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A dual acceptance criterion based on the sample mean and an extreme order is used in many inspection
procedures. Computation of the acceptance probability for such a dual criterion is investigated. An ap-
proximation and & lower bound to the acceptance probability are derived and are applicable to any con-
tinuous disiribution. In addition, the connection between this dual criterion and hypothesis testing of scale
and location parameters is studied. In the case of the exponential distribution the exact evaluation of the
acceptance probability yields the power of the test.
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1. Introduction

Suppose that a random sample of size 7 from a lot is measured with respect to a particular variable
and that the aceeptance or rejection of the lot depends upon whether or not the measurements satisfy
certain criteria. “Lot’ can refer to a group of individual items or to a specified amount of material
which can be sampled randomly.

There is widespread interest in sampling procedures that specify acceptance criteria involving the
sample mean and a proportion of defectives in the sample [1], [4], [5]. [9]. [11] and [14].} Such a sam-
pling procedure might specify that the lot is to be accepted only if the sample mean is greater than a
value u , say, and if no more than a specified percentage of the sample is less than a lower limit L. The
purpose of a dual acceptance criterion is to ensure, for example. that the lot is at least a stated amount,
fq, of the specified variable on the average and that the number of so called **defectives” or items that
violate the lower limit is controlled. Obvicusly. depending on the application, the acceptance criteria
can be specified in the opposite direction; i.e., the lot is to be accepted only if the sample mean is less
than uq and at least a certain percentage of the sample is greater than an upper limit U,

Specifically, let X{,=*+, X be a random sample of n measurements, and let X j;, $++*< X, he the
corresponding order statistics. It is assumed that the random variables X, ,**.X,, are independent and
identicalty distributed {i.i.d.) with a probability density funetion f{x), and that the X; have finite mean
1 and variance 02, Let X be the sample mean and /N, be the number of defectives or measurements
having values smaller than the specified {lower) limit L.

The sampling procedure to be considered is such that the lot is accepted whenever

[X 2 pgand Ny < k] 1.1}
where y, and k are specified in the sampling plan.
In terms of the order statisties, [1.1) is equivalent to the criterion
[X 2ugand Xy > L] 1.2)
and the probability of accepting the lat is defined to be
P,=P[X 21y N, <k]. (1.3)

The sampling procedure diseussed above is a mixed variables-atiributes acceptance eriterion based
on one sample. There are various ways of designing a mixed sampling plan. The type studied by Schill-
ing and Dodge [19] is a double sampling procedure involving variables inspection in the first sample.
If the variables inspection does not lead to acceptance, a second sample is taken and an attribute in-
spection is conducted on the combined samples. In their work. Schilling and Dodge assume a normal
distribution with unknown mean and known variance.

We concentrate on a single sample plan where bath the variables inspection as specified by the sam-
ple mean and attributes inspection as specified by k, the number of allowable defectives, are con-
ducted on the same sample. This causes difficulties in the computation of the acceptanece probabilities
because of the lack of independence of the sample mean and the order statistics.

Investigations, of which we are aware, into the statistieal properties of sampling procedures of this
type assume a normal distribution with unknown mean and known variance. For instanee in a com-
plianee sampling application, Weed [21] simulates a two-stage procedure used in specifications for the
thickness of paving material in which both stages involve a variable and an atiribute inspection. Elder
and Muse [8] develop a large sample approximation for the acceptance probability used in U.S.
Department of Agriculture inspection procedures (1.3} and compare the approximation to an exact
numerical procedure.

lFigures in brackets indicate literature references at the end of this paper.
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It is noted that the dual sampling criterion leads to an acceptance region for testing hypotheses con-
cerning the mean y and the probability of item defectiveness simultaneously. The probability of a
defective is defined to be p = P[X £ L). The acceptance region in {1.1) or (1.2) may be used for testing
the null hypothesis

Hy: ,u=,u* andp =p’l=

versus the alternatives (1.4)
Hy: ;.¢<;.¢*0rp >p>k

Through reparametrization, these hypotheses may be formulated in terms of the location and scale

parameters. Evidently, this depends on the properties of the distribution under consideration.
In the case of the normal distribution /V(y, 02), the probability of a defective is

p=¢(L;“) {1.3)
where
]. f‘-; 9
P (z) = exp{—us/2}du.
Vo p{ !
Thus,
o= (L — w/o-1{p). (1.6}

Consequently, u=u" and p =p* if and only if
p=p*and g=0"=(L-u" /& p*.

Accordingly, the hypothesis testing problem in (1.4) becomes that of testing

*

Ho:y=p* and 0 = o

versus {1.7)

* —_————
Hp:pu<pu oro <¢_1(P*}

Perusal of the literature turned up very few papers that are directly related to a joint test of the loca-
tion and scale parameters. Eisenberger [7] develops an asymptotic joint test for the mean and variance
of a normal distribution based on a gquantile. Perng [18] develops = joint test for the location and scale
parameters of an exponential distribution based on Fisher’s method of combining two test statisties.
Anderson [2] discusses the likelihood ratio ‘test for simultaneously testing the mean and variance in
multivariate normal distributions; both one-sample and k-sample problems are considered. In a recent
paper, Perlman [17] shows that the likelihood ratio test is unbiased. None of these papers discusses the
computation of acceptance probabilities under alternative hypotheses. Also, unlike (1.7), the alter-
natives in the quoted papers are rectangular regions.

2. Scope of the Study

It is our intention to investigate the acceptance probability of a dual sampling procedure from
several aspects. The investigations are carried out for the normal distribution because of its im-
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portance in acceptance sampling and for the exponential and Weibull distributions because of their
application in modeling the life span distribution.

First, in section 3, we derive a large sample approximation P, for the acceptance probability P,.
This is achieved by deriving the asymptotic joint distribution of Va(X —ul/o and N —np)/(np
{1=pl}* as the sample size approaches infinity. This approximation method applies to any distribu-
tion. We illustrate its use in the normal, Weibull, and exponential distributions. The results as given in
sections 3.1, 3.2, and 3.3 are compared with a simulation study.

In section 4 a lower bound P is established for P, that amounts to assuming the independence of the
sample mean and the kth order statistic. This lower hound for finite samples provides some informa-
tion on the accuracy of the approximation. We attempt to determine under what conditions the ap-
proximation P, is a significant improvement over the lower bound. In this connection one notes that a
large sample approximation P, is derived by normalizing the sample mean as vr(X—p)/0 and the
number of defectives in the sample as (N —np)/(np(1—p)1/2, 1, instead, we convert N, to an order
statistic X”‘] and consider X, (or Xip—iy) a8 an extreme statistic. the normalized sample
mean V(X —u) and Xy tor equivalently X, .} are asymptotically independent (The proof is given in
appendix B]. This suggests that P serves as a possible approximation ta P, when #n is large and k is
gmall.

In other words, when comparing P, and P, one should keep in mind the relationship between k and
n; namely, the ratio & /n. In the case of P, we have /Ny /n — p and in the case of an extreme statistic we
have k/n — 0 as » = . Clearly, one would expect that the lower bound P may be a reasonable ap-
proximation when k is relatively small compared with n. This is indeed confirmed in our numerical
study in section 4. The numerical studies show that P, is comparable to P for small k/r and superior
to P for larger values of & /n.

Finally, in section 5 the aceeptance probabilities are approximated for the normal and Weibull
distributions using a procedure proposed by Pearson and Hartley [16]. The exact acceptance prob-
abilities curves are computed for the exponential distribution.

3. Large Sample Approximation of the Joint Distribution of X and N,.
3.1 Derivation

Let X, e X, be arandom sample from the lot with pdf ffx). Assume that X; has a finite mean p and
variance o2,
Introducing indicator random variables I
where
1 if Xj £ L 3.1.1)

M
Il

0H X, >L
and letting the probability that an item violates the lower specification imit L be
p = PIX; < Lj, (3.1.2)

we can write the number of (unit) lower limit violations /Vy in the sample as

n
N, = =Zl I (3.1.3)

Note that /V; has a binominal distribution Blr,p), and the event [V, <€ k] is equivalent to the event
[X4+1) > L]- In order to develop an approximation formula for the aceeptance probability

Pn=P[-X2ﬂ0’NL€-k]-
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we consider random variables W, and Y, defined as

W = al/2(X-u/o

n

and {3.1.4)
Y {N;—np)/(np(1-ph1/2.

n

il

Let (7, Y} be a row vector. We prove the following result.

THEOREM 3.1. As n—>> %, the random vector (W, Yn]r converges in distribution to 2 bivariate nor-
mal distribution with mean (0,0}’ and covariance matrix

2 = (3.1.5)

where

o = E {Xi—u)li/o(p(l—p)l“z. {(3.1.6)

PROOF: Letz, and ¢, be arbitrarily chosen but fixed real numbers. Form the linear combination of W,
and ¥, , W, +1, Y.

Direct computation and application of the central limit theorem give

D
y W+, Y, > N0, 1,2 + 152 + t)ty0) as p=>

It then follows from application of the Cramer-Wold device that

W D 0
" - N (), Z as n—> o

Y, 0
where X is given in (3.1.5).
Making use of the asymptotic distribution in Theorem 3.1, we note from (3.1.4) that
X = a7 V20W,+u
and
Ny = (ap(l—=p)/2 Y, +np.

Thus the random vector (X, N;)’ has asymptotically a bivariate normal distribution with mean and
covariance matrix I given by

n n
andI" = 3.1.7)
np E(X~uM; np(l-p)

respectively.
For convenience in computation, write the acceptance probability P, as
P, = PIX Zugl— P[X >py Ny >k]

= PIX zup) - PIW, > Valu,—u/o, Y, > ap(l-p)~1/2(k~np)]. {3.1.8)
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Making use of (3.1.7) and the continuity correction factor .5 for the random variable Ny, we see that
for sufficiently large r, P, may be approximated by

(0] oC o+ ]
P, = . fexp(—zzfmd'z— f Efg(x.y,gldxdy {3.1.0
Vi 4 a
where
& = Vnluy—ul/ o, {3.1.10)
b = (rp(l-ph~ 12k + 0.5 — npl, (3.1.11
gley,ol =207 (1-p3) 71 2exp [ —(22 + y2 — 20xv)/ 2(1—02)}, {3.1.12)

and ¢ is defined in (3.1.6),

In order to compute the P (X 2 rg» N € k] using the approximation P,, we need to know the
mean p and the variance o of the distribution in question, the proportion defective p as defined in
(3.1.2) and the correlation coefficient ¢ as defined in (3.1.6). The computation of the bivariate normal
term is described in more detail in Appendix A.

3.2 Normal Distribution

Assume that the sample eomes from a normal distribution N{u,a2),
The item defective probability from {3.1.2) is

p=PIX<L] = &{(L—w/a}, (3.2.1)

where ©{(L—p)/ o} is the cdf of the N(0,1) given in {1.5).

In order to compute the approximation P, given in (3.1.9}, we need to compute the correlation coef-
ficient given in {3.1.6).

The expectation E{(X—pu)f X< L]} is evaluated as

E{(X-_P'I[XQL]} = - exp {—(L—u2/2a2}).

o
v Zn
Consequently the correlation coefficient is

g = ~(2ap(1—pl~ 1/ 2exp {~L—p2/202}.

In order to compare the approximation P, in (3.1.9) with an approximation developed by Elder and
Muse [8], the lower limit £. is chosen under the assumption that u = 0, ¢ = 1, and according to the
criterton

PIN, Skj=1-a, (3.2.2)

where 0 < e <1.
Because /V; is Bfn,p), the lower limit L is determined from

k
2 (?) pll—pp~i=1—g, (3.2.3)
J=0
where p = ®(L}.
Values of L as tabulated by Elder and Muse for « = 0.10, 0.05, and 0.0l are shown in table I. Once
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TABLE . Lower Limits used in Computation of Acceptance Probabilities for Normal Distribution

Lower Limit L
n k a=0.10 a= (0,05 a=(.01
3 0 2,036 2.319 2.877
1 1.215 1.429 1.843
2 0.685 .881 1.250
10 0 2,300 2.568 3.089
1 1.602 1.789 2.157
2 1.196 1.358 1.670
20 0 2.559 2,799 3.289
1 1.928 2.095 2,428
2 1.586 1.726 2.001
30 0 2.696 2.928 3.402
1 2.100 2.258 2,574
2 1.783 1.914 2.172

L is determined the correlation coefficient of X and IV r can be evaluated as
e=—[2np(1-p)]~1/2 exp{—L2/2}. {3.2.4)

The’ Elder-Muse approximation along with their exact results are compared with the corresponding
values of P, in table I where L is chosen such that o = 0.10. )

The comparison with the exact values derived in [8] shows that even for small sample size P, pro-
vides an excellent approximation to the acceptance probability P,, and its effectiveness increases as k
gets larger. When £ = 0, the percent error in P, as compared to the exact results is approximately 3
percent, Fork = 1,itis about 1 percent and for k¥ = 2, it is less than 1 percent. The percentage errors
in both P, and the Elder-Muse approximation when p = 0 are shown below.

