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Absolute Isotopic Abundance Ratios and Atomic Weight of a
Reference Sample of Strontium

L. J. Moore,* T. J. Murphy,* 1. L. Barnes,* and P. J. Paulsen*

National Bureau of Standards, Washington, DC 20234

July 15, 1981

Absolute values have been obtained for the isotopic abundance ratios of a reference sample of strontium
using solid sample thermal ionization mass spectrometry. Samples of independenly known isotopic composition
prepared from chemically pure and nearly isotopically pure separated strontium isotopes were used to calibrate
the .mas spectrometry. The resulting absolute 8"Slg6Sr. 7Sr/r` and 8'Sr/msr ratios are 8.3786 ± 0.0033,
0,71034 ± 0.00026, and 0.05655 ± 0.00014 respectively which yields atom percents of: 't Sr 82,5845 ±
0.0066, . 7Sr = 7.0015 ± 0.0026, '5Sr = 9.8566 ± 0.0034, and -ISr = 0.5574 ± 0.0015. The atomic weight
calculated from these abundances is 87.61681 ± 0.00012. The indicated uncertainties are overall limits of error
based on 95 percent confidence limits for the mean and allowances for the effects of possible systematic error.

Key Words: Absolute ratios; atomic weight: isotopic abundances; strontium.

1. Introduction

The analytical mass spectrometry group of the National
Bureau of Standards is conducting a long term program of
absolute abundance ratio and atomic weight determinations
on polynuclidic elements using predominantly thermal ioni-
zation mass spectrometry though, on occasion, electron im-
pact ionization has been used. Previous elements studied
include silver [I],' chlorine [2], copper [3], bromine [4],
chromium [5], magnesium [6], lead [7], boron [8], rubidium
[9], rhenium [10], silicon [11], potassium [12], and thallium
(13]. The present work extends the study to strontium.

Natural strontium consists of four isotopes, S 5 r, 87Sr, 6 Sr,
and a"Sr. One of these, "rSr, is constantly, though slowly,
accumulating as the end product of the decay of 87Rb; the
other three are believed to be of stable abundance.

The present atomic weight of strontium, 87.62, is based
on the relative isotopic measurements of A. 0. Nier [14] on
a piece of pure strontium metal. Since this early work there
has been no serious effort focused toward the determination
of the absolute isotopic abundances of strontium. In the in-
terim, the value of 0.1194 determined by Nier for the ratio
86 5r/88Sr has been nearly universally adopted by the geolog-
ical community as an interlaboratory standardization value in
the mass spectrometric measurement of radiogenic 87Sr.

The large limit of error ( ± 2 percent) associated with Nier's
measurement of m`Sr/`aSr left some uncertainty about a pos-
sible systematic error associated with the currently accepted
procedure of correcting for instrumental fractionation of the

* Center fr Analytical Chemistry, National Measureme Laboraory.
Figures in brackets indicate literatue r rfrences at the end of this paper.

isotopes by normalizing to Nier's m`Sr/"Sr ratio (= 0.1194).
Thus, one primary purpose for the present work was to provide
absolute values for the strontium isotopic ratios which might
be used as a reference for the hundreds of papers published
annually dealing with strontium isotope geology and geo-
chronology.

In the present study the mass spectrometers were calibrated
for bias by the use of samples of independently known 88Sr/
86Sr ratios, prepared from chemically pure and nearly iso-
topically pure SSr and 86Sr solutions. These measured biases
were then used to correct the raw data obtained on a reference
sample of strontium thus yielding absolute values for this
sample. The reference sample selected for this work was SRM
987, Strontium Carbonate, which is a highly purified material
previously certified for strontium content.

2. Experimental Procedure

2.1. Mass Spectrometry

Isotopic measurements were performed using a triple fil-
ament rhenium ion source. The ionizing filaments used in
the measurements were rigorously degassed at 5 A (>2000
0C) for 2 h to reduce any background ion contributions to the
86, 87,Sr mass positions to <0.01 percent of the ion beam
intensities used in the measurements of the "natural" stron-
tium, SRM 987. The viability of this procedure was supported
by scanning these mass positions while heating a "blank"
ionizing filament at temperatures in excess of the usual op-
erating temperature (1600 0 C). Any possible contribution to
these masses under actual analysis conditions was evaluated
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by determining the absence of minor isotope perturbations in In the process of thermally vaporizing and ionizing sam-
the analyses of SRM 988, 'MSr spike, which has 'Sr, 87Sr,
and MSr atom fractions of 0.00059 ± 0.00001, 0.00010 ±
0.00001, and 0.00039 ± 0.00001, respectively [15]. Using
this technique, any contribution to the 85Rb mass position
was observed to be <10-Is A, and a factor of 2.6 less for
the 87Rb based on a natural 85 RbP7Rb ratio of 2.59 [9].

Details of the strontium isotopic analysis technique have
been published [16]. Generally, the procedure consists of
adding a drop of solution [500 jxg Sr/mL in 2% (V/V)HNO3 ]
to each of two degassed 0.001 inch x 0.030 inch regular
rhenium filaments, drying under an infrared lamp and heating
the resulting deposit with sequentially higher alternating cur-
rents to a final dull red heat. In the latter step the deposit
"collapses" on the filament and undergoes an apparent re-
action with the rhenium filament material to form a compound
probably analogous to the Ca3 Re2 O9 and CaReO4 detected
by electron diffraction earlier during Ca analyses [17].

