer and then processed, figure 2. A prediction
of the output voltage in terms of the source and
intervening structure is a description of the forward
problem (conversely, the inverse problem is the
determination of the source from measured voltage
waveforms).

Elastic waves
propagate

av

Defect
produces
stress drop
at r', t'

y) -Voltage processed

Transducer
converts motion
of surface at position r
and time t into voltage

Figure 2-Schematic of AE generation and detection process.

In the time domain, the surface motion due to an
AE event is given by the combined effect of the stress
rate and traction rate history convolved with the
appropriate Green's functions and integrated over the
volume and surface of the structure. More formally,
given the configuration in figure 2 Simmons and
Clough [15] have shown that the displacement vector
u,(,t) at time t and position t in a volume V with
boundary a V and surface normal S' due to a source at
time t' and position i' is characterized by a stress rate
&6-(r',t') and a surface traction rate A&(i',t'):

Ui,(ft) =fd ? f G.H_, k^?X,t-t, ),&&jjk^ ,t )dt'

-f dsk f G.~,B,?,,t-t,)ATjke,,t1)dt1' (1)

where the quantities G1/Ž (i,`',t-t') are the partial
derivatives at it' in the k direction of the Heaviside
elastic Green's tensor2. The components of Gff',ir',
t-t') are the displacements in the i direction as a
function of time, t, at the point i, due to a step
function point force applied in thej direction at (', t').

2 Capped subscript indices refer to space-time variables (k=
1,2,3,4) and uncapped indices refer to space variables (jk, etc.=
1,2,3).

Equation (1) is more general than need be to describe
acoustic emission since it contains within its compass
the entire stress history of the structure, both static
and dynamic. Acoustic emission sources are generally
considered to be sharply limited in spatial extent and
are usually measured over some limited frequency
range because of noise and instrumentation limitations.
Also, it is possible to ignore surface traction changes
(although many spurious emission sources, such as
frictional slipping of the body or surface oxide
cracking, are of this type). Thus, the second term in eq
(1) may be omitted to obtain:

(2)U, (rt)= f er' Gi,^,?Vt-t ) -jko',t')dt,
V

which is a convolution of a time varying dipole
density (A&6-j) and the spatial derivatives of the
Green's tensor. It is still difficult to evaluate this
expression in general if A& is extended over a
substantial distance since it requires calculation of the
Green's tensor between each source and receiver
point. It is further complicated by the possibility that,
in general, each stress drop (or dipole density)
component could, in principle, have a different
temporal behavior.

These problems can be avoided by introducing the
following simplifications that are expected to be valid
for the majority of acoustic emission sources
encountered in practice: 1) approximate distributed
sources by a Taylors expansion about a point ?,' (the
source centroid position) and 2) assume that all stress
drop components have identical temporal behavior (an
approximation first developed in seismology). It then
follows that:

(3)

where A&jC is the space averaged stress drop
considered to be distributed on the point A .

In order to complete this derivation, it is necessary
to model the response of the transducer and
instrumentation. The approximation made was that of
a "nondisturbing" transducer monitoring a given area
of the body, ST. By "nondisturbing" is meant that the
change in the waveform caused by the presence of the
transducer could be neglected because it is small
compared with the magnitude of the waveform itself.
If the transducer is considered sensitive to
displacement its point-by-point impulse response
function can be denoted by TPi (rit), i E ST. This refers
to the voltage at time t produced by a delta-function
displacement in the i-direction at the point r at time
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zero. With this definition, the voltage at time t due to
the emitting source is given by:

vWt = I f TPj Cr,t-t') G..k# :,?,t-t')X6,;k(t')d ?dt'. (4)

In the frequency domain, eq (4) becomes the transfer
function formalism:

v(co) = Tjko)ACjkj) (5)

where Tjk(&) is defined by combining the transfer
tensor of the structure and instrumentation while
Ab&(a) is the stress drop (or dipole density) tensor of
the source. We note that the integration over the
transducer face has a tendency to cancel out "high"
frequency components (those with wavelength
comparable with the transducer diameter) in the
signal; it acts as a (de facto) low-pass filter. This
transfer function approach, eq (5), has a number of
important consequences:

1. By far the most important consequence of the
transfer function formalism is that informa-
tion about the source is passed frequency by
frequency to the output through the transfer
tensor, a consequence of a linear system. For
acoustic emission to be detectable, then, the
transfer tensor must have significant compo-
nents in that frequency band where the sig-
nal-to-background noise ratio for the source
history is highest. One can expect, then, to
gain only the information about the source
history that is contained in that frequency
band. By maximizing this useful band, one
maximizes the possibility of finding enough
information about the source to detect its
signature. On the other hand, in certain
situations no significant information about the
source may pass to the output. For instance,
in ductile and brittle materials comparable
stress drops occur, but since the time scale of
the ductile fracture process is longer, most
information will be sent at lower frequen-
cies-often below those that are usually
measured so that one finds "no acoustic
emission" [16,17].

2. Because the complex voltage v(co) consists of
the sum of a series of terms, phase
interference effects are important. Owing to
this, simple amplitude spectrum analysis will
be invalid except for single time parameter
sources.

3. Because of the number of stress rate
components that must be separated from one

another, multichannel measurements general-
ly are needed to find an unknown source.
This can mean from six channels, if a point
source approximation with six independent
components is used, up to 15 channels if the
dipole terms, density changes, and surface
monopole sources are included.

In the case of multichannel measurements, the
transfer function relation can be written as

V'(0)) = TjkM(T)Gjk(a) (6)

where vr is the voltage output of the rth transducer
and Tr is the system transfer function.

If additional information is known about the source
(e.g., its orientation and mode) then the number of
channels is greatly reduced. For example, quantitative
characterizations of acoustic emission have been
reported for only a single information channel. The
deduction of source properties from acoustic emission
signals is referred to as the inverse problem here. An
example of the solution of this AE inverse problem
was first given by Hsu, Simmons, and Hardy [1].
Further examples were given by Hsu and Hardy [18]
and the method was detailed by Hsu and Eitzen [18].
Simmons [20] and Simmons and O'Leary [21] have
developed alternative inverse schemes using special
decomposition and transform methods.

3. The Source

In early applications of AE to pressure vessel
testing there was little or no understanding of the
origin of acoustic emission signals. Later tests revealed
the great weakness of this when it was found that
steels used in pressure vessels often failed to give
detectable AE even though crack growth clearly
occurred.