Percent Error in Approximations
k=0 k=1 k=2

Elder Elder Elder

n P, Muse P, Muse P, Muse
5 33 1.0 1.0 1.8 0.6 1.2
10 3.1 0.6 1.0 1.0 0.6 1.2
20 3.0 0.2 0.8 0.6 0.6 0.8
30 2.6 0.2 0.8 0.8 0.4 0.0

3.3 Weibull Distribution

Assume that the sample X,....,X, comes from a two parameter Weibull distribution #7(1,6) with
scale parameter A, shape parameter 6 and pdf

fx) = (671 (x/08L exp {— (x/N%} forx>0,1>0,8>0 {3.3.1)
The mean and variance are

u=Ar1+1/6) {3.3.2)
and

02 =22 {r(1+2/6) — [M1+1/8)]2} (3.3.3)
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respectively where '(+) is the gamma function.

For 0 < 6 € 1, X has a decreasing failure rate (DFR) distribution; for 8 = 1, X has an increasing

failure rate (IFR) distribution. For further information see Johnson and Kotz [13].

In the case of the Weibull distribution, the proportion defective p is defined from (3.1.2) and (3.2.2)

as
p=[X<L}=1-exp {—(L/W0)}, (3.3.4)
The expectation
6 L
EXI[X‘{:L] = i 6 xlx/ A8 lexp {— (x/1)¥}dx
= AI{(L/N%1/6} (3.3.5)
and I{c,d) is related to the incomplete N -function [12].
Combining (3.1.6), (3.3.4) and {3.3.5), we find that the correlation coefficient is
TaBLEIL. Comparisor of Approximation P with
Eider —Muse Values for
P[XZu * N, S k)where PIN, < k)= 0.90
for Normal Distribution N(0,1}
k=0 k=1 k=2
Elder Elder Elder
n H Exact P, Muse Exact P, Muse Exact P, Muse
3 -8 | 0.035 0.034 0.032 0.036 0.036 (.034 0.037 { 0.036 0.037
-6 | 0.087 0.082 0.085 0.089 0.088 0.089 0.089 | 0.089 0.091
-4 | 0.180 0.168 0.181 0.184 0.181 0.188 0.185 | 0.184 0.189
=2 10318 0.300 0.323 0.324 0.320 0.332 0.326 | 0.325 0.333
.0 | 0.488 0.472 0.493 0.496 0.491 0.505 0.499 | 0.496 0.505
2 | 0.659 0.667 0.663 0.669 0.672 0.674 0671 | 0.672 0.674
4 | 0.801 0.814 0.802 0.811 0.814 0.811 0.813 | 0.814 0.812
6 | 0.899 0.91¢ 0.899 0.908 0.910 0.906 0.909 | 0.910 0.9006
8 | 0.956 0.963 3.955 0.962 0.963 0.959 0.963 | 0.963 0.959
1¢ =6 | 0.027 0.020 0.026 0.028 0.028 0.026 0.028 | 0.028 0.027
-4 | 0.098 0.091 0.097 0.100 0.098 9.099 0.101 | 0.101 0.101
-2 | 0.252 0.236 0.253 0.257 0.252 0.261 0.260 | 0.257 0.264
0| 0,480 0,465 0.483 0.490 0.485 0.495 0.494 | 0.491 0.500
2 1 0.713 0.732 0.714 0.725 0.735 0.728 0.731 | 0.736 0.733
4 | 0876 0.897 0.876 0.888 0.897 0.887 0.893 § 0.897 0.891
6 | 0.956 3,971 0.956 0.966 0.971 0.965 0.969 { 0.971 0.967
8 | 0.950 0.994 0.985 0.992 3.994 0.991 0.993 | 0.994 0.993
20 -4 | 0.034 0,032 0.034 0.035 0.034 0.034 0.036 | 0.035 0.034
-2 1 0.174 0.162 0.174 0.178 0.173 0.178 0.180 | 0.177 0.181
.01 0,474 0.460 0.475 0.483 0.479 0.486 0.488 | 0.485 0.492
.2 10.781 0.811 0.781 0.795 0.814 0.795 0.802 | 0.814 0.802
41 0,937 0.963 0.937 0.950 0.963 0.950 0.950 | 0.963 0.955
6 ( 0.981 0.99¢0 0.981 0.991 0.996 0.991 0.994 | 0.996 0.993
30 =4 | 0.013 0.012 0.013 0.013 0.013 0.013 0.014 1 0.014 0.013
=2} 0,127 0.118 127 0.130 0.126 0.129 0.131 | 0.129 0.131
.0 [ 0.470 0.458 0.471 0.479 0.476 0.480 0.484 | 0.482 0.487
.2 | 0.824 0.8601 0.824 0.839 0.863 0.839 0.847 | 0.803 0.846
A | 0.958 0.986 0.958 0.972 0.986 0.972 0.978 | 0.986 0.977
.0 | 0.985 0.999 0.985 0.995 0.999 0.995 0.997 | 0.999 0.997
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g=[M{L/N8, 1/8}—up]/olp(l—phl/2 (3.3.6)

where p and ¢ are defined by (3.3.2), and (3.3.3) respectively.
The limits of integration for the approximation (3.1.9) are

1/ 2y —~Ar(1-+1/6)]

(3.3.7)
AMTIL+2/8-[M(1+1/0)2}1/2

and b as defined in (3.1.11).

As is the case in the normal distribution, the lower limit £. is determined according to (3.2.3) and
(3.3.4} for specified values of & and «a.

Explicitly

L =2x[-log, (1-p)|}/8 (3.3.8)
The proportion defective p is tabulated in table III for o = 0.10, 0.05 and 0.01, 2 = 5,10, 20, 30 and

k=10,1,2, 3. Corresponding lower limits L where A = | are shown in table TV,

TaBLEILL. Proportion Defectives p used in Computation of
Acceptance Probabilities

Proportion Defective p
n k a={.10 a=0.05 a=={.01
3 0 0.0208 0.0102 0.00200
1 JA12 0765 L0330
2 .247 1890 106
3 416 L3425 222
10 0 0.0105 0.00511 0.00100
1 0545 0365 01355
2 1155 0870 0473
3 1875 A500 0930
20 0 0.00525 0.00256 0.000500
1 0269 0180 _.00759
2 0564 0422 L0227
3 .0902 0713 0435
30 0 8.00350 0.00171 0.000335
1 0178 0120 00500
2 0373 0278 L0149
3 0594 0468 L0285

The approximation P, is compared to a simulation study where the acceptance probability was com-
puted from 5,000 random samples. Simulation for the Weibull distribution was done by generating in-
dependent uniform random deviates U; using a congruential random number generator and making
the transformation

X; = M-log,U;)1/®
The X, are independent F(4,6) r.v.s with pdf as shown in (3.3.1).

Values of P, and simulated acceptance probabilities are tabulated in table V for Weibull distribu-
tion W(l1,8) for 6=1,2, 3.5.
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The accuracy of the approximation P, as gauged by the simulation results i dependent on several
factors; i.e., namely, the value of the shape parameter 8; a. the probability that the sample will contain
more than the allowable number of defectives; n, the size of the sample; and k, the number of
allowable defectives or number of measurements less than the lower limit L.

The worst accuracy is for a Weibuil distribution with 6 = 1 where « is small, ¢ = 0,01, and n is
small, n = 5. The error is 9 percent for this case but drops to 2 percent when the sample size is in-

TaBLE IV. Lower Limits Used in Computation of Acceptance Probabilities for Weibull Distribution

Lower Limit L

n & a=0.10 e=1.03 a=1{.01
=1 3 1} 0.0210 p.0103 0.0020
3 1 L1188 0796 0336
3 2 2837 Au0os 120
3 3 5379 4193 SN
10 0 L0106 JHES 1 A10
10 1 L0360 0372 156
10 2 1227 0910 8T
10 3 2070 1625 L0076
20 0 0033 020 RUH S
20 1 0273 0182 076
a0 2 0381 0431 230
20 3 0945 AT 40 (445
3o ] .0035 0017 L0003
g 1 .0180 L0121 L0050
30 2 L0380 .02p2 L1530
30 3 0612 0479 .0289
=2 3 1] 1430 1013 0447
5 1 L3446 .2821 .1832
3 2 .5326 4377 L3347
5 3 .7334 b473 G010
10 0 1027 Aile 0316
10 1 L2307 1928 1230
19 2 3503 3017 2206
10 3 4357 4031 3124
20 1] 0726 0300 0224
20 1 1651 1348 873
20 2 2409 2076 .1515
20 3 3073 2720 2109
3¢ 0 0592 0414 L0183
30 1 L1340 109G 008
30 2 L1950 1679 L1225
30 3 L2475 2189 1700
=35 3 0 3317 2702 1694
3 1 5441 4832 3791
5 i 6977 6398 .0351
3 3 8376 L7801 6737
10 1} L2724 L2216 1390
10 1 4390 3904 2047
10 2 5492 .5042 4214
10 3 6382 25950 5144
20 0 2233 .1818 L1140
20 1 3573 3181 2482
20 2 .4434 A073 3402
20 2 5097 4752 4109
20 ¢ 1988 1620 1017
30 1 3171 2831 2202
30 2 .3929 de07 3013
30 3 L4502 4198 3633
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TABLE V. Comparison of Approximation P, with Simulation for
P(X zug* N < k)where PIN; £ k)=1-«a
for Weibull Distribution W(1,0).

Probability of Acceptance
a=0.1¢ a=0,05 a=0,01
n k P, Simul L Simul P Simul
=1 3 0 0.645 0.634 0.698 0.663 0.712 0.672
3 1 668 632 698 073 712 672
3 2 678 664 699 080 711 674
3 3 .688 674 702 684 LTH] 673
10 0 705 707 768 .735 185 113
10 1 726 724 768 L7063 L785 L7176
10 2 .733 734 766 .768 .785 L7178
10 3 138 .743 167 L7172 .784 7179
20 0 775 7195 .8438 .828 .868 875
20 1 L7195 801 .846 836 .868 877
20 2 .798 807 844 840 867 .879
20 3 .801 .810 843 841 867 878
30 0 813 .826 893 872 914 014
30 1 .835 837 .890 879 914 918
30 2 837 .838 887 878 914 915
30 3 838 841 .886 .881 913 917
6=2 3 0 .681 .703 .720 731 144 738
3 1 .709 .723 .729 .734 144 .739
3 2 721 736 733 737 744 .740
3 3 .729 L1740 736 739 144 740
10 0 743 764 .788 807 824 822
10 1 768 L7180 803 .808 824 825
10 2 Arirird 794 808 808 .823 820
10 3 784 .800 812 810 823 827
20 ¢ 810 827 863 885 906 903
20 1 .832 .839 876 .884 906 905
20 2 837 .848 .884 882 903 907
20 3 840 851 .884 .882 905 907
30 i} 844 860 897 024 946 947
30 1 .863 .866 903 922 946 950
30 9 867 867 .909 919 946 .949
30 3 869 872 914 918 945 952
8=3.3 S 0 801 829 .864 839 880 872
S 1 .830 844 865 .873 .880 875
5 2 .839 8335 .868 .875 .880 876
5 3 843 833 .869 .878 879 877
ic 0 .853 864 931 911 951 942
10 1 877 868 930 915 951 947
10 2 882 884 928 922 951 946
10 3 .885 889 928 9235 951 L9540
20 0 .882 890 968 938 990 983
20 1 902 .894 964 946 990 984
20 2 903 899 960 946 99¢ 987
20 3 .903 894 958 .947 989 .986
30 0 .887 893 974 038 998 .984
30 1] .908 8906 970 947 .998 .989
30 2 907 894 566 948 997 .990
30 3 907 .898 964 956 996 990
*ug = 0.75
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creased to n = 10. For other Weibull distributions and combinations of o and n, the worst accuracies
occur when k = 0, and in this case the errors are as large as 6 percent for n = 5 and 4 percent for n =
30. However, the approximation P, works very well when k > 0. The disagreement between P, and
the simulation is less than 1 percent for a large proportion of the points when & > 0.

