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JOURNAL OF RESEARCH of the National Bureou of Standards
Vol. 88, No. 1, January-February 1983

Estimation of Parameters in Models
for Cesium Beam Atomic Clocks

Peter V. Tryon* and Richard H. Jones**
Nationa! Bureau of Standards, Boulder, CO 80303
August 2, 1982

This paper is intended to serve as an introduction to the use of the Kalmar filter in modeling atomic
clocks and obtaining maximum likelihood estimates of the model paramaters from data on an ensemble
of clocks. Fests for the validity of the model and confidence intervals for the parameter estimates are discussed.
Techniques for dealing with unequally spaced and partially or completely missing multivariate data are

described. The existence of deterministic frequency drifts in clocks is established and estimates of the drifts
are obtained.

Key words: atomic clocks; Kalman filter; maximum likeliboed; missing chservations; random walks; state
space; time series analysis; unequally spaced data.

1. Introduction

The recursive updating of least squares estimates that would later become 2 special case of the Kalman “filter”
was apparently known to Gauss [1],' and published in the modern statistical literature by Plackett [2], Kalman’s
contribution [3] was the generalization to dynamic systems. Kalman’s filter has found immense application in diverse
areas of engineering. In classical applications, recursive estimates are obtained of the “state” of the system but
parameters appearing elsewhere in the state space representation for the system and the mathematical model for
the system must be considered known.

In our application, Kalman'’s recursive equations allow us to compute the likelihood function for given values
of parameters oceurring anywhere in the state space representation. Nonlinear optimization techniques. can then
be used to find the maximum likelihood estimates. The recursive residuals, or innovaticns, may be examined to
judge the adequacy-of-fit of the model, and generalized likelihood ratio tests may be used to test the significance
of model parameters such as frequency drifts and obtain confidence intervals for the estimated parameters. Kalman
filter technigues make it quite easy to deal with unequally spaced and completely or partially missing multivariate
data. We describe these methods in this paper.

The next article in this issue, ““Estimating Time from Atomie Clocks,” by Jones and Tryon [4] describes statistical
procedures for detecting clock errors and allowing for the insertion or deletion of clocks in the ensemble during the
parameter estimation process. It also describes the development of a time scale algorithm based on the model developed
inr this paper.

2. Models For Atomic Clocks

A cesium atomie clock is a feedback control device whose frequency locks onto the fundamental resonance of the
cesium atom at (ideally) 9,192,631,770 Hz, which defines the second. Frequency bias due to fundamental
instrumentation limitations and environmental effects are determined by calibration against primary frequency
standards. Stochastic fluctuations arise from shot noise in the cesium beam and the probabilistic nature of quantum
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mechanical transition rates which cause white noise in the frequency of the elock which is integrated into a random
walk in time. In addition, empirical studies have demonstrated that frequency wanders independently as a random
walk, introducing the integral of a random walk into time.

Finally, there is considerable international debate over the inclusion of linear drift in frequency to account for
break-in and aging. Such drifts could be strictly constant over a long time period, or allowed to change slowly as
a third random walk. The methods developed in this paper provide, for the first time, valid statistical tests of these
hypotheses.

The proposed stochastic model for a clock’s behavior is

xlt) ==t-1) + &) y(t-1) + L Fledwle-1) + <2}
ylt) = yie-1) + ° dlthwit-1) + niz) (2.1}
wlt) = wlt-1) + alt)

where

x(t) is the clock’s deviation from “perfect’” time at sample point ¢ in nanoseconds;

d(¢) is the lime interval in days between sample points ¢ and ¢-1;

y(t) is the clock’s frequency deviation from perfect frequency at sample point ¢ in nanoseconds/day;

wit) is the drift in frequency in nanoseconds/day*;

elt}, nit}, and oft) are mutually independent white zero mean Gaussian random variables with standard deviations
V' d{to,, /6iT)a,, and \/d{t)o., respectively, in nanoseconds, nanoseconds/day, and nanoseconds/day*. The
\/d(t) arises because the variance of a random walk is proportional to the time interval,

If 0, = 0, wit) is a constant, w, representing a deterministic linear trend. If both 6, = 0 and w = 0, the model
is drift-free. The purpose of this study is to evaluate the validity of these models, and to obtain generalized likelihood
ratio tests for the significance of the drift parameters and maximum likelihood estimates of the parameters o,, o,,
and w (or o,, if appropriate), for each clock in the ensemble.

3. The Kalman State Space Model for a Clock Ensemble

The combination of clocks into a Kalman state space model will be explained by considering the special case of
a three-clock model. The state transition equation is

p—— — e —_— — — pu—
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where subseripts indicate the clocks,



In more compact form this is

Xt)=o) Xt-1)+ Uit) ,t =1, 2, ..., {3.1)
where X(t) is the state vector and ®{¢) is the state transition matrix. The stochastic elements of the transition from
one state to the next are contained in Uf{z).

The clocks are never read directly, but, using sophisticated electronics, the time differences between clocks can
be read with a precision of less than a nanosecond. “Perfect’ time, which we can never observe, cancels out, leaving
an observation of the clock error differences. z,{t) = x.(t) — x-(t) and z;(£) = x,(t) — x,(t). We write the observation
equation in matrix form as

—x;(tr
yl(t)
wilt)

z,(t) 100 -1

Zz(t}

|

00 0 00

100 0 00-1 0290

x:(1)
}’2(1)
wolt)

v.2)

vqlt)

x5(2)
Y3(t)
_w;»,{tL

or

Zit) = Hy Xie) + Vi) ,t =1, 2, ... 3.2)
Zit) is the vector of observed clock time differences and H{t) is the observation matrix. F{z) is a vector of observational
errors. We write Hit) as a time-varying matrix because, in the multivariate case, partially missing data is represented
by deleting rows from H(t) thus changing the dimension of Z{t), H{t), and V(t). In some cases it is possible to recover
from a problem with the reference clock by defining a new (temporary) reference and changing the patterns of +
1 and zeros in Hit). This is described in detail in Jones and Tryon [4].

For small () the covariance matrix of the transition errors, Ulz}, is of the diagonal form diz)Q where { is

[, N

Oa

2
(e8]

0,12 0

Q= Oaz” (3.3)

Note that the matrix Q contains all the parameters to be estimated except w.

If the time offset of each clock is measured to the nearest nanosecond and is otherwise error free, the observational
error vector V(t) has covariance matrix

1712 0
Rit) = (3.4)
0 1/12 1},

since the variance of a uniformly distributed random variable from 0.5 to 0.5 is 1/12. The dimension of R{z} will
also vary with time if there are partially missing data.



4. The Kalman Recursion

First, we adopt some notation. By X({t|s), s € ¢ we denote the best estimate of the state vector at sample time
t, based on all the data up to and including sample time s. We define P(t|s) to be the covariance matrix of Xits).
Similarly, Z(zs) will be the predicted observation at time ¢ based on all the data up to time s.

The recursion proceeds through the following steps (Kalman [3]).

1. Given the state vector and its covariance matrix at any sample time, say t, we can predict the state vector one
observation interval into the future using the transition eq (3.1). The prediction is

Xit+1e) = @(e+1) Xieje) 4.1)
since the expected value of the stochastic component of the transition is zero. The covariance matrix of the prediction is
P(t+1]t) = le+1) Plele) &' (e+1) + o(e+1)Q, {4.2)

where the first term on the right is the covariance matrix of the linear operation in the state transition and the second
term is the covariance of the additive stochastic component.

2. From the observation matrix and the predicted state we can predict the next observation.
Zt+1lt) = He+1) Xie+1]2). (4.3)

3. We next compare the prediction with the actual data (when it becomes available in a real-time application). The
difference is the recursive residual, or innovation,

He+1) = Zt+1) - Ze+1lz), (4.4)

which has covariance matrix
Ci{t+1) = Hit+1) Pit+1|t) H'(t+1) + Riz+1). 4.5)

The residuals are critically important. Later, they will be used for checking the fit of the model and estimating
the parameters. For now, we will use the information in the residual to complete the recursion.

4, Let

Alt+1) = Ple+11t) H'(e+1) CHe4-1). (4.6}

This is sometimes called the Kalman gain.
Using the Kalman gain we can update the predicted state and its covariance

X+1)t+1) = X{e+1e) + A1) Te+1) {4.7)
and
Pi+1le+1) = Pli+1]t) - A+1) Hie+1) Ple+1]eh (4.8)

This completes the recursion.



5. Maximum Likelihood Modeling and Estimation

In this section we will compare the classic use of the Kalman filter with our method of application. In the classical
application, unknown parameters to be estimated can appear only in the state vector. All other quantities which
appear in the reeursion must be knewn. A single pass of the recursion through the data (often in real time) provides
the latest estimate of the state veetor and its covariance at each point in time. This is exactly how the Kalman filter
is applied to forming a time seale. Given the model and estimates of the parameters, the recursion gives the updated
state vector after each new observation. The first, fourth, and seventh, ete., elements of the state vector are estimates
of the clock errors, from which, along with their uncertainties from the state covariance matrix, we can estimate time.

Our interest, however, is in evalnating how well the cloek model fits real data, and in estimating the parameters.
To do this, we make use of twe facts concerning the residuals, I{t), r = 1, 2, ..., N.

1. H the model is correct, and the recursion is run through the data with the correct values of the unknown parameters,
the residuals will form Ganssian white noise series. Standard statistical tests can then be used to determine if the

residnals are in fact Gunassian white noise. If not, the structure of the residuals can often give some clues as to the
defects in the model.

2. From the residnals and their covariance matrix, obtained by running the recursion with any fixed values of the
unknown parameters, the likelihood function for those parameter values can be computed. Speeifically, the -2 In
likelihood function (ignoring the additive constant} is

L =73[n|Cte) | + I'te) C (o) Fe)l. (5.1)
t

The maximum likelihood estimates of the parameters are those for which L is minimized. Starting from initial
guesses, we can use iterative nonlinear function minimization methods to find the estimates. Evaluating the function

L for new trial values of the parameters requires one pass of the Kalman recursion through the data. Note that
the parameters to be estimated may appear anywhere in the structure of the Kalman recursion.

6. Computational Procedures

It is not necessary to invert the residual covariance matrix, C(t), when computing the likelihood function or updating
the predicted state vector and its covariance. If the upper triangular portion of Ciz+1) is angmented by
H(t+1)}P(t+1]t), and I{t+1) to form the partitioned matrix

[C(e+1) | He+1) Ple+1]e) § Ie+1)], (6.1}
a single call to a Choleskey factorization routine {Graybill [5}, p. 232} which factors

CG+1) = T'(t+1) Tt-+1), (6.2}

where Tit+1) is upper triangular, will replace the partitioned matrix by
(Te+1) | [T'+1)]" He+1) Pe+1e) | (T e+0)* He+1)] (6.3)
If we eall the parts of the new partitioned matrix

[T(+1) | Ble+1) |[D(e+1)], (6.4)

the updated state and state covariance matrices become



Xie+1jt+1) = X(¢+1[z) + B'{¢+1} Dle-+1) (6.5}

and
Ple+1]e+1) = Ple+1jz) - B'(e+1} Blz+1). {6.6)
The -2 In likelihood function becomes

L =3 (2 W2 + D) D)) (6.7)
t i

where t,(t) are the diagonal elements of T{t).

Missing data are easily handled by the Kalman filter procedure. However, there are two distinct situations. First,
all the data may be missing at one or several successive observation times, and second, occurring only in multivariate
data, only part of the data may be available on a given occasion. For example, one or more, but not all, of the
clock differences are missing on that occasion.

The first case is most easily dealt with. In the present model, the unequal spacing feature can account for any
size gap in the data by proper choice of diz). This, however, is a feature of random walk based models and may
not apply to other models. A more general procedure for missing data is the following: Suppose k > 1 successive
cbservations are missing., Simply repeat step one in the recursion k additional times to obtain the predicted state,
X(t+k-+1[t), and its covariance, P(t+k-+1|t), for the next observation time for which there is data. Then proceed
with the remainder of the recursion. There is no residual and no contribution to the likelihood function when there
is no data (Jones [6]).

In the second case, partial loss of data, i.e., missing elements of the data vector Z{(t), can be represented by eliminating
the corresponding rows of the observation matrix, H(t}. Similarly, rows of the observational error vector ¥{t} and
rows and columns of the error covariance matrix R(¢) causes no problem with the remaining steps of the recursion,
which proceed normally. The information available in the data is propagated through the recursion to correctly update
the state vector prediction and its estimated covariance matrix.

The matrix operations in the recursion are, for reasons of efficiency, best coded to take advantage of the specific
structure (many zeros) of each matrix. Using available general purpose subroutines to perform the required matrix
operations would increase the cost of computer resources enormously. These calculations can be adapted to a
time-varying H(z). One approach is to use indicator variables for missing data to form the various reduced matrices
directly. Another approach is to note that pre- and/or post-multiplying by Hiz) with rows missing is equivalent to
performing the operation with the original H matrix and then eliminating the appropriate rows and/or columns of
the produet matrix and closing it up. For example, the residual covariance matrix

Cle+1) = HG+1) Pe+1t) H'(e+1) + R(t+1)

with, say, the second and fourth elements of the data vector missing can be obtained by using the original H and
R but then eliminating the second and fourth rows and columns from Cl¢4-1). It is straightforward to write general
purpose subroutines to eliminate rows and/or columns of a matrix and close up the spaces. Again, this can be done
in response to indicator variables denoting missing observations.

To start the recursion the initial state X(0|0) and its covariance P(0|0) are needed. Both depend on the application.
The time states could be set to zero and the cloeks set to agree with International Atomic Time as defined by the
BIH. The corresponding variances on the diagonal of P(0|0) would be determined by the accuracy of the
intercomparison. If a strictly internal application such as parameter estimation or a time interval measurement was
desired, the time states could be set to agree with the difference readings at ¢t = 0, with observational error variances
set to the appropriate value for roundoff error. The frequency states might be measured by intercomparison with
the frequency standards and the variance determined from the measurement uncertainty. When a measurement is
not possible a best guess at the frequency offset can be used with a corresponding guess at its uncertainty used for
the variance.



7. Data Anadlysis

The data used for this analysis were collected over a perioci of 333 days beginning on February 16, 1979, during
which seven clocks listed below were in essentially uninterrupted normal operation. Clock differences were recorded
daily to the nearest nanosecond.