Laboratory studies have more recently shown that
in steels in the conditions likely to be encountered in
pressure vessels, the following signal amplitudes could
be generated: weak AE signals by plastic deformation,
signals of moderate amplitude by the decohesion
and/or fracture of inclusions such as sulphides and
silicates, and signals with a wide range of amplitudes
from crack growth depending upon the local
microstructure state [22]. Plastic deformation and
inclusion decohesion/fracture can occur during plastic
zone formation at the tips of flaws. Using the
theoretical formalism developed in Section 2, it is now
possible to estimate the AE amplitudes that each type
of source would generate.
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It has recently [23,24] been shown that the stress
change Ao- due to the motion of a dislocation is
proportional to the distance moved (a) and mean
velocity (v). Using eq (3) it can be concluded that the
peak displacement amplitude u is given by

ka= kv (7)

where k depends on material characteristics and
geometry and h is the distance from the source. For
dislocations in steel it has been estimated [23] that
ka10- 14 . From this it is possible to deduce the weakest
detectable source. If a detector is positioned a distance
h from the source, and has a displacement sensitivity
threshold of x then av> 10'4hx m2s-' for the dislocation
to be detected. Measurements of background noise
indicate that in the laboratory the smallest detectable
displacement is 10-14 m, while in the field it is no
better than 10-13 m. Then, the smallest detectable
dislocation loop at a depth of 100 mm must have av> 1
m2 s_'. Even if the velocity were 3000 ms-' (the
theoretical limit is the shear wavespeed, -3000 ms'1 in
iron and steels), a single dislocation must propagate
-0.3 mm for detection. This is much greater than the

distance usually moved by a single dislocation [25] and
can therefore by discounted as a potential emission
source in most structures. However, energetic burst
emission during the yield deformation of a number of
quenched ferritic steels tempered at 200 to 300 'C has
been reported [26]. This has been attributed to the
cooperative motion of groups of hundreds or
thousands of dislocations. This source, however,
occurs over a narrow range of microstructures likely
to be encountered only near welds that have been
improperly stress relieved. Heavily irradiated metals
are susceptible to deformation by dislocation
channeling. While the precise mechanisms for this are
still not fully resolved, it is possible they may involve
a cooperative slip process similar to that of critically
tempered material. Thus, irradiated materials undergo-
ing deformation might generate more acoustic
emission and this could be why the acoustic emission
activity of growing flaws in irradiated material is
found to be greater than that of flaw growth in
unirradiated material [27].

The fracture (or decohension) of precipitates and
inclusions as a plastic zone sweeps ahead of a flow are
candidates for generating detectable emission. Let us
suppose that the microfracture event can be
approximated by the formation of a "penny-shaped"
crack which grows from zero to radius a at a velocity
v under an applied stress a-. Then for the event to be

detected by a transducer with detection threshold x, at
a distance h from the source, it can be shown [23]
a-a2v>5X 1014 hx (watts). Thus, for h=100 mm and
x= 10-'3 m, a2v> 5 watts. Thus detected amplitude is
proportional to the rate of release of elastic strain
energy. Assuming a local stress of 500 MNm-2 and an
intermediate crack growth velocity of 100 ms-1 , yields
a _3 ,tm. Carbide particle sizes in steels [25] are <1
,im; their fracture is therefore below the level of
detection unless they fracture at very high velocity.
But inclusions are sufficiently large to be detectable.

Inclusion size, volume fraction, and morphology
can vary considerably from place to place in large
steel structures due to macrosegregation during ingot
solidification. These inclusions, initially spheroidal in
castings, become extended during rolling into strings
with lenticular shapes. In plate material a typical
inclusion in the string might be as large as 1 mm X 100
,tm X 10 ptm, the long axis being parallel to the rolling
direction. Thus, the fracture of 100 ptm X 10 ttm cross-
section of the inclusion would be above a detection
threshold of 103 m. If the inclusions are strongly
bonded to the steel matrix the decohesion of a 1
mm X 100 ttm face is likely to occur at h lower stress.
Nevertheless the large surface area is likely to assure
detection even at stresses as low as 1 MNm 2 .

We conclude that, while deformation of unirradi-
ated low alloy steels, or fracture of spheroidal carbides
will not be detected, the decohesion and fracture of
large inclusions probably is detectable. It is likely to
be the single most important emission source during
plastic zone development ahead of a flaw in tough low
alloy steels.

Applying the above model to the extension of a
flaw by microcracking (with the same detection limit
of 10-13 m displacement and a stress of 109 Nm 2),
crack advance at the shear wave velocity approximate-
ly of -3000 ms-' in steel would be detectable if the
new crack area was > 2 ptm2 . At a more realistic
velocity for a brittle advance (v.- 500 ms-1 ), the
minimum detectable crack increment would be -10
ttm

2. It might therefore be possible to detect crack
advance of about 1 pim provided the advance takes
place over more than 10 ptm of crack front, making
the acoustic emission technique the most sensitive
NDE method available for detecting growth of a flaw.
During continuous monitoring, ambient noise levels
and hence detection thresholds are far higher than in
the laboratory. The literature does not provide data on
the absolute levels, but assuming for instance an
increase by a factor of 100 resulting in a detection
threshold of 10-1 m, the minimum detectable crack
advance becomes 1000 pIm2 at a distance of 100 mm

80



from the receiver (i.e., fracture of a 30 ptm diameter
grain).

In general, crack advance occurs if the stress at any
pre-existing flaw exceeds a critical value determined
by the toughness of the material, the local stress and
the size and orientation of the flaw. Crack growth will
normally occur by the ductile dimple mechanism at
temperatures above the ductile-to-brittle transition
temperature, and by transgranular (cleavage) or
intergranular fracture in the less probable event of
crack advance below the transition temperature or in a
locally embrittled region. In the event of cleavage
crack advance, fracture of a grain (typically 30 ptm
dia) would generate large amplitude signals, as would
intergranular fracture along several grain facets. More
generally there is likely to be a range of crack areas
and velocities generating detectable emission. Scruby
and Wadley [28] made an attempt to represent these
(fig. 3) in the form of a map that visually indicates the
likelihood of detectability. All the estimates assumed
an isolated microcrack. Recent work [29] has shown
that the effect of a precrack, which would be present
in the practical case, is one of a "sounding-board" for
the AE event, enhancing its apparent amplitude in the
frequency range of observation. An "amplification
factor" of about 10 has been determined by
experiment, so that correspondingly smaller crack

DET

_j 100 -NCLUSIONS 

> mARBID E A

0 10 CARBIDES>I

COAJJJCOALESCENCE

I I 2
21-M IL 0.M 10-

T

V

increments should be detectable or the same sized
events detectable from further away.

