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A method is presented for the statistical analysis of sets of data which are assembled from multiple ex-
periments. The analysis recognizes the existence of both within group and between group variabilities, and
calculates appropriate weighting factors based on the observed variability for each group. The weighting
factors are used to calculate a "best" consensus value from the overall experiment. The technique for
obtaining the consensus value is applicable to either the determination of the weighted average value, or to
the parameters associated with a weighted least squares regression problem. The calculations are made by
using an iterative technique with a truncated Taylor series expansion. The calculations are straight-
forward, and are easily programmed on a desktop computer.

An examination of the observed variabilities, both within groups and between groups, leads to con-
siderable insight into the overall experiment and greatly aids in the design of future experiments.
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1. Introduction

e purpose of this article is to discuss the problem of
calculating "best" estimates from a series of experimen-
tal results. It will be convenient to refer to these
estimates as consensus values. Since experimental data
frequently come from many different sources, with each
having its own characteristic variability, the statistician's
problem centers on the appropriate weighting of the data
to obtain the consensus value(s). In order to achieve this
aim, the statistical analysis should recognize the ex-
istence of both within group and between group
variability. Both types of variability are considered here
to be random effects and are described by their
associated components of variance: the within set com-
ponent of variance for group i, o%., and the between set
component of variance, 0b.

Early attempts to solve the consensus value problem
have not explicitly recognized the existence of the be-
tween set component of variance. Attempts, such as the
Birge ratio method 111,1 are adversely affected by this
omission.

In this article we will deal with two types of problems.
The first is essentially the calculation of a weighted
average value and its statistical uncertainty. The second
problem arises in the fitting of a straight line or curve to
a set of data. The estimates both for the average and the
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parameters of the fitted curve can be thought of as con-
sensus values, i.e., they should be the consensus of the
observed data. Both problems can involve several
sources of error. It will turn out that, because of the
similarity of the weighting problems in both types of
situations, a theoretical solution common to both pro-
blems can be derived. A solution for a more restricted
form of the first problem has been previously reported
12,3]. The mathematical aspects of the general problem
are outlined in the current paper.

An understanding of the nature of random error pro-
cesses associated with measurement systems is required
to develop appropriate weighting factors. The weighting
factors that are derived are not arbitrary, but are con-
trolled by the nature of the variability of the data.

2. Illustrative Examples

For purposes of exposition, artificial examples of data
sets will be used as illustrative material. Later in this
paper it will be shown that the procedures developed are
useful for the analysis of actual laboratory data.

To develop some feeling for "what is appropriate
weighting", let us examine two specific examples. For
the first example, consider that three measurements are
each made by method A and by method B, and that the
method A results are more precise. Assume, both here
and throughout this manuscript, that the relative ac-
curacies of the methods are not known. Let the following
be the measured values, and the corresponding coded
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values which are obtained by subtracting 200 from the
measured values.

Method A B

Measured Values 201.1 201.9 201.5 216 225 203
Coded Values 1.1 1.9 1.5 16 25 3

For ease of presentation, our evaluations will be made
using the coded values. Giving the same weight to all six
coded values result in a straight average of 8.1. Note that
the addition or loss of a single method B measurement
would likely result in a relatively large change of this
average. This is not desirable. Intuitively, we know that
we should give greater weight to the more precise (and
stable) method A results.

For the second example, consider that the
measurements by method A and B are equally precise,
but that many more measurements were made by
method A than by method B.

Method A B

Coded Values 2.0 1.0 1.5 1.8 1.2 1.7 16.3 16.8
(Measured Values-200.)

In this example, the values by the two methods differ
widely. Here again, we should not take a straight
average (Y = 5.3). To do so would strongly favor
method A, and we have no basis for preferring this
method. For these data, it is better to take separate
averages for each method, and to then average the two
averages (Y = 9.0). Note that this is a form of
weighting, and that it does not let the larger number of A
measurements overpower the B measurements.

3. Basic Statistics of Weighted Averages

It is well known that the weighted average of n values
of Y is calculated by the formula:

n

~ci yi
=alYl + a2Y2 +...

n

chi

i=1

where coi is the weight associated with the value Y, and
the a's are the corresponding coefficients. Statistical
theory shows that the variance of this weighted average
is minimized when the individual weights are taken as

the inverse of the variance of the individual Yi, that is,
c~i = I/Var(Yi). Low weights are given to values with
high variance.