Clock Number Identification

601 {Reference} HP model 5061A option 004 serial #601

167 HP model 5060A serial #167

137 HP model 5060A serial #137
1316 HP model S061A option 004 serial #1316

323 HP model 5061A 004 serial #323

324 HP model 5061A 004 serial #324

8 Frequency and Time System model 400 serial #8

In addition to occasional variability in the time of data collection, two successive days were missing entirely, On
three other occasions, single clocks had obvious read errors which when discarded resulted in partially missing data.
Several dozen other observations which had been flagged as possible errors by the ad hoc procedure then in use
were examined visually, judged to be not serious, and retained in the analysis.

Table 1 gives the results of the computations. First we note that the inclusion of deterministic trends (model 1)
results in a drop of 4] in the -2 In likelihood function value over the no-trend model (model I). The reduction is
distributed as X*{6) under the hypothesis of model I, so this is highly significant, There is less than one chance in
a thousand that this is a spurious result. Three of the seven clocks had significant trends. The inclusion of random
walk drifts (model 111), however, makes no improvement. Furthermore, the estimated values for the o,’s are all
approximately zero and the estimated initial values of the drift, t(0), are about the same as the deterministic drifts.
The conclusion is that several frequency trends are present in this data and that they are constant over the year,
rather than wandering as a random walk. It should be noted that one of the drifting clocks had just begun operation
while the remaining two were nearing their end of life and failed shortly after the test period. The remaining clocks
were in their “middle years.” The standard errors of the parameter estimates given in the table are obtained from
the estimated covariance matrix as approximated by twice the inverse of the Hessian of the -2 In likeliho~4 function, L.

In model II it is necessary to constrain the solution so that the sum of the drifts is zero. This means that we cannot
detect a common drift from clock difference readings. Because of this constraint, a standard error for clock #8 is
not available. Due to the large cost of computing the 28 x 28 Hessian for model IT1, which we have rejected anyway,
the standard errors of the estimates have not been computed.

Figures la-f are integrated periodograms of the six series of residuals. The parallel lines represent five percent
significance test limits for white noise. That is, only five percent of actual white noise series so tested will wander
outside the lines. In this data set, only one pair of clocks {601 minus 167) two) show a slight deviation from white
noise. We conclude that this model fits very well. Figures 2a-f are histograms of the six residual series. Also given
are three different tests for normality. All the series are well approximated by the normal (Gaussian} distribution
which verifies that the assumed likelihood function was reasonable.

We note in conclusion that, having selected the constant drift model, we could reduce the dimension of the state
space model by one-third by rewriting the clock model as

x(¢) 1 dlek x(t-1) d*(t)/2 elz)
ylt) 0 1 y(t-1) 4(t) nlz)

The state prediction in the first step of the recursion then becomes

X(e+1t) = ole+1) X(z[e) + Ale+1)



where

[ s4e) w,
2

dlehw,

Alt) = a*{t) w, ,
2

d(t]uh

and X(¢) and ®(z) are redefined from the clock model in the obvious way. This model would be suitable for estimation
purposes but not for a time scale algorithm. With the drift in the state vector we can enter the uncertainty of its

estimation in the initial state covariance matrix. It is then propagated through to the uncertainty in time. The simplified
model above assumes w is known without error.

TABLE 1. Results of data analysis.

Model I Model 11 Model I
No Trend Deterministic Trend Random Walk Drift
L = 10609.1 L = 10567.8 L = 10567.7
Clock
Number Param. Est.* S.E Param. Est.* S.E. Param. Est.*
601 3 = 142 32 a. = 146 .32 a, = T.47
5, = .B6 .24 a, = M 2 a, = 48
w = 152 038 wid) = 152
B, o= 41x107
167 o = 13.45 .56 o, = 13.45 .56 o, = 13.46
o, = 115 .39 5 = L1l .36 5 = 107
w = 052 .061 wi0) = .04
5, = 3.7x107
137 o, = 10,03 .45 O = 16.04 .45 O, = 10,06
o, = L71 .36 a, = 160 .36 a, = 157
e = 170 081 wldr = 178
B, = 2.2x307"
1316 o = 361 .24 a, = 3.62 .25 O, = 3.59
5, = 129 .24 5, = 136 .24 5, = 138
w = 017 .070 w(0) = -.015
5, = L3xio™
323 g, = 3.27 .24 a, = 3.5 .22 o, = 3.52
5, = 154 .21 & = .13 .20 5, = .10
w = =313 .M6 v = =314
5, = 4%
324 g, = 330 .25 &, = 3.3 .25 G = 3.30
5, = 142 .23 5, = L40 .22 5, = 1.4l
w = 035 .072 wid) = .035
b, o= TOxI¢C
8 o, = 908 .43 0, = 909 43 O, = 9.09
8, = 268 .39 6, = 265 .39 ¥, = 2.66
i = -088 - widp = -.090
& = 39107

*Units are in panoseconds.
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8. Conclusion

The Kalman filter is a powerful tool for maximum likelihoed model fitting and parameter estimation in time series
analysis. We have established the validity of the proposed models for clock behavior and obiained precise estimates
of clock parameters. The existence of deterministic frequency drifts over a period of a year has been demonstrated
in clocks at the beginning and end of their life span.

The primary disadvantage of these methods is the cost of function evaluation in the nonlinear optimization process.
The analysis of a year of data on seven clocks takes 10 minutes on a CDC Cyber 170/750 computer and 10 hours
on the DEC 11/70. Use of state-of-the-art optimization codes is essential. We use an optimization package especially
designed for maximum likelihood applications, It is adapted from the package written by Weiss [7], based on algorithms
by Dennis and Schnabel [8]. The code used on the CDC Cyber 170/750 is part of a preliminary version of the National
Bureau of Standard’s STARPAC library [9].

The authors would like to thank James A. Barnes and David W. Allan of the National Bureau of Standaxds,
Time and Frequency Division. They not only brought the problem to our attention and suggested the mathematical
model, but collaborated with us on a continuous basis. This study was partially supported by the NBS Nationral
Engineering Laboratory,
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FIGURE lc. Residuals from clock 601 minus clock 1316.
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FIGURE 1d. Residuals from clock 601 minus clock 323.
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INTEGRATED SAMPLF PFRIODOGPAM (+) WITH 9% PER CENT TEST LIMITS FOR WHITF HOLSE (.}
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FIGURE le. Residuals from clock 601 minus clock 324.
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FicURE Hf. Residuals from clock 601 minus elock 8.
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NU®BFR NF DRASERVATICNS = 332
HINIMUM ORSERYATICN = = 4332A9T1AF N2
MAYTHUM DBSFRVATINN *  L,4285R3010E+07

HISTAGRAM LOWER AOUKD = -,450000000F+02
HISTAGRAM UPPER ROUND = L 45000N000F 02

OBSFIVATINNS USED

- 332 25 PLT TRIHMED MEAM = =,3337149R5E+00
MIN. DASFRYATION USED » =,43337%718E402 STaNDaRD DEVIATION & L,140738350E+02
HMAaX, DRSERVATION USED =  L42FS5AI0T0E+02 MEAN DEY./S5TD. DEV, » .BO54IBTLZE«QD
ME&N VALUF = =, 153504202F400 Ales0,5 = +145358914E=02
MEDTAN VALUE " =~ 6913P10A2F 400 B2 = L279156T26E+0)

FOR & NORMAL OFSTRIRUTION, THE VALUES (MEEN DEVIATINN/STANOARD DEVIATINN), ALle*0,5 AND B2 ARE APPROXIMATELY
04Ay 0.0 AND 3.0y RESPECTIVELY, TO TEST THE NULL HYPDTHFSIS OF ND2MALITY, SEE TABLES OF CRITICAL YALYES
°p, 207-208, RIOMETRIKA TARLES FOR STATISTICIANSs ¥OL. I. SEE PP, $7-68 FOR A DISCUSSION OF THESE TESTS.

INTFRVAL CuM, 1-CuH. CFLL ND, CELL FRACTIOHN
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FiGURE Za. Histogram—residuals from clock 601 minus clock 167.
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0.R, 0.0 &ND 3.0y RESPECTIVELY. TR TEST THE HWULL HMYPDTHESLS M7 NORMAL[TY, SEE TABLES OF CRITICAL VALUES
PP. 207-208, RINMETRI¥A TARLES FO8 STATISTICIaWSs VvOL. 1, SEE PP, H7-48 FOR & DISCUSSION OF THESE TESTS.
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FIGURE 2b. Histogram—residuals from clock 601 minus clock 137.
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PP, 207-2008, RINMETRIKA TARLES FCP STATISTICT&NSs VOL. 1. SEE PP, A7=4A FOR & DISCUSSION OF THESE TESTS.
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FI1GURE 2e. Histogram—residuals from clock 601 minus clock 1316,
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FIGURE 2d. Histogram—residuals from elock 601 minus clock 323.
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FIGURE Ze. Histogram—residuals from clock 601 minus clock 324,
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FIGUuRE 2f. Histogram—residuals from clock 601 minus clock 8.
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A Kalman recursive algorithm for estimating time from an ensemble of atomic clocks has been developad.
The algorithm allows for the addition or deletion of clocks at any time, and provides automatic error detec-
tion and correction. The observations consist of time differences between clocks and may be taken at un-
equally spaced time points. Maximum likelihood estimates of the unknown parameters are obtained with
confidence intervals, as well as hypothesis tests to determine whether the estimated parameters are significantly

different from zero, The program is operational on the National Bureau of Standards’ Time and Frequency

Division’s PDP 11/70.

Key words: atomic clocks; Kalman recursion; maximum likelihood estimation; missing observations;
nonlinear estimation; state space; time series analysis; unequally spaced data,

1. Introduction

Cesium beam atomic clocks have an accuracy of a few
parts in 10" over a period of a day; however, they are
not deterministic and undergo stochastic variations in both
time and frequency. It was shown by Tryon and Jones
[1] that the actual frequency of a clock behaves as a
random walk which, over a time period of a day, has a
standard deviation of less than four nanoseconds per day.
The effect of this random walk in frequency on time
measurentents is that the individual frequency steps are
summed, producing an integrated random walk,

In addition, frequency has a white noise component
which integrates into an independent random walk in time
with a standard deviation of up to 15 nanoseconds over
a time period of a day. Therefore, the deviation of clock
time from true time beliaves as a random walk plus the
sum of a random walk. The possibility of a frequency drift
also exists.

When estimating time from an ensemble of clocks, the
only observations possible are measurements of time dif-
ferences between clocks. In addition, ohservations may
occur al unequally spaced time points, and various types
of errors are possible. The most common errors are read
errors, where a single measurement is incorrect but subse-
quent measurements are the same as if the read error did

*Division of Bicmetrica, Box B-119, School of Medicine, University of Col-
orade, Denver, CO 80262,

**Deceased. Dr. Tryon served with the Center for Applied Mathematics,
National Engineering Laboratory.
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not oceur; time steps, where a jump in time occurs and
the clock remains at the new position; and frequency steps,
where the frequency takes a step and remains at the new
position. This last error appears as a change in the rate
of gain of the clock.

This paper describes a state space algorithm for
estimating time from an ensemble of cesium beam atomic
clocks with unequally spaced observations subject to
various errors. Clocks can be added to or deleted from
the ensemble. Using iterative calculations over a recent
history of the ensemble, maximum likelihood estimates
of the unknown variances can be obtained by nonlinear
optimization. Confidence intervals on the estimated
parameters and test of hypotheses, such as whether
parameters are significantly different from zero, can also
be obtained from the likelihood function.

2. Mathematical Model

The model for a single clock in state space form is

x(t) 1 d(z} d42)72] | x(e-1) elt)
yig) | =]0 1 d(z) y(t=1) | + | nle) [(2.1)
wit) 0 0 1 wit-1) alt}|,

where t = 1, 2, 3, .. . is an index of the observation
points, x(t) is the difference between the clock’s time and
*true” time, and y(z) is the difference between the clock’s
frequency and the fundamental resonance of the cesium
atom which defines the second, 9,192,631,770 Hz, and



is expressed in units of nanocseconds per day. wlr)
represents a possible frequency drift in units of
nanoseconds/day?, and d{t) is the time interval between
t-1 and t in days. £(t), n(t) and «(t) are random variables
with zero mean, uncorrelated with each other, and un-
correlated in time. These are the input to the random
walks, and for small d(t), their variances are proportional
to the length of the time intervals between observations,
dait),

Var {elt)} = d(t) o

Var {n(t)} = dlz) c;,,]2 (2.2)

Var {alt)} = d(z) 0,°

If 6,% = 0, the drift, wiz), does not change with time.

The state equation for an ensemble of m cloeks is ob-
tained by concatenating the three state elements of each
clock into a column vector of length 3m. The state tran-
gition matrix, ®(z), is a 3m by 3m matrix consisting of
3 by 3 blocks on the main diagonal corresponding to the
state transition matrix in eq (1}, and zero blocks off the
main diagonal. This equation of state for m clocks will
be written.

Xiz) = &) X(e—1) + Utr). (2.3)

The random input vector, U{t), is of length 3m and con-
sists of the elt), nlt), and aft) for each clock. The
covariance matrix of Ulz), d{(r) (, is a 3m by 3m diagonal
matrix with diagonal elements consisting of the o’ 0y’
and o,* for each clock. While reasonable guesses are
available for the o, and 0, %, it is necessary to obtain bet-
ter estimates of these variances from data. The values are
characteristics of each clock and will be different for each
clock. It is also necessary to determine whether the o,*
are significantly differen: from zero. If the o,* are not
significantly different from zero it would indicate that any
drifts that exist are deterministic rather than random
walks. In this case the w(t) will be constant with respect
to time and these can be tested to determine if the drifts
are significantly different from zero.

When observations are taken, one of the clocks is used
as a reference clock, and the time differences between this
clock and each of the other clocks are recorded. This gives
an observation vector Z(t) , of length m-1, and an ohser-
vation equation of the form

Z(t) = H(t)X(t) + V(e), (2.4)
where H(¢) is a matrix indicating which clock differences
are observed. If the first clock is the reference elock, Hit)
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is of the form

prv—

-

100-100 000CG 0O...