This technique has been used extensively in this laboratory
for hundreds of strontium analyses, and ha; been adopted by
several geological laboratories around the world. Experience
has shown that inter-analysis variations in the unnormalized
6`Sr/88Sr ratio can be held to <0.05 percent, relative, and
usually substantially better using rigidly controlled analysis

parameters.
The two spectrometers used in these measurements were

nominally identical 90° sector, 30 cm radius of curvature
instruments equipped with thin lens Z-focusing ion sources
and a conventional NBS-designed collector appropriately biased
and baffled to minimize problems due to secondary particles
[18]. Both measuring systems used Cary 401 MR2 vibrating
reed electrometers whose attenuator resistors and amplifier
linearities were calibrated relative to each other within ±
0.01 percent by placing precisely known relative voltages
into the feedback loop of the electrometer. The 1 V analog
output of the electrometer was digitized using two different
systems: the instrument of operator I used a Hewlett-Packard
2212B voltage-to-frequency convertor (full scale = 100 kHz)
coupled to a high speed ATEC scaler; operator II's instrument
used a Teledyne (4501A) voltage-to-frequency convertor unit
in tandem with a high speed scaler of NBS design. Data
acquisition and instrument control for both instruments were
achieved with Hewlett-Packard 9830A(B) programmable cal-
culators, using software developed in this laboratory. In the
absence of a priority interrupt capability for the calculator,
the software was arranged such that the data averaging and
printing segment at the end of each peak top measurement
was completed in time for the calculator to be ready for the
next data transmission sequence from the scaler-VFC unit.

2 Certain commeial equipmeIt, instrvnes. or materials ar idelifed in this
paper to specify adequately the experimental procedure. Such identification does not
imply recommendation, or iodorsement by the Notional Bureau of Sondords nor does
it inoply tha the materials or equipment idetaifled ar necessarily the besi available
for the purpos.o

ples, a mass dependent isotopic discrimination occurs that
produces an observed isotope ratio that is not characteristic
of the sample. This discrimination occurs among sample load-
ings and during a sample analysis. To minimize any discrim-
ination-induced skewing of the relative isotope ratios with
respect to a common time base during an analysis, the isotope
ratios were measured symmetrically with respect to mass.
Typically, each peak was monitored for 10 precisely timed
1 s integrations, and 8-10 s (30-60 s for the separated isotope
mixtures) were allowed between signal integration periods to

allow for the RC decay of the electrometer as well as for a
settling time for the magnetic field. Normally 10 to 20 ratios
were measured for each isotope per analysis.

2.2. Purification of the Separated Isotopes

To prepare accurate isotopic standards for strontium, it is
necessary to know, as accurately as possible, the concentra-
tion of strontium in solutions of separated isotopes of stron-
tium. To accomplish this objective a purification method and
an assay procedure were developed that enabled us to de-
termine the concentration of strontium in a solution with an
accuracy of ±0.01 percent.

Electromagnetically separated soSr and asSr isotopes in the
form of strontium nitrate were obtained from the Nuclear
Division of the Oak Ridge National Laboratory. The sSr(NO3 )2
was designated series 136801 and the zsSr(NOa)2 was des-
ignated series 137001. The certificates of analysis which
accompanied each sample included a semi-quantitative spec-
trographic analysis which showed that several impurity ele-
ments could be present at the 0.02 to 0.05 percent level.

To reduce those impurities to a level low enough so that
they could not cause a significant error in the assay of stron-
tium, the separated isotope samples were further purified.
The purification procedure used was based on the relative
insolubility of strontium nitrate in concentrated nitric acid.
Only two elements, barium and lead, are known to co-pre-
cipitate under this condition [19]. If a dilute nitric acid so-
lution is evaporated, the nitric acid concentration increases
until the azeotropic solution containing 68 percent HNO3 is
reached [20]. In 68 percent HNO3 the solubility of strontium
nitrate is almost zero [21] while the solubility of most cations
except barium and lead is sufficient to keep them in solution
[19]. Lead can be efficiently removed by anodic electrode-
position but barium is not separated and remains as an im-
purity in the strontium nitrate.

The effectiveness of the purification procedure described
below was first tested by the purification of natural strontium
nitrate which had been doped with 1000 ppm each of 30
common impurity elements.

The results of the analysis of this material by spark source
and thermal isotope dilution mass spectrometry are shown in
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table 1. The methods of analysis are also described below. withdrawn from the crystals of strontium nitrate by using a
Only sodium was detected at a concentration greater than I
prg/g while all of the other elements were at the sub-ppm
level. Barium was not determined since the purification method
would not remove it and a correction for its concentration in
each separated isotope is necessary.

Each strontium separated isotope was purified as follows:
The strontium nitrate, Sr(N03 )2 , (about 5.0 g) was transferred
to a 100 ml, Teflon-FEP beaker and dissolved in 50 mL of
water. One mL of I mol/L hydrochloric acid was added and
the solution was heated at about 90 'C on a hot plate for two
hours. The solution was filtered through a close-textured filter
paper into a Teflon-FEP beaker. Five mL of high-purity nitric
acid was added to the filtrate and the solution was heated to
about 90 'C on a hot plate. Strontium nitrate was crystallized
by allowing the solution to evaporate until only about 3 mL
of solution remained (68% HNO3 ). The beaker and contents
were allowed to cool to room temperature. The solution was

TABLE 1. Analysis of Purified Strontium

Natural "'Sr sHSr
Spike SrNO,)2 Sr(N0O, SnNOQ,)

Element Isotope IL&gg pRg/g Rg/g

Ag 'AftAg 0.4' 0.03 0.1
Al z' 0.4' 0.1 0.5
As '*Se 0.03' - -

Ba' '11oBa - 12.5 0.73
Bi 2"1 TI 0.04 - _
Cal 42Ca 0.10' 0.78 0.30
Cd "''Cd 0.01' 0.01 0.01
Ce '42Ce 0.004' 0.02 0,2
Co eaNi 0.01' - -