3.4 Exponential Distribution

Assume that the sample X,....,X, comes from an exponential distribution E{A,8} with location
parameter 3 and scale parameter A and pdf

flx) = (I/Nexp {~x=B/k}  x>8,A>0 {3.4.1)
The mean and variance of X are given by u =21 + $ and 02 = A2 respectively.
We have
p = l—exp(—{L—F)/A) (3.4.2)
and
EXIjx<1)=tp — (1=pHL—p) + fp. (3.4.3)
Combining (3.4.2) and (3.4.3), we get
o =—(1-p)l/2L—-p}/ Ap1/2. {3.4.4)

Using values for the proportion defective p that are given in table III, the corresponding limits L as
determined by

L=pg—-hklog{l—p) {3.4.5)

are found in table VI for =0 and A= 0.5, 1, 2.
The values a and b appearing in the approximation P, (3.1.9} are given by

Il

a nt 231 (pg=2—-p) (3.4.6)

b (np(1—ph~ 12 (k + 0.5 —np)
and ¢ is defined by (3.4.4.)

Values of P, and simulated acceptance probabilities are tabulated in table VII for the exponential
distribution E(A,0) for 1 = 0.5,1,2.

'The accuracy of the approximation P, is more dependent on », the sample size and less dependent
on k, the number of allowable defectives for the exponential disteibution than for Weibull distribu-
tions. The worst accuracy'is for an exponential distribution with A = 1, where & = 0 and r = 5. The
disagreement with the simulation in this case is 7 percent, dropping to 1 percent when the sample size
is increased to n = 10. In general, the accuracies are not dependent upon the parameter A but are
somewhat dependent upon the way in which the lower limit L is chosen, and the accnuracies tend to
worsen as the probability of the sample containing more than the allowable number of defectives in-
creases, Accuracies of about 2 percent are characteristic of the results over all values of k.

4. A Lower Bound for the Acceptance Probability
A lower bound for the acceptance probability is provided by the following lemma.

LEMMA 4,1: Let XX, be ii.d random variables from a continuous distribution, Let X be the
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sample mean and X be the rth smallest order statistic of X,|,....X, . Then for arbitrarily fixed
real numbers a, b and positive integer ., 1 < _ <n,

P[Y?a,X(r)?b]_?P["faa]P[X(,)Bb] (4.1)
P[X <a,X(»n<b]>P[X <a] P[X<b]. {4.2)
Fhe lemma is an easy consequence of a general theorem (Esary, Proschan, and Walkup [10}}. For easy

reference, we quote the theorem below, as well as the definition of *“‘associatedness.” Random

TaBLE VL. Lower Limits used in Computation of Acceprance Probabilities for Exponential Distribution

Lower Limit L
n k a=10.10 o=0.03 a=0.01
A=0.5 5 0 0.0105 0.0051 0.0010
5 ] 0594 0398 0168
3 2 L1418 1047 0560
5 3 2689 2007 1255
10 [\] 0053 L0026 0005
10 1 L0280 0186 0078
10 2 L0614 L0433 0243
10 3 1038 0813 .0488
20 [\] 0026 0013 L0003
20 1 05136 L0091 0038
20 2 0290 0216 0115
20 3 0473 0379 0222
30 0 0018 0009 L0002
30 1 L0090 0060 L0025
30 2 0190 0141 0073
30 3 0300 0240 0145
=10 3 0 0210 0103 0020
5 1 1188 0796 0336
3 2 2837 2095 1120
3 3 5379 4103 2510
10 [ L0106 0051 0010
10 1 L0560 0372 0156
10 2 1227 0910 0487
10 3 L2076 L1625 D976
20 0 0053 0026 0005
20 1 0273 0182 0076
20 2 L0581 0431 0230
20 3 0945 0740 0445
30 0 0033 L0117 L0003
30 1 (0180 0121 L0050
30 2 0380 .0282 Q150
30 3 0612 0479 0289
A=2 3 0 L0420 L0205 0040
3 1 .2376 L1392 0671
3 2 5674 4190 2241
5 3 L0757 .8386 3021
10 0 0211 0102 0020
10 1 L1121 0744 0312
10 2 .2455 1820 0973
1] 3 4153 3250 L1952
20 [\] L0105 D051 0010
20 1 L0545 L0363 0152
20 2 1161 0862 L0459
20 3 1891 1479 - .0889
30 0 A070 0034 ) L0007
30 1 0359 0241 0100
30 2 0760 A564 0300
30 3 1225 0939 578

497



TaBLE VIL. Comparison of Approximation P, with Simulation for PiX 2y, N, < k} where P[NL £kl=l-a
for Exponential Distribution E{ 1,0}

Probability of Acceptance

a=0.10 a=0.05 a=0.01
n k P, Simul P, Simul P, Simul
A=0.5,p,=0.25
5 0 0.781 0.823 0.850 0.853 0.368 0.893
5 1 804 846 847 871 .368 896
5 2 811 857 846 874 867 897
5 3 819 869 .847 .885 8066 .899
10 0 842 875 922 929 043 957
10 1 862 .889 919 927 943 958
10 2 865 893 L9135 933 942 958
10 3 867 .897 .913 935 941 956
20 0 878 902 864 948 987 985
20 1 .898 905 .960 954 987 084
20 2 898 907 956 L0955 986 984
20 3 .898 .899 .53 948 985 9384
30 0 886 901 973 952 997 981
30 1 900 904 969 951 997 990
30 2 906 903 965 048 996 990
30 3 906 903 962 950 995 989
A=10,p,=0.75
5 0 645 632 608 651 12 06806
5 1 608 057 .698 660 12 689
3 2 673 665 .699 667 L7111 690
5 3 088 676 .102 674 711 .691
10 0 705 712 .168 154 .185 176
10 1 726 726 L7168 761 785 e
10 2 133 734 767 766 L7185 i
10 3 738 L7435 LT67 .769 .784 .778
20 0 75 .789 .848 846 .868 873
20 1 795 800 846 .849 .868 876
20 2 .798 804 844 849 867 875
20 3 801 806 843 851 867 873
30 0 815 839 .803 .890 915 920
3¢ 1 B35 .846 890 .887 914 921
30 2 837 842 887 .884 914 922
30 3 .838 846 .886 891 913 921
A=2.0, p;=0.75
5 0 825 872 899 L9015 919 050
5 1 846 .883 .895 927 .919 954
5 2 851 891 893 929 918 953
3 3 856 .894 .892 935 916 L0955
10 1] 870 894 954 .944 976 987
10 1 .889 .889 950 944 976 987
10 2 891 898 945 943 975 986
10 3 891 .894 942 945 974 985
20 0 .887 902 974 052 997 991
20 1 506 903 970 956 997 .989
20 2 906 905 965 956 996 991
20 3 5006 904 962 955 995 992
30 4] .889 907 976 956 1.000 9990
30 ] 909 .906 972 .949 .999 .99]1
30 2 .808 902 968 948 .999 991
30 3 908 901 9635 952 908 990
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variabies X,....X are said to be associated if

Covif{ T), g( T 2 0

for all non-decreasing functions f and g in each X; for which EffT), Eg(T), EffT)g{T) exist and T
denotes {X1.....X }.

THEOREM 4.1. Let T = {X{,....X} be associated, 8, = {,(T} and {, be nondecreasing for i=1,....k.
Then

k
P[S; <5),...8 <5 ]2 N P[S;<4] (4.3)

. k
P[S] > S]."“’Sk > Sk] ; l_| P[Sf >Sl'] {4.4‘)
forall S].""’Sk'

PROOF OF LEMMA 4.1: In our case the X,’s are statistically independent and hence associated. Let
Sy =X and S, = X (- Clearly, §) and 3 are non-decreasing functions in each of the X's; hence (4.1}
and (4.2) hold. Moreover, Cov(S), Sy) = Cov (X, X(,y) 2 0. This completes the proof.

From Lemma 4.1, we have a lower bound P to the acceptance probability

wherek + 1 corresponds to r. _
The r.v. Xy, ;) can be transformed to a r.v. Z with Beta distribution with parameters n—k and k+1.
Thus

_ Ma+1) l1-p
P[X{k+1)>L]=P[Z<1"FX (L”=-~——————— f zﬂ—k—l (l_z)kdz. (4-6'
Fik+1)Tin—k) 0

The lower bound P in (4.5) can be computed using the marginal distribution of the sample mean and
the Beta distribution.

Because the computation of the lower bound P is much easier than the computation of the accep-
tance probability P, it would be an immense simplification if the lower bound could serve as an ap-
proximation for P,.

Therelore, it is of practical importance to determine the s'amplé\--\size n and values of k£ that are
necessary in order that the lower bound be an acceptable approximation for P, In other words, it is of
interest to know the smallest value of n and the range of k values which makes the independence of X

and X 4 1) accepiable.

5. Comparison of the Exact Probability of Acceptance with the
Approximation and the Lower Bound

5.1 Acceptance Probaobility Curves

The acceptance probabilities computed using either simulation or numerical integrationt along with
the corresponding lower bound P and the approximation P, are plotted as a function of one parameter
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of the distribution in question. This provides a comparison of the relative accuracy of P, to P as a
technique for approximating P,. The curves are varied over n and k in order to examine the effect of
sample size and number of allowable defectives k on P, P, and P,

5.2 Normal Distribution

Assuming that X ..., X, are L.i.d. N(i,1), the acceptance probability
P, = P,X >pp Xy gy > L]

for L chosen according to {3.2.3) and py = 0 was computed using a technique for simulating random
normal deviates due to Box and Muller [3]. The resulting acceptance probabilities as a function of
are shown as the solid line in figures 1-4.

The corresponding lower bound P was computed from (4.5) and the approximation P, was com-
puted for (3.1.9).

The relationships among the probability of acceptance P, its approximation P,, and its lower
bound P as a function of sample size n and allowable number of defectives k is depicted in figures 1-4
for samples of size n = 10 and n = 39. The following convention is used for all figures; namely, P, is
shown as a solid line; P, is shown as a heavy dashed line; and P is shown as a lighter dotted line.

From figure 1 it is obvious that when k = 0 and n is small, P, is a better approximation to the ac-
ceptance probability than the lower bound as long as u < 0.25. As n increases the superiority of P, to P
increases as k is allowed to become larger. For example, when & = 3 as in figure 4, the lower bound

1.8

1.8
N Approximation P ]
0.8 7 0.8 |-
P 4
R | R
8.6 |- A 8.6 [
¢ :
¢ J €
E E
B P
T 0.4 T 0.4
A A
N 4 N J
c ¢
E 0.2 #Lower bound £ 0.2 |-
e Lyl L e.0 —
-1.0 -8.5 2.9 9.5 1.0 -1.9 1.0
I
{a) * Hel1@ X9 (b} N30 K=
FIGURE 1.  Acceptance probabilities when the number of allowable defectives & = 0 and r chservations are drawn
from the normal distribution Ny, 1).
1.0 1.0
1 Approximation Py T
0.8 - a 0.8 |
P ] e .
R R
A 9.6 — a Q.86
c c
¢ 4 ¢ 4
E E
g 0.4 |- £ 0.4 |
A A
N 4 H J
¢ €
E e.2 [~ E 8.2 |
0.0 o r ——————— 0.0 L+ .
-1.0 -0.5 8.9 0.5 1.0 -1.0 1.0
B »
(a) Hr1@ Ksi ] N=39 K=

FIGURE 2. Acceptance probabilities when the number of allowable defectives k = 1 and n observations are drawn
from the normal distribution Niy, 1).
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1.8 -
a.8 | e.8 [
P 4 P E
R R
A 0.6 [~ 'y 0.5
c ¢
c 4 ¢ 4
E £
4 0.4 [~ / 4 0.4
n 4 /' Lower bound P n J
¢ ’ ¢
£ ezl E ez [
0.0 Lympeger™t l 0.0 lorr
“1.0 -a.5 2.0 0.5 1.0 -1.8 . 1.0
I »
{a) H-19 k=2 (&) N=36 K=2
FiGURE 3. Acceptance probabilities when the number of allowable defectives & = 2 and r observations are drawn
from the normal distribution Vg, 1).
1.0 1.0
9.8 |~ 0.8
P 4 B 1
R R
a 2.6 |— A 9.6 —
¢ ¢
¢ 1 < 4
E E
T 9.4 — g 8.4 [
A A
N 4 N 4
E f [
E
2.2 - /Lower bound £ 8.2 -
0.0 Lt L o0 L+
-1.9 -8.5 ©.0 e.5 1.9 -1.0 1.0
»® »
(a) N-1@ K3 (b} H=30 K3

FIGURE 4. Acceptance probabilities when the number of allowable defectives 5 = 3 and r observations are drawn
from the normal distribution V{y, I}

does not give a satisfactory approximation for the smaller sample size, and P, is clearly preferable.
Even for n = 30, P, is at least as accurate as P over the entire range of .