Turning now to the more usual forms of
constructional steel fracture, it is necessary to
distinguish two modes of ductile fracture. In material
of low work-hardening capacity, for instance in the
heat-affected zone of a weld, or following radiation
embrittlement, fast shear of inter-inclusion ligaments
may occur. This occurrence involves crack advances
of 100 pLm2 or more and is likely to be detectable if the
crack velocity exceeds -50 ms-1 . Such a source has
been observed [30]. In material of higher work-
hardening capacity, inter-inclusion and inter-carbide
ligaments neck down until they finally part. This
process occurs slowly and involves final separations
over relatively small areas comparable with the inter-
carbide spacing. The product a2v is likely therefore to
be below the detection threshold, and the quietness of
this ductile dimple fracture has been confirmed
experimentally many times [22].

It should be noted, however, that ductile crack
growth is accompanied by the expansion of a plastic
zone. Thus, although the crack advance mechanism
itself may be quiet, there may be detectable AE from
decohesion or fracture of inclusions as the plastic zone
expands.

In service, sub-critical crack growth is most likely
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Figure 3-Detectability of fracture events in steels. Detection threshold assumes transducer compression wave sensitivity of 10-13 m, source-

transducer distance 0.1 m, stress 500 MNm 2 .
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to occur under fatigue loading, possibly assisted by the
environment, i.e., corrosion fatigue. During the fatigue
of low alloy ferritic steels, crack advances as large as
-1 ptm in a fatigue cycle are possible. Provided the

advance takes place over at least 10 ptm of the crack
front and at a velocity >500 ms-', detectable AE
should be generated. Environmental effects and
embrittlement by, for instance, hydrogen, in addition
to possibly changing the fracture mode, also enhance
the AE activity from crack growth. Under these
conditions McIntyre and Green [31], for example,
have shown that AE activity is proportional to crack
extension.

In order to measure the reliability of flaw detection
by AE, more experiments are required. Of particular
importance are tests to determine the AE from fatigue
and corrosion fatigue mechanisms in both base plate
material and in and near weldments under realistic
conditions of stress and temperature. Simultaneous,
independent measurements of crack advance also must
be made during these experiments.

4. Wave Propagation

4.1 Calculation of Elastic Wave Propagation
in a Plate Specimen

2. It was in the form of an infinite series expansion,
usually called a generalized ray expansion in
geophysical applications where similar prob-
lems have been treated [34,35]. This series is
not an approximation (like normal modes).

The objective was to develop usable representations
for the response of an elastic plate to a point force
with step function time dependence. Since no
completely closed solution is possible, the approach
had to be amenable to computation. Two approaches
were feasible. The first, designated in the
seismological literature as a "ray theory" method,
explicitly takes account of each wave reflection and is
useful for short times after the initial application of the
force. The second approach is to study the normal
modes of the plate and to find what mode
combinations are excited by the given source. The first
approach has been implemented at NBS.

Consider the problem defined by the equations of
motion:

ax + f 8(X8)8(X3-z)H()= P a2Ui -h<X3<h (8)

and the boundary conditions:

cr13=O x 3 =+h

The interpretation of source signatures requires a
fully instrumented and well characterized laboratory
experiment incorporating a structure whose wave
propagation characteristics are known. The simplest
geometry with practical relevance is a plate. Simmons
et al. [32], and independently Pao et al. [33], thus set
about the task of developing the mathematical and
numerical framework for determining wave propa-
gation in a plate; i.e., they calculated the dynamic
elastic Green's tensor for an isotropic elastic plate.

Previously, only Green's tensor solutions for the
elastic whole-space and half-space were available and
experimental time records could only be compared
with theory for short periods of time (a few
microseconds for a convenient-sized test block) in
geometries (plates) that resembled engineered struc-
tures. Two features of the solution for the plate were
as follows:

1. The derived solution was a complete Green's
tensor of an infinite plate in the sense that the
vector displacement at an arbitrary point, due
to any arbitrarily oriented point force with
step function time dependence, could be
numerically calculated.

(9)

where the stress oij is related to the displacement
gradient aui laxj by:

-=Cyl auk
'xe- il ax, (10)

The summation convention is employed, 8(x) denotes
the Dirac delta function and H(t) is the Heaviside step
function. The plate is assumed to be at rest until the
instant t=0.

The solution of eqs (7) to (9), may be written in the
form:

Ui= Gyjf (1 1)

where the "Heaviside Green's tensor" G{ Hrepresents

the itbhcomponent of displacement produced by a unit
point force H(t) applied in the j-direction. Thus, GH
satisfies the equations:

Cijklaxax, + 8iP8(x1)8(x2 )8(x3-z)H(t) = P

- h<x3<h (12)
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and

Ci3k1 aGkD = 0 x 3 = +h. (13)
axj

The final task is to find explicit representations for
GH The ray approach represents GH as the sum:

GH=G+Gim (14)

where G' is the (readily calculable) infinite-body
Heaviside Green's tensor, and G'm is the "image"
tensor induced by the free boundaries at X3 = +h. Gi
is thus composed of all possible reflections of the
waves generated by G', and the ray method
represents Gi in this form.

The physical meaning of each ray is quite
straightforward. If the initial source function is broken
into its characteristic components-longitudinal (P),
horizontal polarized shear (SH), and vertical polarized
shear (Se)-then each of these components can be
followed through a series of reflections at the top and
bottom faces of the plate until the receiver is reached,
at which time they can be recombined. One ray is the
contribution of one such component followed through
a particular series of reflections-taking into account
mode conversion wherein longitudinal or vertical
shear components split into each other at each
reflection. All rays arriving at the same time at the
receiver can be grouped together and classed by
arrival time.

Although the derivation of the Green's function is
based on an infinite plate, the solution is exactly
applicable to a finite plate for a finite period. This
period corresponds to the first arrival of the ray
reflected from the sides of the plate or to the number
of terms used in the ray expansion.