Cr "3 Cr 0.05' 0.07 0,06
Cu -'Cu 0.041 0.30 0,2
Fe "Fe 0.3' 0.54 1.2
G. "Ga 0.02 0.01 0.01
In :'1"n 0.01 0.01 0.01
K ''K 0.05' 0.2 0.4
La '42Ce 0.02 - -

Mg 'IMg 0.2- 0.06 0.1
Mn "Fe 0.04" - -

Mo 97Mo 0.12' 0.03 0.02
No 41K 2- 0.7 0.7
Nd "'Nd 0.1 0.01 0.03
Ni '2Ni 0.01 0.03 0.06
Pb' 2*',Pb 0.04- 0.13 0,06
Sb '"7 5n 0.1'
Se 'Se 0.01- 0.01 0.01
Sn '"Sn 0.3- 0.1 0.1
Te '25Te 0.1' 0.05 0.08
TI 2 05Tl 0.05" 0.07 0.1
Ti 4"Ti 0.05" 0.02 0.06
V "sCr 0.01' 0.1 8.8
Zn 67Zn 0.03"
Zr 9

'Zr 0.0021 0.01 0.01

Doped with 1000 u.gyg of each element before purification.
Analyzed by thermal ionization mass spectrometoy.

plastic hypodermic syringe with a platinum needle. The crys-
tals were washed twice with 1 mL portions of nitric acid which
were withdrawn in the same manner. The excess nitric acid
was then removed by heating the beaker until the crystals
were dry.

Lead was removed from the crystallized strontium nitrate
by dissolving it in about 50 mL of water and electrodepositing
overnight onto platinum wire electrodes at an applied voltage
of 2.0 V. Under those conditions, lead will deposit as PbO2
onto the anode.

Only a slight deposit (<5 jIg Pb) was noted on the anode
from the "Sr 86" solution but there was a heavy deposit on
the anode from the "Sr 88" solution with considerable PbO2
on the bottom of the beaker. The "Sr 88" solution was filtered
thru acid washed close-textured filter paper. After the ad-
dition of 5 mL of nitric acid to each solution, strontium nitrate
was recrystallized as described above and lead was removed
by electrodeposition in the same manner. Only a faint deposit
(about I jLg) was noted on the anode from the "Sr 86" solution
but once again the deposit on the anode from the "Sr 88"
was heavy and particles of PbO2 were on the bottom of the
beaker, necessitating filtration of the solution.

The cycle of crystallization and electrodeposition was re-
peated four times for the "Sr 88" solution until the anode
showed no evidence of PbO2 after electrodeposition. (The
total amount of lead from the "Sr 88" solution amounted to
0.1% of the starting weight of s`Sr(NOa),.)

The final solutions from the lead separations were evap-
orated to dryness and the salts were transferred to two plat-
inum crucibles, dried, and weighed. Calculations based on
the starting weights of 8 6Sr(NO) 2 and 885r(NO3 )2 and the
weights of the corresponding purified salt showed that about
99 percent of t he strontium was recovered in each case.

The acids and water used in those purifications were pro-
duced at NBS by sub-boiling distillation [22] and have been
shown to be extremely low in trace cation contamination.
Apparatus such as beakers and filters were cleaned with high-
purity acid before use.

2.3. Analysis of Purified Strontium Separated Isotopes

About 0.5g samples of each purified strontium isotope as
Sr(NO3 )2 were dissolved in 10 mL of water in a Teflon beaker
and spiked with 10-7 g of '0Ag, ""Cd, '42Ce, 53Cr, 6 5Cu,
MFe, 7 tGa, 113n, 2 6 Mg, 9 7

mo, '4 5 Nd, 6 2 Ni, 82 Se, t17Sn t2STe
47Ti, 203TI, 67Zn, and 9 t Zr. Each solution was treated as
follows: 1 mL of nitric acid was added and the solution was
evaporated until most of the strontium crystallized and about
0.5 mL of nitric acid remained. The nitric acid was removed
from the crystallized strontium nitrate with a polypropylene
hypodermic syringe equipped with a platinum needle and
transferred to a Teflon beaker. The crystals of Sr(N03 )2 were
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washed twice with 0.5 mL portions of nitric acid which were tium concentration was calculated. The solution of 8 6Sr(N03)2

removed in the same manner and combined with the acid
from the crystallization. This nitric acid was concentrated to

a small drop, evaporated to dryness on high purity gold wires,

and analyzed by spark-source mass spectrometry. The results

of this analysis are also shown in table 1.
In addition to the spiked elements, a number of other

elements were determined by comparison to spiked nuclides
and assuming that the sensitivities of the natural element and

spike nuclide are the same.
Three elements, Ba, Pb, and Ca were determined by ther-

mal ionization mass spectrometry since they were not obtained

from the spark source analysis. Barium and lead are co-

crystallized with the Sr(NO3 )2 and calcium could not be de-

termined because of Sr interference (MIZ = 44 for uiSrt +).

About 0.2 g samples were spiked with 2 "`Pb, 42 Ca, and iSSBa.

Calcium was separated in the same manner as the separation

for the spark source analysis. Lead was separately clectro-

deposited from a nitrate solution onto a platinum anode. Bar-

ium was separated by adding lead and co-precipitating it with

lead chromate by the addition of ammonium chromate. The

chromates were caught on a filter and dissolved with 1.5 mol/

L HCL. Lead and chromate ions were removed by passing the

solution through a strongly basic anion exchange column, and

the barium was recovered by evaporation of the eluate. The

concentration of each analyte was determined from isotope
ratio measurements using thermal ionization mass spectrom-

etry.
The results of these analyses are also shown in table 1.

