JOURNAL OF RESEARCH of the National Bureau of Standards Vol. 87, No. 4, July-August 1982 # Contents | | Page | |--|------| | The Thermal Conductivity of Oxygen. Hans M. Roder | 279 | | Measurements of the Octanol/Water Partition Coefficient by Chromatographic Methods. Stanley P. Wasik, Yadu B. Tewari, and Michele M. Miller | 311 | | Curve Fitting With Clothoidal Splines. Josef Stoer | 317 | | List of Publications of the National Bureau of Standards | 347 | Library of Congress Catalog Card Number: 63-37059 # The Thermal Conductivity of Oxygen* ## Hans M. Roder† National Bureau of Standards, Boulder, CO 80303 April 14, 1982 The paper presents new experimental measurements of the thermal conductivity of oxygen for thirteen isotherms at temperatures from 78 to 310 K with pressures to 70 MPa and densities from 0 to 40 mol/L. The measurements were made with a transient hot wire apparatus and they cover a wide range of physical states including the dilute gas, the moderately dense gas, the near critical region, the compressed liquid states, and the vapor at temperatures below the critical temperature. The thermal conductivity surface is represented with an equation that is based in part on an existing correlation of the dilute gas. The data are compared with the experimental measurements of others through the new correlation. The new measurements show that the critical enhancement extends to quite high temperatures, about 300 K. The precision (20) of the oxygen measurements is between 0.5 and 0.8 percent for wire temperature transients of 4 to 5 K, while the accuracy is estimated to be 1.5 percent. Key words: Hot wire; oxygen; pressure; temperature; thermal conductivity; transient. # 1. Introduction Thermal conductivity values are necessary whenever a heat transfer problem is to be evaluated. In addition, thermal conductivity is a property of fundamental interest in developing the theory of fluids. Accurate measurements of thermal conductivity are of considerable difficulty. Methods and geometries abound, each with its adherents and its inherent drawbacks. The steady state hot wire experiment is one of the older, well established methods. The transient hot wire method used here has come into its own only with recent advances in digital electronics. The evolution of the modern transient hot wire experiment is traced in an earlier paper [1]¹ where a complete description of the apparatus is given. A search of the literature reveals a relative abundance of papers on the thermal conductivity of oxygen [2]. However, measurements that cover a wide range in both temperature and density or pressure are rare [3,4], and as we shall see, differ considerably. It is, therefore, not surprising that efforts to correlate the thermal conductivity surface of oxygen [5] are beset with difficulties, and that the results are of doubtful accuracy. In this paper, ## 2. Method A hot wire system normally involves a vertical, cylindrical symmetry where the wire serves both as heating element and as thermometer. Almost without exception platinum is the wire of choice. The mathematical model that one attempts to approximate is that of an infinite line source of heat suspended vertically in an infinite medium. The method is labelled transient because the power is applied abruptly and the measurement is of short duration. The working equation is based on a specific solution of Fourier's law and can be found in standard texts (see for example reference [8], page 261). $$T(t) - T_{\text{ref}} = \Delta T = \frac{q}{4\pi\lambda} \ln\left(\frac{4K}{a^2C}\right)t$$ (1) Where T(t) is the temperature of the wire at time t: new experimental measurements are presented that cover a large range in density for every isotherm, i.e., 0 to 19 mol/L for 310 K and 0 to 40 mol/L for 78 K. The new results and a theoretical calculation for the dilute gas [6,7] are used to fashion a new correlation for the thermal conductivity surface of oxygen between 78 and 310 K for pressures up to 70 MPa. The new surface reveals that the critical enhancement extends out to about 300 K. ^{*}This work was carried out at the National Bureau of Standards under the sponsorship of the National Aeronautics and Space Administration (C-32369-C). [†]Thermophysical Properties Division, National Engineering Laboratory. Figures in brackets indicate literature references at the end of this paper. $T_{\rm ref}$ is the reference temperature, the temperature of the cell; q is the applied power; λ is the thermal conductivity of the fluid, a function of both temperature and density; K is the thermal diffusivity of the fluid, i.e., $K = \lambda/\varrho C_p$. K is normally taken at the temperature T_{ref} and is nearly constant since the fluid properties do not change drastically with a small increase in temperature; a is the radius of the wire; and $\ln C = \gamma$, where γ is Euler's constant, $\gamma = 0.5772...$ The relation given by eq (1) implies a straight line for a plot of ΔT versus ln(t). In practice systematic deviations occur at both short and long times. However, for each experimental measurement there exists a range of times over which eq (1) is valid, that is the relation between ΔT and ln(t) is linear. This range of validity is determined from 250 measured ΔT -t pairs by selecting a beginning time t_1 and an ending time t_2 . The slope of the ΔT vs ln(t) relation is obtained over the valid range, i.e., between times t_1 and t_2 , and using the applied power the thermal conductivity is calculated from eq (1). The temperature assigned to the measurement of λ is given by $$T = T_{\text{ref}} + \frac{1}{2} \left[\triangle T(t_1) + \triangle T(t_2) \right]$$ (2) The density assigned to the measurement of λ is taken from an equation of state using an experimentally measured pressure and the temperature assigned above. The experimentally determined temperature rise of the wire is ΔT_w . A number of corrections account for the departure of the real instrument from the ideal model: $$\Delta T = \Delta T_w - \Sigma \, \delta T_i \tag{3}$$ These corrections δT_i have been fully described elsewhere [9]; the most important at lower times is δT_1 , the effect of the finite heat capacity of the wire. # 3. Apparatus A detailed description of the apparatus, of the experimental procedure, of the wire calibration, of the data reduction, and of the apparatus performance are given in the earlier paper [1]. A brief description of the system follows. We use a long or primary hot wire approximately 10 cm in length. Its resistance varies from about 20Ω at 76 K to 90Ω at 298 K. A short or compensating wire is approximately 5 cm in length and its resistance varies from 10 to 45Ω . Both wires are mounted in a Wheatstone bridge to provide end effect compensation. Voltages are measured directly with a fast response digital voltmeter (DVM). The DVM is controlled by a minicomputer, which also handles the switching of the power and the logging of the data. The measurement of thermal conductivity for a single point is accomplished by balancing the bridge as close to null as is practical at the cell or reference temperature. The lead resistances, the hot wire resistances, and the ballast resistors are read first with a very small applied voltage. Then the power supply is set to the desired power and the voltage developed across the bridge as a function of time is read and stored. The basic data form a set of 250 voltage readings taken at 3 ms intervals. The other variables measured include the applied power, the cell temperature, and the pressure. All of the pertinent data are written by the minicomputer onto a magnetic tape for subsequent evaluation. For each isotherm, the data on the magnetic tape are processed on a large computer. In addition to the reduction of the raw data, i.e., the conversion of bridge offset voltages to resistance changes and then to temperature changes, the large computer also handles the wire calibration data and evaluates the best straight line for the ΔT -ln(t) data and determines the thermal conductivity. The samples used are research grade oxygen stated by the supplier to be a minimum of 99.994 mol percent oxygen. The impurities listed were 17 ppm hydrocarbons, 3 ppm argon, 20 ppm nitrogen, 16 ppm krypton, and 3 ppm water. The samples were run through molecular sieve and through a 65 micron line filter when routed through the compressor. We used a small diaphragm compressor as a pressure intensifier, and observed normal precautions for high pressure and high vacuum. One of the additional design considerations for the cell was liquid oxygen safety since the interior of the cell is exposed to very high pressure 70 MPa (10,000 psi) liquid. The materials directly exposed to liquid oxygen have been limited to beryllium copper, copper, stainless steel, silver, teflon, and a polyimide (kapton) all of which have been found to be "oxygen compatible" [10]. Cleaning procedures for cell, wire supports, capillary and sample handling system were extensive [11]. Several changes from the apparatus paper [1] were incorporated into the data reduction process; one involves a digital filter applied to the voltages measured across the bridge, the second changes the deviation plot of experimental temperature rises from the calculated straight line from logarithmic to linear. The basic data in the experiment are the voltages measured across the bridge which, when plotted against time, form a logarithmic curve as shown in figure 7 of the apparatus paper [1]. Noise levels in the readings were ascribed to ac pickup. For some of the experimental points the noise level can be reduced considerably by employing a digital filtering process. Briefly,
the raw data are fitted to a logarithmic curve. The remainder forms the noise spectrum which was shown to correspond to a frequency of 60 cycles with harmonics at 120 and 240 cycles. The periodicity of the noise spectrum corresponds to 50 measurements exactly. For those experimental points where the voltages follow a logarithmic curve over all of the measurement time, four or even five cycles of the noise spectrum can be identified uniquely, averaged, and subtracted from the input. Figure 1 illustrates the effect of the digital filtering technique for point 22016. Shown are the plot of ΔT vs FIGURE 1. Effect of the digital filtering technique for point 22016. ln(t) and the deviations of the experimental temperatures rises from the straight line without, and then with filtering. Application of the digital filtering results only in a reduction of the least squares straight line regression error, STAT. The thermal conductivity values change very little, in rare instances as much as 0.2 percent. Not all of the experimental points are amenable to the filtering process because several cycles of the noise spectrum are required to identify it uniquely. For measurements to be made in the future on other fluids we plan to incorporate an electronic filter into the apparatus. #### 4. Results To define the thermal conductivity surface of oxygen a grand total of 1628 points were measured. Of these 162 points involved the alignment of the cell, and 340 points were rejected for experimental reasons such as insufficient experimental time of measurement, inadequate equilibrium, experimental density too low, $\Delta T \cdot \ln(t)$ relation not linear enough, etc. The remaining 1126 valid points are distributed among 13 isotherms as shown in table 1. The portion of the PVT surface covered by the TABLE 1. Summary table of oxygen thermal conductivity measurements. | Nominal Temperature | Number of Points | | | | |---------------------|------------------|--|--|--| | 77.K | 35. | | | | | 99. | 28. | | | | | 121. | 102. | | | | | 145. | 101. | | | | | 159. | 16 4. | | | | | 178. | 92. | | | | | 202. | 152. | | | | | 218. | 68. | | | | | 242. | 1 4 3. | | | | | 263. | 60. | | | | | 282. | 63. | | | | | 298. | 53. | | | | | 310. | 65. | | | | measurements is shown in density-temperature coordinates in figure 2. The fluid states measured in this experiment include the dilute gas, dense gas, the near critical states, vapor at temperatures below critical, compressed liquid states, and metastable liquid states at densities below saturation. On each isotherm measurements were made at a number of different pressure levels. At the low temperatures the spacing was about 7 MPa (1000 psia) in pressure. At higher temperatures the spacing in pressure levels was arranged to give a spacing in density of about 1 mol/L. At each pressure level several different power levels were used, resulting in slightly different experimental temperatures and densities. The FIGURE 2. Region of the PVT surface covered by the present thermal conductivity measurements. pressure, temperature, and applied power are measured directly, the thermal conductivity and the associated regression error are obtained through the data reduction program, while the density is calculated from an equation of state [7] using the measured pressure and temperature. Each point is adjusted to the nominal isotherm temperature by a slight shift in temperature using the correlating equation given in the next section. The deviation of the points adjusted to isotherms from the correlation is calculated at the same time. All of the experimental and adjusted data are assembled and presented in table 2.2 An overview of the measurements is given in figure 3 where the adjusted data and the isotherms calculated from the correlation are plotted. The apparatus is not specifically designed to measure thermal conductivity in the critical region. Nevertheless, measurements were made as close to critical as is possible with the present system bearing in mind that the measurements must be free of convection. measurements closest to critical temperature and critical density are most likely to experience convection. We will, therefore, look at the 159 K isotherm where the actual temperatures range between 158.229 and 162.531 K, i.e., between 1.02 and 1.05 T_c . On this isotherm densities between 5 and 20 mol/L were difficult to execute because rather large changes in density occur near the wire after the power is turned on and the wire starts heating. In extreme cases the change in density was as much as 1 mol/L even though the applied power was reduced considerably resulting in very small temperature ²Table 2 is displayed at the end of this paper, on pages 296-310. Figure 3. Overview of the thermal conductivity measurements on oxygen. Each isotherm is on a separate scale. The scales are offset from each other by $0.02~\text{W/m} \cdot \text{K}$ for better visibility. rises. In addition, the data analysis had to be restricted to shorter times than normal resulting in an increase in the regression statistic, STAT. For these and all measurements the absence of convection is verified by replicate measurements at the same cell temperature and cell pressure with different power levels. This procedure changes the temperature rise in the wire and hence the temperature rise in the gas near the wire. The technique is quite analogous to changing the $\triangle T$ for a steady state parallel plate system. Extensive comparisons of the effect of varying the power level for the transient hot wire system are given for N2 and He in the apparatus paper (figures 12 and 15 in ref. [1]) and for argon in table 2 of ref. [12]. As an example for the present measurements on oxygen consider points 21193, 21194, and 21195 in table 2 at a nominal density of 12.6 mol/L, or 0.92 Qc. The power level varies by a factor of 2, and experimental temperature and experimental density are perforce somewhat different; however, the measured thermal conductivities differ from each other by no more than 1.8 percent as compared through the correlation. For densities between 4 and 7 mol/L on the 159 K isotherm a convection contribution is inferred from the ΔT vs ln(t)plots, therefore, these measurements were discarded. A second argument which implies the absence of convection in the present measurements is to compare them to the best current theoretical predictions. This is done for the 159 K isotherm in figure 7 which will be discussed in the next section. The agreement between predicted and experimental values is found to be within experimental error, the experiment generally being lower. We may thus conclude that convection is absent. # 5. Correlation of the Thermal Conductivity Surface It is generally accepted that the thermal conductivity should be correlated in terms of density and temperature [5] rather than temperature and pressure because over a wide range of experimental conditions the behavior of thermal conductivity is dominated by its density dependence. This preferred technique requires an equation of state [7] to translate measured pressures into equivalent densities. The dependence of thermal conductivity on temperature and density is normally expressed as $$\lambda(\varrho,T) = \lambda_{o} (T) + \lambda_{excess}(\varrho,T) + \Delta \lambda_{critical}(\varrho,T)$$ (4) The first term on the right of eq (4) is the dilute gas term which is independent of density. The second is the excess thermal conductivity. The first two terms taken together are sometimes called the "background" thermal conductivity. The final term is the critical point enhancement. An example showing the size and shape of each contributing term is given in figure 4 for the 159 K isotherm. #### 5.1 Term 1, the Dilute Gas Values for the dilute gas at zero density have been calculated by Hanley and Ely [6] using kinetic theory equations and an m-6-8 model potential. These results were presented as a curve fit by McCarty [7] in connection with an equation of state for oxygen. The exact expression is $$\lambda_{0}(T) = [A_{1}T^{-1} + A_{2}T^{-2/3} + A_{3}T^{-1/3} + A_{4} + A_{5}T^{1/3} + A_{6}T^{2/3} + A_{7}T$$ (5) + $A_{8}T^{4/3} + A_{9}T^{5/3}]/1000.$ with λ_0 in W/m·K and T in kelvin. The coefficients A_i are given in the appendix. To obtain a value at zero density from the experiment we must extrapolate the measurements at low densities to zero density, usually with a low order polynominal. A comparison of the extrapolations of the experimental data of table 2 and the values obtained from eq (5) is given in table 3. The deviations are seen to be very close to one percent. We will, therefore, use eq (5) to calculate the values of λ_0 in the correlation, in effect constraining the new correlation to the kinetic theory expressions. # 5.2 Term 2, the Excess Thermal Conductivity The expression used for the excess thermal conductivity is as follows: $$\lambda_{\text{excess}}(Q,T) = \alpha Q + \delta[e^{\beta Q^{\gamma}} - 1.0]$$ (6) where the parameters α , β , γ , δ are functions of temperature as follows: $$\begin{array}{l} \alpha = B_1 T \\ \beta = B_2 + B_3 T + B_4 T^2 \\ \gamma = B_5 + B_6 T + B_7 T^2 \\ \delta = B_8 + B_9 T + B_{10} / T^2. \end{array}$$ The B coefficients are given in the appendix. The use of an exponential function for term 2 is quite conventional [see for example references 13, or 5], however, several remarks regarding the analysis must be made. First, it is customary to omit those points which show a critical enhancement from the fitting of the excess thermal conductivity along an isotherm. For the present set of data the critical enhancement extends to nearly $2T_c$. In the first pass at determining the B coefficients roughly one half of all the data had to be omitted. Second, the expression $\alpha \varrho$ is necessary if the exponential part of the term is to fit the
isotherms adequately. At the same time, $\alpha\varrho$ must be restricted to no more than half of the total excess thermal conductivity at the low densities. The other half has to be reserved for the contribution of the exponential part of the term. If this is not done, severe systematic deviations will result at the low densities. Third, since the thermal conductivity varies by nearly a factor of 10, and since the experimental measurements at high densities predominate, a weighting of $1/\lambda$ was used for this set of data. Fourth, a parameter θ used in the analysis of propane [14] to account for the high density behavior of the excess thermal conductivity was also considered here. The θ is a function of density with different contributions above and FIGURE 4. Isotherm analysis illustrated for a temperature of 159 K. + experimental points as adjusted to 159 K in table 2; 1 the dilute gas term, λ_o ; 2 the background term, $\lambda_o + \lambda_{\text{excess}}$; 3 the calculated thermal conductivity, $\lambda_o + \lambda_{\text{excess}} + \Delta \lambda_{\text{critical}}$. TABLE 3. Extrapolated and calculated values of λ_0 | | À _o | | | | differ | ences | | | |------------------|----------------|---|-----------------|-----------------------------|---------------|-------|------------------------------|--------------------------| | Temperature
K | | | ted ± 2σ
ı·K | calculated, eq (5)
W/m·K | W/m·K percent | | number of
terms in series | cut off density
mol/L | | 145. | 0.01358 | ± | 0.00019 | 0.01340 | 0.00018 | 1.31 | 3 | 8.5 | | 159. | .01467 | ± | .00021 | .01472 | 00005 | 34 | 3 | 8.5 | | 178. | .01636 | ± | .00060 | .01644 | 00008 | 51 | 4. | 10.5 | | 202. | .01845 | ± | .00036 | .01851 | 00006 | 31 | 3 | 8.5 | | 218. | .01977 | ± | .00086 | .01984 | 00006 | 32 | 4. | 10.5 | | 242. | .02161 | ± | .00042 | .02177 | 00016 | 73 | 4 | 10.5 | | 263. | .02349 | ± | .00084 | .02341 | .00008 | .34 | 4 | 10.5 | | 282. | .02497 | ± | .00037 | .02487 | .00010 | .39 | 3 | 8.5 | | 298. | .02599 | ± | .00028 | .02609 | 00010 | 37 | 3 | 8.5 | | 310. | .02725 | ± | .00027 | .02699 | .00026 | .95 | 3 | 8.5 | below critical density. It turns out that a term of this type fails to represent the oxygen thermal conductivity surface adequately. In particular, the isotherms at low temperatures, 77-145 K, are too steep, and the increase in spacing in the λ - ϱ plane required between the 121 and 99 K isotherms and the 99 and 77 K isotherms cannot be achieved correctly. The behavior expected of the thermal conductivity surface over a wide range of temperatures and pressures including the saturation boundary is discussed in reference [15]. With the exception of the parameter δ the parameters are well behaved and vary slowly with temperature. Their dependence on temperature is shown in figure 5. FIGURE 5. Parameters α-δ of the excess thermal conductivity as a function of temperature. Finally, if we extrapolate all of the isotherms to liquid densities, say around 40 mol/L, then the observation made by Le Neindre [16] seems to be born out. Le Neindre observed that at high pressures at the liquid-solid transition the thermal conductivity coefficient is density dependent only. #### 5.3 Term 3, The Critical Enhancement With terms 1 and 2 of the thermal conductivity surface determined, we turn our attention to the remainder, the critical enhancement. The data, shown in figure 6, are obtained by substracting terms 1 and 2 from the experimental values. For this analysis we will consider two separate regions which are shown in ϱ -T coordinates in figure 2. The first region, which we will call the critical region proper, is nearly rectangular and corresponds roughly to the range of conditions for which Sengers, et al. [17] recommend the use of a scaled equation of state. Defining the reduced coordinates $$\Delta T^* = (T - T_c)/T_c$$ and $\Delta \varrho^* = (\varrho - \varrho_c)/\varrho_c$ (7) the boundaries of the first region as recommended by Sengers, et al. [17] are $$|\Delta T^*| \leq 0.03$$ and $|\Delta \rho^*| \leq 0.25$ (8) For oxygen $T_c = 154.581$ K and $\varrho_c = 13.63$ mol/L. Therefore, the region of concern is bounded approximately by 150. $\leq T \leq 160$. K and 10. $\leq \varrho \leq 17$. mol/L. We note that only one isotherm of the present measurements, 159 K, falls within this region, and then it is close to the highest temperature, the extreme edge of the region. The second region, which we will call the extended critical region, shown in a triangle in figure 2, covers those densities and temperatures for which the present measurements reveal an anomalous increase above the background conductivity, i.e., a critical enhancement. Since nearly all of the present measurements fall into region two, the emphasis of the analysis will be placed here. In addition, we will include the 159 K isotherm into the fitting of the region two in order to provide a smooth transition to region one, even though as mentioned above this isotherm properly belongs into region one. ### Region 1, The Critical Region Proper. Modern theoretical predictions on the calculation of Δλ, are given by Hanley, et al. [5] and Sengers, et al. [17]. Both sets of authors recommend a scaling equation in the close vicinity of the critical point and switch to an equation of state, usually a modified Benedict-Webb-Rubin type, further away from the critical point. Hanley, et al. [5] make the switch at 0.025 T_c or 158.445 K while Sengers, et al. [17] use 0.03 $T_{\rm c}$ or 159.218 K. A comparison of the $\Delta \lambda_c$ obtained from the experiment and as adjusted to 159 K in table 2 with references [5] and [17] and with the equations developed in the next section is given in figure 7 for a temperature of 159 K. We note that for reference [5] the shift to the BWR equation of state has already taken place. The defects of this equation when used to calculate the compressibility are evident, yielding a distinct asymmetry of the $\Delta \lambda_c$ toward lower densities when compared to the other calcultions. The use of a PVT surface by Weber [18], i.e., a polynomial representation of isotherms, with FIGURE 6. Term 3, the critical enhancement or anomalous increase along isotherms. Each isotherm is on a separate scale. The spacing between isotherms is 0.004 W/m • K. For the 159K isotherm the arrows indicate the switch from region 1 to region 2 in the computation. FIGURE 7. Comparison of experimental and calculated Δλ_c at 159 K. + experimental points as adjusted to 159 K in table 2; 1 Δλ_c calculated according to [17]; 2 Δλ_c calculated from eqs (9-13) this paper; 3 Δλ_c calculated according to [5]; 4 Δλ_c calculated according to [5] but with derivatives from [18]. The arrows indicate where the switchover in computation from region 1, i.e., reference [17], to region 2, i.e., eqs (9-13), takes place. the equations in [5] improves the calculated $\Delta\lambda_c$ considerably. For reference [17] the calculation at this temperature is still in the scaled equation mode with but a slight asymmetry toward lower densities. The empirical representation developed in the next section, eqs (9-13), lies intermediate between [5] and [17] and exhibits even less asymmetry toward the lower densities. We conclude that for this temperature the experimental results agree within experimental error with current theoretical predictions. # Region 2, The Extended Critical Region. What we wish to provide for region two is a mathematical description of the $\Delta \lambda_c(\varrho,T)$ which will represent the available data. In developing the analytical representation for term 3 we find that the surface to be represented exhibits considerable fine structure. The aspects that must be accommodated in particular are: one, the critical enhancement persists to quite high temperatures. It persists to somewhere around 2 T_c for oxygen quite similar to that initially reported for argon [12,19]. A second aspect is that this increase is centered on a density, $\varrho_{\rm center}$, which is a function of temperature. Close to critical $\varrho_{\rm center}$ is nearly equal to the critical density, but at higher temperatures $\varrho_{\rm center}$ changes to lower densities as will be seen in figure 6. A third aspect is that the data proved to be slightly asymmetric about $\varrho_{\rm center}$. We started by looking at the prior art in the analysis of the critical point anomaly [5,17,20,21]. However, it became apparent very quickly that the expressions developed previously for $\Delta \lambda_c$ cannot be used at the higher temperatures involved here. Specifically, we tried to use the prescriptions given in references [5] and [17] by adjusting the amplitude, the damping factor, or both to values seen experimentally. This procedure fails to represent the data. The reason for this is as follows. The combination of variables including the correlation length, the compressibility, the viscosity, and the damping factor yields a maximum. However, this maximum occurs at a density much higher than ϱ_c , whereas what is needed is a maximum at a density less than ϱ_c . A plot of the densities at which we require the maxima to occur, i.e., ϱ_{center} , and the densities where they actually occur for the procedures of references [5] and [17] is given in figure 8b below. Since the best current prescriptions fail to represent the new data we were forced to develop a new, empirical representation for the $\Delta \lambda_c$ in region 2, the details of which follow. The expression used is an error function centered upon ϱ_{center} multiplied by an amplitude $$\Delta \lambda_{\text{critical}}(\varrho, T) = AMPL \cdot e^{-x^2}$$ (9) Both amplitude and centering density are chosen to be simple functions of temperature. Their behavior is shown in figure 8a and b. In figure 8a the error
bands shown for the experimental isotherms represent the FIGURE 8. Amplitudes and densities at maximum $\Delta \lambda_c$ as a function of temperature. | Amputudes | | |--------------------|--| | | eq (10) this paper, with the range of experimental values I taken from figure 6; | | | 1 $\Delta \lambda_c(Q_c, T)$ scaled equation only [17];
2 $\Delta \lambda_c(Q_c, T)$ scaled equation and BWR [5]. | | | $2 \Delta \lambda_{\alpha}(Q_{\alpha}, T)$ scaled equation and BWR [5]. | | Densities at maxin | num Δλ, ້ | | | eq (11) this paper, i.e., Q _{center} ; | | | 1 scaled equation and BWR according to | | | [17]; | | | 2 scaled equation and BWR according to | | | [5]. | range of values plotted for each isotherm in figure 6 close to the density $\varrho_{\rm center}$. The algebraic representations are $$AMPL = C_1/(T + C_2) + C_3 + C_4T \qquad (10)$$ $$\varrho_{\text{center}} = \varrho_c + C_5 (T - T_c)^{1.5} \tag{11}$$ It is clear that the x in eq (9) is intended to be a function of density. The small asymmetry is achieved by providing different expressions for x above and below ϱ_{center} as follows: $$x = C_6(\varrho - \varrho_{\text{center}})$$ for $\varrho > \varrho_{\text{center}}$ (12) and $$x = C_6(\varrho - \varrho_{\text{center}}) + C_7(\varrho - \varrho_{\text{center}})^5$$ for $\varrho < \varrho_{\text{center}}$ (13) Once the analytical representation for term 3 had been determined, a subsequent pass considered all of the data and all terms together in a surface fit. The coefficients C_i as determined in this surface fit are given in the appendix. Values calculated from eqs (9-13) for term 3 are plotted as continuous lines for isotherms 145-298 K in figure 6. We find that the critical enhancement is cut off when the amplitude of eq (10) reaches zero, i.e., approximately at 307 K. # Combining Regions 1 and 2. The simple functions developed for region 2 are designed to represent the experimental data in region 2, the extended critical region. They were not designed to incorporate the divergence of λ at $T = T_c$. A complete representation of the thermal conductivity surface will, therefore, require a switch from the computational scheme recommended for region 2 to a different one for region 1 that incorporates the proper divergence of λ . The details of this switch are given elsewhere [22] and they include a consideration of the light scattering measurements by Weber [23]. A brief synopsis is as follows. For region 1 we recommend the formulation of Sengers, et al. [17] which is modified in two minor ways. First, the value of Λ adopted to be 1.02 for CO_2 in [17] is chosen to be 1.04 for oxygen. This number is established as a best value for Weber's experimental points [23] for densities close to critical. The second modification is to extend the calculation using the scaled equation out to a temperature of 162.9805 K or 1.054 T_c rather than 1.03 T_c. The second change avoids an abrupt drop of about 10 percent in the value of $\Delta \lambda_{c}(\varrho_{c},T)$ in switching from the scaled equation to the BWR at 1.03 T_c. For region 2 we recommend eqs (9-13) of this paper. The boundaries between the two modes of computation are arranged to give as smooth a transition between them as possible. The temperature 162.9805 K or 1.054 T_c is the point at which the values of $\Delta \lambda_c(\varrho_c, T)$ and $\Delta \lambda_c(\varrho_{center}, T)$ are equal for regions 1 and 2. The crossover is shown in figure 8a where one of the dashed lines represents the extrapolation of $\Delta \lambda_c(\varrho_c, T)$ from [17] for the scaled equation mode and the other represents the extrapolation of $\Delta \lambda_c(\varrho_c, T)$ [5] for the BWR equation mode. A final note concerns the extension of the calculation of $\Delta\lambda_{critical}$ to temperatures below critical. The normal assumption is that the isotherms below T_c mirror the behavior of isotherms above T_c , i.e., the $\Delta\lambda_{critical}$ for the 145 K isotherm is calculated as if that isotherm were at 164.142 K. This was done in figure 6, and it will be seen that the $\Delta\lambda_{critical}$ calculated for 145 K is nowhere near large enough to achieve agreement with experiment. In fact, the experimental $\Delta\lambda_{critical}$ for 145 K is even larger than that calculated or measured for 159 K, a temperature which is considerably closer to critical. To resolve this point additional isotherms below T_c would have to be measured. ### 5.4 The Thermal Conductivity Surface Equations (5-13) taken together describe the major part of the thermal conductivity surface, excepting only the critical region proper, region 1 of figure 2. Coefficients for eqs (5-13) were determined by running alternate cycles of a linear least squares routine on six of the coefficients and one parameter, and then a general minimizing routine on the remaining parameters until the change in the total deviation sum became negligible. The three function programs describing dilute gas, the excess thermal conductivity and the Δλ_{critical} are listed in the appendix. The function program for the Δλ_{critical} includes the switchover to the formulation of Sengers, et al. [17] at the appropriate conditions. To complete the set of functions needed to describe the entire thermal conductivity surface, a fourth function program is listed in the appendix. This function applies to the critical region proper, region 1 of figure 2. It codes the prescription of reference [17] but restricts it to the scaled equation only. Since the variables normally available to the user are pressure and temperature, an equation of state [7] is required to find the corresponding density. Temperature and density then allow calculation of the thermal conductivity from the functions given in the appendix. Deviations between experimental values and the calculated surface are shown for all points in figure 9 by isotherms. Some systematic deviations, notably for the 145 K and 159 K isotherms and at low densities remain. Percentage deviations for each experimental point as adjusted to an isotherm have already been shown in table 2. The percentage deviation over all 1126 points is 1.5 percent at the 1σ level. #### 5.5 Comparisons to the Results of Others The comparisons are made through the present correlating surface. A summary of deviations between the experimental thermal conductivities of others and the calculated surface is given in table 4. The deviations for each individual point are shown in figure 10. In comparing the results from the light scattering experiment by Weber [23] we used only those points that fall into the temperature range of our measurements, i.e., above 158 K. The rms deviation of 2.8 percent between the present results and Ziebland and Burton's [3] measurements with a concentric cylinder system represents an excellent agreement. The agreement between Ivanova, et al. [4] who used a steady state hot wire but had to know the thermal conductivity of the supporting glass tube and the present measurements is acceptable, as is the agreement with Weber [23]. TABLE 4. A summary of deviations between experimental thermal conductivities of other authors and the surface calculated in this paper. | Reference | l., ., . | differen | DAGO | | |---------------------------------|---------------|----------|---------|------| | | No. of Points | lowest | highest | RMS | | Ziebland and
Burton [3] | 65 | -2.30 | 8.77 | 2.82 | | Ivanova, et
al. [4] | 88 | -11.08 | 9.90 | 3.95 | | Weber [23]
this paper, | 14 | -8.38 | +17.69 | 5.68 | | total
this paper,
overlap | 1126 | -14.59 | +15.47 | 1.46 | | with
region 1 | 31 | -14.59 | +8.66 | 6.67 | We can also compare the present correlation to a previous one by Hanley, et al. [5]. The deviations between these two surfaces were defined to be zero at zero density. At higher densities the deviations are systematic and run up to 33 percent at the highest densities. The differences between the two surface representations are illustrated in figure I I for five isotherms of 80, 120, 160, 200, and 300 K. Considering the critical enhancement we find that for the isotherm closest to critical, 159 K, the measurements agree with current theoretical predictions [17]. For higher temperatures the present measurements disagree with current theoretical predictions [5,17], the extent of the disagreement is shown for densities near ϱ_c in figure ϱ_c FIGURE 9. Deviations between experimental values and the correlating surface along isotherms. Each isotherm is on a separate scale. The spacing between isotherms or isotherms and tick marks is $0.004~\rm W/m \cdot K$. Figure 10. Deviations between experimental values of other authors and the correlating surface. □Ref. 3 ⊙Ref. 4 ♦ Ref. 23 The horizontal band shows the ± 1.5 percent fit of the correlating surface to the present 1126 points. There are perhaps three reasons why the present measurements exhibit a critical enhancement to higher temperatures than previously reported. Looking at figure 6 we note that the critical enhancement at any given temperature covers a broad range in density. Therefore, the experimental measurements should be carried out quite high pressures, preferably to a density of al. Jut 20c, in order to separate the terms in eq (4) properly. In addition, the precision of the experimental measurements must be fairly high. For the present measurements the precision is a nominal 0.6 percent. Considering the first two elements, we see that at a temperature of 298 K it is nearly impossible to differentiate between potential critical enhancement and experimental precision. Finally, the functional form used to represent term 2, the excess conductivity, should be fairly well constrained. In other words, the excess
subtracted at different temperatures should show a slight temperature dependence, the functional form, however, should be the same for all isotherms. In the present paper an exponential is used rather than the usual power series in density. # 6. Summary The thermal conductivity of oxygen has been measured at temperatures from 77 to 310 K with pressures to 70 MPa. The measurements cover the physical states of the dilute gas, the dense gas, the region near critical, compressed liquid states, metastable liquid states at conditions just below saturation, and vapor states at temperatures below critical and pressures less than the vapor pressure. The results were analyzed in conventional terms to develop a mathematical description of the thermal conductivity surface. The new surface reveals that the critical enhancement, or an anomalous increase in thermal conductivity, persists to reduced temperatures that are quite high, approximately $2 T_c$. The center of the enhancement shifts from the critical density to lower densities at the higher FIGURE 11. Comparison of the correlation by Hanley, et al. [5] ---- and the present correlation _____ for isotherms of 80, 120, 160, 200, and 300 K. temperatures, and the enhancement is slightly asymmetric about the center density. The precision of the measurements as established by varying the applied power is 0.6 percent. The agreement between an extrapolation of the measured values to zero density and dilute gas values calculated from basic theory is around 1 percent. The accuracy of the present measurements is expected to be 1.5 percent (10) over much of the surface, as established by the fit of the correlating surface. This accuracy degrades to around 10 percent at 77 K and zero density and to around 6 percent in the region covering the critical enhancement at 159 K. The agreement between the present measurements and those of others ranges between 3 to 5 percent covering a wide range of temperatures, densities and including the region of the critical enhancement. The author would like to express his appreciation to Professor J. V. Sengers for a careful reading and critique of the manuscript. #### 7. References - Roder, H. M. A transient hot wire thermal conductivity apparatus for fluids. J. Res. Nat. Bur. Stand. (U.S.) 86(5): 457-493; 1981 September-October. - [2] Roder, H. M.; Weber, L. A. ASRDI Oxygen technology survey. Volume I: thermophysical properties. National Aeronautics and Space Administration Special Publication SP-3071; 1972. 426 p. - [3] Ziebland, H.; Burton, J. T. A. The thermal conductivity of liquid and gaseous oxygen. Brit. J. App. Physics 6: 416; 1955. - [4] Ivanova, Z. A.; Tsederberg, N. V.; Popov, V. N. Experimental determination of the thermal conductivity of oxygen. Teploenergetika 10: 74-77; 1967. - [5] Hanley, H. J. M.; McCarty, R. D.; Haynes, W. M. The viscosity and thermal conductivity for dense gaseous and liquid argon, krypton, xenon, nitrogen and oxygen. J. Phys. Chem. Ref. Data 3(4): 979-1017; 1974. - [6] Hanley, H. J. M.; Ely, J. F. The viscosity and thermal conductivity coefficients of dilute nitrogen and oxygen. J. Phys. Chem. Ref. Data 2(4): 735-755; 1973. A curve fit of these values is given in reference [7]. - [7] McCarty, R. D. Interactive fortran IV computer programs for the thermodynamic and transport properties of selected cryogens [Fluids Pack]. Nat. Bur. Stand. (U.S.), Tech. Note 1025, 112 p. 1980 October. - [8] Carslaw, H. S.; Jaeger, J. C. Conduction of heat in solids. 2nd Ed. Oxford: University Press, 1959. 510 p. - [9] Healy, J. J.; de Groot, J. J.; Kestin, J. The theory of the transient hot-wire method for measuring thermal conductivity. Physica 82C(2): 392-408; 1976 April. - [10] Key C. F. Compatibility of materials with liquid oxygen, III. National Aeronautics and Space Administration, Marshall Space Flight Center, Huntsville, Ala; Tech. Memo X67-10596; 1966 November. - [11] Bankaitis, H.; Schueller, C. F. ASRDI Oxygen technology survey Volume II: cleaning requirements, procedures, and verification techniques. National Aeronautics and Space Administration Special Publication SP-3072; 1972. 76 p. - [12] de Castro, C. A. N.; Roder, H. M. Absolute determination of the thermal conductivity of argon at room temperature and pressures up to 68 MPa. J. Res. Nat. Bur. Stand. (U.S.). 86(3): 293-307; 1981 May-June. - [13] Roder, H. M.; Diller, D. E. Thermal conductivity of gaseous and liquid hydrogen. J. Chem. Phys. 52(11): 5928-5949; 1970 June - [14] Roder, H. M.; de Castro, C. A. N. Thermal conductivity of liquid propane. J. Chem. Engr. Data 27(1): 12-15; 1982 January. - [15] Diller, D. E.; Hanley, H. J. M.; Roder, H. M. The density and temperature dependence of the viscosity and thermal conductivity of dense simple fluids. Cryogenics 10(4): 286-294; 1970 August. - [16] Le Neindre, B. Some aspects of transport properties at high pressures. Rev. of Phys. Chem. of Japan 50: 36-65; 1980. - [17] Sengers, J. V.; Basu, R. S.; Levelt Sengers, J. M. H. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point. NASA Contractor Report 3424 (NASA Scientific and Technical Information Branch, 1981) 59 p. - [18] Weber, L. A. Thermodynamic and related properties of oxygen from the triple point to 300 K at pressures to 1000 bar. National Aeronautics and Space Administration Reference Publication 1011; 1977 December. 162 p. - [19] de Castro, C. A. N.; Roder, H. M. The thermal conductivity of argon at 300.65 K. Evidence for a critical enhancement? Sengers, J. V. Ed. Proceedings of the 8th Symposium on Thermophysical Properties; 1981 June 15-18; Gaithersburg, Maryland. ASME, New York; 1982, 241-246. - [20] Hanley, H. J. M.; Sengers, J. V.; Ely, J. F. On estimating thermal conductivity coefficients in the critical region of gases. P. G. Klemens and T. K. Chu, Eds. Proceedings of the 14th International Conference on Thermal Conductivity 1975 Jun 2-4; Storrs, CN, Plenum Press, New York; 1976, 383-407. - [21] Sengers, J. V.; Levelt Sengers, J. M. H. Concepts and methods for describing critical phenomena in fluids. Chapter in Progress in Liquid Physics, C. A. Croxton, Ed. New York, NY: John Wiley & Sons; 1978. 103. - [22] Roder, H. M. Transport properties of oxygen. National Aeronautics and Space Administration Reference Publication (in preparation). - [23] Weber, L. A. Thermal conductivity of oxygen in the critical region. Int. J. Thermophysics 3(2): 117-138; 1982 June. # 8. Appendix ``` FUNCTION DILTR(TEMP) TC-ZERO FOR OXYGEN FROM TN 1025 C DIMENSION A(9) DATA A/-2.0395052193E+5,2.4088141709E+5 ,-1.2014175183E+5,3.295494919E+4 ,-5.4244239598E+3,5.4734865540E+2 ,-3.2854821539E+1,1.0753572103 ,-1.4610986820E-2/ T=TEMP TF=T++(1./3.) TFF=T++(-4./3.) CHM#0 00 20 I=1,9 TFF=TFF+TF 20 SUM=SUM+A(I)*TFF DILTR=SUM RETURN END FUNCTION THERMR (RHO, TEMP) 4TH SURFACE, COEF. FROM TCO21 AND MINIMS, 3 MAR 82 C DIMENSION B(10) DATA B/.298644E-5 1,.59842E+00,.11362E-01,-.19520E-04 2,.47624E+00,-.64769E-03,.83223E-06 3,-.278141E-4,.153705E-6,.147176E+1/ T-TEMP DEN=RHO TCZERO=DILT(T)/1000. AL=B(1)*T BE=B(2)+B(3)+T+B(4)+T++2 GA=B(5)+B(6)*T+B(7)*T**2 DE=B(8)+B(9)+T+B(10)/T++2 THERMR = TCZERO+AL +DEN+DE+(EXP(BE+DEN++GA)-1.0) RETURN END ``` ``` FUNCTION CRITCR(RHD, TEMP) 4TH SURFACE, COEF. FROM TCO21 AND MINIMS, 3 MAR 82 ¢ DIMENSION C(7) DATA C/.219200E+0,-145.55,.734512E-02,-.282950E-04 1,-.71599E-3,.13804E+0,.12980E-5/ DATA (TC=154.581), (RHOC=13.63) T=TFMP DEN=RHO DELD=ABS(DEN-RHOC)/RHOC IF(T.LT.TC) T=TC+(TC-T) IF(T.LT.307.443) GO TO 4 CRITCR=0. RETURN 4 CONTINUE AMPL=C(1)/(T+C(2))+C(3)+C(4)*T DELT-T-TC RHOCENT=RHOC+C(5)+DELT++1.5 DELRHO=DEN-RHOCENT X1=C(6) + DELRHD IF(DELRHO.LT.O.) X1=X1+C(7)+DELRHO++5 CRITCR=AMPL*EXP(-X1**2) IF(T.GT.162.9805) RETURN IF(DEN.LT.7.5.UR.DEN.GT.18.) RETURN TEST1 -SENG81 (DEN,T) IF(TESTINGT.CRITCR) CRITCR=TEST1 RETURN END FUNCTION SENGBL(RHO, TEMP) SCALED EQUATION ONLY, VERSION OF 12 FEB 82 CRITICAL ENHANCEMENT AS IN SENGERS ET AL 1981 U MARYL. REPORT UNITS, IN MOL/L,K, INTERNAL ALSO ATM, DUT W/M-K, ETA G/CM-S,BK J/K 1.02 REPLACED BY 1.04, PARAMETER VARIATION FOR WEBER DATA C DATA (TC=154.581), (DC=13.63), (BK=1.38054E-23), (PC=49.77054) 1 ,(ZZ=5.9783E-10) DATA (E=0.287), (G=1.190), (B=0.355), (DD=2.36), (XZ=0.183), (DE=4.352) DEN=RHO T.TEMP DELD=ABS(DEN-DC)/DC DELT=ABS(T-TC)/TC DFACT=EXP(-(39.8*DELT**2+5.45*DELD**4)) RSTAR=DEN/DC VIS=VISC(DEN, T) + (1.0E-06) CALL DPDT(DPT,DEN,T) IF(DELD.LE.O.25.AND.DELT.LT.O.03) GD TO 8 ¢ CALL DPDD(DPD,DEN,T) CHISTAR=PC+DEN/(DC++2+DPD) GO TO 12 8 IF(DELD.EQ.O.) GO TO 3 X = DELT/DELD = + (1.0/B) Y=(X+XZ)/XZ TOP=DELD**(-G/B)*((1.+E)/(1.+E*Y**(2.*B)))**((G-1.)/(2.*B)) DIV=DD+(DE+(Y-1.)+(DE-1./B+E+Y++(2.+B))/(1.+E+Y++(2.+B))) CHISTAR=TOP/DIV 12 CHI=CHISTAR ** 0.468067 UPPER=1.04*BK/PC*(T*DPT/RSTAR)**2*CHI*DFACT*1.01325E+6 SENG81=UPPER/(ZZ*6.*3.14159*VIS) RETURN 3 BGAM=XZ++G/DD+((1.+E)/E)++((G-1.)/(2.+B)) CHISTAR = BGAM + (DELT) + + (-G) GO TO 12 ``` END Table 2. The Thermal Conductivity of Oxygen | Run Pt. | Pressure | Temperature | Density | Power | Experimental
Thermal
Conductivity | STAT | Adjusted Thermal at a nominal Temperature of 77.K | Devistion | |---|---|---|--
--|--|--|---|---| | , dii 1 00 | MPe | K | mol/L | W/m | W/m.K | | W/m.K | percent | | 23001 | 64.519 | 76.866 | 40.2622 | .20587 | .20186 | .006 | -20192 | .38 | | 23002 | 64.517 | 77.034 | 40.2441 | .26918 | .20215 | .005 | .20213 | •61 | | 23003 | 64.513 | 77.173 | 40.2293 | .34099 | .20154 | .003 | .20146 | .38 | | 23004 | 64.510 | 77.313 | 40.2143 | .41918 | .19877 | .003 | •19863 | 94 | | 23005 | 64.520 | 77.610 | 40.1829 | .50890 | .19888 | .001 | .19861 | 74 | | 23006 | 64.522 | 77.828 | 40.1598 | .60713 | .19825 | .001 | .19788 | ~. 95 | | 23007 | 55.437 | 76.878 | 39.9627 | .23645 | .19841 | •006 | •19846 | •67 | | 23008 | 55.440 | 77.859 | 39.9429 | 30419 | .19725 | .003 | •19722 | .18 | | 23009 | 55.442 | 77.201 | 39.9274 | .38050 | .19673 | .001 | .19664 | 01 | | 23010 | 55.437 | 77.449 | 39.8999 | .46382 | .19512 | .001 | .19493
.19123 | 71
.16 | | 23011 | 41.740 | 76.804 | 39.4881 | •20597 | .19115 | .006
.004 | .19140 | •10 | | 23012 | 41.748 | 77.005 | 39.4651 | .26943 | .19140
.19223 | .003 | .19210 | 1.01 | | 23013 | 41.757 | 77.320
77.338 | 39.4289
39.4268 | .34219 | .18923 | .002 | .18910 | 55 | | 23014 | 41.757
41.758 | 77.514 | 39.4065 | .46421 | .18889 | .002 | .18868 | 63 | | 23015
23016 | 27.726 | 76.830 | 38.9412 | 20620 | .18534 | .004 | .18540 | .78 | | 23017 | 27.726 | 77.003 | 38 9199 | .26958 | .18486 | .002 | .18486 | •63 | | 23018 | 27.728 | 77.144 | 38.9025 | .34157 | .18473 | .002 | .18468 | • 65 | | 23019 | 27.729 | 77.410 | 38.8697 | .42083 | .18290 | .001 | .18275 | 17 | | 23020 | 27.730 | 77.675 | 38.8370 | .51062 | .18212 | 0.000 | .18187 | ~.43 | | 23021 | 13.851 | 76.855 | 38.3377 | .20630 | .17812 | .005 | .17817 | .92 | | 23022 | 13.855 | 76.995 | 38.3191 | .26955 | .17754 | .004 | .17754 | •70 | | 23023 | 13.861 | 77.132 | 38.3013 | .34152 | .17656 | .003 | .17652 | .24 | | 23024 | 13.866 | 77.416 | 38.2637 | .42095 | .17541 | .002 | •17527 | 21 | | 23025 | 13.872 | 77.631 | 38.2352 | •51.049 | .17458 | .002 | .17437 | 5 3 | | 23026 | 1.770 | 76.664 | 37.7791 | .17761 | .17124 | .007 | .17135 | . 86 | | 23027 | 1.773 | 76.791 | 37.7610 | .23653 | .17013 | .004 | .17020 | .31 | | 23028 | 1.776 | 77.163 | 37.7075 | .30498 | .17027 | 4003 | .17022 | +69 | | 23029 | 1.778 | 77+266 | 37.6928 | .38123 | .16935 | .002 | .16927 | • 24 | | 23030 | 1.777 | 77.525 | 37.6554 | •46469 | •16750 | .002 | .16734 | 65 | | 28006 | .025 | 78.734 | 0391 | .02260 | .00642 | .134 | .00626 | -8.42 | | 28007 | •025 | 79.375 | .0388 | .02805 | .00724 | .115 | .00702 | 3.32 | | 28008 | •025 | 80.248 | .0384 | .03427 | .00833 | .106 | .00803 | 15.47
-7.90 | | 28011 | .025 | 78.728 | .0391 | .02258 | .00645 | .155 | •00629 | 3.26 | | 28012 | .025 | 79.320 | +0388 | .02803 | .00723 | •130 | .00701 | 3.20 | | | | | | | | | | | | | | | | | Experimental | | Adjusted Thermal | | | Dun De | D======= | Tagageture | Descibu | Boyer | Thermal | TATS | at a nominal | Deviation | | Run Pt. | Pressure | Temperature
K | Density
mol/L | Power
W/m | Thermal Conductivity | STAT | at a nominal | | | Run Pt. | Pressure
NPa | Temperature
K | Density
moi/L | Power
W/m | Thermal | STAT | at a nominal
Temperature of 99.K | Deviation
from Correlation
percent | | | | | | | Thermal Conductivity | STAT | at a nominal Temperature of 99.K W/m.K .18368 | Deviation
from Correlation
percent
55 | | Run Pt.