Next consider the weighted average of m average
values, Ye:

m

EIcoiy
y=i=1 (1)

m i hi
M

i~i

where now'coi = 1 /Var(Yi). If both the Yi and the
Var(Yi) are known, then the weighted average of (1) is
easily calculated, and this is the consensus value. Thy
estimation of the proper value for the variance of Yij
however, is not always a simple process. To better
understand the problem let us return to the second exam-
ple, given above. It is easy to obtain YA = 1.533 and the
variance estimate

6

S2 (YA)

S2(yA) = ___=

nA

I (YE-YA

i=1 =0.0238 = (0.154)2
(6-1) *6

and YB = 16.55 and s2AyB) = 0.0625 = (0.250)2, but
one questions the reasonableness of the estimated
variances. How can the variances be so small, and the
two averages be so far apart? The answer is that the
above variance calculations only describe the internal
variability of the A or the B measurements, and do not
recognize the variability between the sets of
measurements. It is quite common, even among very
good measurements, to find large differences between
different sets of measurements 14]. To obtain a realistic
estimate of Var (Y)i, or correspondingly of coi, one must
evaluate a between set component of variance and in-
clude it in Var (Y.).

The use of a between set component of variance, in ef-
fect, treats the collection of systematic errors from the
various measurement sets as a source of random
variability. The existence of systematic errors in a
measurement process may require a word of explana-
tion. The systematic errors that are being described are
errors that remain after the extensive scientific develop-
ment of a measurement process. All major sources of er-
ror should have been eliminated, and calibrations with
multiple standards should have been made. What fre-
quently happens in this process is that many within set
errors are eliminated along with the larger between set
errors, such that the sensitivity of the analytical method
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increases to the point that a lower level of systematic er-
ror can now be detected. There are practical limitations
to the pursuit of this process, and frequently one must
live with a certain detectable level of between set
systematic error. Effects such as interferences due to
minor sample components will vary in different
laboratory environments and these effects are extremely
difficult to eliminate.

An essential point in our analysis is the assumption
that no information on systematic errors is available that
would allow us to place more confidence in any one set of
measurements as compared to the others. Thus, in this
analysis all sets have equal standing with regard to their
possible systematic errors. Our technique can, however,
be extended to cover situations involving different
assumptions.

The calculation of the between set component of
variance is readily accomplished by an iterative pro-
cedure, described in section 4. The sample estimate of
Var(Yd for method i, is obtained by combining the
within set component of variance, s 2., and the between
set component of variance, sg. For the second example:

S2
2- wA 2

=2y) -_ + 8 b

S.2

82ty) _= B + 2b
2 S

6 2

IY~ (YAY) 2 + I({YBGYB)2

Q _ _ 112 l=1
(6-1) + (2-1) = 0.1398

(2)

so that

52() -} 0.1398 2

6 +2b

and

-2y) 0.1398
2 +S

To summarize: The weighting constants used to
calculate the consensus value are obtained by taking the
inverse of the variances of the various set Yi. The proper
variances are a combination of the within and the be-
tween set components of variance. Under certain cir-
cumstances, a more stable pooled within set component
of variance may be used.

4. Calculation of the Between Set
Component of Variance

The proper weight for Yi is coi = 1 Var(Yj) and the
estimate of this quantity is:

The within set component of variance for method A is:

6

7 ( Yi-ch) 2

s i=- = 0.1427
(6-1)

Similarly,

S2 = 0.1250

and 4 A/6 and A2 /2 are equal to 0.0238 and 0.0625,
the quantities that we had previously (and incorrectly)
called S2 (yA) and s2 YB). For the proper s2(Y,) one needs
to add in sb. With an available S2 one calculates
estimates for S2(YA) and s2(YB) and tte corresponding
weights, wA and wB' and then proceeds by eq (1) to ob-
tain a valid estimate of the consensus value, Y.