100 000-100C 0
Hit) = (2.5)

100 000 0060 -1

and has dimension (m—1) by 3m. H(t} can be time depen-
dent since if observations are missing or deleted because
of error detection, rows of H{z) are eliminated. V(t}is a
vector of observational errors. These errors are very small
when reading clock differences. If the data are truncated

to the nearest nanosecond, the variances of the elements
Vi) would be

r = 1/12 (nanoseconds)®. (2.6}

When observations are taken with higher precision than
the nearest nanosecond, r can be reduced and its value
determined from the instrumentation. The cbservational
error variance matrix, R, will be a diagonal matrix and
diagonal elements r, assumed to be equal and known.
While these numbers are very small, the inclusion of R
in the recursion does add numerical stability.

3. The Data

In a companion paper [1] Tryon and Jones used 333
daily observations from seven clocks starting February 16,
1979 to estimate clock parameters., These data were
chosen since they consisted of a fairly long record with
few errors. Some preprocessing was hecessary to remove
several outliers giving a set of data that could be con-
gsidered error-free. These calculations were carried out on
a CDC Cyber 170/750 computer.

This paper reports the new statistical procedures and
techniques that were incorporated when the algorithm was
rewritten to run on the National Bureau of Standards
Time and Frequency Division’s PDP-11/70. The
algorithm was initialized on March 31, 1981 with the first
set of data collected on April 1, 1981. At the beginning
of each month the daily observations from the previous
month are passed to the algorithm without preprocessing.
While the data are nominally collected at the same time
each day, for various reasons, the time of the observa-
tions are sometimes off by several hours giving unequally
spaced data. Individual clocks may have read errors, time
steps, and frequency steps. In addition, clocks may be
added or deleted from the ensemble.



4. The Kalman Recursion With
Error Detection

Let Xit|s}, s <t be the best estimate of the state vector
at time ¢ given obervations up to time s, and let Pit|s) be
its covariance matrix, The recursion begins by specifying
X{0]0) and P(0]0). First a one step prediction of the state
vector is calculated [3]

Xit+1]2) = dle+1} Xdelt), 4.1)
as is its covariance matrix
Plt+1it) = oG+1) Pltle) ¢ '(e+1) + Se+1)Q.  (4.2)

The predicted values of the observations at time £+1 are

Zit+1]t) = H(e+1) X(e+112). (4.3)

The difference between the vector of actual observa-
tions and predicted observations is the innovation vector,

I(t+1) = Z(t+1) - Z{e+1|t), (4.4)

which has covariance matrix

Cle+1) = H(e+1)P(+1]t) H'(¢+1) + Rlz+1). (4.5}

It is at this point in the recursion that a statistical
method of error detection is employed. A simple method
would be to divide each element of the innovation vector
by the square root of corresponding diagonal element of
its covariance matrix giving a standard normal variable
under the null hypothesis of no error. However, since clock
differences are being measured and the elements of the
innovation vector are intercorrelated, this is not an op-
timal test.

If there is an error in the reference clock, a constant
bias will appear in every reading. This can be written as
a regression equation with correlated errors

Ht+1) = A B + & (4.6)
where A, is a column vector of ones
4,'=,1,...1), 4.7)

and the error vector, &, has covariance mairix C(t+1)
from eq (4.5). If there is an error in a clock which is not
the reference clock, the error will appear only in the
measurement involving that clock. For clock 1, the model
is

Hie+1) = 4; 8 + «, (4.8)

where

A'=M00----1---0] {4.9)
the minus one appearing in the position of the clock.
Although there are only m-1 measurements, m tests, one
for each clock, are possible, but they are not statistically
independent tests. Letting A represent any of the A vec-
tors, the minimum variance weighted least squares
estimate of f§ is

b= A'C¢+1H+1)/4°C e +104, (4.10)
and has standard error
s.e.(b) =(1/4"C(e+1)14)". (4.11)
If the test statistic
z = b/s.e.(b) (4.12)

has absclute value larger than some value such as 3.0,
the corresponding clock is assumed to have an error. It
must be remembered that this test is only approximate
if gnesses are being used for the random walk variances
in the Q) matrix, and will be much more accurate after
maximum likelihood estimates are obtained for these
variances. The details of the above caleculations are given
in the Appendix.

An overall test for errors is possible by calculating the
quadratic form

Q = ['e+1) CHe+1) Ie+1) (4.13)
which will be distributed as chi-square with m—1 degrees
of freedom under the null hypothesis of no errors in the
observations. Although this statistic is caleulated, it is no
longer being used for error detection since it is felt that
this test lacks power against the most common alternative
of an error in a single clock,

If an error is detected, the reading for the clock in ques-
tion is eliminated from the observation veetor. If more
than one error is detected the clock with the largest ab-
solute value of z is eliminated and the tests recalculated
for the remaining clocks. If the clock to be eliminated is
the reference clock, the reference clock is eliminated by
choosing a clock still in the model to be the new reference
clock and forming a new data vector by subiracting the
reading of the difference between the previous reference
clock and the new reference clock from each of the other
readings. This is shown schematically as:
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New

Previous
-0
D-0{0-0]=0-0
D-0-[(0-0]=-0-®
O-0-l0-0]-0-6.

When all remaining clocks pass the test, the recursion
continues. Let the Kalman gain be

(4.14)

AMe+1) = Ple+1]z) H'(e+1) CHe+1).  (4.15)

If clocks have been eliminated due to errors, the rows
of H{t+1) corresponding to the eliminated clocks are
eliminated as are the corresponding rows and columns of
C(t+1). In the cases where the reference clock is changed,
the positions of the ones in the H(z+1) matrix must be
moved to correspond to the new reference clock. The
estimated state vector is then updated,

XG+1e+1) = X(e+1]e) + Ale+1) Ie+1), (4.16)
as is its ecovariance matrix

Pe+1e+1) = Ple+1je) —
Ale+1) H(e+1) Ple+1e). (417

This completes the recursion, but the effects of any
detected errors must be resolved. Because the measure-
ment errors of the data are so small, the final updating
eq (4.16) essentially sets the time states to agree with the
actual readings of the differences. This will not be the case
for any clock that was eliminated at this step since its
reading has been eliminated. That clock will simply re-
main at its position which was predicted from the previous
time point. Since the most common type of error is a time
step (a clock change which persists into the future), an
administrative decision was made to correct the time state
of a clock with a detected error so that the difference be-
tween the time of the reference clock and the clock with
an error agreed with the actual observation. If the error
was a read error which does not persist into the future,
an error will probably be detected at the next time point
which will have opposite sign and a reverse correction
applied.

The remaining problem is the possibility of a frequency
step. If a very small frequency step occurs, the Kalman
algorithm has the flexibility to slowly adjust the estimated
frequency of the clock to the new value. If the frequency

step causes a time change large enough to be detected,
it is not known in one interval whether this is a time error
or frequency step. In case a frequency step did occur, it
is desirable to allow the frequency state to adjust quickly
to the new value, In order to accomplish this, the diagonal
element of the state covariance matrix, P(t-+1|t+1) cor-
responding to y(z+1) of the clock in question is increased.
The value that is added to this diagonal element is the
minimum of (2¥¢/4(t))* and d(¢)10¢, where ¢ is the clock
time correction. This allows the recursion to adjust to a
new frequency within a few time steps. Whether or not
a frequency step occurred, the P matrix returns to its
previous order of magnitude within a few time steps.

The estimate of ““true” time is obtained from the state
vector X(t|t) which contains the estimates of x{z) for each
clock. The estimated values of x (¢} for each clock are in
relative agreement since their differences agree with the
observed differences at time ¢. A relatively crude clock
within the computer is used to determine the approximate
time of the measurement.

Each of the clocks runs freely and independently of the
others. Thus the ticks of the clocks each second are ran-
domly distributed. If the tick on the reference clock is used
as the indicator to read the other clocks, the readings are
the time differences between the ticks in nanoseconds. At
some time in the past the ensemble was initialized relative
to some definition of “true” time (for example, interna-
tional Atomic Time) and the uncertainty expressed in the
initial covariance matrix P{0|0). At that time each clock’s
tick was a certain number of nanoseconds off of “true”
time. As data are collected and the algorithm progresses
through its steps, all the clocks remain in relative agree-
ment, but the ensemble drifts as a whole. The variance
of this ensemble drift is given by the diagonal elements
of Pit|t) corresponding to the x{t) for each clock. Since
observational error is so small, these diagonal elements
are essentially all the same. True time js estimated by cor-
recting the tick of any one of the clocks by an amount
equal to its estimated time state, x(z), which is an estimate
of the clock’s deviation from true time. The variance of
time estimate is the corresponding diagonal element of
Plefe).

Sample output from the algorithm starting with the in-
itialization, which was output from the previous run, is
shown in figure 1. An example of a detected error with
an adjustment is shown in figure 2, The algorithm also
has the capability to adjust any clock administratively by
a given amount or apply a frequency adjustment to all
elocks in order to steer a time scale. These are software
adjustments which do not affect the physical clocks but
enable a time scale to trace another time scale such as In-
ternational Atomic Time. The National Bureau of Stan-
dards has several of these paper scales.
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INITIALIZATION. 9 CLOCKS
HJD= 43039 TIME= 1300
CLOCK INLTIAL STATE STANDARD DEVIATION ROOT G
TIME FREG DRIFT.  TIME FREQ DRIFT TIME  FREQ DRIFT
1 1314 270534. & 9. 20 0. 000 1356, 2 5. 02 0, 000 4.14 0.80 0. 000
2 147 ~44533. F 549, 8O 0. 000 13546, 2 4. 72 0. 000 13. 52 [ | 0. 000
3 137 1aL o 52. 97 0. 000 13%6. 2 7. 29 0. 000 11,31 2 49 0. 000
4 113 -2079782683. 4 *39. 05 0. 000 1354. 2 7. &0 Q. 000 9. 48 3.18 Q. 000
3 PHMA -254418838. 3 HA0. b4 0. 000 1356, 2 4. 81 0. 009 0. &3, o 77 0. 000
& 352 ~78346. 7 S68. 72 0. 000 13542 ?. 97 0. 000 a.a3 be e = Q. 000
11 137% 3038. 1 ~94. 37 0. Q00 13%46, 2 &.20 0. 000 10. 71 1. 48 0. 000
14 401 12014. 9 41. 48 Q. Qo0 13384, 2 4. a1 0. 000 2 13 0. 06 0. 000
5 B -23018. 3 b4, 33 Q. 900 13%46. 2 7.0% 0. 000 8. 63 2. 74 0. 000
HJD= 43040 TIME= 1200
DIFF OBBERVATION PREDICTED 028 REGLDUAL STANDARD DEVIATION T TEBT
1- 2 314518, & 314317.9 Q.7 13,1 0.0
i~ 3 236754 @ 2387%9.8 -3.0 13. 4 -0. 4
1- 4 208247676, 0 20B247890. 2 -i2. 2 2.1 -1.0
1- 3 a4668722. 0 a34828721. 7 .3 4.8 01
i a 3468032, & 348322, 0 10. & 11. & Q.9
1=11 267%1. Q <L7602. 1 -21.1 12. 4 ~-1.7
1-14 238486. 3 2DEABY. 3 1.0 5.1 a2
1-13 2%4344. 0 nF4N28. 6 17.2 11.1 1.3
CLODCK UPDATEDR ETATE BTATE CHANGES S8TANDARD DEVIATIONE |
TINE REG DRIFT TIME FREQ DRIFT TIRE FREQ DRIFT
1 13ls 270%44,. 8 9. 3t 0. 000 0.9 0. 11 0. 000 1360. 7 3. o= Q, 000
& 147 -43973. 8 342, BO 0. 000 * 02 Q. 00 0. 000 1340. 7 6. &1 * 0. 000
3 a7 117%90. 0 54, 0B 0. 000 & O 1.13% Q. 000 1360. 7 7.29 B 0. 000
4 113 ~-207977333. 2 942, &7 ©. 000 13.1 3, 62 0. GO0 13&60. 7 L 7,59 . © 0. 000
S PHM4 -234418177. 2 &0, T4 0. 000 0 & 0.10 Q. G600 t360. 7 R 4. 81 Q. 000
& 352 -77787.8 543, 58 0. 000 -9.7 -3.14 0. 000 + 13407 " 7. 87 ‘07000
11 137% =763, B ~23. 54 0. 000 22. 0 2. 80 0. 000 - 1340. 7 o 20 . 0. 000
14 401 12054. 3 41. 47 0. 000 -0.1 Q. 00 0: 000 1360: 77 4.41 0. D00
i5 8 ~-246001. 2 =271, 0% 0, GO0 -1&. 2 —4. 52 0, OOO 1340, 7 - 7. 03 Q. 000

FIGURE 1. Example of output of algorithm starting with the initialization from the previous run. ,Under INITIALIZATION and UPDATED

STATE, the standard deviations are the square roots of the diagonal-elements of the state covariance matrix, Plt|t). Under MJD = 45060,

the standard deviations are the square roots of the diagonal elements of the innovation covariance matrix, Clt).