4.2 Examples of Green's Function
Components for Point Monopole

and Dipole Sources in a
Ferritic Steel Plate

The Green's tensors for a ferritic steel plate are used
as input to both the forward and inverse AE problems;
however, a great deal can be learned about wave
propagation by inspection of the Green's tensors
themselves. The tensor components of the Green's
function are informative because they give the
displacement-versus-time response of the structure due
to a point force input. While this input may or may
not represent some AE sources, the response indicates
which surface displacement directions are active, how

the response changes relative to the source and sensor
locations, how the source signal changes, and how
much information is potentially available. The Green's
function for a (double-force) dipole source, equal and
opposite forces at a point, provides additional
information on questions discussed above and
information on how the surface displacements
available for measurement change due to a change in
source function. The dipole source also provides a
simple model for some AE events.

As before, the Green's function tensor is designated
by G and the component functions, the displacements
in a given direction due to a point-force source in a
given direction, are designated by G with two
subscripts, for example, G,3 or G23. As shown in figure
4, the subscript number 3 designates a direction
normal to the plate surface; the subscripts 1 and 2
designate orthogonal directions in the plane of the
plate surface. Thus, G,3 describes the displacement in
the plane of the plate due to a point force normal to
the plate and G33 describes the normal displacement
due to a normal force. We note that since the
components represent displacements in the j direction
due to a force in the i direction, the reciprocity
theorem of elasticity applies and G=j=Gji so that, for
example, G1 3= G31.

The displacement response due to a force dipole is
designated by three subscripts on G for example, G31, 1

which represents the displacement normal to the
structure due to collinear equal but opposite forces in
the plane of the structure.

Figures 4 to 10 are examples of displacements
arising from point force step and force dipole step
sources at the top and bottom of a nominal 2.5 cm
plate of A533B pressure vessel steel. A complete set of
responses was calclated using measured wave speeds
for an A533B plate specimen:

longitudinal speed = 3.18825X 103 ms1
shear speed = 5.85000X 103 ms-'

Here, we present examples of these calculated
responses. The first of the figures (fig. 4) exhibits the
geometry and the notations for the remainder of the
plots. We summarize some of the principal
observations from these curves as follows:

1. Each geometrical configuration of the source
(its type, orientation, and location), plate
thickness and transducer (its position,
directionality, and sensitivity) produce char..
acteristic signatures which permit determina-
tion of source location and orientation, espe-
cially source depth, with improved resolution
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Figure 6-Displacement response G13 due to a point force step for
case 1.
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Figure 7-Displacement response G22 due to a point force step for
case 1.
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2. This leads to a related observation concerning
the multi-axial (or vector) nature of
displacements. A transducer with sensitivity
to displacement in a single direction may not
"see" displacements in other directions. Thus,
source location, in which it is assumed that
only waves with the Rayleigh velocity are
observed may be grossly inaccurate. In
addition, unless the vector calibration of a
sensor is known, i.e., its sensitivity to
displacement in each orthogonal direction, it
is not possible to characterize the vector
properties of the source. These two points
underscore the importance of multi-axial
(vector) transducer calibration [36,37].

5. Transduction

0.07

-0.02
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-D 2nl
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Time in psec

Figure 10-Displacement response G33 due to
case 2.

50.0 55.0 60.0 65.0 70.0

a point force step for

over conventional source location techniques
[2]. These signatures contain many
characteristic features and thus demonstrate
the crudity of attempting to select a single
feature, such as amplitude of the curves,
especially after these undistorted curves have
passed through a resonating transducer as
was done in the instruments of the mid-1970's
for source characterization. The spikes in the
curves generally result from the arrival of
wavefronts that have traveled over multiple
paths so that, if their arrival times are to be
used for source location, a more detailed
analysis of their significance is required than
is currently the case.

Transducers are used to convert dynamic surface
displacements of transient elastic waves into electrical
signals. The electrical signal resulting from the
transient displacements of an AE event depends
critically on the transduction process. The majority of
transducers used in acoustic emission are piezoelectric
crystals. Other types have been used; e.g., capacitors,
laser interferometers, EMATs, etc., but these are
normally too insensitive. Those used in field
applications are similar in design to the transducers
used in pulse/echo ultrasonic testing. To develop
better instruments we must be able to characterize the
measurement system. System characterization in turn
leads to an understanding and improvement of the
action of the transducers.

In the mid-1970's, AE transducers were not
optimally designed. One part of the NBS program has
centered around the use of calibration systems for the
design of advanced AE transducers that are now
beginning to appear commercially. The second area of
transduction research at NBS has focused on the
calibration/standardization itself. The numerical
values of traditionally measured parameters of AE
signals (e.g., event or ring-down count) depend very
much upon the sensitivities, directivities, and
frequency response of the transducer used. In addition,
if the individual transducers of a source-locating array
are of unequal sensitivity or respond differently to a
particular kind of wave motion, the deduced location
may be in error.

Standardization provides a basis for transducer
comparison making it possible to compare the results
of different tests. The need for a standard method of
calibrating transducers has been stressed by the
American Society for Nondestructive Testing, the
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American Society for Testing and Materials, the
American Society of Mechanical Engineers, and other
technical organizations concerned with using acoustic
emission techniques.

Many people hold strong opinions that a calibration
be expressed in terms of absolute physical quantities
such as open circuit volts of output per unit of surface
motion at the transducer face,3 the motion being that
which would occur in the absence of the transducer.
Another choice could be to base it on the dynamic
stress resulting from the interaction of the transducer
and the body on which it is mounted, but with no
transducer present this surface would be traction free.
However, the problem with the latter approach is that
two transducers having the same sensitivity to stress,
but which present different loads to the surface, would
give a different output to the same mechanical input.
The definition in terms of a free surface has thus been
the preferred one.

In order to improve data interchangeability and to
improve extraction of information from AE signals
through signal processing, the NBS AE program
undertook to develop:

1. An AE transducer calibration and standardiza-
tion system.

2. An optimal AE transducer using the calibration
facility.

5.1 AE Transducer Calibration System

After consulting with practitioners and researchers
in the AE community it was decided first to
implement a transducer calibration system using the
so-called "surface-pulse" method. The development of
the basic principles that make the calibration possible
owes to Breckenridge, Tschiegg, and Greenspan [38].