22001
22002 | MPa | К | moi/L | W/m | Thermal
Conductivity
W/m.K | .004
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 | Deviation
from Correlation
percent
.55
.22 | | 22001 | MPs
68.411 | K
98.836 | mol/L
38.1211 | W/m
.34047
.43771
.54783 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217 | .004
.002
.002 | at a nominal
Temperature of 99.K
W/m.K
.18368
.18272
.18200 | Deviation
from Correlation
percent
.55
.22
.05 | | 22001
22002 | MPa
68.411
68.401 | K
98.836
99.097
99.395
99.663 | #01/L
38.1211
38.0943
38.0633
38.0359 | .34047
.43771
.54783 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984 | .004
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 | Deviation from Correlation percent .55 .22 .05 -1.11 | | 22001
22002
22003 | MPa
68.411
68.401
68.384 | K
98.836
99.097
99.395
99.663
98.794 | #01/L
38.1211
38.0943
38.0633
38.0359
37.5845 | .34047
.43771
.54783
.66601
.34014 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617 | .004
.002
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 | Deviation
from Correlation
percent
.55
.22
.05
-1.11
.25 | | 22001
22002
22003
22004 | MPa
68.411
68.401
68.384
68.377
55.474 | K
98.836
99.097
99.395
99.663
98.794
99.064 | mol/L
38.1211
38.0943
38.0633
38.0359
37.5845
37.5553 | .34047
.43771
.54783
.66601
.34014 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617
.17540 | .004
.002
.002
.001
.003 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 | Deviation
from Correlation
percent
.55
.22
.05
-1.11
.25
04 | | 22001
22002
22003
22004
22005 | MPa
68.411
68.401
68.384
68.377
55.474
55.470 | K
98.836
99.097
99.395
99.663
98.794
99.064
99.330 | moI/L
38.1211
38.0943
38.0633
38.0359
37.5845
37.5553
37.5553 | 9/m
.34047
.43771
.54783
.66601
.34014
.43744 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617
.17540
.17512 | .004
.002
.002
.001
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 | | 22001
22002
22003
22004
22005
22006
22007
22008 | MPs 68.411 68.401 68.384 68.377 55.474 55.469 55.469 | K 98.836 99.097 99.395 99.663 98.794 99.064 99.330 | mol/L
38.0943
38.0633
38.0635
37.5565
37.5553
37.5265
37.4831 | .34047
.43771
.54763
.66601
.34014
.43744
.54736 | Thermal
Conductivity
W/m.K
.18361
.18217
.17984
.17617
.17540
.17512
.17273 | .004
.002
.002
.001
.003
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17449 .17244 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009 | MPs 68.411 68.401 68.384 68.377 55.474 55.476 55.469 41.961 | K 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 | mol/L
38.1211
38.0943
38.0633
38.0359
37.5845
37.5555
37.5265
37.4831
36.9801 | .34047
.43771
.54763
.66601
.34014
.43744
.54736
.66636
.33948 |
Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617
.17540
.17512
.17273
.16750 | .004
.002
.002
.001
.003
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 | Deviation from Correlation percent | | 22001
22002
22003
22005
22006
22007
22008
22009
22010 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 | K 98.836 99.097 99.395 99.663 98.794 99.064 99.330 99.730 98.577 98.812 | mol/L
38.1211
38.0943
38.0633
38.0359
37.5845
37.5553
37.5265
37.4831
36.9801
36.9529 | 4/m .34047 .43771 .54783 .66601 .34014 .43744 .54736 .66636 .33948 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617
.17540
.17512
.17273
.16750
.16693 | .004
.002
.002
.001
.003
.002
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.214161 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 41.961 | K 98.836 99.097 99.395 99.663 98.794 99.064 99.330 99.730 98.577 98.812 | mol/L
38.1211
38.0943
38.0633
38.0359
37.5845
37.5553
37.5265
37.4831
36.9801
36.9529
36.9010 | W/m .34047 .43771 .54763 .66601 .34014 .43744 .54736 .6663 .33948 .43655 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.1794
.17617
.17540
.17512
.17273
.16750
.16693
.16676 | .004
.002
.002
.001
.003
.002
.001
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012 | MPs 68.411 68.401 68.384 68.377 55.474 55.469 55.461 41.961 41.964 41.958 | X 98.836 99.097 99.395 99.663 98.794 99.064 99.330 99.730 98.577 98.812 99.262 | mol/L
38.1211
38.0943
38.0633
38.0359
37.5265
37.5265
37.5265
37.4831
36.9801
36.9529
36.9010
36.8846 | W/m .34047 .43771 .54783 .66601 .34014 .43744 .54736 .66636 .33948 .43655 .54699 | Thermal
Conductivity
W/m.K
.18361
.18276
.18217
.17984
.17617
.17540
.17512
.17273
.16750
.16696
.16676 | .004
.002
.001
.003
.002
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.93 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013 | MPs 68.411 68.401 68.384 68.377 55.474 55.469 55.461 41.961 41.961 41.958 27.692 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.666 | mol/L 38.1211 38.0943 38.0633 38.0359 37.5845 37.5553 37.5255 37.4831 36.9801 36.9529 36.9804 36.2124 | W/m .34047 .43771 .54783 .66601 .34014 .43744 .54736 .66636 .33948 .43655 .54697 .66437 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 | .004
.002
.002
.001
.003
.002
.001
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 | | 22001
22002
22003
22005
22006
22007
22008
22010
22011
22012
22013
22014 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 41.961 41.961 41.964 41.958 27.692 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.666 | 38.1211
38.0943
38.0633
38.0359
37.5845
37.5553
37.5265
37.4831
36.9801
36.9529
36.9010
36.8846
36.2124
36.2034 | W/m .34047 .43771 .54783 .66601 .34014 .43744 .54736 .66636 .33948 .43655 .54699 .66437 .29657 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 | .004
.002
.001
.003
.002
.001
.003
.002
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.02 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 41.961 41.961 41.964 41.958 27.693 27.693 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.737 99.272 | mol/L 38.1211 38.0943 38.0633 38.0359 37.5265 37.5265 37.4831 36.9529 36.9010 36.8846 36.2124 36.2034 36.1358 | W/m .34047 .43771 .54783 .66601 .34074 .54736 .66636 .33965 .54699 .66437 .29677 .38713 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16693 .16676 .16418 .15909 .15748 .15834 | .004
.002
.002
.001
.002
.002
.001
.003
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 41.961 41.958 27.692 27.693 27.696 27.697 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.272 | mol/L 38.1211 38.0943 38.0633 38.0359 37.5265 37.5265 37.4831 36.9801 36.9801 36.9804 36.2124 36.2034 36.1358 36.0969 | W/m .34047 .43771 .54783 .66601 .34074 .54736 .66636 .33948 .43655 .54699 .66437 .29657 .38713 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16676 .16418 .15909 .15748 .15834 .15625 | .004
.002
.002
.001
.003
.002
.001
.003
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.22 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015
22016
22017 | MPs 68.411 68.401 68.384 68.377 55.474 55.469 55.461 41.961 41.961 41.958 27.692 27.693 27.697 14.022 | X 98.836 99.097 99.395 99.663 98.730 99.730 98.577 98.666 98.737 99.262 99.400 98.666 98.737 | mol/L 38.1211 38.0943 38.0633 38.0359 37.5265 37.5265 37.4831 36.9801 36.9529 36.9010 36.8846 36.2124 36.1358 36.0969 35.3802 | W/m .34047 .43771 .54783 .66601 .34014 .43744 .54736 .66636 .33948 .43659 .66437 .29657 .38713 .49195 .60482 | Thermal Conductivity W/m.K 18361 18276 18217 17984 17617 17540 17512 17273 16750 16693 16676 16418 15909 15748 15834 15625 14908 | .004
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .19920 .15757 .15825 .15605 .14923 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 | | 22001
22002
22003
22004
22005
22006
22007
22009
22010
22011
22012
22013
22014
22015
22016
22017
22017 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 41.961 41.964 41.958 27.696 27.693 27.696 27.697 14.022 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.272 99.580 98.527 | 38.1211
38.0943
38.0633
38.0359
37.5845
37.5553
37.5265
37.4831
36.9829
36.9010
36.8846
36.2124
36.2034
36.1358
36.96969
35.3802
35.3539 | W/m .34047 .43771 .54783 .66601 .340744 .54736 .66636 .33946 .54699 .66437 .29657 .296574 .34051 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14853 | .004
.002
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16700 .16666 .15920 .15757 .15825 .15605 .14923 .14862 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019 | MPs 68.411 68.401 68.384 68.377 55.470 55.469 55.461 41.961 41.961 41.964 41.958 27.693 27.696 27.697 14.022 14.027 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.580 98.737 99.580 98.7714 | 38.1211
38.0943
38.0633
38.0359
37.5584
37.5553
37.5265
37.4831
36.9529
36.9010
36.8846
36.2124
36.2034
36.1358
36.0969
35.3539
35.3539 | **/** **34047* **54783* **66601* **54736* **66636* **33744* **54736* **66636* **33655* **54699* **66437* **2965437* **2966437* **2966437* **2966437* **2966437* **2966437* **34051* **34051* **34051* **34051* | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16676 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14836 |
.004
.002
.002
.001
.002
.002
.001
.003
.002
.001
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.226852 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22019 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 41.961 41.958 27.692 27.693 27.696 27.697 14.022 14.027 14.030 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.400 98.666 98.737 99.580 98.527 98.527 98.527 | 38.1211
38.0943
38.0633
38.0359
37.5845
37.5563
37.5265
37.4831
36.9852
36.9010
36.8846
36.2124
36.2034
36.1358
36.0969
35.3539
35.3539
35.3633 | */m .34047 .43771 .54783 .66601 .34074 .54736 .66636 .33655 .54699 .66437 .29657 .49195 .60482 .25574 .34912 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17512 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14853 .14853 .14856 | .004
.002
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 .14770 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.224768 | | 22001
22002
22003
22004
22005
22006
22007
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22019
22019
22019
22020 | MPs 68.411 68.401 68.384 68.377 55.474 55.479 55.469 41.961 41.961 41.968 27.692 27.693 27.697 14.022 14.027 14.030 14.034 | X 98.836 99.097 99.395 99.663 98.730 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.277 98.527 98.714 99.059 98.612 | 38.1211
38.0943
38.0633
38.0359
37.5555
37.5255
37.5255
37.5255
37.4831
36.9801
36.8846
36.2124
36.2034
36.1358
36.0969
35.3802
35.3539
35.3653
35.3653
34.4380 | **/** **34047* **54783* **66601* **34074* **54736* **66636* **33948* **3659* **66437* **29657* **38713* **9195* **60482* **25574* **34051* **5499* **25574* **34051* **5499* **25574* **34051* **5499* **21845 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14853 .14836 .14785 .13913 | .004
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002
.001
.004
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2247685252 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015
22016
22017
22017
22018
22019
22020
22021
22021 | MPs 68.411 68.401 68.384 68.377 55.470 55.469 55.461 41.961 41.964 41.958 27.693 27.696 27.697 14.022 14.027 14.030 14.034 1.667 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.737 99.272 99.580 98.737 99.272 99.580 98.714 99.059 99.476 | 38.1211 38.0943 38.0633 38.0359 37.5845 37.5553 37.5265 37.4831 36.9801 36.9529 36.9010 36.8246 36.2124 36.2124 36.21358 36.9659 35.3539 35.3539 35.3630 34.4380 | */m .34047 .43771 .54783 .66601 .34074 .54736 .66636 .33655 .54699 .66437 .29657 .49195 .60482 .25574 .34912 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14836 .14785 .13913 .13933 | .004
.002
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002
.001 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17449 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 .14770 .13924 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 -1.224768525248 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22022 | MPs 68.411 68.401 68.384 68.377 55.470 55.469 55.469 41.961 41.961 41.964 41.958 27.693 27.696 27.697 14.022 14.027 14.030 14.034 1.667 1.678 1.683 | X 98.836 99.097 99.395 99.663 98.774 99.330 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.580 98.7714 99.580 98.7714 99.580 98.7714 99.126 | 38.1211
38.0943
38.0633
38.0633
37.55845
37.5553
37.5265
37.4831
36.9529
36.9010
36.8846
36.2124
36.2134
36.2134
36.2135
36.3539
35.3539
35.363
34.4389
34.3858 | %/m .34047 .43771 .54783 .66601 .34744 .54736 .66636 .33946 .34965 .54699 .66437 .29657 .38713 .49195 .60482 .254912 .214912 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16676 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14853 .14836 .14785 .13913 .13933 .13855 | .004
.002
.002
.001
.002
.002
.001
.003
.002
.001
.003
.002
.003
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .15605 .14923 .14862 .14834 .14770 .13924 .13935 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 -1.22476852524804 | | 22001
22002
22003
22004
22005
22006
22007
22008
22009
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22021
22022
22023
22024 | MPs 68.411 68.401 68.384 68.377 55.474 55.470 55.469 55.461 41.961 41.964 41.958 27.692 27.693 27.696 27.697 14.022 14.034 1.667 1.667 1.667 1.683 1.685 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.737 99.272 99.580 98.737 99.272 99.580 98.714 99.059 99.476 | 38.1211 38.0943 38.0633 38.0359 37.5845 37.5553 37.5265 37.4831 36.9801 36.9529 36.9010 36.8246 36.2124 36.2124 36.21358 36.9659 35.3539 35.3539 35.3630 34.4380 | **/** **34047* **54763* **66601* **54736* **66636* **33744* **54736* **66437* **296437* **49195* **60482* **254699* **6437* **49195* **6437* **49195* **6437* **49195* **6437* **49195* **6437 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16676 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14853 .14836 .14785 .13913 .13933 .13855 | .004
.002
.002
.001
.002
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 .14770 .13924 .13935 .13851 | Deviation from Correlation percent .55 .22 .05 -1.11 .2505 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 -1.2247685252480445 -1.45 | | 22001
22002
22003
22004
22005
22006
22007
22008
22010
22011
22012
22013
22014
22015
22016
22017
22018
22019
22020
22021
22022
22022 | MPs 68.411 68.401 68.384 68.377 55.470 55.469 55.469 41.961 41.961 41.964 41.958 27.693 27.696 27.697 14.022 14.027 14.030 14.034 1.667 1.678 1.683 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.400 98.666 98.737 99.580 98.527 99.580 98.527 99.580 98.527 | 38.1211 38.0943 38.0633 38.0359 37.5845 37.5265 37.4831 36.9529 36.9010 36.8846 36.2124 36.2034 36.21358 36.0969 35.3539 35.2463 34.3898 34.3898 34.3898 | W/m .34047 .43771 .54783 .66601 .340744 .54736 .66636 .33655
.54699 .66437 .29657 .49195 .60482 .25574 .34882 .21845 .29874 .38888 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14836 .14785 .13933 .13855 .13795 .13594 .00928 | .004
.002
.002
.001
.002
.002
.002
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .15605 .14923 .14862 .14834 .14770 .13924 .13935 .13851 .13781 .13567 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 -1.22476852525248044045 -1.4560 | | 22001
22002
22003
22004
22005
22006
22007
22010
22011
22012
22013
22014
22016
22017
22016
22017
22018
22017
22018
22020
22021
22022
22022
22022
22023 | MPs 68.411 68.401 68.384 68.377 55.474 55.479 55.469 41.961 41.961 41.968 27.692 27.693 27.697 14.022 14.027 14.034 1.667 1.668 1.685 1.685 | X 98.836 99.097 99.395 99.663 98.730 99.730 98.577 98.812 99.262 99.400 98.666 98.737 99.580 98.737 99.580 98.714 99.750 98.714 99.750 | 38.1211 38.0943 38.0633 38.0633 38.0559 37.5845 37.5553 37.5265 37.4831 36.9529 36.9010 36.8846 36.2124 36.1358 36.0969 35.3539 35.3633 34.3898 34.3558 34.2942 34.2162 .2784 | W/m .34047 .43771 .54763 .66601 .340744 .54736 .66636 .33744 .43655 .54699 .66437 .29647 .38713 .49195 .60482 .25562 .29749 .38884 .49334 .60718 .03211 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17512 .17512 .17573 .16750 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14836 .14853 .14836 .14785 .13913 .13933 .13955 .13795 .13795 .13795 .00908 | .004
.002
.002
.001
.002
.002
.001
.003
.002
.001
.003
.002
.001
.003
.002
.003
.002
.001
.003 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17449 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .14923 .14862 .14834 .14770 .13924 .13935 .13851 .13781 .13781 .13781 .00906 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.02476852524804045 -1.4560 -1.90 | | 22001
22002
22003
22004
22006
22007
22008
22010
22011
22013
22014
22015
22017
22017
22018
22017
22018
22021
22021
22021
22022
22023
22024
22025
22024
22025
22004 | MPs 68.411 68.401 68.384 68.377 55.470 55.469 55.461 41.961 41.961 41.968 27.693 27.696 27.697 14.027 14.030 14.034 1.667 1.678 1.683 1.685 1.685 | X 98.836 99.097 99.395 99.663 98.794 99.330 99.730 98.577 98.812 99.262 99.400 98.737 99.272 99.580 98.737 99.527 99.580 98.714 99.059 99.476 98.612 98.914 99.126 99.504 | 38.1211 38.0943 38.0633 38.0539 37.5845 37.5553 37.5265 37.4831 36.9801 36.9529 36.9010 36.8846 36.2124 36.1358 36.2034 36.1358 36.3639 35.3639 35.3639 35.3639 35.3639 34.3898 34.3898 34.3898 | W/m .34047 .43771 .54783 .66601 .34744 .54736 .66636 .338743 .49195 .60482 .25784 .34051 .43823 .54912 .219749 .38884 .49334 .60771 | Thermal Conductivity W/m.K .18361 .18276 .18217 .17984 .17617 .17540 .17512 .17273 .16750 .16693 .16676 .16418 .15909 .15748 .15834 .15625 .14908 .14836 .14785 .13933 .13855 .13795 .13594 .00928 | .004
.002
.002
.001
.002
.002
.002
.002
.002 | at a nominal Temperature of 99.K W/m.K .18368 .18272 .18200 .17956 .17625 .17537 .17499 .17244 .16766 .16700 .16666 .16403 .15920 .15757 .15825 .15605 .15605 .14923 .14862 .14834 .14770 .13924 .13935 .13851 .13781 .13567 | Deviation from Correlation percent .55 .22 .05 -1.11 .250405 -1.21416144 -1.9305 -1.0209 -1.2209 -1.2209 -1.22476852525248044045 -1.4560 | | Run Pt. | Pressure
MPa | Temperature
K | Density
moi/L | Power
W/m | Experimental
Thermal
Conductivity
W/m.K | STAT | Adjusted Thermal
at a nominal
Temperature of 121.K
W/m.K | Deviation | |----------------|------------------|--------------------|--------------------|------------------|--|--------------|---|----------------------| | 17001 | 66.830 | 120.725 | 35.8415 | .16153 | .16230 | .010 | •16238 | .23 | | 17002 | 66.827 | 121.079 | 35.8058 | .19941 | 16308 | .007 | .16306 | .90 | | 17003 | 66.823 | 121.014 | 35.8121 | .24084 | .16310 | .006 | .16310 | .88 | | 17004 | 66.821 | 121.104 | 35.8031
35.7806 | .28636
.33606 | .16281
.16196 | •005
•004 | •16278
•16187 | .75
.36 | | 17005
17006 | 66.819
66.818 | 121.326
121.476 | 35.7656 | .38985 | .16233 | .003 | .16219 | .67 | | 17007 | 66.817 | 121.588 | 35.7543 | 44748 | .16177 | .002 | .16160 | .39 | | 17008 | 66.810 | 121.880 | 35.7246 | .50957 | .16168 | .002 | .16143 | .50 | | 17009 | 66.812 | 122.030 | 35.7096 | .57552 | .16133 | .002 | .16103 | .37 | | 17010 | 66.807 | 122.074 | 35.7050 | .64516 | •16099 | .031 | .16068 | •18 | | 17011 | 66.803 | 122.475 | 35.6646 | .72021 | .16161 | -002 | .16119 | . 79 | | 17012
17013 | 66.804
66.802 | 122.764
121.785 | 35.6356
35.7337 | .80010
.44805 | .16080
.16229 | .001
.002 | •16030
•16206 | • 45
• 82 | | 17014 | 66.800 | 121.854 | 35.7267 | .44817 | .16261 | .003 | .16236 | 1.06 | | 17015 | 66.794 | 121.952 | 35.7166 | 44831 | .16436 | .003 | .16409 | 2.17 | | 17016 | 66.793 | 121.960 | 35.7157 | 44836 | -16190 | .006 | .16162 | •68 | | 17017 | 66.791 | 122.039 | 35.7076 | •44856 | 16546 | .004 | . 16516 | 2.87 | | 17018 | 66.790 | 122.446 | 35.6668 | 464652 | .16221 | .003 | .16180 | 1.15 | | 17019 | 66.786 | 122.482 | 35.6630 | •64675 | •16264 | •002
•002 | •16222 | 1.43 | | 17020
17021 | 66.785
59.914 | 122.621
120.808 | 35.6490
35.4695 | .64715
.16156 | .16378
.15808 | .010 | .16332
.15813 | 2.20
.32 | | 17022 | 59.916 | 121.015 | 35,4480 | .24080 | .15794 | .006 | .15794 | •35 | | 17023 | 59.919 | 121.241 | 35.4246 | .33602 | 15779 | +004 | .15772 | .39 | | 17024 | 59.920 | 121.699 | 35.3770 | 44768 | .15763 | .003 | .15743 | .56 | | 17025 | 59.926 | 122.098 | 35.3357 | • 57576 | .15708 | .002 | .15678 | • 45 | | 17026 | 59.932 | 122.555 | 35.2884 | .72069 | .15694 | .001 | ·15651 | •63 | | 17027 | 52.721 | 120.785 | 35.0664 | .16150 | .15498 | .010 | •15504 | 1.32 | | 17028
17029 | 52.728
52.730 | 121.026
121.300 | 35.0406
35.0110 | .24075
.33594 | .15279
.15245 | •006
•004 | •15278
•15237 | .05
00 | | 17030 | 52.735 | 121.661 | 34.9720 | 44761 | 15287 | .003 | .15269 | •50 | | 17031 | 52.743 | 122.104 | 34.9243 | 57572 | 15210 | .002 | .15180 | .27 | | 17032 | 52.747 | 122.608 | 34.8697 | .72075 | .15076 | .001 | .15033 | 30 | | 17033 | 45.937 | 120.724 | 34.6609 | 16145 | .14872 | •006 | .14879 | . 22 | | 17034 | 45.943 | 120.949 | 34.6357 | .24068 | -14897 | .004 | .14898 | .54 | | 17035 | 45.949 | 121.287 | 34.5976
34.5500 | .33592
.44770 | .14784
.14773 | •002
•002 | •14776
•14754 | .00
.21 | | 17036
17037 | 45.955
45.963 | 121.709
122.148 | 34.5005 | 57585 | 14692 | .001 | .14662 | 05 | | 17038 | 45.970 | 122.767 | 34.4304 | .72143 | .14668 | .001 | .14623 | .20 | | 17039 | 38.451 | 120.792 | 34.1569 | .16162 | .14314 | .009 | .14319 | .14 | | 17040 | 38.458 | 121.094 | 34.1211 | .24097 | .14381 | .006 | •14379 | .82 | | 17041 | 38.465 | 121.429 | 34.0812 | .33628 | .14215 | .003 | .14204 | 10 | | 17042 | 38.471 | 121.781 | 34.0391 | .44803 | .14157 | .003 | •14137 | 26 | | 17043
17044 | 38.478
38.484 | 122.245
122.833 | 33.9837
33.9132 | .57643
.72205 | •14117
•14119 | .001
.001 | •14086
•14074 | 21
.23 | | 17045 | 31.221 | 120.887 | 33.6143 | .16169 | .13674 | .009 | .13677 | 39 | | 17046 | 31.229 | 121.094 | 33.5883 | .24102 | .13643 | .005 | .13641 | 46 | | 17047 | 31.237 | 121.473 | 33.5402 | .33660 | •13670 | .003 | .13659 | .04 | | 17048 | 31.250 | 121.857 | 33.4918 | 44840 | .13629 | .002 | .13608 | • 03 | | 17049 | 31.257 | 122.391 | 33.4236 | •57699 | .13586 | .001 | .13553 | •13 | | 17050 | 31.263 | 122.870 | 33.3623 | .72253 | .13520 | .001 | -13476
12075 | •02
-1 •20 | | 17051
17052 | 24.034
24.041 | 120.891
120.755 | 33.0206
33.0400 | .16174
.12800 | •12972
•13126 | .014 | .12975
.13132 | 14 | | 17053 | 24.053 | 121.100 | 32.9932 | .24111 | .13073 | .005 | .13071 | 25 | | 17054 | 24.060 | 121.427 | 32.9485 | 33659 | 12970 | .003 | .12960 | 77 | | 17055 | 24.071 | 121.932 | 32.8793 | 44864 | .12924 | .002 | .12903 | ~. 69 | | 17056 | 24.082 | 122.394 | 32.8160 | .57724 | .12915 | .002 | .12883 | 36 | | 17057 | 24.095 | 122.959 | 32.7382 | .72293 | .12881 | .001 | .12837 | 13
- #0 | | 17058
17059 | 16.732
16.739 | 120.750
120.956 | 32.3484
32.3177 | .12802
.19941 | •12402
•12463 | .011 | •12408
•12464 | 59
•10 | | 17060 | 16.744 | 121.329 | 32.2611 | 28692 | .12377 | .003 | .12370 | 23 | | 17061 | 16.754 | 121.763 | 32.1956 | .39079 | 12279 | .002 | .12262 | 61 | | 17062 | 16.761 | 122.190 | 32.1307 | .51103 | .12267 | .001 | .12241 | 29 | | 17063 | 16.770 | 122.789 | 32.0393 | 64842 | .12182 | .001 | .12144 | 40 | | 17064 | 9.823 | 120.750 | 31.5707 | .12802 | .11705 | .010 | .11710 | 47 | | 17065 | 9.829 | 121.049 | 31.5199
31.4671 | .19945
.28696 | .11682
.11608 | .005
.003 | .11681
.11601 | 33
62 | | 17066
17067 | 9.837
9.847 | 121.359
121.841 | 31.3848 | 39100 | 11576 | .002 | .11559 | 36 | | 17068 | 9.854 | 122.331 | 31.3002 | .51164 | 11415 | .002 | .11388 | -1.21 | | 17069 | 9.864 | 122.964 | 31.1906 | 64895 | .11439 | .001 | .11399 | -, 27 | | 17070 | 2.634 | 120.844 | 30.5303 | .12808 | .10792 | .010 | .10795 | 67 | | 17071 | 2.641 | 121.060 | 30.4867 | .19952 | .10772 | •005 | •10771 | 56 | | 17072 | 2.644 | 121.440 | 30.4080 | .28707 | .10710 | .003 | .10702 |
60
- 37 | | 17073 | 2.646 | 121.992 | 30.2919 | 39122 | .10650
.10582 | .002 | •10631
•10555 | 37
43 | | 17074
17075 | 2.657
2.664 | 122.405
123.103 | 30.2063
30.0579 | .51180
.64974 | .10582
.10489 | .001 | •10555
•10450 | 29 | | 17076 | 2.656 | 120.805 | 30.5747 | 12812 | .10864 | .007 | •10868 | 33 | | 17077 | 2.857 | 121.098 | 30.5146 | .19960 | .10784 | .003 | .10782 | 67 | | 17078 | 2.858 | 121.501 | 30.4311 | .28727 | -10784 | .002 | .10774 | 10 | |-------|-------|---------|---------|--------|--------|------|--------|-------| | 17079 | 2.859 | 121.922 | 30.3434 | .39134 | .10694 | .001 | -10676 | 34 | | 17080 | 2.860 | 122.517 | 30.2181 | .51222 | .10602 | •001 | -10573 | 35 | | 17081 | 2.861 | 123.084 | 30.0975 | .64998 | .10537 | .001 | .10498 | 14 | | 17082 | 1.074 | 120.673 | 30.2995 | .09834 | .10553 | .009 | .10559 | -1.11 | | 17083 | 1.074 | 120.799 | 30.2719 | 12810 | .10538 | .006 | -10542 | -1.06 | | 17084 | 1.074 | 120.932 | 30.2427 | 16184 | .10519 | .005 | .10520 | -1.04 | | 17085 | 1.074 | 121.025 | 30.2224 | 19956 | .10486 | .003 | .10486 | -1.22 | | 17086 | 1.074 | 121.194 | 30.1852 | .24131 | .10522 | .003 | .10518 | 62 | | 17087 | 1.073 | 121.427 | 30.1336 | .28723 | .10522 | .002 | .10514 | 26 | | 17088 | 1.073 | 121.674 | 30.0788 | .33722 | .10459 | .002 | .10446 | 49 | | 17069 | 1.073 | 121.928 | 30.0221 | .39135 | .10367 | .003 | 10350 | - 99 | | 17090 | 1.073 | 122.197 | 29.9617 | 44964 | 10359 | •002 | .10337 | 64 | | 17091 | 1.073 | 122.426 | 29.9099 | .51207 | 10350 | .001 | .10324 | 37 | | 17092 | 1.073 | 122.835 | 29.8169 | .57925 | .10315 | .001 | •10281 | | | 17093 | 1.072 | 123.145 | | | | | | 07 | | | | | 29.7455 | •65023 | .10233 | .001 | .10194 | 37 | | 27003 | 1.056 | 121.949 | 1.2468 | •03306 | .01147 | •056 | .01137 | -6.21 | | 27004 | 1.056 | 122.925 | 1.2299 | .05147 | .01196 | .037 | .01176 | -2.56 | | 27006 | 1.056 | 121.592 | 1.2531 | .02541 | .01135 | •092 | .01129 | -7.04 | | 27007 | 1.056 | 122.455 | 1.2379 | .04175 | .01179 | .053 | .01164 | -3.70 | | 27008 | 1.056 | 123.522 | 1.2199 | .06231 | .01232 | •035 | •01206 | •05 | | 27009 | 1.056 | 124.121 | 1.2100 | .07420 | .01245 | .026 | .01213 | .69 | | 27012 | .210 | 122.778 | .2122 | .03322 | -01155 | •071 | .01137 | .92 | | 27013 | .210 | 124.061 | .2098 | 05182 | .01171 | .041 | 01140 | 1.21 | | 27016 | .210 | 123.390 | .2110 | -04197 | .01170 | .047 | .01146 | 1.69 | | | | | | | | | | | | | | | | | Experimental | | Adjusted Thermal | Conductivity | |---------|-----------------|----------------|---------|--------|------------------|------|----------------------|---------------| | | | | | | Thermal | | at a nominal | Deviation | | Run Pt. | Pressure | Temperature | Density | Power | Conductivity | STAT | Temperature of 145.K | | | - | MPa | K | mol/L | W/m | W/m.K | • | W/m.K | percent | | | | | | | | | | | | 16001 | 65.387 | 143.353 | 33.4978 | .19927 | .14106 | .005 | .14138 | .05 | | 16002 | 65.388 | 143.518 | 33.4813 | .24561 | .14114 | .004 | .14143 | •21 | | 16003 | 65.391 | 143.651 | 33.4684 | -29692 | .14051 | .003 | .14077 | 16 | | 16004 | 65.390 | 143.840 | 33.4494 | .35318 | .13966 | .004 | .13988 | 65 | | 16005 | 65.390 | 144.065 | 33.4270 | .41444 | .14026 | .002 | .14044 | 08 | | 16006 | 65.390 | 144.266 | 33.4071 | .48067 | .14031 | .002 | 14045 | • 07 | | 16007 | 65.389 | 144.617 | 33.3721 | .55209 | .13967 | .001 | .13974 | 17 | | 16008 | 65.390 | 144.862 | 33.3478 | .62851 | .13989 | .001 | •13992 | .13 | | 16009 | 65.391 | 145.161 | 33.3182 | .71001 | 13959 | .001 | .13956 | .10 | | 16010 | 65.391 | 145.414 | 33.2931 | .79658 | .13947 | .001 | .13939 | .17 | | 16011 | 59.096 | 143.181 | 33.0930 | .15774 | .13691 | .010 | .13726 | .12 | | 16012 | 59.097 | 143.370 | 33.0734 | 19929 | -13680 | .006 | •13711 | .16 | | 16013 | 59.096 | 143.555 | 33.0542 | 24572 | .13589 | .004 | .13616 | 39 | | 16014 | 59.097 | 143.706 | 33.0386 | 29705 | 13631 | .003 | .13656 | .01 | | 16015 | 59.098 | 143.846 | 33.0242 | 35331 | .13597 | .003 | .13619 | 15 | | 16016 | 59.098 | 144.107 | 32.9970 | .41465 | .13572 | .002 | .13589 | 16 | | 16017 | 59.094 | 144.390 | 32.9675 | .48097 | .13556 | .001 | .13567 | 10
10 | | 16018 | 59.096 | 144.624 | 32.9433 | -55226 | 13564 | .001 | .13571 | •11 | | 16019 | 59.098 | 144.960 | 32.9086 | 62881 | •13470 | .001 | .13471 | 38 | | 16020 | 59.098 | 145.177 | 32.8861 | •71030 | | | | | | 16021 | 59.098 | 145.530 | 32.8495 | | .13493
.13459 | .001 | .13490 | 07 | | | | | | 79712 | | .001 | +13449 | 09 | | 16022 | 52.975 | 143.222 | 32.6448 | .15779 | .13200 | .010 | -13233 | 18 | | 16023 | 52.980 | 143.414 | 32.6244 | .19930 | .13191 | .007 | .13221 | 12 | | 16024 | 52.982 | 143.555 | 32.6092 | .24576 | •13194 | .005 | •13221 | 00 | | 16025 | 52.987 | 143.779 | 32.5853 | -29708 | .13152 | .004 | .13175 | 17 | | 16026 | 52.991 | 143.966 | 32.5652 | .35340 | -13178 | •003 | .13197 | .15 | | 16027 | 52.994 | 144.224 | 32.5375 | .41478 | .13111 | .003 | .13125 | 19 | | 16028 | 52.997 | 144.341 | 32.5250 | .48097 | .13092 | •002 | .13104 | 26 | | 16030 | 53.004 | 144.947 | 32.4597 | .62887 | .13037 | .002 | . 13038 | 28 | | 16031 | 53.006 | 145.233 | 32.4288 | 710+8 | .13024 | .001 | .13020 | 16 | | 16032 | 53.009 | 145.596 | 32.3897 | .79729 | . 13003 | .001 | .12992 | 10 | | 16033 | 46.690 | 145.697 | 31.8638 | 79764 | .12517 | .002 | .12505 | •03 | | 16035 | 46.708 | 144.490 | 32.0037 | .48106 | -12594 | .002 | . 12603 | 24 | | 16036 | 46.716 | 143.931 | 32.0683 | .35330 | .12646 | .003 | .12665 | 23 | | 16037 | 46.723 | 143.532 | 32.1146 | .24565 | .12689 | .005 | •12716 | 18 | | 16038 | 46.726 | 143.207 | 32.1520 | .15768 | .12689 | .010 | •12722 | 42 | | 16039 | 46.734 | 145.410 | 31.9005 | .71057 | .12554 | .001 | .12547 | .09 | | 16040 | 46.740 | 144.643 | 31.9888 | .55221 | .12580 | .002 | •12586 | 26 | | 16041 | 40.494 | 145.921 | 31.2765 | .79802 | 11961 | .001 | .11945 | 13 | | 16042 | 40.503 | 143.246 | 31.6032 | .15772 | .12178 | .009 | .12209 | 40 | | 16043 | 40.511 | 145.136 | 31.3739 | .62915 | .11993 | .001 | .11991 | 48 | | 16044 | 40.516 | 143.615 | 31.5595 | .24570 | .12143 | .005 | .12168 | 41 | | 16045 | 40.523 | 144.558 | 31.4454 | .48113 | -12063 | .002 | .12071 | 35 | | 16046 | 40.526 | 143.931 | 31.5221 | .35327 | .12091 | .003 | .12110 | 61 | | 16047 | 40.530 | 144.297 | 31.4779 | 41466 | .12089 | .002 | .12101 | 34 | | 16048 | 34.503 | 143.223 | 31.0185 | 15768 | 11641 | .004 | .11672 | 49 | | 16049 | 34.506 | 143.586 | 30.9715 | 24567 | .11623 | .003 | .11648 | 34 | | 16050 | 34.511 | 144.051 | 30.9114 | 35340 | .11580 | .001 | .11596 | 33 | | 16051 | 34.515 | 144.590 | 30.8414 | .48118 | •11498 | .001 | .11505 | 5° | | 16052 | 34.518 | 145.202 | 30.7617 | .62918 | •11463 | .001 | •11460 | 3' | | 16052 | 34.528 | 145.585 | 30.7017 | | | | | | | 70032 | 37 0 365 | よマン◆フロフ | 2041771 | .71107 | .11426 | .001 | •11416 | 4 | | 16054 | 28.783 | 143.335 | 30.3661 | .15778 | .11066 | .008 | 33004 | 4.4 | |--|---|--
---|--|---|--|---|--| | | | | | | | | .11094 | 64 | | 16055 | 28.786 | 143.676 | 30.3184 | .24581 | •11093 | .005 | .11116 | 08 | | 16056 | 28.790 | 144.080 | 30.2616 | • 35351 | •10969 | .003 | •1098 5 | 84 | | 16057 | 28.796 | 144.406 | 30.2163 | •41507 | .10941 | .002 | .10951 | 81 | | 16058 | 28.798 | 144.649 | 30.1822 | .48138 | .10935 | .002 | .10941 | 64 | | 16059 | 28.802 | 144.943 | 30.1410 | .55306 | .10916 | .001 | .10917 | 55 | | 16060 | 28.807 | 145.285 | 30.0930 | .62965 | .10840 | .001 | .10835 | 94 | | 16061 | 28.810 | 145.694 | 30.0353 | .71169 | .10842 | .001 | .10830 | 55 | | 16062 | 22.869 | 143.350 | | | | | | | | | | | 29.5938 | .15790 | •10466 | •009 | .10494 | 36 | | 16063 | 22.871 | 143.763 | 29.5292 | .24600 | •10434 | •004 | .10455 | 25 | | 16064 | 22.871 | 144.178 | 29.4642 | .35394 | •10349 | .003 | .10363 | 64 | | 16065 | 22.874 | 144.491 | 29.4154 | .41545 | .10320 | .002 | .10329 | 60 | | 16066 | 22.875 | 144.751 | 29.3747 | .48192 | .10303 | .002 | .10307 | 50 | | 16067 | 22.876 | 145.144 | 29.3127 | .55377 | .10265 | 002 | .10263 | 47 | | 16068 | 22.877 | 145.531 | 29.2517 | .63074 | .10233 | .001 | .10224 | | | | | | | | | | | 38 | | 16070 | 16.026 | 143,454 | 28.4621 | .15798 | .09635 | .007 | .09661 | 10 | | 16071 | 16.033 | 143.880 | 28,3847 | .24621 | .09549 | +004 | • 09568 | 48 | | 16072 | 16.041 | 144.371 | 28.2947 | .35424 | •09511 | .002 | .09521 | 29 | | 16073 | 16.046 | 144.622 | 28.2488 | .41582 | .09420 | .002 | •09426 | 95 | | 16074 | 16.051 | 144.931 | 28.1921 | .48248 | .09384 | +002 | .09385 | 96 | | 16075 | 16.056 | 145.374 | 28.1098 | .55432 | .09369 | 002 | •09363 | 58 | | 16076 | 16.061 | 145.730 | 28.0437 | .63140 | .09385 | .001 | .09373 | •02 | | | | | | | | | | | | 16077 | 16.068 | 146.057 | 27.9834 | .71345 | .09300 | .001 | •09282 | 50 | | 16078 | 10.151 | 143.438 | 27.1527 | .15799 | .08748 | .007 | .08774 | .07 | | 16079 | 10.157 | 143.883 | 27.0506 | .24621 | . 08715 | .003 | •08734 | . 36 | | 16080 | 10.161 | 144.397 | 26.9311 | .35440 | .08674 | •002 | .08684 | . 67 | | 16081 | 10.165 | 144.744 | 26.8502 | .41603 | .08604 | .002 | .08608 | •39 | | 16082 | 10.170 | 145.114 | 26.7636 | .46282 | .08538 | .002 | .08536 | •19 | | 16083 | 10.176 | 145.393 | 26.6983 | .55469 | .08506 | .001 | .08499 | .23 | | 16084 | 10.180 | 145.865 | 26.5854 | .63175 | .08478 | .002 | | | | | | | | | | | .08463 | •63 | | 16088 | 4-202 | 143.760 | 24.7491 | .19972 | •07577 | .004 | .07602 | 2.90 | | 16089 | 4.204 | 143.969 | 24.6661 | .24640 | .07566 | .004 | .07587 | 3.25 | | 16090 | 4.206 | 144.299 | 24.5317 | .29809 | .07472 | .003 | •07486 | 2.84 | | 16091 | 4.207 | 144.574 | 24.4166 | .35471 | .07475 | .003 | .07484 | 3.56 | | 25002 | 2.661 | 144.035 | 3.0767 | .04058 | .01761 | .061 | .01775 | 5.05 | | 25003 | 2.661 | 144.805 | 3.0326 | .06301 | .01790 | .033 | .01793 | 6.39 | | 25004 | 2.661 | 145.666 | 2,9859 | .09048 | .01810 | .018 | .01800 | 7.20 | | 25007 | 2.337 | 144.202 | 2.5391 | .04061 | .01652 | 058 | | | | 25008 | 2.335 |
144.955 | | | | | .01662 | 3.45 | | | | | 2.5073 | .06306 | .01652 | 029 | .01653 | 3.15 | | 25009 | 2.333 | | | | | .016 | •01681 | | | 0500 | | 145.945 | 2.4676 | .09062 | .01693 | | | 5.10 | | 25014 | 1.837 | 144.349 | 1.8488 | .04061 | .01536 | 055 | .01543 | 1.67 | | 25014
25015 | | | | | | | | | | | 1.837 | 144.349 | 1.8488 | .04061 | .01536
.01538 | •055
•026 | .01543
.01536 | 1.67
1.24 | | 25015
25016 | 1.837
1.845
1.844 | 144.349
145.215
146.388 | 1.8488
1.8384
1.8126 | .04061
.06312
.09076 | .01536
.01538
.01567 | .055
.026
.015 | .01543
.01536
.01551 | 1.67
1.24
2.42 | | 25015
25016
25019 | 1.837
1.845
1.844
1.029 | 144.349
145.215
146.388
144.631 | 1.8488
1.8384
1.8126
.9392 | .04061
.06312
.09076 | .01536
.01538
.01567
.01420 | .055
.026
.015 | .01543
.01536
.01551
.01424 | 1.67
1.24
2.42
12 | | 25015
25016
25019
25020 | 1.845
1.845
1.844
1.029
1.029 | 144.349
145.215
146.388
144.631
145.726 | 1.8488
1.8384
1.8126
.9392
.9299 | .04061
.06312
.09076
.04066 | .01536
.01538
.01567
.01420
.01417 | .055
.026
.015
.050 | .01543
.01536
.01551
.01424
.01410 | 1.67
1.24
2.42
12
-1.07 | | 25015
25016
25019
25020
25021 | 1.837
1.845
1.844
1.029
1.029 | 144.349
145.215
146.388
144.631
145.726
146.415 | 1.8488
1.8384
1.8126
.9392
.9299 | .04061
.06312
.09076
.04066
.06324 | .01536
.01538
.01567
.01420
.01417
.01430 | .055
.026
.015
.050
.026 | .01543
.01536
.01551
.01424
.01410
.01416 | 1.67
1.24
2.42
12
-1.07 | | 25015
25016
25019
25020
25021
25024 | 1.837
1.845
1.844
1.029
1.029
1.029 | 144.349
145.215
146.388
144.631
145.726
146.415 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180 | .04061
.06312
.09076
.04066
.06324
.07648 | .01536
.01538
.01567
.01420
.01417
.01430 | .055
.026
.015
.050
.026
.017 | .01543
.01536
.01551
.01424
.01410
.01416 | 1.67
1.24
2.42
12
-1.07
61 | | 25015
25016
25019
25020
25021
25024
25025 | 1.837
1.845
1.844
1.029
1.029
1.029
.257 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180 | .04061
.06312
.09076
.04066
.06324
.07648
.03132 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369 | .055
.026
.015
.050
.026
.017
.071 | .01543
.01536
.01551
.01424
.01410
.01416
.01366 | 1.67
1.24
2.42
12
-1.07
61
.09 | | 25015
25016
25019
25020
25021
25024
25025
25026 | 1.837
1.845
1.844
1.029
1.029
1.029
-257
-256 | 144.349
145.215
146.388
144.631
145.726
146.415 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180 | .04061
.06312
.09076
.04066
.06324
.07648 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369 | .055
.026
.015
.050
.026
.017 | .01543
.01536
.01551
.01424
.01410
.01416 | 1.67
1.24
2.42
12
-1.07
61 | | 25015
25016
25019
25020
25021
25024
25025 | 1.837
1.845
1.844
1.029
1.029
1.029
.257 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180 | .04061
.06312
.09076
.04066
.06324
.07648
.03132 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369 | .055
.026
.015
.050
.026
.017
.071 | .01543
.01536
.01551
.01424
.01410
.01416
.01366 | 1.67
1.24
2.42
12
-1.07
61
.09 | | 25015
25016
25019
25020
25021
25024
25025
25026 | 1.837
1.845
1.844
1.029
1.029
1.029
-257
-256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2168 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369 | .055
.026
.015
.050
.026
.017
.071
.048 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367 | 1.67
1.24
2.42
12
-1.07
61
.09
.21 | | 25015
25016
25019
25020
25021
25024
25025
25026 | 1.837
1.845
1.844
1.029
1.029
1.029
-257
-256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2168 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369 | .055
.026
.015
.050
.026
.017
.071
.048 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367 | 1.67
1.24
2.42
12
-1.07
61
.09
.21 | | 25015
25016
25019
25020
25021
25024
25025
25026 | 1.837
1.845
1.844
1.029
1.029
1.029
-257
-256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2168 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376 | .055
.026
.015
.050
.026
.017
.071
.048 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362 | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19 | | 25015
25016
25019
25020
25021
25024
25025
25026 | 1.837
1.845
1.844
1.029
1.029
1.029
-257
-256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2157
.2144 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental | .055
.026
.015
.050
.026
.017
.071
.048
.035 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity | | 25015
25016
25019
25020
25021
25024
25025
25026
25027 | 1.837
1.845
1.844
1.029
1.029
1.029
.257
.256
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163
145.834
146.466 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2157
.2144 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal | .055
.026
.015
.050
.026
.017
.071
.048 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation
From Correlation | | 25015
25016
25019
25020
25021
25024
25025
25026
25027 | 1.837
1.845
1.844
1.029
1.029
1.029
2.57
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163
145.834
146.466 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2157
.2144 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental | .055
.026
.015
.050
.026
.017
.071
.048
.035 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal | 1.67
1.24
2.42
-12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation | | 25015
25016
25019
25020
25021
25024
25025
25026
25027 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.615
144.603
145.163
145.834
146.466 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2157
.2144 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimenta:
Thermal
Conductivity
W/m.K | .055
.026
.015
.050
.026
.017
.071
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt. | 1.837
1.845
1.844
1.029
1.029
1.029
2.57
.256
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.415
145.163
145.163
145.466
Temperature
K | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2150
.2157
.2144
Density
mo1/1 |
.04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K | .055
.026
.015
.050
.026
.017
.071
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01367
.01367
.01362
Adjusted Thermal at a nominal
Temperature of 159.K | 1.67 1.24 2.4212 -1.076109219819 Conductivity Deviation From Correlation percent .10 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt. | 1.837
1.845
1.844
1.029
1.029
1.029
.257
.256
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.415
145.163
145.163
145.634
146.466 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2180
.2157
.2144
Density
mol/L
32.0954
32.0696 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K | .055
.026
.015
.050
.026
.017
.071
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal
Temperature of 159.K | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation
From Correlation
percent | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt. | 1.837
1.845
1.844
1.029
1.029
1.029
.257
.256
.256
.256
.256 | 144.349
145.215
146.388
144.631
145.726
146.415
144.603
145.163
145.834
146.466
Temperature
K | 1.8488
1.8384
1.8126
.93 92
.9299
.9242
.2180
.2157
.2144
Density
mol/L
32.0954
32.0954
32.09521 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K | .055
.026
.015
.026
.017
.071
.048
.025
STAT | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
st a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004 | 1.837
1.845
1.844
1.029
1.029
1.029
1.029
.257
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.163 145.834 146.466 Temperature K 159.357 159.826 159.809 160.151 | 1.8488
1.8384
1.8126
.9392
.9249
.9242
.2158
.2157
.2144
Density
mol/L
32.0094
32.00954
32.00921
32.0193 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.27777
.33589
.9939
.46868 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K | .055
.026
.015
.050
.026
.017
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal
Temperature of 159.K | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation
From Correlation
percent | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005 | 1.837
1.845
1.844
1.029
1.029
1.029
2.57
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.163 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 | 1.8488
1.8384
1.8392
.9299
.9242
.2150
.2157
.2144
Density
mo1/1
32.0954
32.0521
32.0193
31.9999 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.2777
.33589
.39939
.46868
.54353 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864 | .055
.026
.015
.026
.017
.071
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01367
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12872 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.163 145.163 145.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 | 1.8488
1.8384
1.8126
.9299
.9242
.2180
.2157
.2144
Density
mol/L
32.0954
32.0521
32.0193
31.9999
31.9696 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.27777
.33589
.9939
.46868 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K | .055
.026
.015
.050
.026
.017
.048
.035
.025 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872 | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation
from Correlation
percent
.10
19
.13
11 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005 | 1.837
1.845
1.844
1.029
1.029
1.029
2.57
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.163 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 | 1.8488
1.8384
1.8392
.9299
.9242
.2150
.2157
.2144
Density
mo1/1
32.0954
32.0521
32.0193
31.9999 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.2777
.33589
.39939
.46868
.54353 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12855 | .055
.026
.0150
.026
.017
.071
.048
.035
.025
STAT
.005
.003
.003
.003 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12843
.12843 | 1.67 1.24 2.4212 -1.076109219819 Conductivity Deviation From Correlation percent101913112008 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.371 161.014 | 1.8488
1.8384
1.8326
.9299
.9242
.2158
.2157
.2144
Density
moi/i.