5.3 Weibull Distribution

Assuming that X,,...,X, are i.id. W(1,8), and that yy = 0.75 and that L is chosen according to
(3.3.8) with 6 = 1, the acceptance probability was computed by simulation and is shown as the solid
line in figures 5-8. The corresponding lower bound P was also computed using simulation and is

t.e 1.9
0.8 |- < 0.8 [
“Approximation Py
P E P 4
R R
A o.6 - A 2.6 —
¢ [
¢ J ¢ E
E E
T oea [ £ e
3 3
c 1 ¢ 1
£ 8.2 E 0.2
#.9 — T —————l T—r—r 2.9 T
0.e 0.5 1.9 1.5 2. LB
] [
(a) H=10 K=8 (b) N=30 K-8

FIGURE 5. Acceptance probabilities when the number of allowable defectives & = 0 and r observations are drawn
from a Weibull distribution W11, 8.
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1.9 1.0
0.8 |- 0.8
P 4 P 4
R R
A 8.6 [~ A 0.6 |
¢ c
¢ ] c J
: :
T Q.4 T .4 -
A A
] J N ]
c ¢
£ ez |- E ezl
0.0 L 0.9 br
2.0 0.9
o §
(a) H-10 K=1 (b} H=30 K=t
FIGURE 6. Acceptance probabilities when the number of allowable defectives k = 1 and n observations are drawn
from a Weibull distributien F(1, 8.
1.0 1.0
e.8 |- 8.8 [—
: b Approximation Pa‘,’,-"- S N
a 0.6 |- S A 0.6 [
¢ ¢
¢ 4 ¢ 4
: :
e 0.4 |- T o4 |
: -' i
i b . Lower bound £ ¢ 1
E 0.2 [ E e.2 [~
PUPYS S ) S N 0.0 b
.0 .5 1.0 1.5 2.9 0.9
8 [
(a) H=10 K2 (b} he30 Keg2
FIGURE 7. Acceptance probabilities when the number of allowable defectives k = 2 and n observations are drawn
from a Weibull distribution F1{1, ).
1.8 1.0
.8 8.8 [
P - P J
R R
A 2.6 A 0.6 —
¢ ¢
¢ 4 ¢ A
: :
$ 0.4 = T a.4
a a
N . N J
c €
E e.2 — E 8.2
8.9 —r 0.0 T
2.0 0.0
] 8
{a} He10 Ke3 (b} we3e K3

FIGURE 8. Acceptance probabilities when the number of allowable defectives k = 3 and 1 chservations are drawn
from a Weibull distributien (1, 8).

represented by the dotted line in the same figures. The approximation P, is shown by the heavy
dashed line in the figures.

The figures show that P, is not a particularly good approximation to P, when k = 0, and one would
do much better using the lower bound P. However, P, shows the same characteristic for the Weibull
distribution as for the normal distribution; namely, that as k/n increases the accuracy of the approx-
imation increases. For n = 10 and k = 3, P, is superior to P; for n = 30, P is indistinguishable from
the simulated acceptance probability.
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5.4 Exponential Distribution
5.4.1 Comparison with a UMP Test
As discussed in section 1, we may view the problem of [inding an optimal sampling procedure as a
hypothesis testing problem formulated in (1.4). In general there exists no uniformly most powerful
(UMP) test for (1.4}). However, it is interesting to note that in the exponential distribution the dual ac-
ceptance criterion for & = 0 corresponds to a test which is UMP for a subset of alternatives specified
in (1.4). Specifically, suppose the sample comes from the exponential pdf given in (3.4.1).
The UMP acceptance region for testing
Hy: A= }* and § = f*
versus
Hi:0<a<A*and 0 < f < B*
is given by
[Y ?ﬂﬂ,X”' ;ﬁ*]. (5.4!.1)

This testing problem is equivalent to testing

Hy: A= A*andp = p*

Versus
H,:0<A<A*and p > 1 = (1 — p*)**/1
where
p* = 1—exp{—(L—p*)/1*}
or

p* =L + A*log (1-p*).
Under Hy, Py g« [X(y) 2 #*] = 1, and ) is determined by the equation
Pagu [X 2 pgl = 1-a, (5.4.2)
where « is a predetermined level of significance (Lehmann [15]).

If we set L = B* and k = 0, the test specified by (5.4.1) clearly is the same test specified by (1.3),
and the acceptance probability

P = Py {X = pg, X1) > %) {5.4.3)

can be computed either by the approximation shown in section 3.4 or by numerical integration using
an exact formula for the distribution of X and IV;, as shown in the next section.

5.4.2 Exact Distribution of X and N,

The joint distribution of X and IV}, can be obtained from the order statistics.
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Let
Zy =nXy,
Z; = (n—i+ INX (=X 5—y)-
We have the pdf of Z)),
g1lz1) = X1 exp {—z;~nf)/2A}, z,>P {(5.4.4)
and fori 2 2, Z; has a pdf
gz;) = X lexp (—z;/4), z;20.

To compute the acceptance probability P, for an arbitrary k, we make use of the fact that the Z’s
are independent r.v.’s, and that

n n n
jil Xj = .Z=1 Zj = ji)x(ﬂ and proceed as follows:
£y =P)¢,p{X?F0,NL < K|

n k+1 E+1
= _r ;;'_[P[ ;“E Zi = Rl ?— Z;/‘R"H- 1) > L lz-l,.--, zk+1] { Il'l g'.‘zl.} } dzl."dzk-l—l
— n k+1 1k+1 } .
= I :400 I P [ k§2 Z" ? nHO - u?-'- zi] 111 gl(zl' dz].-.dzk-i-l (5.4.5)
kil k1l
where A = {(z),, zjp | 1) 2 z/In—i+1) > Landnug — 2 z; 2 0}.
1

The expression in {5.4.5) is the exact probability of acceptance, P,.

When k = 0, the computation of P, reduces to

P, = :;{‘;,0 P [%: Z; > npg — 1l g1la)dey +] gylaMds). (5.4.6)
ny,
Note that the sum ¥ = gi Z; has a gamma density.
fy) = (/0771 412 exp(—y/a). (5.4.7)
Mn—1)

Substituting (5.4.4) and (5.4.7} in (5.4.6)} we obtain

b oo ,
p, = _1 [ [ e v"2 exp{—(z,—np)/A}dvdz, + exp {—nlp,~p)/A} (5.4.8)
Mr-1) ° °©

where

a = nlL

b = nug

¢ = (mug—z;)/A
The lower bound for P, is

o oo
lid

- ﬁﬂdx ﬁ(x]dx (5.4.9)
2ty —p}/A SntL-pisa
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where flx) is the pdf of the x2(2n) and gix) is the pdf of the ¥#(2).
5.4.3 Acceptance probabilities
If we assume that X ,*++, X, are i.i.d. E(A,0), the acceptance probability for £ = 0
P, = PIX 2 py. N;, < 01 = PIX 2 py. Xyy) > L]
is computed from (5.4.8) using a numerical integration technique that takes advaniage of the fact that
the inner integral is an incomplete Mfunction. Note that j is determined from y*(2) according to

(5.4.2), and L is determined according to {3.4.5). The acceptance probability P, is shown as the solid
line in figure 9,

1.8 1.8
0.8 [~ .8 |-
P E p J
S R
A 9.6 A 8.6 [~
c c
¢ p ¢ i
£ F
T Q.4 - T 0.4 [~
A A
N i N ]
¢ c
£ ez | E ez |
0.0 0.0 L—
2.0 9.9 .
A Y
(a) N-10 X=0 by Ne30 K9

FIGURE 9. Acceptance probabilities when the number of allowable defectives & = 0 and n observations are drawn
from an exponential distribution E{1, 0).

The aceeptance probabilities for k = 1,2,3, for yy = 0.75 and L chosen according to (3.4.5) were com-
puted by simulation as were the corresponding values of P. The approximation P, was computed from
(3.4.6). Results are shown in figures 10-12.

The graphs show that P, is a better approximation to P, than the lower bound P for small sample
size where the superiority of P, over P increases as k increases. For large sample size, say n = 30, the
two methods give almost identical approximations to P,.

Values of uy used in Computation of
Acceptance Probabilities for UMP Test for

Exponential Distribution
Values of y,,
n a=0.10 a=0.05 a=0.1
5 0.48652 0.39403 0.25582
10 0.62213 0.64254 0.41302
20 0.77626 0.66273 0.55411
30 0.77431 0.71998 0.62475
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FIGURE 10. Acceptance probabilities when the number of allowable defectives & = 1 and n chservations are drawn
frota an exponential distribution EiA, 0),
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FIGURE 12. Acceptance probabilities when the number of allowable defectives £ = 3 and n observations are drawn
from an exponential distribution Ei, 01,

6. Synopsis
The problem of computing the acceptance probability P, has been addressed by an approximation

P, that relies on the asymptotic joint distribution of the sample mean and number of defectives in the
sample. P, has the advantage that it is applicable to any continuous distribution. It is computed using
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a V(0,1) cdf and a bivariate normal cdf which in turn can be reduced to a single variable integration.

The approximation P, compares very favorably with another published approximation for the nor-
mal distribution and with a lower bound P. Graphs of the aceceptance probability as a function of one
parameter of the distribution are used to compare the relative accuracies of P, and P. The graphs
show that for the normal distribution P, and P have comparable accuracies with k = 0. As k/n in-
creases, P, quickly becomes superior to P, and even for large n and & > 0 P, is superjor. In other
words, the best results for the normal distribution are obtained with P when k = 0 and with P, for all
other values of k.

In the case of Weibull distribution P is superior for & = 0. As k/n increases, P, gains in accuracy,
and for large n, P continues to have an edge over P,. The difficulty in computing P for the Weibull
distribution may make it desirable to use P, for all applications.

In the case of exponential distribution, the exact joint distribution of the sample mean and number
of defectives in the sample has been derived for k = 0. The computation of the acceptance probability

P, in this case involves a two-variable integration. Graphs of the acceptance probabilities show that

the lower limit P gives a consistently good approximation to the acceptance probability. The approx-
imation P, and the lower limit P have also been computed for the exponential distribution for 1 < k <
3. The graphs for these tests show that P is comparable or superior to P, for large nln 2 30) with P, be-
ing somewhat superior when r is small, say n € 10.

The numerical integrations for this study were performed using the NBS software package
DATAPLOT developed by Dr. J.J. Filliben, and the graphs were prepared using the same package.
The authors wish to acknowledge the helpful suggestions for changes in the manuseript made by Dr.
P. Smith and Mrs. M. Natrella.
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8. Appendix A

The approximation P, given in (3.1.9) involves the computation of Lia, b, ¢) defined as
Lia ;b 79) = J- Jg[Zgy,Q}dde.
i

The computation of L(a,b,p} can be reduced to a single variable integration. When a and b are both
positive [18],

T

Liabo) = 5= exp |- a2+ 62—2ab cos w) cosecwldw
27 arecos 1) 2

[

The following recursion relations hold:

Li-a.b.0) ~Lia,b,—¢) + 3 [1-h(b)]
Lla~bg) = —Liab,—~0) + 1 [1-hla))
Li—a, b} = Liab.g) + § [hla}th(b)]

x

where hlx) = A!; expl—t2/2)dt.
The approximation P, can be computed for_ all values of 2,b and p using the foregoing equations.
P, = ®(-a) - Lia,b,g), 2> 0,6 >0
P, = ®{—a)—-o(—b) + Li—a,b,—0,a<0,b>0
P, = Lia,~b,—0),a>0,b<0
P, = b}~ Li-a,~b,0l,2<0,b<0

where ®lx) = | exp(~z2/2)dr.