The surface-pulse transducer calibration system [39]
functions in the following way: A step-function force
event is generated on the plane surface of a large
elastic block by the sudden release of a nearly static
force applied through a glass capillary which is
released when the capillary breaks. The resulting
dynamic displacements of all points on this surface can
be expressed in closed form by elastic theory (Section
4) up until the arrival time of reflections from the
other boundaries of the block.

The normal component of the dynamic displace-
ment is measured using a capacitive transducer [40]

3For example, the attendees of the U.S. Acoustic Emission
Working Group, San Antonio, TX, April 1975, arrived at a
consensus on this point.

which is described below. Figures 11 and 12 show the
theoretically calculated displacement and the average
of 10 measured displacement waveforms. Satisfactory
agreement between theory and measurement is
observed. To perform a calibration, the capacitive
transducer (standard) and the transducer to be
calibrated (unknown) are placed on the plane surface
of the steel block equally distant from the source. The
transient electrical outputs of both the standard and
the unknown transducers are recorded digitally and
computer processed (deconvolved) to extract the
response of the unknown transducer relative to that of
the standard capacitive transducer.

Figure 13 indicates the basic arrangement. A glass
capillary, B, (-0.2 mm diameter), is squeezed between
the top of the loading screw, C, and the upper face of
the large steel transfer block, A. When the capillary
breaks, the sudden release of force is a step function,
whose risetime is of the order of 0.1 xs. The
magnitude of this force step is measured by the
combination of the PZT disc, D, in the loading screw
and a charge amplifier, E, connected to a storage
oscilloscope, F. The standard capacitive transducer,
G, and the transducer under test, H, are equally
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Figure 11-Calculated surface-pulse waveform for the steel block at
the location of the transducer (101 mm from the source).
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Figure 12-Experimental surface-pulse waveform obtained
averaging 10 waveforms from the transducer.

by

distant and on opposite sides of the source. It is
obvious from the symmetry that the surface
displacements would be the same at the two
transducer locations if it were not for the loading
effects of the transducers. The loading effect of the
standard capacitive transducer is negligible and the
loading effect of the unknown transducer is part of its
calibration. Voltage transients from the two
transducers are recorded simultaneously by digital
recorders, I, and the information stored for processing
by computer, J.

With this system it is possible to compare the signal
from the unknown transducer with either that of the
standard transducer or the calculated displacement
waveform using a value for the magnitude of the step
function force measured with a piezoelectric force
transducer attached to the capillary loading device.
The comparisons produce similar results. In either
case, it is the free motion of the surface that is
determined, the reference capacitive transducer
providing essentially no loading [40]. The unknown
transducer interacts with and loads the surface, the
interaction also being dependent on the block material.
These interactions are considered to be part of the
calibration and so, in principle, the interpretation of
the transducer output would be affected if used on a
material with elastic properties different from those of
the steel transfer block A.

Figure 13-Schematic of the
apparatus.H.

A
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The frequency range for the calibration of acoustic
emission transducers is nominally from 100 kHz to 1
MHz. In order to deal with frequencies as low as 100
kHz, 100 pLs of sample time is necessary to avoid
computation errors. This dictates that a large transfer
block be used so that sidewall reflections are delayed
100 gts or more. The block, donated by Bethlehem
Steel, is 90 cm in diameter and 43 cm thick. It weighs
about 4000 kg, and is made of A508 Class 2 steel. Both
faces of the block were lapped in the NBS optical
shop to be spectral reflectors in order to satisfy the
surface smoothness requirements of the capacitive
transducer and to eliminate surface roughness or
surface work-hardening effects on wave propagation.

The standard capacitive transducer (figs. 14 and 15)
has three cylindrical parts separated by insulators. The
center cylinder is the active electrode and the ends are
electrical guards. The ends are driven by a special
unity gain amplifier, whose input is connected to the
center part. The sensitivity of the transducer may be
calculated with an error of at most 0.6% on the basis
that the active portion is part of an infinitely long
cylinder. This sensitivity is one-half the polarization
voltage divided by the air gap. The air gap, nominally
4 gm, can be independently deduced from a
measurement of static capacitance using a three-
terminal capacitance bridge. The transducer also
features built-in compliant elements remote from the
active portion to minimize loading of the block. The

sensitivity limit (noise level) of the standard transducer
is about 4X 10-2 m.

There is a measure of redundancy built into the
calibration system-provided the displacement as
measured by the standard capacitive transducer agrees
with the calculated displacement. Experiments to
check this agreement were performed (see fig. 16) and
adequately establish this redundancy in the determina-
tion of displacements.

A typical captured waveform from the standard
transducer is shown in figure 17, and, for the same
force event, the waveform from an unknown
transducer is shown in figure 18. An FFT is
performed on both of these waveforms and the
resulting frequency spectra are divided, frequency by
frequency. The result yields the frequency response of
the unknown transducer relative to that of the
standard. The results of this calibration are presented
with a logarithmic scale in figures 19 and 20.

5.2 An Optimal Acoustic Emission Sensor

The typical response of commercially available AE
transducers to transient surface displacement is shown
in figure 18. Such devices have two drawbacks:

1. They tend to be sensitive to a combination of
mechanical inputs (displacement, velocity, or
acceleration) rather than only a single

Figure 14-Photograph of the transducer and its reflection.
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Figure 16-Comparison of the displacement measured by the
capacitive transducer (ordinate) and that determined by elastic
theory from measurements of applied force (abscissa): steel block.
The line is a linear least-squares fit to the data shown.
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Figure 17-A typical calibration: voltage versus time waveform from
the standard transducer as captured by the transient recorder.
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Figure 18-The same calibration: voltage versus time waveform from
the unknown transducer as captured by the transient recorder.

physical quantity. As will become clear in
the later discussion of source characteriza-
tion, this leads to difficulties in the
conceptual design and implementation of AE
source determination.

2. They also tend to have large variations in
sensitivity over the frequency range of
interest. Regaining the information filtered
out in the regions of sensitivity minima is, at
best difficult, because of the poor signal-to-
noise ratio at these frequencies.

The capacitive transducer described above has a flat
frequency response over a wide frequency range,
making possible a faithful reproduction of dynamic
surface displacement. It is, however, directional, of
low sensitivity, and requires a highly polished
mounting surface. While it is an excellent transducer
for laboratory calibration work, a need for a
transducer without these limitations was evident.