BTATE CHANOES

TED STATE GETANDARD DEVIATIONS
cLock T:'PHEDA FRE4 DRIFT TIME FREG DRIFT TINE FREG DRIFT
1 1314 270498. B 580 0. 000 1.3 Q.29 0. 000 1477. 2 5. 03 0. 000
2 187 -29341. 0 833, 24 Q. 000 -13.8 —1 o7 0. 000 1477. 2 & 09 ©. 000
3 137 13184, 1 52, a3 Q. 000 14. 7 .97 0. 00% 1477.2 7. 29 ©. QU0
4 113 —2019327949. 7 939. 03 0. 000 0.% 0.38 0. 000 1477. 2 7. 99 0. 000
5 PHM4 -2344600973. 3 &62. 08 0. 000 -1.8 -0. &8 Q. 000 1477. 2 4. 82 0. 000
& 332 -43184. 8 240, 60 0. 000 9.0 2.94 0. 000 1477. 2 7. 57 0. 000
11 1373 417. 2 =34, ¥ 0. 000 =-9.3 =1. 14 0. 000 1477. 2 b 21 0. 000
14  &01 13133 3 41,47 0. 000 0.0 Q. 00 0. goo 1477. 2 4, &2 Q. 000
1% -] -31091. 2 =943, 30 0. 000 &1 1.79 Q. 0600 1477. 2 7. 04 0. 000
MJID= 43087 TIME= L403
DIFF OBBERVATION PREDICTED OBS RESIDUAL STANDARD bEVlATIm T TEBT
1- 2 299668, 2 2996462, & 3 b . F 02
1- 3 237494 & 23743%. 0 41. & 13 ? 3.0
1- & 208222464, 2 2082224873, 2 -17.0 12 4 -1. 4
1= 3 2¥4870967. 7 234870%41. 0 & 7 LA 1.4
1- & 33233, % 333260, & -23.1 11. 9 -2.1
1-11 270444, 7 270393.3 8. 6 2.9 4,1
1~14 257533. 0 237324, 3 10.3 52 2.0
1-13 J22u4l. 2 Jdzd4d. 4 —-4.2 11,4 . 4
#a B R 0UAD= 40 & CLOCK 11 -44. 7 1.7 3.8
DIFF OBSERVATION PREDICTED OHA RESIDUAL STANDARD DEVIATION T TEST
i- 2 2994666, 2 26T & < Y] 14. 9 0.2
i- 3 2574%6. & 237435, 0 41. & 13.7 3.9
1- 4 208222464, 2 208222483, 3 =-17.0 12. 4 =-1. 4
1- 3 204870967, 7 23470941. 0 & 7 4.9 1.4
1— & 333255. 5 333280. & -23. 1 1.9 -2 1
1-14 AT O 237924, 10. 3 3.2 2.0
1-13 322041. 2 32284%. 4 e N 1 11. 4 -0, 4
CLOCK 11 ADWANCED BY A4 7
CLOCK. UPDATED BTATE STATE CHAMCES BTANDARD DEVIATIONS
TIME FREQ DRIFT TIME FREQ DRIFY TIME FREQ DRIFT
1 13& 270713. 7 7.39 0. 000 10. 6 1,58 0. 60O 1482 1 5 03 0. 000
2 167 -289%0. 3 533. 74 0. 000 7.1 0. 48 0. 000 1482. 1 6. 07 0. 000
A 137 13219. 1 51. 98 0. 000 -31.0 -&4. 87 0. 000 1482 1 7.23 0. 000
4 113 -20793.1750. 3 P44, 44 0. 000 27.7 7.3%9 0. 000 1482. t 7.9 0. 000
3 PHM4 ~2345600232. 0 &62. 09 0. 000 3.9 0. 3t Q. 000 1482. 1 4 81 Q. 000
& 3 -42339. 8, 371.19 0. 000 3% & 10, b9 0. 000 1462, 1 7. AB a. 000
11 1373 270.8 -94. 76 0. 000 a.7 0. 25 0. 000 1482, 1 29. 93 0. 00D
14 &0L 13180. 9 41. 43 0. 000 0.1 -0. 02 Q. 000 1482. 1 4. 562 0. 009
19 [} ~52123. 3 -F61, Bl 0. 000 14.8 3, 49 0. 000 14682, 1 &, 39 0. 000
FIGURE 2.

Example of computer output with an error detected in clock. 11. The listing starts with the final results from the previous day.
QUAD refers. to the overall test which is not actually used for deteciing errors but is printed out so that errors are easily visible. The optimal

estimate of the clock error is ~44.7 with standard deviation 11.7.

21



5. Estimation of Parameters

Assuming Gaussian errors, -2 In likelihood is calculated
from

L =3 [In|C(2)| + I'(t) C(2) T(2)).
i

(5.1)

This gives a number which depends on the values of
the parameters of the model. Nonlinear optimization
routines can then be used to minimize this function giv-
ing maximum likelihood estimates of the parameters.
Each function evaluation is a pass of the recursion through
all the data.

When error detection is used, a new problem arises. The
dimensions of C(t) and I{t) are reduced if a clock is
eliminated at time t. When the nonlinear optimization
routine varies the parameters, it is possible that at some
point a elock that was-previously eliminated is suddenly
not eliminated, or that a clock that was not eliminated
is eliminated. This would cause a discontinuity in the
likelihood function. To aveid this problem, a file of in-
dicator variables, indicating which clocks. are deleted at
which time points, is produced. The nonlinear optimiza-
tion is then run conditional on fixed clocks being
eliminated at certain time points. Upon convergence the
parameters in the original model are replaced by their ap-
timized value and the initial program rerun generating a
new array of indieator variables. If the value of the
likelihood function changes it indicates that the error
detection procedure has detected a different set of errors
so the nonlinear optimization is repeated. Experience has
shown this procedure converges in two or three iterations,

The optimization was carried out on one year of data,
April 1, 1981 to March 31, 1982. During this time 12
clocks were used, but since clocks were added and deleted
administratively from the algorithm (removed because of
problems with the elock, not error detection) a maximum
of 10 clocks and a minimum of eight clocks were available
at any one time. Figure 3 shows the times at which various
clocks were present and the number of actual observa-
tions used for each clock. The number missing is the
number of cbservations eliminated by error detection.

In the first nonlinear optimization run, o and o, were
varied for each clock and w(t) and o, were set equal to
zero. This is a drift-free model, and with 12 clocks gives
24 parameters to be estimated. Standard deviations rather
than variances are nsed for optimization since if they go
negative their squares are still positive. If variances were
used directly, it would be possible for the nonlinear op-
timization routine to try negative values which would be
meaningless. The results of this optimization procedure
are shown in table 1.

CLOCKS PRESENT IN STUDY

Clack Pracunt, MaE:ing
601 298 2
B 362 5
113 354 5
NS4 66 3
1375 as7 8
323 255 5
352 354 1
PHH4 _ —————— 283 B
51 67 4
137 3se 7
157 361 4
1316 364 !

e 365

DAYS

FIGURE 3. A schematic diagram showing the time when various clocks
are available for use in the algorithm, The number present are the actual
number used after error detection, The numbers missing are the number
of errors detected. The sum of the number present and number missing
is the number of ohservations available to the algorithin.

TaBLEl. Estimated values of 0. and o, and 95% confidence intervals.

Clock n 0," nanoseconds o, ~ nanoseconds/day
Lower Upper  Lower Upper

Limit Est Limit Limit Est Limit

1316 364 3.81 414 4,53 0.53  0.80 1.23
167 361 12,58 13,52 H.67 0.57 I.11 2.07
137 358 10.41 11.31 1227 1.76 249 3.56
61 67 548 677 8.43 1.53 2.80 4.83
352 354 812 8.8 9.74 242  3.32 4.41
323 255 2.06 237 274 0.63  0.94 1.34
1375 357 9.93 1071 11.64 0.96 1.48 2.25
NBS42 66 © 0.88 1.86 0.72 1.34 2.16
113 354 8.73 9.48 10.38 2,49 3.18 4.11
8 360 798 8.65 9.49 2.11 2.7 3.06
601 208 1.89 2,13 241 0 0.06 0.52
PHM4 203 0 0.65 1.19 0.55  0.77 1.09

When m clocks are in the model, it is only possible to
estimate m-] drift terms when the observations are time
differences. Tryon and Jones [1] handled this problem by
estimating m drifts with the constraint that the sum of
the drifts was zero. Here, a different approach is used.
A clock in the model is assumed to have zero drift and
the drifts of the m-1 remaining drifts are estimated. Clock
601 was chosen to be the clock with no drift since the stan-
dard deviation of its frequency random walk was not
significantly different from zero. Since clock 601 was not
available for the entire year, the drift for clock 323 was
also set equal to zero. These two clocks had overlapping
data intervals which included the entire year. Clock 323
was also chosen because it is known to be a particularly
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stable elock. The drifts for two other clocks, 61 and NBS4,
were also set equal to zero because of their short lengths
of data. The remaining eight clocks were tested for drift
by a 24-parameter nonlinear optimization run, For each
of the eight clocks, the frequency random walk standard
deviation, o.,, the initial value of the drift, w:(0), and the
drift random walk standard deviation, 0 were allowed
to vary. All of the time random walk standard deviations,
o, were fixed at their optimized values from the previous
run, as were the parameters for the remaining four clocks
in the algorithim. This approach of fixing some of the
parameters was necessitated by the storage available on
the PDP 11/70 which allowed a maximum of 25
parameters 1o be optimized simultaneously., Changes in
og that occur when drift is included in the model, while
small, do in fact exist [1].

The estimated values of all eight o, were very small,
so their significance was tested by fixing their values at
zero and rerunning the previous optimization with 16
parameters. Statistical tests based on changes in -2 In
likelihood have asymptotic chi-square distributions with
degrees of freedom equal to the number of parameters
added or deleted from the model or constraints introduced
[2]. In this case, eight parameters were fixed at zero but
-2 In likelihood only increased by 0.2 indicating that the
0, are not significantly different from zero. This agrees
with the results obtained on the earlier data set [1]. These
results, which were obtained on a CDC Cyber 170/750
computer, were checked using the new algorithm on the
PDP 11/70 and duplicated exactly. At this point it is
assumed that any frequency drifts which may exist can
be considered to be constant over the length of the data
span.

When the eight drift terms were eliminated from the
model, the change in -2 1n likelihood was not significant,
indicating that the inclusion of drift terms did not improve
the model significantly. This did not agree with the
previous study where there were significant trends for
clocks 601, 137, and 61, but there are explanations for
this. In the first study clock 601 was nearing the end of
its life, and the cesium beam tube was replaced between
the two studies making it essentially a different clock.
Clock 137 was introduced as a new clock on the first day
of the first study. Clocks are known to drift near the begin-
ning and end of their lives and be more stable during
midlife. Clock 61 was only available for 69 days in the
second study so any drift that may have existed could not
be detected. If a common drift exists in all clocks, this
could not he estimated, and the uncertainty introduced
into the time scale would not appear in the P(z]t) matrix.

It is of interest to compare the confidence intervals
obtained on two different sets of data. Table 2 shows the
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results for the clocks that were common to the two studies.
The estimates and confidence intervals are in agreement
except for elock 601 in which the cesium beam tube was
replaced.

TABLE 2. 1979 and 1981 clock characterization
95% confidence intervals.

Clock Study g, ™ nanoseconds g, ™ nanoseconds/day
Lower Upper Lower Upper

Limit Est Limit Limit Est Limit

601 1 688 746 8.14 ] 0.44 0.96
2 1.89 2,13 2,41 0 0.06 .52

167 1 124 1345 14.61 0.56 1.11 1.9
2 12,58 13.52 14,67 0.57 1.11 2.07

137 1 9.26 1004 10,9 1.03 1.60 2.26
2 1041 1131 12.27 1.76 2.49 3.56

1316 1 3.17 3.62 4.05 0.97 1.36 1.82
2 381 4.14 4.53 0.53 0.80 1.23

323 1 311 3.53 3.94 0.41 0.73 1.10
2 206 2.37 2,74 0.63 0.94 1.34

8 1 8.32 9.09 9.9 2.01 2.65 3.48

2 7.98 865 949 211 2.7 3.66

6. Conclusion

A major advantage of a Kalman algorithm for
estimating time is its flexibility when changes are needed.
An example is the introduction of frequency calibrations
from a frequency standard. A frequency ecalibration,
together with its precision, ean easily be introduced into
the state vector and state covariance matrix. Experimen-
tation with different Kalman models are possible since
changing the state transition matrix is not difficult,
However, the major advantage iz that the Kalman
algorithm is based on a mathematical model which fits
the data. The innovations can be tested for whiteness, and
standard statistical methods can be used for obtaining con-
fidence intervals and hypothesis tests.
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Appendix

For computational efficiency and numerical stability,
a procedure involving a Cholesky decomposition is used
in the Kalman recursion [4]. The tests for errors are also
simplified. The matrix product H(t+1) P(¢+1lz) in eq.
{4.5) is calculated without actually performing a matrix
multiplication. Since each row of H(t+1) contains a one
and a minus one with the rest of the elements zero, each
element of the matrix product is simply the difference be-
ween two elements of Plt+1|t). The matrix Clz+1) is
calculated and augmented as follows

[€(e-+1F Hie+1) Ple+1je i1 A 4q e $4,) (A
(m-1) 3m 111 1

This matrix has m-1 rows with the number of columns
shown under each partition. Only the upper triangular
position of C{t+1) need be stored. The third partition is
the vector of innovations from eq (4.4) followed by the
vectors to be used for testing for clock errors. One of these
vectors will correspond to the reference clock eq (4.7) and
the others to the remaining clocks eq (4.9).

The Cholesky decompeosition factors Cli+1) into

Clt+1) = T'(t+1) Tie+1), (A.2)
where Ti(t+1} is upper triangular. The algorithm as given
in [4] works on the entire augmented matrix and is
equivalent to premultiplying the matrix by [T'{¢+1)]™"
Let

Bi:+1) = [T'+1)]" H(it+1) Ple+1]1)

DIT+1) = [T*(e+1)] He+1) (A.3)
G; = [T'{t+1)™ 4;.
The test for each clock, eq (4.10) becomes
b = G'Dit+1)/G'G, (A.4)
and eq (4.11) becomes
s.e.lb) = (1/G'G)* (A.5)
The quadratic form in eq (4.13) reduces te
Q = D'(t+1) D(t+1), (A.6)
and eq (4.15) to
Ae+1) = B e+ [T'(e+D]. (A7)

The final updating equations are (4.16)
X(t+1|e+1) = Xte+1)e) + B'(z+1) De+1), (A.8)
and {4.17)

P(e+1]e+1) = Pie+1{t) — B'(e+1) Ble+1). (A9)
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A Measurement Assurance Program for spectrophotometry is being established in order to assist laboratories
involved in spectrophotometric calibrations. This paper deals with the preparation and calibration of neutral
density glass filters for checking the linearity of photometric response, as applied to spectral transmittance
measurements. Several sets of filters were prepared from suitable neutral glass to provide nominal transmit-
tances of 92, 70, 50, 25, 10, 1, and 0.1% at a wavelength of 548.5 nm. These filter sets will be available
in three sizes: these are, 38 min diameter aperture in 51 x 51 mm holder, 25 mm dizmeter aperture in
51 x 28 mm holder, and 30 x 8 mm aperture in a cuvette holder. The filters were calibrated for spectral
transmittance on the NBS Reference Spectrophotometer for high accuracy transmittance measurements.
Measuretuents were made with a 1.5 nm passband collimated sample beam. The filters were checked for
uniformity and measurements were made to determine the effects of sample beam polarization. The transmit-
tance data for the wavelength range of interest were analyzed by statistical methods to determine the ef-
fects of passband for a range of 1.5 nm to 10.5 nm passband. The results of these measurements are presented
in tabular and graphical detail for the master filter set.

Key words: experimental design; filter uniformity; linearity testing; measurement assurance program; neutral
density glass; passhand effects; polarization effects; polynomial fitting; spectrophotometry; statistics; transmit-

tance standards.

1. Introduction

This paper deals with the preparation and calibration
of neutral density glass filters for checking the linearity
of photometric response, as applied to spectral transmit-
tance measurements.