Barium, which was not removed by the purification, was

determined to be 12.5 pg/g in the 8
6Sr(NO3,) and 0.73 pg/

g in the `8 Sr(N03)2. This would cause an error of about 0.002

percent in the 8 6 Sr assay and <0.001 percent for the 885

assay. Since these errors are not significant, corrections were
not applied. No other element was found at a level high

enough to cause a possible significant error in the assay

procedure.

2.4. Preparation and Assay of the Separated Isotopic
Solutions

The 4.3 g of purified 8 65r(N03 )2 was dissolved in about 50
mL of 0.5 mol/L HNO3, transferred to a specially constructed

and tared 500 mL quartz flask and diluted to about 500 mL
with 0.5 moUL HN0 3. This flask was constructed from a 500

mL quartz flask by cutting the neck of the flask about I cm

from the body and tooling the neck for a number zero poly-
ethylene stopper and standard aluminum serum cap.

The 4.3 g of purified 885r(NO3 ) was also dissolved in about
50 mL of 0.5 mol/L HNO3, transferred to a specially con-

structed 200 mL quartz flask and diluted to about 200 mL

with 0.5 moUL HNO3 . This flask was constructed in the same
manner as described for the 500 mL flask. The bottles and

contents were weighed to ± 0.2 mg and the preliminary stron-

was designated "Sr 86" and the solution of ssSr(NOa), was

designated "SR 88".
Four weighed portions each containing about 1.6 mmol of

strontium (-16 g each for the 88Sr solution and -40 g each
for the mSr solution) were withdrawn from each separated
isotope solution in the following manner: a 10-cm platinum
needle was inserted through a No. 0 polyethylene stopper
which was used to replace the cap in the bottle. A 10-mL

polyethylene hypodermic syringe with the plunger covered
with a thin sheet of Teflon was attached to the Kel-F hub of
the needle and the desired amount of solution was withdrawn.
The syringe was then disconnected from the hub and the tip
was capped with a Kel-F cap. Any static charge that might

be present on the plastic syringe was dissipated by wiping it
with a damp lintless towel. The syringe and contents were
weighed on a semimicrobalance to +0.02 mg. The solution

was then delivered from the syringe into a 100 mL Teflon-
FEP beaker and the syringe was again capped, wiped, and
weighed. The weight of the sample was determined from the
weight of the syringe before and after delivery of the sample.

Two assay samples were withdrawn from each solution before
and after withdrawing the calibration samples to ensure that
no change in concentration had occurred during this time

interval (about 3 h).
Each portion was then assayed as follows: I mL of per-

chloric acid was added and the solution was evaporated at

low heat to fumes of HClO4 . The solution was then cooled,
taken up in a few mL of water, and again evaporated to fumes
of HCIO4 . This procedure was repeated and the excess per-

chloric acid was removed by evaporation. (This procedure
converts Sr(N03 )2 to Sr(CIO4)2 and is necessary because ni-
trate causes significant errors in the determination of stron-

tium as sulfate.)
The residue was taken up in 20 mL of water and heated.

Fifteen mL of warm (1 + 99) H2SO,, was added dropwise to
the hot solution while swirling the beaker to precipitate SrSO,.
The sulfuric acid was added at a rate that required about 15-

20 min to complete the addition. The solution was heated at
80-90 0 C for 2 h and evaporated to about 15 mL of solution.

Fifteen mL of 95 percent ethyl alcohol was added and mixed

with the solution. After tightly covering the beaker with plastic
film, it was allowed to stand overnight to complete the pre-

cipitation.
The solution was then filtered through a tared platinum

Monroe crucible and the precipitated strontium sulfate was

caught on the platinum mat. Any SrSO4 adhering to the walls
of the beaker was freed by scraping with a Teflon "policeman"
and transferred to the crucible with a stream of 95 percent

ethyl alcohol. The filtrate, washings, and Teflon "policeman"
were transferred back to the original beaker and reserved for

the determination of dissolved and untransferred strontium.

The crucible and contents were dried for 2 h at 105 0C,
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ignited at 800 'C for 8 h, cooled in a desiccator, transferred determined by thermal ionization mass spectrometry. The Sr
to the case of a micro-balance and allowed to stand for at
least 2 h. The crucible and contents were weighed on the
micro-balance to ±_0.002 mg. A buoyancy correction for
platinum crucibles was made by averaging three empty tare
crucibles. (The drying, cooling, and weighing were repeated
to insure constant weight.) The air weight of the SrSO4 was
then determined and converted to vacuum weight using 3.92
for the density of "6SrSO4 and 3.97 for the density of s`SrSO4 .
These densities were calculated by assuming that they were
proportional to the density of natural SrSO4 , 3.96 in the same
relationship as their molecular weight. The vacuum weight
of the strontium sulfate was converted to millimoles of stron-
tium using a calculated atomic weight for strontium and the
1977 atomic weight values for sulfur and oxygen. The formula
weights used were 182.0066 for the 8 6 SrSO,4 and 183.9612
for the anSrSO,.

To determine the soluble and untransferred strontium, the
filtrate and washings which had been reserved in the original
beaker were spiked with about 1.5 mmol of 84Sr. The "45r
was NBS SRM 988, Strontium 84 Spike Assay and Isotopic
Solution Standard. The solution was heated and concentrated
to about 10 mL to remove ethyl alcohol. Fifteen mL of HCI
and 5 mL of (1 + 99) H2504 were added, and the solution
was diluted to 100 mL with water. The solution was then
heated for two hours to ensure equilibration of the natural
and spike strontium. The solution was evaporated to fumes
of perchloric acid and then the heat was increased to fumes
of sulfuric acid. After cooling, the residue was taken up in
15 mL of water and passed through a cation exchange column,
containing 5 mL of AGSOWx8, resin. The column was then
washed with 50 mL of 0.5 mol/L HCI and the Sr was eluted
with 25 mL of 6 mol/L HCI. This solution was evaporated to
dryness. The residue was converted to the nitrate by the
addition of a few drops of nitric acid followed by evaporation.
The residue was taken up and the 84/86 or 84/88 ratio was

found as mmol Sr was added to the strontium from the grav-
imetric determination to yield the total strontium in the sam-
ple.