The NBS conical transducer was developed in
response to these needs [41-44]. One of the first
models is shown in figure 21. It is a simple two-piece
device consisting of a small conical piezoelectric
element and a large backing, usually of brass.
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Figure 19-Magnitude response of the unknown transducer.
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Figure 20-Phase response of the unknown transducer.
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one to two orders of magnitude more sensitive (about
as sensitive as commercial AE transducers), and it is
broad band.

Figure 23 shows two views of a newer model of the
transducer which produces the most faithful
waveform of any piezoelectric transducer we have
encountered. The idea behind the complex geometry
is to smear out the reflections to the element by the
backing; it does this by delaying them because of their
different transit times.

-Electrode

Figure 21-Schematic of one version of the NBS conical transducer.

By design, this transducer has a contact area which
is small relative to Rayleigh wavelengths in the
working range, nominally 0.1-1 MHz. This eliminates
the aperture effect, evident in most commercial
transducers, which changes transducer directionality
and reduces bandwidth. The brass backing block is so
large and so lossy that waves entering it via the
conical element are largely dissipated by the time they
reflect back to the element. Thus the backing block
may be approximated as a solid elastic half-space. On
this basis, it can be shown that for low frequencies the
transducer functions as a displacement sensor.

The surface-pulse response of the NBS conical
transducer (fig. 22) shows a little undershoot after the
Rayleigh wave arrival and some backing reflections
but compares favorably both with the theory and with
the capacitive transducer response as shown in figure
17. It also compares very advantageously with the
typical response of a commercial transducer to the
same waveform as shown in figure 18. It follows
dynamic normal displacements nearly as well as the
standard capacitive transducer but it is more rugged,
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Figure 22-Measurement of surface puls
transducer.

Figure 23-Version of NBS conical transducer which produces most
faithful measurement of dynamic displacement by means of a
piezoelectric transducer.

An example of the response of this model of the
NBS conical transducer is shown in figure 24. The
dashed curve gives the theoretically predicted normal
displacement of a plate at a location three thicknesses
away from, and on the same side of a plate as, a point-
force step function input. The solid curve is the
voltage-time output of the transducer shown in figure
23 on a glass plate with the transducer located two
plate thicknesses away from a breaking glass capillary
event [44]. Current plans call for making available for
purchase the model shown in figure 23 through the
NBS Standard Reference Materials Program. Other
models have been designed to be more rugged or
smaller but with almost the same fidelity.

6. Simulated AE Sources

A long-term weakness with the development of
acoustic emission for materials testing and structural
monitoring has been the absence of a well
characterized simulated source that can be used for

60 80 100 system evaluations. Such a source should result in a
short duration stress pulse, similar to actual sources, of

se using the NBS conical known characteristics at any arbitrarily-chosen
location. Referring back to figure 1, a simulated AE
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Figure 24-Theoretically predicted and measured displacement of a plate due to step-function force input. The transducer used is that shown
in figure 22.

source is critical to calibrating AE transducers
(defining Link III) in conjunction with a structure
with known wave propagation characteristics, to
determining unknown wave propagation characteris-
tics of structures (defining Link II) in conjunction
with a calibrated transducer of high fidelity, and to
aiding the development and testing of appropriate
signal processing schemes (Link IV) for determining
source significance. This latter function includes
facilitating the making of instrument settings and the
verification of performance, for example, of source
location systems. A simulated source should be; 1)
repetitive, 2) reproducible with a known source
mechanism, 3) of similar characteristics to "real" AE,
and 4) relatively easy to implement.

The first simulated AE source developed, the
breaking capillary source, already has been described
briefly. Some additional details are given by
Breckenridge [39]. The technique has proved an
extremely good laboratory tool. Hsu [45] has extended
the approach with a technique based on the breaking
of a pencil lead. A self-contained push-button type
mechanical pencil with high quality pencil leads
replaces the glass capillary. A piece of lead of specific
length is projected from the pencil. As the tip of the
lead is pressed, at steadily increasing pressure, against
the structure; this increasingly loads the structure until

the lead breaks, thereby generating a step function
force unloading on the structure. The magnitude of
the force can be selected by the choice of pencil lead
as shown in figure 25. This simple technique has
become the standard method throughout the world for
checking instrument calibrations. It is being adopted as
a calibration tool by AE standards groups in the
United States, Europe, and Japan.
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Figure 25-Typical calibration results.
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The pencil lead technique has also been
implemented as an absolute input force [2]. Figure 26
shows such a device. As the pencil is pushed against
the structure by turning a loading screw, the force is
transmitted through a previously calibrated load cell
which pivots the pencil to load the structure. The load
cell output is connected to a peak-hold device and
displays the peak force which is the magnitude of the
force-step. The waveform shape of each lead-break
event is very similar to the others; the exact amplitude
cannot be controlled since it linearly scales with force
magnitude. Provided this is determined through the
technique above, absolute calibration is possible,
however.

Figure 26-Mechanical AE simulator.

More recently a Nd:YAG pulsed laser has been
used to produce predictable, repetitive, thermoelastic
dipole sources to generate elastic waves (simulated
AE) in a structure [46]. A large plate has been used to
implement this source to permit comparisons with
theory. The elastic displacements due to a force dipole
combination representing the thermal expansion for a
laser source have been calculated for an isotropic
elastic plate. Figure 27 shows the excellent agreement
between experiment and theory for this source. An
advantage of this source is the wide range of source
strengths that can be activated merely by varying laser
pulse energy. The source is also dipolar in nature, like
defect sources. It is, however, a very costly simulated
source with certain safety limitations.

Comparisons have been made between more
economical and safe electrical spark impact sources

and pulsed laser sources. The laser source is effective
but the spark source has advantages which include
portability, simplicity, and low cost. The charging,
switching, and triggering circuits have been perfected
so that a brief (few nanosecond), high-voltage current
pulse with very low jitter can be discharged between
electrodes. The simulated AE waveforms that result
are essentially identical one to another.