The application of absolute techniques, such as the
double-aperture method [1]," for checking the linearity
of a spectrophotometer’s response, is difficult to realize
on many instruments because of problems involving sam-
ple and reference beam geometry or detector configura-
tions. The other approach to checking linearity is through
the use of a set of transmittance standards. Several sets
of glass filters have been prepared and calibrated for this
purpose. A Measurement Assurance Program (MAP) is
being established through which these sets of transmit-
tance standards will be used for the purpose of improv-
ing the aceuracy of spectrophotometer measurements in
laboratories participating in the program.

*This project is supported by the Office of Measurement Services (Dr. B. C.
Belanger, Chief) and coordinated by Pr. L, J. Kieffer.

**Center for Radiation Research, National Measurement Laboratory.

TCenter for Applied Mathematics, National Engineering Laboratory,

'Figures in brackets indicate literature references at the end of this paper.
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2. Selection and Preparation
of the Standards

Some of the factors to be considered in selecting suitable
filters for transmittance standards are: available range of
transmittances, light scattering properties, uniformity,
stability, passband sensitivity, and wavelength sensitiv-
ity. Schott® neutral density glass types NG4, NG-9, and
NG-11 were selected on the basis of these characteristics
and properties as well as previous experiences with Schott
glass by NBS in the preparation of Standard Reference
Material (SRM) 930 [2].? Two levels of transmittance
were prepared from each of the glass types as follows;

*Certain commercial materials are identified in this paper in order to adequately
specify the experimental procedure. Such identification does not imply recommen-
dation or endorsement by the National Bureau of Standards nor does it imply
that the materials identified are necessarily the best available for the purpose.

*SRM 930 consists of three filters with nominal transmittances of 10%, 20%,
and 30% calibrated at several wavelengths. Originally these SRM filters were
designed for use by clinical chemists and are sold by the set. Qur goal with the
present filters was to provide a larger dynamic range 30 that the filters could be
used to measure linearity in applications when other methods are difficult if not
impossible. Also, these filters are not for sale, but are to be retained by NBS and
issued only temporarily as part of 8 MAP measnrement service.



Equivalent
Glass Type Nominal Transmittance Transmission Density

NG-11 0% 0.15
NG-11 0% 0.3
NG-4 25% 0.6
NG4 10% 1.0
NG-9 1% 2.0
NG-2 0.1% 3.0

An additional filter of borosilicate crown glass having a
nominal transmittance of 92% (transmission density
0.036) is included in the set.

The filter sets were prepared in three sizes in order to
accommodate different instruments. The largest filters are
mounted in 51 % 51 mm holders with a filter aperture of
38 mm diameter. The intermediate size filters are mounted
in 51 % 38 mm holders with a filter aperture of 25 mm.
The smallest filters are mounted in cuvette holders and
provide a filter aperture of 30 X § mm.

The preparation of the filters from the stock glass was
done in the NBS Optical Shop. The tolerances on
parallelism of the two faces of the filters was maintained
at approximately 0.01°. They were polished to a flatness
of 3 fringes or better.

Calculations of the required thicknesses were made
from internal transmittance data supplied by the
manufacturer, The internal transmittance of 1 mm path
length for the three glass types is as follows:

Glass Fype 1 mm path
NG4 .32
NG-9 0.035
NG-11 0.78

The values of transmittance for a wavelength of 500 nm
were computed from these internal transmittance values.
These transmittance values were converted to equivalent
transmission density. Since the transmission density is
linear with thickness, it is possible to determine, by
graphical techniques, the required thickness for a
desired transmittance value. Figure 1 shows the relation-
ship of transmission density to thickness for the glass
types NG-4, NG-9, and NG-11. The degree of accuracy
in determining the required thickness for a given

transmittance value by this graphical technique is
dependent on the initial accuracy of the internal
transmittance values used to determine the transmit-
tance of 1 mm and 2 mm thicknesses. The actual
transmittance values achieved by this technique closely
approximated the desired nominal transmittance values
for the filter set.
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FiGURE 1. Transmission density versus thickness of Schott NG-4,

NG-9, and NG-11 neutral glasses as derived from internal
transmission data for I mm and 2 mm thicknesses.

3. Transmission Analysis
3.1 Light Scattering

Scattering of a collimated sample beam transmitted
through the neutral filters was quantitatively assessed by
the ASTM recommended method [3] for measuring haze
percentage. The measurements were made on the
reference hazemeter [4] using the ASTM recommended
geometry and methods. This instrument has a well col-
limated circular incident beam having a color
temperature of approximately 6800 K. A visual response
filter at the detector modifies its response to give the
hazemeter a peak sensitivity at approximately 550 nm.
The instrument measures total forward scattering
relative to the total transmission within the definition of
this response and for the ASTM recommended
geometry. The haze percentage determined for a set of
filters was found to be as follows:
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Filter Haze Percentage Nominal
Transmittance
1-1 0.05% 92%,
1-2 (4.02% 0%,
13 0.05% 0%
14 0.06% 25%
15 0.04% 10%
1-6 L 1%
1-7 _* 0.1%

* The 1 and (.1% transmitting filters were toc Iow in transmittance
for analysis by the hazemeter. It was concluded from these results that
the filters acattered less than (1% of the transmitted sample beam.

3.2 Survey Transmittance Measurements

The purpose of a survey study of the neutral filter
transmittance was to assess their over-all spectral prop-
erties in the visible spectrum and select a specific
wavelength for detailed analysis and calibration. Since
the filters are not perfeetly neutral, it was desirable that
a wavelength be selected for calibration, at which the
transmittance values of the filters would be least sen-
sitive to variation in passband and wavelength scale
errors associated with various spectrophotometers.

With the exception of the horosilicate crown glass
filter, the filters in the set are of a similar type glass with
a common dye in three different concentrations for the
NG-4, NG9, and NG-11 glass types. The spectral
transmission density curves of these filters in the spectral
range between approximately 440 nm and 620 nm shows
that the absorptions appear at the same wavelengths for
the different concentrations associated with these glass
types. Figures 2 through 8 illustrate the results of a 1-nm
interval survey of the spectral transmittance of the filters
between 440 and 620 nm. These measurements were
made with a commercial spectrophotometer. The slit-
width was maintained at approximately 0.1 mm (0.37
nm passhand). Further measurements were made of the
10% filter with slit-widths of 1.0, 2.0, and 3.0 mm.
These slit-widths correspond to passbands of 3.7, 7.4,
and 11,1 nm, respectively.

There are four wavelengths within the wavelength
range 440 to 620 nm corresponding to peaks and valleys
that could be used for the purpose of establishing a
calibrated set of photometric scale standards. However,
only one wavelength is needed and the absorption peak
at approximately 548.5 nm was selected as being the
most suitable. The spectral peak at approximately 464
nm and the absorption valleys at approximately 510 and
591 nm do not show a significant change in transmit-
tance for the range of passbands used in this survey. A

photometric resolution of approximately +0.01%, is re-
quired in order to detect the effect of passhband on the
spectral transmittance measured at these wavelengths.
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3.3 High Accuracy Transmittance Measurements

Calibration of the spectral transmittance of the master
set of filters and three other sets was done on the NBS
Reference Spectrophotometer [5,6,7] for measuring high
accuracy transmittance. The measurements were made
with a passband of 1.5 nm and a beam diameter of 10
mm. Measurements were made for perpendicularly (s)
and horizontally (p)} polarized incident sample beams at
1.5 nm intervals from 545.5 to 557.5 nm. Each filter was
scanned for uniformity at 547 nm. The uniformity
measurements were made at three locations; center, 2
mm horizontally from center, and 2 mm below center.
Transmittances for master set #1 filters are listed in table
1. The results of the uniformity scan at 547 nm are listed
in table 2. The transmittance values listed in table 1 are
an average of the two polarizations. The values for hoth
polarizations are listed for the uniformity measurements
made at 547 nm. The instrumental uncertainties in the
values listed in tables 1 and 2 are estimated to be
+0.04% for filter 1-1 to 0.6005% for filter 1-7. A
complete deseription of the measurement sequence and
data reduction for the high accuracy measurements and
an analysis of the errors associated with such
measurements is given in refs. [5-7].

4. Statistical Analysis

A statistical analysis of the data obtained on the spec-
tral transmittance of the neutral filters was used to deter-
mine the magnitude of change in transmittance values
due to changes in passband and also the magnitude of



TABLE 1, Spectral Transmittance of Master Set No. I for a change due to location of the sample beam (filter
Passband of 1.5 nm. uniformity).
- Preliminary data from the commercial instrument in-
ave- . .
length Filler Filter Filr Filter Filter Filter Filtor dlcat.ed that the central wavelength of interest was at ap-
om) 14 12 13 14 15 16 1.7 proximately 547 nm. However, a further analysis of the
data from the high accuracy instrument indicated that

536.5 0.9164 0.6902 0.5177 0.2339 0.0955 0.00919  0.000915 548.5 as a better choice
538.0 9165 .6905 5181 .2345 0959 .00922 000922 -2 im 'was a betler choice.
539.5 9165 .6908 .3185 .2350 L0962 00026 000935 Data are presented in table 3 to llustrate the effect of

5410 9165 .6910 5187 2353 .0064 .00928  .000929 passband on the transmittance at the central wavelength
5425 9166 .6912 5190 .2357 .0966 .00931  .000933 for the master set #1 filters. These values are based on

5.0 0166 .6013 5192 .2360 0969 00932 000035 . . ) .
. alculation for a triangular passband, tinu
5455 0166 .6013 .5192 .2362 .0070 .00933  .000936 o CLevon passhand, using continuous

5470 9166 6914 5191 2363 00Tl .00034 ooooss  imiegration. Figures 9 through 15 show these results plot-
548.5 0168 .6013 .5193 .2363 .0071 .00934 .000938 ted with the standard error limits. The data listed in
550.0 9167 .6912 .5191 .2363 .0971 .00934  .000940 table 4 illustrate the magnitude of change due to position
551.5 9167 .6912 .5190 .2362 0971 .00933 000937 location for the master set of ﬁlters_

553.0 9167 6911 5190 .236L 0970 .00031 000934 Remeasurement of the spectral transmittances of the
5345 9166 6008 .SI8T 2358 0068 00930 000034 - R 1 fror initial calib
556.0 .9168 .6908 .5184 .2355 .0066 .00928  .000929 elira’ ilters was mace one year aier mitial caliora-

557.5 .9168 .6904 .5180 .2351 .0U64 .00024 .000923 tions. The results of this second calibration for master
set #1 are compared with the original calibration and
listed in table 5 for wavelength 548.5 nm. Differences in
spectral transmittances of the filters shown in table 5 are
too small to be clearly interpreted as changes with the
Location, Filter Filter Filter Filter Filter Filter Filir  PoOSSible exception of filter 1-1. Here the apparent
Polarization 1-1 1.2 134 14 1.5 16 1-7 change in transmittance was -0.0009. Further

Lp  0.9166 0.6913 0.5193 0.2362 0.0971 0.00934 0.000030  Measurements at longer time intervals will be required to
9166 6913 .5193 .2362 .0971 .00935 000940  comfirm any real changes in spectral transmittance due
9166 6914 .5193 .2361 .0971 .00934 .000937 to aging.

9167 6914 5193 .2362 .0971 .00934 .000938 Additional details of the statistical analysis are given
9164 6913 5192 2362 0971 00934 000938 1 grnoendiv A,

9165 6913 5192 .2362 .0971 00933 .00093%

TABLE 2. Transmittance Uniformity of Master Set No. 1 at 547 nm.
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TABLE 3. Transmittance of Master Set No. 1 at 548.5 nm as a Function of Passband for a Triangular Passband.

Passband Filter Filter Filter Filter Filter Filter Filter
inm) 1-1 1-2 1-3 1-4 1-5 1-6 1-7
1.5 0.91665 0.69133 0.51928 0.23632 (.09713 0.009342 0.000939
{ 3 ( 2) ( 2) { 2) { 1) { 2) ( 4}
3.0 91665 69132 .51927 .23632 09711 009341 000939
{ 3} ( 2) ( 2) { 2) { 1) { 2) ( 4)
4.5 91665 .69130 51924 .23628 9709 009338 .000938
{ 31 { 2) { 2} ( 2) ( 1) ( 2} { 4)
6.0 .91665 69128 51921 .23624 09706 .009335 000938
{ 3) { 2) ( 2) ( 2) ( 1) { 2) { 4)
7.5 91665 69125 51916 23618 09703 009332 000937
{ 3) { 2) ( 2) ( 2) ( 1) { 2) ( 4)
9.0 91665 69121 51911 .23616 09698 009327 000037
{ 3 ( 2} { 2} { 2} { 1) ( 2) ( 43
10.5 .91665 69117 .51905 .23604 .09693 009321 000936
{ 3) { 2} { 2} { 2) { 1) ( 2) ( 4)

Note: uncertainties (one standard deviation) are in parentheses
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TaBLE 4. Magnitude of Filter Nonuniformity
Filter Transmittance Location
No. Location at 548.5 nm Difference
1-1 1 0.91658 (1)-{2) = -0.00008
I-1 2 91666 (2-38) = .00018
1-1 3 91643 {1}-3) = .00010
I-2 1 169132 (1)-(2) = - .00006
1-2 2 69138 (2)-3) = .00007
1-2 3 69131 (-3} = 00001
1-3 1 .51926 (13-(2) = - .00002
1-3 2 .51928 2i43) = .00009
13 3 51919 (-(3) = .00007
14 1 23624 (1-2) = 00009
14 2 23615 21-3) = - .00004
14 3 .23619 (1)-(3) = .00005
1-5 1 09709 {1-2) = .00001
1-5 2 09708 (2-3) = 000N
1-5 3 .09708 (1)-(3) = .o00001
1-6 1 009341 1-2) = - 000001
1-6 2 009342 (23) = .000011
1-6 3 009331 (1}-3) = .000010
1-7 1 000939 (1)-(2) = .000001
1-7 2 000938 2}-i3) = 000001
1-7 3 000937 (13} = 000002

3. Summary

One master set and three working sets of neutral den-
sity glass filters have been calibrated for use as spectral
transmittance standards for checking the photometric
scale linearity of spectrophotometers. Each set consists
of seven filters ranging in transmittance from 0.1 to
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92%. These filters will be used in a Measurement
Assurance Program (MAP). The purpose of this pro-
gram will be to assist laboratories wishing to maintain a
high level of confidence in the accuracy of their spee-
trophotometric measurements.