This method of determining the strontium was first tested
on solutions containing known amounts of strontium. Ten
solutions were prepared from high purity strontium carbonate.
The material used was SRM 987, Strontium Carbonate, which
has an assay value of 99.98 ± 0.02 percent. The solutions
were prepared in the approximate concentration range of 0.10
to 0.12 mmol/g. Four samples containing from 1.50 to 1.79
mmol were withdrawn from each solution and the strontium
was determined as described above. Comparison of the cal-
culated to measured concentration detected a small positive
bias of about 0.01 percent, but this would have a negligible
effect on ratios.

The results of the assay of the separated isotope solutions
are shown in table 2. Pooling the results of the separated
isotope solutions and the ten sets described above, yields an
uncertainty of 0.119 x 10-5 mmol/g for the concentration
of the "Sr 86" solution and 0.297 x 10-5 mmol/g for the
concentration of the "Sr 88" solution.

2.5. Preparation of Calibration Samples

Six calibration samples were prepared by mixing weighed
portions of "Sr 86" and the "Sr 88" solutions to produce 88/
86 ratios, ranging from 8 to 0.7. Four of the calibration
samples were within a few percent of the natural 88/86 ratio
of 8.38 and two bracketed the natural 87/86 ratio of 0.71.
The portions were withdrawn from the flasks and weighed in
the manner previously described for assay of the solution. To
eliminate any possibility of change in the concentration of
the isotope solution with time, the portions for the calibration
samples were withdrawn from the flasks between the samples
taken for assay over a period of about 6 h.

TABLE 2. Assay of Stro1tim Separated Isotope Soluions Separate I

Weight
SrSO, Sr from Sr from Total Weight Conc.

Sample rac) Srs0
4 Filtrate Sr Sample Sample

Solution No. 2 mmol mmol mmol g mmollg

6 Sr 1 0.293588 1.613062 0.002681 1.615743 40.89026 0.0395141
2 .296739 1.630375 .001504 1.631878 41.30356 .0395094
3 .293032 1.610006 .003275 1.613281 40.82803 .0395141
4 .298813 1.609352 .002365 1.611717 40.78996 .0395126

Average .0395175

6Sr 1 0.320318 1.741227 0.001667 1.742894 17.64999 0.098748
2 .302946 1.646795 .001854 1.648649 16.69340 .098761
3 .301413 1.638460 .001616 1.640076 16.60703 .098758
4 .310012 1.685206 .002920 1.688126 17.09511 .098749

Average .098754
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Table 3 shows the composition of these calibration samples.

The isotope ratio of each calibration sample was calculated

from the isotopic analysis of the separated isotopes and from

the mmols of strontium from each separated isotope solution

as determined from the assay and weight of solution taken.

Each calibration sample was thoroughly mixed and evap-

orated to dryness at low heat on a hot plate. The calibration

samples were taken up in (I + 49) nitric acid so that I mL

of solution contained 500 pLg of strontium.

3. Results and Discussion

Isotopic compositions of the purified BoSr and ""Sr were

each measured by Operator #1, using 7-10 sample analyses

for each separated isotope. Before and after each set of sep-

arated isotope analyses, the ion source was removed from the

instrument and meticulously cleaned. Prior to each set of

separated isotope analyses, the source was carefully checked

to insure the absence of any cross contamination. The results

of the measurement of the separated isotope solutions are

shown in table 4.
The six synthetic isotope mixes were selected randomly

and measured two or three times by each operator for its asSr/

"Sr ratio. SRM 987 was analyzed after every two mixes, and

the average of these SRM analyses provided the data used in

the final computation of the absolute abundance ratios of the

reference sample.
The results of the measurements of the separated isotope

mixtures as well as the correction factors for each operator

are shown in table 5.
In Table 6 are shown ratios for the reference material (SRM

987-Strontium Carbonate) for each operator.
The calculations of the atomic weight of the reference sam-

ple of strontium are shown in table 7. The value calculated

is only applicable to the reference material (SRM 987) since

samples in nature with large variations in the 87Sr/PSr ratios

TABLE 3. Isotopic Composition of Calibration Samples

Sr "Sr s"Sr Total Total

Weight from from from "Sr "Sr Ratio

Solution Isotope Solution Solution Solution Solution Solution Solution 88/86

No. Solution g ansol ino. imol, mmol mmol Solution

1 "Sr 86" 5.05855 0.199876 0.195191 0.003349
"Sr 88" 16.28401 1.608108 .000741 1.605506 0.195932 1.608855 8.211280

2 'Sr 86" 4.94747 0.195487 .190905 0.003276
"Sr 88' 16.45020 1.594893 .000735 1.592313 .191640 1.595589 8.325967

3 "Sr 86- 4.98057 0.196795 .192182 0.003298

"Sr 88" 16.50848 1.630275 .000751 1.627637 .192934 1.630935 8.453349

4 "Sr 86" 5.20231 0.205557 .200738 0.003444

"Sr 88-" 17.41636 1.719931 .000793 1.717149 .201531 1.720593 8.537609

5 "Sr 86" 17.91602 1.707908 .691315 0.011862
"Sr 88' 5.02571 0.496308 .000229 0.495505 .691543 0.507367 0.733673