32.0954
32.0521
32.0193
31.9999
31.9996
31.9368 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.27777
.33589
.39939
.46868
.54353
.62408
.71034 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12855
.12839 | .055
.026
.015
.050
.026
.017
.048
.035
.025
.005
.003
.003
.002
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
st a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12807 | 1.67
1.24
2.42
12
-1.07
61
.09
.21
.98
19
Conductivity
Deviation
From Correlation
percent
.10
19
.13
11
20
08 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.834 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.6751 161.014 161.455 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2150
.2168
.2157
.2144
Density
mol/L
32.0954
32.0521
32.0193
31.9999
31.9368
31.8945 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.05147
.06349
Power
W/m
.27777
.33589
.40868
.54353
.62408
.71034
.80236 |
.01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12839 | .055
.026
.015
.050
.026
.017
.048
.035
.025
STAT
.005
.003
.003
.002
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12807 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .131120080002 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009 | 1.837
1.845
1.844
1.029
1.029
1.029
1.029
2.57
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.163 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.451 160.355 160.671 161.014 161.455 161.736 | 1.8488
1.8384
1.8392
.9299
.9242
.2180
.2157
.2144
Density
mo1/1
32.0054
32.0052
32.0193
31.9999
31.9696
31.8678 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.2777
.33589
.39939
.46868
.54353
.62408
.71034
.80236
.90035 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12803
.12781 | .055
.026
.015
.026
.017
.071
.048
.035
.025
STAT
.005
.003
.003
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01367
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12864
.12764
.12764 | 1.67 1.24 2.42 -1.2 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13112008000203 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21009
21010 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 | 1.8488
1.8384
1.8126
.9392
.9299
.9242
.2180
.2157
.2144
Density
mol/L
32.0954
32.0521
32.0193
31.9999
31.9696
31.9368
31.8945
31.8678
31.0659 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.05147
.06349
.05147
.06349
.27777
.33589
.39939
.4686
.54353
.62408
.71034
.80236
.90035
.33567 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Therma!
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12899
.12864
.12855
.12839
.12839
.12831
.11990 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.003
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12843
.12829
.12807
.12738
.12738 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .1311200800020319 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21009
21010
21010 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2158
.2157
.2144
2.0054
32.0554
32.0521
32.0193
31.9999
31.9999
31.9368
31.8895
31.8659
31.0659
30.9984 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
Power
W/m
.27777
.33589
.46868
.54353
.62408
.54353
.62408
.71034
.80236
.90035
.33567
.46853 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12839
.12839
.12839
.12803
.12781
.11990
.11922 | .055
.026
.017
.026
.017
.048
.035
.025
STAT
.005
.003
.002
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12807
.12807
.12764
.12738
.11980
.11993 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .131120080002031934 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.834 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 161.736 159.638 160.272 160.867 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2168
.2157
.2144
Density
mol/L
32.0954
32.0696
32.0696
32.0521
32.0193
31.9999
31.9696
31.9368
31.0659
31.0659
31.0659
31.0659 | .04061
.06312
.09076
.04066
.06324
.07648
.03107
.05147
.06349
Power
W/m
.27777
.33589
.46868
.54353
.62408
.80236
.90035
.33567
.46853
.62406 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12803
.12781
.11990
.11922
.11869 | .055
.026
.015
.050
.026
.017
.071
.035
.025
.025
.003
.003
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
st a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12872
.12843
.12829
.12807
.12764
.12738
.11980
.11903
.11903
.11903 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13112008000203193439 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21006
21007
21008
21009
21010
21011
21012
21013 | 1.837
1.845
1.844
1.029
1.029
1.029
1.029
1.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.834 145.834 146.466 Temperature K 159.357 159.626 159.809 160.451 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 | 1.8488
1.8384
1.8326
.9299
.9242
.2150
.2158
.2157
.2144
Density
mo1/1
32.0054
32.0052
32.0193
31.9999
31.9696
31.8670
31.8670
31.9659
30.9984
30.9984
30.9984
30.9984 | -04061
-06312
-0906
-04066
-06324
-07648
-03132
-04073
-05147
-06349
Power
W/m
-2777
-33589
-3939
-46868
-54353
-62408
-71034
-80236
-90035
-33567
-46858
-62406
-80257 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12940
.12948
.12855
.12839
.12864
.12855
.12839
.12781
.11990
.11992
.11869
.11869
.11869 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.003
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12843
.12829
.12843
.12929
.12764
.12738
.11980
.11903
.11903
.11841
.11766 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .1311200800020319343945 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21011
21012
21013
21014 | 1.837
1.844
1.849
1.029
1.029
1.029
1.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2180
.2157
.2144
2.157
.2144
32.0954
32.0521
32.0193
31.9999
31.9696
31.8945
31.8678
31.8678
31.0659
30.9984
30.9354
30.9354
30.8594 |
-04061
-06312
-0906
-04066
-06324
-07648
-03132
-04073
-05147
-06349
-06349
-2777
-33589
-3939
-46853
-52408
-71034
-80236
-80237
-6853
-80257
-80257
-80257 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Therma:
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12899
.12899
.12803
.12781
.11990
.11922
.11869
.11805
.11805 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.003
.001
.001
.001
.001
.003 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12843
.12829
.12807
.12738
.11980
.11903
.11941
.11766
.11045 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13112008000203193439 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2158
.2157
.2144
Density
moi/L
32.0954
32.0521
32.0193
31.9999
31.9696
31.9659
31.8678
31.0659
30.9354
30.8594
30.8594
30.8594
30.8594
30.8595
30.8000 | -04061
-06312
-0906
-04066
-06324
-07648
-03132
-04073
-05147
-06349
Power
W/m
-2777
-33589
-3939
-46868
-54353
-62408
-71034
-80236
-90035
-33567
-46858
-62406
-80257 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12940
.12948
.12855
.12839
.12864
.12855
.12839
.12781
.11990
.11992
.11869
.11869
.11869 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.003
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12843
.12829
.12843
.12929
.12764
.12738
.11980
.11903
.11903
.11841
.11766 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .1311200800020319343945 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21015
21016 | 1.837
1.844
1.849
1.029
1.029
1.029
1.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 | 1.8488
1.8384
1.8326
.9392
.9299
.9242
.2180
.2157
.2144
2.157
.2144
32.0954
32.0521
32.0193
31.9999
31.9696
31.8945
31.8678
31.8678
31.0659
30.9984
30.9354
30.9354
30.8594 | -04061
-06312
-0906
-04066
-06324
-07648
-03132
-04073
-05147
-06349
-06349
-2777
-33589
-3939
-46853
-52408
-71034
-80236
-80237
-6853
-80257
-80257
-80257 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Therma:
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12899
.12899
.12803
.12781
.11990
.11922
.11869
.11805
.11805 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.003
.001
.001
.001
.001
.003 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12843
.12829
.12807
.12738
.11980
.11903
.11941
.11766
.11045 | 1.67 1.24 2.42 -1.2 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .131120080002031934394583 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 | 1.8488
1.8384
1.8392
.9299
.9242
.2150
.2168
.2157
.2144
Density
mol/L
32.0954
32.0696
32.0521
32.0193
31.9999
31.9999
31.9368
31.0659
31.0659
31.0659
31.0659
30.09354
30.0625
30.0625
30.0625
30.0620
29.9206 | .04061
.06312
.09066
.04066
.06324
.07648
.03107
.05147
.06349
Power
W/m
.27777
.33589
.46868
.54353
.62408
.710236
.90035
.33567
.62406
.80257
.46862
.80257
.46862 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12803
.12781
.11990
.11922
.11869
.11922
.11869
.11922
.11869
.11033
.11009 | .055
.026
.015
.050
.026
.017
.071
.035
.025
.025
.001
.001
.001
.001
.001
.001
.001
.00 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12872
.12843
.12829
.12807
.12764
.12738
.11980
.11903
.11903
.11841
.11766
.11015
.10981 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .1311200800020319343945836436 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21006
21007
21008
21009
21010
21011
21012
21013
21014
21015
21016
21017 | 1.837 1.844 1.844 1.029 1.029 1.029 1.256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.415 146.403 145.834 146.466 Temperature K 159.357 159.626 159.809 160.451 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 | 1.8488
1.8384
1.8326
.9299
.9242
.2150
.2158
.2157
.2144
Density
mo1/1
32.0054
32.00521
32.0193
31.9999
31.9696
31.8678
31.8678
31.8678
31.8678
30.9384
30.9384
30.9384
30.9385
30.8594
30.0625
30.0000
29.9206
29.8255 | -04061
-06312
-0906
-04066
-06324
-07648
-03132
-04073
-05147
-06349
-06349
-2777
-33589
-3939
-46868
-54353
-62408
-71034
-80236
-90035
-62408
-80257
-46858
-6257
-6868
-680257
-6868
-680301 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12855
.12839
.12864
.12855
.12839
.12781
.11990
.11969
.11869
.11869
.11056
.11009
.11009 | .055
.026
.015
.026
.017
.074
.035
.025
.025
.001
.001
.001
.001
.001
.001
.001
.00 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12843
.12829
.12843
.12899
.12807
.12764
.12738
.11980
.11903
.11841
.11766
.11045
.11045
.11045
.11045
.110981 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .131120080002031934394583643647 | | 25015
25016
25019
25020
25021
25024
25025
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21011
21012
21011
21012
21013
21014
21015
21016
21017
21018 | 1.837 1.845 1.844 1.029 1.029 1.029 1.257 .256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.451 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 | 1.8488
1.8384
1.8326
.9299
.9242
.2180
.2157
.2144
2.0696
32.0521
32.0193
31.9999
31.9696
31.8678
31.8678
31.8678
31.8678
31.8678
31.9594
30.9584
30.9594
30.9594
30.9595
30.0000
29.9206
29.8255
29.1005 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.04073
.05147
.06349
.05147
.06349
.2777
.33589
.39939
.46868
.52408
.71034
.80236
.80257
.46853
.62408
.71034
.80236
.71034
.80236
.71034
.80236
.80257
.80257
.80301
.80257 |
.01536
.01538
.01567
.01420
.01417
.01430
.01369
.01366
.01376
Experimenta:
Therma!
Conductivity
W/m.K
.12979
.12948
.12890
.12948
.12890
.12855
.12839
.12839
.12803
.12781
.11990
.11922
.11869
.11956
.11056
.11033
.110370 | .055
.026
.0150
.026
.017
.0718
.035
.025
STAT
.005
.003
.001
.001
.001
.001
.003
.002
.001
.003 | .01543 .01536 .01551 .01424 .01410 .01416 .01366 .01367 .01378 .01362 Adjusted Thermal at a nominal Temperature of 159.K W/m.K .12973 .12910 .12935 .12872 .12843 .12829 .12807 .12764 .12738 .11980 .11903 .11941 .11766 .11045 .11045 .11045 .100891 .10891 .10891 .10891 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .131120080002031934394536474704 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019 | 1.837
1.845
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.734 | 1.8488
1.8384
1.83992
.9299
.9242
.2158
.2157
.2144
2.157
.2144
2.0954
32.0954
32.0954
32.09521
32.0193
31.9999
31.9999
31.9998
31.8678
31.8678
31.0659
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.0854
30.085 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.05147
.06349
.05147
.06349
.07177
.33589
.46868
.54353
.62408
.80236
.33567
.33567
.33567
.33567
.33567
.33573
.62408
.80237
.33573
.62408
.80237
.33573
.62408
.80237
.33573
.62408 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Therma:
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12855
.12890
.12803
.12791
.11990
.11922
.11869
.11990
.11922
.11869
.110370
.10370
.10370 | .055
.026
.017
.026
.017
.048
.035
.025
STAT
.005
.003
.002
.001
.001
.001
.001
.001
.001
.001 | .01543 .01536 .01551 .01424 .01410 .01416 .01366 .01367 .01378 .01362 Adjusted Thermal at a nominal Temperature of 159.K W/m.K .12973 .12910 .12935 .12872 .12843 .12829 .12857 .12764 .12738 .11980 .11993 .11841 .11766 .11045 .11015 .10981 .10991 .10363 .10224 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .1311200800020319343945836436470489 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21017
21018
21017
21018
21017
21018
21019
21019
21020 | 1.837
1.844
1.029
1.029
1.029
1.257
.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 144.603 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.071 161.455 161.736 159.6387 169.6267 161.587 159.7357 159.736 160.272 160.867 161.587 159.736 160.272 | 1.8488
1.8384
1.8392
.9299
.9242
.2150
.2168
.2157
.2144
Density
mol/L
32.0954
32.0696
32.0521
32.0193
31.9999
31.9696
31.9368
31.0659
31.0659
31.0659
30.9354
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625
30.0625 |
-04061
-06312
-09066
-04066
-06324
-07648
-031073
-05147
-06349
-05147
-06349
-7777
-33589
-46868
-54353
-62408
-54353
-62408
-54353
-62408
-71035
-62408
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-71035
-7 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12890
.12864
.12855
.12839
.12803
.12781
.11990
.11969
.11869
.11869
.11909
.11869
.11033
.11009
.11033
.11009
.10338
.10211 | .055
.026
.0150
.026
.017
.0748
.035
.025
STAT
.005
.003
.001
.001
.001
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12872
.12843
.12829
.12807
.12764
.12738
.11980
.11903
.11903
.11841
.11766
.11045
.11045
.11045
.10981
.10891
.10891
.10891
.10891
.10891
.10891
.10224
.10187 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13112008000203193439458364394583643647048953 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21020
21020
21020
21021 | 1.837
1.844
1.029
1.029
1.029
1.029
1.256
.256
.256
.256
.256
.256
.256
.256 | 144.349 145.215 146.388 144.631 145.726 146.415 145.834 146.466 Temperature K 159.357 159.626 159.809 160.451 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.744 159.484 160.073 | 1.8488 1.8384 1.8392 .9299 .9242 .2180 .2157 .2144 Density mo1/1 32.0954 32.0521 32.0193 31.9999 31.9696 31.8678 31.8678 31.8678 31.8678 30.9584 30.9584 30.9585 29.1005 29.8255 29.1005 29.8255 29.1005 29.8255 29.1005 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.05147
.06349
.05147
.06349
.0777
.33589
.39936
.54353
.62408
.710236
.90035
.46853
.80257
.46853
.80257
.46853
.80257
.71119 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12948
.12864
.12855
.12839
.12883
.12781
.11990
.11969
.11869
.11869
.11869
.11056
.110370
.10931
.10031
.10211
.10161 | .055
.026
.015
.026
.017
.074
.035
.025
STAT
.005
.003
.001
.001
.001
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12863
.12829
.12864
.12764
.12738
.11980
.11903
.11841
.11766
.11045
.11045
.11045
.10981
.10981
.10891
.10891
.10891
.10891
.10187
.10128 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .131120080002031939458364364704895343 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21006
21007
21010
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21021
21021
21022 | 1.837 1.845 1.844 1.029 1.029 1.029 1.257 .256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.63 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.744 159.484 160.013 160.774 | 1.8488 1.8384 1.8384 1.8389 2.9299 .9242 .2168 .2157 .2144 Density moi/i 32.0954 32.0521 32.0193 31.9999 31.9696 31.8945 31.8679 30.9984 30.9354 30.8594 30.9525 30.0000 29.9206 29.8255 29.1005 29.0314 28.9351 28.0905 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
POWER
.2777
.33589
.46868
.54353
.62406
.71034
.80236
.90035
.33567
.46853
.62406
.80257
.683573
.46862
.7768
.893573
.746862
.7768
.77768
.77768
.77768
.77768
.77768
.77768
.77768
.77768
.77776
.77776 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01366
.01376
Experimenta:
Therma:
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12890
.12855
.12839
.12839
.12839
.12839
.12803
.12781
.11990
.11922
.11869
.11956
.11056
.11033
.110370
.10238
.10211
.10161
.09590 | .055
.026
.017
.026
.017
.048
.035
.025
.003
.003
.001
.001
.001
.001
.001
.002
.001
.002
.001
.002 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
st a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12887
.12887
.12867
.12764
.11980
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11045
.11045
.11045
.11045
.11045
.11045
.11046
.11047
.10128
.10224
.10187 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .13112008000203193439453647474789534342 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023 | 1.837 1.845 1.844 1.029 1.029 1.029 1.257 .256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.748 159.484 159.484 | 1.8488 1.8384 1.83892 .9299 .9242 .2168 .2157 .2144 Density molft 32.0954 32.0521 32.0193 31.9999 31.9368 31.8945 31.8678 31.0659 31.9354 30.0625 30.08594 30.0625 30.08594 26.9351 28.68421 28.6905 28.0152 | .04061
.06312
.0906
.04066
.06324
.07648
.03132
.05147
.06349
.05147
.06349
.0777
.33589
.39936
.54353
.62408
.710236
.90035
.46853
.80257
.46853
.80257
.46853
.80257
.71119 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Thermal
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12855
.12890
.12803
.12781
.11990
.11922
.11869
.11909
.11909
.11033
.11009
.11033
.11038
.10211
.10370
.10238
.10211
.10370
.109590
.09526 |
.055
.026
.015
.026
.017
.074
.035
.025
STAT
.005
.003
.001
.001
.001
.001
.001
.001
.001 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
at a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12829
.12863
.12829
.12864
.12764
.12738
.11980
.11903
.11841
.11766
.11045
.11045
.11045
.10981
.10981
.10891
.10891
.10891
.10891
.10187
.10128 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .13112008000203193439458364364704895343 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt. 21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21017
21018
21017
21018
21019
21019
21020
21021
21022
21023
21023
21024 | 1.837 1.845 1.844 1.029 1.029 1.029 1.257 .256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.63 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.744 159.484 160.013 160.774 | 1.8488 1.8384 1.8384 1.8389 2.9299 .9242 .2168 .2157 .2144 Density moi/i 32.0954 32.0521 32.0193 31.9999 31.9696 31.8945 31.8679 30.9984 30.9354 30.8594 30.9525 30.0000 29.9206 29.8255 29.1005 29.0314 28.9351 28.0905 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.04073
.05147
.06349
POWER
.2777
.33589
.46868
.54353
.62406
.71034
.80236
.90035
.33567
.46853
.62406
.80257
.683573
.46862
.7768
.893573
.746862
.7768
.77768
.77768
.77768
.77768
.77768
.77768
.77768
.77768
.77776
.77776 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01366
.01376
Experimenta:
Therma:
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12890
.12855
.12839
.12839
.12839
.12839
.12803
.12781
.11990
.11922
.11869
.11956
.11056
.11033
.110370
.10238
.10211
.10161
.09590 | .055
.026
.017
.026
.017
.048
.035
.025
.003
.003
.001
.001
.001
.001
.001
.002
.001
.002
.001
.002 | .01543
.01536
.01551
.01424
.01410
.01416
.01366
.01367
.01378
.01362
Adjusted Thermal
st a nominal
Temperature of 159.K
W/m.K
.12973
.12910
.12935
.12872
.12843
.12887
.12887
.12867
.12764
.11980
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11993
.11045
.11045
.11045
.11045
.11045
.11045
.11046
.11047
.10128
.10224
.10187 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .131120080002031934394583443647048953434261 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt.
21001
21002
21003
21004
21005
21006
21007
21008
21009
21011
21012
21013
21014
21015
21016
21017
21018
21019
21020
21021
21022
21023 | 1.837 1.845 1.844 1.029 1.029 1.029 1.257 .256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.615 144.603 145.163 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.633 160.272 160.867 161.587 159.732 160.260 160.935 161.748 159.484 159.484 | 1.8488 1.8384 1.83892 .9299 .9242 .2168 .2157 .2144 Density molft 32.0954 32.0521 32.0193 31.9999 31.9368 31.8945 31.8678 31.0659 31.9354 30.0625 30.08594 30.0625 30.08594 26.9351 28.68421 28.6905 28.0152 | .04061
.06312
.09066
.04066
.06324
.07648
.031073
.05147
.06349
Power
.777
.33589
.46868
.54353
.62408
.54353
.62408
.54353
.62408
.710236
.710236
.710236
.710236
.71119
.7777
.71119
.27776
.54377
.71119
.27776
.54377 | .01536
.01538
.01567
.01420
.01417
.01430
.01362
.01369
.01386
.01376
Experimental
Thermal
Conductivity
W/m.K
.12979
.12920
.12864
.12855
.12839
.12803
.12781
.11992
.11869
.11869
.11922
.11869
.11033
.11009
.11033
.11009
.11038
.10211
.10161
.09590
.09526
.09447 | .055
.026
.0150
.026
.017
.0748
.035
.025
STAT
.005
.003
.001
.001
.001
.001
.001
.001
.001 | .01543 .01536 .01551 .01424 .01410 .01416 .01366 .01367 .01378 .01362 Adjusted Thermal at a nominal Temperature of 159.K W/m.K .12973 .12910 .12935 .12872 .12843 .12829 .12843 .12829 .128507 .12764 .12738 .11980 .11903 .11841 .11766 .11015 .1015 .10981 .10891 .10891 .10891 .10891 .10891 .10891 .10124 .10187 .10128 .09582 .09512 .09624 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation from Correlation percent .1019 .131120080002031934394583643647048953426175 | | 25015
25016
25019
25020
25021
25024
25025
25026
25027
Run Pt. 21001
21002
21003
21004
21005
21006
21007
21010
21011
21012
21013
21014
21017
21018
21017
21018
21019
21019
21020
21021
21022
21023
21023
21024 | 1.837 1.844 1.029 1.029 1.029 1.256 .256 .256 .256 .256 .256 .256 .256 | 144.349 145.215 146.388 144.631 145.726 146.415 144.603 145.834 146.466 Temperature K 159.357 159.626 159.809 160.151 160.355 160.671 161.014 161.455 161.736 159.6387 169.732 160.272 160.867 161.587 159.732 160.272 160.867 161.587 159.732 160.272 160.867 161.587 159.732 160.272 160.867 161.587 159.732 160.272 | 1.8488 1.8384 1.8392 .9299 .9242 .2180 .2168 .2157 .2144 Density mol/L 32.0954 32.0696 32.0521 32.0193 31.9999 31.9999 31.9984 30.0625 31.0659 31.0659 30.09354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9354 30.9355 20.0000 29.9206 29.8255 29.001 28.0905 29.0114 28.9351 28.0905 28.0152 27.9082 | .04061
.06312
.09076
.04066
.06324
.07648
.03132
.05147
.06349
.05147
.06349
.07777
.33589
.46868
.54353
.62408
.80237
.33567
.46863
.62408
.80237
.33567
.46863
.80237
.33573
.46863
.80301
.27768
.80301
.27768
.39935
.54377
.71119
.27768 | .01536
.01538
.01567
.01420
.01417
.01430
.01369
.01386
.01376
Experimenta:
Thermal
Conductivity
W/m.K
.12979
.12948
.12890
.12864
.12855
.12839
.12803
.12781
.11990
.11922
.11869
.11909
.11933
.11009
.11033
.11033
.11031
.110370
.10238
.10211
.10161
.09590
.09526 | .055
.026
.0150
.026
.017
.048
.035
.025
.001
.001
.001
.001
.001
.001
.001
.00 | .01543 .01536 .01551 .01424 .01410 .01416 .01366 .01367 .01378 .01362 Adjusted Thermal at a nominal Temperature of 159.K W/m.K .12973 .12910 .12935 .12872 .12843 .12829 .12807 .12764 .12738 .11980 .11993 .11841 .11706 .11045 .11015 .10981 .10991 .10363 .10224 .10187 .10187 .10187 .10128 .09582 | 1.67 1.24 2.4212 -1.0761 .09 .21 .9819 Conductivity Deviation From Correlation percent .1019 .131120080002031934394583443647048953434261 | | 21027 | 23.472 | 159.892 | 27.0084 | .33565 | .08634 | •002 | .08825 | 80 | |----------------|----------------|--------------------|--------------------|------------------|----------------|--------------|----------|--------------| | 21028 | 23.472 | 160.564 | 26.8953 | .46907 | .08808 | •001 | .08792 | 36 | | 21029 | 23.473 | 161.409 | 26.7524 | .62525 | .08708 | •002 | .08683 | 58 | | 21030 | 19.091 | 159.276 | 26.1394 | .22539 | .08268 | .004 | •08266 | -1.20 | | 21031 | 19.092 | 159.934 | 26.0133 | .33633 | .08258 | •002 | •08251 | 50 | | 21032 | 19.093 | 160.728 | 25.8599 | •46992 | .08199 | .002 | .08186 | 23 | | 21033 | 19.095 | 161.652 | 25.6805 | •62664 | .08120 | .001 | .08100 | 06 | | 21034 | 15.462 | 161.244 | 24.6608 | . 54564 | .07582 | .001 | .07575 | 03 | | 21,035 | 15.463 | 159.170 | 25.1317 | .17849 | .07781 | •002 | .07780 | 41 | | 21036 | 15.464 | 159.728 | 25.0066 | .27821 | .07710 | .001 | •07707 | 53 | | 21037 | 15.464 | 160.508 | 24.8298 | -40046 | . 07651 | .001 | • 07646 | 19 | | 21038 | 12.955 | 158.967 | 24.2640 | .13701 | .07382 | .007 | •07382 | 13 | | 21039 | 12.955 | 159.545 | 24.1128 | .22553 | .07305 | .004 | .07306 | 24 | | 21040 | 12.955 | 160.113 | 23.9626 | .33648 | .07254 | .003 | .07256 | 03 | | 21042 | 10.977 | 158.792 | 23.3814 | .10133 | .07043 | .005 | .07041 | .34 | | 21043 | 10.978 | 159.325 | 23.2169 | .17907 | .06985 | +003 | .06988 | •48 | | 21044 | 10.979 | 159.940 | 23.0239 | .27918 | .06912 | .002 | .06920 | 55 | | 21045 | 10.979 | 160.730 | 22.7707 | 40192 | .06813 | .002 | .06829 | .56 | | 21047 | 9.527 | 159.023 | 22,3968 | .13733 | .06614 | .007 | .06614 | 77 | | 21048 | 9.528 | 159.587 | 22.1844 | .22612 | .06606 | .004 | .06616 | .27 | | 21049 | 9.528 | 160.365 | 21.8826 | .33735 | .06525 | .002 | .06549 | -64 | | 21051 | 8.460 | 159.006 | 21.4979 | .13724 | .06392 | •007 | .06392 | 16 | | 21052 | 8.460 | 159.628 | 21.2085 | .22602 | .06320 | .003 | .06337 | .13 | | 21055 | 8.461 | 158.786 | 21.5996 | .10119 | .06419 | .010 | .06414 | 24 | | 21056 | 7.671 | 158.813 | 20.6850 | .10116 | .06192 | •009 | .06185 | 40 | | 21057 | 7.671 | 159.199 | 20.4617 | .17875 | .06109 | .005 | .06117 | 78 | | | 7.131 | 158.642 | 19.9436 | .07063 | .06059 | .015 | .06042 | 43 | | 21060 | | | | | | | .06032 | | | 21061 | 7.131
6.828 | 158.994 | 19.6888 | .13713
.07061 | .06032 | .007
.015 | .05893 | .10
-1.50 | | 21064 | | 158-546 | 19.3945 | .13711 | .05918 |
 | 60 | | 21065 | 6+828 | 158.912 | 19.0785 | | .05906 | •007 | •05901 | | | 21067 | 6.828 | 158.322 | 19.5784 | .04560 | •05938 | .032 | •05901 | -1.82 | | 21069 | 6.538 | 158.643 | 18.4994 | .07063 | .05908 | .017 | .05883 | .34 | | 21070 | 6.538 | 158.968 | 18.1305 | •13714 | .05961 | .00B | .05959 | 2.30 | | 21073 | 6.433 | 158.531 | 18.2535 | •07063 | .05890 | . 016 | .05856 | .35 | | 21074 | 6.433 | 158.993 | 17.6664 | .13714 | •05940 | •00B | .05939 | 2.82 | | 21077 | 6+293 | 158.582 | 17.5822 | .07032 | .05876 | •010 | .05841 | 1.34 | | 21081 | 6.292 | 158.391 | 17.8517 | .04540 | .05874 | •009 | •05825 | -58 | | 21082 | 6.195 | 158.547 | 17.1056 | .07058 | .05820 | .016 | .05779 | 1.14 | | 21084 | 6.195 | 158.700 | 16.8410 | .10103 | .05893 | .010 | .05861 | 3.00 | | 21087 | 5.923 | 158.423 | 15.0757 | .07056 | .05756 | •018 | .05614 | -1.09 | | 21088 | 5.924 | 158.625 | 14.5447 | •10100 | .05836 | •014 | .05735 | 1.40 | | 21091 | 5.845 | 158.450 | 14.0037 | .07055 | .05428 | •017 | .05261 | -6.54 | | 21092 | 5.845 | 158.658 | 13.4259 | -10098 | .05207 | .015 | .05104 | -8.15 | | 21094 | 5.717 | 158.554 | 11.9018 | .07055 | •04595 | .014 | .04478 | -13.76 | | 21097 | 5.594 | 158.777 | 10.0501 | .07122 | .03890 | .011 | .03859 | -10.77 | | 21099 | 5.594 | 158.519 | 10.4229 | .04601 | .04049 | •022 | .03970 | -12.16 | | 21100 | 5.594 | 158.294 | 10.8133 | .02627 | .04183 | +047 | .04044 | -14.59 | | 21106 | 5.451 | 158.229 | 9.4244 | .01205 | . 03896 | .323 | .03812 | -4.23 | | 21124 | 3.705 | 159.284 | 3.8699 | .04586 | .01981 | •02Q | •01982 | -1.88 | | 21126 | 3.705 | 160.004 | 3.8236 | -07114 | •02009 | .012 | .02012 | .15 | | 21127 | 3.705 | 160.848 | 3.7716 | .10212 | .02015 | •008 | .02019 | 1.05 | | 21128 | 3.705 | 161.869 | 3.7118 | .13884 | .02027 | . 005 | •02029 | 2,22 | | 21129 | 3.110 | 158.885 | 3.0365 | .02617 | .01822 | •046 | .01822 | -1.48 | | 21130 | 3.110 | 159.473 | 3.0125 | .04589 | .01847 | •020 | .01846 | .07 | | 21131 | 3.110 | 160.304 | 2.9787 | .07124 | .01832 | .012 | .01829 | 54 | | 21132 | 3.109 | 161.236 | 2.9427 | .10228 | .01846 | .007 | .01839 | .38 | | 21133 | 2.207 | 158.997 | 1.9641 | .02618 | .01674 | .045 | .01674 | 36 | | 21134 | 2.207 | 159.647 | 1.9512 | .04594 | .01669 | .019 | •01665 | 81 | | 21135 | 2.207 | 160.661 | 1.9314 | .07135 | .01664 | .011 | .01653 | -1.38 | | 21136 | 2.206 | 161.786 | 1.9094 | .10250 | .01675 | .006 | .01656 | -1.04 | | 21137 | 1.179 | 159.143 | 9637 | .02620 | .01541 | .037 | .01540 | -1.67 | | 21139 | 1.178 | 160.026 | 9563 | .04601 | .01542 | .017 | .01533 | -2.05 | | 21140 | 1.178 | 161.070 | 9486 | .07146 | .01554 | .009 | .01536 | -1.80 | | 21141 | 1.177 | 162.531 | .9373 | .10276 | .01568 | .005 | .01538 | -1.64 | | 21143 | •209 | 159.505 | .1594 | .02624 | .01508 | .037 | .01503 | .70 | | 21144 | .209 | 160.610 | .1583 | .04610 | .01494 | .017 | .01480 | 90 | | | | 161.963 | .1566 | | .01524 | .010 | .01497 | .31 | | 21145 | •208
7•982 | 158.944. | 21.0082 | .07168
.10117 | .06288 | .010 | .06286 | .08 | | 21146
21147 | 7.982 | 159.147 | 20.9020 | .13715 | .06226 | .004 | .06231 | 42 | | 21148 | 7.982 | 159.379 | 20.7788 | .17871 | .06191 | .002 | •06203 | 43 | | | 7.982
7.982 | 159.654 | 20.6310 | .22581 | .06182 | •003 | .06204 | .09 | | 21149 | | | 19.9616 | .07058 | .06004 | •006 | .05985 | -1.45 | | 21150 | 7.120 | 158.588
158 720 | 19.8613 | .10104 | .05965 | .008 | .05952 | -1.72 | | 21151 | 7.120 | 158.729 | | .13700 | .05972 | •006 | .05969 | 98 | | 21152 | 7.120 | 158.948
159.161 | 19.7022
19.5428 | .17854 | .05952 | .004 | •05960 | ~.7 2 | | 21153 | 7.120
7.120 | | 20.1232 | •0455B | .06031 | .030 | .06002 | -1.64 | | 21154 | | 158.357 | | .04558 | .05961 | .030 | .05930 | -1.12 | | 21155 | 6.831 | 158.429 | 19.4979 | | .05908 | •016 | .05881 | -1.78 | | 21156 | 6.831 | 158.514 | 19.4275 | •07059
•10100 | | .008 | .05886 | -1.25 | | 21157 | 6.831 | 158.726 | 19.2482 | •10109 | .05902 | | | -1.43 | | 21158 | 6.831 | 158.960 | 19.0424 | .13708 | .05850 | •008 | .05848 | -1.26 | | 21159 | 6.603 | 158.430 | 18.9193 | .04559 | .05878 | +028 | ■ 05842· | | | 21160 | 6.603 | 158.497 | 18.8531 | .07058 | .05865 | .015 | .05833 | -1.27 | | 21161 | 6.603 | 158.737 | 18.6085 | .10108 | .05707 | .009 | .05689 | -3.29 | |----------------|-----------------|--------------------|--------------------|------------------|------------------|--------------|----------------------|---------------------| | 21162 | 6.603 | 158.894 | 18.4412 | .13707 | •05826 | .007 | .05819 | 65 | | 21163 | 6.402 | 158.423 | 18.2675 | .04560 | .05885 | .029 | .05842 | .09 | | 21164 | 6.403 | 158.607 | 18.0427 | .07061 | .05815 | 014 | .05785 | - 47 | | 21165 | 6.403 | 158.806 | 17.7830 | .10110 | .05769 | 009 | .05754 | 53 | | 21166 | 6.403 | 159.089 | 17.3924 | .13711 | .05710 | .006 | .05717 | 46 | | 21167 | 6.283 | 158.248 | 18.0076 | .04556 | .05678 | .027 | .05619 | -3.38 | | 21168 | 6.283 | 158.471 | 17.6972 | .07057 | .05605 | 015 | .05562 | -3.84 | | 21169 | 6.283 | 158.717 | 17.3311 | .10108 | .05750 | .010 | •05726 | 20 | | 21171 | 6.144 | 158.459 | 16.9412 | .04561 | 05568 | .028 | .05518 | -3.24 | | 21172 | 6.145 | 158.601 | 16.6821 | .07060 | .05654 | .016 | .05603 | -1.38 | | 21173 | 6.145 | 158.721 | 16.4510 | .10107 | .05715 | .010 | .05676 | 05 | | 21175 | 6.043 | 158.386 | 16.3470 | .04559 | .05530 | .029 | .05436 | -4.46 | | 21176 | 6.043 | 158.517 | 16.0619 | .07055 | .05709 | .016 | •05627 | 92 | | 21177 | 6.043 | 158,709 | 15.6283 | .10102 | .05702 | .012 | .05645 | 61 | | 21181 | 6.034 | 158.558 | 15.8870 | .07062 | .05843 | .015 | .05763 | 1.45 | | 21182 | 6.034 | 158.786 | 15.3567 | .10114 | .05705 | .011 | .05660 | 34 | | 21185 | 5.989 | 158.547 | 15.4821 | .04560 | •05808 | .032 | .05712 | .57 | | 21186 | 5.989 | 158.579 | 15.4027 | .07060 | •05762 | .015 | .05671 | 15 | | 21189 | 5.905 | 158.353 | 15.0518 | .04557 | .05854 | .030 | .05692 | •30 | | 21190 | 5.905 | 158.562 | 14.4821 | .07056 | .05819 | .017 | •05698 | .83 | | 21190 | 5.769 | 158.427 | 12.9769 | .04556 | .05182 | .032 | .05002 | -8.50 | | | 5.769 | 158.550 | 12.6474 | .07052 | .05163 | .016 | • 05029 | -6.23 | | 21194 | 5.769 | 158.742 | 12.1713 | .10093 | .04960 | .017 | .04891 | -6.16 | | 21195 | 5.621 | 158.366 | 11.0163 | .02602 | .04317 | .028 | .04184 | -12.95 | | 21197
21198 | 5.621 | 158.529 | 10.7160 | .04555 | .04381 | .011 | •04294 | -6.87 | | | 5.622 | 158.264 | 11.2394 | .01193 | .04968 | .138 | .04800 | 51 | | 21202 | 5.433 | 158.234 | 9.2741 | .01196 | .04348 | .406 | .04271 | 8.66 | | 21203 | 5.433 | 158.412 | 9.0985 | .02608 | •03555 | .097 | .03502 | -9.00 | | 21204 | 5.433 | 158.691 | 8.8605 | .04567 | .03569 | .043 | .03545 | -4.46 | | 21205 | | | | | | .028 | .03483 | -3.19 | | 21206 | 5.433
5.093 | 159.001
158.415 | 8.6308
7.2671 | .07073 | .03483
.02991 | .266 | .02963 | -2.42 | | 21210 | 5.093 | | 7.2402 | | | .077 | | -6.98 | | 21211 | 5.093 | 158.487
158.851 | , | .02608 | .02852 | .035 | •02828
•02952 | 95 | | 21212 | | | 7.1117 | | .02958 | | .02952 | -1.32 | | 21213 | 5.093 | 159.300 | 6.9675 | •07079 | •02879 | .020 | .01965 | -1.3c
-4.45 | | 21241 | 3.758 | 158.450 | 4.0129 | .01196 | .01968 | .143 | .02009 | -1.89 | | 21242 | 3.758 | 158.775 | 3.9896 | | .02010 | .050 | .01978 | -3.06 | | 21243 | 3.758
3.758 | 159.327
160.053 | 3.9517
3.9030 | .04578 | •01976 | .025 | .02042 | •73 | | 21244 | 3.758 | | | | .02038 | .013 | | 1.23 | | 21245 | 3.073 | 160.836 | 3.8527
2.9864 | .10191 | .02036 | .009 | .02041
.01785 | -3.07 | | 21247 | | 158.919 | | •02612 | •01785 | .046 | | -3.07
15 | | 21248 | 3.073 | 159.548 | 2.9615 | .04581 | .01834 | .020 | .01833
03825 | -•19
-•27 | | 21249 | 3.073 | 160.313 | 2.9321 | -07109 | .01829 | .012 | .01825 | •19 | | 21250 | 3.073
2.213 | 161.316 | 2.8949 | .10207 | .01835 | •006 | •01827
•01669 | 73 | | 21251 | 2.213 | 159.072
159.801 | 1.9695
1.9549 | .02614
.04586 | .01669
.01656 | .048 | .01651 | -1.70 | | 21252 | 2.213 | | 1,9376 | | | .020 | | -1.56 | | 21253 | 2.213 | 160.689 | 1.9148 | .07119 | .01662 | .010 | .01651
.01677 | •20 | | 21254 | | 161.887 | .9297 | 10230 | .01697 | .012 | | -1.55 | | 21255 | 1.141
1.141 | 159.198 | 9234 | .02615 | .01540 | •044 | .01538
.01522 | -2.61 | | 21256 | 1.140 | 160.078
161.204 | 9150 | .04591
.07134 | .01531
.01543 | .017 | .01524 | -2.40 | | 21257 | 1.140 | 162.548 | .9057 | .10255 | | .006 | .01534 | -2.40
-1.65 | | 21258 | •226 | 158.833 | .1737 | .01198 | .01565
.01464 | | .01465 | -1.05
-1.96 | | 21259 | •225 | 159.562 | | | | -125 | -01462 | 82 | | 21260 | • 226 | | •1726
•1714 | .02619
.04600 | •01487 | .041 | .01484 | 65 | | 21261 | •225 | 160.640 | | | .01499
.01523 | •017
•009 | .01495 | •11 | | 21262 | •223 | 162.062 | .1696 | .07155 | •01,723 | .009 | *01445 | •11 | | | | | | | Experimental | | Adjusted Thermal | Conductivity | | | | | | | Thermal | | at a nominal | Deviation | | Run Pt. | Pressure | Temperature | Density | Power | Conductivity | STAT | Temperature of 178.K | from Correlation | | Kull FCS | MPa | K | mol/L | W/m | W/m.K | 3151 | W/m.K | percent | | |) · · · · · · · | " | # O 1 F L | R / III | सार सा⊕ाऽ | | # C M # 14 | P41 44115 | | 24001 | 68.349 | 178.050 | 30.3567 | -15601 | .11748 | .023 | .11747 | •75 | | 24002 | 68.347 | 178.543 | 30.3102 | .25674 | .11738 | .007 | .11730 | •95 | | 24002 | 68.345 | 179.133 | 30.2547 | .38265 | .11652 | .002 | .11636 | .55 | | 24004 | 68.345 | 179.884 | 30.1844 | .53412 | .11601 | .002 | .11575 | .54 | | 24005 | 68.343 | 180.827 | 30.0959 | .71135 | .11559 | .002 | .11520 | .71 | | | 56.467 | 178.210 | 29.2320 | 15600 | .10737 | .017 | .10734 | 02 | | 24006
24007 | 56.471 | 178.666 | 29.1852 | .25665 | .10706 | .010 | •10697 | 02 | | 24008 | 56.474 | 179.269 | 29.1232 | .38270 | .10750 | .006 | .10733 | •76 | | | 56.475 |
180.114 | 29.0359 | .53420 | •10671 | .003 | •10642 | •56 | | 24009 | 56.477 | 180.114 | | | | | .10542 | •35 | | 24010 | - | | 28.9934 | .61950 | •10622
00863 | +003 | .09861 | •35
-•3 8 | | 24011 | 46.625 | 178.142 | 28.1214
28.0529 | .15615
.25705 | .09863 | .018 | .09831 | | | 24012 | 46.624 | 178.738 | | | •09841
09762 | .009 | | 18
53 | | 24013 | 46.622 | 179.399 | 27.9768 | .38329 | .09762 | •005 | •09743
•09726 | •00 | | 24014 | 46.622 | 180.240 | 27.8803 | •53507
•63084 | 409756 | .003 | .09726
.09712 | | | 24015 | 46.621 | 180.792 | 27.8168 | +62084 | .09750 | .003 | | •33 | | 24017 | 39.666 | 178.782 | 27.0838 | .25705 | .09215 | .007 | +09205 | •27 | | 24018 | 39.664 | 179,543 | 26.9874 | .38334
52544 | .09157 | .004 | .09137 | •23
• 88 | | 24019 | 39.661 | 180.396 | 26.8796 | .53544 | .09130 | .003 | •09099
09070 | •58 | | 24020 | 39.658 | 181.164 | 26.7823 | -62101 | .09111 | .003 | •09070 | •96
- 02 | | 24021 | 33.641 | 178.284 | 26.1449 | .15622 | .08584 | .016 | .08580 | 02 | | | | | | | | | | | | 24022 | 33.639 | 178.862 | 26.0639 | .25707 | .08593 | .008 | .08582 | .58 | |-------|--------|---------|---------|--------|--------|--------------|----------------|-------------| | 24023 | 33.638 | 179.710 | 25.9452 | .38348 | .08550 | .005 | .08529 | .79 | | 24024 | 33.637 | 180.618 | 25.8182 | .53559 | .08480 | .003 | | | | | | | | | | | .08447 | -73 | | 24027 | 29.187 | 179.745 | 25.0259 | .38358 | .08059 | •003 | •0803B | 1.30 | | 24028 | 29.187 | 180.741 | 24.8728 | .53573 | •07969 | •002 | •07937 | 1.09 | | 24029 | 25.039 | 178.367 | 24.2220 | .15623 | .07514 | .015 | .07510 | 01 | | 24030 | 25.039 | 179.040 | 24.1065 | .25719 | •07447 | .008 | .07436 | →•23 | | 24032 | 25.041 | 180.962 | 23.7763 | .53598 | .07429 | .003 | .07398 | 1.44 | | 24033 | 22.058 | 178.021 | 23.3931 | .11521 | .07125 | .022 | .07125 | .19 | | 24034 | 22.050 | 178.756 | | 20352 | | | | | | | | | 23.2532 | | .07116 | •009 | •07109 | .86 | | 24035 | 22.058 | 179.528 | 23.1061 | .31729 | .07090 | •005 | •07076 | 1.32 | | 24037 | 19.306 | 178.095 | 22.3668 | .11523 | .06816 | .023 | .06815 | 2 • 14 | | 24038 | 19.306 | 178.733 | 22.2300 | .20359 | .06615 | .010 | •06609 | 07 | | 24040 | 19.305 | 180.753 | 21.7943 | •45693 | .06603 | •003 | .06584 | 2.09 | | 24041 | 17.340 | 178.096 | 21.4696 | .11522 | .06391 | .013 | .06390 | .99 | | 24042 | 17.340 | 178.795 | 21.3024 | .20361 | .06375 | .006 | .06371 | 1.61 | | 24043 | 17.340 | 179.713 | 21.0818 | .31747 | | .004 | | | | | | | | | .06325 | | •06316 | 1.96 | | 24045 | 15.672 | 178.193 | 20.5050 | .11523 | .06033 | •009 | .06032 | •47 | | 24046 | 15.672 | 178.919 | 20.3094 | .20366 | •06045 | •003 | .06042 | 1.63 | | 24049 | 14.309 | 178.174 | 19.5542 | .11525 | •05739 | •015 | •05739 | • 23 | | 24050 | 14.309 | 179.020 | 19.2989 | -20372 | .05784 | •006 | .05784 | 2.19 | | 24051 | 14.308 | 179.949 | 19.0173 | .31767 | .05757 | .004 | .05758 | 3.02 | | 24053 | 13.213 | 178.285 | 18.5648 | .11527 | .05514 | .016 | .05515 | .78 | | 24054 | 13.214 | 179.035 | 18.3140 | .20376 | .05506 | .007 | | | | | | | | | | | .05509 | 1.76 | | 24057 | 12.353 | 178.268 | 17.6529 | .11530 | .05315 | .016 | .05316 | 1.03 | | 24058 | 12.353 | 179.093 | 17.3511 | .20379 | 05294 | .008 | .05300 | 1.97 | | 24061 | 11.563 | 178.182 | 16.6688 | .08062 | .05082 | •026 | •05083 | .64 | | 24062 | 11.562 | 178.501 | 16.5413 | .11546 | .05053 | .016 | • 05057 | .64 | | 24063 | 11.562 | 179.367 | 16.1993 | .20403 | .05068 | •009 | •05079 | 2.47 | | 24066 | 10.970 | 178.168 | 15.7724 | .08053 | .04861 | .025 | .04863 | 05 | | 24067 | 10.971 | 178.447 | 15.6558 | .11532 | .04853 | .012 | .04857 | .34 | | 24071 | 10.421 | 177.892 | 14.9305 | 05204 | .04628 | .038 | .04627 | | | | | | | | | | | -1.35 | | 24072 | 10.421 | 178.126 | 14.8286 | .08059 | .04669 | .014 | •04670 | •06 | | 24073 | 10.421 | 178.411 | 14.7055 | .11541 | •04653 | .005 | •04657 | .34 | | 24076 | 9.835 | 177.842 | 13.7895 | .05203 | .04447 | .044 | . 04445 | .11 | | 24077 | 9.835 | 178.138 | 13.6603 | .08058 | .04358 | .022 | .04360 | -1.18 | | 24078 | 9.835 | 178.482 | 13.5126 | -11540 | .04305 | .016 | .04311 | -1.55 | | 24081 | 9.385 | 177.852 | 12.8004 | .05202 | .04213 | .043 | .04211 | • 03 | | 24082 | 9.385 | 178.247 | 12.6347 | .08055 | .04246 | .033 | .04249 | 1.85 | | 24083 | 9.384 | 178.474 | 12.5406 | 11538 | | | .04176 | | | | | | | | .04171 | •014 | | .70 | | 24086 | 8.922 | 177.876 | 11.7189 | .05201 | .03873 | .025 | .03872 | -1.81 | | 24087 | 8.922 | 178.177 | 11.6030 | .08056 | .03893 | .013 | .03895 | 45 | | 24091 | 8.432 | 177.919 | 10.5510 | .05201 | .03605 | . 036 | .03604 | 93 | | 24092 | 8.430 | 178.325 | 10.4141 | -08056 | .03568 | .020 | .03571 | 88 | | 24096 | 8.428 | 177.636 | 10.6388 | .02970 | .03598 | .083 | .03595 | -1.85 | | 24097 | 7.989 | 178.032 | 9.5093 | .05202 | .03341 | .035 | .03341 | 62 | | 24098 | 7.987 | 178.409 | 9.4035 | .08060 | .03327 | .022 | .03329 | | | | | | | | | | | 14 | | 24099 | 7.987 | 178.984 | 9.2525 | .11547 | .03330 | .012 | .03335 | 1.22 | | 24102 | 7.433 | 178.065 | 8.3303 | .05204 | .03055 | •029 | .03055 | .05 | | 24103 | 7.431 | 178.540 | 8.2273 | .08063 | .03067 | .013 | - 03068 | 1.33 | | 24104 | 7.430 | 179.226 | 8.0897 | -11552 | .03082 | .008 | .03084 | 2.97 | | 24107 | 6.876 | 178.232 | 7.2499 | .05204 | •02806 | .014 | .02806 | .77 | | 24108 | 6.874 | 178.691 | 7.1758 | .08065 | .02781 | .009 | .02781 | •51 | | 24112 | 6.218 | 170.363 | 6.1471 | .05205 | .02589 | .025 | .02588 | 2,25 | | 24113 | 6.212 | 178.890 | 6.0821 | .08067 | .02561 | .013 | | | | | | | | | | | .02558 | 1.67 | | 24114 | 6.209 | 179.663 | 5.9977 | .11567 | .02533 | •009 | .02527 | 1.18 | | 24116 | 5.536 | 178.468 | 5.1569 | .05212 | •02277 | •028 | .02275 | -2.15 | | 24117 | 5.535 | 179.023 | 5.1136 | .08083 | .02378 | •017 | •02373 | 2.43 | | 24120 | 4.610 | 177.980 | 4.027B | .02975 | .02146 | .049 | .02146 | 1.30 | | 24121 | 4.609 | 178.654 | 3.9942 | .05214 | .02114 | •021 | .02109 | 16 | | 24122 | 4.609 | 179.348 | 3.9608 | .08086 | .02129 | .012 | .02119 | .57 | | 24123 | 4.608 | 180.314 | 3.9158 | .11600 | .02117 | .007 | .02100 | | | 24124 | 3.519 | | 2.8532 | | | | | •02 | | | | 178.132 | | .02977 | .01925 | .044 | .01924 | 94 | | 24125 | 3.519 | 178.832 | 2.8331 | .05217 | .01929 | .019 | .01922 | 89 | | 24127 | 3.518 | 180.753 | 2.7811 | .11614 | .01939 | .008 | .01916 | 85 | | 24128 | 2.614 | 178.229 | 2.0064 | .02977 | .01812 | .041 | .01810 | -1.55 | | 24129 | 2.613 | 178.956 | 1.9935 | •05220 | .01856 | .029 | .01848 | •60 | | 24130 | 2.612 | 179.975 | 1.9766 | .08100 | .01832 | .012 | .01815 | -1.10 | | 24131 | 2.612 | 180.520 | 1.9679 | .09783 | .01846 | .007 | .01824 | 53 | | 24132 | 1.326 | 178.394 | 9499 | .02978 | .01688 | .041 | .01684 | -2.79 | | 24133 | | | | | | | | | | | 1.325 | 179.249 | •9442 | .05225 | .01710 | .017 | •01699 | -1.89 | | 24134 | 1.325 | 180.432 | .9365 | .08111 | .01698 | •009 | .01676 | -3.22 | | | | | | | Experimental
Thermal | | Adjusted Thermal | Conductivity
Deviation | |------------------------|------------------|--------------------|--------------------|------------------|-------------------------|--------------|-------------------------------|---------------------------| | Run Pt. | Pressure
MPa | Temperatura
K | Density
#ol/L | Power
W/m | Conductivity
W/m.K | STAT | Temperature of 202.K