Data are presented that show the spectral transmit-
tances of these filters at 548.5 nm to be relatively insen-
sitive to variations in passband and slight errors in in-
strument wavelength setting. The filters are of sufficient
uniformity for use as transmittance standards.

TABLE 5. Speetral Transmittance of Master Set No. 1 for a
Passband of 1.5 nm ar 548.5 nm.

{Apparent changes in transmittance)
First Calibration | Second Calibration | Apparent
Filter No. (Oct. 1980) {Oect. 1981} change

1-1 0.9168 0.9159 ~0.0009
1-2 L6013 16914 L0001
1-3 5193 5196 0003
1-4 .2363 .2365 0002
1-5 09712 09722 00010
1-6 009337 009350 000013
1-7 0009376 0009395 0000019
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Appendix

Statistical Design and Analysis for Calibrating the
Transmittance of Filters for Spectrophotometer
Linearity Testing

For four sets of filters, each set containing seven filter
types of varions transmittances, an assigned transmit-
tance value needed to be determined when a triangular
passhand of given width is superimposed. Additionally,
the polarization and location of the spot size on the filter
had an unknown influence on the transmittance value.
Although a commercial instrument can scan the entire
spectrum at little cost, the measurements are an order of
magnitude less accurate than those obtained using the
high accuracy instrument. For this reason, a design was
developed to determine:

(1) The values to be measured for purposes of
calibration, and
The existence of a possible effect due to polarity
or the effect of location on the filter.

(2}

The motivation behind the choice of design is discussed
in section A below. In the event of (2), the calibration
must be reconsidered. On the basis of these extremely
precise measurements, an effect due to location was
statistically significant. This suggests that either:

{1) The calibrated values can be used only for the
central location on each filter; or
Additional measurements will be required to
determine the magnitude of changes in transmit-
tance due to spot location.

(2)

Since the observed dilferences are small (<0.2%; see
table 4}, the location effect may not interfere with prac-
tical usage of these filters. However, measurement as
near to the central location on each filter as possible is
recommended. The conclusions regarding location and
polarity effects are presented in section B, and the
estimation of the transmittance curve leading to the
calibration values is shown in sections C and D. The
method of extension for general passbands is given in
section K.

A. The Design

Most organizations using these filters will have
triangular passbands on their measuring equipment.
Therefore, adequate determination of the transmittance
using this passband is essential. However, other pass-
band shapes may be used, and for these, a more general
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approach is taken. The problem then becomes one of
estimating the transmittance curve with high precision.
Since the measurements on the high aceuracy instrument
are time-consuming, a design was chosen so as to permit
adequate curve estimation with relatively few points.

1. Preliminary analysis: Choice of Wavelength.

The choice for a wavelength to be calibrated required
consideration of:

(i} Varying passhand widths, and
(ii} The potential for imprecise wavelength specifica-
tion.

We consider neighborhoods of 21 nanometers, since the
widest passband that is most commonly used weights
frequencies within a range of this length. The chosen
wavelength is:

A,= 548.5 nm.

This subsection explains this choice in light of considera-
tions (i} and (ii).

For a passband having width w and functional form
h.(3), the transmittance at wavelength A is given by the
convolution integral

A, tw A tw
) =f hJASA-AML/ [ huAMdA,
Ao

where f(3) is the spectrum (transmittance curve). If the
passband is normalized so that

o r

A+
T RN = 1,
Ao

then this simplifies to

Atow
) = BJA(A-A)dA .
{0
In all that follows, we will assume that the passband h,,
has been normalized in this way.

In order for this average value to be relatively insen-
sitive to wavelength specification, f(A) needs to be a
smooth, slowly-varying function. In mathematical
terms, we search for a neighborhood where the first two
derivatives of the spectrum are fairly small. This sug-
gests a region where f(A} is nearly constant, or, at worst,
a quadratic having very small degree of curvature. A
locally linear spectrum with a noticeably nonlinear slope
would yield a seriously biased estimate, whereas a locally
quadratic spectrum, centered at a peak or trough, would
have a negligible linear term and therefore a bias which
depends primarily on the second-order term (hopefully

(1)



small). Preliminary readouts on a cemmercial instru-
ment suggested a central wavelength of 547.0 nm for
most filters. On the basis of the first set of measurements
ort the high aceuracy instrument, however, this was later
amended to X, = 548.5 nm.

2. Number of Points

Assuming that the spectrum is locally quadratic and
has a maximum around A, = 548.5 nm, our goal is to
estimate the three parameters a, 3, y in the approxima-
tion:

f = a + gL + yiz (2)

In order to estimate a, 8, and y, bya, 3, ¥, the proposed
design specifies a total of five points, one at the central
wavelength, and one each at equal distances +2d from
the central wavelength.

Let x = A ~ 548.5, s0 as to center the relation at the
origin, A minimum of three points is required to specify
the parameters. This leaves no room for the assessment
of error. With more points, the variance of {1) will be a
linear combination of the variances and covariances of
the parameters, and will be dominated primarily by the
variance of the constant term, If our chosen points are
symmetrically placed about 0, it can be shown that:

Var (&) =¢*/(n—-c*/e), (3)

where

c=2Zx2=2%T x?
Xy 20

e = ijd' = 23 x,-*.
X; =0

As (Zx) € (Zx2) (x; 2 0), the smallest value of c*/e is 2
(all points at the origin except for the two at +1). A
lower bound on (3) is therefore:

Var () = 6*/(n-2). (31
If we concern ourselves with only the first term, then,
relative to ¢?, eq (3 ') gives the reduction in the overall
variance that we may hope to gain in our variance of the
transmittance value. With n = 3, there is no reduction;
with r = 3, the variance is already reduced to 33% of its
value. An extra two points provides only an extra 13%
improvement. Thus, the design specifies a8 minimum of
two points on either side of the central wavelength,

3. Location of Points

We consider two criteria in selecting the four
wavelengths (two symmetrically placed on either side of
the central wavelength}:

(i} Small error in quadratic interpolation of the
transmittance curve;

(ii} Small variance in the transmittance estimate
given by (I).

On the basis of these two criteria, the proposed design
specifies measurements to be taken at:

A, A, £ 61nm, A -+ 9 nm.

The reasoning behind this choice is explained by con-
sidering (i) and (i1} separately.

(i) Error is quadratic interpolation. A bound for the
estimate of error in polynominal interpolation of degree

n at the points a € x1, x5, 0, X, S b is
e € max | FDgy| - dxy [ A= -0 [Ax,
| | a<i<h | | | 1[ 2; | +1|

(see, e.g., [8]). The first part of this error depends upon
the transmittance curve and led to the choice of I, =
548.5 in subseetion 1 above. Now we concentrate on
selecting x4, ... , x,,, 80 that the error is as small as possi-
ble. The answer to this problem is given by the zeroes of
the Chebyshev polynomials, namely

x; = (10.5nm)-eos [(2k-1V/(2r+2)], k=1, ..., n + 1.
4

For the problem at hand, n+1 = 5; thus:

x1 = —xs = 9.986 nm from A,
X = =4 = 6,172 nm from A,
x3 = 0 nm from 4, .

As most passbands are in multiples of 1.5 nm, the closest
multiples 1o these points are 6 nm and either +9 nm or
+10.5 nm. However, the nature of the triangular pass-
band which is frequently used in practice would assign
zero weight to the values +£10.5 nm. Since a primary
goal is the estimation of the transmittance using this
passband, we choose +9 nm.
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(ii) Minimum variance of transmittance estimate. If
we estimate the transmittance curve using a quadratic
function, viz.

flxd =& +fx + 924, 5)

then the transmittance using passband of width w is

A = [ hfw+h,) (& +fx +7x)dx.

Let
¢ = __I‘:'uxi h (x) dx
Then
() =ac, + for + ez =¢'O
where

e’ =g, €1, 1)

é’ = (a’ﬁ, ?)‘

Then minimizing the variance of ¢ is equivalent to

min Var{c'®) = min ¢’ Var(®) c.

A design which minimizes the varianee-covariance
matrix Var(®) of the parameter estimates is given in
[9]. The design would place the two observations each at
A, + 1.5 nm in addition to the one at A,. If our function
is truly quadratie, such a design would be cptimal.

For many reasons, however, we modify the optimal
design which permits more fexibility in our choice of
model. Such a design is suggested in [10]. The design
recommends two different values rather than repeating
them at the endpoints.

Closely related to this design is the one which
minimizes the maximum variance of the best linear un-
biased estimate of the function ffx) given by eq (5.
Reference [11] shows that the five points should be
placed at the zeros of the polynomial

10.5 (1 - £*} P, '(x) ,

where P,’ is the derivative of the fourth degree Legen-
dre polynomial

Py'lx) =17.5x* - 7.5x .

Hence, the five points are 0, +7.1, £10.5 nm from 4.
Again, since our passband applies decreasing weight 1o
f(x/} as x is further from the origin, we choose to make
these points in towards 0, to +6 and +9 nm.

4, Tests for Polarity and Spot Location

Additional measurements at the central wavelength
are needed to provide tests for difference in polarization
and spot location. In addition to the measurement at the
central wavelength with polarity 1 {point 1 at location
(0,0}), measurements were taken at

Point 2: Spot location (2,0}, Polarity 1
Point 3: Spot location (0,2}, Polarity 2
Point 4: Spot location (0,2}, Polarity 1.

This permits a check for a difference due to polarity by
comparing the third and fourth points, and check for
location differences by comparing points 1 and 4 (or 1
and 2 or 2 and 4). A more extensive check based on a full
2 X 3 factorial combination was made on the master set

#1.
B. Results: Polarity and Location

The reported results are based on measurements taken
on four sets of filters. A complete series of 15
measurements across the 21-nm range at 1.5 nm spacing
was taken on the master set, as a check for the adequacy
of the five-point design used on the other three sets. In
addition, polarity and location were tested on each filter
in all sets. The results of these tests are reported in this
section; transmittance calculations are reported in sec-
tion C.

For set 1, six measurements were taken at A = 547.0,
at both polarity 1 and 2 at the center of the filter (0,0)
and at placements of two units to the right (2,0) and
above (0,2) the center. This permits a 3 X 2 factorial
analysis for detecting differences due to location and
polarity.

For sets 2, 3, and 4, z-tests on location and polarity
were calculated. The test on location was deemed signifi-
cant if the comparison of either {0,0) and (0,2) or (0,2)
and (2,0) indicated a chance of less than 1% under the
hypothesis of no effect.

None of the tesis of polarity was significant at the (.01
level. (One filter from one set gave significance of 0.025.
Out of 28 such tests, the chance of obtaining one or more
spurious significances is more than 50%, so this is hardly
surprising.) For location, however, the following sets
showed a significant difference (level given in
parentheses):
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Filter Set (level of significance)
2 3 (0.0004) ‘ i
3 2 {0,013}, 3 (0.002), 4(<0.000)
4 2 (0.0013), 3 (00003}, 4 (0.01)
S 3 (0,01}, 4 ((h00O3)
6 1 (0,006}, 4 (0.0013) [3 (¢.02))
7 1 (0,0002), 4 (0.0025)

Out of 28 tests of significance, the chanee of 13 or more
coming up significant at the 0.01 level wherr in fact loca~
tion is irrelevant is

28
z
E=13

I

( 2,?)} (.O1) (.99

and the chanee that at least 2 of the 4 sets would show
significance on a given filter type is.
4
X (5) 001 (0:99)* = 0.0006.
k=2
For 7 types. of filters, the overall level of significance is
approximately (0,004,

These tests of significance suggest that it is highly
unlikely that location on the filter in measuring transmit-
tance is irrelevant. However, all tests were based on the
internal standard errors of the four measurements made
within the twenty-minute measurement period. This
standard error reflects only the error of the four internal
readings. but does not reflect the measurement-to-
measurement variation caused by apparatus set-up,
filter placement in the wheel or polarity switches. As
such, the actual error in taking successive measurements
may in fact be larger than the reported standard error.
However, measurements on these [ilters as near to the
ceniral location as possible is recommended. The
transmittance values using triangular passbands have
been calculated assuming location is irrelevant (thereby
using all data in the estimation of the transmittance
curve) and assuming location has a significant effect on
the transmittance value (using only the data at the center
(0,0) spot). Only the latter are given for the master Set #1
in table 3 of the main report.

C. Estimation of Transmittance Curve

As there are four sets which contain all filter types, it
will be helpful to use all filters having the same nominal
transmittance in estimating the transmittance curve. We
fit quadratic functions of the form in eq (5).
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Consider one filter type from each set having a
neminal transmittance {say, 69%). The average value of
transmittance, giver: by the parameter a, is likely to be
specifie to each filter in the different sets. However, the
eurvature parameters {3 and y are likely to be common to
all 4 filters having a given nominal transmittance. Thus
we use all these observations to fit a relation of the form

f(‘xu) = @, + ﬁ""x}j’ + Y"x?j » (7)

=1, ..., n; {= # of measurements in jth set})
=1 .., 4= #of sets).
Nete that

n = 21,
{xa} = {-12., -10.5, . . ., 1.5, 9, -1.5, . . ., -1.5} ,

singe set 1 has the full 15 measurements and 6 additional
measurements for polarity and location, and

n; = 8, {xgj} = {—‘9, "-6, 0, 6, 9, 0, 0, 0}

for sets 2, 3 and 4. Note also that the average level, a,, is
specific to the filter in the set, as the level may reflect the
amount of dye that is contained in the filter. However,
the parameters f§ and y are likely to be influenced by the
properties of the dye contained in this glass and are thus
common to the filters with the same nominal transmit-
tance from all four sets. This joint estimation permits the
more accurate calculation of 8 and y in sets 2, 3, and 4,
where the number of observations is only eight.

Since transmittance may depend on location (section
B), we also estimate a, 3, y, for each of the 7 filter types,
using only those observations at location (0,0}, In this
case,

m =117, {x,} = {12, -10.5 . . ., 7.5, 9, -1.5, 1.5}
n, =5, fx,} = {9, -6, 0, 6,9, =2, 3, 4.

These parameters were not found to differ from those
using all the data by more than two standard errors. In
light of potential location differences, however, table Al
provides these estimates of the parameters a, 8 and y for
the master set #1 filters.