If the sA, are quite similar, as they are in the above ex-
ample, one can make an improvement by using a more
stable pooled s2. There should, of course, be a
reasonable scientific and statistical basis for pooling the
within set variability. For the current example,

Ii =[_'+ i]
- 1

(3)

Depending on the nature of the data, the within set
variance may or may not be pooled. For either case,
however, s2 must be evaluated. This is accomplished in
the following way.

From the definition of coi we obtain the relation:

co1Var(Yi) = 1

or equivalently (4)

Var(#3i1) = I

For any given set of coi, this variance can be estimated
from the sample by the formula

m

I w),(Y-})2
z iYi"P

s2(co1 g) = i
a(r-lI
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Equating this estimate to its expected value (unity, see eq
(4)), we obtain

m

i;; l c,(y, - j)2
{m-1)

I

where Y is the estimate of the consensus value as given
by eq (1). The estimate of Y depends on knowing the wi.
These can be calculated from eq (3), once s2 is known.
Thus, the only problem is to estimate sb. Equation (5)
provides the means for calculating sb through an iter-
ative process.

Define the function:

m

F(s2) = .(Y.1)2 - (m-1) (6)
i=1

In view of eq (5), s2 must be such that F(s2) = 0. For
ease of notation let sE = V. Start with an arbitrarily
selected initial value, v.. It is desired to find an adjust-
ment, dv, such that F(v0 + dv) = 0. Using a truncated
Taylor series expansion, one obtains:

F(v0 + dv) F +(aF dvO = 00 k~~~\av J)

this last iteration.
The small data set of our second example will now be

used to illustrate the iterative procedure. Let the first
estimate for s2 be 100. In calculating the coi from eq (3),
it is seen that the first term of the right-hand side is a
fixed quantity and that the values for the A and B sets
have been previously calculated to be .0238 and .0625,
respectively. Thus, coA = 1/(.0238 + 100.) = .0099976
and COB = .0099938. The YA and YB are 1.533 and
16.550, respectively.

From eq (1), Y
From eq (6), F0
From eq (7), dv

= 9.0400
= .1270
= 11.28

The next iteration would start with a value of 111.28 for
S2, and would repeat the above set of calculations with
this new value. After two additional iterations, v is equal
to 112.7120 and dv is less than .0001. The final P is,
9.0402. (The uncoded Y is, of course, 209.0402.)

In this illustration the initial v value was reasonably
close to its final estimate. More discrepant initial values
will require only a few additional iterations. It can be
shown that the iteration process always converges.

The pooled estimate of the s2 (= 0.1398) could have
been used for the above iterative calculations. The final
results would be very similar (s2 = 112.7085 and Y =
9.0399). For either case, the iterative calculations are
easily programmed on a desktop computer.

5. Discussion

/FO\dv = -
\ay

Evaluating the
obtains:

dv =

partial derivative in this equation, one

Fo
m 1
iC O(2 -Y-Y)2°
i=1 I I( Jo-

The adjusted (new) value for v is:

New vo = Old vo + dv

This new value is now introduced in eq (1), (3), (6),
and (7) and the procedure is iterated until dv is satisfac-
torily close to zero. If at any point in the iteration process
a negative value is obtained for v, this value should be
replaced by zero and the iteration continued. The last v
is the s2 we seek. The coi and Y are also obtained from

The above iterative calculations for the weights and
the weighted average are recommended. The calcula-
tions are based on the recognition of both within and be-
tween group variability. The calculated consensus value
is, in general, neither the grand average of all
measurements, nor the average of measurement set
averages. These overall averages merely describe two op-
posite weighting situations from our more general
weighting eq (3). To illustrate this point consider the case
where a pooled SA is used in eq (3). When the 2 term of
this equation is zero, the weights for the Yi are all pro-
portional to ni. All individual measurements are
therefore weighted equally. When, however, s2 is
relatively large, the s2 /ni term of eq (3) is essentially
without effect, and all the measurement set averages are
weighted equally. Equation (3) also gives proper
weighting for all intermediate cases. In addition, it
describes the situation where the within set components
of variance are different for different sets of
measurements, and takes account of any differences in
the number of replicates (ni) in the various groups.

380

and



The ready availability of programmable desktop com-
puters strongly encourages the use the iterative ap-
proach. Since one can easily do the calculations, there is
little reason to not use proper weighting.