6 "Sr 86" 18.24981 0.721097 .709195 0.012083
"Sr 8' 4.89190 0.483094 .000223 0.482312 .704417 .494395 .7018501

TABLE 4. Isotopic Composition of Separated Strontium Isotopes Used in
Calibration Samples

Separated Isotopic Composition
Isotope Atom Percent

"Sr-86" 88 1.673483 (365)'
87 0.655174 (384)
86 97.658689 (721)
84 0.012651 (507)

"Sr-883 88 99.838084 (260)
87 0.115774 (234)
86 0.046142 (110)
84 0 (<4 ppm)

Number in brackets are the erros (95% confidence limits) on the last

digits of the numbers given.
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are known. Subsequent to the Faraday cage measurements universally used. The continued use of this historical value

described here, high sensitivity pulse counting measurements seems justified except where the very highest accuracy is

in this laboratory have indicated the possibility of sporadic
backgrounds at the MIZ = 86 position of -10-16 A. Al-

though the background has tentatively been identified as a

hydrocarbon residue resulting from previous exposure to resin
beads in the specific pulse counting system (not either in-

strument used in the Sr measurements), an extra allowance

of 0.01 percent has been added to the systematic error of the
88Sr/tt6Sr and "7Sr/PSr ratios as a precaution .3

It should be noted that the value of the 'Sr/'Sr ratio of

0.119351 is very close to the less precise value of 0.1194

' Recenly published rseah [231 has demonstrated the formation of molecular
parnlt ad decomposition ions from qustemary. anmoniu salts (e.g.. M)Z = 86 =

CsH,,N+) in a convenionl thermal ionizaion souce. These data soppoe the obser
vatiOn that exposure of the puose counting mass spectromletr io anion exchange rsin

beads (quaterary ansonium salts was the prbable cause for backgrund peaks in

the strontium mass rgion for that specific mass specteoneter. Since: (il the mass

spectometers used for strontium wer never exposed to these resin beads: hIl Mli other
measurement evidence in the strom iun data do not reflect a staiisticsliy sigificant

backgroaad; ic) no higher imnensiy molecular ion peaks we, e observed iha one would
expectd toccompany those of the smontium mass region. we believe the isotope ratio

data for SRM 987 to he free of systematic bis well within the stated errr limts.

TABLE 5. Determination of Mass Spectrometer Bias

Calibration Isotopic Ratio uSr/'Sr Correction Factor

Sample
No. Calculated Operator I Operator II Operator I Operator II

1 8.211280 8.200908 8.197613 1.001265 1.001667

2 8.325967 8.315727 8.315177 1.001231 1.001298

3 8.453349 8.442254 8.443429 1.001314 1.001175

4 8.537609 8.527686 8.527326 1.001164 1.001201

5 0.733673 0.732628 0.732525 1.001426 1.001567

6 .701850 .700835 .700891 1.001448 1.001368

Mean Values of Corection Factors 1.001308 1.001379

Average 1.001344

TABLE 6. Isotopic Ratios of SRM 987, SrCO,

Correction Corrected

Ratio Operator 1 Operator 2 Average Ratio Factor Ratio

"SrP"Sr 8.3678911 8.36689550 8.3673671 1.0013439 8.378612

"'Sr/Sr 0.7099313 0.7098806 0.7098619 1.0006719 0.7103389

""Sr/'sr 0.0566361 0.0566166 0.0566253 0.9986579 0.05654927

Because no statistically significant differences were found between the data of operators 1 and 2 thev were combined into a single set for the calculation

of average ratio, conrection factor. and corrected ratio. The appropriate error limits are given in Table 7.

TABLE 7. Atomic Weight, Atom Percent, and Isotopic Ratios of Stronium (corrected for syslematic errors)

Due to

Due to Due to Due to Error in

Error in Error in Systematic Nuclidic

Total Calibration Ratio Error in Masses of

Value Uncertainty Factor Determination Determination Isotopes

Atomic Weight 87.616814 0.000117 0.0000477 0.0000266 0.0000397 0.0000029

Atom Percent
Sr-84 0.55738 0.00155 0.000211 0.000412 0.00093

Sr-86 9.85659 .00337 .001718 .000724 .00093
Sr-87 7.00152 .00263 .000506 .000862 .00126

Sr-88 82.58451 .00657 .002435 .001458 .00268

Isotopic Ratios
84/86 0.056549 0.000143 0.0000115 0.0000420 0.00009

87/86 .710339 .000261 .0000725 .0000760 .00007

88/86 8.37861 .003248 .0017070 .0007409 .00080
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The atomic weight of a reference sample of silver has been determined by mass spectrometry, with an
uncertainty of one par in 106, using a single filament silica gel procedure. Accurately known quantities of
chemically pure "'Ag and ""Ag were mixed to produce standards of known isotopic composition for calibration
of the mass spectrometer. The absolute isotopic ratio of the reference sample of silver is ~'7Ag/"''(Ag = 1.07638
± 0.00022 yielding an atomic weight of 107.86815 ± 0.00011. The indicated uncertainties represent an overall
limit of error at the 95 percent confidence level which is the sum of the uncertainty components for the ratio
determined and the components covering effects of known sources of possible systematic error.

Key words: Absolute ratios: atomic weight: Faraday Constant: isotopic abundance: mass spectrometry; silica gel;
silver: silver iodide.

1. Introduction

The inorganic mass spectrometry group of the National
Bureau of Standards has been conducting a long term program
of absolute isotopic abundance ratio and atomic weight de-
terminations using high precision isotope ratio mass spec-
trometry. Previous atomic weight determinations include sil-
ver [1],' chlorine [2], copper [3], bromine [4], chromium
[5], magnesium [6], lead [7], boron [8], rubidium [9], rhe-
nium [10], silicon [11], potassium [12], thallium [13], and
strontium [14].