W/m.K | from Correlation percent | | 15001 | 64.673 | 200.900 | 27.8712 | .17868 | .10040 | .031 | .10054 | •17 | | 15002 | 64.669 | 201.006 | 27.8610 | .23272 | .09967 | .021 | .09980 | 50 | | 15003 | 64.669 | 201.484
201.810 | 27.8167
27.7866 | .29389 | .10087
.10038 | .015 | •10094
•10040 | .95
.63 | | 15004
15005 | 64.669
64.665 | 202.159 | 27.7540 | .36230
.43783 | .09923 | .008 | .09921 | 33 | | 15007 | 64-663 | 203.047 | 27.6717 | .61115 | .09978 | .006 | •09965 | •69 | | 15009 | 60.534 | 201.086 | 27.3932 | .23262 | .09731
.09664 | .020
.011 | •097 4 3
•09667 | •40
•06 | | 15010
1501 <u>2</u> | 60.536
60.539 | 201.731
202.592 | 27.3315
27.2495 | .36224
.52077 | .09466 | .007 | •09458 | -1.56 | | 15013 | 60.541 | 203.006 | 27.2103 | -61096 | .09574 | .005 | .09561 | 19 | | 15014 | 56.501 | 201.103 | 26,9064 | .23257 | .09418
.09345 | .019
.013 | .09430
.09353 | .56
05 | | 15015
15016 | 56.504
56.511 | 201.393
201.791 | 26.8778
26.8392 | .29375
.36200 | .09333 | .010 | .09336 | •04 | | 15017 | 56.513 | 202.082 | 26.8106 | .43788 | .09344 | .008 | .09343 | .31 | | 15018 | 56.515 | 202.518
201.190 | 26.7676
26.3146 | .52084
.23261 | .09290
.09006 | .006
.018 | .09283
.09016 | 02
-23 | | 15020
15022 | 52.066
52.088 | 201.857 | 26.2482 | .36226 | .08812 | .010 | .08814 | -1.59 | | 15023 | 52.090 | 202.371 | 26.1950 | .43788 | | .007 | .08840 | 91 | | 15024
15025 | 52.091 | 202.741 | 26.1569
26.1114 | .52082
.61116 | | .005 | .08803
.08799 | -1.08
80 | | 15025 | 52.091
47.913 | 203.179
201.310 | 25.6983 | .23258 | | .017 | .08630 | .13 | | 15027 | 47.914 | 201.573 | 25.6697 | .29387 | .08583 | .013 | .08588 | 15 | | 15030 | 47.916
43.443 | 202.861
201.277 | 25.5297
24.9745 | .52117 | | .005
.017 | .08502
.08186 | 20
17 | | 15032
15033 | 43.446 | 201.522 | 24.9467 | .29392 | | .013 | •08193 | .10 | | 15034 | 43.450 | 201.979 | 24.8945 | .36241 | .08133 | .009 | .08133 | 27 | | 15035 | 43.451 | 202.355 | 24.8513 | .43813 | | .007 | .08140 | •10
•22 | | 15036
15037 | 43.454
43.456 | 202.798
203.450 | 24.8008
24.7262 | .52125
.61145 | .08131
.08091 | .005
.004 | .08121
.08073 | •13 | | 15038 | 39.473 | 201.309 | 24.2379 | .23255 | | .016 | .07813 | •16 | | 15039 | 39.476 | 201.592 | 24.2038 | .29391 | | .011 | •07764 | ~.25 | | 15040
15041 | 39.478
39.478 |
201.986
202.462 | 24.1560
24.0979 | .36243
.43821 | | •009
•006 | .07769
.07741 | .14
.17 | | 15042 | 39.483 | 202.999 | 24.0331 | .52134 | | .005 | .07722 | • 35 | | 15043 | 39.483 | 203.560 | 23.9647 | .61186 | | .004 | .07702 | +55
- 40 | | 15044
15045 | 35.161
35.185 | 201.003
201.380 | 23.3637
23.3148 | .17866
.23275 | | .023
.016 | .07326
.07378 | 49
.54 | | 15046 | 35.187 | 201.750 | 23.2665 | 29397 | | .011 | .07333 | . 24 | | 15047 | 35.191 | 202.210 | 23.2071 | .36262 | | .008 | .07314 | .37 | | 15048
15049 | 35.192
35.194 | 202.661
203.228 | 23.1480
23.0742 | .43844
.52154 | | .005
.004 | .07286
.07273 | •38
•67 | | 15050 | 31.371 | 201.078 | 22.3987 | .17870 | | .022 | .06951 | •46 | | 15051 | 31.371 | 201.397 | 22.3532 | .23272 | | .014 | .06886 | 20 | | 15052
15053 | 31.375
31.376 | 201.843
202.295 | 22.2912 | .29404
.36260 | | .010
.007 | •06875
•06844 | .03
02 | | 15054 | 31.376 | 202.747 | 22.1639 | .43849 | | .006 | .06879 | .89 | | 15055 | 31.379 | 203.442 | 22.0659 | .52168 | | .004 | .06819 | •63 | | 15056
15057 | 28.064
28.068 | 201-119
201-516 | 21.4072
21.3473 | .17874
.23274 | | .019
.014 | .06524
.06485 | •23
••01 | | 15058 | 28.069 | 201.876 | 21.2924 | .29414 | | .010 | .06468 | •07 | | 15059 | 28.070 | 202.431 | 21.2080 | •36275 | | -007 | -06460 | • 44 | | 15060
20001 | 28.071
67.997 | 202.946
200.197 | 21.1299
28.2809 | .43863 | | .006
.089 | .06448
.10097 | .71
-2.33 | | 20002 | 67.991 | 200.402 | 28.2618 | .13157 | | .052 | .10287 | ~.30 | | 20003 | 67.985 | 200.625 | 28.2410 | .17840 | | •030 | .10341 | •36
- 12 | | 20004
20005 | 67.990
67.990 | 200.891
201.167 | 28.2176
28.1928 | .23233
.29346 | | .021
.014 | .10274
.10195 | 12
72 | | 20006 | 67.990 | 201.553 | 28.1579 | .36171 | .10210 | .010 | .10216 | 26 | | 20007 | 67.991 | 201.807 | 28.1352 | .43725 | .10201 | .008 | •10203 | 22 | | 20008
20009 | 67.985
67.983 | 202.281
202.696 | 28.0919
28.0544 | .52019
.60980 | | .005 | .10195
.10154 | •01
- •13 | | 20010 | 67.982 | 203.132 | 28.0152 | .70751 | | .004 | .10157 | .17 | | 20011 | 59.170 | 200.693 | 27.2716 | .17842 | | .026 | .09627 | •06 | | 20012
20013 | 59.173
59.168 | 201.197
201.995 | 27.2230
27.1450 | .29354
.43759 | | .012
.007 | .09514
.09512 | 77
24 | | 20013 | 59.170 | 202.652 | 27.0622 | .61076 | | .004 | .09457 | 24 | | 20015 | 49.829 | 200.734 | 26.0461 | .17845 | | .026 | .08723 | -1.21 | | 20016 | 49.830 | 201.391 | 25.9760
25.8932 | .29366
.43775 | | .011
.007 | .08714
.08622 | 83
-1.32 | | 20017
20018 | 49.832
49.830 | 202.170
203.073 | 25.7969 | .61091 | | .004 | .08669 | 10 | | 20019 | 42.597 | 200.552 | 24.9109 | .13167 | .08115 | .038 | .08133 | 39 | | 20020 | 42.602 | 201.097 | 24.6478 | .23252 | | .016
.008 | .08151
.08066 | •27
••19 | | 20021
20022 | 42.602
42.602 | 201.847
202.718 | 24.7601
24.6585 | .36220
.52096 | | .005 | .08086 | 04 | | 20023 | 37.182 | 200.559 | 23.8635 | .13173 | .07602 | .035 | .07619 | .15 | | 20024 | 37.177 | 201.212 | 23.7792 | -23262 | | .015 | .07546
.07533 | 26
.22 | | 20025
20026 | 37.175
37.172 | 201.982
202.987 | 23.6611
23.5530 | .36240
.52131 | | .005 | .07464 | •44
•14 | | 20027 | 33.073 | 200.593 | 22.9120 | .13172 | .07137 | .033 | .07153 | •06 | | 20028 | 33.071 | 201.270 | 22.8165 | -23265 | | .014
.007 | .07117 | •16
•30 | | 20029
20030 | 33.070
33.069 | 202.113
203.205 | 22.7027
22.5531 | .36248 | | .007 | .07082
.07021 | •39
•48 | | 20031 | 29.342 | 200.412 | 21.9140 | .09204 | .06608 | , 052 | .06625 | -1.33 | | 20032 | 29.342 | 200.974 | 21.8302 | .17866 | .06666 | .019 | .06677 | 02 | | 20033 | 29.340 | 201.755 | 21.7135 | .29400 | .06637 | .009 | .06640 | .13 | |---|---|---|--
--|--|--|---|--| | 20034 | 29.340 | 202.726 | 21.5695 | .43843 | | .005 | | .55 | | | | | | | | | .06610 | | | 20035 | 26.332 | 200.474 | 20.9162 | .09203 | | .050 | .06350 | .44 | | 20036 | 26.331 | 201.044 | 20.8240 | .17867 | .06304 | .018 | .06313 | •41 | | 20037 | 26.330 | 201.852 | 20.6938 | .29407 | | .008 | .06258 | .30 | | | | | | | | | | | | 20038 | 26,330 | 202.889 | 20.5282 | •43858 | | .005 | .06226 | •73 | | 20039 | 23.773 | 200.442 | 19.9185 | .09204 | ,05983 | .047 | • 05996 | .42 | | 20040 | 23.772 | 201.077 | 19.8078 | .17868 | .05944 | .017 | •05952 | .29 | | 20041 | 23.772 | 201.948 | 19.6576 | .29415 | | .008 | .05908 | •39 | | | | | | | | | | | | 20042 | 23.770 | 203.149 | 19.4510 | .43876 | | .005 | •05865 | •77 | | 20043 | 21.560 | 200.485 | 18.8745 | •09207 | .05618 | -044 | •05629 | ~. 26 | | 20044 | 21.560 | 201.181 | 18.7454 | .17872 | .05619 | .015 | .05625 | .34 | | 20045 | 21.558 | 201.595 | 18.6683 | .23281 | | .011 | .05560 | 05 | | | | | | | | | | | | 20046 | 21.558 | 202.570 | 18.4890 | .36289 | | .006 | .05545 | . 25 | | 20047 | 19.717 | 200.507 | 17.8455 | .09206 | .05279 | •04Z | • 05267 | -1.24 | | 20048 | 19.717 | 201.199 | 17.7092 | .17872 | .05289 | .014 | .05293 | -,43 | | 20049 | 19.716 | 201.694 | 17.6123 | -23286 | | .010 | .05280 | -,21 | | | | | | | | | | | | 20051 | 18.171 | 200.489 | 16.8409 | •09207 | | .037 | •05060 | →.6 6 | | 20052 | 18.171 | 201.202 | 16.6945 | .17875 | .04999 | .013 | • 05 0 02 | -1.08 | | 20053 | 18.170 | 201.736 | 16.5860 | .23288 | .05012 | .010 | .05013 | 33 | | 20054 | 18.169 | 202.863 | 16.3596 | .36297 | .04986 | .005 | .04982 | •16 | | | | | | | | | | | | 20055 | 16.888 | 200.601 | 15.8536 | •09207 | | .036 | .04822 | -u65 | | 20056 | 16.887 | 201.428 | 15.6801 | .17877 | .04774 | -014 | .04776 | 76 | | 20059 | 15.656 | 200.689 | 14.7841 | .09209 | .04557 | .037 | •04560 | 94 | | 20060 | 15.655 | 201.455 | 14.6225 | .17882 | | .013 | .04506 | -1.32 | | | | | | | | | | | | 20061 | 15.655 | 201.973 | 14.5153 | -23299 | | .008 | •04497 | 98 | | 20063 | 14.725 | 200.647 | 13.9116 | .09208 | .04334 | • 03 5 | .04337 | →1.49 | | 20064 | 14.724 | 201.543 | 13.7255 | .17865 | .04313 | .013 | .04314 | -1.04 | | 20065 | 14.724 | 202.127 | 13.6071 | .23305 | .04298 | .009 | .04298 | 78 | | | | | | | | | | | | 20067 | 13.748 | 200.754 | 12.8843 | .09211 | .04129 | .032 | .04132 | 70 | | 20068 | 13.748 | 201.612 | 12.7138 | .17889 | .04067 | .012 | .04068 | -1.39 | | 20071 | 12.676 | 200.743 | 11.7017 | •09213 | .03824 | .030 | .03827 | -1.58 | | 20072 | 12.676 | 201.899 | 11.4909 | .17899 | | .011 | .03810 | 73 | | 20073 | | 202.434 | | | | | | - 40 | | | 12.676 | | 11.3965 | .23334 | .03802 | .007 | .03801 | 40 | | 20075 | 11.902 | 200.804 | 10.7963 | .09222 | .03617 | .028
 .03621 | -1.51 | | 20076 | 11.902 | 201.916 | 10.6109 | .17913 | .03619 | .011 | •03619 | 35 | | 20079 | 11.159 | 200.934 | 9.9027 | .09221 | .03428 | .027 | .03432 | -1.02 | | 20080 | 11.159 | 201.448 | | | | | | | | | | | 9.8253 | .13208 | -03429 | .015 | .03431 | 52 | | 20081 | 11.158 | 202.081 | 9.7316 | •17917 | .03400 | .010 | .03400 | 82 | | 20082 | 11.158 | 202.748 | 9.6363 | .23354 | .03408 | .007 | •03405 | 02 | | 20083 | 10.258 | 201.192 | 8.8144 | .09224 | .03262 | .016 | .03266 | 1.43 | | | | | | | | | | | | 20084 | 10.257 | 201.851 | 8.7308 | .13216 | .03245 | •009 | • 03246 | 1.39 | | 20085 | 10.257 | | | | | | | | | | 104671 | 202.636 | 0.6351 | •17928 | .03280 | •006 | •03277 | 2,98 | | 20087 | | | | | | | | | | 20087 | 9.344 | 201.320 | 7.7639 | .09227 | .03029 | .014 | .03033 | 1.41 | | 20088 | 9.344
9.344 | 201.320
202.071 | 7.7639
7.6870 | .09227
.13219 | .03029
.03032 | .014 | .03033
.03032 | 1.41
1.90 | | 20088
20089 | 9.344
9.344
9.344 | 201.320
202.071
202.898 | 7.7639
7.6870
7.6043 | .09227
.13219
.17941 | .03029
.03032
.03054 | .014
.009 | .03033 | 1.41 | | 20088 | 9.344
9.344 | 201.320
202.071 | 7.7639
7.6870 | .09227
.13219
.17941 | .03029
.03032 | .014 | .03033
.03032
.03049 | 1.41
1.90 | | 20088
20089
20095 | 9.344
9.344
9.344
7.517 | 201.320
202.071
202.898
201.022 | 7.7639
7.6870
7.6043
5.6512 | .09227
.13219
.17941
.05959 | .03029
.03032
.03054
.02649 | .014
.009
.006
.020 | .03033
.03032
.03049
.02656 | 1.41
1.90
3.02
1.69 | | 20088
20089
20095
20096 | 9.344
9.344
9.344
7.517
7.517 | 201.320
202.071
202.898
201.022
201.850 | 7.7639
7.6870
7.6043
5.8512
5.7978 | .09227
.13219
.17941
.05959 | .03029
.03032
.03054
.02649
.02646 | .014
.009
.006
.020 | .03033
.03032
.03049
.02656
.02647 | 1.41
1.90
3.02
1.69
1.72 | | 20088
20089
20095
20096
20097 | 9.344
9.344
9.344
7.517
7.517 | 201.320
202.071
202.898
201.022
201.850
202.588 | 7.7639
7.6870
7.6043
5.6512
5.7978
5.7514 | .09227
.13219
.17941
.05959
.09232 | .03029
.03032
.03054
.02649
.02646
.02697 | .014
.009
.006
.020
.008 | .03033
.03032
.03049
.02656
.02647
.02693 | 1.41
1.90
3.02
1.69
1.72
3.70 | | 20088
20089
20095
20096
20097
20098 | 9.344
9.344
9.344
7.517
7.517
7.517 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590 | 7.7639
7.6870
7.6043
5.6512
5.7978
5.7514
5.6900 | .09227
.13219
.17941
.05959
.09232
.13229 | .03029
.03032
.03054
.02649
.02646
.02697
.02679 | .014
.009
.006
.020
.008 | .03033
.03032
.03049
.02656
.02647 | 1.41
1.90
3.02
1.69
1.72 | | 20088
20089
20095
20096
20097 | 9.344
9.344
9.344
7.517
7.517 | 201.320
202.071
202.898
201.022
201.850
202.588 | 7.7639
7.6870
7.6043
5.6512
5.7978
5.7514 | .09227
.13219
.17941
.05959
.09232 | .03029
.03032
.03054
.02649
.02646
.02697 | .014
.009
.006
.020
.008 | .03033
.03032
.03049
.02656
.02647
.02693
.02667 | 1.41
1.90
3.02
1.69
1.72
3.70 | | 20088
20089
20095
20096
20097
20098
20099 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601 | 201.320
202.071
202.898
201.022
201.050
202.588
203.590
201.197 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513 | .09227
.13219
.17941
.05959
.09232
.13229
.17952 | .03029
.03032
.03054
.02649
.02646
.02697
.02679 | .014
.009
.006
.020
.008
.005
.005 | .03033
.03032
.03049
.02656
.02647
.02667
.02516 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48 | | 20088
20089
20095
20096
20097
20098
20099
20100 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901 | 7.7639
7.6870
7.6043
5.8512
5.7751
5.7914
5.6900
4.9513
4.9166 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957 | .03029
.03032
.03054
.02649
.02646
.02697
.02670
.02510
.02457 | .014
.009
.006
.020
.008
.005
.005
.037 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48 | | 20088
20089
20095
20096
20097
20098
20099
20100
20101 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
6.601 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7516
5.6900
4.9913
4.9166
4.8711 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09230 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02510
.02457 | .014
.009
.006
.020
.008
.005
.005
.037
.013 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516
.02458 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48 | | 20088
20089
20095
20096
20097
20098
20099
20100
20101
20103 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9164
4.8711
3.9999 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09230
.13229 | .03029
.03032
.03054
.02649
.02646
.02679
.02510
.02457
.02455 | .014
.009
.006
.020
.008
.005
.005
.037
.013 | .03033
.03032
.03049
.02656
.02647
.02667
.02667
.02516
.02458
.02448 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48
.39 | | 20088
20089
20095
20096
20097
20098
20099
20100
20101 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
6.601 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7516
5.6900
4.9913
4.9166
4.8711 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09230 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02510
.02457 | .014
.009
.006
.020
.008
.005
.005
.037
.013 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516
.02458 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48 | | 20088
20089
20095
20096
20097
20098
20099
20100
20101
20103
20104 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9913
4.9166
4.8711
3.9999
3.9801 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09230
.13239
.03399 | .03029
.03032
.03054
.02649
.02646
.02697
.02510
.02457
.02455
.02456 | .014
.009
.006
.020
.008
.005
.005
.037
.013
.008
.024 | .03033
.03032
.03049
.02656
.02647
.02667
.02667
.02516
.02458
.02448
.02259 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48
.39
.31 | | 20088
20089
20095
20096
20097
20098
20099
20100
20101
20103
20104
20106 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271 | 7.7639
7.6643
5.6512
5.7978
5.7514
5.69513
4.9166
4.8711
3.9999
3.9861
3.9171 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09230
.13229
.03999
.05955 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02579
.0255
.02457
.02455
.02456 | .014
.009
.006
.020
.008
.005
.005
.013
.008
.024
.016 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516
.02458
.02448
.02259
.02307 | 1.41
1.90
3.02
1.69
1.70
3.70
3.19
2.48
.39
.31 | | 20088
20089
20095
20096
20097
20098
20100
20101
20103
20104
20106
20107 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
6.601
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9166
4.8711
3.9999
3.9801
3.9171
2.9781 | .09227
.13219
.17959
.09232
.13229
.17952
.09230
.13229
.03399
.03399
.03400 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02510
.02457
.02455
.02248
.02301
.02316 | .014
.009
.006
.020
.005
.005
.037
.013
.008
.024
.016
.007 |
.03033
.03032
.03049
.02656
.02647
.02667
.02516
.02458
.02448
.02259
.02307
.02307 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48
.39
.31
-2.02
.25 | | 20088
20089
20095
20096
20097
20098
20100
20101
20103
20104
20106
20107
20108 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.309
4.308 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9166
4.8711
3.9999
3.9801
3.9171
2.9781 | .09227
.13219
.17959
.09232
.13229
.17952
.09230
.13229
.03399
.05955
.13230
.035957 | .03029
.030354
.02649
.02646
.02697
.02679
.02510
.02457
.02455
.02248
.02301
.02316
.02160 | .014
.009
.006
.020
.005
.005
.037
.013
.008
.024
.016 | .03033
.03049
.03049
.02656
.02647
.02667
.02516
.02458
.02458
.02259
.02307
.02307 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48
.39
.31
-2.02
.25
.64
.34 | | 20088
20089
20095
20096
20097
20098
20100
20101
20103
20104
20106
20107 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
6.601
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9166
4.8711
3.9999
3.9801
3.9171
2.9781 | .09227
.13219
.17959
.09232
.13229
.17952
.09230
.13229
.03399
.03399
.03400 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02510
.02457
.02455
.02248
.02301
.02316 | .014
.009
.006
.020
.005
.005
.037
.013
.008
.024
.016
.007 | .03033
.03049
.03049
.02656
.02647
.02667
.02516
.02458
.02458
.02259
.02307
.02307 | 1.41
1.90
3.02
1.69
1.72
3.70
3.19
2.48
.39
.31
-2.02
.25 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.309
4.308 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.358 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9913
4.9166
4.8711
3.9999
3.9801
3.9171
2.9781
2.99432
2.9414 | .09227
.13219
.1729
.05959
.09232
.13229
.05957
.09230
.13229
.05955
.13230
.03400
.05955 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02579
.0255
.02457
.02455
.02301
.02316
.02160
.02177 | .014
.009
.006
.020
.005
.005
.037
.013
.024
.016
.007
.049
.019 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02171 | 1.41 1.90 3.02 1.69 1.70 3.19 2.48 .39 .31 -Z.02 .25 .64 .34 .96 | | 20088
20089
20096
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110 | 9.344
9.344
9.344
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.309
4.309
4.308
4.308 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354
202.308 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9164
3.9999
3.9801
2.9781
2.9781
2.9632
2.9461 | .09227
.13219
.17941
.05959
.09232
.13229
.17952
.05957
.09399
.05955
.13230
.05957
.09553 | .03029
.03032
.03054
.02649
.02646
.02679
.02510
.02457
.02455
.02248
.02301
.02316
.02160
.02177 | .014
.009
.006
.020
.005
.005
.037
.013
.004
.016
.007
.042 | .03033
.03032
.03049
.02656
.02647
.02667
.02516
.02458
.02448
.02259
.02307
.02307
.02307
.02171 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 | | 20088
20089
20095
20096
20097
20100
20101
20103
20104
20106
20107
20108
20109
20110
20110 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.309
4.308
4.308
4.308
4.307
3.006 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354
202.308
203.421 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9166
4.8711
3.9999
3.9801
3.99781
2.9632
2.9414
2.9161 | .09227
.13219
.17941
.05959
.00232
.13229
.05957
.09230
.13229
.05955
.12230
.05957
.09233
.13241
.03400 | .03029
.030354
.03054
.02649
.02646
.02679
.02510
.02455
.02248
.02301
.02316
.02160
.02177
.02174 | .014
.009
.008
.020
.005
.005
.037
.013
.008
.024
.016
.019
.019
.019 | .03033
.03032
.03049
.02656
.02647
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02171
.02163
.02172 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .28 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.309
4.308
4.308
4.308
4.305 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
200.732
201.354
200.732 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7978
5.6900
4.9913
4.9160
4.8711
3.9999
3.98601
3.9171
2.9781
2.9414
2.9161
1.9929 | .09227
.13219
.17941
.05959
.00232
.13229
.05957
.09230
.13229
.03399
.05955
.13230
.03400
.05957 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02570
.02457
.02455
.02456
.02301
.02316
.02160
.02177
.02175
.02175 | .014
.009
.006
.020
.005
.005
.007
.013
.008
.024
.016
.007
.019
.010 | .03033
.03032
.03049
.02656
.02647
.02693
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02307
.02171
.02163
.02172
.02162 | 1.41 1.90 3.02 1.69 1.70 3.19 2.48 .39 .31 -Z.02 .25 .64 .34 .96 .28 .28 | | 20088
20089
20096
20096
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20111
20113 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.538
4.309
4.308
4.308
4.307
3.006
3.005 | 201.320
202.878
201.022
201.850
202.568
203.550
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
202.308 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7978
5.7540
4.9513
4.9164
4.8711
3.9999
3.98171
2.9781
2.9961
2.9961
1.9929
1.99289 | .09227
.13219
.17941
.05959
.09232
.13252
.05957
.09230
.13229
.03490
.05957
.03400
.05957
.09233 | .03029
.03032
.03054
.02649
.02646
.02679
.02579
.02457
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02046 | .014
.009
.008
.020
.005
.005
.007
.013
.008
.024
.016
.007
.042
.010
.006
.043
.019 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02448
.02259
.02307
.02307
.023171
.02163
.02172
.02162
.02052 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.309
4.308
4.308
4.308
4.305 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
200.732
201.354
200.732 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7978
5.6900
4.9913
4.9160
4.8711
3.9999
3.98601
3.9171
2.9781
2.9414
2.9161
1.9929 | .09227
.13219
.17941
.05959
.00232
.13229
.05957
.09230
.13229
.03399
.05955
.13230
.03400
.05957 | .03029
.03032
.03054
.02649
.02646
.02697
.02679
.02570
.02457
.02455
.02456
.02301
.02316
.02160
.02177
.02175
.02175 | .014
.009
.006
.020
.005
.005
.007
.013
.008
.024
.016
.007
.019
.010 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02448
.02259
.02307
.02307
.023171
.02163
.02172
.02162
.02052 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 | |
20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
5.528
4.309
4.308
4.308
4.308
3.005
3.005
3.005 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354
202.308
203.421
202.784
202.555
203.631 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
5.6900
4.9513
4.9166
3.9999
3.9801
3.9171
2.9632
2.9414
2.9161
1.9829
1.9720
1.9720 | .09227
.13219
.17941
.05959
.09232
.13259
.05957
.09230
.13229
.03399
.05957
.09230
.13240
.05957
.09230
.05957 | .03029
.030354
.02649
.02649
.02646
.02697
.02510
.02455
.02248
.02301
.02316
.02177
.02177
.02177 | .014
.009
.006
.020
.008
.005
.037
.013
.006
.024
.016
.007
.042
.019
.019
.019 | .03033
.03032
.03049
.02656
.02647
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02171
.02163
.02172
.02162
.02052
.02050 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .28 .28 .28 .28 .29 | | 20088
20089
20096
20096
20098
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20113 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.308
4.308
4.308
4.308
4.308
4.305
3.005
3.005
3.005 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.190
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
202.555
203.831
200.971 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7978
5.6900
4.9913
4.9160
4.8711
3.9999
3.98601
3.9171
2.9781
2.9414
2.9161
1.9929
1.9720
1.9589 | .09227
.13219
.05959
.09232
.13229
.13229
.03935
.13230
.03400
.05955
.10230
.03400
.05955
.09233
.13240
.03400
.05955
.09233 | .03029
.03032
.03054
.02649
.02649
.02679
.02579
.02579
.02457
.02455
.02301
.02316
.02160
.02177
.02177
.02175
.02174
.02046
.02046
.02046
.02054
.01922 | .014
.009
.008
.005
.005
.037
.013
.004
.016
.007
.019
.010
.006
.043
.019 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .02031 | 1.41 1.90 3.02 1.69 1.70 3.19 2.48 .39 .31 -Z.025 .64 .34 .96 .62 .28 .25 -10 -17 -14 | | 20088
20089
20096
20096
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20113
20114
20115
20115 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.308
4.308
4.308
4.308
4.307
3.005
3.005
3.005
3.005 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.356
202.308
203.421
200.784
202.555
203.631
200.971
201.949 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7978 5.7978 4.9916 4.8711 3.9999 3.98171 2.9781 2.9961 1.9929 1.9929 1.9589 1.9420 .8625 | .09227
.13219
.17941
.05959
.09232
.13229
.09557
.09230
.13229
.03400
.05957
.09233
.13241
.03400
.0959
.09239
.13250
.03400 | .03029
.03032
.03054
.02649
.02649
.026597
.02679
.02510
.02457
.02455
.0246
.02316
.02160
.02177
.02174
.02174
.02046
.02046
.02046
.02046
.02046
.02046 | .014
.009
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.019
.010
.043
.010 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02307
.02171
.02163
.02172
.02162
.02050
.02050
.02050 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .28 | | 20088
20089
20096
20096
20098
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20113 | 9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
4.308
4.308
4.308
4.308
4.308
4.305
3.005
3.005
3.005 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.190
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
202.555
203.831
200.971 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7978
5.6900
4.9913
4.9160
4.8711
3.9999
3.98601
3.9171
2.9781
2.9414
2.9161
1.9929
1.9720
1.9589 | .09227
.13219
.05959
.09232
.13229
.13229
.03935
.13230
.03400
.05955
.10230
.03400
.05955
.09233
.13240
.03400
.05955
.09233 | .03029
.030354
.02649
.02649
.02646
.02677
.02510
.02455
.02248
.02301
.02316
.02177
.02177
.02177
.02174
.02041
.02046
.02054
.02054
.01922
.01921 | .014
.009
.006
.020
.005
.005
.037
.013
.004
.016
.007
.019
.010
.043
.019 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .02031 | 1.41 1.90 3.02 1.69 1.70 3.19 2.48 .39 .31 -Z.025 .64 .34 .96 .62 .28 .25 -10 -17 -14 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20110
20111
20112
20113
20114
20115
20116
20117 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.356
202.308
203.421
200.784
202.355
203.631
200.971
201.949 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7978 5.7978 4.9916 4.8711 3.9999 3.98171 2.9781 2.9961 1.9929 1.9929 1.9589 1.9420 .8625 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03550
.13230
.03400
.05957
.09233
.13241
.03400
.05959
.09239
.09239 |
.03029
.03032
.03054
.02649
.02649
.026597
.02679
.02510
.02457
.02455
.0246
.02316
.02160
.02177
.02174
.02174
.02046
.02046
.02046
.02046
.02046
.02046 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.010
.043
.019
.010
.038
.038 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02448
.02259
.02307
.02307
.02307
.02171
.02163
.02172
.02162
.02052
.02052
.020541
.02041
.02041
.02031 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .25 -10 -17 -16 | | 20088
20089
20096
20096
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20113
20114
20115
20115 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.308
4.308
4.308
4.308
4.307
3.005
3.005
3.005
3.005 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.206
200.732
201.354
202.308
203.421
200.784
202.308
203.421
200.784
202.555
203.831
200.971
201.949
203.027 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
6.9913
4.9164
3.9999
3.9801
2.9781
2.9781
2.9781
2.9781
2.9763
1.9929
1.9929
1.9959
1.9420
.8625
.8575 | .09227
.13219
.17941
.05959
.09232
.13229
.09557
.09230
.13229
.03400
.05957
.09233
.13241
.03400
.0959
.09239
.13250
.03400 | .03029
.030354
.02649
.02649
.02646
.02677
.02510
.02455
.02248
.02301
.02316
.02177
.02177
.02177
.02174
.02041
.02046
.02054
.02054
.01922
.01921 | .014
.009
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.019
.010
.043
.010 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02458
.02459
.02307
.02307
.02307
.02171
.02163
.02172
.02162
.02050
.02050
.02050 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .28 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20110
20111
20112
20113
20114
20115
20116
20117 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.206
200.732
201.354
202.308
203.421
200.784
202.308
203.421
200.784
202.555
203.831
200.971
201.949
203.027 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
6.9913
4.9164
3.9999
3.9801
2.9781
2.9781
2.9781
2.9781
2.9763
1.9929
1.9929
1.9959
1.9420
.8625
.8575 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03550
.13230
.03400
.05957
.09233
.13241
.03400
.05959
.09239
.09239 | .03029
.03034
.03054
.02649
.02649
.02697
.02679
.02510
.02457
.02455
.02301
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.01922
.01921
.01929
.01941 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.010
.043
.019
.010
.038
.038 | .03033
.03032
.03049
.02656
.02657
.02667
.02516
.02458
.02448
.02259
.02307
.02307
.02171
.02163
.02172
.02162
.02050
.02050
.02050
.02050
.02050
.02051
.01931
.01931
.01921
.01920
.01919 | 1.41 1.90 3.02 1.69 1.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .28 .28 .28 .2 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20110
20111
20112
20113
20114
20115
20116
20117 |
9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.206
200.732
201.354
202.308
203.421
200.784
202.308
203.421
200.784
202.555
203.831
200.971
201.949
203.027 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
6.9913
4.9164
3.9999
3.9801
2.9781
2.9781
2.9781
2.9781
2.9781
1.9929
1.9720
1.9789
1.9420
8625
8525 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03550
.13230
.03400
.05957
.09233
.13241
.03400
.05959
.09239
.09239 | .03029
.030354
.02649
.02649
.02646
.02679
.02510
.02457
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02041
.02046
.02046
.02054
.01922
.01921
.01929
.01941 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.010
.043
.019
.010
.038
.038 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02448 .02259 .02307 .02307 .02171 .02163 .02172 .02162 .02052 .02051 .02041 .02031 .01931 .01921 .01920 .01919 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .25 -10 -17 -14 -01 -04 -05 Conductivity | | 20088
20089
20096
20097
20097
20100
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.309
4.308
4.309
4.308
4.307
3.006
3.005
3.005
3.005
3.004
1.381
1.381
1.380 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.306
203.421
202.364
202.363
200.784
201.562
202.555
203.631
200.971
201.971
201.971
201.971
201.971 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7514 5.6900 4.9513 4.9166 4.8711 2.9781 2.9781 2.9414 2.9161 1.9829 1.9720 1.9720 1.9525 8575 8521 8448 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03400
.05957
.09238
.13241
.03400
.05957
.09238
.03401
.05957 | .03029
.03032
.03054
.02649
.02649
.02679
.02510
.02455
.02248
.02301
.02316
.02177
.02177
.02177
.02174
.02041
.02046
.02046
.02054
.01922
.01921
.01929
.01941
Experimental | .014
.009
.006
.020
.008
.005
.037
.013
.006
.024
.016
.007
.042
.019
.019
.019
.019
.019
.019
.019
.019 | .03033 .03032 .03049 .02656 .02657 .02667 .02516 .02458 .02448 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .0203t .01931 .01921 .01920 .01919 Adjusted Thermal | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .29101714616465 Conductivity Deviation | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20110
20111
20112
20113
20114
20115
20116
20117 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530
5.530 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.206
200.732
201.354
202.308
203.421
200.784
202.308
203.421
200.784
202.555
203.831
200.971
201.949
203.027 | 7.7639
7.6870
7.6043
5.8512
5.7978
5.7514
6.9913
4.9164
3.9999
3.9801
2.9781
2.9781
2.9781
2.9781
2.9781
1.9929
1.9720
1.9789
1.9420
8625
8525 |
.09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03550
.13230
.03400
.05957
.09233
.13241
.03400
.05959
.09239
.09239 | .03029
.030354
.02649
.02649
.02646
.02679
.02510
.02457
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02041
.02046
.02046
.02054
.01922
.01921
.01929
.01941 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.007
.042
.019
.010
.043
.019
.010
.038
.038 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02448 .02259 .02307 .02307 .02171 .02163 .02172 .02162 .02052 .02051 .02041 .02031 .01931 .01921 .01920 .01919 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .25 -10 -17 -14 -01 -04 -05 Conductivity | | 20088
20089
20096
20097
20097
20100
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116 | 9.344 9.344 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 1.381 1.381 1.380 Pressure | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
201.562
202.555
203.021
201.949
203.027
201.949
203.027 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7978 5.7978 4.9913 4.9913 4.9911 3.9999 3.9981 2.9781 2.9781 2.9781 2.9781 2.9781 2.9782 1.9720 1.9720 1.9720 1.9720 1.9720 1.97420 1.9720 1.97420 1.97420 1.97420 1.97420 1.97420 1.97420 | .09227
.13219
.17941
.05959
.09232
.13229
.13229
.03959
.13230
.03400
.05957
.13241
.03400
.05959
.03400
.05959
.03400
.05959
.03400
.05959
.05959
.05959
.13241
.03400
.05959
.05959
.05959
.05959 | .03029
.03034
.03054
.02649
.02649
.02677
.02679
.02579
.02455
.02455
.02316
.02316
.02177
.02177
.02177
.02174
.02046
.02046
.02046
.02046
.01922
.01921
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity | .014
.009
.006
.020
.008
.005
.037
.013
.006
.024
.016
.007
.042
.019
.019
.019
.019
.019
.019
.019
.019 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02448 .02259 .02307 .02171 .02103 .02172 .02162 .02050 .02050 .02041 .02031 .01931 .01931 .01921 .01920 .01919 Adjusted Thermal | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .29101714616465 Conductivity Deviction from Correlation | | 20088
20089
20096
20097
20097
20100
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116 | 9.344
9.344
9.344
7.517
7.517
7.517
7.517
6.601
6.601
5.530
5.530
5.528
4.309
4.308
4.309
4.308
4.307
3.006
3.005
3.005
3.005
3.004
1.381
1.381
1.380 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.306
203.421
202.364
202.363
200.784
201.562
202.555
203.631
200.971
201.971
201.971
201.971
201.971 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7514 5.6900 4.9513 4.9166 4.8711 2.9781 2.9781 2.9414 2.9161 1.9829 1.9720 1.9720 1.9525 8575 8521 8448 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.03400
.05957
.09238
.13241
.03400
.05957
.09238
.03401
.05957 | .03029
.03032
.03054
.02649
.02649
.02679
.02510
.02455
.02248
.02301
.02316
.02177
.02177
.02177
.02174
.02041
.02046
.02046
.02054
.01922
.01921
.01929
.01941
Experimental | .014
.009
.006
.020
.008
.005
.037
.013
.006
.024
.016
.007
.042
.019
.019
.019
.019
.019
.019
.019
.019 | .03033 .03032 .03049 .02656 .02657 .02667 .02516 .02458 .02448 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .0203t .01931 .01921 .01920 .01919 Adjusted Thermal | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .29101714616465 Conductivity Deviation | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20116
20117
20118 | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 6.601 6.601 6.601 5.530 5.530 5.530 5.528 4.309 4.308 4.307 3.006 3.005 3.005 3.005 3.004 1.381 1.381 1.380 Pressure MPa | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.201
203.203
200.732
201.354
202.308
203.421
200.784
201.555
203.821
200.784
201.949
201.949
203.027
204.509 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7514 5.6900 4.9513 4.9160 3.9801 3.9801 2.9781 2.9781 2.9781 2.9781 2.9781 2.9784 2.9161 1.9829 1.9720 8625 8575 85521 8448 Density moi/L | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.13229
.03399
.035957
.13230
.03400
.05957
.09233
.13241
.03400
.05959
.09248
.13267 | .03029
.030354
.02649
.02649
.02646
.02677
.02510
.02510
.02457
.02248
.02316
.02316
.02177
.02177
.02174
.02041
.02046
.02054
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.006
.042
.019
.010
.006
.038
.019
.006
.038
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02448 .02259 .02307 .02307 .02171 .02163 .02172 .02162 .02052 .02052 .020541 .01931 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .25 -10 -17 -1461616465 Conductivity Deviation from Correlation persont | | 20088
20089
20095
20096
20097
20100
20100
20100
20100
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118 | 9.344 9.344 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 1.381 1.381 1.380 Pressure MPa 63.772 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
202.355
203.421
200.784
201.562
202.555
203.027
201.949
203.027
204.509 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.6900 4.9513 4.9164 4.8711 3.9999 3.9801 3.9171 2.9781 2.9781 1.9820 1.9720 1.9789 1.9422 8575 8521 8448 Density moi/L 26_3276 | .09227
.13219
.17941
.05959
.09232
.13229
.13229
.03935
.13230
.05957
.09233
.13241
.03400
.05957
.09233
.13241
.03400
.05957
.09234
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02571
.02455
.02455
.02316
.02316
.02177
.02177
.02177
.02174
.02046
.02046
.02046
.02054
.01922
.01921
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.019
.010
.038
.016
.008
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02050 .02050 .02051 .01931 .01931 .01921 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .29101714616465 Conductivity Deviction from Correlation | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20116
20117
20118 | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 6.601 6.601 6.601 5.530 5.530 5.530 5.528 4.309 4.308 4.307 3.006 3.005 3.005 3.005 3.004 1.381 1.381 1.380 Pressure MPa | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.354
202.308
203.421
200.784
201.562
202.555
203.027
201.949
203.027
204.509 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.6900 4.9513 4.9164 4.8711 3.9999 3.9801 3.9171 2.9781 2.9781 1.9820 1.9720 1.9789 1.9422 8575 8521 8448 Density moi/L 26_3276 | .09227
.13219
.17941
.05959
.09232
.13229
.13229
.03935
.13230
.05957
.09233
.13241
.03400
.05957
.09233
.13241
.03400
.05957
.09234
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02571
.02455
.02455
.02316
.02316
.02177
.02177
.02177
.02174
.02046
.02046
.02046
.02054
.01922
.01921
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.019
.010
.038
.016
.008
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02050 .02050 .02051 .01931 .01931 .01921 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .29 -10 -17 -14 -61 -64 -65
Conductivity Deviction from Correlation persont | | 20088
20089
20096
20097
20098
20099
20100
20101
20103
20104
20107
20108
20109
20110
20111
20113
20114
20115
20116
20117
20118 | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.006 3.005 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.717
203.063
200.732
201.356
202.308
203.421
200.784
201.562
202.555
203.631
200.971
201.949
201.950
700.971 | 7.7639 7.6073 7.6073 7.6063 7.6073 7.6073 7.7514 7.6700 4.97513 4.9751 3.9999 3.9801 2.9761 2.9761 2.9761 2.9761 2.9762 1.9920 1.9520 1.9520 1.9521 .8448 Density moi/L 26.3276 26.2881 | .09227
.13219
.17941
.05959
.09232
.13229
.05957
.09230
.03400
.05957
.13230
.03400
.05957
.09239
.13241
.03400
.05959
.09239
.13267 | .03029
.03034
.03054
.02649
.02649
.02647
.02679
.02510
.02457
.02455
.02316
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.0 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.019
.010
.006
.038
.016
.008
.006
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02459 .02307 .02307 .02171 .02103 .02172 .02162 .02050 .02051 .01931 .01931 .01921 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .25 -10 -1714616465 Conductivity Deviation from Correctation persent64 2.48 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 6.601 6.601 6.601 5.530 5.530 5.528 4.309 4.308 4.307 3.006 3.005 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354
202.308
203.421
200.784
202.555
203.831
200.971
201.974
201.974
201.974
201.974
201.974
201.975
203.027
204.509 | 7.7639 7.6870 7.6043 7.6043 7.6778 7.7578 7.7578 7.7513 4.9164 8.8711 3.9999 3.9801 2.9961 2.9961 1.9829 1.9720 8625 8575 8521 8448 Density moi/L 26.3276 26.2881 26.2576 | .09227
.13219
.17941
.05959
.09232
.13229
.09957
.09230
.03490
.03490
.03490
.03490
.05957
.09233
.13241
.03400
.05959
.03400
.05959
.13250
.03401
.05959
.03402
.07233
.13267 | .03029
.03034
.03054
.02649
.02646
.02697
.026510
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02174
.02041
.02046
.02054
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.006
.043
.019
.010
.006
.038
.019
.006
.038
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .0203E .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09412 .09312 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .25 -10 -17 -14616463 Conductivity Deviction from Correlation persent44 2.48 1.63 | | 20088
20089
20095
20096
20097
20100
20100
20101
20103
20104
20106
20107
20118
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.530 5.528 4.309 4.308 4.307 3.005 | 201.320
202.071
202.898
201.022
201.850
202.588
203.590
201.197
201.901
202.845
200.711
203.063
200.732
201.354
202.308
203.421
200.784
201.562
202.555
203.831
200.971
201.949
203.027
204.509 | 7.7639 7.6073 7.6073 5.8512 5.7978 5.6900 4.9513 4.9160 4.8711 3.99801 3.9171 2.9781 2.9414 2.9161 1.9829 1.9425 .8575 .8521 .8448 Density moi/L 26.3276 26.2571 |
.09227
.13219
.17941
.05959
.09232
.13229
.03935
.13230
.03400
.05957
.09233
.13241
.03400
.05957
.09233
.13241
.03400
.05957
.09233
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02571
.02455
.02456
.02316
.02160
.02177
.02175
.02174
.02046
.02046
.02046
.02054
.01922
.01921
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.007
.013
.008
.024
.010
.006
.042
.019
.010
.038
.016
.006
.006
.006
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .01931 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09312 .09108 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .29 -10 -17 -14 -61 -64 -65 Cenductivity Deviction from Correlation percent44 2.48 1.63 .58 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 6.601 6.601 6.601 5.530 5.530 5.528 4.309 4.308 4.307 3.006 3.005 | 201.320
202.071
202.898
201.022
201.850
202.568
203.590
201.197
201.901
202.845
200.717
201.271
203.063
200.732
201.354
202.308
203.421
200.784
202.555
203.831
200.971
201.974
201.974
201.974
201.974
201.974
201.975
203.027
204.509 | 7.7639 7.6870 7.6043 7.6043 7.6778 7.7578 7.7578 7.7513 4.9164 8.8711 3.9999 3.9801 2.9961 2.9961 1.9829 1.9720 8625 8575 8521 8448 Density moi/L 26.3276 26.2881 26.2576 | .09227
.13219
.17941
.05959
.09232
.13229
.09957
.09230
.03490
.03490
.03490
.03490
.05957
.09233
.13241
.03400
.05959
.03400
.05959
.13250
.03401
.05959
.03402
.07233
.13267 | .03029
.03034
.03054
.02649
.02646
.02697
.026510
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02174
.02041
.02046
.02054
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.006
.043
.019
.010
.006
.038
.019
.006
.038
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .0203E .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09412 .09312 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .25 -10 -17 -14616463 Conductivity Deviction from Correlation persent44 2.48 1.63 | | 20088
20089
20096
20097
20098
20099
20100
20101
20103
20104
20107
20108
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 6.601 6.601 5.530 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.07 3.005 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 201.271 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.631 200.971 201.949 203.027 204.509 Tamperature K 216.715 217.459 217.459 | 7.7639 7.6073 7.6073 7.6073 7.6073 7.6073 7.7978 7.7978 7.7978 7.7978 7.9799 7.9781 7. | .09227
.13219
.17941
.05959
.09232
.13229
.03957
.09230
.03400
.05957
.13230
.03400
.05957
.09239
.13241
.03400
.05957
.09239
.13267
.07239
.13267 | .03029
.030354
.026469
.026469
.026697
.02679
.02579
.02575
.02455
.02301
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02054
.01922
.01921
.01922
.01921
.01929
.01941
Experimental
Thermel
Conductivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.019
.019