9. AppendixB

Asymptotic independence of the sample mean and the (n—k)}'! extreme statistic.
Let X{,+, X, be i.i.d with a p.d.L. fix). Denote the c.d.f. of the X’s by Fix}). Assume that X’s have a

finite mean y and finite variance o%. Let X|;, < *= < X be the order statistics.
The conditional density of X|j),***, X, given that X,_;, = X{y—g} 1S given by
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n—k—1 n

{n—k—l)l n f(x(,-,) k! n f lx(,-,)
L = 1 . n—k-+1
*(n—k) o — A 1)
{F(x{n..k])} Il-F(x(n_k])I

Clearly, given that X, ) = x,_). the joint conditional density may be regarded as the joint density
of two dependent samples ¥+, ¥, _,_1| and {W |+, W}, where the Y-sample has a p.d.f.

flx)

hy) = ——— » 2 <x(p
Fxip)
(2)
= { N if x >x(n—k)
and the W-sample has a p.d.f.
{x) /) f
gx)l = —— Hx>x _
l_F(x(n—k)) (r—k)
(3)
= 0 N if x <x[u_k'

THEOREM. For every fixed k, valX—p) is asymptotically independent of Xig—gasn—= =,
PROOF: Rewrite X in terms of the ¥’s and the #’s. We obtain

ViX ) VeR-T (Y ve k- Wk X oyp 4)

a a v oVt ovit
From (2) we have
X (n—k) «
JxdFtx) f dFtx) (5)
0 X (n—k) oo
EY,~u= — [ xdFix)
' Pt ‘{c-(n—kl

Making use of (4) and (5), and letting A be the value of EY, with X, _;,replaced by X _,,, we get

VRlX —p) _ VhTE-T (Y -EY) Va—k—T
o a va

(n—k-1) (A-w) Wk L+ Knowr

+ Vhao o \; ovh

Since k is fixed, clearly (FF—u) k/ a\/"_-"'O in probability as r = c¢. To prove the theorem we need the
following two lemmas in which we show that the second and the fourth terms tend to zero in probabili-
ty. Then the theorem follows from the fact that the first term converges in distribution to /N(0,1)} which
is the “unconditional” limiting distribution of V(X —u.
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LEMMA 1, 4s n — oo,

Ko Lo

PROOF: For every ¢ > 0 and for a fixed k, it follows from the Chebychev inequality that

P 1X ()] SEdg E(X(n_k])z <L E{ma:_chZ)
R ST e Isj<a

LetY; = ij and Hly) = P[Y; > y].
Following a proof in Chung (1960),

Plmax ¥; >y} = 1- [Hy)]* > n[1-Hiy)l

1<j<n
and
1 maxx2_ 17 T
aBmax XA = 2 1 {1-[HpW}dy > [ [1-Hly)dy <
1<j<n 0 0
On the other hand,

1 © 1
= E {max X2 = f [ wldudy.
1<j<n 0 Hiy

Since the expectation is finite, we can take the limit as n = o under the integral sign. As a result

. 1 % —
lim n E[maxXI-] =

n—+oo 1<j<n

1
S limurldudy =0
Hiy) n—>e

< 8

LEMMA 2. Forafixedk, 0 € k< n-1,

ER=T J

xdF{x) > 0in Pasn = =,
Xln—kl

PROOF: Since

o0
(n—k}

o0
+ V&1 1{( [1-Fix)] dx,

(8)
n—k)

we will show that each term on the right side of {8) converges in probability to zero.
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Set

9

Then

n n k o
P{tn—k-11-F(X,_, )] >z} = 2. (:) # (1=g)t —=e™= D = {10)
i=n—k i=0

We see that X, ;,/v rn—k—1 = 0in P as shown in Lemma | and (n—%—1) [1-F(X ;)] converges in
distribution as shown in {10). Thus, the first term on the right side of (8) tends to zero in P.
Finally, to show that the last term in (8) tends to zero in P, write this term as

o0 oo
Vi—k=1 [ [I=F(X)ldx = \(o—k—1) (1-F(X,,_,) f (N=Flo)dx) 7V 1-F(X,_p)) }

Xin—k) Xin—k)

Clearly, the part in brackets tends to zero in P can be seen by the application of the L‘Hospitals’s
rule to it.
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Egquations are derived from which the temperature dependence of both the specific heat and the thermal
diffusivity of a spherical sample of material can be calculated from observations of the time dependence of
the surface temperature and the time-rate of energy loss from the sample as it cools. The derivation takes
into account the nonuniformity of the interior temperature field of the sample, and the resulting equations
can be applied not only to radiative cooling, but also to any other cooling mechanism that does not violate
the assumed spherical symmetry. The analysis excludes change of phase, but it does take thermal expan-
sion into account. To permit the making of estimates necessary for the design of radiative cooling ex-
periments, a universal temperature-time cooling curve is derived for the post-transient cooling regime of a
radiating sphere of any size with arbitrary, but constant, thermal parameters.

Key words: calorimetry; Fourier equation; radiative cooling; specific heat; thermal diffusivity.

1. Introduction

The analysis presented in this paper is an outgrowth of
a proposal made by J. H. Colwell |1,2] to determine the
high-temperature values of the specific heat, thermal dif-
fusivity, and total hemispherical emissivity of a spherical
sample of refractory material by making independent
optical observations of the surface temperature of the
sample and its time-rate of energy loss as it cools by free
radiation into a cold vacuum. The original proposal was
made in the context of an experiment to be conducted on
board the space shuttle, and envisaged induction heating
of the sample. With this mode of heating, the total heat
content of the spherical sample and its interior
temperature field at the start of the observational run
would be unknown. However, after an interval on the
order of the characteristic thermal decay time of the sam-
ple, the interior temperature field would settle into the
“post-transient regime” in which the interior field would
be entirely determined by the time-dependence of the
surface-temperature, Thus, in the post-transient regime
it should, in principle, be possible to determine the
temperature dependence of the thermal parameters from
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a knowledge of the time dependence of the surface
temperature and the rate of energy loss. The determina-
tion of the emissivity Is a trivial matter, since it is propor-
tional to the rate of energy loss divided by the fourth
power of the surface temperature.

Stated in mathematical terms, the cooling sample
could be regarded as mapping the temperature-
dependent specific heat and diffusivity over into the
time-dependent surface temperature and energy loss
functions, and the analytical problem then consists of in-
verting this mapping so as to be able to express the two
unknown thermal parameters in terms of the two ob-
served time functions. The first step in carrying out this
inversion, the results of which are summarized in section
2, is to find the “‘surface-driven solution” of the Fourier
equation for specified temperature-dependent specific
heat and thermal diffusivity. This solution is completely
specified by the time dependence of the surface
temperature, and the time rate of change of the total heat
content can be calculated from it. If this calculated rate
of change is then equated to the fourth power of the sur-
face temperature in accordance with the Stefan-
Boltzmann radiation law, a nonlinear ordinary differen-
tial equation {of infinite order) resulis which can be
iteratively solved (in truncated form) for the case of con-



stant thermal parameters to yield a universal
temperature versus time dependence for the post-
transient regime, This solution, which is presented in
section 3, is useful for making the various estimates that
are necessary for the design of a radiative-cooling
calorimetry experiment. At the end of section 3 an in-
tegral equation is given that could also be used as the
basis of an iterative solution of the post-transient predic-
tive problem.

In section 4 the surface-driven solution that is sum-
marized in section 2 is inverted so as to yield expressions
for specific heat and diffusivity in terms of the observed
time-dependent surface temperature and time-rate of
energy loss. These expressions constitute the desired
solution of the calorimetric problem. The thermal
parameters are expresged both in terms of truncated ex-
pansions whose coefficients involve higher-order time
derivatives of the observed functions, as well as in terms
of integral expressions involving retrospective weighted
averages of the observed time-dependent functions. The
truncated expansions, which are easier to apply than the
integral expressions, ought to suffice for analyzing most
post-transient experiments. In fact, in many experiments
the simple approximate expressions given in eqs (44} and
{45) will be sufficiently accurate. In section 4 an estimate
of the range of validity of these simple expressions, as
well as the range of validity of the more accurate trun-
cated expansions, is given in terms of the magnitude of a
suitably scaled dimensionless temperature. The scaling
factor, which is introduced in section 3, takes the
material parameters and sphere size into account, When
these parameters have values for which the truncated ex-
pansions are not accurate, then the integral expressions
for the thermal parameters can be used as a basis for an
iterative solution of the calorimetric problem. These in-
tegral expressions could also be used to analyze a
calorimetry experiment conducted in the transient
regime, assuming that the knowledge of the surface
temperature of the sample includes an interval (on the
order of the characteristic decay time) that precedes the
commencement of the cooling observations. For exam-
ple, if a sample were held in a constant-temperature oven
{of known temperature) long enough to become isother-
mal, and then suddenly removed to commence cooling
which was observed for a time interval on the order of
the characteristic thermal decay time, the integral ex-
pressions for the thermal parameters could be used to
analyze the data.

Although the analysis of this paper was carried out
with radiative cooling in mind, only in the solution of the
predictive problem in section 3 is the radiative cooling
law invoked. In the analysis of the calorimetric problem,
the cooling law is never specified. All that is assumed is

that the time dependence of the time-rate of total energy
loss by the sample is known (as is the time dependence of
the surface temperature).

The most obvious limitation of the analysis of this
paper (aside from its restriction to spherical symmetry) is
the exclusion of the possibility of phase change. That is,
the spherical sample is assumed to be either entirely solid
or entirely liguid throughout the experiment. In addition
to this limitation, the analysis incorporates two approx-
imations, the more significant being the neglect of the
spatial variation of the diffusivity in the interior of the
spherical sample. That is, the diffusivity is assumed to be
a function of the surface temperature (which is a func-
tion only of time) rather than a function of the interior
temperature (which is a function of the radial ecordinate
as well as of time). It is shown in section 2 that this ap-
proximation amounts to neglecting a very small term in
the Fourier equation that has the form of an effective
heat source, but, as explained in section 3, this effective
heat source can be taken into account (if necessary) by a
simple iterative procedure. The other approximation,
whose effect is completely negligible, is the neglect of the
spatial variation of the mass density of the sample. That
is, the overall change in average density with
temperature is taken into account, but at each instant
the density throughout the sample is assumed 1o be
spatially constant. In other words, as in the case of dif-
fusivity, the density throughout the sample is assumed to
be a function of the surface temperature rather than of
the interior temperature.

The literature relevant to predictive solutions of the
Fourier equation is old, vast, and still growing {3,4].
However, this literature is almost exclusively devoted to
the initial-value approach to the problem which requires
that at some instant the interior temperature field must
have some exactly specified form (most eommonly, a
given uniform temperaturel. This point of view,
however, is physically inappropriate to the calorimetric
problem because what is usually known is the history of
the environment to which the sample has been exposed
(i.e., the history of its surface temperature), and not the
interior temperature field at any instant. It is true that, if
the sample is kept in a constant-temperature oven long
enough, its interior temperature will indeed be spatially
uniform, but this is a special case. It would be physically
more natural to replace the initial specification of the in-
terior temperature field with the specification of the sur-
face temperature history back to t = —co, {It is shown in
section 2 that as a practical matter it is only necessary to
know the surface temperature during a very short period
of the past.) There is a well-known solution to the
Fourier equation {cf. for example p. 247 of Ref. [3)),
which has the form of a convolution of the surface

514



temperature with the well-known diffusion kernel, but
this solution is inappropriate to the calorimetry problem
because it has a singularity at the center, and so (in the
absence of a point heat source) can only be used to
deseribe the temperature field in an infinite medium sur-
rounding a spherical cavity.

The mathematical literature that is directly relevant 1o
the determination of the thermal parameters from the
observed surface temperature [5-13] unfortunately has
remained within the framework of the initial-value ap-
proach. Because an arbitrarily specified time-
dependence for the surface temperature is generally in-
consistent with a previously specified initial interior
temperature field, the problem is over-specified, and cer-
tain compatibility conditions must be satisfied before the
problem is well-posed. The derivation of these conditions
has been an important theme in this lterature. (The
whole question of compatibility becomes irrelevant, of
course, when the surface-driven solution is used as the
basis of the analysis.) The thermal parameters have been
expressed most commonly as the solution of an integral
equation, but the most general ease considered so far has
allowed only one of the two parameters to be an
unknown function of temperature, the other being an

unknown constant. Because these solutions are very dif-
ferent in form from the expressions given in this paper,
and because the geometry considered was planar (either
slab or semi-infinite medium) rather than spherical, no
attempt has been made to compare the results of this
paper with the previously derived expressions for the
thermal parameters.