The mode of the spark source which is controlled
by the configuration of the electrodes effects the
signal generated. We have emphasized the configura-
tion in which the plate or structure is one electrode
with the second just above the plate surface. The
stress wave generated in the structure can be modeled
as evolving from local surface plasma heating, the
same mechanism as when using a pulsed laser source
for radiation heating. Figure 28 shows a detected
signal due to sparking onto a 1.5 in thick plate. In
figure 28, (a) corresponds to the sensor located at the
epicenter and (b) to the sensor located on the same
surface as the source, and two plate thicknesses away
from the source. From such experiments we conclude
that: the source is extremely reproducible; the
detected signals agree well with theoretical
predictions for a dipole source; the surface normal
motion has a well-defined negative pulse whose arrival
is easily detected, a fact that could be exploited for
precise measurements of ultrasonic wave speed
measurements; the rise time for the stress wave is less
than one-half microsecond; and, although the source
generates electromagnetic signals, these can be
isolated easily in the time domain. A comparison of
these various sources has recently been completed by
Jones, Green, and Hsu [47].

A different approach to producing a known source
is to induce actual AE events in a material in a
controlled way [16]. The method we have used
involved indentation, i.e., local loading, of a plate so
that the location can be chosen. The number and size
of defects can be controlled by the loading rate. By
using surface-hardened steel plates and diamond
pyramid indenters, subsurface microcracks can be
reproducibly created and sized later using destructive
metallography. Correlations can then be made
between the signal from the defect, signals from non-
defect (simulated) sources such as those discussed
above, and the crack microstructure. Indentation is
not a new method of producing surface cracks, but it
is new in combination with AE.

In using the indentation source, acoustic emission
signals were monitored at the epicenter as well as on
the same surface as the source. A sample of 02 tool
steel, 2.54 cm thick and 7.62 cm in diameter, was
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Figure 27-Comparison of experiment and theory for laser generated AE in 2024.T6 Aluminum.

prepared by austenitizing at 865 'C, and water
quenching, following which the surfaces were ground
and metallographically polished with care to avoid
surface damage.

Examples of the very reproducible epicenter signals
which were generated are shown in figure 29. In
figure 30, one of these signals (A) is compared with
that produced by very fast (-0.3 j.s) step function
unloading due to breaking of a glass capillary, while

another signal (B) is obtained by replacing the glass
capillary with a piece of commercially available
plastic labeling tape. Here the load, in excess of 50 kg,
is approximately that needed for indentation AE, and
the signal is of the same order of magnitude (-76 dB)
as the signal from the microcracks. The glass capillary
signal is at a much higher level, -20 dB. The similarity
of these signals suggests that the epicenter signal from
the crack looks very much like an unloading signal

94

14.00

12.00

a)
EW..
a)
a.)

0~

0

0
a)

10

a)
C.
0.

ul

10.00

8.00

6.00

4.00

2.00

0.00

-2.00

-4.00 -

3.00



consistent with the notion that cracking relaxes the
elastic stress distribution.

7. Source Characterization
(the Inverse Problem)

One of the most important objectives of current AE
research is development of signal analysis methods to
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explicitly characterize the AE source from remotely
measured AE signals alone. This general problem,
common to fields such as seismology and radar, is as
yet an unsolved one, and one that will require
complex processing of many independent channels of
information. However, for sources which can be
represented by a point force of unknown magnitude
and time dependence but known direction, normal to
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Figure 28-Detected AE signals due to a spark
thicknesses away.
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Figure 29-Reproducible signals at
epicenter from indentation in an
embrittled 02 tool steel
(Rockwell C hardness, 69). The
duration of the signal is 102 ,±s
and the amplitude after 76 dB
amplification is about ±50 mV.
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the occasional nonreproducible
signals that occurred during
this test.

I

95

35 40 45 50



= t
A&-,= f. u,(t')H(t'-t)dt'

i i. * 

. ~~~~~~,.

Figure 30-Epicenter signals through plate of embrittled 02 t
(Rockwell C hardness, 69). The signal duration is 102 jxs
amplitude is about ±50 mV. (A) Ball-tipped indenter
glass capillary (20 dB amplification). (B) Ball-tipped
fracturing plastic labeling tape (76 dB amplification). (C)
indenter directly contacting plate (76 dB amplification).

the surface, for example, explicit determination
source by deconvolution has been accomplish
two source-receiver configurations.

One geometry used for deconvolution
received signal is that of a large plate with
source on one surface and the receiver ci
directly over the source on the opposite
(epicenter). In this case, the Heaviside
function GH can be calculated exactly. It
assumed that the sensor measures the normal
displacement, u 3. Practically this is accomplis
using either a capacitive transducer or the
conical transducer. For this case of a point
applied to a surface, it can be readily shown
(1) reduces to a one dimensional convolution in-

U3 (t) = G33(t-t')A& 3(t')dt',

where H= (GH)-1. Shown in figures 31 and 32 are plots
of GH(t) and H(t) corresponding to an aluminum plate
with a shear wave speed to longitudinal wave speed
ratio of 0.487. The vertical scale is relative. GH(t) is
computed using the geometric ray method and H(t) is
obtained by the matrix inversion technique outlined in
[19]. The step curve shown in figure 33 is the
convolved function GH(t)*H(t) plotted to show the

i U numerical stability of the computations.
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Figure 31-Theoretical vertical displacements at the epicenter.
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where G H is the Heaviside Green's function and Ad-3
is the history of the time rate change in the point
force. Following the procedure detailed by Hsu and
Hardy [18], the differentiated source function can be
obtained as a convolution integral,
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Figure 32-11(t)-inverse function of G H(t).
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Figure 34-Theoretical vertical surface displacement for a point
nearby and on the same surface as the source. GH(t)-due to a
vertical step-function force.

Figure 33-Convolution of the step-function response
with the inverse function H(t), the inpulse response.

curve GH(t)

Two key elements of the procedure are being able
to 1) measure a physical quantity such as normal
displacement (uncorrupted by horizontal displace-
ments), and 2) determine the inverse Heaviside
Green's function. We have shown how, with care, this
displacement can be accurately measured. In the case
of the plate with source and receiver at epicenter, the
computation of the inverse Green's function is rather
straightforward. In general, however, not every time
series has an inverse with respect to convolution;
whether a specific time series, in our case a specific
Green's function, has an inverse or not cannot be
answered in general and it is this problem on which
much of the ongoing research is focused. We have
found, however, that in a second configuration, where
the sensor and source are on the same surface and are
sufficiently close, the inverse function can again be
computed. But it is necessary to resort to the trick of
reversing the time, computing the inverse, and
reversing the time again. Examples of such
computations are shown as figures 34 and 35.