.010
.038
.016
.008
.006
.008
.006
.008
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02459 .02307 .02307 .02171 .02103 .02172 .02162 .02050 .02050 .02051 .01931 .01931 .01921 .01921 .01920 .01919 Adjusted Thermal at a nominal Tamperature of 218.K W/m.K .09164 .09412 .09312 .09108 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .28 .25101714616465 Conductivity Deviation from Correlation persont 44 2.48 1.63 .5651 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20107
20108
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 6.601 6.601 6.601 5.530 5.530 5.528 4.309 4.308 4.307 3.006 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.007 3.005 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 3.007 4.381 | 201.320 202.0798 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.974 201.974 201.974 201.974 201.974 201.974 201.974 201.974 201.974 201.974 201.974 | 7.7639 7.6870 7.6043 7.6043 7.6978 7.7578
7.7578 7. | .09227
.13219
.17941
.05959
.09232
.13229
.03957
.09230
.13229
.03957
.13241
.03400
.05957
.09233
.13241
.03402
.05952
.03401
.05962
.09248
.13267 | .03029
.03032
.03054
.02649
.02646
.02679
.02679
.02510
.02455
.02248
.02301
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02041
.02041
.02041
.02041
.02041
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.0 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.006
.043
.019
.010
.006
.038
.006
.038
.006
.006
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02459 .02307 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .01931 .01931 .01921 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K %/m.K .09164 .09312 .09312 .09312 .09188 .09062 .09038 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .25101714616465 Cenductivity Deviction from Correlation percent64 2.48 1.63 .58 .58 .51 .17 | | 20088
20089
20095
20096
20097
20100
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20114
20115
20116
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.073 63.773 63.772 63.773 63.773 63.773 63.773 63.773 63.773 63.773 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.971 201.901 202.845 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 | 7.7639 7.6043 7.6043 5.8512 5.7978 5.6900 4.9716 4.9716 4.9711 3.9980 3.9171 2.9781 2.9414 2.9161 1.9989 1.9720 1.9789 1.9720 1.9789 1.9720 1.9589 1.9720 1. | .09227
.13219
.17941
.05959
.00232
.13229
.03959
.09230
.13229
.03899
.09233
.13240
.03400
.05957
.09233
.13240
.03400
.05957
.09233
.13267
.13267 |
.03029
.03032
.03054
.02649
.02649
.02647
.02679
.02579
.02457
.02455
.02456
.02160
.02177
.02177
.02177
.02175
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02041
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.0 | .014
.009
.006
.020
.005
.007
.013
.008
.024
.010
.006
.042
.019
.010
.038
.016
.006
.006
.006
.006
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02050 .02041 .02050 .02041 .02052 .02050 .02041 .02062 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .25 -10 -17 -14 -61 -64 -65 Cenductivity Deviction from Correlation percent44 2.48 1.63 .5851 .17 .26 | | 20088
20089
20099
20099
20099
20100
20101
20103
20104
20106
20107
20108
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.007 3.005 3.07 3.005 3.07 3.07 3.07 3.07 61.381 1.380 Pressure MPe 63.772 63.773 63.773 61.728 61.733 61.733 61.733 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 201.271 203.063 200.732 201.354 202.308 203.421 200.764 201.562 202.555 203.631 200.971 201.949 203.027 204.509 Temperature K 216.715 217.159 217.495 217.495 217.455 218.450 217.226 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7514 5.6900 4.9513 4.9161 3.9999 3.98171 2.9781 2 | .09227
.13219
.17941
.05959
.09232
.13229
.03939
.05957
.09230
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03401
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.03400
.0 |
.03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02571
.02455
.02301
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.02046
.01922
.01921
.01922
.01921
.01929
.01941
Experimenter
Thermer
Condetivity
W/m.K | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.019
.019
.010
.038
.016
.008
.006
.008
.006
.008
.006
.008
.006
.008
.006
.008
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02448 .02259 .02307 .02171 .02103 .02172 .02162 .02050 .02071 .02162 .02050 .02041 .02031 .01931 .01931 .01921 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Tamperature of 218.K W/m.K .09164 .09412 .09312 .09062 .09088 .08998 .08998 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .28 .28 .28 .2 | | 20088
20089
20095
20096
20097
20100
20100
20101
20103
20104
20106
20107
20108
20109
20110
20111
20112
20114
20115
20116
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.073 63.773 63.772 63.773 63.773 63.773 63.773 63.773 63.773 63.773 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.971 201.901 202.845 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 | 7.7639 7.6043 7.6043 5.8512 5.7978 5.6900 4.9716 4.9716 4.9711 3.9980 3.9171 2.9781 2.9414 2.9161 1.9989 1.9720 1.9789 1.9720 1.9789 1.9720 1.9589 1.9720 1. | .09227
.13219
.17941
.05959
.00232
.13229
.03959
.09230
.13229
.03899
.09233
.13240
.03400
.05957
.09233
.13240
.03400
.05957
.09233
.13267
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02679
.02579
.02457
.02455
.02456
.02160
.02177
.02177
.02177
.02175
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02041
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.02066
.0 | .014
.009
.006
.020
.005
.007
.013
.008
.024
.010
.006
.042
.019
.010
.038
.016
.006
.006
.006
.006
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02172 .02163 .02050 .02041 .02050 .02041 .02052 .02050 .02041 .02062 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .25 -10 -17 -14 -61 -64 -65 Cenductivity Deviction from Correlation percent44 2.48 1.63 .5851 .17 .26 | | 20088
20089
20095
20096
20097
20099
20100
20101
20103
20104
20107
20108
20109
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.006 3.005
3.005 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 Tamperature K 216.715 217.159 217.499 217.495 218.025 217.145 218.025 217.145 218.025 217.145 | 7.7639 7.6870 7.6043 7.6043 7.6043 7.6043 7.6043 7.6970 4.9713 4.9164 8.8711 3.9999 3.98171 2.9781 2.9781 2.9961 1.9929 1.9720 1.9720 1.9720 1.9720 1.9589 1.9420 86575 8521 8448 Density moi/L 26.3276 26.2576 26.2171 26.1733 26.0370 25.9788 | .09227
.13219
.17941
.05959
.09232
.13252
.05957
.09230
.03400
.05957
.13230
.03400
.05957
.09233
.13241
.03400
.09239
.13267
.09239
.13267
.09248
.13267 | .03029
.03032
.03054
.02649
.02649
.02646
.02679
.02510
.02457
.02455
.02316
.02316
.02177
.02174
.02046
.02175
.02174
.02046
.02046
.02054
.01922
.01921
.01929
.01941
Experimental
Thermal
Conductivity
W/m.K
.09148
.09402
.09306
.09187
.09028
.08923
.08923
.08652 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.006
.043
.019
.010
.006
.038
.006
.038
.006
.038
.028
.028
.028
.028
.020
.020
.020
.02 | .03033 .03032 .03049 .02656 .02657 .02667 .02516 .02458 .02458 .02459 .02307 .02171 .02183 .02172 .02162 .02050 .02050 .02041 .02931 .01921 .01921 .01921 .01920 .01919 Adjusted Thermal at a hominal Tamperature of 218.K .09164 .09312 .09312 .0938 .0908 .09088 .08998 .08992 .08651 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .25 -10 -17146165 Conductivity Deviation from Corretation percent44 2.48 1.63 .5851 .77 -1.93 | | 20088
20089
20095
20096
20097
20100
20100
20100
20100
20107
20108
20109
20110
20111
20112
20114
20115
20116
20116
20116
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.307 3.005 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.971 201.901 202.845 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.631 200.784 201.949 203.027 204.509 Tamperature K 216.715 217.159 217.499 217.954 218.450 217.226 218.025 217.255 | 7.7639 7.6870 7.6043 5.8512 5.7978 5.7978 5.7978 4.9160 4.9713 3.9999 3.98171 2.9781 2.9414 2.9161 1.9989 1.9720 1.9780 1 | .09227
.13219
.17941
.05959
.00232
.13229
.03939
.03400
.03400
.05930
.03400
.05939
.03400
.05939
.13267
.03400
.05939
.13267
.07238
.13267
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02457
.02455
.02456
.02160
.02177
.02175
.02177
.02175
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02041
.02046
.02046
.02046
.02046
.02044
.01922
.01921
.01922
.01921
.01922
.01941
Experimental
Thermal
Conductivity
W/m.K
.09402
.09402
.09406
.09406
.09402
.09407
.09067
.09067
.09067
.08998
.08923
.08652
.08708 | .014
.009
.006
.020
.005
.007
.013
.008
.007
.019
.010
.006
.042
.019
.016
.006
.006
.006
.006
.006
.006
.006 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02163 .02172 .02163 .02172 .02052 .02050 .02041 .02052 .02050 .01919 Adjusted Thermal at a hominal Temperature of 218.K W/m.K .09164 .09412 .09312 .09188 .09082 .09082 .08932 .08651 .08718 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .25 -10 -17 -14616463 Conductivity Deviction from Correlation persent44 2.48 1.63 .5651 .17 .26 .77 -1.93 .31 | | 20088
20089
20096
20097
20097
20099
20100
20101
20103
20104
20107
20108
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 6.601 6.601 5.530 5.528 4.308 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.07 3.005 3.07 3.07 3.07 3.07 3.07 63.77
63.77 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.631 200.971 201.949 203.027 204.509 Temperature K 216.715 217.159 217.4954 218.450 217.226 218.042 217.226 218.042 217.226 218.050 | 7.7639 7.6870 7.6043 7.6043 7.6053 7.67978 5.7978 5.7978 5.7978 5.7978 1.9999 3.9871 2.9781 2 | .09227
.13219
.17941
.05959
.09232
.13229
.03959
.09230
.13229
.03959
.03400
.05957
.0239
.03400
.05957
.0239
.03400
.05957
.0239
.13241
.03400
.05957
.0239
.13241
.03400
.05957
.0239
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02579
.02455
.02455
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.01922
.01921
.01922
.01921
.01929
.01941
Experiment
Thermel
Condetivity
W/m.K
.09402
.09306
.09402
.09306
.09067
.09067
.09067
.09067
.090708
.08923
.08923
.08923
.08901 | .014
.009
.006
.020
.008
.005
.007
.013
.024
.016
.019
.010
.006
.043
.010
.008
.006
.008
.006
.008
.006
.008
.006
.008
.006
.008
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02050 .02071 .02162 .02050 .02041 .01931 .01931 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09412 .0912 .0912 .09188 .09062 .09038 .08932 .08651 .08718 .08990 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .29 -10 -114616465 Conductivity Deviation from Correlation paraent 44 2.48 1.63 .5651 .17 -193 .31 2.90 | | 20088
20089
20099
20099
20099
20100
20100
20100
20100
20107
20108
20109
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.07 3.005 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.356 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 Temperature K 216.715 217.459 217.450 217.266 218.042 217.155 218.050 217.232 | 7.7639 7.6870 7.6043 7.6043 7.6043 7.6043 7.6043 7.6043 7.6043 7.67978 7.7978 7.7978 7.9781 7 | .09227
.13219
.17941
.05959
.09232
.13292
.05957
.09230
.03400
.05957
.13230
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.03401
.05962
.09248
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267 |
.03029
.03032
.03054
.02649
.02649
.02647
.02679
.02510
.02457
.02455
.02316
.02316
.02176
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.0 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.010
.006
.043
.010
.006
.036
.036
.028
.028
.028
.028
.029
.029
.029
.029
.029
.029
.029
.029 | .03033 .03032 .03049 .02656 .02657 .02667 .02516 .02458 .02458 .02459 .02307 .02171 .02103 .02172 .02162 .02050 .02050 .02041 .01931 .01931 .01921 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09412 .09312 .09108 .09082 .09098 .08932 .08651 .08718 .08900 .08328 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .251017146165 Conductivity Deviation from Correctation persent94 2.48 1.63 .5851 .77 -1.93 .31 2.90 -2.18 | | 20088
20089
20096
20097
20097
20099
20100
20101
20103
20104
20107
20108
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 6.601 6.601 5.530 5.528 4.308 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.07 3.005 3.07 3.07 3.07 3.07 3.07 63.77 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.631 200.971 201.949 203.027 204.509 Temperature K 216.715 217.159 217.4954 218.450 217.226 218.042 217.226 218.042 217.226 218.050 | 7.7639 7.6870 7.6043 7.6043 7.6053 7.67978 5.7978 5.7978 5.7978 5.7978 1.9999 3.9871 2.9781 2 | .09227
.13219
.17941
.05959
.09232
.13229
.03959
.09230
.13229
.03959
.03400
.05957
.0239
.03400
.05957
.0239
.03400
.05957
.0239
.13241
.03400
.05957
.0239
.13241
.03400
.05957
.0239
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02677
.02579
.02579
.02455
.02455
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.02046
.01922
.01921
.01922
.01921
.01929
.01941
Experiment
Thermel
Condetivity
W/m.K
.09402
.09306
.09402
.09306
.09067
.09067
.09067
.09067
.090708
.08923
.08923
.08923
.08901 | .014
.009
.006
.020
.008
.005
.007
.013
.024
.016
.019
.010
.006
.043
.010
.008
.006
.008
.006
.008
.006
.008
.006
.008
.006
.008
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02259 .02307 .02171 .02163 .02172 .02162 .02050 .02071 .02162 .02050 .02041 .01931 .01931 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09412 .0912 .0912 .09188 .09062 .09038 .08932 .08651 .08718 .08990 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .29 -10 -114616465 Conductivity Deviation from Correlation paraent 44 2.48 1.63 .5651 .17 -193 .31 2.90 | | 20088
20089
20095
20096
20097
20100
201001
20103
20104
20106
20107
20110
20111
20112
20114
20115
20116
20117
20118
Run Pt.
14004
14005
14007
14008
14009
14010
14011
14012
14013
14014
14015
14015 | 9.344 9.344
9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.530 5.530 5.530 5.530 5.530 5.300 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 3.007 3.005 | 201.320 202.878 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 201.271 203.063 200.732 201.354 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 Temperature K 216.715 217.159 217.499 217.499 217.455 218.025 217.252 218.057 | 7.7639 7.6870 7.6043 7.6043 7.6043 7.6043 7.6978 7.7578 7.7579 7.6970 4.9751 3.9999 3.9801 2.9961 2.9961 1.9829 1.9720 8625 8575 8521 .8448 Density moi/L 26.3276 26.2171 26.1733 25.4847 25.4009 25.6988 | .09227
.13219
.17941
.05959
.09232
.13229
.03957
.09230
.03400
.05957
.13241
.03400
.05957
.13241
.03400
.05957
.13250
.03401
.05957
.02567
.07926
.03967
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.07926
.0 | .03029
.03029
.03054
.02649
.02649
.02646
.02679
.02510
.02455
.02248
.02316
.02160
.02177
.02174
.02046
.02046
.02046
.020921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01921
.01931
.01921
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931
.01931 | .014
.009
.006
.020
.003
.005
.037
.013
.024
.016
.006
.043
.019
.010
.006
.038
.006
.006
.008
.006
.008
.006
.008
.006
.008
.008 | .03033 .03032 .03049 .02656 .02657 .02693 .02667 .02516 .02458 .02458 .02459 .02307 .02171 .02163 .02172 .02162 .02052 .02050 .02041 .0203E .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09312 .09312 .09188 .09062 .09038 .08998 .08998 .08998 .08998 .08998 .08932 .08651 .08718 .08900 .08328 .08419 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 2.48 .39 -31 -2.02 .25 .64 .34 .96 .62 .28 .28 .25 -10 -17 -14 -161 -64 -163 -68 -77 -193 .31 2.90 -2.18 -554 | | 20088
20089
20099
20099
20099
20100
20100
20100
20100
20107
20108
20109
20110
20111
20113
20114
20115
20116
20117
20118
Run Pt. | 9.344 9.344 9.344 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 7.517 6.601 6.601 5.530 5.528 4.309 4.308 4.307 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.005 3.07 3.005 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 | 201.320 202.071 202.898 201.022 201.850 202.588 203.590 201.197 201.901 202.845 200.717 203.063 200.732 201.356 202.308 203.421 200.784 201.562 202.555 203.831 200.971 201.949 203.027 204.509 Temperature K 216.715 217.459 217.450 217.266 218.042 217.155 218.050 217.232 | 7.7639 7.6870 7.6043 7.6043 7.6043 7.6043 7.6043 7.6043 7.6043 7.67978 7.7978 7.7978 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781 7.9781
7.9781 7 | .09227
.13219
.17941
.05959
.09232
.13292
.05957
.09230
.03400
.05957
.13230
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.05957
.03400
.03401
.05962
.09248
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267
.13267 | .03029
.03032
.03054
.02649
.02649
.02647
.02679
.02510
.02457
.02455
.02316
.02316
.02176
.02174
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.02046
.0 | .014
.009
.006
.020
.008
.005
.037
.013
.024
.016
.019
.010
.006
.043
.010
.006
.036
.036
.028
.028
.028
.028
.029
.029
.029
.029
.029
.029
.029
.029 | .03033 .03032 .03049 .02656 .02657 .02667 .02516 .02458 .02458 .02459 .02307 .02171 .02103 .02172 .02162 .02050 .02050 .02041 .01931 .01931 .01921 .01931 .01921 .01920 .01919 Adjusted Thermal at a nominal Temperature of 218.K W/m.K .09164 .09412 .09312 .09108 .09082 .09098 .08932 .08651 .08718 .08900 .08328 | 1.41 1.90 3.02 1.69 1.72 3.70 3.19 2.48 .39 .31 -2.02 .25 .64 .34 .96 .62 .28 .28 .28 .28 .28 .28 .251017146165 Conductivity Deviation from Correctation persent94 2.48 1.63 .5851 .77 -1.93 .31 2.90 -2.18 | | 14018 | 53.343 | 218.158 | 24.7849 | .39370 | .08380 | .017 | .08378 | 1.03 | |-------|--------|---------|---------|--------|----------------|--------------|---------|-------------| | 14019 | 51.181 | 217.262 | 24.5379 | .25284 | .08193 | .034 | .08202 | .55 | | 14020 | 51.182 | 218.108 | 24.4534 | .39381 | .OB204 | 018 | ·08203 | 1.12 | | 14021 | 48.674 | 217.320 | 24.1204 | .25283 | .07983 | .033 | •07991 | •72 | | 14022 | 48.677 | 218.203 | 24.0301 | .39381 | .07748 | •017 | •07746 | -1.82 | | 14023 | 46.380 | 217.345 | 23.7161 | .25286 | •07720 | .030 | .07728 | • 02 | | 14024 | 46.383 | 218.346 | 23.6110 | .39379 | .07832 | .017 | .07828 | 1.98 | | 14025 | 44.287 | 217.283 | 23.3323 | .25291 | .07473 | .033 | .07481 | 72 | | 14026 | 44.290 | 218.427 | 23.2091 | .39384 | .07516 | .018 | .07511 | +47 | | 14027 | 42.045 | 217.459 | 22.8661 | .25284 | .07371 | •029 | .07377 | . 87 | | 14028 | 42.047 | 218.398 | 22.7617 | .39392 | .07442 | •017 | •07437 | 2.33 | | 14029 | 39.933 | 217.430 | 22.4166 | .25282 | .07143 | •029 | .07149 | •59 | | 14031 | 37.909 | 217.413 | 21.9519 | •25289 | •06965 | •028 | .06972 | . 97 | | 14032 | 37.908 | 218.544 | 21.8183 | •39392 | .06883 | •015 | .06877 | •43 | | 14035 | 35.645 | 217.029 | 21.4324 | .19419 | .06593 | .043 | .06603 | -1.27 | | 14036 | 35.644 | 217.433 | 21.3827 | .25289 | •06599 | •026 | .06605 | 94 | | 14038 | 35.643 | 210.636 | 21.2356 | .39397 | •06779 | •016 | .06772 | 2.42 | | 14040 | 33.299 | 217.655 | 20.7087 | .25279 | .06459 | . 027 | .06463 | .91 | | 14041 | 33.301 | 218.693 | 20.5777 | .39385 | .06388 | .015 | .06381 | .41 | | 14043 | 31.082 | 218.934 | 19.8622 | .39377 | .06141 | .017 | •06132 | •57 | | 14044 | 28.891 | 217.813 | 19.2605 | .25354 | .05946 | .025 | • 05948 | .89 | | 14046 | 28.942 | 216.641 | 19.4396 | .06485 | .06048 | .172 | •06060 | 1.76 | | 14049 | 28.941 | 217.592 | 19.3087 | .19460 | •06009 | •037 | .06013 | 1.70 | | 14050 | 28.941 | 218.094 | 19.2401 | .25346 | •05942 | •025 | .05941 | .89 | | 14051 | 28.941 | 218.714 | 19.1558 | .32023 | •05969 | .017 | •05963 | 1.71 | | 14052 | 28.941 | 219.330 | 19.0724 | .39491 | . 05952 | .013 | .05940 | 1.79 | | 14054 | 26.727 | 218.200 | 18.3732 | .25338 | .05773 | .024 | .05771 | 2.67 | | 14055 | 26.728 | 219.596 | 18.1775 | .39476 | •05633 | .013 | .05620 | 1.09 | | 14056 | 24.415 | 218.390 | 17.3279 | .2533B | .05367 | .024 | .05364 | . 67 | | 14057 | 24.416 | 219.682 | 17.1416 | .39487 | .05410 | .012 | .05398 | 2.43 | | 14058 | 22.418 | 218.472 | 16.3090 | .25336 | .05103 | •021 | .05100 | 1.03 | | 14060 | 20.090 | 216.906 | 15.1937 | .10018 | .04793 | •073 | .04799 | •61 | | 14061 | 20.090 | 217,412 | 15.1163 | .14340 | .04727 | .047 | .04730 | 43 | | 14062 | 20.090 | 217.897 | 15.0426 | .19449 | .04705 | .031 | •04706 | 58 | | 14063 | 20.090 | 218.595 | 14.9379 | .25333 | .04709 | .021 | •04706 | 04 | | 14066 | 17.465 | 218.113 | 13.2194 | .19477 | .04275 | •029 | .04274 | 65 | | 14068 | 15.066 | 217.702 | 11.3916 | .14377 | .03887 | .037 | .03889 | .19 | | 14070 | 12.809 | 218.029 | 9.4263 | •14382 | .03366 | •039 | .03366 | -2.27 | | 14073 | 10.596 | 217.485 | 7.5485 | .10044 | .03000 | •049 | .03004 | -1.58 | | 14074 | 10.595 | 218.278 | 7.4876 | .14390 | .03067 | •029 | .03065 | . 84 | | 14075 | 10.595 | 219.251 | 7.4155 | .19521 | .03118 | .018 | .03109 | 2.70 | | 14079 | 8.145 | 217.897 | 5.4763 | .10049 | .02745 | .041 | .02746 | 2.72 | | 14080 | 8.145 | 218.862 | 5.4310 | •14399 | .02740 | .027 | .02733 | 2.54 | | 14081 | 8.145 | 219.889 | 5.3839 | .19540 | .02735 | .018 | .02720 | 2.35 | | 14083 | 5.972 | 219.342 | 3.7689 | .14406 | .02443 | .025 | .02431 | • 97 | | 14084 | 4.594 | 217.549 | 2.8380 |
.06491 | .02303 | •066 | .02307 | • 95 | | 14085 | 4.594 | 219.652 | 2.7990 | .14414 | .02302 | .021 | .02288 | .33 | | 14087 | 3.168 | 217.762 | 1.8861 | .06491 | .02140 | .067 | .02142 | -1.49 | | 14088 | 3.168 | 218.746 | 1.8752 | .10060 | .02139 | •036 | .02133 | -1.89 | | 14089 | 3.168 | 220.143 | 1.8600 | .14419 | •02157 | •021 | .02139 | -1.53 | | 14090 | 3.168 | 221.664 | 1.8437 | .19582 | .02193 | .013 | .02162 | ~.36 | | 14092 | 1.738 | 217,970 | .9986 | -06492 | .02074 | •060 | .02074 | 40 | | 14093 | 1.738 | 219.183 | .9923 | .10062 | .02072 | .034 | .02062 | 97 | | 14095 | 1.737 | 221.512 | .9799 | .16913 | .02101 | .016 | .02071 | 45 | | | | | | | Experimental
Thermal | | Adjusted Thermal | Conductivity
Deviation | |---------|-----------------|------------------|------------------|--------------|-------------------------|------|-------------------------------|---------------------------| | Run Pt. | Pressure
MPa | Temperature
K | Density
moi/L | Power
W/m | Conductivity
W/m.K | STAT | Temperature of 242.K
W/m.K | from Correlation percent | | 10001 | 64.660 | 242.903 | 24.2073 | -21945 | .08277 | .038 | .08268 | .18 | | 10003 | 64.653 | 243.730 | 24.1396 | .36091 | .08221 | .019 | .08203 | 17 | | 10005 | 64.648 | 244.993 | 24.0372 | .53768 | .08143 | .011 | .08112 | 63 | | 10006 | 62.093 | 243.314 | 23.8165 | .28582 | •08059 | .023 | .08045 | ~•05 | | 10007 | 62.097 | 244.376 | 23.7299 | .44492 | .08104 | 014 | .08079 | •91 | | 10009 | 59.868 | 244.388 | 23.4018 | .44495 | .07816 | .013 | •07791 | 64 | | 10010 | 57.704 | 243.301 | 23.1615 | .28530 | .07739 | 025 | .07725 | •03 | | 10011 | 57.705 | 244.434 | 23.0655 | -44440 | .07680 | .012 | .07654 | 29 | | 10012 | 55.570 | 243.266 | 22.8223 | .28551 | .07409 | .024 | .07396 | -2.23 | | 10013 | 55.573 | 244.338 | 22.7302 | .44458 | .07488 | .013 | .07463 | 73 | | 10014 | 53.426 | 243.323 | 22.4559 | .28547 | .07398 | .023 | .07384 | 09 | | 10015 | 53.430 | 244.466 | 22.3564 | . 44455 | .07416 | .014 | .07390 | •60 | | 10016 | 51.310 | 243.363 | 22.0770 | .28548 | .06941 | 028 | .06927 | -4.24 | | 10017 | 51.312 | 244.503 | 21.9756 | .44452 | .07261 | .011 | •07235 | •82 | | 10018 | 49.325 | 243.402 | 22.7023 | .28549 | .07074 | .023 | .07059 | •03 | | 10019 | 49.325 | 244.526 | 21.6003 | .44459 | .07106 | .011 | •07080 | •93 | | 10020 | 47.112 | 243,475 | 21.2500 | .28549 | .06914 | .024 | .06899 | .40 | | 10021 | 47.115 | 244.583 | 21.1561 | .44464 | .06901 | .012 | .06875 | • 66 | | 10022 | 44.975 | 243.434 | 20.8125 | .28552 | .06659 | .021 | .06645 | 71 | | 10023 | 44.978 | 244.693 | 20.6943 | .44462 | .06701 | .011 | .06674 | •44 | | 10024 | 42.944 | 243.481 | 20.3534 | .28556 | .06499 | .021 | .06464 | 45 | | 10025 | 42.946 | 244.693 | 20.2377 | • 44475 | .06489 | .011 | • 06 463 | 11 | | 10026 | 40.835 | 243.509 | 19.8470 | .28535 | .06372 | .021 | .06357 | .50 | |---------|--------|----------|---------|--------|--------|-------|---------|-------| | 10027 | 40.837 | 243.506 | 19.8477 | .28533 | .06407 | .021 | .06392 | 1.04 | | 10029 | 38.635 | 243.591 | 19.2743 | .28545 | .06118 | .020 | .06103 | 33 | | 10030 | 38.636 | 244.843 | 19.1501 | .44465 | .06203 | .011 | .06177 | 1.55 | | 10031 | 35.622 | 243.578 | 18.4276 | 28563 | .05881 | .018 | .05867 | .42 | | | 35.623 | 244.999 | 18.2835 | .44489 | •05908 | .010 | .05882 | 1.45 | | 10032 | | | | | | | | | | 10033 | 33.413 | 243.645 | 17.7348 | .28570 | .05686 | .019 | .05672 | .80 | | 10035 | 31.582 | 243.710 | 17.1122 | .28567 | .05480 | .018 | -05466 | • 43 | | 10036 | 31.582 | 245.241 | 16.9534 | •44487 | .05520 | .010 | •05494 | 1.76 | | 10037 | 29.404 | 243.063 | 16.3846 | .21906 | .05182 | .023 | .05174 | -1.25 | | 10038 | 29.404 | 244.392 | 16.2447 | 36052 | .05310 | .012 | .05292 | 1.73 | | 10039 | 27.213 | 243.144 | 15.4975 | .21912 | .05041 | .025 | .05033 | •60 | | | | | | | | | | | | 10041 | 24.734 | 243.256 | 14.3858 | .21913 | .04751 | .023 | •04743 | .43 | | 10043 | 22.685 | 243.312 | 13.3788 | .21917 | .04505 | .020 | +04496 | .37 | | 10045 | 20.444 | 243.445 | 12.1721 | .21924 | .04223 | •020 | .04214 | •33 | | 10047 | 18.097 | 243.524 | 10.8114 | .21903 | .03886 | .01.9 | .03876 | 53 | | 10049 | 15.678 | 243.813 | 9.3038 | .21919 | .03655 | .018 | •03642 | 1.81 | | 10050 | 15.678 | 244.825 | 9.2308 | .28543 | .03715 | .014 | .03695 | 3.61 | | 10051 | 13.498 | 243 ≠055 | 7.9648 | .16153 | .03378 | .026 | .03370 | 1.79 | | | | | | | | | •03120 | 1.59 | | 10053 | 11.514 | 243.340 | 6.6690 | .16165 | .03131 | .023 | | | | 13013 | 10.024 | 243.424 | 5.7138 | .11326 | .02930 | •038 | .02918 | •36 | | 13016 | 10.024 | 244.351 | 5.6778 | .16220 | •02944 | .023 | •02925 | . 78 | | 13018 | 10.024 | 245.442 | 5.6362 | .22001 | •02970 | •016 | •02942 | 1.58 | | 10055 | 9.257 | 243.585 | 5.2240 | .16151 | .02871 | .023 | •0285B | 1.01 | | 13030 | 7.367 | 244.685 | 4.0319 | .16222 | .02716 | .023 | •02693 | 1.59 | | 13031 | 7.367 | 245.967 | 4.0009 | .22003 | .02729 | .015 | .02695 | 1.83 | | | | | 3.8493 | | | | .02625 | .00 | | 10057 | 6.991 | 242.840 | | .11281 | .02632 | .035 | | | | 10059 | 6.991 | 245.235 | 3.7946 | .21916 | .02693 | .014 | .02665 | 1.81 | | 13035 | 5.183 | 245.196 | 2.7442 | .16223 | .02516 | .021 | .02489 | .38 | | 10060 | 4.396 | 243.185 | 2.3256 | -11284 | .02435 | .034 | .02425 | 15 | | 10061 | 4.395 | 246.022 | 2.2910 | .21926 | .02461 | .013 | .02427 | .11 | | 10062 | 2.368 | 242.415 | 1.2188 | .07287 | .02287 | .055 | .02284 | 93 | | | | | 1.2118 | | | | •02290 | | | 10063 | 2.367 | 243.574 | | .11287 | .02303 | .030 | | 62 | | 10064 | 2.367 | 245.053 | 1.2034 | .16173 | .02322 | •01B | .02297 | 28 | | 10065 | 2.365 | 245.748 | 1.1932 | .21937 | .02340 | .010 | .02301 | 05 | | 18031 | 67.261 | 239.643 | 24.8126 | 15974 | .08516 | •055 | .08541 | 46 | | 18032 | 67.258 | 239.942 | 24.7881 | +21666 | .08536 | .043 | •08558 | 10 | | 18033 | 67.258 | 240.362 | 24.7543 | .28216 | .08554 | .025 | .08571 | .27 | | | 67.256 | 240.899 | 24.7110 | .35632 | .08513 | .018 | .08525 | .01 | | 18034 | | | | | | | | | | 18035 | 67.256 | 241.411 | 24.6700 | 43923 | .08502 | •014 | • 08508 | .08 | | 18036 | 67.255 | 241.995 | 24.6232 | .53089 | .08487 | •011 | .08487 | •13 | | 18037 | 67.254 | 242.671 | 24.5691 | .63127 | .08500 | .009 | .08493 | •55 | | 18038 | 67.253 | 243.377 | 24.5129 | .74047 | .08466 | .006 | .08452 | . 42 | | 18039 | 60.668 | 239.741 | 23.9095 | .15979 | .07955 | .055 | .07979 | -1.48 | | 18040 | 60.672 | 240.585 | 23.8389 | .28209 | .07936 | .026 | .07951 | -1.38 | | | | | | | | | | | | 18041 | 60.670 | 241.606 | 23.7528 | .43924 | •07932 | .014 | •07936 | -1.02 | | 18043 | 54.839 | 239.705 | 23.0134 | .15984 | .07649 | .060 | .07674 | +28 | | 18044 | 54.839 | 240.635 | 22.9314 | .28209 | •07634 | .026 | •07649 | .47 | | 18045 | 54.840 | 241.756 | 22.8330 | .43924 | •07558 | .013 | .07561 | 07 | | 18046 | 54.840 | 243.144 | 22.7119 | .63136 | •07567 | .008 | • 07555 | -61 | | 18047 | 49.399 | 239.433 | 22.0814 | .11163 | .07245 | .097 | •07272 | •68 | | 18048 | 49.401 | 240.265 | 22.0045 | .21658 | .07170 | .037 | .07188 | 01 | | | 49.400 | 241.375 | 21.9021 | 35625 | .07015 | .018 | .07022 | -1.74 | | 18049 | | | | | | | | | | 18050 | 49.399 | 242.693 | 21.7812 | •53084 | .07115 | .010 | .07108 | •23 | | 18051 | 44.338 | 239.593 | 21.0420 | .11164 | .06711 | .088 | .06736 | 70 | | 18052 | 44.335 | 240.311 | 20.9717 | .21666 | •06738 | •034 | .06755 | •01 | | 18053 | 44.332 | 241.475 | 20.8588 | .35631 | .06693 | .016 | • 06698 | 17 | | 18054 | 44.328 | 242.834 | 20.7277 | .53113 | .06707 | .009 | •06699 | •61 | | 18056 | 39.714 | 240.397 | 19.8758 | .21663 | .06326 | .027 | .06342 | .08 | | | 39.713 | 241.672 | 19.7472 | 35632 | .06303 | .015 | •06306 | .26 | | 18057 | | | | | | | | | | 18058 | 39.713 | 243.125 | 19.6023 | •53118 | •06276 | •008 | 06265 | •44 | | 18060 | 35.670 | 239.880 | 18.8253 | •16000 | .05924 | .041 | •05943 | 48 | | 18061 | 35.669 | 241.033 | 18.7042 | 28255 | •05924 | •019 | •05933 | • 02 | | 18062 | 35.668 | 242.489 | 18.5529 | 44000 | .05903 | .010 | • 05899 | .27 | | 18064 | 33.172 | 240.016 | 18.0395 | .16021 | .05669 | .042 | .05686 | 59 | | | 33.170 | 241.166 | 17.9160 | .28278 | .05689 | .016 | .05696 | .25 | | 18065 | | | | | | | | | | 18066 | 33.169 | 242.747 | 17.7491 | .44021 | •05681 | .010 | •05675 | •77 | | 18068 | 30.056 | 240.063 | 16.9534 | .16010 | .05339 | .041 | .05354 | 80 | | 18069 | 30.055 | 241.293 | 16.8195 | .28267 | .05344 | .018 | .05350 | 19 | | 18072 | 27.526 | 240.148 | 15.9518 | .16012 | •05065 | •042 | •05079 | 85 | | 18073 | 27.525 | 241.503 | 15.8033 | .28270 | .05112 | .019 | .05116 | • 65 | | 18076 | 25.091 | 240.224 | 14.8751 | 16006 | .04807 | .039 | .04819 | 51 | | 18077 | 25.090 | 241.629 | 14.7228 | 28270 | .04821 | .017 | 04824 | .37 | | | | | | | | | | | | 18079 | 22.852 | 239.597 | 13.8504 | .07230 | •04509 | .118 | .04525 | -1.49 | | 18080 | 22.851 | 240.575 | 13.7459 | .16018 | .04540 | .033 | .04549 | 39 | | 18081 | 22.851 | 242.061 | 13.5906 | .28272 | .04592 | .016 | •04592 | 1.34 | | 18083 | 20.668 | 239.642 | 12.6718 | .07217 | .04279 | .111 | .04294 | 48 | | 18084 | 20.667 | 240.736 | 12.5604 | •15995 | .04261 | .034 | .04269 | 46 | | 18085 | 20.666 | 242.286 | 12.4065 | .28243 | .04294 | .014 | .04292 | .90 | | 18089 | 18.811 | 241.616 | 11.4059 | 21728 | •04034 | .020 | 04036 | .23 | | | | | | | | | | | | 1 90 90 | 18.810 | 240.764 | 11.4843 | 16026 | .03969 | .033 | •03977 | -1.71 | | 18091 | 18.809 | 240.089 | 11.5473 | •11196 | .04009 | •050 | .04021 | 94 | | 18093 | 17.149 | 242.615 | 10.3125 | 29210 | 01045 | 014 | 02041 | 1 99 |
--|--|--|--|---|---|---
--|--| | | | | | -28310 | .03865 | .014 | 403861 | 1.88 | | 18094 | 17.146 | 241.663 | 10.3901 | .21731 | .03891 | •021 | •03893 | 2.26 | | 18095 | 17.144 | 240.886 | 10.4547 | .16026 | .03800 | .030 | .03807 | 30 | | 18096 | 17.142 | 240.164 | 10.5160 | .11191 | .03851 | .052 | .03863 | .80 | | 18098 | 15.378 | 242.939 | 9.1781 | .28311 | .03595 | .013 | .03588 | 1.05 | | 18099 | 15.375 | 241.897 | 9.2526 | .21732 | •03634 | .018 | •03635 | 1.89 | | 18100 | 15.374 | 241.085 | 9.3121 | •16023 | .03567 | .028 | •03573 | 13 | | 19101 | 15.372 | 240.296 | 9.3710 | .11191 | .03575 | .048 | .03587 | 09 | | 18104 | 13.712 | 240.502 | 8.2656 | .11189 | • 03340 | .044 | .03351 | 51 | | 18105 | 13.710 | 241.241 | 8.2162 | .16025 | .03358 | .026 | .03364 | •15 | | 18106 | 13.708 | 242.189 | 8.1543 | .21732 | .03397 | .017 | .03396 | 1.45 | | 18108 | 12.021 | 239.954 | 7.1749 | .07227 | 03181 | .083 | .03197 | 1.10 | | 18109 | 12.019 | 240.587 | 7.1390 | | •03140 | | .03151 | | | | | | | •11191 | | .043 | | 13 | | 18110 | 12.017 | 241.471 | 7.0902 | 16025 | .03199 | .025 | •03203 | 1.78 | | 18113 | 10.479 | 242.839 | 6.0272 | 21745 | •03024 | .016 | .03017 | 1.89 | | 18114 | 10.476 | 241.685 | 6.0746 | 16031 | .02993 | .022 | •02996 | •92 | | 18115 | 10.472 | 240.691 | 6.1156 | .11195 | .02974 | .041 | .02985 | •33 | | 18116 | 10.470 | 239.966 | 6.1463 | .07229 | •02945 | .080 | •02962 | 63 | | 18003 | 9.776 | 240.876 | 5.6549 | •11194 | .02923 | .038 | •02932 | 1.16 | | 18026 | 9.779 | 241.798 | 5.6207 | .16022 | .02916 | .023 | .02918 | . 86 | | 18029 | 9.781 | 242.879 | 5.5804 | .21728 | .02934 | .015 | .02927 | 1.39 | | 18117 | 8.794 | 243.151 | 4.9493 | .21749 | .02826 | .014 | .02816 | 1.08 | | 18118 | 8.791 | 242.012 | 4.9847 | .16033 | .02810 | .023 | .02810 | •65 | | 18119 | 8.789 | 240.933 | 5.0193 | 11195 | .02805 | .038 | .02814 | .61 | | 18121 | 6.880 | 240.289 | 3.8413 | 07229 | 02624 | .056 | •02639 | .57 | | | 6.879 | 241.220 | | 11196 | | | | | | 18122 | | | 3.8186 | | •02614 | .034 | .02621 | •01 | | 18123 | 6.877 | 242.319 | 3.7923 | 16035 | •02630 | .019 | .02627 | •40 | | 18124 | 6.876 | 243.737 | 3.7593 | •2174B | .02640 | .014 | .02625 | .49 | | 18125 | 5.138 | 239.727 | 2.8020 | .04126 | •02435 | .149 | • 02454 | -1.31 | | 18127 | 5.137 | 241.431 | 2.7749 | .11198 | .02483 | .033 | .02488 | •19 | | 18128 | 5.136 | 242.640 | 2.7556 | .16041 | 02475 | .020 | •02470 | 46 | | 18129 | 3.441 | 243.126 | 1.7948 | .16047 | .02360 | .020 | .02351 | 72 | | 18130 | 3.441 | 241.765 | 1.8071 | .11200 | •02363 | .033 | • 02365 | 16 | | 18131 | 3.440 | 240.597 | 1.8174 | .07231 | .02335 | .064 | .02347 | 99 | | 18132 | 3.440 | 239.732 | 1.8255 | .04128 | .02366 | .128 | .02385 | .59 | | 18133 | 1.990 | 239.902 | 1.9304 | 04128 | .02237 | .133 | .02254 | -1.37 | | | 1.990 | | | | | | | | | 18134 | | 240.756 | 1.0263 | .07233 | •02290 | .062 | •02300 | •67 | | 18135 | 1.990 | 242.075 | 1.0198 | .11202 | .02264 | .031 | .02263 | 91 | | 18136 | 1.989 | 243.581 | 1.0126 | .16052 | •02295 | .019 | •02282 | 06 | Experimental | | Adjusted Thermal | | | | | _ | | | Thermal | | at a nominal | Deviation | | Run Pt. | Pressure | Temperature | Density | Power | | STAT | at a nominal | | | Run Pt. | Pressure
MPa | Temperature
K | Density
moi/L | Power
W/m | Thermal | TAT | at a nominal | Deviation | | Run Pt. | | | - | | Thermal Conductivity | STAT | at a nominal
Temperature of 263.K | Deviation
from Correlation | | | MPa | К | moi/L | W/m | Thermal
Conductivity
W/m.K | | at a nominal
Temperature of 263.K
W/m.K | Deviation
from Correlation
percent | | 11001 | MPa
65+109 | K
262.180 | mo1/L
22.7739 | W/m
.23772 | Thermal
Conductivity
W/m.K | .006 | at a nominal
Temperature of 263.K
W/m.K
.07661 | Deviation
from Correlation
percent
-1.06 | | 11001
11002 | MPa
65-109
65-105 | K
262.180
262.731 | mo1/L
22.7739
22.7324 | W/m
.23772
.30959 | Thermal
Conductivity
W/m.K
.07654
.07678 | .006 | at a nominal Temperature of 263.K W/m.K .07661 .07680 | Deviation
from Correlation
percent
-1.06
56 | | 11001
11002
11003 | MPa
65.109
65.105
65.104 | K
262.180
262.731
263.325 | mo1/L
22.7739
22.7324
22.6883 | W/m
.23772
.30959
.39095 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668 | .006
.004
.005 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 | Deviation
from Correlation
percent
-1.06
56
49 | | 11001
11002
11003
11004 | MPa
65.109
65.105
65.104
65.101 | K
262.180
262.731
263.325
263.958 | mo1/L
22.7739
22.7324
22.6883
22.6412 | W/m
.23772
.30959
.39095
.48187 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716 | .006
.004
.005 | at a nominal
Temperature of 263.K
W/m.K
.07661
.07665
.07708 | Deviation
from Correlation
percent
-1.06
56
49
.35 | | 11001
11002
11003
11004
11005 | MPa
65.109
65.105
65.104
65.101
65.098 | K
262.180
262.731
263.325
263.958
264.688 | mo1/L
22.7739
22.7324
22.6883
22.6412
22.5871 | W/m
.23772
.30959
.39095
.48187
.58221 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716
.07679 | .006
.004
.005
.003 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 | Deviation
from Correlation
percent
-1.06
56
49
.35
.11 | | 11001
11002
11003
11004
11005
11006 | MPa
65.109
65.105
65.104
65.098
63.123 | K
262.180
262.731
263.325
263.958
264.688
262.775 | mo1/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377 | W/m
.23772
.30959
.39095
.48187
.58221
.30961 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716
.07679
.07568 | .006
.004
.005
.003
.005 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 | Deviation from Correlation percent -1.065649 .35 .1123 | | 11001
11002
11003
11004
11005
11006 | MPa
65.109
65.105
65.104
65.098
63.123
63.124 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 | moi/L
22.7739
22.7324
22.6883
22.66412
22.5871
22.4377
22.3567 | W/m
.23772
.30959
.39095
.48187
.58221
.30961
.48201 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716
.07679
.07568
.07584 | .006
.004
.005
.003
.005
.004 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 | Deviation from Correlation percent -1.065649 .35 .1123 .35 | | 11001
11002
11003
11004
11005
11006
11007 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 | moi/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377
22.3547
22.1374 | .23772
.30959
.39095
.48187
.58221
.30961
.48201 | Thermal
Conductivity
W/m.K
.07654
.07668
.07668
.07716
.07679
.07568
.07584
.07449 | .006
.004
.005
.003
.005
.004 | at a nominal Temperature of 263 .K W/m.K .07661 .07665 .07708 .07664 .07570 .07576 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 | moi/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377
22.3547
22.3547
22.0390 | */m .23772 .30959 .39095 .48187 .58221 .30961 .48201 .30971 .48200 |
Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716
.07679
.07568
.07568
.07549 | .006
.004
.005
.003
.005
.004
.003 | at a nominal Temperature of 263 K W/m.K .07661 .07665 .07708 .07664 .07570 .07576 .07452 .07435 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112 | K 262.180 262.731 263.325 263.926 264.688 262.775 263.888 262.672 263.979 262.724 | mo1/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.1374 22.0390 21.8157 | 23772
30959
39095
48187
58221
30961
48201
30971
48200 | Thermal
Conductivity
W/m.K
.07654
.07678
.07668
.07716
.07679
.07568
.07584
.07444 | .006
.004
.005
.003
.005
.004
.003
.005 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07435 .07435 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8857 21.7166 | 23772
30959
39095
48187
58221
30961
48201
30970
48199 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07679 .07568 .07584 .07449 .07444 .07341 | .006
.004
.005
.003
.005
.004
.003 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 | moi/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377
22.3547
22.1374
22.0390
21.8157
21.7166
21.4488 | W/m -23772 -30959 -39095 -48187 -58221 -30961 -30971 -48200 -30970 -48199 -30972 | Thermal
Conductivity
W/m.K
.07654
.07668
.07716
.07679
.07584
.07584
.07449
.07444
.07341
.07285 | .006
.004
.005
.003
.005
.004
.003
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 | Deviation from Correlation percent -1.0656493511233500364411 -1.90 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8857 21.7166 | 23772
30959
39095
48187
58221
30961
48201
30970
48199 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07679 .07568 .07584 .07449 .07444 .07341 | .006
.004
.005
.003
.005
.004
.003 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 | moi/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377
22.3547
22.1374
22.0390
21.8157
21.7166
21.4488 | W/m -23772 -30959 -39095 -48187 -58221 -30961 -30971 -48200 -30970 -48199 -30972 | Thermal
Conductivity
W/m.K
.07654
.07668
.07716
.07679
.07584
.07584
.07449
.07444
.07341
.07285 | .006
.004
.005
.003
.005
.004
.003
.005 | at a nominal Temperature of 263.K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 | Deviation from Correlation percent -1.0656493511233500364411 -1.90 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897
56.899 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 | moi/L
22.7739
22.7324
22.6883
22.6412
22.5871
22.4377
22.3547
22.1374
22.0390
21.8157
21.7166
21.4488
21.3411 | 23772
.30959
.39095
.48187
.58221
.30961
.48201
.30971
.48200
.30970
.48199
.48199 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07568 .07544 .07449 .07444 .07341 .07285 .07018 .07124 | .006
.004
.005
.005
.004
.003
.005
.003 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
56.897
56.899
54.638
54.639 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.708 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8157 21.7166 21.4488 21.3411 21.0464 20.9454 | */m -23772 -30959 -39095 -48187 -58221 -30961 -48201 -30970 -48199 -30972 -48199 -30961 -48199 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07568 .07584 .07444 .07341 .07285 .07018 .07124 .06910 .07002 | .006
.004
.005
.005
.005
.004
.003
.005
.004
.003 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897
56.899
54.638
54.639
52.381 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.972 263.724 264.020 262.702 264.096 262.778 | moi/L 22.7739 22.7324 22.6883 22.6612 22.5871 22.4377 22.3547 22.0390 21.8157 21.7166 21.4488 21.3411 21.0464 20.9454 20.6324 | */m -23772 -30959 -39095 -48187 -58221 -30961 -48201 -30970 -48199 -30972 -48190 -30961 -48199 -30961 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 | .006
.004
.005
.003
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897
56.899
54.638
54.639
52.381
52.384 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.798 264.086 262.778 264.132 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8157 21.71.66 21.4488 21.3411 21.0464 20.9454 20.9454 20.5252 | 23772
.30959
.39095
.48187
.58221
.30961
.30971
.48200
.30970
.48199
.30961
.48199
.48199
.30962
.48199 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07679 .07568 .07584 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 | .006
.004
.005
.003
.005
.003
.005
.004
.005
.004 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .662449 | | 11001
11002
11003
11004
11005
11006
11007
11008
11010
11011
11012
11013
11014
11015
11016
11017
11018 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
59.112
56.897
56.899
54.638
54.638
54.638
52.381
52.384
49.965 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.772 263.979 262.724 264.020 262.728 264.086 262.778 264.132 262.778 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8157 21.71.66 21.4488 21.3411 21.0464 20.9454 20.6324 20.5252 20.1619 | 23772
30959
39095
48187
58221
30961
48201
30970
48199
30972
48199
30961
48199
30962
48199
30969 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07568 .07584 .07544 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 |
.006
.005
.003
.005
.004
.003
.005
.006
.006
.006
.006 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 54.638 54.639 52.381 52.384 49.965 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.182 264.182 264.178 264.191 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.1374 22.03157 21.7166 21.4488 21.3411 21.0464 20.9454 20.6324 20.5252 20.1619 20.0485 | 23772
30959
39095
48187
58221
30961
48201
30970
48199
30972
48199
30962
48199
30962
48199
30962 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07568 .07584 .07449 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 | .006
.004
.005
.003
.005
.003
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07452 .07435 .07276 .07276 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .92 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
56.897
56.899
54.638
54.639
52.381
52.384
49.965
49.968