The present work, a redetermination of the atomic weight
of silver, was undertaken in conjunction with the calculation
of a more accurate Faraday constant. The Faraday is directly
related to other physical constants including the Avogadro
constant, the proton gyromagnetic ratio, the magnetic moment
of the proton in nuclear magnetons, and the ratio of the NBS
as-maintained ampere to the absolute or SI ampere. Over the
years a problem arose in assigning a recommended value for
the Faraday due to apparent discrepancies between the Far-
aday determined from electrochemical experiments and the
Faraday calculated from other fundamental constants. Un-
fortunately, earlier electrochemical experiments were not suf-
ficiently precise (6.8 ppm, one standard deviation, for the
best silver determination) to either prove or disprove the
existence of this discrepancy. As a result, the Faraday was
excluded from the most recent (1973) least squares adjust-
ment of the fundamental constants [28].

* Center for Analytical Chemistry, National Measurement Laborator.
t Previous publications of this author have been under the name of L. P. Dunstan.
| Fig.rs in backets indicale literature references at the end of this paper.

In 1980, Bower and Davis [15], using the same source of
silver as was analyzed in this work, NBS Standard Reference
Material (SRM) 748, published a new value for the electro-
chemical equivalent of silver with an accuracy of 1.28 ppm
(one standard deviation). The calculation of the Faraday using
this value and the 1962 atomic weight of silver [1], indicated
that significant differences between the various Faraday cal-
culations might indeed exist. In order to assess the signifi-
cance of these differences, however, it became necessary to
significantly reduce the uncertainty in the atomic weight of
silver.

The method used for the determination of atomic weights
at NBS, which has been briefly described in previous pub-
lications [1-14], and may be described as calibrated mass
spectrometry, combines the techniques of high precision
chemical assay with high precision mass spectrometry. The
mass spectrometers to be used for the isotopic abundance
measurements are calibrated for bias using synthetic mixes
of known isotopic composition, prepared from nearly pure
separated isotopes. Extensive research has demonstrated that
this bias is due to non-linearities in the measurement circuit
and mass-dependent isotopic fractionation [16]. in the case
of ratios near one, this bias reduces to isotopic fractionation.
These measured biases are then used to calculate the absolute
isotopic abundance ratio and, ultimately, the atomic weight
of the reference sample. A block diagram characterizing the
atomic weight method is shown in figure 1.

The chemical research requires the development of an
assay procedure for the pure element or reference sample
precise to at least one part in 104, which will ultimately be
used to assay the separated isotope solutions. In addition, a
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procedure must be developed to purify the separated isotopes
to eliminate impurities which could interfere with either the

chemical or mass spectrometric procedures. Once these meth-
ods have been thoroughly tested using the reference sample,
the separated isotopes are purified and dissolved. Aliquots
of each isotope are then taken to produce calibration mixes
which are blended to bracket the natural isotopic abundance

ratio of the element. In addition, aliquots of each isotope are
taken for assay so that accurate solution concentrations can
be ascertained. A knowledge of the solution concentrations
combined with aliquoting data allows the actual ratios of the
calibration mixes to be calculated.

The mass spectrometric research involves the development
of a high precision method for the analysis of the relative
isotopic abundance ratios of the reference sample, followed
by a comprehensive study to identify and control any sources
of bias which could affect the final measurements.

After the above tasks have been accomplished, two com-
plete sets of analyses of the calibration mixes and the SRM
are made by two different operators using different mass spec-
trometers. The calibration mixes are randomly selected and
are analyzed in an alternating pattern with the reference sam-
ple. A comparison of the relative isotopic abundance ratios

obtained for the calibration mixes with the calculated or true

value produces a calibration factor. This factor is applied to

the relative isotopic ratio obtained for the SRM to produce

the absolute isotopic abundance ratio. The atomic weight is
then obtained by multiplying the fractional abundance of each
isotope by its nuclidic mass2 and summing the resultant prod-

ucts.

2. Experimental Procedure3

2.1 Mass Spectrometry

The isotopic ratio measurements were made using two nearly
identical 900, 30 cm radius of curvature solid sample mass
spectrometers equipped with a "Z' lens focusing source [18].
The collector was a deep bucket Faraday cup equipped with
a 50 percent transmission grid shadowing a series of suppres-
sion grids [18-20]. The measuring circuit consisted of two
vibrating reed electrometers (VRE) and a voltage-to-fre-
quency conversion system which transmits data to a computer
for data acquisition. Prior to initiating the atomic weight ratio
determinations, the measuring circuits of the mass spectrom-
eters were calibrated and found to be linear to within one
part in 104 over a range of 30-80 percent of full scale for
each VRE scale. However, the linearity of the measurement
electronics becomes insignificant because of the equal atom
composition of the standard and most of the mixes. Under
these conditions any non-linearities in the ratio measurement
will cancel, and any possible effects would be indicated by
the endpoint calibration mixes.

The relative isotopic composition of the calibration mixes
and the reference sample were determined by sur-F-ce ioni-
zation mass spectrometry using a platinum single fitament
silica gel technique.

The filaments used in this work were fabricated from 99.9
percent pure platinum ribbon (0.025 x 0.76 mm) and were
cleaned by heating at 2.5 A for I hNr) in a vacuum and under

a potential field.
The sample mounting was carried out in two stages, here-

after referred to as the low temperature drying stage and the
high temperature drying stage. The low temperature drying
stage was similar to the lead-silica gel method described by
Barnes et al., [21]. A 5 lxL drop of silica gel suspension was
placed on the filament surface and dried at 1.0 A for 5 mnn.
A second drop of silica gel was added and the drying repeated.
A SpiL drop of silver as AgNO3 in (I + 9)4 HNO, was placed

z Nucidi nss. as published in Wapsira and Boa 1171 are known to peas per
billion .auraies.