The examples to this point have been chosen to be
easily worked by hand. They describe situations where
the intuitive answers are obvious. The examples use of
only two measurement sets, however, is not recommend-
ed in practice since there is a very limited sampling of
measured differences between sets. Such a limited
sampling results in a s2 estimate that is quite uncertain.
The use of many sets of measurements is recommended
since this results in greater stability of the estimates.

6. Calculation of the Standard Error of
the Weighted Average

All practical applications of the weighted average will
require some estimate of its uncertainty. Accordingly,
the standard error (standard deviation) of the weighted
average should be calculated. The derivation of the stan-
dard error of Y is straightforward if one considers the
final coi estimates as constants.

hi
and

Var(Y) =

I coVar(Yd)
( 1 I =

(7 ~)
i

E CDI1(O/@)
I

(I (OA)d

i

TCi

This value is seen to be quite reasonable when one
remembers that the uncoded group averages for methods
A and B were 201.53 and 216.55. Notice in this exam-
ple that the between set component of variance is the
predominant factor in the standard error.

7. Example of an Interlaboratory Experiment
Using the Weighted Average

Five laboratories have made a number of determina-
tions for the heat of vaporization of cadmium [5]. In this
experiment, each laboratory had a noticeably different
replication precision, and each performed a different
number of determinations to obtain its average value.
We now wish to determine the consensus value (weighted
average) from this interlaboratory experiment. The in-
formation from the experiment is listed below, along
with the s2 calculated by the iterative procedure.

Lab i Avg. Value nIns 2 . 2n

1 27,044 6 3
2 26,022 4 76
3 26,340 2 464 x103 105x10 3

4 26,787 2 3
5 26,796 4 14

In the process of examining
three averages were calculated.

the data, the following

Average of averages
Average of individual measurements
Iterative weighted average

26,598
26,655
26,713

The sample estimate of the standard error of Y is easily
obtained from the final iteration of Y. It is simply the in-
verse of the square root of the sum of the weights. Note
that the latter quantity has already been calculated as
the denominator of Y.

Standard Error = I

17Wi

The standard error is reduced by the use of a larger
number of sets of measurements, i.e., by more coi.

The standard error associated with the Y = 209.04
from our previously worked example is calculated as
follows:

Standard Error = 7.51

One notes that the iterative weighted average does not
fall between the other two averages. How can this hap-
pen? Basically, it is caused by the recognition of the in-
dividual within group variances in the weights for the
iterative weighted average. To better understand the
three averaging processes, let us order the laboratory
heat values and include the three sets of "weights" that
were used for the averages.

Weights For
Avg. of

Ordered Avg. of Measure- Iterative
Avg. Values Averages ments Procedure s2 In. 82

ti I b

26,022 1 4 5.5 76
26,340 1 2 1.8 464
26,787 1 2 9.3 x10-6 3 x103 105x103
26,796 1 4 8.5 f 14
27,044 1 6 9.31 3
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Note that the second and third columns contain relative
weights while the fourth column contains absolute
weights. The relative weights cause no problem for the
calculation of the weighted average since inspection of eq
(1) shows that any constant multiplier for the relative
weights will cancel out. An inspection of the three col-
umns of weights, as well as the ordered laboratory heat
values, shows that the weights for the iterative procedure
most strongly favor the higher laboratory heat values.
Column five of the table, in turn, shows why the iterative
weights most strongly favor the higher laboratory heat
values; the observed within group variability is smaller
for the laboratories that have the higher heat values.
This causes the Var(Yi) for these laboratories to be
relatively small and the weights to be relatively large.

This example with actual laboratory data shows that
one cannot automatically assume that the average of
averages and the average of measurements will bracket
the consensus value (weighted average). The weighted
average should be calculated. It is more sensitive to the
overall experiment and it responds to both the within-
and the between group variability.

It will next be shown that the iterative treatment of
weighting factors can be easily extended to the problem
of fitting lines by weighted least squares (regression).