47.930 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.972 262.724 264.020 262.702 264.096 262.778 264.132 262.778 264.132 262.778 | moi/L 22.7739 22.7324 22.6883 22.6612 22.5871 22.4377 22.3547 22.3547 22.3547 21.374 22.0390 21.8157 21.71.66 21.4488 21.3411 21.0464 20.9454 20.9252 20.1619 20.0485 19.7413 | 23772 .30959 .30959 .48187 .58221 .30961 .46201 .30970 .48199 .30972 .48199 .30962 .48199 .30962 .48199 .30962 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 | .006
.004
.005
.003
.005
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .9233 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021 | MPa
65.109
65.105
65.104
65.101
65.098
63.123
63.124
61.108
61.110
59.112
56.897
56.899
54.638
54.639
52.381
52.384
49.965
49.968
47.930
47.932 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.132 262.778 264.132 262.778 264.190 | moi/L 22.7739 22.7324 22.6883 22.6612 22.5871 22.4377 22.3547 22.3547 22.3547 22.1374 22.0390 21.8157 21.7166 21.4488 21.3411 21.0464 20.9454 20.95252 20.1619 20.0485 19.6278 | 23772 30959 39095 48187 58221 30961 30971 48200 30972 48199 30962 48199 30962 48199 30962 48199 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07679 .07568 .07584 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 | .006
.004
.005
.003
.005
.004
.005
.004
.005
.004
.005
.004 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 | Deviation from Correlation percent -1.0656493511233500364411 -1.9007 -1.096624494944923363 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 59.112 56.897 54.638 54.639 52.381 52.384 49.965 49.968 47.932 45.670 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.728 264.086 262.778 264.191 262.778 264.191 262.778 264.190 262.779 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8157 21.71.66 21.4488 21.3411 21.0464 20.9454 20.6324 20.5252 20.1619 20.0485 19.7413 19.6278 | 23772 30959 39095 48187 58221 30961 48201 30970 48199 30972 48199 30962 48199 30962 48199 30969 30969 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07568 .07584 .07544 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 | .004
.005
.003
.005
.003
.005
.005
.005
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .662449494944 .92336329 | | 11001
11002
11003
11004
11005
11006
11007
11008
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 56.899 52.381 52.384 49.965 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.708 264.086 262.778 264.132 264.132 264.778 264.191 262.778 264.191 262.793 264.191 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5377 22.3547 22.3547 22.1374 22.03166 21.4488 21.3411 21.0464 20.9454 20.6324 20.6619 20.1619 20.0485 19.7413 19.6278 19.2287 | 23772 30959 39095 48187 58221 30961 48201 30970 48199 30972 48199 30962 48199 30962 48199 30969 48200 30956 48198 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 | .006
.005
.003
.005
.003
.005
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .066287 .06195 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624494944 .92336329 -1.07 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 56.899 54.638 54.639 52.381 52.384 49.968 47.930 47.932 45.671 43.617 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.132 262.778 264.132 262.778 264.191 262.793 264.191 262.795 264.318 262.857 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4488 21.3411 21.0464 20.9454 20.6324 20.1619 20.0485 19.7413 19.6278 19.2287 19.1232 18.7686 | 23772 30959 39095 48187 58201 30971 48200 30970 48199 30962 48199 30962 48199 30962 48199 30968 48198 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06459 .06411 | .004
.005
.003
.005
.003
.005
.004
.005
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944494492336329 -1.07 .27 | | 11001
11002
11003
11004
11005
11006
11007
11008
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 59.112 56.899 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 | K 262.180 262.731 263.325 263.926 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.086 262.778 264.191 262.778 264.191 262.779 264.190 262.779 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4488 21.3441 21.0464 20.9454 20.63252 20.1619 20.0485 19.7413 19.6278 19.6278 19.2687 19.1232 18.7686 18.6387 | */m 23772 30959 39095 48187 58221 30961 48201 30970 48199 30961 48199 30969 48190 30969 48190 30968 48190 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07679 .07568 .07584 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 .06286 | .004
.005
.003
.003
.005
.004
.005
.005
.005
.005
.005
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06155 .06155 | Deviation from Correlation percent -1.0656493511233500364411 -1.9007 -1.09662449494492336329 -1.07 -1.15 | |
11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11023 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 56.899 54.638 54.639 52.381 52.384 49.968 47.930 47.932 45.671 43.617 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.708 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 264.191 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4488 21.3411 21.0464 20.9454 20.6324 20.1619 20.0485 19.7413 19.6278 19.2287 19.1232 18.7686 | 23772 30959 39095 48187 58201 30971 48200 30970 48199 30962 48199 30962 48199 30962 48199 30968 48198 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06459 .06411 | .004
.005
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06401 .06401 .06287 .06195 .06166 .06019 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944494492336329 -1.07 .27 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11025 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 59.112 56.899 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 | K 262.180 262.731 263.325 263.926 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.086 262.778 264.191 262.778 264.191 262.779 264.190 262.779 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4488 21.3441 21.0464 20.9454 20.63252 20.1619 20.0485 19.7413 19.6278 19.6278 19.2687 19.1232 18.7686 18.6387 | */m 23772 30959 39095 48187 58221 30961 48201 30970 48199 30961 48199 30969 48190 30969 48190 30968 48190 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07679 .07568 .07544 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 .06206 .06178 .06178 | .004
.005
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06155 .06155 | Deviation from Correlation percent -1.0656493511233500364411 -1.9007 -1.09662449494492336329 -1.07 -1.15 | | 11001
11002
11003
11004
11005
11006
11007
11008
11010
11011
11012
11013
11014
11017
11018
11019
11020
11021
11022
11023
11024
11025
11025
11026
11027 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 56.897 54.638 54.639 52.384 49.965 47.930 47.930 47.930 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 264.979 262.702 264.096 262.778 264.132 264.191 262.793 264.191 262.795 264.820 262.795 264.420 262.795 264.420 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5377 22.3547 22.3547 22.3547 21.71.66 21.4488 21.3411 21.0464 20.9454 20.6324 20.6619 20.1619 20.0485 19.7413 19.6278 19.1232 18.7686 18.6387 18.2504 18.1198 | 23772 30959 39095 48187 58221 30961 48201 30970 48199 30962 48199 30962 48199 30962 48199 30969 48200 30956 48198 30968 48198 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 .06206 .06154 .06178 .06918 | .004
.005
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005
.004
.005 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06401 .06401 .06287 .06195 .06166 .06019 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624494944494492336329 -1.07 .27 1.15 .87 -1.10 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 61.108 61.110 59.112 56.897 56.899 54.638 54.639 52.381 52.384 49.968 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.658 262.775 263.888 262.672 263.979 262.702 264.020 262.702 264.096 262.778 264.132 262.778 264.131 262.793 264.191 262.793 264.191 262.795 264.391 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4498 21.3411 21.0464 20.9454 20.6324 20.1619 20.1619 20.1619 19.7413 19.6278 19.2487 19.1232 18.7686 18.6387 18.2504 18.1198 17.7052 | 23772 .30959 .48197 .58291 .30961 .48201 .30970 .48199 .30962 .48199 .30962 .48199 .30956 .48199 .30956 .48198 .30968 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06411 .06285 .06459 .06154 .06178 .060178 .065872 | .004
.005
.003
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.006
.006
.006
.006
.006
.006
.006 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 .06195 .06166 .06019 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .92336329 -1.07 .27 1.15 .87 -1.1052 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11026
11027
11028 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.899 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.639 52.384 49.965 47.932 45.670 45.671 43.619 41.525 41.527 39.451 | K 262.180 262.731 263.325 263.325 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.096 262.778 264.086 262.778 264.191 262.793 264.190 262.795 264.191 262.795 264.410 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 21.7166 21.4488 21.3441 21.0464 20.9454 20.63252 20.1619 20.0485 19.7413 19.6278 19.2487 19.1232 18.7686 18.6387 18.2504 18.1198 17.7052 17.5682 | 23772 30959 39095 48187 58221 30961 48201 30971 48199 30961 48199 30969 48200 30956 48191 30968 48191 30968 48191 30968 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07679 .07568 .07584 .07584 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 .06285 .06286 .06459 .06178 .06178 .06178 .06178 .06178 .06178 .06178 .06178 .06178 .06178 .06178 | .004
.005
.003
.003
.005
.005
.005
.005
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06155 .06155 .06166 .06019 .05860 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .92336329 -1.07 .1.15 .87 -1.1052 .78 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11027
11028 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 54.638 54.639 52.381 52.384 49.968 47.930 47.932 45.670 45.671 43.617 43.617 43.619 41.525 41.527 39.4451 37.255 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 264.724 264.020 262.724 264.020 264.798 264.086 262.778 264.132 262.778 264.131 264.191 262.793 264.191 262.795 264.318 262.795 264.318 262.991 264.470 262.991 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5877 22.3547 22.3547 22.3547 22.0390 21.8157 21.71.66 21.4488 21.3411 21.0464 20.9454 20.5252 20.1619 20.0485 19.7413 19.6278 19.2487 19.1232 18.7686 18.6387 18.2504 18.1198 17.7052 17.70582 17.70582 | 23772 30959 39095 48187 58221 30961 48201 30970 48199 30972 48199 30962 48199 30969 48200 30956 48198 30968 48198 30968 48198 30956 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07716 .07679 .07568 .07544 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06459 .06411 .06285 .06411 .06285 .06411 .06285 .06411 .06285 .06586 .06178 .06178 .06178 .05872 .05782 .05808 .05643 | .004
.005
.005
.005
.005
.005
.005
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07455 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 .06166 .06019 .05860 .05762 .05795 .05643 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .662449494944 .92336329 -1.07 .27 1.15 .87 -1.1052 .78 .68 | |
11001
11002
11003
11004
11005
11006
11007
11008
11010
11011
11012
11013
11014
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11029
11029
11029
11029
11029
11030
11031 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.110 59.112 56.897 54.638 54.639 52.384 49.965 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.668 262.775 263.888 262.672 263.979 262.724 264.020 262.708 264.191 264.191 262.778 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5377 22.3547 22.3547 22.3547 22.3547 22.3547 22.0366 21.4488 21.3411 21.0464 20.9454 20.6324 20.6619 20.1619 20.0485 19.7413 19.6278 19.1232 18.7686 18.6387 19.1232 18.7686 18.6387 18.2504 18.1198 17.7052 17.5682 17.6891 16.9516 | 23772 30959 39095 48187 58221 30971 48201 30977 48199 30962 48199 30962 48199 30962 48199 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 | Thermal Conductivity W/m.K .07654 .07668 .07679 .07564 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06154 .06154 .06178 .06918 .05872 .058762 .05808 .05643 .05643 | .004
.005
.003
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.006
.006
.006
.006
.006
.006
.006 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07276 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 .06195 .06195 .06195 .06195 .06166 .06019 .05860 .05762 .05795 .05643 .05472 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944494449444949 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11029
11029
11029
11020
11021
11026
11027
11028
11029
11030
11031
11030 | MPa 65.109 65.104 65.101 65.0 | K 262.180 262.731 263.325 263.958 264.678 262.672 263.888 262.672 263.979 262.702 264.070 262.708 264.086 262.778 264.132 262.778 264.131 262.793 264.191 262.793 264.191 262.795 264.191 262.795 264.191 262.795 264.191 262.795 264.191 262.795 264.191 262.795 264.191 262.795 264.191 262.795 264.190 262.795 264.190 262.795 264.471 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.1374 22.0390 21.8157 21.7166 21.4408 21.3411 21.0464 20.6324 20.1619 20.0465 19.7413 19.6278 19.2487 19.1232 18.7686 18.6387 18.1232 17.7682 17.7682 17.7682 17.76891 16.9916 | 23772 30959 39095 48187 58201 30971 48200 30970 48199 30962 48199 30962 48199 30962 48199 30964 48200 30956 48198 30968 48198 30968 48198 30968 48198 30968 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07679 .07568 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06154 .06178 .060178 | .004
.005
.005
.003
.003
.003
.003
.003
.003 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .92336329 -1.07 .15 .87 -1.1052 .78 .68 -1.67 .33 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11025
11025
11026
11027
11026
11027
11028
11029
11030
11031
11032
11033
11033 | MPa 65.109 65.105 65.104 65.101 65.098 63.123 63.124 61.108 61.112 59.112 56.899 52.381 54.638 54.638 54.638 54.638 54.638 54.638 54.638 54.639 52.384 49.965 47.932 45.670 45.617 43.619 41.525 41.527 39.449 37.256 35.188 | K 262.180 262.731 263.325 263.926 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.702 264.086 262.778 264.086 262.778 264.191 262.793 264.190 262.795 264.318 262.875 264.311 262.793 264.471 262.793 264.471 262.793 264.594 262.994 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.0390 21.8157 21.7166 21.4488 21.3411 21.0464 20.9454 20.6324 20.5252 20.1619 20.0485 19.7413 19.6278 19.2487 19.1232 18.7686 18.6387 18.2504 18.1988 17.7052 17.5682 17.5682 17.6891 16.4747 16.3971 | 23772 30959 39095 48187 58221 30961 30971 48201 30970 48199 30961 48199 30969 48200 30956 48191 30968 48191 30941 48181 30956 48197 30968 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07679 .07568 .07544 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06608 .06668 .06659 .06411 .06285 |
.0045
.0053
.0053
.0053
.0053
.0053
.0054
.0054
.0054
.0054
.0055
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065
.0065 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06155 .06155 .06166 .06019 .05860 .05762 .05795 .05643 .05472 .055443 .05389 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624494944 .92336329 -1.07 .27 1.15 .87 -1.1052 .78 .68 -1.67 .3327 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11029
11030
11031
11032
11033
11034 | MPa 65.107 65.105 65.104 65.101 65.098 63.124 61.108 61.110 59.112 56.897 54.639 52.381 49.965 47.932 45.671 43.6127 43.6127 43.6127 43.6125 41.527 37.256 35.188 35.188 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 263.979 262.724 264.020 262.708 264.108 262.778 264.132 262.778 264.191 262.778 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.795 264.318 262.857 264.471 262.911 264.471 262.987 264.471 262.987 264.471 262.987 264.605 | moi/L 22.7739 22.7324 22.6883 22.6817 22.9377 22.33547 22.33547 22.33547 22.3370 21.8157 21.7166 21.4488 21.4488 21.4464 20.9454 20.5252 20.1619 20.0485 19.627 19.1232 18.7686 18.6387 19.6287 19.1232 18.7686 18.6387 19.6287 19.1232 18.7686 18.6387 19.64747 19.8155 | 23772 30959 39095 48187 58221 30971 48201 30970 48199 30972 48199 30962 48199 30962 48198 30968 48198 30968 48181 30956 48197 30968 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .06068 .06459 .06154 .06178 .06178 .06178 .06178 .0618 .05485 .05483 .05485 .05483 .05485 | 0045
0005
0005
0005
0005
0005
0005
0005 | at a nominal Temperature of 263 k W/m.K .07661 .07680 .07665 .07708 .07664 .07576 .07576 .07452 .07435 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06658 .06461 .06401 .06287 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .061960 .05762 .057795 .05643 .05472 .05443 .05389 .05194 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .662449444944494492336367 .87 -1.1052 .78 .68 -1.67 .332790 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11034
11037 | MPa 65.109 65.105 65.104 65.100 65.101 65.098 63.124 61.108 61.110 59.112 56.897 54.639 52.388 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.668 262.775 263.888 262.672 264.020 262.702 264.709 262.708 264.191 264.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.190 262.793 264.190 262.795 264.818 262.8857 264.605 262.944 263.852 262.944 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5377 22.3547 | 23772 30959 39095 48187 58221 30971 48201 30977 48199 30962 48199 30962 48199 30962 48199 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 30968 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06415 .06206 .06154 .06178 .06918 .05872 .05808 .05485 .05483 .05395 .05189 .05189 | .004
.005
.003
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.006
.006
.006
.006
.006
.006
.006 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .061992 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624494449444944494449458710727 1.15 .87 -1.1052 .78 .68 -1.67 .332790 1.32 | | 11001
11002
11003
11004
11005
11006
11007
11010
11011
11012
11013
11014
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11033
11034
11033
11034
11033
11034
11033
11034
11033
11034
11033
11034
11033
11034
11037
11038 | MPa 65.109 65.105 65.104 65.109 65.108 63.124 61.108 63.124 61.112 56.899
54.638 52.381 52.384 49.968 47.968 47.968 47.968 47.961 43.617 43.617 43.617 43.617 43.618 37.256 35.188 32.864 28.357 | K 262.180 262.731 263.325 263.958 264.688 262.775 263.888 262.672 264.972 264.070 262.702 264.096 264.778 264.132 262.778 264.131 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.795 264.318 262.857 264.420 262.9911 264.471 262.9944 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 262.9987 264.568 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5871 22.4377 22.3547 22.3547 22.3547 22.3547 22.3547 22.3686 21.4498 21.3411 21.0464 20.9454 20.6324 20.1619 20.1619 20.162 20.16324 20.16324 20.7413 19.6278 19.7243 19.6278 19.7241 19.1232 18.7686 18.6387 19.7252 17.5682 17.7052 17.5682 17.7052 17.5682 17.7052 17.5682 17.7053 14.9493 14.1473 | 23772 .30959 .48197 .58201 .30961 .48201 .30970 .48199 .30962 .48199 .30962 .48199 .30956 .48198 .30956 .48198 .30956 .48198 .30956 .48198 .30956 .48198 .30956 .48198 .30956 | Thermal Conductivity W/m.K .07654 .07678 .07668 .07679 .07568 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06154 .06178 .060178 .060178 .060178 .060178 .060178 .060178 .050179 .05762 .05808 .05485 .05485 .05485 .05189 .05189 .05189 .05189 | .004
.005
.003
.003
.003
.003
.003
.005
.005 | at a nominal Temperature of 263 K W/m.K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07343 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .66244944 .92336329 -1.07 -1.15 .87 -1.1052 .78 .68 -1.67 .332790 1.3228 | | 11001
11002
11003
11004
11005
11006
11007
11008
11009
11010
11011
11012
11013
11014
11015
11016
11017
11018
11019
11020
11021
11022
11023
11024
11025
11026
11027
11028
11029
11030
11031
11032
11033
11034
11034
11034
11034 | MPa 65.109 65.105 65.104 65.100 65.101 65.098 63.124 61.108 61.110 59.112 56.897 54.639 52.388 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 47.930 | K 262.180 262.731 263.325 263.958 264.668 262.775 263.888 262.672 264.020 262.702 264.709 262.708 264.191 264.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.798 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.191 262.793 264.190 262.793 264.190 262.795 264.818 262.8857 264.605 262.944 263.852 262.944 | moi/L 22.7739 22.7324 22.6883 22.6412 22.5377 22.3547 | 23772 30959 39095 48187 58221 30971 48201 30977 48199 30962 48199 30962 48199 30962 48199 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 30968 48198 30968 | Thermal Conductivity W/m.K .07654 .07658 .07668 .07716 .07679 .07584 .07449 .07444 .07341 .07285 .07018 .07124 .06910 .07002 .06803 .06756 .06668 .06459 .06415 .06206 .06154 .06178 .06918 .05872 .05808 .05485 .05483 .05395 .05189 .05189 | .004
.005
.003
.003
.003
.003
.003
.003
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.004
.005
.006
.006
.006
.006
.006
.006
.006 | at a nominal Temperature of 263 · K W/m· K .07661 .07680 .07665 .07708 .07664 .07570 .07576 .07452 .07435 .07276 .07021 .07114 .06912 .06992 .06805 .06746 .06610 .06658 .06461 .06401 .06287 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .06195 .061992 | Deviation from Correlation percent -1.065649 .35 .1123 .3500 .36 .44 .11 -1.90 .07 -1.09 .6624494449444944494449458710727 1.15 .87 -1.1052 .78 .68 -1.67 .332790 1.32 | | 11040 | 26.404 | 262.485 | 13.3525 | .23763 | .04588 | .005 | .04591 | 47 | |-------------------------|----------------------------|-------------------------------|----------------------------|------------------|------------------|--------------|----------------------|------------------| | | | | | | | | | | | 11041 | 26.404 | 264.242 | 13.2108 | .39082 | .04622 | •005 | .04614 | .75 | | 11042 | 24.025 | 262.648 | 12.3112 | .23763 | .04403 | .007 | .04405 | .80 | | | | | | | | | | | | 11044 | 21.793 | 262.675 | 11.2747 | •23772 | •04136 | .005 | .04138 | 01 | | 11045 | 21.793 | 263.706 | 11.2006 | .30948 | .04152 | .005 | .04147 | •60 | | | | | | | | | | | | 11047 | 19.540 | 263.915 | 10.0856 | •30956 | .03951 | .005 | .03945 | 1.50 | | 11048 | 17.217 | 262.256 | 8.9910 | .17525 | .03638 | .010 | .03643 | ~.5 9 | | | | | | | | | | | | 11049 | 17.217 | 264.209 | 8.8791 | .30954 | .03679 | .012 | .03670 | .74 | | 11050 | 15.060 | 262.292 | 7.8326 | .17535 | .03443 | .006 | .03448 | •11 | | | | | | | | | | | | 11051 | 15.059 | 264.550 | 7.7221 | • 30954 | .03495 | .006 | .03483 | 1.69 | | 11052 | 12.982 | 262.556 | 6.6879 | .17522 | .03226 | •012 | .03230 | 37 | | | | | | | | | | 1.56 | | 11053 | 12.981 | 263.661 | 6.6424 | .23752 | .03290 | .005 | .03285 | | | 11054 | 10.801 | 261.734 | 5.5215 | .12244 | ,02991 | .008 | .03001 | -1.60 | | | | | | | 03063 | .007 | .03055 | . 55 | | 11055 | 10.800 | 263.934 | 5.4513 | ·23765 | | | | | | 11056 | 8.657 | 261.953 | 4.3487 | .12247 | .02837 | .008 | -02846 | 94 | | | | | | | | .003 | .02877 | •43 | | 11057 | 8.657 | 264.375 | 4.2916 | .23771 | .02888 | | | | | 11059 | 6.491 | 264.833 | 3.1513 | •23776 | .02703 | .003 | •02688 | 76 | | | 4.421 | 262.458 | 2.1268 | 12249 | .02588 | .007 | •02592 | •47 | | 11060 | | | | | | | | | | 11061 | 4,420 | 265.420 | 2.0977 | .23783 | .02585 | .003 | •02565 | 46 | | | | | | | 02568 | .004 | .02561 | 68 | | 11062 | 4.420 | 263.842 | 2.1129 | .17536 | | | | | | 11063 | 2.354 | 262.808 | 1.1059 | •12235 | .02452 | .008 | .02454 | - ڥ41 | | | | 264.284 | 1.0990 | .17530 | .02459 | .005 | .02449 | 58 | | 11064 | 2.354 | | | | | | | | | 11065 | 2.354 | 266.069 | 1.0908 | .23774 | .02481 | .004 | •02456 | 23 | Experimental | | Adjusted Thermal | Conductivity | | | | | | | Thermal | | at a nominal | Deviation | | _ | _ | _ | _ | _ | | | | | | Run Pt. | Pressure | Temperature | Density | Pawer | Conductivity | STAT | Temperature of 282.K | Trom
Correlation | | | | | | | | | W/m.K | percent | | | MPa | K | mal/L | W/m | W/m.K | | #/man | percent | | | | | | | | | | | | | | 901 050 | 93 4 964 | ***** | 07246 | 04.3 | 07252 | 4.3 | | 12001 | 65.415 | 281.052 | 21.4801 | .18921 | .07345 | .042 | .07352 | •43 | | 12002 | 65.413 | 281.663 | 21.4385 | .25644 | .07298 | .027 | .07300 | 03 | | | | | | | | | | | | 12003 | 65.415 | 282.236 | 21.4001 | .33390 | .07329 | .020 | .07327 | .55 | | 12004 | 65.415 | 282.894 | 21.3559 | 42150 | .07322 | .013 | .07316 | .64 | | | | | | | | | | | | 12005 | 65.415 | 283.682 | 21.3033 | -51942 | .07250 | .009 | •07238 | 12 | | 12006 | 63.305 | 281.666 | 21.1152 | .25635 | .07180 | •025 | •07182 | •18 | | | | _ | | | | | | | | 12007 | 63.306 | 283.619 | 20.9830 | •51933 | .07153 | •009 | .07141 | .35 | | 12008 | 61.205 | 281.653 | 20.7812 | .25637 | .07030 | •026 | •07033 | 04 | | | | | | | | | | .00 | | 12009 | 61.206 | 283.627 | 20.6465 | •51933 | .06994 | .010 | .06982 | | | 12010 | 59.061 | 281.667 | 20.4240 | .25632 | .06835 | •026 | .06837 | 84 | | | | | | | | | | .08 | | 12011 | 59.062 | 283.784 | 20.2782 | -51910 | .06857 | .010 | .06844 | | | 12012 | 57.008 | 281.656 | 20.0688 | •25629 | . 06749 | .025 | •06752 | ~. 11 | | | | | | | | .010 | | .57 | | 12013 | 57.008 | 283.803 | 19,9196 | .51909 | ,06755 | | .06742 | | | 12014 | 54.632 | 281.711 | 19.6332 | . 25623 | .06511 | •026 | .06513 | -1.29 | | | | | | | .06596 | .012 | .06588 | .39 | | 12015 | 54.633 | 283.067 | 19.5381 | .42106 | | | | | | 12016 | 52.671 | 281.828 | 19.2515 | .25616 | .06394 | •026 | .06395 | -1.01 | | | | | | | | | | | | 12017 | 52.673 | 283.111 | 19.1611 | •42109 | •06490 | .012 | 406482 | .83 | | 12018 | 50.496 | 281.742 | 18.8234 | .25621 | .06331 | •025 | .06333 | • 36 | | | | | | | | | | | | 12019 | 50.497 | 283.179 | 16.7212 | •42106 | •06298 | .011 | •06289 | •23 | | 12020 | 48.397 | 281.733 | 18.3838 | .25622 | .06088 | .024 | •06090 | -1.16 | | | | | | | | | | | | 12021 | 48,400 | 283.263 | 18.2747 | .42107 | . 06144 | .012 | .06135 | •16 | | 12022 | 45,987 | 281.924 | 17.8361 | .25612 | . 05883 | .022 | . 05884 | -1.67 | | | | | | | | | | | | 12024 | 42.975 | 281.847 | 17.1271 | 25619 | .05707 | .023 | •05708 | 91 | | 12025 | 42.976 | 283.453 | 17.0112 | .42105 | .05750 | .011 | .05740 | •26 | | | | | | | | | | | | 12026 | 40.671 | 281.993 | 16.5307 | .25613 | .05553 | •055 | • 05553 | 51 | | 12027 | 40.672 | 283.560 | 16.4180 | .42106 | .05567 | .012 | • 05556 | •13 | | | | | | | | | | | | 12028 | 38.676 | 282.025 | 15.9910 | .25614 | .05371 | .021 | •05371 | -1.04 | | 12029 | 38.676 | 283.650 | 15.8741 | .42103 | .05418 | .014 | .05407 | •24 | | | | | | | | | | | | 12030 | 36.592 | 282.024 | 15.3975 | 25620 | .05253 | .020 | •05253 | 17 | | 12031 | 36.593 | 283.727 | 15.2762 | .42111 | 05260 | .010 | .05248 | •37 | | | | | | | | | | | | 12032 | 34.472 | 282.134 | 14.7495 | .25613 | •05041 | .019 | .05040 | 98 | | 12033 | 34.473 | 283.935 | 14.6229 | •42094 | .05116 | .010 | •05103 | •92 | | | | | | | | | | | | 12034 | 32.259 | 282.205 | 14.0342 | .25610 | .04898 | .018 | •04897 | 20 | | 12035 | 32.260 | 284.024 | 13,9089 | .42101 | .04963 | .010 | .04950 | 1.51 | | | | | | | | | | | | 12036 | 30.141 | 282.251 | 13.3091 | .25614 | 04756 | .018 | .04754 | .54 | | 12037 | 30.141 | 284.241 | 13.1753 | .42102 | •04770 | .009 | . 04756 | 1.24 | | | | | | | | | | | | 12038 | 28.060 | 282.405 | 12.5475 | .25612 | .04554 | .019 | .04551 | .04 | | 12039 | 28.060 | 283.325 | 12.4874 | .33345 | 04584 | .012 | .04575 | .87 | | | | | | | | | | | | 12040 | 25.809 | 282.450 | 11.6844 | •25607 | .04378 | .017 | .04375 | . •46 | | 12041 | 25.809 | 283.382 | 11.6266 | .33348 | .04393 | .011 | .04384 | . 95 | | | | | | | | | | | | 12042 | 23.816 | 282.585 | 10.8737 | 25618 | .04177 | .017 | .04173 | 16 | | 12043 | 23.815 | 283.585 | 10.8149 | .33350 | 04258 | .011 | .04247 | 1.88 | | | | | | | | | | | | 12044 | 21.620 | 282.672 | 9.9425 | .25623 | .03997 | .016 | .03992 | •11 | | 12046 | 19.361 | 283.020 | 8.9304 | .25617 | .03739 | •018 | .03732 | -1.56 | | | | | | | .03599 | | | | | 12048 | 17.121 | 283.124 | 7.9062 | .25617 | | .015 | .03591 | 28 | | 12049 | 17.120 | 284.340 | 7.8546 | .33360 | .03661 | .011 | • 03644 | 1.44 | | | | | | | | | | | | 12050 | 14.964 | 283.409 | 6.8894 | +25617 | 03455 | .012 | .03444 | •60 | | 12051 | 14.964 | 284.651 | 6.8448 | •33362 | .03481 | .009 | .03461 | 1.29 | | | | | | | | | | | | | 12 0/0 | | 5.9869 | 25624 | .03276 | .013 | .03263 | 39 | | 12052 | 13.068 | 283.632 | | | | .020 | 00015 | | | | | | | .18899 | •03251 | • 020 | • 0.1240 | ~1.05 | | 12053 | 13.067 | 282.431 | 6.0237 | .18899 | .03251 | | •03248
03100 | | | | 13.067
10.991 | 282.431
282.647 | 6.0237
5.0258 | *18904 | .03105 | .019 | .03100 | 89 | | 12053
12054 | 13.067
10.991 | 282.431
282.647 | 6.0237
5.0258 | *18904 | .03105 | .019 | .03100 | 89 | | 12053
12054
12055 | 13.067
10.991
10.990 | 282.431
282.647
283.793 | 6.0237
5.0258
4.9971 | *18904
*25630 | .03105
.03156 | .019
.012 | .03100
.03142 | 89
.59 | | 12053
12054 | 13.067
10.991 | 282.431
282.647 | 6.0237
5.0258 | *18904 | .03105 | .019 | .03100 | 89 | | 12053
12054
12055 | 13.067
10.991
10.990 | 282.431
282.647
283.793 | 6.0237
5.0258
4.9971 | *18904
*25630 | .03105
.03156 | .019
.012 | .03100
.03142 | 89
.59 | | 12057 | 8.921 | 284.135 | 4.0122 | . 25626 | 02002 | | | _ | |---------|----------|-------------|---------|---------|----------------|------|----------------------|------------------| | 12058 | 6.795 | | | | .02983 | .012 | .02966 | - .52 | | | | 283.111 | 3.0338 | .18906 | .02871 | .018 | .02862 | • 44 | | 12059 | 6.794 | 284.631 | 3.0131 | • 25626 | . 02856 | .011 | .02835 | 43 | | 12060 | 4.757 | 283.445 | 2.0925 | .18899 | •02717 | .017 | .02705 | 95 | | 12061 | 4.757 | 284.994 | 2.0791 | .25628 | .02727 | .012 | .02703 | 98 | | 12062 | 2.744 | 281.135 | 1.2002 | .08534 | .02620 | .055 | | | | 12063 | 2.743 | 282.381 | 1.1942 | 13209 | | | .02627 | •04 | | 12064 | | | | | .02609 | .029 | •02606 | 74 | | | 2.743 | 283.912 | 1.1869 | .18907 | •02621 | .017 | • 02606 | 71 | | 12065 | 2.743 | 285.643 | 1.1790 | • 25634 | •02649 | .011 | .02620 | 13 | | 12066 | 2.743 | 287.789 | 1.1691 | .33376 | .02661 | .008 | .02615 | 27 | | | | | | | | **** | ******* | - • 6. 1 | | | | | | | Experimental | | Adjusted Thermal | Conductivités | | | | | | | Thermal | | at a nominal | | | Run Pt. | Pressure | Temperature | Density | Ромег | | | | Deviation | | | MPa | K | | | Conductivity | STAT | Temperature of 298.K | from Correlation | | | nra | ~ | mol/L | W/m | W/m-K | | ¥7m•X | percent | | 4001 | | | | _ | | | | | | 6001 | 64.203 | 297.095 | 20.2487 | • 35206 | • 06909 | .003 | •06914 | 29 | | 6002 | 64.199 | 297.774 | 20.2057 | .44449 | •06915 | .003 | .06916 | 02 | | 6003 | 64.199 | 298.586 | 20.1552 | .54758 | .06851 | .003 | .06848 | 75 | | 6004 | 62.467 | 297.134 | 19.9685 | .35117 | .06800 | .003 | | | | 6005 | 62.468 | 298.585 | 19.8777 | 54649 | | | .06805 | 35 | | 6006 | | | | | .06769 | •002 | .06765 | 45 | | | 60.411 | 297.030 | 19.6344 | .35189 | •06657 | .003 | •06663 | 66 | | 6007 | 60.411 | 298.451 | 19.5449 | •54743 | •06593 | .016 | • 06590 | -1.28 | | 6008 | 58.437 | 297.041 | 19.2938 | .35114 | .06538 | .004 | .06544 | 62 | | 6009 | 58.440 | 298.803 | 19.1828 | .54618 | .06523 | .002 | .06518 | | | 6010 | 56.365 | 297.039 | 18.9228 | .35131 | .06440 | .004 | | 42 | | 6011 | 56.368 | 298 652 | 18.8207 | | | | •06446 | - .13 | | 6012 | | | | • 54650 | •06378 | .003 | .06374 | 71 | | | 54.314 | 297.128 | 18.5343 | .35134 | •06276 | .003 | .06282 | 64 | | 6013 | 54.319 | 298.639 | 18.4386 | •54672 | .06169 | .016 | .06165 | -2.02 | | 6014 | 52.215 | 297.135 | 18.1246 | .35139 | .06124 | .005 | .06130 | 91 | | 6015 | 52.225 | 298.640 | 18.0300 | •54675 | .06098 | .020 | •06094 | | | 6016 | 50.117 | 297.089 | 17.6998 | .35145 | .05996 | .003 | | 99 | | 6017 | 50.124 | 298.681 | 17.5989 | | | | •06002 | 77 | | | | | | .54678 | .05988 | .024 | •05984 | 54 | | 6018 | 47.824 | 297.251 | 17.1987 | .35141 | .05852 | .003 | • 058 57 | 58 | | 6019 | 47.829 | 298.727 | 17.1048 | •54687 | •05917 | .039 | •05912 | .85 | | 6020 | 45.725 | 297.282 | 16.7246 | .35144 | . 05644 | .005 | .05649 | -1.74 | | 6022 | 43.758 | 297.263 | 16.2620 | .35145 | .05539 | .003 | .05544 | | | 6024 | 41.669 | 296.504 | 15.7944 | .27008 | .05420 | .005 | | -1.21 | | 6025 | 41.676 | 298.353 | 15.6777 | .44368 | | | •05429 | 88 | | 6026 | 41.680 | | | | .05402 | •002 | .05400 | ֥82 | | | | 298.257 | 15.6847 | •44370 | •05423 | •002 | •05421 | 46 | | 6027 | 39.538 | 296.687 | 15.2276 | •26993 | .05271 | .004 | • 05279 | 78 | | 6028 | 39.543 | 298.542 | 15.1112 | • 44354 | •05261 | .005 | .05258 | 59 | | 6029 | 37.303 | 296.617 | 14.6179 | .27004 | .05125 | .004 | .05134 | 48 | | 6030 | 37.310 | 298.523 | 14.5004 | .44369 | .05109 | .003 | | | | 6031 | 35.010 | 296.718 | 13.9451 | -27002 | | | -05106 | 42 | | 6032 | 35.019 | | | | .04911 | .004 | .04919 | -1.36 | | | | 298.838 | 13.8179 | .44373 | .04932 | .006 | •04927 | ~. 56 | | 6033 | 32.198 | 296.804 | 13.0695 | .27004 | •04748 | •003 | •04755 | 36 | | 6034 | 32.201 | 298.890 | 12.9468 | •44376 | .04735 | .007 | • 04730 | 29 | | 6035 | 29.737 | 296.957 | 12.2486 | .27004 | .04559 | .005 | •04565 | ~.37 | | 6036 | 29.741 | 298.897 | 12.1392 | .44389 | .04522 | 012 | | | | 6037 | 27.356 | 297.137 | 11.4073 | 26989 | .04323 | .004 | .04516 | 91 | | 6038 | 27.359 | 299.036 | | | | | .04328 | -1.58 | | 6039 | | | 11.3056 | •44376 | .04447 | .026 | •04441 | 1.47 | | | 24.774 | 297.273 | 10.4489 | .26999 | .04168 | .003 | .04173 | 57 | | 6041 | 22.553 | 297.512 | 9.5790 | .27000 | •03972 | .004 | •03975 | -1.23 | | 6043 | 19.670 | 296.548 | 8.4557 |
•19929 | •03778 | .003 | • 03788 | 69 | | 6044 | 19.674 | 298.815 | 8.3640 | .35153 | .03793 | .002 | .03787 | 28 | | 6045 | 17.516 | 296.704 | 7.5444 | .19910 | .03647 | .003 | | | | 6046 | 17.517 | 299.063 | | | | | .03656 | •06 | | 6047 | 14.725 | | 7.4595 | •35132 | -03598 | .011 | .03590 | -1.37 | | | | 297.120 | 6.3291 | .19909 | .03409 | .003 | .03416 | -1.11 | | 6048 | 14.728 | 299.312 | 6.2656 | .35136 | .03423 | .034 | .03413 | 89 | | 7065 | 13.018 | 296.033 | 5.6124 | .19829 | .03291 | .003 | •03306 | -1.08 | | 7015 | 12.970 | 297.328 | 5.5577 | .19887 | .03315 | .013 | .03320 | 41 | | 7026 | 12.973 | 298.842 | 5.5202 | .26978 | .03300 | .004 | •03294 | | | 6049 | 12.064 | 297.118 | 5.1656 | .19913 | .03225 | | | -1.05 | | 6051 | 9.725 | 297.510 | | | | .003 | .03232 | -1.33 | | | | | 4.1301 | .19917 | •03090 | .002 | .03094 | -1.04 | | 6053 | 6.981 | 297.780 | 2.9302 | 19916 | .02933 | .003 | •02935 | -1.03 | | 6055 | 4.807 | 298.104 | 1.9942 | •19920 | .02611 | •002 | .02810 | -1.31 | | 6057 | 2.590 | 298.652 | 1.0591 | .19920 | .02711 | .001 | .02706 | -1.08 | | 6058 | 2.590 | 298.746 | | .19918 | .02716 | .002 | .02710 | | | | | · · · · · | | | | | 402110 | 92 | | | | | | | | | | | | | | | | | Experimental
Thermal | | Adjusted Thermal | Conductivity
Deviation | |--------------|------------------|--------------------|--------------------|------------------|-------------------------|------|----------------------|---------------------------| | Run Pt. | Pressure | Temperature | Density | Power | Conductivity | STAT | Temperature of 310.K | | | | MPa | K | mol/L | W/m | W/m.K | | ₩/m∗K | percent | | | | | | F4 770 | 04.003 | .005 | .06827 | •91 | | 8001 | 65.257 | 310.587 | 19.6011
19.7033 | .56770
.36506 | .06831
.06786 | .009 | .06793 | 13 | | 8002
8003 | 65.259
63.342 | 308.839
310.480 | 19.7033 | .56723 | •06694 | .005 | .06691 | .47 | | 8004 | 63.344 | 308.792 | 19.4012 | 36479 | .06741 | .008 | .06749 | .81 | | 8006 | 61.375 | 308.882 | 19.0717 | 36468 | .06611 | .009 | .06619 | •59 | | 8007 | 59.241 | 310.711 | 18.5987 | .56714 | .06409 | .005 | .06404 | 23 | | 8008 | 59.242 | 308.862 | 18.7081 | .36470 | | .008 | .06452 | 05 | | 8010 | 57.077 | 308.862 | 18.3229 | .36476 | | .009 | •06322 | 07 | | 8011 | 54.792 | 310,911 | 17.7771 | .56753 | .06271 | .004 | .06264 | 1.82 | | 8012 | 54.793 | 309.089 | 17.8851 | .36489 | •06203 | .007 | •06210 | .41 | | 8013 | 52.489 | 311.035 | 17.3223 | • 56756 | | •004 | .06106 | 1.61 | | 8014 | 52.491 | 309.025 | 17.4417 | .36527 | | •007 | •06051 | .10 | | 8015 | 52.491 | 308.271 | 17.4869 | .28070 | | .012 | .06088 | •48 | | 8016 | 50.052 | 310.173 | 16.8763 | .46084 | | .006 | • 05954 | 1.38 | | 8017 | 50.052 | 308.313 | 16.9873 | .28064 | | .011 | •05921 | •27
•14 | | 8018 | 47.901 | 310.206 | 16.4148
16.5255 | *46099 | | .010 | .05742
.05763 | 07 | | 8019 | 47.903 | 30B 348 | 15.9068 | .28065
.46112 | | .006 | .05674 | 1.51 | | 8020
8021 | 45.636
45.636 | 310.215
308.329 | 16.0184 | .28066 | | .010 | .05489 | -2.38 | | 8023 | 43.622 | 308.430 | 15.5395 | .28069 | | .010 | .05453 | 60 | | 8024 | 41.256 | 310.447 | 14.8389 | .46100 | | .006 | .05361 | 1.21 | | 8025 | 41.257 | 308.431 | 14,9561 | .28065 | | .010 | .05321 | 12 | | 8027 | 38.927 | 308.644 | 14.3382 | .28054 | | .010 | .05178 | .24 | | 8029 | 36.437 | 308.614 | 13.6564 | .28059 | .04993 | .009 | .05006 | .23 | | 8030 | 34.164 | 310.856 | 12.8761 | •46090 | | .005 | .04927 | 2.42 | | 8031 | 34.165 | 309.786 | 12.9342 | .36514 | | .006 | .04862 | .84 | | 8032 | 34.167 | 308.695 | 12.9943 | .28059 | | .009 | .04812 | - .48 | | 8033 | 34.167 | 307.855 | 13.0408 | .20711 | | .015 | • 04685
• 04706 | -3.44
1.10 | | 8035 | 31.616 | 308.826 | 12.2078 | .28068
.28066 | | .008 | .04405 | 1.26 | | 8039 | 27.317 | 308.994 | 10.7855
10.8309 | .20711 | | .013 | .04318 | 94 | | 8040
8041 | 27.317
24.993 | 308.051
310.356 | 9.9083 | .36489 | | .006 | .04260 | 2.02 | | 8043 | 24.991 | 308.105 | 10.0085 | .20706 | | .011 | .04215 | •52 | | 8045 | 22.377 | 308.112 | 9.0452 | 20698 | | .011 | .04018 | •20 | | 8046 | 20.111 | 310.744 | 8.0806 | .36507 | | .005 | .03892 | 1.41 | | 8047 | 20.111 | 308.305 | 8.1701 | .20700 | .03813 | .011 | .03829 | →. 62 | | 8049 | 17.519 | 308.452 | 7.1418 | .20696 | .03619 | .011 | .03633 | -1.23 | | 8051 | 15.214 | 308.654 | 6.2040 | .20704 | | .010 | .03534 | •19 | | 7084 | 13.617 | 309.141 | 5.5380 | .14525 | | .016 | .03421 | 15 | | 7085 | 13.617 | 310.333 | 5.5096 | .20773 | | •009 | .03417 | 13 | | 7086 | 13.618 | 311.626 | 5.4794 | -28135 | | .006 | .03443 | •77
-•53 | | 7094 | 13.620 | 309.078 | 5.5407 | -14507 | | .016 | .03408
.03422 | 00 | | 7095 | 13.620 | 310.215 | 5.5135
5.4826 | .20752 | | .006 | .03424 | .20 | | 7096
7104 | 13.620 | 311.525
307.822 | 5.5499 | 14464 | | .016 | .03411 | 50 | | 7105 | 13.569
13.569 | 308.681 | 5.5291 | .20712 | | .010 | .03415 | 28 | | 7106 | 13.569 | 310.149 | 5.4941 | .28055 | | .006 | .03422 | •07 | | 7114 | 13.574 | 307.657 | 5.5559 | 14486 | | .016 | .03413 | +.45 | | 7115 | 13.574 | 308.760 | 5.5293 | .20725 | | .010 | .03397 | 80 | | 7116 | 13.574 | 310.130 | 5.4969 | .28081 | 03427 | .007 | •03426 | .18 | | 8 0 5 5 | 12.980 | 308.855 | 5.2827 | .20689 | | .010 | .03374 | 40 | | 8056 | 10.694 | 310.570 | 4.3068 | .28037 | | •006 | .03261 | •42 | | 8057 | 10.694 | 307.811 | | .14471 | | .014 | .03222 | -,99
- 01 | | 8058 | 8.434 | 310.857 | 3.3751 | .28051 | | •006 | .03120 | 01
01 | | 8059 | 8.434 | 308.026 | 3.4135
3.3966 | .14473 | | .013 | .03097
.03102 | 91
66 | | 8060 | 8.434
6.282 | 309.260
311.318 | 2.4926 | .20701
.28042 | | .005 | .02993 | 40 | | 8061
8062 | 6.282 | 309.588 | 2.5090 | 20703 | | .008 | .02984 | 76 | | 8063 | 6.282 | 308.167 | 2.5227 | 14471 | | .015 | 02986 | 76 | | 8064 | 4.015 | 311.862 | 1.5766 | 28042 | | .006 | .02885 | 20 | | 8065 | 4.015 | 310.019 | 1.5868 | 20703 | | .008 | .02880 | 43 | | 8066 | 4.015 | 308.320 | 1.5966 | .14474 | | .014 | .02878 | 52 | | 8067 | 2.046 | 312.535 | .7947 | .28032 | | •005 | .02823 | •93 | | 8068 | 2.045 | 310.562 | •7998 | 20695 | | .007 | .02820 | •78 | | 8069 | 2.045 | 308.833 | .8045 | .14468 | .02794 | .013 | .02803 | •17 | | | | | | | | | | | # Measurements of the Octanol/Water Partition Coefficient by Chromatographic Methods Stanley P. Wasik,* Yadu B. Tewari,* Michele M. Miller* National Bureau of Standards, Washington, DC 20234 and ### J. H. Purnell Department of Chemistry, University College of Swansea, Swansea, Wales, U.K. June 3, 1982 A theoretical relationship is developed to provide a quantitative definition of hydrophobicity using established theoretical and semi-empirical relationships. A method of predicting partition coefficients of relatively water-insoluble third components between water and an immiscible second component is devised and tested. Comparison with experimental data for four classes of compounds in the water/n-octanol system at 25° C shows excellent agreement, indicating that values for substances for which direct determination is experimentally precluded can be calculated with confidence. Key words: Activity coefficients; alkybenzenes; gas chromatography; octanol/water partition coefficients. #### 1. Introduction In recent years there has been an increased interest in the use of hydrophobic parameters to study the fate of toxic substances in the marine environment since the ability of organic compounds to bioconcentrate is believed to depend upon the partition behaviour of molecules between lipid and aqueous phases [1,2].1. An important and simplifying observation has been that by Neely, Branson and Blau [1] who demonstrated that bioconcentration factors for chlorobenzenes and chlorophenols between trout muscles and dilute solutions in water could be successfully correlated with their partition coefficients in the n-octanol/water system, K_{0/w}. Subsequently, Dunn and Hansch [3] compiled hydrophobic interaction data for a large number of organic compounds and showed that these could, indeed, be quantitatively correlated with partition coefficients of organic/water systems. The weight of evidence has led Leo [4] to suggest not only that hydrophobicity is the most important parameter in bioaccumulation and biotransport but that this can be confidently determined in terms of octanol/water partition coefficients. Because of the thousands of compounds being studied as potential hazards to the environment through bioaccumulation, simple economics makes it desirable to devise some system whereby we measure values of $K_{o/w}$ for key compounds which may be used to calculate values for related compounds. In the only approach to date, Hansch, Quinlan and Lawrence [5] have developed a method for estimating $K_{o/w}$ based on additive group contributions; these group contributions or " Π values" being as defined by eq (1), $$\Pi_{x} = \log K_{0/w}^{x} - \log K_{0/w}^{h} \tag{1}$$ where $K_{0/w}^x$ and $K_{0/w}^h$ are the octanol/water partition coefficients for the derivative and the parent compound, respectively. Not surprisingly, in the light of the numerous such correlations established in GLC studies [6], Π values are often additive, and the method has met with acceptance. However, because of steric, electronic and hydrogen bonding effects there are many series of compounds for which the method fails. Some alternative would, therefore, be useful, particularly if the correlation method involved real and measurable physical properties of the molecules concerned rather than a purely empirical set of parameters. This paper outlines one such approach and an indication of its applicability. Partition coefficients are generally determined by some variant on the traditional shake-flask method. This method is slow, tedious, often wasteful, and demanding in the standard of purity of materials it requires.