1.1 Notation

The main analysis involves dimensionless quantities,
which are designated by bare letters, whereas the cor-
responding dimensional quantities are indicated by an
asterisk. Time-independent unit quantities (also dimen-
sional) are indicated by a caret. The relations existing
among the three types of quantities are given in table I
which also serves to define most of the notation. {A few
more symbols will be introduced as needed.) Table I also
shows how the various dimensional quantities depend on
the radius of the sphere. Because of thermal expansion,
both the dimensional radius R* and the dimensionless
radius R are variable, but the unit radins IE is an ar-
bitrarily chosen constant. The R-dependence of the
various dimensionless quantities has been defined in

TABLE 1. Basic Notation for Calorimetric Problem .

Dimensionless Dimensional
Quantity Symbol Symbol Remarks
Radius of sphere Ri) R* = RR
Radial distance r rr= rRI:? 0€rg1
Gradient operator v V*= RRV .
Mass density elz) o* = go/R3 @ =constant
{ V*g* = 0
Specific heat cl(e) c* = ci k* = g*a¥c*
Thermal conductivity k(©) k* = (k/R)k [ k = paé
Thermal diffusivity a(9) a* = R2a4 k = gac
Total hemispherical
emissivity e(T) e* = g
Linear time t t*=1i i=R%a
Nonlinear time t) dt = olT)dt = a*dt*/R*?
Surface temperature Tlz) T*=TT
Interior temperature elz,r) o* = GAT O, =T
Surface specific enthalpy hiz) h* = hh h=¢g
Interior specific .
enthalpy nie,r) n* = . . 1 =hn
Total mass M* = g"R*?’g* = (g“ﬁaﬁlo = Mp
Total enthalpy H H* = M*n,h = (MeTioH H=yp,,
{average specific
enthalpy)

~

Independent Reference Quantities: R, 6, T\, ¢, & (all constant)
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sich a way that the dimensionless Fourier equation is
completely independent of the effects of thermal expan-
sion. (Cf. Sec. 2.) During an observational run, R*(¢¥)
can be measured optically along with T#(¢*], and then
R(T#*) can be calculated. When, for example, this RfT%)
is entered into the expression given in table I for a*, the
contribution to the T*-dependence of o* that resnits
from thermal expansion is automatically taken into ac-
count. Throughout the paper, except for section 3 that
deals with the predictive problem, it will be assumed that
R*(¢*), T*(t*), and dH*/dt* are given functions of t*
resulting from the experimental observations. From
these the dimensionless functions R(t), Tft), and Hft) =
dH/dr can be directly calculated, so it will be assumed
that these too are given functions. An overhead dot will
indicate differentiation with respect to the dimensionless
linear time t. It should usually be possible to choose the
unit time 7 to be a convenient multiple of some ex-
perimentally defined time interval, such as the interval
between observational readings. Differentiation with
respect to the nonlinear time coordinate v will be
designated as follows: di/dr = H'Y). Although it will
often be desirable to choose §, a, an(} ¢ to be close to the
values of g*, a*, and ¢* at T* = T (which means that
the corresponding dimensionless quantities will be close
to unity at the reference temperature T}, this is not
necessary.

2. Surfuce;Driven Solution

If the spherical sample is imagined to be immersed in
a heat reservoir of variable temperature, then changes in
the interior temperature field are driven by the pre-
scribed changes in the surface temperature. Assuming
the absence of any interior heat sources, it follows that
the interior temperature field is uniquely determined by
the past history of the surface temperature up to the
present moment. In mathematical terms, this cor-
responds to the “‘particular” or “driven’ soiution of the
Fourier equation, with the surface temperature playing
the role of the “driving function.” This is not the most
general solution, because it does not include the
homogeneous solution which describes the decay of an
arbitrarily specified initial interior temperature field. It
is well known that the most slowly decaying term in the
homogeneous solution has a time dependence propor-
tional to exp{—nZz) where ¢ is the dimensionless time
measured in the natural time unit defined in table I.
Neglecting the homogeneous solution amounts to assum-
ing that the interior temperature field has been subjected
to no influences other than its external environment for a
period of time t that is long enough so that
expl—nZg)<<1.

The time-rate at which the sample exchanges energy
with its surroundings is determined by the history of the
surface temperature up to the present moment. In fact, it
is just equal to the time derivative of the total interior en-
thalpy of the sample. Thus, once the time history of the
surface temperature has been specified, the time-rate of
energy loss or gain of the sample is completely deter-
mined. The analysis of this section leads to expressions
{summarized in tables V & VI} relating the time-rate of
total energy change of the sample to the surface
temperature (or more exactly, the specific enthalpy at the
surface}, and these expressions suffice for the analysis of
both the predictive and the calorimetric problems.

The dimensional Fourier equation is given in the two
forms (1a) and (1b) of table II, the only difference being
the representation of the part of the heat flux that results
from radial motion caused by thermal expansion or con-
traction. In eq (la) it is represented in terms of the
material velocity v* at a point r* that is fixed in the
laboratory (inertiall frame, whereas in eq {1b) the motion
is taken into account by the fact that the time derivative
is taken with respect to fixed r rather than fixed r*,
where r is the dimensionless radial vector that is attached
to a particular material particle and moves with it.
Although v*, which is the material velocity associated
with thermal expansion or contraction, is negligibly
small, the point to be made is that the right-hand side of
the dimensionless Fourier equation given in eq (2} is
rigorously correet, and the fact that the time derivative is
taken at constant r rather than r* does not represent an
approximation.

In eq (3} the internal enthalpy density n is introduced
in order to replace the internal temperature ©. This
replacement is doubly advantageous: First, a com-
parison of eqs (2} and (4} shows that it reduces the
number of thermal parameters that appear in the equa-
tion. Second, the enthalpy density is really the quantity
of physical interest, because the objective of the analysis
is to integrate it over the volume of the sample in order to
arrive at an expression for the time-rate of change of the
total enthalpy (heat content;} of the sample.

Equation {(4a) still contains the temperature-
dependent diffusivity af©), and this fact not only com-
plicates the equation, but also prevents it from being
universal in the sense of having the same form regardless
of the material properties of the sample. If the diffusivity
were a funetion only of ¢ and not of r, it could be
eliminated from the equation by replacing the linear
dimensionless time ¢z with the dimensionless nonlinear
time T as indicated ir eq (5b). In fact, this device for
eliminating the diffusivity has been used hefore [5,6].
The same device would also eliminate « from the equa-
tion i it were a function of the surface temperature Tt}
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TaBLEIL. Basic Differential Equation .

Eq. No.

{labk Uk U*OH) = g¥cH[3O¥/ Fr). + v* « VHOH] = g¥c*30*/ Ar¥),
2 Ve VO] = gcld0/ay),

(37 dnp = clojde

(4ab.cf Vla¥n)=(an/3t); a =kige: ¢ = constant

(5a,b) Vin+ ¥V eu={(a1n/ 31, ; dr = alTTt])dt = ale)dt

6abl u=-ft— %Dy, yoy=
(6ab) w ﬂa(ﬂ]ﬂwuqeff

al®) , dn .
-2y 1 150

‘ aim) almy 19 1,
@ ar* Br = T = gy |
e Tk L — Bi) . an ¥ _ 1 dH =1
@bt iraloy = h: (22) =19 =Lpm

{8k

H=n, = J; ! quzd'r/ J;)l eridr=3 j; _I nredr

rather than of the interior temperature Qfr,z). Even in
the latter case, however, introduction of a nonlinear time
¥ based onr afTTe]} succeeds in elintinating most of the
a-dependence from the equation, as shown by eqgs (5a)
and (6a). What remains in the equation is a very small ef-
fective heat source density term g, which has the form
of the divergence of an effective heat flux & defined im eqg
{6al. This heat flux vanishes at the surface of the sample,
and for this reasor, when Gauss’ theorem is applied to eq
(5a) I erder to arrive at the expression given in eq (8b)
for the time-rate of total enthalpy change, the term ino-
velving u makes no contribution. Therefore, hecanse eq
(8D} leads to the equation (eq {19} of table V) from which
the rest of the analysis follows, it 1s evident that, at least
to first erder, the introduction of the nonlinear time  has
succeeded in reducing the problem te the solution of the
universal equation that results if g4y = 0 i eq (7). The
analysis of this paper is based on this approximation. If
more accuracy should be requirved, then the solution for
n(r.z) that is given In eq (9} or eq (12) of table III could
be substituted into the right-hand side of eq {7), and an
additive correction to n could he found which in turn
would lead to an additive correction to Hwhich could be
introduced inta the calorimetric equations of section 4.
"Fhe way this would bhe done is explained in section 3.
The selution to eq (T} (with 0 on the right-hand side}
that satisfies the bonndary condition stated in e {(Ba) can

be writter in the form of eq (9} in table FII. The
polynomials p, (r} are characterized by the property
stated in eq (10a), and can be generated by successive in-
tegration. The first four polynomials are given i e (11),
and are plotted in figure 1. The fact that eq (9) does in-
deed satisfy eq (7) (with 0 on the right-hand side} can be
directly confirmed using the property stated in eq (I0a).

As indicated in eq (12}, the solution can also be ex-
pressed in terms of the add-order Bernoulli pelynemials
By, 1lx} where x = %il-r). The properties of these
polynomials that are necessary to verity that eq (12} is in-
deed the desired solution of eq (7} are stated in eqgs (13}
and (14j. (See for example, pp. 804-811 of Kef. [14] or
pp- 19, 25-29 of Ref. [I5].}

An explicit expression for H'Y = dH/dr in terms of
i) = doh /d7™ can be derived by substituting eq {12} into
the left-hand side of eq (8b) and using the relation stated
in eq (16) of table IV hetween the even-order Bernoulli
numhers By and the Riemann Zeta function & 2n). The
resulting relation is given in eq (19) of table V. Using the
numerical values for {{2n) that are given in table IV, eq
(20) results, which can be then inverted to yield eq (21},
which will play an important role in section 4.

The expansion given in eq (19 assumes that fi{z) is an
analytic function all of whose derivatives exist. I in ad-
dition it remains finite for all , it can he shown that eq
19} is eguivalent to the integral equation given in egs
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TasLEe 1L, Surface-Driven Solution for Interior Enthalpy Density .

Eq. No )

{9a,b)

nrd) = B + X (-1F p, () ko) (o) AP = dk /o

{10a,b)  d%rp,)/dri=~rp,_yor V%, =—p, _,
(11a)  p, = (1-r2/6 )
(11b}  py = (7 - 10r2 + 3r%/360
> Ci.Fig.1
(1le)  py = (31— 49r% + 2174 - 3r9)/15,120
(11d)  py = (381 — 620r% + 294r* — 60r6 + 5r8)/1,814,400
{12a,b) nlr,1) = hig -1 ;.'.D _2irl B {x) hioix) s x=1(1-7)
o Fa=1yggy1n  H? T

(13a,0) [Byy 410029 = Bog1(3) = 03 [Byypqtal),=) = By, 11(0) = 0

2
) Ban® g, PPan® _1ouiens, w

dr dr?

(22a) and (23) of table VI. The kernel I of the convolu-
tion integral defined in eq (23) is an effective memory
function that weights the very recent past most heavily
and totally forgets events that happened more than half
a natural time unit in the past. This memory function is
defined by eq (24} and is plotted in figure 2, Its argu-
ment is defined by eq (27a), and as shown in eqs (27b
and c) can be expressed in terms of al¢} and the dif-
ference (¢—¢t") between the present time t and some past
time ¢'. Figure 2 shows that for ¢ less than 0.1 natural
time units the simple function I~ defined by eq (25b) is
essentially indistinguishable from I'. For larger Z, the
first term in the summation of eq (24) should serve to
represent [ with sufficient accuracy for most purposes.
As eq (26) indicates, the normalization of I is such that if
h'? is constant, then the retrospective weighted average
h'? defined by eq {23) will just be equal to A2, If,
however, 12 varies drastically during half a natural time
unit, which could be the case when a sample first starts
to cool, then the weighted average h'“)z) will differ
markedly from the instantaneous value A'2(s). In such a
case the integral eq (22a) will be more accurate than the
equivalent truncated expansion given in eq (20). The
series expansion (19) can be derived from the integral
equation defined by eqs (22a) and (23b) by expressing

h'2x =¢) as a Taylor expansion about 7, integrating by -
parts, and making use of the definition of {(2r) given in -

eq (15) in table IV,

Finally, it should be noted that it is evident from eq
(23b) that when k'27) is differentiated with respect to T,
the differentiation can be taken inside the integration,
from which it follows that eq {22b) results from differen-
tiation of eq (22a). Obviously, an infinity of such equa-
tions can be generated by repeated differentiation.