8. Fitting Lines by Weighted Least Squares

According to statistical theory, the above defined
estimate of the weighted average is the value that
minimizes the sum of the weighted squared deviations of
the observed data (from the weighted average value). It
is a least squares estimate. A similar treatment is used in
weighted linear regression. Here, a pair of parameters,
namely the intercept and the slope of the line, are
estimated, rather than a single average. The procedure,
however, is again the minimization of the weighted sum
of squares of deviations. Here, too, both within set and
between set components of variance should be evaluated.

Consider the situation where a laboratory calibrates
an instrument using a series of standards. The
laboratory may not always make the same number of
replicate measurements with the different standards.
Thus there are different sets of replicate instrument
measurements (1) corresponding to a series of accurately
determined standard values (X). An example of a linear
calibration process is given in figure 1. Let us assume
that the linearity of the calibration curve has previously
been established. An examination of the figure shows
that the variability in the Y direction among replicates
obtained at the same X value is relatively small when
compared with the scatter of the clusters of points about
the straight line. Thus, two sources of variability are sug-

X

Figure 1

gested by the data. The Y replication variability
associated with a given X value is analogous to the
previously described within set component of variance,
sd2., and the variation shown by the scatter of the clusters
of points about the fitted line is analogous to the between
set components of variance, s .

The observed variance for the j-th replicate Y.
measurement made at a given Xi value will consist of the
sum of the within- and the between set components of
variance.

S2(y,,) = S2 + S2

For convenience of calculation, it is desirable to deal
with the averages of the replicate measurements. The
average of ni replicate measurements is denoted as Yi.
The observed variances for the averages are given by:

- wi
s2(y) = + S2

ni b

The within set variances of the above equation can be
evaluated for each distinct Xi value. It is possible, if
there is a consistent measurement process over the full
range of values, to obtain a pooled estimate of the within
set component of variance. This pooled estimate is ob-
tained in the same manner as described by eq (2), above.
In the current application, the different Xi values corres-
pond to the previously described different measurement
sets and there are now as many summations in the
numerator and denominator of eq (2) as there are
distinct Xi values.

Let us now assume that an appropriate between set
component of variance is available. The weights, coi =
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I/Var(Yd) can be evaluated, and a standard weighted
linear regression of Yi on Xi can be carried out (see either
the Appendix, or Ref. 16]). Thus, the regression problem
using weighted least squares centers on the determi-
nation of s2.

The sb value, for the regression case with an intercept
and slope, can be determined by the general iterative ap-
proach given above. Equation (3) now refers to the
within- and between set random errors in the Y
measurements. It is now used along with the following
modified iteration equations:

m

F (S2) = C(} -.i J) 2 - (m-2)
i=1

figure 2. The true line has both unit intercept and slope.
For this example, let us assume that "interferences" for
the X = 1 and the X = 5 standard samples are such
that the measured values will be about 0.2 units high.
Similarly, the X = 2 and X = 4 standards yield
results that are about 0.2 units low. Duplicate
measurements are made, and for simplicity assume that
these measurements have a fixed s2 value of 0.0008 (as
shown in fig. 2). With equal numbers of replicate
measurements, both the unweighted and the iterative
weighted regression calculations give the correct values
for the intercept and the slope.

(8)

71
Fo (9)

b 6

(Yi-Yi)

where A

Y.i = weighted least squares fitted value, i.e.,
Yi = a + bXi

The major modification is that instead ofkusing Y, we use
a weighted least squares fitted value Yi. Equation (8)
uses (m-2) rather than (m-1) degrees of freedom since we
are now estimating two parameters, i.e., the intercept
and the slope.

The procedure for iteration is little changed. An ar-
bitrary initial estimate for sbis taken and used with (3) to
obtain the weights. Next, a weighted linear reg ession is
made of Yi on Xi to obtain estimates a, b, and i. This is
followed by the use of eq (8) and (9) to calculate a correc-
tion for s2 The whole procedure is then repeated until
tie correction for s2 is negligible. The final S2, a, b, and
Y. are then saved for further interpretation and use.

The above procedure for performing a weighted linear
least squares fit can be easily extended to a weighted
quadratic, or higher order, regression of Y1 on Xi. For
example, to fit the equation Yi = a + bXi + cX9
change, in equation (8), the (m-2) to (m-3) to account f r
the addition of coefficient c, and use a quadratic fitted Yi
in eq (8) and (9).