Conse- ^{*}Center for Chemical Physics, National Measurement Laboratory. ¹Figures in brackets indicated literature references at the end of this paper. quently there have been many attempts to develop chromatographic methods to which, in principle, and normally in practice, none of the above objections apply. In the method presented in this paper $K_{o/w}$ is defined, as proved later, by eq (2), $$K_{o/w} = \gamma_{\phi}^{w}/\gamma_{\phi}^{o} \tag{2}$$ where γ_{ϕ}^{w} and γ_{ϕ}^{o} are the activity coefficients at infinite dilution, based on volume fraction, for the solute in water and n-octanol, respectively. The quantity, γ_{ϕ}^{w} , is calculated from the solute aqueous solubility, C_{w} , and the solute molar volume, V[7], and γ_{ϕ}^{o} is determined from the corrected retention volume of the solute eluting from a column containing n-octanol as the stationary phase. Thus $K_{o/w}$ (at infinite dilution) can be calculated from γ_{ϕ}^{w} and γ_{ϕ}^{o} , which can be measured by two independent methods having all the advantages of the chromatographic approach, while the recognition of eq (2) opens the route to the alternative approach to be described. # 2. Theoretical The octanol/water partition coefficient, $K_{o/w}$, is defined as the equilibrium ratio of the molar concentration of solute x in octanol, C_o , and the concentration in water, C_w , in an octanol/water system, viz. $$K_{o/w} = \frac{C_o}{C} \tag{3}$$ But, self evidently, K_{o/w} may also be defined by eq (4) $$K_{o/w} = \frac{K_{a/o}}{K_{a/w}} \tag{4}$$ where $K_{a/o}$ is the air/octanol (saturated with water) and $K_{a/w}$ is the air/water (saturated with octanol) partition coefficient. GLC theory yields the expression for $K_{a/o}$ $$K_{a/o} = \frac{C_o RT}{P} = \frac{n_x RT}{(V_x + V_o + V_w)P}$$ (5) where n_x is the number of moles of solute x in the octanol (saturated with water), V_x , V_o and V_w are the volumes of solute, octanol and water, in the octanol phase, respectively, R is the gas constant, and P is the partial pressure of solute x above the solution at temperature, T. For an ideal vapour the ratio P/P° , where P° is the solute saturation vapour pressure, is equal to the activity (a). We may define the activity in terms of any quantity that defines relative amount, and an appropriate activity coefficient, e.g., we may write, $$a = \gamma_{xx} = \gamma_{\phi} \Phi = \gamma_{w} W = \gamma_{c} C / C^{o}$$ (6) where x represents mole fraction, ϕ the volume fraction, W the weight fraction, and C/C° the ratio of concentration in solution to that in the pure solute liquid. Although the first of these definitions is the one most widely used we choose the second for reasons that will emerge. Thus, setting $$\frac{P}{P^{\circ}} = \phi \gamma_{\phi} \tag{7}$$ substitution for P in eq (5) yields $$K_{a/o} = \frac{n_{w}}{V_{x} + V_{o} + V_{w}} \bullet \frac{RI}{\gamma_{\phi}^{o} \Phi^{o}} = \frac{RT}{V(x)\gamma_{\phi}^{o} P^{o}}$$ (8) where γ_{ϕ}^{W} is the activity coefficient in water saturated with n-octanol. Provided there is no significant excess volume of mixing in either solvent, the normal solution, $$K_{a/w} = \frac{RT}{V(x)\gamma_b^w P^o}$$ (9) where γ_{ϕ}^{w} is the activity coefficient in water saturaterd with n-octanol. Provided there is no significant excess volume of mixing in either solvent, the normal solution, $$K_{o/w} = \gamma_{\phi}^{w}/\gamma_{\phi}^{o} \tag{10}$$ It remains only to emphasize again that γ_{ϕ}^{o} and γ_{ϕ}^{w} are values. An immediate and obvious attraction of eq (10) is the absence of explicit solvent parameters, which is not the case if γ_{x} is used. # 3. Dependence of the thermodynamic functions associated with solute partitioning between an organic and an aqueous phase on vapour pressure. Hoare and Purnell [8] have shown that for solutes of similar chemical structure the GLC specific retention volume of solute x, $V_g(x)$, is related to the saturation vapour pressure of the solute. P^o , by the expression $$\log V_g^0(\mathbf{x}) = -a \log P^0 + \text{constant} \tag{11}$$ where a is a series constant. The validity of eq (11) has subsequently been further established for a wide range of chemical types of both solvent and solute [9, 10, 11] and in a summary by Purnell [8]. In so far as data are available there seems to be no recorded exception to the rule. Further since $$V_g^o(x) = \frac{RT}{\gamma_\phi P^o V(x)\varrho}$$ where ϱ is the solvent density, eq (11) yields $$\log \gamma_{\phi}^{o} V(\mathbf{x}) = (a^{o} - 1) \log P^{o} + \text{constant}$$ (12) where a^0 is the slope of the log $V_g^0(x)$ vs log P^0 plot for each series of solutes in *n*-octanol. In similar manner we obtain $$\log \gamma_{\phi}^{\mathbf{w}} V(\mathbf{x}) = (a^{\mathbf{w}} - 1) \log P^{\phi} + \text{constant}$$ (13) where a^{w} is the slope of the log $V_{g}(x)$ vs log P^{o} plot for each series of solutes in water. Combining eqs (10), (12), and (13) we obtain $$\log K_{o/w} = (a^o - a^w) \log P^o + \text{constant}$$ (14) Thus for solutes of similar chemical structure the thermodynamic functions, $\log P^{\rm o}$, $\log \gamma_{\phi}^{\rm o} V({\bf x})$ and $\log \gamma_{\phi}^{\rm o} V({\bf x})$, associated with the partitioning of a solute between an organic and aqueous phase may each be expressed in the form $$function = B + A \log P \tag{15}$$ where B and A are numerically defined by the function being considered. #### 4. Results The solute activity coefficients in octanol, γ_{ϕ}° and in water γ_{ϕ}^{W} listed in columns 1 and 2 of table 1 were obtained from an earlier publication of Wasik et al (12). γ_{ϕ}° were calculated from the solute specific retention volume V_{g}° , obtained from retention times of solutes eluting from a GC column containing n-octanol as the stationary phase. γ_{ϕ}^{W} values were calculated from solubility data using the following equation $$\gamma_{\phi}^{W} = \frac{1}{\phi_{-}} \tag{16}$$ where ϕ_w is the solute aqueous solubility in volume fraction. The last two columns show a comparison between the calculated K $_{\text{O/w}}$ (using eq (10)) and the experimental values. The agreement between the two sets of data is excellent. TABLE 1. Solute Activity Coefficients and Octanol/Water Partition Coefficients at 25.0°C. | | | | Log | K _{o/w} | |-----------------|---------|---|-------------------------|------------------| | Solute | Log you | Log y ^w (Generator column /HPLC or GC) | Calculated ^a | Experimental | | n-Pentane | 0.555 | 4.19 | 3.63 (3.68) | 3.62 | | n-Hexane | .530 | 4.73 | 4.20 (4.22) | 4.11 | | n-Heptane | .517 | 5.28 | 4.76 (4.77) | 4.66 | | n-Octane | .512 | 5.80 | 5.29 (5.29) | 5.18 | | 1-Hexene | .504 | 3.98 | 3.48 (3.47) | 3.39 | | 1-Heptene | .491 | 4.58 | 4.09 (3.07) | 3.99 | | 1-Octene | .479 | 5.24 | 4.76 (4.73) | 4.57 | | 1-Nonene | .470 | 5.81 | 5.34 (5.30) | 5.15 | | Toluene | .509 | 3.17 | 2.66 (2.66) | 2.65 | | Ethylbenzene | .505 | 3.66 | 3.15 (3.15) | 3.13 | | n-Propylbenzene | .494 | 4.22 | 3.73 (3.71) | 3.69 | | Ethylacetate | .621 | 1.15 | 0.53 (0.64) | 0.68 | | n-Propylacetate | .534 | 1.64 | 1.11 (1.13) | 1.24 | | n-Butylacetate | .425 | 2.15 | 1.73 (1.64) | 1.82 | ^aValues in parentheses were calculated using the hydrophobicity equation (eq 17). #### 5. Discussion Our approach of defining $K_{o/w}$ in terms of volume fraction based activity coefficients has several important consequences. First, the infinite dilution coefficients log $K_{o/w}$, log γ_{ϕ}^{o} , and log γ_{ϕ}^{w} for a given solute type are clearly described by a linear relationship with the solute saturation vapour pressure. The extent to which this is true may be gauged by consideration of the values of the correlation coefficients, r, listed in table 2 derived from data of table 1 via linear regression as a consequence of the above. The data in table 1 indicate that values of $\log \gamma_{\phi}^{\text{W}}$ are large and change rapidly with $\log P^{\circ}$; whereas, $\log \gamma_{\phi}^{\circ}$ are much smaller and remain fairly constant (0.510 \pm 0.045) for all compounds. Thus the relevant values of $\log K_{\text{O/W}}$ are determined by $\log \gamma_{\phi}^{\text{W}}$. Our approach leads us to a quantitative theoretical definition of the hitherto empirical concept of hydrophobicity, H, $$H = \log K_{\text{o/w}} = \log \gamma_{\phi}^{\text{w}} \cdot 0.510$$ $$= \log \gamma_{\phi}^{\text{w}} \cdot k$$ (17) The numerical constant k will vary for different solvents which means that H can be defined with respect to solvents other than n-octanol. The values of hydrophobicity (H) calculated using eq (17) are listed in table 1 in parenthesis. A quantitative definition of H is TABLE 2. Coefficients of the Regression Equation and the Coefficient of Correlation for the Solute | Type of
Correlation | Type of
Solute | Slope | Inter-
cept | Coefficient of
Correlation
(r) | |--|-------------------|---------|----------------|--------------------------------------| | $\log K_{\text{o/w}} = A \log P^{\circ} + B$ | | | = | | | | Alkanes | -0.9957 | 6.298 | 0.999 | | | Alkenes | -1.1400 | 5.981 | .999 | | | Aromatics | -0.8809 | 3.770 | .998 | | | Acetates | -0.7700 | 2.484 | .999 | | $\log K_{o/w} = k_1 n_c + k_2$ | | | | | | | Alkanes | 0.5230 | 0.993 | 0.999 | | | Alkenes | .5860 | -0.1200 | .999 | | | Aromatics | .5200 | 2.117 | 999 | | | Acetates | .5700 | -0.4633 | .999 | | $\log K_{\text{o/w}} = k_3 T_b + k_4$ | | | | | | | Alkanes | 0.01748 | -1.8210 | 0.998 | | | Alkenes | .02110 | -3.7309 | .999 | | | Aromatics | .02136 | -5.5677 | .997 | | | Acetates | .02306 | -7.3981 | .999 | important in order to correlate other solute
properties for estimation purposes such as bioconcentration and soil adsorption. The advantages in using a log γ_{ϕ}^{w} instead of log $K_{o/w}$ in defining H are: (1) solubility data are more readily available in the literature than $K_{o/w}$ data, and (2) γ_{ϕ}^{w} is independent of any solvent/water system. The utility of the gas chromatographic technique for measuring activity coefficients in organic solutions and the validity of the data obtained are now well established. The technique is particularly applicable to measurements at infinite dilution, the condition of primary interest and least accessible otherwise. There are several important advantages to this method for measuring γ_{k}^{0} : (1) the speed with which the measurements are made, (2) the accuracy of the measurements, (3) the measurements are made at infinite dilution, and (4) several solutes may be injected into the gas chromatograph simultaneously thus increasing the productivity rate. Although absolute you value may be obtained by this method, the method is best suited for measuring values relative to some carefully studied standards because of the relatively high volatility of octanol. In the octanol/water system at equilibrium the water phase is saturated with octanol(wo), and the octanol phase is saturated with water(ow). In order to derive an expression relating $K_{\alpha/w}$ to the solute aqueous solubility, we assume that $\gamma_{\phi}^{\text{ow}} \cong \gamma_{\phi}^{\text{o}}$ and $\gamma_{\phi}^{\text{ow}} \cong \gamma_{\phi}^{\text{w}}$ where γ_{ϕ}^{w} and γ_{ϕ}^{o} are the solute activity coefficients in pure water and pure octanol, respectively. The extent to which these assumptions are valid may be judged by the very good agreement between $K_{\text{o/w}}$ values calculated via eq (10) and experimental values (table 1) measured by a generator column method [12,13]. The above method for determining $K_{\rm o/w}$ is best suited for volatile compounds. There are drawbacks to the method for relatively nonvolatile solutes. These compounds depending on their $\gamma_s^{\rm o}$ value could require a relatively long time to elute through the GC column, thus making the method impractical. For the cases where vapour pressure data are not available, Purnell has shown that carbon number (n_c) or boiling point (T_b) may be substituted for $\log P^{\circ}$, i.e. $$\log K_{\rm o/w} = k_1 n_c + k_2 \tag{18}$$ $$\log K_{o/w} = k_3 T_b + k_4 \tag{19}$$ where the k's are constants. Equation (19) is particularly useful when the homologous series cannot be described by the carbon numbers. The results listed in the table 2 show that there is an excellent correlation with these quantities. In summary it is clear that the chromatographic technique, particularly in association with the developments reported here, offers a primary route to rapid collection of large volumes of reliable values of $K_{\rm o/w}$ and other thermodynamic functions associated with the partitioning of organic material in the environment. The infinite dilution method proposed in this paper has all the advantages of a chromatographic method in that there are no stringent demands placed on the purity of the solute or the amount of material required to determine $K_{\rm o/w}$. The authors gratefully acknowledge the financial support of their work by the Environmental Protection Agency. #### 6. References - [1.] Neely, W.B.; Branson, D.R.; Blau, G.E. Partition coefficient to measure bioconcentration potential of organic chemicals in fish. Environ. Sci. Technol. 8(13): 1113-1115; 1974 December. - [2.] Branson, D.R. Proceedings of Symposium "Structure activity correlations in studies of toxicity and bioconcentration with aquatic organisms," Canada Center for Inland Waters, Burlington, Ontario, Canada; 1975. - [3.] Hansch, C.; Dunn, W., III. Linear relationships between liphophilic character and biological activity of drugs. J. Pharm. Sci. 61 (1): 1-19; 1972 January. - [4.] Leo, A.J. Symposium on "Nonbiological transport and transformation", National Bureau of Standards, Gaithersburg, MD; 1976. - [5.] Hansch, C.; Quinlan, J.E.; Lawrence, G.L. The linear freeenergy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33 (1): 347-350; 1968 January. - [6.] Conder, J.R.; Young, C.L. Solution thermodynamics, chapter 5 in Physico-chemical measurements by gas-liquid chromatography. New York: John Wiley & Sons; 1979. 154-221. - [7.] Hansch, C.; Anderson, S.M. The effect of hydrophobic bonding on partition coefficients. J. Org. Chem. 32(8): 2583-2586; 1967 August. - [8.] Hoare, M.R.; Purnell, J.H. Temperature effects in gas chromatography. Trans. Faraday Soc. 52(2): 222-229; 1956 February. - [9.] Purnell, J.H. A basis for the comparison and choice of solvents - in vapour phase partition chromatography, chapter 5 in Vapour Phase Chromatography; Desty, D.H., editor. New York: Academic Press; 1957. 52-62. - [10.] Pollard, F.H.; Hardy, C.J. A preliminary study of some factors influencing the order of elution of halogenated methanes, the degree of separation, and the reproducibility of retention volumes in gas-liquid partition chromatography, chapter 10 in Vapour Phase Chromatography, Desty, D.H., editor. New York: Academic Press; 1957, 115-126. - [11.] Harrison, G.F. Vapour phase chromatographic analysis of chlorinated hydrocarbons and hydrocarbon gases, chapter 28 in Vapour Phase Chromatography, Desty, D.H., editor. New York: Academic Press; 1957. 332-345. - [12.] Wasik, S.P.; Tewari, Y.B.; Miller, M.M.; Martire, D.E. Octanol/water partition coefficients and aqueous solubilities of organic compounds. NBSIR 81-2406; 1981 December, 56p. - [13.] DeVoe, H.; Miller, M.M.; Wasik, S.P. Generator columns and high pressure liquid chromatography for determining aqueous solubilities and octanol-water partition coefficients of hydrophobic substances. NBS J. Res. 86(4): 361-366; 1981 July-August. # **Curve Fitting With Clothoidal Splines** # Josef Stoer* #### Universitat Wurzburg, Federal Republic of Germany #### June 2, 1982 Clothoids, i.e. curves Z(s) in \mathbb{R}^2 whose curvatures x(s) are linear fitting functions of arclength s, have been used for some time for curve fitting purposes in engineering applications. The first part of the paper deals with some basic interpolation problems for clothoids and studies the existence and uniqueness of their solutions. The second part discusses curve fitting problems for clothoidal splines, i.e. C^2 -curves, which are composed of finitely many clothoids. An iterative method is described for finding a clothoidal spline Z(s) passing through given points $Z_i \in \mathbb{R}^2$. i = 0,1,...,n+1, which minimizes the integral $\int_{\mathbb{R}} \kappa(s)^2 ds$. This algorithm is superlinearly convergent and needs only O(n) operations per iteration. A similar algorithm is given for a related problem of smoothing by clothoidal splines. Key words: Approximation; clothoids; computer-aided design; Cornu-spirals; curvature; curve fitting; Fresnel-integrals; interpolation; splines # Introduction The characteristic property of curves known as Cornu-spirals or clothoids is that their curvature $\kappa(s)$ is a linear function of the arc length, $\kappa(s) = \kappa_0 + \lambda s$. Straight lines ($\kappa_0 = 0$, $\lambda = 0$) and circles ($\lambda = 0$) may be considered as limiting cases. We are interested in constructing C^2 -curves in the plane R^2 which are composed of finitely many Cornu-spirals; that is, C^2 -curves whose curvature is a continuous piecewise linear function of their arc lengths. We will call such curves clothoidal splines. Typical elementary problems encountered in such an effort are to construct a clothoid joining a given straight line and a given circle, or joining two circles. Composite curves of this type have been used by engineers, for instance, for the construction of highway sections, some of which are specified to be straight lines and circles. A more complex problem is to construct a clothoidal spline Z through a sequence of finitely many points $(\kappa_i, \gamma_i) \in R^2$, $i = 0, 1, \ldots, n+1$ such that the integral $$K = \int_{\mathcal{T}} \kappa(s)^2 ds$$ along the curve is minimal. This problem can be considered as an approximation to the "true" problem of curve fitting in \mathbb{R}^2 , namely that of finding a curve $Z(\cdot)$ minimizing this integral among all C^2 -curves passing through the given points. The latter problem has been studied by several authors (Lee, Forsythe [7], Mehlum [8]), and its exact solution leads to a multipoint boundary value problem for elliptic functions (Reinsch [14]). Mehlum [8] also proposed to approximate its solution by solving the corresponding multipoint boundary value problem for clothoidal spline functions, however the resulting clothoidal spline does in general not minimize the integral K among all interpolating clothoidal splines (see also Pal and Nutbourne [10] for a related use of clothoidal splines in computer aided geometric design). There is also the problem of smoothing: for given points (x_i, y_i) , $i = 0, 1, \ldots, n + 1$, the problem is to find a clothoidal spline Z in such a way that its deviation (in the least squares sense) from the given points is not greater than a prescribed tolerance and the integral K along Z is minimal (compare Reinsch [13] for the related problem for spline functions). ^{*}NBS Guest Worker with the Operations Research Division, Center for Applied Mathematics, National Engineering Laboratory. ¹Figures in brackets indicate literature references at the end of this paper. Cornu-spirals can be easily computed in terms of Fresnel integrals, though admittedly not as easily as the cubic polynomials generally used for spline functions. In contrast to the latter, however, clothoidal splines are represented in terms of the
natural parameter of plane curves; namely, the curvature as function of arc length. Furthermore, we hope that they do not exhibit the drawbacks observed with other schemes for curve fitting which have been observed in practice, namely, a tendency toward oscillations. In the first section we list some elementary properties of Cornu-spirals and Fresnel integrals, mainly taken from Abramowitz and Stegun [1]. The second section deals with simple interpolation problems for a single Cornu-spiral. Section 3 is devoted to interpolation with clothoidal spirals; section 4 to the problem of smoothing. # 1. Elementary properties of Cornu-spirals By definition, a Cornu-spiral or clothoid is a curve, $$Z(s) = \begin{bmatrix} x(s) \\ y(s) \end{bmatrix}, s \in R,$$ whose curvature $\kappa(s) = \kappa_0 + \lambda s$ is a linear function of arc length s. If its tangent vector is $$\dot{Z}(s) = \begin{bmatrix} \cos \phi(s) \\ \sin \phi(s) \end{bmatrix}$$, then $$\kappa(s) = \dot{\phi}(s) ,$$ so that $$\phi(s) = \phi_0 + \int_0^s \kappa(\tau) d\tau = \phi_0 + \kappa_0 s + \frac{\lambda}{2} s^2 , \qquad (1.1)$$ $$Z(s) = Z_0 + \int_0^s \left[\frac{\cos \phi(t)}{\sin \phi(t)} \right] dt.$$ According to the sign of λ , Z is called positively or negatively oriented. In the sequel, we restrict ourselves to the case of $\lambda > 0$. Similar results will hold for $\lambda < 0$. Using the Fresnel integrals, $$C(z) := \int_{0}^{z} \cos \frac{\pi t^2}{2} dt , S(z) := \int_{0}^{z} \sin \frac{\pi t^2}{2} dt , F(z) := \begin{bmatrix} C(z) \\ S(z) \end{bmatrix} ,$$ Z(s) can be expressed in closed form by [see [1], formulas (7.4.38), (7.4.39)] $$Z(s) = Z_0 + \sqrt{\pi/\lambda} V\left(\phi_0 - \frac{\kappa_0^2}{2\lambda}\right) \left\{ F\left(\frac{\kappa_0 + \lambda s}{\sqrt{\pi \lambda}}\right) - F\left(\frac{\kappa_0}{\sqrt{\pi \lambda}}\right) \right\}, \text{ if } \lambda > 0, \tag{1.2}$$ where $V(\alpha)$ is the orthogonal matrix, $$V(\alpha) := \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}.$$ Note that F(s) also describes a Cornu-spiral with arc length s, curvature $\kappa(s) = \pi s$ and phase angle $\phi(s) = (\pi/2)s^2$. The Fresnel integrals have the following properties [see [1], (7.3.17), (7.3.20)] which we list without proof: $$F(z) = -F(-z)$$ $$\lim_{z \to +\infty} F(z) = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \lim_{z \to -\infty} F(z) = -\frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$ (1.3) Moreover, F(z) can be expressed in the following way [see [1], (7.3.9), (7.3.10)]: $$F(z) = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - V\left(\frac{\pi}{2}z^2\right) h(z) \quad , \tag{1.4}$$ where the component functions g(z) and f(z) of $$h(z) = \begin{bmatrix} g(z) \\ f(z) \end{bmatrix}$$ satisfy [see [1], (7.3.5), (7.3.6), (7.3.21), (7.3.27)-(7.3.31)], (a) $$h(0) = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \lim_{z \to +\infty} h(z) = 0$$ (b) g(z) and f(z) are strictly monotonically decreasing for $z \in [0, +\infty]$ (c) $$f'(z) = -\pi z g(z)$$, $g'(z) = \pi z f(z) - 1$, for $z \in R$ (1.5) (d) For z > 0 the following estimates hold for g(z) and f(z): $$\frac{1}{\pi^2 z^3} \left(1 - \frac{15}{(\pi z^2)^2} \right) < g(z) < \frac{1}{\pi^2 z^3}$$ $$\frac{1}{\pi z} \left(1 - \frac{3}{(\pi z^2)^2} \right) < f(z) < \frac{1}{\pi z}$$ $$\frac{-3}{\pi^3 z^5} < f(z) - \frac{1}{\pi z} < -\frac{3}{\pi^3 z^5} \left(1 - \frac{35}{(\pi z^2)^2} \right)$$ Approximations of f(z), g(z) suitable for the calculation of F(z) are given in [1], (7.3.32), (7.3.33), and in Boersma [2]. As a simple consequence of (1.5d) we note the following estimates for the euclidean norms of the vectors h(z) and $$h(z) := \begin{bmatrix} g(z) \\ f(z) - 1/(\pi z) \end{bmatrix}$$ to be used later on: (a) $$1 - \frac{15}{(\pi z^2)^2} \le ||h(z)|| \left((1/\pi z) \sqrt{1 + \frac{1}{(\pi z^2)^2}} \right)^{-1} \le 1 \text{ for } z > 0$$, (b) $1 - \frac{35}{(\pi z^2)^2} \le ||h(z)|| \left((1/\pi^2 z^3) \sqrt{1 + \frac{9}{(\pi z^2)^2}} \right)^{-1} \le 1 \text{ for } z > 0$, (c) $\lim_{z \to +\infty} zh(z) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, $\lim_{z \to +\infty} \widehat{\pi z}h(z) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$. By (1.5a), (1.5b), ||h(z)|| decreases strictly monotonically toward 0 for $z \to +\infty$. The same holds for $\overline{h}(z)$: $$||\bar{h}(z)||$$ decreases strictly monotonically toward 0 as $z \to +\infty$. (1.7) The following is a consequence of (1.6) and (1.5): $$\frac{1}{2} \frac{d}{dz} ||\overline{h}(z)||^2 = \frac{1}{\pi z^2} (f(z) - \frac{1}{\pi z}) < 0 \text{ for } z > 0.$$ It follows from (1.3), (1.4) that F(z) has the form shown in figure 1. FIGURE 1. Positively Oriented Cornu-Spiral with $Z_o = X_o = o$ and $\lambda = \pi$ For $z \ge 0$ the vector $$h(z) = ||h(z)|| \cdot \begin{bmatrix} \cos \sigma(z) \\ \sin \sigma(z) \end{bmatrix} > 0, \ \sigma(z) := \arctan (f(z)/g(z))$$ stays in the interior of the first quadrant of R^2 $$0 < \sigma(z) < \frac{\pi}{2}, \ \sigma(0) = \frac{\pi}{4}, \ \sigma(+\infty) = \pi/2.$$ Moreover, the vector $$r(z) := F(z) - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = - V \left(\frac{\pi}{2} \bigcirc z^2 \right) h(z) =: ||h(z)|| \cdot \begin{bmatrix} \cos \varrho(z) \\ \sin \varrho(z) \end{bmatrix}$$ where $$\varrho(z) := o(z) + \frac{\pi}{2}z^2 + \pi, \frac{\pi}{2}z^2 + \pi < \varrho(z) < \frac{\pi}{2}z^2 + \frac{3}{2}\pi$$ rotates counterclockwise for $z \ge 0$ as z tends to $+\infty$. This follows from (1.5): $$\dot{\varrho}(z) = \dot{\sigma}(z) + \pi z = \frac{d}{dz} \arctan(f(z)/g(z)) + \pi z = \frac{f(z)}{f(z)^2 + g(z)^2} > 0 \text{ for } z \ge 0$$ Therefore, the curve F(z) crosses any fixed ray $$d_{\alpha} := \left\{ \left. \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \sigma \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix} \right| \sigma \geqslant 0 \right\}$$ infinitely often at abscissae $0 \le z_1 < z_2 < \dots$, for which $$\lim_{i \to \infty} z_i = + \infty$$ $$(z_i)^2 + 4n - 1 \le (z_{i+n})^2 \le (z_i)^2 + 4n + 1 \quad , \quad i \ge 1, n \ge 1$$ $$4n - 1 \le (z_n)^2 \le 4n + 1$$ (1.8) These estimates easily imply the following bounds $$\frac{4n-1}{z_i} \left(1 + \sqrt{1 + \frac{4n-1}{(z_i)^2}} \right)^{-1} \leq z_{i+n} - z_i \leq \frac{4n+1}{z_i} \left(1 + \sqrt{1 + \frac{4n+1}{(z_i)^2}} \right)^{-1}, i, n \geq 1$$ $$\sqrt{4n-1} \leq z_n \leq \sqrt{4n+1} , \qquad (1.9)$$ which we note for later reference. Upon inserting (1.4) into (1.2), we get the following representation of Z(s) in terms of the vector h: $$Z(s) = Z(0) - \sqrt{\frac{\pi}{\lambda}} \left(V(\phi(s)) h\left(\frac{\kappa(s)}{\sqrt{\pi\lambda}}\right) - V(\phi_0) h\left(\frac{\kappa_0}{\sqrt{\pi\lambda}}\right) \right)$$ (1.10) where (see (1.1)) $$\mathbf{x}(\mathbf{s}) := \mathbf{x}_0 + \lambda \mathbf{s}, \qquad \phi(\mathbf{s}) := \phi_0 + \mathbf{x}_0 \mathbf{s} + \frac{\lambda}{2} \mathbf{s}^2 \qquad .$$ Note that because of $\lambda > 0$ and (1.5) (a), (1.3) (a) $$Z(+\infty) = Z(0) + \sqrt{\frac{\pi}{\lambda}} V(\phi_0) h\left(\frac{\kappa_0}{\sqrt{\pi\lambda}}\right)$$ (b) $Z(-\infty) = Z(+\infty) - \sqrt{\frac{\pi}{\lambda}} V\left(\phi_0 - \frac{\kappa^2_0}{2\lambda}\right) \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ (c) $Z(s) - Z(+\infty) = -\sqrt{\frac{\pi}{\lambda}} V(\phi(s)) h\left(\frac{\kappa(s)}{\sqrt{\pi\lambda}}\right)$ The evolute of Z, that is the locus of all centers of curvature M(s) of Z(s) for $s \in R$, is given by $$M(s) = Z(s) + \frac{1}{\kappa(s)} \begin{bmatrix} -\sin\phi(s) \\ \cos\phi(s) \end{bmatrix} = Z(s) + \frac{1}{\kappa(s)} V(\phi(s)) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$ $$= Z(0) - \sqrt{\frac{\pi}{\lambda}} \left(V(\phi(s)) \hbar \left(\frac{\kappa(s)}{\sqrt{\pi\lambda}} \right) - V(\phi_0) \hbar \left(\frac{\kappa_0}{\sqrt{\pi\lambda}} \right) \right)$$ $$(1.12)$$ because $h(z) = h(z) - \begin{bmatrix} 0 \\ \pi z \end{bmatrix}$. Again, the evolute M is a spiral type of curve with the following properties: (a) $$M(+\infty) = Z(+\infty)$$ (b) $$M(-\infty)$$ = $Z(-\infty)$ (c) $$M(s) - M(+\infty) = -\sqrt{\frac{\pi}{\lambda}} V(\phi(s))\hbar\left(\frac{\kappa(s)}{\sqrt{\pi\lambda}}\right)$$ (d) $M(s_1) \neq M(s_2)$ for $s_1 \neq s_2$. (1.13) (a) follows directly from (1.7) and (1.11), (b) and (c) follow from (1.11), and (d) from (1.7], since $V(\phi(s))$ is an orthogonal matrix. Furthermore, if $\kappa(\overline{s}) > 0$, $\lambda > 0$, then for every $s > \overline{s}$ $$||M(\overline{s}) - M(s)|| < \frac{1}{\kappa(\overline{s})} - \frac{1}{\kappa(s)},$$ (1.14) $$||M(\overline{s}) - Z(s)|| < \frac{1}{\kappa(\overline{s})},$$ that is, for $s > \overline{s}$ the osculating circle of Z at s and Z(s) are contained in the interior of the osculating circle of Z at \overline{s} . Indeed, according to a well-known result of differential geometry (see, e.g., [15]), the arclength $\sigma(s)$ of the evolute M(s) of any curve Z(s) is given relative to the curvature x(s) of Z(s) by $$\dot{o}(s) = -\frac{\mathrm{d}}{\mathrm{d}s} \, \kappa(s)^{-1}$$ so that in our case for $s > \overline{s}$ $$\sigma(s) - \sigma(\overline{s}) = \frac{1}{\kappa(\overline{s})} - \frac{1}{\kappa(s)}.$$ Since $M(\tau)$, $\tau \in [s,s]$ is not a straight line, we have the additional inequality $$||M(s) - M(\overline{s})|| < \sigma(s) - \sigma(\overline{s}) = \kappa(\overline{s})^{-1} - \kappa(s)^{-1}$$ which proves the first part of (1.14). The second part follows from the first, as $$||Z(s) - M(s)|| = \kappa(s)^{-1}$$ # 2. Interpolation properties of Cornu spirals In this section we study some simple interpolation problems for Cornu spirals. In stating the results we make use of oriented circles $$K(a,r) := \left\{ s + r \left| \begin{array}{c} \cos \phi \\ \sin \phi \end{array} \right| \mid 0 \leqslant \phi \leqslant 2\pi \right\} ,$$ whose orientation is determined by the sign of the radius $r \neq 0$, and of oriented lines $$g = g(b, \alpha) := \left\{ b + \sigma \begin{bmatrix} \cos \alpha \\ \sin
\alpha \end{bmatrix} \mid \sigma \in R \right\} ,$$ whose orientation is deterined by the direction of the vector $(\cos \alpha, \sin \alpha)^T$. We say that the orientations of an oriented line g and of an oriented circle K(a,r) not meeting g are coherent, if K(a,r) lies in the same halfplane determined by g which contains the point A first simple result refers to the problem of joining a line to a circle by a Cornu spiral. #### (2.1) **THEOREM:** - 1. For any given oriented circle K(a,r), $r \neq 0$, not meeting a coherently oriented line $g(b,\alpha)$ there exists exactly one oriented Cornu-spiral Z(s) which joins g to K(a,r) (in this order) such that the resulting composite curve is a C^2 curve with a coherent orientation. - 2. If g meets K or the orientation of g and K are not coherent, then there is no such interpolating Cornu-spiral. Of course, a similar result holds for joining an oriented circle K to an oriented line (in this order) by an oriented Cornu-spiral which we do not state explicitly. PROOF: 1. Without loss of generality we may assume that r=1/x>0 and g is the x-axis in R^2 with its usual orientation. Since K(a,r) is coherently oriented with g, the center $a=(x_0,y_0)^T$ of K is such that $\overline{y}:=y_0/r=y_0x>1$. Any positively oriented Cornu-spiral touching the x-axis at $(0,0)^T$ with s=0 (i.e., $\phi_0=0$, Z(0)=0) with a curvature $x(0)=x_0=0$ has the form (see (1.2)). $$Z(s) = \sqrt{\frac{\pi}{\lambda}} F\left(\sqrt{\frac{\lambda}{\pi}} s\right) =: \begin{bmatrix} x(s) \\ y(s) \end{bmatrix}$$ with some $\lambda > 0$. In order to solve the problem it suffices to determine s > 0 and $\lambda > 0$ such that Z has at s the curvature x and $(x_0, y_0)^T$ as center of curvature (see fig. 3). This leads to the conditions $$x(s) = \lambda s = x \rightarrow \lambda = x/s ,$$ $$\phi(s) = \frac{\lambda}{2} s^2 = xs/2 ,$$ $$\cos \phi(s) = (y_0 - y(s)) x = \overline{y} - x \sqrt{\frac{\pi}{\lambda}} S \left(\sqrt{\frac{\lambda}{\pi}} s\right)$$ Hence s must satisfy the equation $$\cos\frac{\kappa s}{2} + \sqrt{\pi s \kappa} S\left(\sqrt{\frac{\kappa s}{\pi}}\right) = \overline{y}$$, or the variable $$\Psi := \sqrt{\frac{\kappa s}{2}}$$, must solve $$\cos \Psi^2 + \Psi \sqrt{2\pi} S \left(\sqrt{\frac{2}{\pi}} \Psi \right) = \overline{y}$$ Now the function $$p(\Psi) := \cos \Psi^2 + \Psi \sqrt{2\pi} S \left(\sqrt{\frac{2}{\pi}} \Psi \right)$$ $$= \cos \Psi^2 + 2\Psi \int_0^{\pi} \sin t^2 dt$$ is strictly monotonically increasing for $\Psi \ge 0$ because $$p'(\Psi) = 2 \int_{0}^{\Psi} \sin t^{2} dt > 0 \text{ for } \Psi > 0.$$ Since $\overline{y} > 1$, p(0) = 1 and $\lim_{\tau \to \infty} p(\tau) = + \infty$, there exists therefore a unique solution $\overline{\Psi} > 0$ of (2.2), which can be found by Newton's method. In terms of $\overline{\Psi}$, the solution of the problem is $$\begin{split} s &= 2\overline{\Psi}^2/\kappa \quad , \quad \lambda = \kappa/s \\ Z(s) &= \sqrt{\frac{\pi}{\lambda}} \ \mathrm{F}\left(\sqrt{\frac{\lambda}{\pi}}\right) \, , \; x_0 = x(s) - \frac{1}{\kappa} \overline{\sin} \, \overline{\Psi}^2 \end{split}$$ The proof of (2) is straightforward. We now turn to the problem of joining two oriented circles, $$K_i(a_i, 1/x_i), i = 1,2, ,$$ by an oriented Cornu spiral. We first show an auxiliary result for the family of Cornu spirals Z_{λ} (s), $\lambda > 0$ with $$\kappa_0 = 0$$, $\phi_0 = 0$, $Z_{\lambda}(0) = 0$ $\kappa(s) = \lambda s$, $\phi(s) = \frac{\lambda}{2} s^2$ given by [see (1.10), (1.5a)] $$Z_{\lambda}(s) = -\sqrt{\frac{\pi}{\lambda}} \left(V\left(\frac{\lambda s^2}{2}\right) h\left(\frac{\lambda s}{\pi \lambda}\right) - \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} \right)$$ For their center of curvature M_{λ} (s) taken at arclength $s:=\overline{\kappa}/\lambda$ for which $\kappa(s)=\overline{\kappa}$, the following holds: $$M_{\lambda}\left(\overline{\mathbf{x}}/\lambda\right) = -\sqrt{\frac{\pi}{\lambda}} \left(V\left(\frac{\overline{\mathbf{x}}^{2}}{2\lambda}\right) \overline{h}\left(\frac{\overline{\mathbf{x}}}{\sqrt{\pi\lambda}}\right) - \frac{1}{2} \begin{bmatrix} 1\\1 \end{bmatrix} \right)$$ so that because of (1.6) (c), (1.11) and (1.13) (a) $$\lim_{\lambda \downarrow 0} M_{\lambda}(\overline{\kappa}/\lambda) - \sqrt{\frac{\pi}{\lambda}} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = 0 \quad \text{if } \overline{\kappa} > 0$$ (b) $$\lim_{\lambda \downarrow 0} M_{\lambda}(\overline{\kappa}/\lambda) + \sqrt{\frac{\pi}{\lambda}} \begin{bmatrix} 0.5 \\ 0.5 \end{bmatrix} = 0 \quad \text{if } \overline{\kappa} < 0$$ (c) $$\lim_{\lambda \to +\infty} M_{\lambda}(\overline{\kappa}/\lambda) = \begin{bmatrix} 0 \\ 1/\overline{\kappa} \end{bmatrix}.$$ (2.3) As an easy consequence, we get (2.4) THEOREM: Let K_i (a_i, $1/\kappa_i$), i = 1,2 be two oriented circles. 1. If K_1 and K_2 are coherently oriented, i.e. if $\kappa_1 \cdot \kappa_2 > 0$, then there exists an oriented Cornu spiral joining K_1 to K_2 (in this order) and having both K_1 and K_2 as osculating circle if and only if their centers a_i are different and one of the circles contains the other in its interior. 2. If $\kappa_1 \cdot \kappa_2 < 0$, then there exists an oriented Cornu spiral joining \underline{K}_1 and \underline{K}_2 (in this order) and having both K_1 and K_2 as osculating circles if and only if neither circle contains the other, i.e. $||\mathbf{a}_1 \cdot \mathbf{a}_2|| > K_1||^{-7} + ||\mathbf{K}_2||^{-7}$. PROOF: (1) Assume $x_2 > x_1 > 0$ without loss of generality and let K_1 contain K_2 in its interior; that is, $$0 < || a_1 - a_2 || < 1/\kappa_1 - 1/\kappa_2 \qquad . \tag{2.5}$$ Then by (2.3) (a), (c) $$\lim_{\lambda \downarrow 0} || M_{\lambda}(\kappa_{1}/\lambda) - M_{\lambda}(\kappa_{2}/\lambda) || = 0$$ $$\lim_{\lambda \to +\infty} || M_{\lambda}(\kappa_{1}/\lambda) - M_{\lambda}(\kappa_{2}/\lambda) || = 1/\kappa_{1} - 1/\kappa_{2}$$ Since $M_{\lambda}(x/\lambda)$ depends continuously on $\lambda > 0$, there is a $\lambda' > 0$ such that $$||M_1'(x_1/\lambda')-M_1'(x_2/\lambda')|| = ||a_1-a_2||$$, that is the Cornu spiral Z_{λ} , has two osculating circles of radii $1/\kappa_1$ and $1/\kappa_2$ respectively, whose centers $M_{\lambda'}$ (κ_i/λ'), i=1,2 have the desired distance. This proves the "if" part of (1). To prove the "only if" part, note that by (1.13)(d), the centers of curvature of any Cornu spiral are different for different arclengths, so that $a_1 \neq a_2$ is a necessary condition for the existence of a Cornu spiral joining two different circles K_1, K_2 . The rest follows from (1.14). (2.) Assume $x_1 > 0 > x_2$ and $||a_1 - a_2|| > 1/x_1 - 1/x_2$. Then, because of (2.3) $$\lim_{\lambda \to +\infty} || M_{\lambda}(\mathbf{x}_1/\lambda) - M_{\lambda}(\mathbf{x}_2/\lambda) || = 1/\mathbf{x}_1 - 1/\mathbf{x}_2$$ $$\lim_{\lambda \downarrow 0} || M_{\lambda}(x_1/\lambda) - M_{\lambda}(x_2/\lambda) || = + \infty$$ Hence by a continuity argument there exists $\lambda' > 0$ such that $$|| M_{\lambda}'(x_1/\lambda') - M_{\lambda}'(x_2/\lambda') || = || a_1 - a_2 ||$$ which proves the "if" part of (2). The "only if" part is trivial. We next turn to the following problems: - (2.6) PROBLEM: For a given oriented circle K and two points $P_0 \in K$ and $P_1 \in K$ find an oriented Cornu-spiral connecting P_0 to P_1 (in this order) which has K as osculating circle at P_0 (see figs. 4 (A), (B)). - (2.6) is equivalent to the problem of connecting a point $P_1 \in K$ to a point $P_0 \in K$ (in this order) on an oriented circle K by an oriented Cornu spiral which has K as osculating circle at P_0 . Using suitable reflections and changes of orientation [compare fig. 4 (B), (C)], (2.6) is seen to be equivalent to the following, which involves only positive orientations: FIGURE 4 (2.6') PROBLEM: For a given positively oriented circle $K = K(M_0, 1/\kappa), \kappa > 0$, and two points $P_0 \in K$ and $P_1 \in K$ find a positively oriented Cornu-spiral with K as osculating circle at P_0 , which leads from P_0 to P_1 , if P_1 is inside, K and leads from P_1 to P_0 if P_1 , if P_1 is outside K. Clearly, (2.6') depends only on κ and the relative positions of P_0 and P_1 so that we may assume without loss of generality $$M_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \underline{P}_0 = \begin{bmatrix} 0 \\ -1/\kappa \end{bmatrix}, \ \underline{P}_1 = r \begin{bmatrix} \sin \alpha \\ -\cos \alpha \end{bmatrix}, \ r \geqslant 0$$ (see Fig. 5). FIGURE 5 By (1.10) the class of positively oriented Cornu spirals Z with $$Z(0) = P_0 = \begin{bmatrix} 0 \\ -1/\kappa \end{bmatrix}, \ \kappa(0) = \kappa \ , \ \phi(0) = 0$$ is given by $$C_{\lambda}(s) = \begin{bmatrix} 0 \\ -1/\kappa \end{bmatrix} + \sqrt{\frac{\pi}{\lambda}} \underline{h} \left(\frac{\kappa}{\sqrt{\pi \lambda}} \right) - \sqrt{\frac{\pi}{\lambda}} V(\phi_{\lambda}(s)) h(\kappa_{\lambda}(s) / \sqrt{\pi \lambda})$$ $$= \sqrt{\frac{\pi}{\lambda}} (\overline{h} (\kappa / \sqrt{\pi \lambda}) - V(\phi_{\lambda}(s)) h(\kappa_{\lambda}(s) / \sqrt{\pi \lambda}))$$ where $$\kappa_1(s) := \kappa + \lambda s$$, $\phi_1(s) := \kappa s + (\lambda/2)s^2$. Essentially, we will show [Theorem (2.25)] that for $r \neq 1/\kappa$, i.e. $P_1 \in K$, there are countably many numbers $\lambda_1 > \lambda_2 > \ldots > 0$ and arclengths s_i , $i \geq 1$, such that $\underline{C}_{\lambda_i}(s_i) = P_i$ for all $i \geq 1$. To prove this, we need some auxiliary results. From (1.5) (a) and (1.14) follow $$C_{\lambda}(+\infty) = \sqrt{\frac{\pi}{\lambda}} \, \overline{h} \, (\kappa/\sqrt{\pi\lambda}) \, , \, || C_{\lambda}(+\infty) \, || < 1/\kappa \quad . \tag{2.8}$$ We show next: (2.9) For any fixed bounded interval $I = [s_1, s_2]$ such that for all $\lambda > 0$ and all $s \in I$, $\kappa(s) = \kappa + \lambda s > 0$ there holds $$\lim_{\lambda \downarrow 0} \sup_{\mathbf{s} \in \mathbf{I}} || C_{\lambda}(\mathbf{s})|| =