Having established the validity of the theoretical
calculation and experimental devices, we may
substitute unknown components one at a time into the
experiment, and determine their characteristics. Thus
this procedure may be used to determine the source
function, Green's tensor or transducer response. The
data processing outlined above and detailed in [18,19]
was used to determine simulated AE sources. Results
are shown in figures 36 through 38 [18]. The inserts in
the figures are the actual epicenter displacements
detected by a capacitive transducer for various

Figure 35-H(t)-inverse function
surface as the source.

for GH(t) for a point on the same

BREAKING GLASS CAPILLARY

FULL SCALE = 20 MICROSECONDS

Figure 36-Source force-time function of breaking glass capillary ob-
tained by time domain deconvolution of recorded epicenter dis-
placement. Insert trace is the recorded epicenter displacement.
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BREAKING 0.5 mm LEAD

FULL SCALE = 20 MICROSECONDS

Figure 37-Source force-time function of breaking 0.5 mm pencil
lead. Insert trace is the recorded epicenter displacement.
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Figure 39-Source function for a
indenting a glass plate.

brittle crack opening produced by

DROPPING 1.54 mma STEEL BALL

Figure 38-Force-time function for a source produced by dropping a
1.5 mm steel ball from a height of 5 cm onto a plate.

sources. A theoretically computed impulse response
for the plate was used in this computation. It is found
that the force time history produced by a breaking
glass capillary is, indeed, a step-function with a rise
time <0.5 pts. The source function for the breaking
pencil lead has a small yet noticeable dip before the
step. This is interpreted as due to the reflection of the
fracture wave at the contact point. The remotely
measured displacement and deconvolved force-time
history shown in figure 38 was produced by dropping
a steel ball onto a plate. The dropping ball contact
source function deduced compares well with elasticity
theory. Deconvolution was also performed on
displacements measured during an actual cracking
event. Acoustic emission signals induced by indenting
a glass plate were recorded and deconvolved (see fig.
39). The source signatures of such brittle fractures

resemble a step function at least for the initial part of
the waveform.

No data smoothing procedure was used for the
computations; thus noise sources introduced by the
measurement and deconvolution procedures could be
investigated. As was expected, the limited resolution
(8-bit) of the analog/digital conversion process during
waveform recording caused noise in these computa-
tions, especially when the full dynamic range of the
A/D was not utilized. The usual noise suppression
scheme for repetitive signals of summing and
averaging is inappropriate for AE source
characterization because each is a unique event.
However, it can be used for determining the other
unknowns in an AE system. The signal averaging
technique has been used, for example, for characteriz-
ing the force-time function of a wideband piezoelectric
transducer excited by a short-duration electrical pulse
[1]. This application offers a possible absolute
calibration technique for ultrasonic transducers used as
ultrasound generators for nondestructive testing.

While considerable success has been achieved in
deconvolution of the waveforms shown above, the
same cannot be said for the waveforms encountered in
practice using sensitive, but narrow-band resonant
receivers located remotely from the source. The
requirement to deconvolve these complicated signals
in the presence of noise has stimulated ongoing
research into the development and application of
inverse methods.

Simmons [20] and Simmons and Leary [21] have
developed two new methods for inverse modeling.
One technique is based upon the singular value
decomposition method. The second is based upon
z-transforms. The algorithms developed from this
work have proved to have sufficient flexibility to
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optimize filtering in such a way as to use only the data
with acceptable signal:noise value. These techniques
show promise that many more source-detector
geometrical arrangements may be amenable to
deconvolution. However, they are complicated and
require excessive computing capacity to implement.
They are useful for laboratory studies but more simple
techniques may be called for in field applications.

8. Summary

In the mid-1970's it was realized that acoustic
emission techniques possessed great potential for
determining and monitoring structural integrity.
Acoustic emission signals were thought to contain
potentially useful information about the location and
identity of defects and about the criticality of the
defects in a structure under load. However, the signal
reception methods failed to preserve much of this
information, and signal processing techniques used
then, such as threshold counting, RMS recording,
energy measurement, peak detection, and spectral
analysis, did not extract the remaining information
unambiguously. Acoustic emission was thus unable to
fulfill its early promise, in part because of the inherent
complexity of 1) the generating mechanisms, 2) the
transient wave propagation details, and 3) the physics
of the mechanical-to-electrical conversion process of
the sensor. In other words, there was insufficient basic
understanding of the acoustic emission phenomenon in
solids.

The reviewed research program along with parallel
efforts elsewhere have done much to remedy the
situation. Particularly noteworthy contributions which
help remove the impediments to the optimal
application of acoustic emission techniques have
included the development of:

1. A theoretical framework for investigating and
analyzing the acoustic emission process.

2. Theoretical methods for predicting the surface
motion due to an acoustic emission event.

3. Calibration methods and standards that
currently are being adopted on a worldwide
basis and are leading to data interchangeabili-
ty and improved reliability of field data.

4. A transducer for measuring the normal
component of surface motion with high
sensitivity and fidelity, a tool necessary for
advanced signal processing; and finally, the
development of

5. Inverse techniques for processing the remotely
measured signals to extract maximum

information about the acoustic emission
source.

These and other developments are now being
embodied in laboratory and field studies and in test
methods, instruments, and analysis methods used in
field applications. Acoustic emission is becoming, by
NDE standards, a relatively well understood
phenomenon. But research needs are far from satisfied.
It is becoming increasing apparent that:

1. Signal analysis methods should be developed for
field applications where only limited, noisy
data are available and source significance
must be determined quickly.

2. Inverse techniques for more complex geometries
and materials must be developed.

3. More realistic models of the sources themselves,
going beyond those of a microcrack under
uniform loading, are required.

4. Additional transducer developments, e.g., for
transverse surface motion, are required. The
calibration methods already developed
provide the essential tools for this.

It is hoped that such research, in conjunction with
increasing practical experience, will result in a
successful transition from adolescence to maturity for
this important NDE technique.

We wish to acknowledge the help and encourage-
ment of our colleagues, F. Breckenridge, N. Hsu, T.
Proctor, R. Clough, J. Simmons, and C. B. Scruby in
preparing this review of their contributions to acoustic
emission of the past decade. We also acknowledge J.
Willis (University of Bath) who made important
contributions to the NBS program on AE while
visiting the Bureau.
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