TABLE IV, Riemann Zeta Function for Even-Integer Argument.

Eq. No.
(15) ¢2n) =X . m~2n
m=

{(=1-1(2a)! ¢(2n)
(16) By, = [Ba,llly—g = 92n—1  .2n
2n ¢(2n)/n2n ¢i2a)
2 1/6 1.64493
4 1/90 1.08232
6 1/945 1.01734
8 1/9450 1.00407
10 1/93,555 1.00099
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TABLE V. Total Rate of Energy Loss: Differential Representation.

Eq. No.

(17ab,e) HV=JdH/dv; H=dH/dt: HV = H/al)

(18a,b} AW = (0T Wx) = cle)}T(e)/ ale) ; 2™ = doh/dr”
19  HU»=-¢ ,%;1 (—1P[g(2n)/n20] B)x)
(20) HUg) = p = LD 4 20— L pith g
(21) W) = B + L HO - L B + L g+
TABLE VL. Total Rate of Energy Loss: Integral Represenzation.
Eg. No.
(22ab) HU = pl) ~ L 42, O = p@) - L 48); g0
(23a,b) KD = LT Fir—t' YA Mdr' = f: &) k@ir—)d¢
(249  r@=90 g _, (mn)2 expl~(mn)2g]
N (CE. Fig. 2)
(25a)  F(Y =T(Y for 0<£<0.1
(25b) T4 = 15[1-3(2V 7R —0)]
(26ab) [ “rr—t')drt = Of rgds =1
(27a) (st = v alt”)de”
@) dai 1) =3 % (doa/dee—t' )
27c) U t—t') = ale)e—t') — § dlede—2' )2 + F dlede—1')3 — . ..

3. The Predictive Problem

For the purpose of estimating radiative cooling times
and the relative magnitudes of the terms in eq (21), from
which the calorimetric equations of section 4 are derived,
it is useful to solve the post-transient predictive problem
for the case of canstant parameters. In such a case the
simplifications indicated in eqs (28a-d) of table VII oc-
cur. All of the equations of tables V and VI are still valid.
In particular, § = H' must satisfy eq (19), but in addi-

tion it must satisfy the Stefan-Boltzmann radiation law
which means that the left-hand side of eq {(19) must be
replaced by T multiplied by a proportionality constant
involving the Stefan-Boltzmann constant ¢* = &. It is
easy to show that if the unit temperature T is defined as
shown in eq (29b}, the proportionality constant on the
left side of the specialized form of eq (19} will by unity,
with the result that the equation has the form given in eq
(31} A significant feature of this equation is that it is
universal in the sense that it applies to spherical samples
of all sizes made of any material whose thermal
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F16URE 1. Dimensionless polynomials p, (r) defined in eqs {11a-d). FisURE 2. Dimensionless kernel I'(£)in convelution integral defined in
eq (23), and approximate kernal [ {£) defined in eq (25h),
both as functions of the dimensionless argument £=1— 7"
Tanre VIL. Equations for Predictive Problem.
Eq. No.

(28abed) c—=a=k=R=ct=p=lLt=6n=0 h=T
(29a,b) T = To/T; P= B/R501/3 = (k*/Rro*s¥)1/3 = (ghake*/R*greH}l/3
(30a,b) H=dH/dt = -3T4; (0n/8r),—, = (26/8r),_=—T*

(31) T4=3 iz;] (=1)0 [E(2n)/ n2]dn T/ di™

(32) Té— _1dl 1 2T 2 &1 1 dr

3dr 45 dr? 945 a T 4725 art )

(33ab)  dT/dr=—3TN-T8 + AT+ B9+ . ]; dH/dt = - 3T*

(34ab)  d*T/d?=36T'[1-LT+2T0+...] ; d2H/de2 =36TT[1-4T8 +-LT0 + ]
(35a,b)  d3T/dr*=-756 TO[1 - B 134 3 d3H/de® = —T56T10 [1-8 75 4 ]

(36a,b) d¥r/det = 22,680 T3 — ... d*H/di* = 22,680 T3 — . ..

-i

(37) UT) = (T3 =1) ~£In T +-£(1 - T3)

. (CL Fig. 3)
(38) Tie) = [{1 + 9 —FIn (1 + 97— 18 L 173
(39) T = [ 170+ [ 7 ria Fe-gagi/s
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parameters are constants. It is possible to solve this
equation by truncating it at the fourth derivative as
shown in eq (32), and solving the truncated equation for
dT/dt in terms of T by starting with the approximation
dT/dt = —3T* and iterating until a self-consistent set of
expressions for the first four derivatives results. These
expressions are given in eqs (33a-36a). By differentiating
eq {30a) and making use of eqs (33a-36a), the expres-
sions for d"H/dt" given in eqs (34b-36b) can be derived.
The 8 expressions in eqs (33-36) will be used in section 4
to estimate the range of validity of the calorimetrie for-
mulas derived there. Numerical estimates indicate that
these expressions are accurate to within 1% so long as T
<. For larger T, it would be necessary to include
higher order terms in the expansion given in eq (31), and
the numerical estimates indicate that for T > 3/4 the
convergence is so slow that this expansion has no prac-
tical utility. Correspondingly, the ealorimetric equations
derived in section 4 that are based on eq (21), which is
derived from eq {19), cannot be expected to be accurate,
even in a post-iransient experiment, if the dimensionless
surface temperature T based on the unit temperature
defined in eq (29b) is larger than 4. If the sphere size
and thermal parameters are such that 7' > 15, then it will
be necessary 1o use equations based on the integral equa-
tion defined by eqs (22a) and (23). In order to give a feel-
ing for what sphere sizes and which materials will satisfy
the condition 7" < 14, the dimensionless temperatures
Tmelting corresponding to the respective melting points of
tungsten {3650 K} and uranium dioxide (3150 K} .are
given in table VIII for sphere radii that approximate the
upper and lower limits that would most probably be con-
sidered for radiative-cooling calorimetry experiments. It
is evident from this chart that for most practical post-
transient experiments, it should be possible to use
calorimetric relations derived from the truncated expan-
sion given in eq (21). Only in the case of a large sample
(R =1 em) of a poor thermal conductor (such as uranium
dioxide) might it be necessary to use an integral relation
in order to analyze the results of a posi-transient experi-

TABLE VIII. Representative Values for Unit Time and

Unit Temperature.
Tungsten Uranium Dioxide
ﬁ 0.1em lem 0.1cm 1cm
2 0.03sec 3 sec 2 gec 200 sec
? 37,000K 17,000K B8100K 3800K
T‘melting 3650K 3650K 3150K 3150K
Tmelﬁng 0.1 0.2 0.4 0.8
t=R%a T=6k/Re01/3 = @se/Ren/3

0.5

0.3

o1 T

0.05
0.03

el

*I 0.01

-2 —
LI [ T A
0 4

1 2 3 5 6
iogt
FiuRE3. Universal temperature-time curve for posi-transient

radiative cooling.
ment. It ought to be noted, however, that this might be
necessary even in the case of a smaller sample of a better
conductor if the observations are based on a transient-
type experiment.

A universal post-transient cooling curve can be de-
rived by integrating eq (33a). The result is the expression
for t(T)} given in eq {37). This can be inverted to yield the
expression for T(z) given in eq (38). The cooling curve
corresponding to these expressions is plotted in figure 3.
It is evident from this curve that the slope of In T versus
In ¢ is almost, but not quite, constant. In fact, this slight
variation in slope is related to the thermal conductivity
of the sample. It can be shown that for initial and final
temperatures T;* and T¢*

P e ld

- 4
k=15 T (40 2)
_ jdIn T* _jdInT*
T |ldme " e d In t* @0 b
i Tr

This equation cannot be used for determining thermal
conductivity from observation of post-transient radia-
tive cooling, because it assumes that the specific heat is
constant throughout the cooling, whereas in all pro-
bability the In T* versus In 1* curve for a real sample
would have much more curvature than the one shown
in figure 3, and most of this curvature would be caused
by the temperature dependence of the specific heat. The
real significance of eq (40) is that it (together with Fig.
3} illustrates how difficult it is to make a reliable deter-
mination of thermal conductivity (or diffusivity) from

observations of post-transient radiative cooling,
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especially when these observations are made for
temperagures near the lower end of the curve shown in
figure 3. In contrast, it is very easy to determine the
specific heat in this range since to a good approxima-
tion it will be given by ¢ =H/T. For an accurate deter-
mination of thermal conductivity it will probably be
necessary to use a sphere that is large enough so that
the dimensionless temperatures involved fall well above
those shown in figure 3. In such a case it would be
necessary to analyze the data using the integral expres-
sions given in section 4, rather than the truncated ex-
pansions.

It should be noted that when the expressions given in
eqs {33a-36a) are substituted into eq (9a) taking the
simplifications stated in eqs {28a-d) into account, a com-
plete solution for the interior surface-driven solution in
terms of the surface temperature T results. If the expres-
sion for T(z) given in eq (38) is substituted into this, an
explicit expression for the interior temperature field
Olr,¢) results. If it were desired to extend the validity of
this solution to values of T larger than 14, this could be
done by using the integral equation given in eq (39} in
table VII as the basis for an iterative solution. Equation
(39) was derived from the integral equation defined by
eqs (22a) and (23), making use of eq (30a). The idea of
reducing the problem of solving for the interior
temperature field to the problem of solving an integral
eguation involving only the time dependence of the sur-
face temperature is not new. It has been done for a semi-
infinite medium with a plane surface [16]. The integral
equation that resulted was derived from the diffusion
convolution integral mentioned in section 1. However,
this approach is not appropriate for the present problem
because, as noted in section 1, the diffusion convolution
integral represents the temperature field in an infinite
medium surrounding a spherical cavity, rather than the
field within a finite spherical medium.

4. The Calorimetric Problem

In adapting the expressions derived in section 2 to the
problem of deducing the specific heat and the thermal
diffusivity from observatjonal data, the choice made for
the unit temperature T}s can be arbitrary. It is not
necessary to use the unit temperature defined by eq {29b)
of table VII, although this choice is appropriate for the
purposes of designing an experiment, and for determin-
ing whether the various expressions derived. in section
4.1 from eq (21) are accurate, or whether it is necessary
to use the alternative integral relations discussed in sec-
tion 4.2,

Once it is a question of analyzing existing data,
however, it would generally be more convenient to define
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’/I\' so that the dimensionless temperature 7" is close to uni-
ty. If the thermal parameters are already known for the
cold end of a post-transient cooling run, then it would be
natural to choose this cold temperature as the unit
temperature, and correspondingly the unit specific heat
and unit diffusivity would be chosen to be equal to the
known values of these parameters at this cold
temperature. If the true values are not known, then
egtimates would suffice. Nowhere in the analysis is it
assumed that these estimates are close to the true valnes.
For example, if one were analyzing data for samples of
different materials, it might be most convenient to make
a single choice of unit quantities to be used for all of the
different materials. .

In all of the expressions given below, Hit) = dH/dt
and Tt are regarded as given functions of time that
result from independent simulianeous observations
made by two different instruments. If a reliable cooling
law exists and is known, then H can be expressed as a
function of T and eliminated from the equations. In the
case of radiative cooling, this would require that the
temperature dependence of the total hemispherical
emissivity £(T) be known.

4.1 Truncated Expansions

The calorimetric formulas, which were the principal
objective of this analysis, are given in eqs {41} and (42) of
table IX. The expression for ¢ follows directly from eq
{40), which is simply eq (21) of table V multiplied by alz).
The expression for a was derived from the ratio of the
time derivative of eq (40a) to eq (40a) itself. Both expres-
sions for ¢ and a have the form of a power series in an ex-
pansion parameter £ = 1/15a. The coefficients of these
power series are functions of the four quantities defined
in egs (43a-d), the leading terms of which are ratios of
different time derivatives of 7 and H. Equations (44)
and (43) give approximate expressions for ¢ and ¢ that
are valid in the limiting case in which only the leading
terms in the expansions must be retained, and ¢ and o
are essentially constant.