1/\kappa . \tag{2.9}$$ PROOF. It follows from (2.7): $$C_{\lambda}(s) = \sqrt{\frac{\pi}{\lambda}} \left(\overline{h} \left(\kappa / \sqrt{n\lambda} \right) - V(\phi_{\lambda}(s)) \overline{h} \left(\frac{\kappa_{\lambda}(s)}{n\lambda} \right) \right) - V(\phi_{\lambda}(s) \begin{bmatrix} 0 \\ 1/\kappa_{\lambda}(s) \end{bmatrix}.$$ By (1.6)(c), the first two terms tend to 0 uniformly in $s \in I$ as $\lambda \downarrow 0$. Hence, $$\lim_{\lambda \downarrow 0} \sup_{s \in I} ||C_{\lambda}(s)|| = \lim_{\lambda \downarrow 0} \sup_{s \in I} 1/\kappa_{\lambda}(s) = 1/\kappa , \text{QED}.$$ With the abbreviations $$\overline{h}_{\lambda} := \sqrt{\frac{\pi}{\lambda}} = \overline{h} (\kappa / \sqrt{\pi \lambda}) , h_{\lambda}(s) := \sqrt{\frac{\pi}{\lambda}} h(\kappa_{\lambda}(s) / \pi \lambda)$$ $$\overline{r}_{\lambda} := || \overline{h}_{\lambda} || , r_{\lambda}(s) := || h_{\lambda}(s) || ,$$ we have from (2.7) $$C_{\lambda}(s) = \overline{h} - V(\phi_{\lambda}(s)) h_{\lambda}(s)$$ (2.10) and from (1.6), (2.8), the estimates $$\frac{\lambda}{\kappa^3} \left(1 - \frac{35\lambda^2}{\kappa^4} \right) \leqslant \overline{r}_{\lambda} / \sqrt{1 + \frac{9\lambda^2}{\kappa^4}} \leqslant \lambda / \kappa^3, \quad \overline{r}_{\lambda} < 1/\kappa$$ $$\frac{1}{\kappa_{\lambda}(s)} \left(1 - \frac{15\lambda^2}{\kappa_{\lambda}(s)^4} \right) \leqslant r_{\lambda}(s) / \sqrt{1 + \frac{\lambda^2}{\kappa_{\lambda}(s)^4}} \leqslant \frac{1}{\kappa_{\lambda}(s)} \tag{2.11}$$ for all s with $\kappa_{\lambda}(s) = \kappa + \lambda s > 0$. Two cases are possible with respect to the location of the target point $$P_{i} = r \begin{bmatrix} \sin \alpha \\ -\cos \alpha \end{bmatrix}$$ which will be treated somewhat differently. Case (1): $0 \le r < 1/\kappa$, P_1 lies in the interior of K Case (2): $r > 1/\kappa$, P_1 lies outside of K. In Case (1) there is a sufficiently small $\bar{\lambda} > 0$ such that $$C_{\lambda}(+\infty) = \overline{h}_{\lambda} \neq P_{1}$$ for all $0 < \lambda \le \overline{\lambda}$ (2.12) Note this is exactly true if r = 0, $P_1 = 0$, for then by (2.8), $$C_1 (+\infty) = \widetilde{h}_1 \neq 0 \text{ for all } \lambda > 0$$. If r>0, a suitable $\overline{\lambda}>0$ can be found because of (2.11). With $\overline{\lambda}>0$ satisfying (2.12), consider the rays $$d_1 := \{\overline{h}_1 + \sigma(P_1 - \overline{h}_1) \mid \sigma \ge 0\} \quad , \quad 0 < \lambda \le \overline{\lambda}$$ extending from \overline{h}_{λ} towards P_1 (see fig. 6). FIGURE 6 Because of (2.10) and using the same reasoning as with (1.8), every Cornu spiral $C_{\lambda}(s)$, $0 < \lambda \le \overline{\lambda}$ cuts d_{λ} infinitely often at abscissae $0 \le s_1(\lambda) < s_2(\lambda) < \ldots$, which satisfy estimates of the form [cf. (1.8)]. $$\phi_{\lambda}(s_{n}(\lambda)) + 3\pi/2 \leq \phi_{\lambda}(s_{n+1}(\lambda))$$ $$2(n-1)\pi \leq 2(n-\frac{1}{4})\pi \leq \phi_{\lambda}(s_{n}(\lambda)) \leq 2(n+\frac{1}{4})\pi \leq 2(n+1)\pi$$ $$(2.14)$$ for $n \ge 1$, so that $$s_{n+1}(\lambda) - s_n(\lambda) \ge \frac{3\pi}{\kappa + \lambda s_n(\lambda)} \left(1 + 1 + \sqrt{\frac{3\pi\lambda}{[\kappa + \lambda s_n(\lambda)]^2}} \right)$$ $$\overline{s}_{n-1}(\lambda) \le s_n(\lambda) \le \overline{s}_{n+1}(\lambda)$$ (2.15) where $$\overline{s}_{m}(\lambda) := \frac{4m\pi}{\kappa} \left(1 + \sqrt{1 + \frac{4m\pi\lambda}{\kappa^{2}}} \right)$$ is the solution of the quadratic equation, $$\phi_{\lambda}(s) \equiv \kappa s + \frac{\lambda}{2} \ s^2 = 2m\pi \quad .$$ As a consequence, $$\lim_{n\to\infty} s_n(\lambda) = +\infty, \lim_{n\to\infty} C_n^-(s_n(\overline{\lambda})) = \overline{h}_{\overline{\lambda}},$$ and therefore there exists an N such that for all $n \ge N$ (see fig. 6), $$C_{\overline{\lambda}}(s_n(\overline{\lambda})) \quad \varepsilon \quad [\overline{h}_{\overline{\lambda}}, P_1] := \{\overline{h}_{\overline{\lambda}} + \sigma(P_1 - \overline{h}_{\overline{\lambda}}) \mid \leq \sigma \leq 1\}$$ that is, $C_{\overline{\lambda}}$ intersects $d_{\overline{\lambda}}$ between $\overline{h}_{\overline{\lambda}}$ and P_1 at the abscissae $s_n(\overline{\lambda})$, $n \leq N$. Consider any fixed $n \leq N$. By (2.14), $s_n(\lambda)$ is bounded $$m_n \le s_n(\lambda) \le M_n$$ for all $0 < \lambda \le \overline{\lambda}$ (2.16) by some positive constants m_n , M_n . Hence by (2.15), also the differences $$s_{n+1}(\lambda) - s_n(\lambda) \ge \overline{m}_n > 0 \text{ for all } 0 < \lambda \le \overline{\lambda}$$ (2.17) are bounded below by a positive $\overline{m}_n > 0$. Moreover, for each $n \ge N$, $s_n(\lambda)$ is a continuous function of λ , hence also $C_{\lambda}(s_n(\lambda))$, for $0 \le \lambda \le \overline{\lambda}$. Since $s_n(\lambda)$ is bounded above (2.16), (2.9) gives for every fixed n $$\lim_{\lambda \downarrow 0} ||C_{\lambda}(s_n(\lambda))|| = 1/\kappa$$ that is, the points $P_{\lambda,n} := C_{\lambda}(s_n(\lambda)) \varepsilon d_{\lambda}$ tend to the boundary of the circle K as λ tends to 0. Therefore, by the continuity of $P_{\lambda,n}$ and because of $$\underline{P}_{\overline{\lambda}}, \underline{n} \varepsilon \ [\underline{\underline{h}}, \underline{P}_{\overline{1}}]$$ there is a λ_n , $0 < \lambda_n \le \overline{\lambda}$ such that $P_{\lambda_n, n} = P_1$. Because of (2.17), $$\mid\mid C_{\lambda_n}(s_{n+1}(\lambda_n)) - \overline{h}_{\lambda_n}\mid\mid = r_{\lambda_n}[s_{n+1}(\lambda_n)] < r_{\lambda_n}[s_n(\lambda_n)] = \mid\mid P_1 - \overline{h}_{\lambda_n}\mid\mid ,$$ so that $$P_1 \neq C_{\lambda_n} (s_{n+1} (\lambda_n)) \in [\overline{h}_{\lambda_n}, P_1]$$, and therefore $\lambda_{n+1} < \lambda_n$. This proves that in case (1) there are indeed countably many positively oriented different Cornuspirals C_{λ_n} , $n \ge 1$, and abscissae s'_n , namely $$s_n' := s_n(\lambda_n)$$, having K as osculating circle at s = 0 and passing through P_1 , $$C_{\lambda_n}(\mathbf{s}'_n) = P_1$$, for all $n \ge 1$. In case (2), r > 1/x, a similar reasoning applies: Here we consider the Cornu-spiral C_{λ} (s) for $0 \ge s > -x/\lambda$, that is for all $s \le 0$ for which $$x_1(s) = x + \lambda s > 0$$ is still positive. We will show that: (2.18) To every integer $n \ge 1$ there exists a $\bar{\lambda} > 0$ and an integer $N \ge 1$ such that for every $0 < \lambda \le \bar{\lambda}$ the Cornu-spiral $C_{\lambda}(s)$, $0 \ge s \ge -\kappa/\lambda$, cuts d_{λ} at abscissae $0 \ge s_{-1}(\lambda) > s_{-2}(\lambda) \dots > s_{-N-n}(\lambda)$ such that (a) $$s_{-N}(\lambda) > -\kappa/\overline{\lambda} > -\kappa/\lambda$$, (b) $$s_{-i}(\lambda) - s_{-i-1}(\lambda) \ge m_i > 0$$ for $i = 1, 2, ..., N + n - 1, 0 < \lambda \le \overline{\lambda}$, (2.19) (c) $$r_{\overline{\lambda}} [s_{-N-1}(\overline{\lambda})] \ge r + \frac{1}{x}$$. (c) means that for $\lambda = \overline{\lambda}$, C_{λ} (s) has at least n cutting points, namely $$C_{\overline{\lambda}} |_{s-N-i}(\overline{\lambda})| \in {\overline{h_{\overline{\lambda}}}} + \sigma(P_1 - \overline{h_{\overline{\lambda}}})| \sigma \ge 1, i = 1, 2, \ldots, n$$ with $d_{\overline{1}}$ which lie beyond P_1 . Once (2.18) is proved, then as in case (1), a simple limiting argument $\lambda \downarrow 0$ gives the existence of n values $\lambda_i, \overline{\lambda} \geq \lambda_1 > \lambda_2 > \ldots > \lambda_n > 0$ such that $$C_{\lambda_i}(s-N-i(\lambda_i)) = P_1$$, since for $\lambda \downarrow 0$ by (2.9) each $C_{\lambda_i}(s_{-N-i}(\lambda))$, $i \ge 1$, tends to the circle K and so, by the continuity of $s_{-N-i}(\lambda)$ has to pass the point P_1 for a certain parameter value λ_i . Since by (2.18) n is arbitrary, this gives the existence of countably many Cornu-spirals satisfying the interpolation requirement. For the proof of (2.18) let γ be defined by $\gamma/x := r + 1/x$, so that $\gamma > 2$. Let $n \ge 1$ be an arbitrary positive integer. Choose any numbers α and β such that $$0 < \alpha < 1 , \sqrt{1-\alpha} \le 1/(2\gamma)$$ $$\alpha \beta < 1 , \beta > 1.$$ $$(2.20)$$ Choose a natural number N so large that $$N + n + 1 \le \beta N$$ $$\frac{\alpha^2}{N^2 \pi^2 (1-\alpha)^2} \le \frac{1}{2}$$ (2.21) and set $$\bar{\lambda} := \frac{\alpha \kappa^2}{4N\pi}$$. Consider the solution \overline{s}_{-m} , $N \leqslant m \leqslant \beta N$ of the quadratic equation $$\phi_{\lambda}^{-}(s) \equiv \kappa s + \frac{\overline{\lambda}}{2} s^2 = -2m\pi$$ given by $$\overline{s}_{-m} = \frac{-4m\pi}{\kappa} \left(1 + \sqrt{1 - \frac{4m\pi\overline{\lambda}}{\kappa^2}} \right)^{-1} .$$ Since by (2.20) $$0 < \alpha \le \frac{4m\pi\overline{\lambda}}{r^2} = \alpha \frac{m}{N} \le \alpha\beta \le 1$$ every such \overline{s}_{-m} is real. Moreover, $$\overline{\lambda} \, \overline{s}_{-N} = -\alpha \kappa / (1 + 1 - \alpha) = -\kappa \cdot (1 - 1 - \alpha)$$ $$\overline{\lambda} \, \overline{s}_{-\beta N} = -\kappa \cdot (1 - 1 - \beta \alpha)$$ so that by (2.20) $$\kappa_{\overline{1}}(\overline{s}_{-N}) = \kappa + \overline{\lambda s}_{-N} = \kappa \sqrt{1 - \alpha} > \kappa_{\overline{\lambda}}(\overline{s}_{-\beta N}) = \kappa \sqrt{1 - \beta} \alpha > 0$$ (2.23) Since by (2.21) $$\frac{15\bar{\lambda}^2}{\kappa_{\bar{\lambda}}(\bar{s}_{-N})^4} = \frac{15\alpha^2}{16N^2\pi^2(1-\alpha)^2} \le \frac{1}{2}$$ we get from (2.11) and (2.20) the estimate $$r_{\overline{\lambda}(\overline{s}-N)} \geqslant \frac{0.5}{\kappa_{\overline{\lambda}(\overline{s}-N)}} = \frac{0.5}{\kappa\sqrt{1-\alpha}} \geqslant \frac{\gamma}{\kappa} = r + \frac{1}{\kappa}.$$ (2.24) Since by (2.21) $$\phi_{\bar{\lambda}}(\bar{s}_{-\beta N}) = -2\beta N\pi < -2(N+n+1)\pi \quad ,$$ $C_{\overline{\lambda}}(\overline{s})$ cuts $d_{\overline{\lambda}}$ at least N+n times within the interval $[\overline{s}_{-\beta N}, 0]$ at abscissae $$0 > s_{-1}(\overline{\lambda}) > s_{-2}(\overline{\lambda}) > \ldots >
s_{-N-n}(\overline{\lambda})$$, satisfying the estimates $$-2(i-1)\pi \geqslant \phi_{\overline{\lambda}}(s_{-i}(\overline{\lambda})) \geqslant -2(i+1)\pi \quad \text{for } i=1,2,\ldots,N+n$$ so that $$\overline{s}_{-i+1} \ge s_{-i}(\overline{\lambda}) \ge \overline{s}_{-i-1}$$. In particular, we have $0 \ge \overline{s}_{-N} \ge s_{-N-1}(\overline{\lambda})$, so that because of (2.24) and the monotonicity of $r\overline{\lambda}(s)$, we get (2.19)(c). (2.19)(a) follows from $s_{-N-n}(\overline{\lambda}) \ge \overline{s}_{-N-n-1}$, (2.21) implying $\overline{s}_{-N-n-1} \ge \overline{s}_{-\beta N}$ and (2.23). (2.19) (b) is proved as in case (1). All in all, we have shown the following: (2.25) THEOREM: For all oriented circles K and two points $P_0 \in K$ and $P_1 \in K$ there are countably many different Cornu-spirals connecting P_0 to P_1 (in this order) and all have K as osculating circle at P_0 . # 3. Interpolation by Clothoidal Splines A clothoidal spline is a C^2 -curve in R^2 whose curvature x(s) is a continuous piecewise linear function of arclength s. More precisely, such a curve Z(s) is given by a finite collection of parameters $$0 = s_0 < s_1 < \ldots < s_{n+1}$$ $$(Z_i, \phi_i, x_i, \lambda_i), Z_i \in R^2, i = 0, 1, \ldots, n$$ such that for each $i = 0, 1, \ldots, n$, $Z^i(s) := Z(s)[s_i, s_{i+1}]$ is a Cornu-spiral with curvature $x^i(s)$ and phase $\phi^i(s)$ given by $$\begin{aligned} \kappa^{i}(s) &:= \kappa_{i} + \lambda_{i}(s - s_{i}) \\ \phi^{i}(s) &:= \phi_{i} + \kappa_{i}(s - s_{i}) + \frac{\lambda_{i}}{2}(s - s_{i})^{2} \\ Z^{i}(s) &:= Z_{i} + \int_{s_{i}}^{s} \begin{bmatrix} \cos \\ \sin \end{bmatrix} (\phi^{i}(t)) dt \end{aligned} (3.1)$$ so that Z(s) is a c^2 -curve; that is, the $Z^i(.)$, $\phi^i(.)$, $x^i(.)$ satisfy the following continuity conditions for all $i = 0, 1, \ldots, n-1$: $$Z^{i}(s_{i+1}) - Z_{i} + 1 \equiv Z_{i} + \int_{0}^{\tau_{i}} \begin{bmatrix} \cos \\ \sin \end{bmatrix} (\phi^{i}(s_{i} + \tau)) d\tau - Z_{i+1} = 0$$ $$\phi^{i}(s_{i+1}) - \phi_{i+1} \equiv \phi_{i} + \kappa_{i} + \kappa_{i} \tau_{i} + \frac{\lambda_{i}}{2} \tau_{i}^{2} - \phi_{i+1} = 0$$ $$\kappa^{i}(s_{i+1}) - \kappa_{i+1} \equiv \kappa_{i} + \lambda_{i} \tau_{i} - \kappa_{i+1} = 0$$ (3.2) with $\tau_i := s_{i+1} - s_i$. Of course, the parameters s_i are determined by the τ_i , $s_{i+1} = \tau_0 + \tau_1 + \ldots + \tau_i$ so that instead of the s_i , we may take the $\tau_i > 0$ as parameters. Note that we do not require $\lambda_i \neq 0$, so that Z(s) may contain linear or circular segments. In this section we study the interpolation problem of finding a clothoidal spline passing through a finite number of given points. In this form, the problem is not very meaningful, since by Theorem (2.25) it has arbitrarily many different solutions. More interesting is the problem of finding an interpolating clothoidal spline with minimal $\int x(s)^2 ds$, in analogy to cubic spline interpolation. (3.3) PROBLEM: For a given family $\{Z_i\}_{i=0,1,\ldots,n+1}$ of different points $Z_i \in R^2$ find parameters $P_i^T = (\phi_i, \kappa_i, \lambda_i, \tau_i)$, $i=0,1,\ldots,n$ with $\tau_i > 0$ such that these parameters together with the Z_i determine a clothoidal spline Z(s) by (3.1) satisfying (3.2) and $Z(s_{n+1}) = Z_{n+1}$ so that $$\smallint_0^{s_{n+1}} \kappa(s)^2 ds = \smallint_{i=0}^n \smallint_{s^i}^{s_{i+1}} \kappa^i(s)^2 ds$$ is minimal. With the notation $$\mathbf{a}_{i}^{T} := (\phi_{i}, \kappa_{i}), b_{i}^{T} := (\lambda_{i}, \tau_{i})$$ $$P^{T} := (P_{0}^{T}, P_{1}^{T}, \dots, P_{n}^{T}), P_{i}^{T} := (\kappa_{i}, \kappa_{i}, \lambda_{i}, \tau_{i}), i = 0, 1, \dots, n$$ (3.4) the objective function to be minimized is the function $$F(P) := \sum_{i=0}^{n} \int_{0}^{\tau_{i}} (\kappa_{i} + \lambda_{i}\tau)^{2} d\tau$$ which is separable in variables P_i . The transpose F'(P) of its gradient and its Hessian F''(P) are $$F'(P) = (u_0, v_0, u_1, v_1, \dots, u_n, v_n)$$ with the R^2 row vectors $$u_{i} := [0, 2\kappa_{i}\tau_{i} + \lambda_{i}\tau_{i}^{2}]$$ $$v_{i} := [\tau_{i}^{2}(\kappa_{i} + \frac{2}{3}\lambda_{i}\tau_{i})(K_{i} + \lambda_{i}\tau_{i})^{2}]$$ (3.6) and the 4 x 4 square matrices $$F_{i} := 2 \begin{bmatrix} 0 & , & 0 & & 0 & , & 0 \\ \\ \frac{0}{0} & , & \tau_{i} & & \frac{1}{2}\tau_{i}^{2} & , & \kappa_{i} + \lambda_{i}\tau_{i} \\ \\ 0 & , & \frac{1}{2}\tau_{i}^{2} & & \frac{1}{3}\tau_{i}^{3} & , & (\kappa_{i} + \lambda_{i}\tau_{i})\tau_{i} \\ \\ 0 & , & \kappa_{i} + \lambda_{i}\tau_{i} & & (\kappa_{i} + \lambda_{i}\tau_{i})\tau_{i} & , & (\kappa_{i} + \lambda_{i}\tau_{i})\lambda_{i} \end{bmatrix}$$ $$(3.7)$$ Also, the conditions (3.2) to be satisfied by P are highly structured. They have a staircase-like form $$G(P) \equiv G(a_0, b_0, \ldots, a_n, b_n) \equiv$$ $$\begin{bmatrix} J(a_0,b_0)+Z_0-Z_1 \ , & \\ K(a_0\,,b_0) & ,-a_1 \\ & , J(a_1,b_1)+Z_1-Z_2, \\ & , K(a_1\,b_1) & ,-a_2 \\ & & \\ & & \\ & & , J(a_{n-1},b_{n-1})+Z_{n-1}-Z_n, \\ & & , K(a_{n-1},b_{n-1}) & ,-a_n \\ & & , J(a_n,b_n)+Z_n-Z_{n+1} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{bmatrix}$$ where $$J(a,b) := \int_{0}^{\tau} \begin{bmatrix} \cos \\ \sin \end{bmatrix} \underbrace{(\phi + \kappa \tau + \frac{\lambda}{2} \tau^{2}) d\tau}, \quad a := \begin{bmatrix} \phi \\ \kappa \end{bmatrix}, b := \begin{bmatrix} \lambda \\ \tau \end{bmatrix}$$ $$K(a,b) := \begin{bmatrix} \phi + \kappa \tau + \frac{\lambda}{2} \tau^{2} \\ \kappa + \lambda \tau \end{bmatrix}$$ (3.9) Note that the integral in J(a,b) is easily computed in terms of Fresnel integrals (see 1.2) for $\lambda_i \neq 0$ and elementary integration rules for $\lambda_i = 0$. The Jacobian G ' of G has a similar structure $G'(P) = G'(a_0, b_0, \ldots, a_n, b_n) \equiv$ with partial derivative 2 x 2 matrices $$A_{i} := D_{(\phi, \mathbf{x})} J(\phi, \mathbf{x}, \lambda, \tau) |_{P_{i}}$$ $$B_{i} := D_{(\lambda, \tau)} J(\phi, \mathbf{x}, \lambda, \tau) |_{P_{i}}$$ $$C_{i} := \begin{bmatrix} 1 & , & \tau_{i} \\ 0 & , & 1 \end{bmatrix} , D_{i} := \begin{bmatrix} \tau_{i}^{2}/2 & , & \kappa_{i} + \lambda_{i} \tau_{i} \\ \tau_{i} & , & \lambda_{i} \end{bmatrix}$$ (3.11) In terms of the notation just introduced, (3.3) is equivalent to the minimization problem, Minimize $$F(P)$$ subject to $G(P) = 0$ (3.12) Let $$L(P, \Lambda) := F(P) + \Lambda^T G(P)$$ be the Lagrangean of (3.12) and suppose that (3.12) satisfies the usual first order necessary and second order sufficient conditions at the optimal point \overline{P} (which we assume to exist): 1. The Jacobian G' (\overline{P}) of G at \overline{P} has full row rank and there exists a Λ such that $(\overline{P}, \overline{\Lambda})$ is a stationary point of L: $$\phi(\overline{P}, \overline{\Lambda}) = 0 , \text{ with } \phi(P, \Lambda) := \begin{bmatrix} \overline{\Lambda}_p L(P, \Lambda) \\ G(P) \end{bmatrix} = L'(P, \Lambda)^T$$ (3.13) 2. For the Hessian Lpp $(\overline{P}, \overline{\Lambda})$ of L with respect to P $$\mathbf{P}^{\mathrm{T}}\mathbf{L}_{\mathrm{pp}}(\overline{\mathbf{P}},\overline{\Lambda})\mathbf{P}>0$$ holds for all $P \neq 0$ satisfying $G'(\overrightarrow{P})P = 0$. Then \overline{P} and $\overline{\Lambda}$ can be found as the solution of the nonlinear equations (3.13). The Jacobian ϕ' of ϕ is a highly structured matrix of the form $$\phi'(P,\Lambda) = \begin{bmatrix} L_{pp}(P,\Lambda) & , & G'(P)^{\mathrm{T}} \\ G'(P) & , & 0 \end{bmatrix}$$ (3.14) where G' is given by (3.10). It is seen from (3.5), (3.10) that L_{pp} has the same block-structure as F'' (3.5). In solving (3.13), Newton's method can be applied to generate iterates $(P^{(k)}, \Lambda^{(k)}), k = 0$, 1, . . . by solving at each iterate $(P^{(k), \Lambda(k)})$ the linear equations $$\phi'(P^{(k)}, \Lambda^{(k)}) \begin{bmatrix} \delta P^{(k)} \\ \delta \Lambda^{(k)} \end{bmatrix} = -\phi(P^{(k)}, \Lambda^{(k)})$$ for the Newton direction $$\begin{bmatrix} \delta P^{(k)} \\ \delta \Lambda^{(k)} \end{bmatrix}$$, with ϕ' given by (3.14). Since computing the Hessian $L_{PP}(P^{(k)}, \Lambda^{(k)})$ may be too costly, we may replace L_{PP} within ϕ' by a sufficiently close approximation $H^{(k)}$ as it is done in the minimization algorithms of Han [4, 5] and Powell [11, 12]. One may choose as $H^{(k)}$, e.g. a matrix of the same block structure as L_{PP} , namely (compare 3.5) $$H^{(k)} = \begin{bmatrix} H_0^{(k)} & 0 \\ H_1^{(k)} & \\ & \cdot & \\ & & \cdot \\ 0 & & H_n^{(k)} \end{bmatrix}$$ (3.16) with 4×4 blocks $H_i^{(k)}$, $i = 0, 1, \ldots, n$. One then solves (3.15) with L_{PP} replaced by $H^{(k)}$, namely $$\begin{bmatrix} H^{(k)} & , & G'(P^{(k)})^{\mathrm{T}} \\ G'(P^{(k)}) & , & 0 \end{bmatrix} \begin{bmatrix} \delta P^{(k)} \\ \delta \Lambda^{(k)} \end{bmatrix} = -\phi(P^{(k)}, \Lambda^{(k)})$$ (3.17) and computes a new iterate of the form $$\begin{bmatrix} P^{(k+1)} \\ \Lambda^{(k+1)} \end{bmatrix} = \begin{bmatrix} P^{(k)} \\ \Lambda^{(k)} \end{bmatrix} + \sigma_k \cdot \begin{bmatrix} \delta P^{(k)} \\ \delta \Lambda^{(k)} \end{bmatrix}$$ by choosing a step size σ_k , $0 < \sigma_k \le 1$, for example as in Han [5], by minimizing a certain penalty function along the ray $$\left\{ \begin{bmatrix} P^{(k)} \\ \Lambda^{(k)} \end{bmatrix} + \sigma \begin{bmatrix} \delta P^{(k)} \\ \delta \Lambda^{(k)} \end{bmatrix} \middle| \sigma \ge 0 \right\} .$$ After having computed the new iterate $(P^{(k+1)}, \Lambda^{(k+1)})$, one may use a rank-2 update formula, say the PSB-update formula, on each 4×4 block $H_i^{(k)}$ in order to generate another matrix $H_i^{(k+1)}$ for each $i = 0, 1, \ldots, n$, and thereby $H^{(k+1)}$, having the same structure (3.16) as $H^{(k)}$ and satisfying the usual Quasi-Newton equation: $$H_i^{(k+1)}(P_i^{(k+1)} - P_i^{(k)}) = \nabla_{P_i} L(P^{(k+1)}, \Lambda^{(k+1)}) - \nabla_{P_i} L(P^{(k)}, \Lambda^{(k+1)})$$ (3.18) When solving (3.17), the structure of
$H^{(k)}$ (3.16) and $G'(P_k)$ (3.10) can be exploited to reduce the number of operations drastically. For ease of notation, let us drop the superscripts and arguments in (3.17) and write briefly $\begin{bmatrix} c \\ d \end{bmatrix}$ for the right hand side $-\phi(P^{(k)}, \Lambda^{(k)})$ of (3.17). The problem then is to solve an equation of the form $$\begin{bmatrix} H & , & G'^{\mathrm{T}} \\ G' & , & 0 \end{bmatrix} \begin{bmatrix} \delta P \\ \delta \Lambda \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$$ (3.19) where H and G ' have the block structure (3.16) and (3.10), respectively. We first reduce G' by a series of Givens reflexions Ω_j , $\Omega_j^H = \Omega_j$, $\Omega_j^2 = I$, to a lower triangular matrix of the form [compare its structure with (3.10)]: $$G'_{-1}.\Omega_2...\Omega_N = (L, 0) \equiv$$ where all blocks indicated have size 2×2 and L is a $(4n + 2) \times (4n + 2)$ -lower triangular band matrix. Again, because of the band-structure of (3.10), the number N = 0(n) of Givens reflexions needed is linear in n, so that the unitary matrix $$\Omega := \Omega_1 \cdot \Omega_2 \cdot \dots \cdot \Omega_N \tag{3.21}$$ need not be computed explicitly, but can be stored in product form. Partition the matrix $$\Omega = (\overline{\Omega}, \overline{\overline{\Omega}})$$ where $$\overline{\overline{\Omega}} = \Omega \begin{bmatrix} 0 & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \Omega_1.\Omega_2.\dots\Omega_N \begin{bmatrix} 0 & 0 \\ \cdot & \cdot \\ \cdot & \cdot \\ 1 & 0 \\ 0 & 1 \end{bmatrix}$$ are the last two columns of Ω , which are computed using the product form of (3.21), $\overline{\Omega}$ is not needed explicitly. Introduce new variables $$t = \begin{bmatrix} t_1 \\ t_2 \end{bmatrix}$$ via $\delta P = \Omega t = \overline{\Omega} t_1 + \overline{\overline{\Omega}} t_2$. Then because of $$G'\overline{\Omega} = L, G'\overline{\overline{\Omega}} = 0$$ the second set of equations (3.19) $$G'\delta P = Lt_1 = d \rightarrow t_1$$ can be solved for t_1 in O(n) steps using the structure of L (3.20), and the vector $$P^1 := \overline{\Omega} t_1 = \Omega_1 \Omega_2 \dots \Omega_N \quad \left[egin{array}{c} t_1 \ 0 \ 0 \end{array} ight]$$ is computed using (3.21). Now we turn to the first set of equations (3.19) $$H\delta P + G'^{\mathsf{T}}\delta \Lambda = c \tag{3.22}$$ Multiplying these equations by $\overline{\overline{Q}}^T$ and introducing t_1 and t_2 instead of δP , we get because of $\overline{\overline{Q}}^TG'T=0$ $$\bar{\bar{\Omega}}^T H \bar{\bar{\Omega}} t_1 + \bar{\bar{\Omega}}^T H \bar{\bar{\Omega}} t_2 = \bar{\bar{\Omega}}^T c$$ or $$(\overline{\overline{Q}}^T H \overline{\overline{Q}}) t_2 = \overline{\overline{Q}}^T c - \overline{\overline{Q}}^T H P^1 \to t_2$$ (3.23) Again, the 2 x 2 matrix $\overline{\overline{\Omega}}^T H \overline{\overline{\Omega}}$ and the vectors $\overline{\overline{\Omega}}^T H P^1$ can be computed with O(n) operations using the block structure of H (3.16). t_2 is obtained by solving the two linear equations (3.23) and ∂P is calculated by $$P^2 := \overline{\Omega}t_2, \delta P := P^1 + P^2 .$$ Finally, we multiply (3.22) by $\overline{\Omega}^T$ in order to get $\delta\Lambda$. Observing (3.20) we obtain a triangular system of linear equations $$L^T t \delta \Lambda = \overline{\Omega}^T c - \overline{\Omega}^T H \delta P$$ the right hand side of which can be easily computed with 0(n) operations using the structure of H and the product form of $\overline{\Omega}^{T}$: $$\overline{\mathbf{Q}}^{\mathrm{T}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ & \cdot & & \\ & & \cdot & \\ 0 & & 1 & 0 & 0 \end{bmatrix} \quad \mathbf{Q}N\mathbf{Q}_{N-1} \dots \mathbf{Q}_{1}$$ All in all, we can compute the solution of (3.19) with 0(n) arithmetic operations, so that the Han-Powell method is quite effective in our case. The method has been realized and successively tested by Huckle [6]. With respect to a convergence analysis of the above method (the method converges locally superlinearly under some mild assumptions) we refer to the literature Han [4,5], Powell [12], Tapia [16]. # 4. Smoothing by Clothoidal Splines We consider the following generalization of (3.3) (compare Reinsch [13]): PROBLEM: For a given family $\{\overline{Z}_i\}_{i=0,1,\ldots,n+1}$ of different points $$\overline{Z_i} = \begin{bmatrix} \overline{x}_i \\ \overline{y}_i \end{bmatrix} \epsilon R^2$$ and numbers $S \ge 0$, $\Delta x_i > 0$, $\Delta y_i > 0$, $i = 0,1,\ldots,n+1$, find parameters $$\left\{\left\{\left(\phi_{i},\mathbf{x}_{i},\lambda_{i},\tau_{i}\right)\right\}_{i=0,1,\ldots,n},\left\{Z_{i}\right\}_{i=0,1,\ldots,n+1},\mathbf{z}\right\},\,Z_{i}=\begin{bmatrix}x_{i}\\y_{i}\end{bmatrix}\,\epsilon\,\mathbf{R}^{2}\quad,\tag{4.1}$$ which determine a clothoidal spline Z(s) via (3.1) satisfying the conditions a) (3.2) and $$Z(s_{n+1}) = Z_{n+1}$$ (4.2) b) $$\sum_{i=0}^{n+1} \left(\left(\frac{x_i - \overline{x}_i}{\Delta x_i} \right)^2 + \left(\frac{y_i - \overline{y}_i}{\Delta y_i} \right)^2 \right) + z^2 = S$$ (z is a slack variable) such that $\int_{0}^{s_{n+1}} \lambda(s)^2 ds$ is minimal. Again with the notation [compare (3.4)] $$a_{i}^{T} = (\phi_{i}, x_{i}), b_{i}^{T} = (\lambda_{i}, \tau_{i})$$ $$P_{i}^{T} = (\phi_{i}, x_{i}, \lambda_{i}, \tau_{i})$$ $$P_{n+1}^{T} = [Z_{0}^{t}, Z_{1}^{T}, \dots, Z_{n+1}^{T}, z]$$ $$= (x_{0}, y_{0}, x_{1}, y_{1}, \dots, x_{n+1}, y_{n+1}, z) \varepsilon R^{2n+5}$$ $$P^{T} = [P_{0}^{T}, P_{1}^{T}, \dots, P_{n}^{T}, P_{n+1}^{T}] \varepsilon R^{6n+9}$$ the objective function F(P) to be minimized is separable in the P_i $$F(P) := \sum_{i=0}^{n} \int_{0}^{\tau_{i}} (x_{i} + \lambda_{i}t)^{2} dt$$ $$(4.3)$$ and has a Hessian of the form [compare (3.5)] with the same 4×4 matrices F_0, \ldots, F_n as in (3.7) and a (2n+5) by (2n+5) matrix $F_{n+1} := 0$. The constraints (4.2) now have the structure [see (3.8)]: $$G(P) \equiv \begin{bmatrix} J(a_0,b_0) + Z_0 - Z_1 \\ K(a_0,b_0) - a_1 \\ J(a_1,b_1) + Z_1 - Z_2 \\ K(a_1,b_1) - a_2 \\ \vdots \\ J(a_{n-1},b_{n-1}) + Z_{n-1} - Z_n \\ K(a_{n-1},b_{n-1}) - a_n \\ J(a_n,b_n) + Z_n - Z_{n+1} \\ \varrho(Z_0,Z_1,...,Z_{n+1},z) \end{bmatrix} = 0$$ $$(4.5)$$ where L and K are again given by (3.9) and the scalar function ϱ is defined by [compare (4.2) b)] $$\varrho(Z_0,\ldots,Z_{n+1},z):=\left(\frac{1}{2}\sum_{i=0}^{n+1}\left(\frac{x_i-\overline{x}_i}{\Delta x_i}\right)^2+\left(\frac{y_i-\overline{y}_i}{\Delta y_i}\right)^2\right)+z^2-S.$$ With these new definitions of F and G, problem (4.1) has the same structure as (3.12), namely minimize $$F(P)$$ subject to $G(P) = 0$ (4.6) Consider again the Lagrangean of (4.6) $$L(P,\Lambda) := F(P) + \Lambda^T G(P)$$ We again assume that (4.6) has an optimal solution \overline{P} and that at \overline{P} the optimality conditions (3.13) are satisfied. By (3.13), (3.14) the optimal solution $(\overline{P}, \overline{\Lambda})$ solves $$\phi(P,\Lambda) := L'(P,\Lambda) \equiv \begin{bmatrix} \Delta_P L(P,\Lambda) \\ G(P) \end{bmatrix} = 0 \tag{4.7}$$ whose Jacobian is again $$\phi'(P,\Lambda) = \begin{bmatrix} L_{PP}(P,\Lambda) & , & G'^T \\ G' & , & 0 \end{bmatrix}$$ (4.8) but its structure is slightly more complicated than in section 3 because of our new definitions of F(P) (4.3) and G(P) (4.5). It is easily verified that in the present case $\phi'(P,\Lambda)$ has the following form (illustrated for n=2) $$G^{\bullet}(P) = \begin{bmatrix} A_{0}, B_{0} & 0 & 1, -1, 0, 0 & 0 \\ c_{0}, D_{0}, -1 & 0, 0, 0, 0 & 0 \\ A_{1}, B_{1} & 0, 1, -1, 0 & 0 \\ c_{1}, D_{1}, -1 & 0, 0, 0, 0 & 0 \\ 0 & A_{2}, B_{2} & 0, 0, 1, -1 & 0 \\ 0 & 0 & r & z \end{bmatrix}$$ $$(4.9)$$ where the 2 by 2 matrices A_i , B_i , C_i , D_i are again given by (3.11) and the vector r is $$\left(r := \frac{x_0 - \overline{x}_0}{\Delta x_0)^2}, \frac{y_0 - \overline{y}_0}{(\Delta y_0)^2}, \dots, \frac{x_{n+1} - \overline{x}_{n+1}}{(\Delta x_{n+1})^2}, \frac{y_{n+1} - \overline{y}_{n+1}}{(\Delta y_{n+1})^2}\right)$$ Likewise $L_{PP}(P,\Lambda)$ has the structure [compare (4.3), (4.4)] $$L_{PP}(P, \Lambda) = \begin{bmatrix} L_0 & & & & 0 \\ & L_1 & & & & \\ & & \cdot & & & \\ & & & \cdot & & \\ & & & \cdot & & \\ & & & L_n & & \\ 0 & & & L_{n+1} \end{bmatrix}$$ (4.10) where the L_i , $i \le n$, are symmetric 4 by 4 matrices and L_{n+1} is the (2n+5) by (2n+5) diagonal matrix. $$L_{n+1} := \Lambda_x \cdot \operatorname{diag}(\Delta x_0, \Delta y_0, \dots, \Delta x_{n+1}, 1)^{-2} , \qquad (4.11)$$ where Λ_z is the last component of Λ . As in the previous section, one has to solve (4.8) by Newton's method (compare (3.15) – (3.17) where at each iteration point $[P^{(k)}, \Lambda^{(k)}]$ the Hessian L_{PP} is approximated by a positive definite matrix $H^{(k)}$ having the same structure as L_{PP} (4.10), with certain 4 by 4 matrices $H_i^{(k)}$ for $i \leq n$ and the diagonal matrix (see 4.11) $$H_{n+1}(k) = \Lambda_{n}(k) \cdot \operatorname{diag}(\Delta x_{0}, \Delta y_{0}, \dots, \Delta x_{n+1}, \Delta y_{n+1}, 1)^{-2}$$ (4.13) After having computed $P^{(k+1)}$, $\Lambda^{(k+1)}$ (see previous section) $H^{(k+1)}$ is obtained from $H^{(k)}$ by updating each $H_i^{(k)}$, $i \leq n$, individually by some update method (e.g., the PSB-method) which guarantees the same quasi-Newton relation (3.18) as in section 4; $H_{(n+1)}^{(k+1)}$ is computed by (4.13). Of course, for large numbers n the efficiency of the algorithm outlined crucially depends on the number of operations needed to perform one Newton step $[P^{(k)}, \Lambda^{(k)}] \rightarrow [P^{(k+1)}, \Lambda^{(k+1)}]$, that is to solve a linear system of equations [see (3.17), (3.19)] of the form $$\begin{bmatrix} H & , G'^{T} \\ G' & , 0 \end{bmatrix} \begin{bmatrix} \delta P \\ \delta \Lambda \end{bmatrix} = \begin{bmatrix} c \\ d \end{bmatrix}$$ (4.14) for δP , $\delta \Lambda$, where H and G' are given matrices with the
structure (4.12) and (4.9), respectively. An algorithm of the type considered at the end of the previous section leads to difficulties inasmuch as it would take $0(n_3)$ operations to solve (4.14) because it requires the computation and storage of a large dense matrix of the order 0(n). Another numerically stable way to solve the linear system (4.14), which exploits the symmetry of the matrix $$\begin{bmatrix} H & , & G'^T \\ G' & , & 0 \end{bmatrix}$$ $$342$$ $$(4.15)$$ would be to use the Bunch-Parlett decomposition of (4.15) (see Bunch, Parlett [4]). However, this method requires a pivot selection in each basic elimination step, which, though preserving the symmetry, will in general destroy the specific block structure of the matrix in (4.15). This method, therefore, also requires $0(n^3)$ operations to solve (4.14). A cheaper method for solving (4.14) might be a variant of the conjugate gradient algorithm for solving linear equations $$Ax = b$$ with a symmetric nonsingular, but perhaps indefinite matrix A, which is described in Paige and Saunders [9]. This method can take the block structure (4.12), (4.9) of H and G' into account and therefore requires only $O(n^2)$ operations and O(n) storage to solve (4.14). It is interesting to note in this context that the system (4.14) can be solved with only 0(n) operations, if the block-diagonal matrix $L_{PP}(\overline{P}, \overline{\Lambda})$ (4.10) would be positive definite at the solution $(\overline{P}, \overline{\Lambda})$ of (4.7). In this case, it can be shown that the matrices $H^{(k)}$ (4.12) generated by the usual update techniques (PSP-, DFP-, or BFGS-methods) will be positive definite, at least locally, if the starting values $[P^{(0)}, \Lambda^{(0)}]$, and $H^{(0)}$ are sufficiently close to $(\overline{P}, \overline{\Lambda})$ and $L_{PP}(\overline{P}, \overline{\Lambda})$, respectively. If H is positive definite, then a numerically stable method of solving (4.14) requiring only 0(n) operations runs as follows: In a first step compute the Cholesky decomposition of $$H = R^T R$$ which requires 0(n) operations and gives an upper triangular R of the form [compare (4.12)] with 4×4 upper triangular R_i for $i \le n$ and diagonal R_{n+1} . Premultiplying (4.14) by $$\begin{bmatrix} R^{-T} & , & 0 \\ -G'R^{-1}R^{-T} & , & I \end{bmatrix}$$ gives the equivalent system $$\begin{bmatrix} R & , & (G'R^{-1})^T \\ 0 & , -(G'R^{-1})(G'R^{-1})^T \end{bmatrix} \begin{bmatrix} \delta P \\ \delta \Lambda \end{bmatrix} = \begin{bmatrix} R^{-T}c \\ d - G'R^{-1}R^{-T}c \end{bmatrix}$$ (4.17) So the next step is to compute $$c' := R^{-T}c$$, $A := G'R^{-1}$ which again requires only 0(n) operations because of the simple structure of R (4.16) and G' (4.9). Note, moreover, that the product matrix $A = G'R^{-1}$ has a form very similar to (4.9), namely (illustration for n=2): | | | <u>_</u> | 1 | | | . 1.7 | 1 | |---|------|-------------|-------|-----|----------------|----------|--------| | | | xxxx | 0] | хох | K O | 010 | | | | xxxx | | о х о | ХC | | | | | | | **** | | | | i | | | | | **** | 1 | | | | 1 | | | | xxxx | 1 | 2 | x o x (|) | | | A | - | *** | | |) x o : | K | (4.18) | | | | x x x x x o | | | | l | | | | | xxxxx | | | | | J | | | | xxx | x | | x (|) x o o | | | | | 0 x x x | x | 0 | 0 : | к о х о | j | | | | 0 | | ж ж | x x x | x | | We next reduce A to "lower triangular" form by multiplying A from the right by suitable Givens reflexions $\Omega_1, \Omega_2, \ldots, \Omega_N = 0$ (n) matrices Ω_i and only 0 (n) operations are needed and the structure of (4.16) is essentially preserved and fill in will occur at most 0 (n) places. Each will annihilate a particular above diagonal element of A; the resulting matrix is of the form $$A\Omega_1\Omega_2\ldots\Omega_N=(L,0) \tag{4.19}$$ where "O" denotes a (4n+3) by (2n+6) zero matrix and L is a (4n+3) by (4n+3) lower triangular matrix with the structure Note that the dense (6n+9) by (6n+9) product matrix $\Omega = \Omega_1 \Omega_2$, ..., Ω_N need not be computed. Its storage in product form requires only O(n) places. Concurrently with the elimination process for finding L, we can compute the vector $$c'' := \Omega_N \dots \Omega_2 \Omega_1 c'$$ Now it is easy to solve (4.17) for δP and $\delta \Lambda$. The second equation (4.17) gives by (4.19) at once $$AA^{T}\delta\Lambda = LL^{T}\delta\Lambda = -d + Ac' = -d + (L,0)c''$$ (4.20) so that $$\delta \Lambda = -L^{-T}L^{-1}d + (L^{-T},0)c^* \tag{4.21}$$ i.e. $\delta\Lambda$ can be found by solving three linear equations with triangular matrices. The first equation (4.17) now gives by (4.21) $$R\delta P = R^{-T}c - A^{T}\delta \Lambda$$ $$= c' - \Omega \begin{bmatrix} L^{T} \\ 0 \end{bmatrix} \delta \Lambda$$ $$= c' - \Omega \begin{bmatrix} -L^{-1}d + (I,0)c^{*} \\ 0 \end{bmatrix}$$ $$(4.22)$$ Unfortunately enough, the computation of $$c''' := \Omega \begin{bmatrix} L^{-1}d - (I,0)c'' \\ 0 \end{bmatrix} = \Omega_1\Omega_2, \ldots, \Omega_N \begin{bmatrix} L^{-1}d - (I,0)c'' \\ 0 \end{bmatrix}$$ requires the storage of all Ω_i (this was not needed in computing c''). Note that $L^{-1}d$ has already been obtained during the calculation of $\delta\Lambda$ (4.21). Finally, by (4.22), δP is obtained by solving one more triangular system of linear equations $$R\delta P = c' - c''' \to \delta P \quad , \tag{4.23}$$ again requiring only 0(n) operations. At the expense of numerical stability one may get around the elimination process to find L and the storage of the orthogonal matrices Ω ; in the following way: Having computed the Cholesky decomposition of $H = R^T R$, the matrix $A = G' R^{-1}$, the product AA^T and its Cholesky decomposition $AA^T = LL^T$, computing $\delta \Lambda$ and δP from (4.20), (4.22) is straightforward: $$LL^{T}\delta\Lambda = -d + Ac' \to \delta\Lambda \to A^{T}\delta\Lambda$$ $$R\delta P = c' - A^{T}\delta\Lambda \to \delta P$$ (4.24) Note in this context that the product AA^T has a simple sparse structure needing only O(n) places for storage: Both algorithms require only 0(n) operations for solving (4.14) in each Newton step, but the former will be numerically more stable, as it avoids the calculation of AA^T and cancels products such as LL^{-1} , RR^{-1} , which arise inherently during the solution of (4.24), as often as possible. I wish to thank Christoph Witzgall for numerous discussions. I am also indebted to the National Bureau of Standards for its generous hospitality allowing me to spend a sabbatical leave during the spring and summer of 1980 in an intellectually stimulating environment. ### 5. References - Abramowitz, M., Stegun, I. A. (eds.). Handbook of Mathematical Functons, 9th ed., U.S. Department of Commerce, National Bureau of Standards, Washington, D.C. (1970). - [2] Boersma, J.: Computation of Fresnel Integrals, Math. Comp. 14, 380 (1960). - [3] Bunch, J. R., Parlett, B. N.: Direct Methods for Solving Symmetric Indefinite Systems of Linear Equations, SIAM J. Numer. Anal. 8, 639-655 (1971). - [4] Han, S. P.: Superlinearly Convergent Variable Metric Algorithms for General Nonlinear Programming Problems, Math. Prog. 11, 263-282 (1976). - [5] A Globally Convergent Method for Nonlinear Programming, Jota 22 (1977), 297-309. - [6] Huckle, Th.: Uber Kurveninterpolation mit clothoidalen Splines. Master-thesis, Univ. of Wurzburg, 1982. - [7] Lee, E. H., Forsythe, G. E.: Variational Study of Nonlinear Spline Curves, Computer Science Department Report, Stanford University, August 1971. - [8] Mehlum, E.: Nonlinear Splines, in: R. E. Bainhill, R. F. Rosenfeld (eds.): Computer Aided Geometric Design, New York, Academic Press (1974). - [9] Paige, C. C., M. A. Saunders: Solutions of sparse indefinite systems of linear equations. SIAM J. Number. Anal. 12, 617-629 (1975). - [10] Pal, T. K., Nutbourne, A. W.: Two-Dimensional Curve Synthesis Using Linear Curvature Elements, Computer Aided Design 9 (1977), 121-134. - [11] Powell, M. J. D.: A fast algorithm for nonlinearly constrained optimization calculations, in: G. A. Watson (ed.): Numerical Analysis, Dundee 1977, Lecture Notes in Mathematics No. 630, Berlin: Springer-Verlag 1978. - [12] ______: The convergence of variable metric methods for nonlinearly constrained optimization calculations, in: Proc. Nonlinear Programming Symposium 3, Madison, Wisconsin 1977. - [13] Reinsch, C.: Smoothing by spline functions. Numer. Math. 10, 177-183 (1967). - [14] Reinsch, K.-D.: Numerische Berechnung von Biegelinien in der Eben. Tech. Report TUM-M 8108, Techn. Univ. of Munich, 1981 - [15] Stoker, J. J.: Differential geometry, New York: Wiley 1969. - [16] Tapia, R. A.: Diagonalized multiplier methods and Quasi-Newton methods for constrained optimization. JOTA 22, 135-194 (1977).