D. Estimation of Transmittance Values Using
Triangular Passband

Asindicated in eq (1)}, when the transmittance curve is
superimposed with a normalized passband centered at
A, the observed transmittance can be expressed as a con-
volution integral. Using a triangular passband of width



w, symmetric about 1, the result is a weighted average
of all transmittances around the central wavelength.
This weighted average may be computed either as a
discrete sum:

=‘1\..{)(,,) =2 flwurb"e Yz
=Z bw{xri-l,)y.-, Xy

transmittance at wavelength A3
;- A, (8)

where

h.(x) = w[l — sign{x)-x/w], 2w < x < w, {9)
or as an integral as in eq {1). The first approach, based
on eq (8), is a discrete computation based on the ob-
served values y,. The second approach, eq (1), uses the
values ¥, to estimate f(x) (eq (5)) and integrates directly.
For sets 2, 3, and 4 where data inside 6 nm exists only
at the central wavelength, eq (1) is clearly the method of
choice. Furthermore, the estimation of f(x) nses all of the
data in its estimation (section C), and is therefore likely
to remove much of the variability in the values y,.

The standard error of %, can be computed using the
reported standard errors {s;) associated with each
measurement:

SE (1.) = S[huix)]® s2.

Using the triangular passband of width w (eq (9)) and
the fitted relation (7), we have that the transmittance of
a filter from the jth set is

A+
fld) =S

—w
(]

=a; + (w/6) - ¥

w

hu(b) « [& + BO-1,) + 7(-1,)]* dA
(10)
for which

SE(t1.) =[Var{a,) + (w*/36)Var(y) + (w?/3)Covia,y)]%4
= SE (&);
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TABLE Al, Coefficients for Estimation of Transmittance Curve for
Set #1 (includes data from center Incation only).

ftx) = & + fx + 7 x = wavelength 3183

Table gives vonstant term; all standard errors given in parentheses

) B X 10° 7 X 10°
Filter 1 9166525 1.6493 —0.002562
(200 { .1877) 1 .032669)
2 .6913352 ~2.0067 091372
(  un 11.5030) { -02616)
3 5192836 —2.7205 -1.2973
(  13%) (.1151) ( 0200)
4 2363304 +1.1966 -1.5858
(147 { .0923) [ .0161)
3 0971290 “+0.8657 -1.0699
(  068) { .0736) { .0128)
6 .00934226 —05959 —0.11355
(  113) (.00979) { .00170)
7 000939014 -0.008245 —0,017568
{ 266) { .002893) ( 2000504)

since the variance of the eurvature parameter ¥ and the
covariance term are typically two orders of magnitude
smaller thar the variance of the fitted constant term.

E. Other Passhands

Table 3 of the main report gives transmittances for the
master set #1 filters for a triangular passband. For
passhands other than those listed in table 3, the
transmittance may be calculated directly via eq4{10), us-
ing the estimated coefficients &, ﬁ, and ¥ listed in table
Al.
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The National Bureau of Standards has certified Standard Relerence Materials (SRMs) for the
concentration of polychlorinated biphenyls (PCBs) in hydrocarbon matrices {transformer and motor oils).
The certification of these SR Ms involved measurements of extremely small concentrations of PCBs made
by gas chromatography. Despite the high accuracy of the measurement technique, the correlated data cannot
be analyzed in a reutine independent manner. A linear model for the measurements is described; its complexity
encourages the use of simpler exploratory methods which reveal unexpected features and point the way
towards obtaining valid statistical summaries of the data.
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1. Introduction

Exploratory methods in data analysis are nsed in many
fields of application. These methods are typically used on
messy data because they are robust in nature; that is, they
are insensitive to unexpected departures from an assumed
model (e.g. outliers, non-normality). However, they can
also provide valuable insight even for so-called “clean”
data. This paper discusses an example of a measurement
process for which an exploratory approach can reveal
particularly interesting or unexpected trends even in
extremely precise measurements.

‘This paper is about the application of some simple
exploratory techniques discussed by Tukey [1]' and others
to several sets of measurements obtained by gas
chromatography. These data were taken at the National
Bureau of Standards between November 1981 and March
1982 and are described in section 2. Despite the high
accuracy of the method, the correlated measurements
cannot be treated in a routine independent manner. A
linear model for the data is proposed in section 3, and
a robust analysis of this model, based on exploratory
methods, is described in section 4. Conclusions are
summarized in section 5.

*Statistical Engineering Division, National Engineering Laboratory.

lg igures in brackets indicave the literature references at the end of this paper.
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2. The Data
2.1 Description of the SRM for PCBs in Oils

The National Bureau of Standards has certified
Standard Reference Materials (SRMs) for the
concentration of polychlorinated biphenyls (PCBs) in
hydrocarbon matrices, namely, transformer and motor
oils. PCBs are toxic contaminants; their chemical and
thermal stability makes them commercially useful but also
leads to their persistence in the environment. PCBs are
formulated as liquid mixtures of congeners and were
manufactured in the United States under the trade name
Aroclor. These mixtures have been used extensively in this
country as coolants in high-voltage electrical components
and may be introduced into the environment when these
components are serviced, repaired, or discarded. Since the
PCB fluid physically resembles lubricating oil, there have
been instances in which PCBs have been added
mistakenly to motor oils being collected for recycling
purposes.

For these reasons, it is important to be able to measure
small concentrations of PCBs. These measurements are
now aided by NBS Standard Reference Material 1581
which provides certified concentrations of two congeneric
PCB mixtures in two forms, known as Aroclor 1260 and
Aroclor 1242, Four materials constitute this SRM,
identified as Aroclor 1260} in motor oil, Aroclor 1260 in
transformer oil, Aroclor 1242 in motor oil, and Aroclor



1242 in transformer oil. Large lots of these materials were
prepared, carefully blended and dispensed into 5-mL
amber ampoules, yielding about 4000 ampoules of each
material, Six sample vials of each material were selected
at random for chemical analysis.

This paper describes the statistical analysis of the
measurements on the selected sample vials. The method
of analysis was the same for all four types of material;
hence, we will limit our discussion to its application on
Aroclor 1260 in motor oil, for the most part.

2.2 Measurement Techniques

A method for chemical analysis of PCBs in oil was
developed at the National Bureau of Standards and
employs both liquid and gas chromatography for analysis.
Quantitation is performed by a calibrated internal
standard (IS) technique which is described in detail by
Chesler et al. [2]. Basically, this technique works in the
following manner. First, a sample containing a known
amount of analyte (in this case, PCB) and known amounts
of one or more internal standards is analyzed. The
instrumental responses, measured as individual peak
areas, are recorded, and the relative responses between
the analyte and the internal standards {ISs) are
ascertained. Second, known amounts of the internal
standards are added to a sample for which the
concentration of the analyte is desired, and the sample
is subsequently analyzed. Then, using the relative
response factors previously ascertained, the concentration
of the analyte is determined from the ratio of the responses
between the analyte and internal standard. In the
particular experiments discussed below, each
measurement of the analyte gave 10 separate measurable
responseg (i.e. 10 distinct peaks) and each of the three
internal standards gave one measurable response. Figure
1 shows a sample chromatogram from one of the analyses.
Thus, since analyte concentration can be calculated from
any combination of one internal standard plus one analyte
peak, the analyte coneentration can be calculated in many
ways for each single analysis,

2.3 A Formula for Determining Aroclor
Concentration

The response factors, i.e., the ratios (peak
area}/(coneentration), are not necessarily constant from
run to run. In fact, the response factor for a given peak
is subject to many kinds of instrumental variation, such
a8 the electronic detector and heat source differences inside
the instrument and variations in the flow rate of material
through the gas chromatographic column. But, to a large
extent, these variations affect all peaks (including those
that arise from the internal standard) in the same way.
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Therefore, on a given “oceasion’ when several yuns are
all reasonably close together in time, the ratio

(peak area for Aroclor)/{eoncentration of Aroclor)u)

{(peak area for IS)/{eoncentration of IS)

should be constant for each ron and each soludon,
whether it is a sample solutton or a specially-prepared
calibration solution. In principle, then, {1) shonld be the
same for the sample and the calibration material; 1.e.,

PiL,s)y/Cll,s) . PiLc)/ Cilc)
Pla,s)/Cla,s)  Pla,c)/Cla,c)

where

denoles peak area

denotes concentration

indexes internal standard peak
indexes Aroclor peak

denotes sample solution
denotes calibration solution.

0 v oR

Therefore, a calibration solution is passed throngh the
chromatograph at approximately the same time a sample
solution is run, and the conecentration of the Areclor in
a sample, based on a given peak area, may be determined
as

Ptl,c)

Pla,s)
Pla,c) X

Cil,s)
Plls) X X Cla,c). (2)

Cla,s) = Cilo)

Note that different peaks will yield different values for
concentration,

The concentration of a substance in a solution is very
nearly the mass of the analyte divided by the mass of the
oil in that solution. In the actual experiment, the weight
of the internal standard was measured and held constant
for both the calibration solution and the sample solution.
So in this experiment,

Cl,s) _ Wl,s)/Wloil,s) _ Wloil,c)
Cile) WilLc/Wioil,e) Wioils)

where W denotes weight. Therefore, the formula

Pl c)
P(I,5)

Pla,s)
Pla,c)

Woil,c)

W (oil,s) @)

Cla,s) =

X 'Cla,cl,

is actually sufficient for determining Aroclor
concentration,



151
(FX)
[¥2)
yd
O
(a0
(¥ ]
Lt}
o I
| 152
4
3
|
| ’ |
¥ [}
120 140

—
T ————

153

= — —r—

——

{1

I
160

o

C
FiGuRE 1. A gas chromatogram from one subsample of Areclor 1260 in motor oil. IS 1, IS 2, IS 3 denote peaks from three internal standards;
3 through 12 denote Aroclor peaks. The horizontal scale indicates the temperature levels in the gas chromatographic colemn at which the compounds

are eluted.

2.4 Experiment Design

For each material, three subsamples were analyzed
from each of the six selected ampoules. On a given
occasion (2-3 hour period), two subsamples, one from each
of two ampoules, were run along with one calibration
solution. Display 1 presents the experimental design.
Given the method of preparation, a high degree of
homogeneity among the ampoules was expected. With
these limited data, tests on the variance among the six
ampoules showed no evidence of inhomogeneity compared
to the overall variability of the measurements.

As a result of the design in display 1, the calculated
values of concentration for two subsamples analyzed on
the same occasion are not independent. In eq (2}, these
two calculated concentrations would share the same value
of the ratio P(I,c}/Pla,c). Thus, for a given (internal
standard peak, Aroclor peak) pair, the 18 concentration

values obtained from six ampounles each with three
replications are not independent. Furthermore, since there
are many pairs of internal standards and Aroclor peaks
for each sample, this design leads 10 a large number of
calenlated coneeniration valnes having sirong and
coinplex interdependencies. The challenge is to take
proper account of these dependencies in obtaining an
overall certified value and uncertainty statement for the
SRM certificate.

3. A Linear Model for the Measurements

The basic properties of the gas chromatography
procedure described by eq (1), plus the rules and provisos
mentioned in the sirronnding text, can be represented by
a linear statistical model. Denoting log,o{peak area) by
¥, these considerations lead to the model in display 2. This
model is an unbalanced partially nested and partially
crossed analysis of variance model with a total of 211
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Display 1—Experimental design

Allocation of Subsamples and Calibrations to
Occasions on Which GC Analysis Runs Were Made*

Coeasion Sample ID
51, 52
51, 82
81, 52
83, 54
53, 84
53, 54
55, 86
85, 56
55, 56

Calibration Solution

O D w1 S U1k W b e
AOOSIES

*Note: The order in which the two samples and one calibration
were run within each pccasion was varied.

Display 2—Linear model for ¥ = log.(peak area)

Number of
Notation Meaning/levels Parameters
}",.jm = @, occasion 9
121,209
+ ij ruﬁ within ocecasion 27
=123
+ M,  materiak k=12,...9 9
{samples $1,...,56 and
calibration solutions A,B,C}
3 Can concentration within material 36
{ = 1{1I81), 2 (152),
3 {Aroclor}, 4 {153)
+ P, peak:
m=1 2 3...12 13 13
Sy e gttt Nl o
IS1  IS2  Aroclor 1S3
+ lOPl,.m interaction 117
+ Eikim measurement error -
‘otal 211

parameters and 351 cbservations. The 351 measured peak
areas come from 9 occasions with 3 runs each (one
calibration and two SRM subsamples—see display 1}, for
a total of 27 runs, times 13 peaks per run.

While we feel that this linear model provides a
reasonably complete and realistic representation of the
measurements, there were several reasons which prevented
its use as a sufficient guide for the data analysis,

First, some implicit constraints in the model are difficult
to incorporate in an analysis with available statistical
computer software. These constraints arise from the fact
that Aroclor concentrations in the calibration solutions are

actually known before any peak areas are measured.
Similarly, the ratios of concentrations for the internal
standards are controlled, as deseribed in section 2.3 above.
Taken together, these considerations imply that there are
actually only six free parameters {corresponding to the
concentrations of Aroclor in the six selected ampoules)
among the 36 model terms denoted Cyg),. In contrast, the
statistical computer packages which can handle a problem
of this size and of incomplete rank do not have any
provision for imposing the necessary constraints, so that
the Cyy; terms in the model are treated {inappropriately)
as 36 Iree parameters. A future manuscript will give a
detailed look at this and other aspects of the least squares
treatment of these data under the linear model.
Another reason for not using the model directly is the
probable lack of homogeneity in the variances of the
logarithms of the measured peak areas, which is implicitly
assumed in computer packages. Evidence of variance
inhomogeneity arose from the concerns of the chemists
and was exhibited in the data [see section 4.3).
Although a least squares analysis of the model was not
used to obtain the certified value and unecertainty for the
SRM certificate, it is instructive to compare the data
summaries suggested by least squares with the more
robust alternative actually used. For example, for each
replication on each sample, it is possible to calculate the
Aroclor eoncentration in 30 different ways by using one
of the three internal standards with any one of the 10
available Aroclor peaks. It can be shown that a least
squares fit of the model implies that one should summarize
those 30 possible concentration values by taking their
arithmetic mean value (in log scale). In the following
sections, some useful alternatives to simply averaging
log{coneentration) values will be described.