9. An Example of a Weighted Least
Squares Fit

Let us examine the effect of different weighting factors
on the determination of the intercept and slope of a
calibration line. A greatly simplified example is shown in

5

4

y
3

2

A

0 1 2 3 4 5 6
X

Figure 2

Let us now, however, say that the experimenter is par-
ticularly interested in determining the intercept and that
he/she therefore makes six rather than two replicate
measurements using the X = 1 standard. For the sake
of simplicity, assume that the six Y measurements again
center at 2.2 and that s2 = .0008. Even though
everything looks nominally the same, the unweighted
regression calculation gives an intercept of 1.145 and a
slope of 0.9636. Obviously, the six points at X = 1
have pulled the left side of the line upward. If we carried
out the regression calculation using only the average Y
value for each X value we would obtain the correct in-
tercept and slope values. The average Y values are not
affected by the number of measurements used in each
average.

In this example, in which appreciably more
measurements. were made for one standard. than for the
others, and the replication error was relatively small, the
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1.0 2.18
/ 1.0 2.22
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* 2.0 2.82

3.0 3.98
3.0 4.02
4.0 4.78
4.0 4.82
5.0 6.18
5.0 6.22
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unweighted regression leads to erroneous results. A pro-
per weighting procedure must prevent the measurements
at one standard from unduly influencing the fit. Equa-
tion (3) of our iterative weighted regression calculations
will properly control the weighting. In this example, the
so term in eq (3) dominates the weighting. Use of the
iterative weighted linear regression gives a = 1.0008
and b = 0.9998. If the data from this example were real
laboratory data, then our calculated a and b would be
the appropriate sample estimates.

10. Design of Experiments

The interferences associated with the live standards of
the above illustrative example have been ideally and ar-
tificially balanced. In real life situations the order in
which the interferences will occur will tend to be more
random. When the replication error is small, i.e., s, is
small relative to s2, the positions of the (Xi, Yj) points
will be mainly affected by these random sample in-
terferences. In that case, the use of a larger number of
standards over the range of measurement interest is
recommended since this favors a more even distribution
of these interferences, and a more accurate determina-
tion of the line. Furthermore when s2 is small relative to
S2 the use of large numbers of replicate measurements is
not recommended since these measurements are very in-
efficient in determining the position of the (Xi, YIJ
points.

Consider next the situation shown in figure 3, where
4 is large relative to 2 Here all of the average points
(Xi, Yi) are very uncertain. The interferences of each
standard sample is now completely overshadowed by the
variability in the replicate measurements. For this situa-

' I I - I I I

0

y~~~~~

X
Figure 3

tion one should make many replicate measurements with
all of the standard samples so as to minimize the replica-
tion uncertainty.

11. Summary and Conclusions

Calculation of consensus values, both in the form of
the weighted average or the weighted least squares
regression, requires a knowledge of the within- and the
between set components of variance. The individual or
the pooled within set components of variance can be
directly calculated from the experimental data. The be-
tween set component of variance can conveniently be
calculated from the experimental data using an iterative
technique which is based on a truncated Taylor series ex-
pansion. Consensus value(s) are also obtained by this
iterative technique.

A simple intuitive understanding of the within- and
between set components of variance allows one to more
efficiently design experiments for obtaining consensus
values.

The logical arguments for use of the within- and be-
tween set components of variance can be extended to
other areas of statistical analysis. Work is in progress for
extending the current techniques to nested analyses of
variance.
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Appendix

The formulas for estimating the slope and intercept by
weighted least squares are straightforward. The slope is
calculated from the observed m sets of (Xi, Yd) points.
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m
E Wi(Xi - X) (Yi 45

b = i=1

m

E= 1 (Xi-X)2i=l

a = Y- bX

The interested reader may also wish to calculate the
standard errors of the above estimates of the slope and
the intercept, the formulas are:

1

Sb

m
E (Dixiz .

Xi = I=- I

m

i=1

and

m Sa =

E CAi Fi
y/ = i= I

m

zoPi
i=1

The intercept is obtained by the following formula.

[ m 1Fm
E i' co(X, -X)21

i=L 2 i=L

A more detailed explanation of weighted least squares
fitting processes is contained in Ref. [6].
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