In the discussion that follows, it will be assumed that
the unit of diffusivity & has been chosen so that for the
data under consideration the dimensionless diffusivity a
is of order vnity. Then £ = 1/15. {If a different choice of
& were made, the change in £ would be compensated by
changes in the values of the quantities defined in eqs
(43a-d.) Because the expansion parameter £ involves «,
and the coefficients in the expansions for ¢ and « in-
volve & and &, it is evident that egs (41) and (42) must be
solved iteratively, with the first iteration based on the
assumption that £ = ¢ = & == (. The range of con-
vergence of this procedure can be estimated by using the



expressions for d®T/dt" and d"H/dt® given in egs (33-
36) of table VII to evaluate all of the terms in eqs (41)
and (42). When this is done the following expressions
result:

A =—12T3(1-§T3+§T6+...) (464}
= - 34934 7o

B 12730 -3T3+ 5T0+ ..  (46D)

c =252T"i1—%T3+...) {46¢)

D =-7560T%+ ... (464)
D-AC _ _g3073+ ... {47a)
4A-B
_ 4D _ 1360076+ ... (47D)
A-B

¢, =f/T=1+3 18+ 270 (48)

16
+m7‘9+---
@y = (%) =1-873+.. 49)

When these expressions and £ = 1/13 are substituted
into the right-hand side of eq (41a), it reduces to 1 +
0(T!2) which (since the left-hand side is ¢ = 1} is just the
identity that is to be expected in view of the fact that eq
(41a) is simply a reformulation of the same equation
from which egs (33-36) were derived. Similarly, the
right-hand side of eq (42) reduces to 1 + 0(T ). Thus (to
the accuracy of the truncation) the leading factors in eqs
{41a) and (42), which are now expressed by eqs {48) and
{49), are just the reciprocals of the respective square
brackets on the right-hand sides of eqs (41a) and {42}
For this reason, the speed of convergence of the
calorimetric formulas can be estimated by inspecting eqs
(48) and (49). These indicate acceptably rapid con-
vergence for T < V4 which, of course, is the same range
of convergence that was noted in section 3 for the val-
idity of the iterative solution of the predictive problem.
In the case of the approximate limiting expressions
given in eqs (44) and {(45), all of the terms of eqs (41a)
and (42) that involve & were thrown away, and only the
leading terms were retained. In addition, all of the terms
of eqs (43a-d) involving ¢ and & were thrown away. The
validity of this latter approximation can be answered
only on a case-by-case basis, but the validity of ignoring
the terms involving £ can be estimated by means of eqs
(48) and (49) since the terms involving T represent the
error in these formulas, because in this case the correct
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values of ¢ and o are unity. In the chart below the
magnitudes of the two leading error terms are listed for
several values of T.

T 4y by
5 5

1 0.10 0.15

" 0.013 0.019

0.1 0.0008 0.001

This chart shows that for T' < Y, the error is less than 2
percent, and becomes increasingly smaller the smaller T’
becomes, i.e, as T enters the extreme post-transient
regime. Even for T' = 14, the error is not so large as to
destroy the usefulness of eqs (44) and (45) for generating
the first iterative solution for cl¢) and alz) which is then
substituted into the right-hand sides of the more accurate
formulas given in eqs (41) and (42). If a is constant, it
follows from eq (45d) that H« exp[—15a,t}, so that in
the extreme post-transient regime o, can be estimated by
fitting the observed function H(t) to an exponential
decay.

It should be noted that, in order to make these
estimates, it has been necessary to define the dimen-
sionless T in the manner indicated in eq (29) of table
VII. This automatically takes the sphere size and ther-
mal parameters of the sample into account. However, for
an actual application of the calorimetric formulas of
table IX, it is not necessary to do this. One may use any
convenjent scaling factor to define the dimensionless T
The validity of the formulas would then be indicated
directly by the convergence behavior of the numerical
iteration process.

The solutions of eqs (41) and (42) are cft) and alt).
However, because T'(¢) is known from observation, these
solutions can be converted into ¢(7) and a(T), which are
the desired expressions for the temperatyre dependence
of the thermal parameters.

4.2 Integral Relations

If a numerical application of the calorimetric formulas
shows that the £ term in eq (42) is comparable in
magnitude with the £ term, or if the £2 term in eq {41a)
is comparable with the & term, this is an indication that
the neglected higher-order terms are not really negligi-
ble, and that the calculated functions aft) and ¢lt) are not
reliable. One could, of course, include higher-order terms
in the equations, but truncation must occur at some
point, so the net result would be only a slight extension of
the range of validity of the equations, Moreover, the
higher-order terms involve higher derivatives of Tz}



TABLEIX. Calerimetric Problem: Truncated Expansions.

Eq. No.
(40ab) h=cT=f+ L @H)_ 1 4B | 2 4H9 .
15 dt 35 d 1575 dt
[HD = % 2 — %d_i“f H® — %%‘f’l
Hlabl o= H/T1+B-C 08+ EDIB+ ] £=1/15a
42) a=5 R - 324G 2 2 4Dy s 4
{43a) A=dln b/ gy = dInicT/a)/de = (T/T) + (& /e) - (a/al]
{43hb) B=dln HV/dt = dn (H/al/dt = (H/H) — (a/a)
(43¢) C = a2HB/HY = (H/H) - 3(a/e) + [(&/a) + (&/a)?]
(43d) D =o3HW/HY = (H/H) - 6la/e) (H/H) + [15(a/ ) — 45 /a(H/H) ~[(6/2) + 15(a/aP®
— 10ta 5/42)]
(44) €0 = () pmgmimo = H/T
45¢,d) ! \TH |TH — 1_ _(_) /4 _(_)
5 \Fal {TH 15de p At
TaBLEX. Calorimetric Problem: Integral Relations.
Eq. No.
50)  atd= { 1 - H/G —E) - /a) ) OO
BY ko= "+ 1 -HE - ) Gra) § (DR
(52) =" <t B e
3) he) = -fm r %{ T ’;((:) e
(54) =90 ,g:] (mn)~2 exp|— (mn2g]
65 t= [ alenlden = atoert) - Leelemst )2 + Soohe—e' B ~
(56) cle) = k )/ T2}
(57ab)  o(T) = ct[T]; alT) = ale[T])
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and H(z), and the error involved in extracting these from
the experimental data becomes ever greater the higher
the order of differentiation. For these reasons, it is better
to use an iteralive proeedure based -on egs (50} and (51)
of table X which involve the integrals defined in eqs (52}
and {53). These equations were derived from eqs (22a)
and 122b) of table VL. Because k{z) = clt} Tlr), eq (51) is
really an equation for cft}, but it is simpler to regard hiz}
as the unknown function and, after this has been found,
to invoke eq (56) to find ¢(t), and egs (57a,b) 16 find (T}
and o{T)., The kernel I' .of the integrals is defined by egs
154) and 155), but the approximation based on eq 125h)
and discussed at the end of section 2 woenld simplify the
caleulafions. Inasmuch as the temperature dependence
{and hence the time dependence) of « is msually weak,
and (as Fig. 2 indicates) T will nsually vanish in a time
interval that is short eompared sith the time required for
& to change by a signifieant amount, in all but the most
extreme of transient experiments it would be justified to
drop all but the first term in the expansion for £ given in
eq (53).

The iteration could be started with an «iz} caleulated
from eq (43) and an A{z) = clz) Tz) where c(z) is found
from eq (44). These approximate functions would be
substituted into the right-hand sides of eqs (50) and {51),
which would yield new (presumably improved) approx-
imations. (Questions of convergence and numerical
stability of this procedure have not yet been investigated.

5. Discussion

The foregeing analysis took the temperature
dependence of the specific heat fully into acconnt, but
the interior spatial variation of the diffusivity was
neglected. This amounied to neglecting an effective heat
source density in the Fourier equation, but it was
pointed out in section 2 that this neglected term could he
taken into account in an iterative fashion. This wounld
give rise to an additive correction d,n to the interior en-
thalpy density field. It was noted in section 2 that when
Gauss’ theorem is applied to the Fourier equation, the ef-
fective heat term makes no direct contribution to the
resulting equation (eq (8b) in table II). 1t does make an
indirect contribution, however, in the sense that it pro-
duces an additive correction to the radial derivative of
the interior enthalpy field. Thus, eq 48b) must be re-
placed by

[aln+ o)/ ar]_ = %d(H 4+ 8 H)/dr  {58a)
where H is given by eq (8c) and 4 ,H is given by
] 1
d,H=13 fo (8,ir3dr . 158b)

The total time-rate of energy loss of the sample, which is
to be identified with the observed energy flux, is given by
I#m H+ g, H It is important to note that, in making
the correetion to the calorimetric formulas of section
4, Hw1 must rot be substituted in place of H. The reason
for ihis is that these formulas were all derived from eq
(19) {or its integral equivalent given in eqs(22a) and {23),
which in turn was derived from eq (12}, which is & rela-
fion between the uncorrected interior enthalpy field and
the time-dependence of the surface enthalpy, which is
unaffected by the correction becanse the boundary con-
dition stated in eq {8a) eontinues to be valid. Thus the H
that appears in all of the formulas of section 4 must con-
ginue to refer to the average value of the uncorrected in-
terior enthalpy field, which means that the right way to
make the desired correction is to substitute the right-
hand side of

H=H sot~ O H 59)
wherever H appears in a formula, and to identify H tot
with the observed heat flux.

The calorimetric formmlas of seetion 4 yield ciz) and
oit) as econtinuous functions of time from which ¢(T) and
a(T) are found. If, however, spline representations of
¢(Th and aiT) are used, then the unknowns are the spline
coefficients, which are constant numbers. Expressions
for the coefficients as weighted integrals involving the
observed funetions Tit) and H {z) could be derived from
gither the expansion or the integral forms of “the
calorimetric formulas, Because the spline coefficients are
expressed as iniegrals of the observed data, there would
be an antomatie smoothing, which could be ad-
vantageous in the case of noisy data.

Although the calorimetric formulas derived in section
4 were intended to be used with observational data from
a single observational run nsing a single sample, it would
also be possible to use them with data from two different
runs over the same temperature range using a large and
a small sphere of the same material. The radius of the
amall sphere would be made small enough so that the
observations would be in the extreme post transient
regime (T < 14} where the accuracy of eq (44) for ¢
would be good. The functional dependence for e(T)
{found in this way could then be substituted into the left-
hand side of eg (41a), and data from the run with the
larger sphere could be inserted into this equation, which
would be solved for o This two-sphere approach had
been suggested by Colwell {1,2] when he first proposed
radiometrie calorimetry of freely cooling spheres.

Because the ealorimetric formulas have been derived
from an analysis that did not require a knowledge of the
cooling law, but rather only the time-dependence of the
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total rate of heat loss (or gain), they could be applied to
any situation in which the interior temperature profile of
a sphere is determined by the changing temperature of
its external environment. For example, in the case of dif-
ferential scanning calorimetry, using the calorimetric
formulas would permit a determination of the thermal
parameters of a spherical sample even when the time-
rate of change of the surface temperature of the sample
li.e., the scanning rate) was so fast that the sample in-
terior would be far from isothermal. This would permit a
faster scanning rate, which would in turn cause larger
heat fluxes which could be measured with greater preci-
sion than the small ones that result when the scanning
rate is slow enough to keep the sample interior essen-
tially isothermal. Moreover, the differential scanning
technique would no longer be limited to the measure-
ment of heat capacitance, but could also be used for
measurements of thermal diffusivity.

Finally, because the analysis does not assume that the
measured quantities are monotonic in time, it could be
adapted to modulation calorimetry in which the sample
surface is subjected to a periodically varying
temperature and the magnitude and phase lag of the
heat flux as a function of the frequency of the
temperature variation are the measured quantities from
which the thermal properties are deduced. Although the
basic approach of this paper would still be applicable, it
would be necessary to subject the surface-driven solution
of section 2 to a Fourier analysis in order to express the
various quantities as functions of frequency rather than
of time,

It was noted in the introduction that the analysis of
this paper was the outgrowth of a proposal first made by
Dr. J.H. Colwell of the National Bureau of Standards,
and throughout the course of this work the author has
been the beneficiary of frequent very helpful conversa-
tions with Dr. Colwell.

This work was supported by the Materials Processing
in Space Division of the National Aeronautics and Space
Administration.
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