4. An Exploratory Analysis

4.1 Concentrations Revisited

As illustrated in display 1, samples S1 and S2 were run
on the same occasion as a calibration solution denoted by
A; likewise, samples 53 and 54 were run with calibration
B, and samples S5 and 56 were run with calibration C.
Three replications were performed on each occasion.
Transforming eq (2°) via logarithms, a caleculation of
log{concentration) may be described as

Z = loglweight of oil x one IS peak/one Aroclor peak) ,
~ —
calibration

- loglweight of oil % same 1S peak/same Aroclor peak) (3)

v
sample

+ Iog(concentration of Aroclor in calibration solutionj.



Notice that there are (3 calibrations) x{3 replications} x
(3 IS peaks) x {10 Aroclor peaks) = 270 values for the
irst term in eq {3}, and (6 samples) x 3 x3 x 10 = 540
values for the second term. The concentration in each
calibration sclution is determined gravimetrically once
Yor all three replications, so there are only three values
for the third term in (3) {typically, about log,, (100.01
ag/g)h= 2L

4.2 Summaurizing the Dota

The guantity U=log, [lweight of @il x {IS peak)
fiAroclor peak)], for either the calibration or the sample,
is of interest, for its value can be determined entirely from
the measnrements made during a single run,
Corresponding walues of I/ must be combined for the
appropriate sample and calibration within a single
occasion. If we consider the measurements based on a
particular internal standard and peak area, we can reduce
the data for two samples by averaging the U-valnes from
the independent replications of two samples, and
combining this average with the value from the calibration
solution on the same oceasion. Thus, for each peak and
internal standard, we can obhtain nine summary values,
one for each replication on each of three calibration
solutions. Let us denote these “smmmary values” by Z.,.,
where o = A, B, identifies the ealibrafion solution, j =
1,2,3 indexes replications, ! = 1,2,3 indexes the internal
standard, and n = 3,4,...,12 indexes the Aroclor peak.
Thus, Z.,., is the average log(Aroclor coneentration) for
the two samples which were run on the jt replication with
calibration «a, nsing internal standard I and Aroclor peak
7, The valnes Z_,,, are displayed schematically in figure 2,

Figure 2 suggests that further summarization is possible
across those values that are estimating the same quantity.
We can do this in two stages, corresponding to the two
two-way layouts that are shown. If we analyze the data
via the least-squares model of section 3, the order of
summarization will not matter, and we can simply average
all 9 x 30 = 270 values together. However, these values
are not independent, and obtaining a standard error for
such a grand average is not simple.

Clearly, the 30 values in the seepndary layout (b) of
figure 2 are highly correlated. However, a “typical value”
from the 30 values Z,,,,., [ = 1,2,3, n = 34,...,12, will
be strictly independent of any Z ..., la ¥ a',j #j'). It
will simplify our uncertainty assessment from this
four-way table f we reduce each secondary table
containing the correlated values to a single “typical value”
representing these numbers. Having found such a “typical
valoe,” it may be placed in the appropriate cell of (a) of
figure 2, where we are assured that the resulting nine
values will be independent. A one-way analysis of variance
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‘ loglounoeatrarim} = Tyain, u = 4,558 calibration solutions
: 3 = 1,7.3 replizations ]
1= 1,Z.3 Internal stopdaxds i
1 n = B dy e i Grocinr pesks
i
. W= A E: T
|
=1 x ' x
2 x x x
3 'S x =
=
Each vell {x) contains 30 valmes:
n= 3 4 P 12
L=1 M
i
2 | “
5 | -
i
FiGurRe 2. Schematic Jlayout for summary wvalnes of

logap{eonceniration).

on these nine values may then be performed, and an
appropriate standard error obtained herein.

Thus, the analysis proeeeds in two stages in which we:

1) Obtain a “typical value™ from the entries Z.;.,., for
each ¢ = A,B,C and j = 1,2,3 (replieations), and,

2) Analyze the nine “typical values” Z,,.. by a standard
one-way analysis of variance.

Since chemical reascning leads us to expect the data
in some cells of the secondary tables to be much less
reliable than those in other cells, we chose to ase two-way
median polish to obtain a summary value for the table.
This procedure is analogous to a two-way analysis of
variance, but is insensitive to large deviations from the
typical value which might oceur in the data. (An example
illustrating the procedure is given in the Appendix.)
Furthermore, the correlation among the 30 values in the
table will not worry us at this stage since we are interested
only in reducing the 1able 1o a single typical value,

4.3 Summarizing the Dependent Pieces: Median
Polish

It 13 interesting to enpmpare the summary value obtained
from median polish with the corresponding summary (the
grand mean) obtained from a two-way analysis of variance
of the same data,

The differences betsveen the median polish typical value
and the grand mean of the 30 values, for each of the nine
two-way tables, areillustrated in figure 3. Notice that the
median polish typieal value differs from the grand mean
whenever one group of values (corresponding to a given
internal standard) does not agree with the other iwo. The
median polish typical value gravitates towards the heaviest
concentration of values, downplaying the influence of a



group which is some distance away {e.g., internal standard
3 in the third replication using caltbration A). In contrast,
the grand mean gives all values equal weight, regardless
of their relative positions among the others. The grand
mean may net be appropiiate, given the peossibility of
chemical reasons for all values from a given intermal
standavd to be high or low. Netice also from figure 3 that
the data exhibit evidence of variance inhomogeneity, as
mentioned in seetion 3. For these reasons, we adopt the
median polish typical values as the sermmary values for
this problem.

4.4 Summarizing the Independent Pieces: One-way
Analysis of Variance

The nine median polish typieal values for Aroclor 1260
in motor oil are shown in the top portion of display 3.

CAL IBRATTON SOLUFTEDN &

CAL [BRATION SOLUTTION B!

Since different replieations involved preparation of distinet
subsamples of material, these nine entries are
independent. Furthermeore, they are already summaries
of 30 values from peak x IS combinations. By virtne of
central limit theerem considerations, we feel safe in
analyzing this table wsing a standard ene-way analysis of
variance model with nomal errors.

Tt is pessible thai differences among the groups
identified by calilwation solutions could be introduced into
the data at the stage when the chemists add the internal
standard “‘spikes’’ to the sample, or when: the calibration
solutions are prepared. Since the results of these
operations are treated as values known witheut error,
errors introduced at this stage would persist as systemnatic
errors between the calibration solution groups. However,
the F-tests for these group effeets were all clearly
nonsignificant, with computed a-levels ranging fromy 35
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Display 3—One-way analysis of variance for nine “‘typical
vidues’” of log{concentration} for Aroclor 1260 {motor)

Calibration Solution:

A B C

Replication

1 1.99723 1.98942 1.98833

2.00399 2,00542 1.99936
3 2.02271 2.00415 2.01660
Source d.f. Sums of Squares Mean Squares F-ratio

Between
Calibrations 2 0001151 000576 308
Within
Calibrations 6 0009127 L.0001521
Total 8 20010278

Stundent’s t confidence interval for grand mean (8 d.£.1: (1.99431, 2.01174)

percent to 87 percent for the four materials studied. The
one-way analysis of variance for Aroclor 1260 (motor) is
shown in display 3.

1n the absence of between-group errors, it is reasonable
to treat the nine values in our one-way table as
independent and identically distributed observations on
the Aroclor concentration. Taking this approach, the
standard error of the mean of the nine values is estimated
in the usual way as s/V'9. The results of these calculations
for all four materials are summarized in table 1.

TABLE 1. Summary Values for Concentrations of PCBs in Oils

Aroclor 1260 Aroclor 1242
(3 internal standards) | (2 internal standards)
Motor Transformer] Motor Transformer
Qil Qil Qil Qil
log{Concentration),
mean of typical
values from median | 2.0030 2,00027 2.003 2,0017
polish
Standard error for
log{concentration} L0038 L0050 .0027 0023
95% Confidence
limits (log scale} (1.9943, 1 (1.9912, | {(1.9941, | (1.9964,
2,0117) 2,0142) 2.0064) 2.0070)
Concentration 100.69 | 100.62 100.07 | 100.39
95% Confidence
limits {original (98.70, {97.99, {98.63, (99,18,
scale): (pg/g) 102.74) 103.32} 101.48) 101.62)
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4.5 Peak Effects

As in a classical analysis of variance, median polish
vields estimates of the effects from the data. It is
instroctive to examine these estimates, particularly in cases
presenting anomalies among them. Nine median polishes
were performed to obtain the entries for the layout in {a)
of figure 2. The resulting peak effects are plotted in figure
4, Notice that in all cases the median peak effect is zero
{by the nature of the median polish analyses) and that in
several cases peaks 3 and 4 (first and second from the left)
are substantially lower than the others. The average across
all nine independent replications is plotted in figure 5,
shown with limits of one standard error. Graphs such as
this one suggest looking for chemical explanations for the
low values on peaks 3 and 4.

5. Conclusions

Four data sets consisting of gas chromatography
measurements were analyzed for purposes of SRM
certification and for eliciting unusual features in the data.
A linear model was proposed, but practical difficulties
limit its usefulness for the problem at hand. Exploratory
techniques led not only to a certified value and uncertainty
but also to the investigation of chemical causes for unusual
patterns in the effects.

The proposed analysis for these data is not specific to
an experiment of this form—i.e., GC measurements using
multiple internal standards and multiple Aroclor peaks,
with one calibration solution Ior every two sample
solutions. Rather, it illustrates how the data from
independent runs yielding several, but dependent,
answers, can be analyzed without resorting to complicated
linear models that can sometimes be unwieldly. Basically,
our general approach proceeds in two stages:

1) The structure for the dependent pieces is
determined, and the pieces are reduced to an appropriate
summary value (e.g., median, median polish typical value,
or another location estimator), and

2} The structure for the independent pieces is
identified, and the data analyzed accordingly.

Since the data at the second stage are independent,
standard techniques for obtaining uncertainty statements
apply.

As a summarizing technique for the first stage, we used
median polish to provide a robust summary for each data
set, leading to the values reported in table 1. Without
exploratory analysis, classical techniques may well have
obscured some of the interesting features in the data.
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comments on this manuscript and to Dr. Churchill
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7. Appendix: Median Polish

An analysis of a two-way table via median polish may
be unfamiliar to many readers, so we present an example
using a subset of the PCB data. A typical additive model
for a two-way table is

Yy=u+a + f + g,

where i=1,2,...,{number of rows) and j=1,2,...,(number
of columns). An analysis of variance estimates p by Y...,
a; by (Y ..-Y..) and §, by (V.Y ..), where dots indicate
averaging over the missing subscripts. Median polish
offers more robust estimates of these parameters as
illustrated below.
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FIGURE 3. Average peak effect (averaged across all nine replications shown in figure 4). Limits of one standard error of the average shown by *.

Recall from section 4.3 that for each replication
{f=1,2,3) of each calibration run {¢=A,B,C), we have
thirty values, Z,;,, corresponding to the three internal
standards ({=1,2,3), and 10 Aroclor peaks (r=3,...,12).
These are the thirty values Y,; in the two-way table.

For the data set of Aroclor 1260 in Motor Oil, j=1 (first
replication) and a=A (calibration solution), of log{Aroclor
concentration), part of the two-way table is shown below:

Aroclor Peak
3 4 5 6 7
151 1.9937  1.9985 2.0093 2.0093  2.0030
152 1.9827 1.9873 1.9983  1.9983 1.9920
Is3 1.9761 1.9809 1,9917 1.9917 1.,9892

To simplify the arithmetic, let us subtract 2 from each
of the numbers and multiply by 10*
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Aroclor Peak
3 4 5 6 7
151 63 -15 93 93 30
Is2 -173 -127 -17 -17 -80
1S3 -239 -191 -83 -83 -108

As a first step in estimating the column effects, we write
down the median of each column below a single line:

Aroclor Peak
3 4 5 6 7
51 -63 -15 93 93 30
15 2 -173 -127 -17 -17 ~-80
IS 3 -239 -191 -83 -83 -108
-173 -127 -17 -17 -80




We subtract each median from the value in the cell, and
put a double line between the table and the medians to
indicate that a number has been subtracted:

Aroclor Peak
3 4 5 6 7
IS 1 11¢ 112 110 119 110
152 ¢ 0 0 0 0
IS3 -66 -4 66 -66 -28
Column effect -173 -127 -17 -17 80

Next we operatie on the rows in the same fashion. First,
write down the median of each row (including the row
corresponding to the column effects):

Aroclor Peak
3 4 3 6 1
IS1 110 112 110 110 110 110
152 0 0 0 0 0 0
IS3 -66 ~-64 -6 ~06 -28 —66
Column effect 173 -127 -17 -17 -80 -80

and then subtract the row medians from the values in the
table (again indicated by the double line):

Aroclor Peak Row
3 4 5 6 7 effect
IS 1 0 2 0 0 0 110
IS2 0 0 0 0 0 0
IS3 0 2 0 0 BH] 66
Column effect -93 47 63 63 0 -80

Now we return 1 columns again: write down the median
of each column below the table (single line}:

Aroclor Peak Row
3 4 3 6 7 effect
IS1 1] 2 0 ¢ 0 110
152 0 0 0 0 0 0
IS3 0 2 0 1] 38 -66
Column effect -93 47 63 63 ¢ -80
0 2 ] 0 0 0

Subtract these medians from the values in the
corresponding eolumn, and add the two sets of column
effects together:

Aroclor Peak Row

3 4 3 6 7 effect

IS 1 0 0 0 0 0 110
IS 2 0 -2 0 0 0 0
IS3 0 0 ] 0 a8 —00
Column effect 93 45 63 63 0 80

Now we return to the rows, the medians of which are

easily seen to be all 0’s. So there is no further “polishing”

of this table, Returning to the original scale, the row

effects &, (corresponding to internal standards} are (0.0110,

0.0000, —0.0066), the column effects j; (corresponding to

Aroclor peaks) are {-.0093, —.0045, .0063, .0063, .0000),

and the overall typical value (i) is 1.9920.

Notice that:

e Median polish essentially “converges,” in that,
beyond a certain point, the table changes little;

* At each stage, the values in the table {*“residuals”)

are further polished, so that, at any stage of the

process, row effect + column effect + overall

typical value + tabled entry = original data value;

Whereas the usual analysis of variance summarizes
rows and columns by means, median polish
summarizes by medians;

A plot of the peak effects versus peak number would
reveal that the elfect from peak 3 is considerably
lower than the others; and
* An extreme value in the table is flagged by having

an unusually large or small residual in the cell of
the final table {e.g., IS 3 and Aroclor Peak 7). Most
of the entries in the final tableau, however, are
nearly zero.

Three- and four-way median polish are also possible; see

[1] (pp. 452ff] for an example.