:In oroder todsribe adequatly lmaterials. itlsimmelils. equipinai ala' pilrocedures.
it was occasialltly tecessar to identifymmercirt prducts by matitafacturers name
or lab. In .n. istance does taci idetiificatia imply endorsement by the National
Bureau of Stait..wda nor does it imply that the panticulr produc1 or quipment is
ecessarly the best aviiabe far thi purpo.
I A reaetIt diluiot of (I + 9) midicates I valune of conce utirtid reagent diued

with 9 volumes of pu.r water. If no dilutots is specified. use of the conceutred reagent
is implied. The acids and waier used far these dilutiais were prduced at NBS by sub-
boiling distillation 1231.
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on top of the silica gel and dried at 1.0 A for 5 min. A drop silver isotope, as powdered silver metal (about Ig) was trans-
of 0.75 N H3PO4 was then added and dried at 1.5 A for 5
min then at 2.0 A for 5 min. This drying procedure was
carried out in a class 100 clean air hood with an airflow of
100 linear ftls per s using a programmable sample drier
designed by Gramlich and Shideler [22]. Throughout the
procedure a heat lamp, whose intensity was adjusted to yield
a temperature of 70 'C at the filament surface, was used to
aid the drying process.

The high temperature drying stage was accomplished using
pyrometer adjustment of the filament temperature. This method
was first used for the determination of the atomic weight of
thallium [13] and has since proved to be an important key
to controlling the reproducibility of isotopic ratios of a number
of elements. The filament was covered with a bell jar and
purged with nitrogen gas for 5 min. The nitrogen flow was
stopped and the filament was adjusted to a temperature of
1040 'C for 60 s.

After loading the sample into the source of the mass spec-
trometer, the system was allowed to pump down to a pressure
of at least 2 x 10-6 torr (300 jxPa) before starting the
analysis. Liquid nitrogen was then added to the source cold
finger to reduce the pressure to less than 1 X 10-7 ton (10
[tPa). At t = 0 min, the temperature of the filament was
increased to 760 'C. This yielded a iOAg ion beam intensity
1 - 2 x 10-3 2 A. At t = 25 min, the temperature of the
filament was increased to 790 'C. At this temperature the
intensity of the °0 Ag ion beam was between 5 x 10-12 A
and 1 X 10i-i A. If the intensity of the 10 7Ag ion beam was
outside of these limits, the analysis was rejected. Baseline
data were taken and ratio data were collected between t
30 and 50 min.

2.2 Purification of Separated Silver Samples

Electromagnetically separated t 07Ag and iOAg isotopes in
the form of silver metal powder were obtained from the Nu-
clear Division, Oak Ridge National Laboratory of the Union
Carbide Nuclear Company. The °0 Ag was designated series
R&D, sample 000101 and the ° ')Ag was designated series
R&D, sample 000201. The certificate which accompanied
each sample showed enrichment to better than 99.9 percent
for the major isotope. No information on chemical purity was
given.

Since the method developed for the assay of silver was
based on the precipitation of Agi from ammonical solution,
it was necessary to develop a purification procedure that
would reduce possible impurities to a level low enough so
they would not cause a significant error.

Elements that form relatively insoluble iodides or hydrox-
ides could possibly interfere. Included are Pb, and TI which
form insoluble iodides, and Al, Cr, Fe, Ga, In, Ti, Zr, and
the rare earths which form insoluble hydroxides.

Each separated silver isotope was purified as follows: The

ferred to a 150 mL Teflon-FEP beaker, dissolved in 20 mL
of (1 + 4) HNO3 , and the resulting solution evaporated to
dryness. The residue was taken up in 50 mL of water and
enough concentrated NHOH solution to dissolve the precip-
itated AgOH. The solution was digested on a warm hot plate
for about one hour, allowed to cool, and filtered through a
close textured paper. After washing the filter paper with dilute
(1 + 49) NH4OH the filtrate was heated to drive most of the
NH3 from the solution. The solution was made acidic with
dilute (1 + 9) HNO3 and 25 mL of (1 + 9) HCI was added
to precipitate silver chloride. The solution and precipitate
were digested on a hot plate for three hours in darkness and
allowed to stand overnight at room temperature, also in dark-
ness. Most of the supemnatant slution was removed from the
precipitated rilver chloride by decantation and the last 10-
15 mL was withdrawn by means of a plastic syringe equipped
with a platinum needle. The precipitated AgCI was washed
three times with a few mL of H20 and the washings were
removed with the syringe and needle.

The precipitated AgCI was then dissolved in 15 mL of
NH4OH and diluted with about 50 mL of water. The solution
was heated to drive off excess NH3 and made acid with (I
+ 9) HNO3 to reprecipitate AgCI. A few drops of (I + 9)
HCI were added and the solution was allowed to stand over-
night in darkness. The supernatant liquid was then removed
in the manner previously described. The precipitated AgCl
was then dissolved in 20 mL of NH4OH and transferred to a
350 mL platinum dish. A solution prepared by reacting 25
mL of (I + 4) HND3 with 50 mL of (I + 4) NH4OH yielding
NH4 NO3 , was added as an electrolyte and the resulting so-
lution was diluted to approximately 250 mL. The platinum
dish was placed on aluminum foil which was connected to
the cathode of a dc-power source. The dish was covered with
a Teflon-TFE cover fitted with a platinum rod through the
middle which reached to within I cm of the dish bottom. This
rod was connected to the anode of the dc-power source. Silver
was then electrodeposited onto the dish by plating with a
potential of 1.0 V for 24 h.

The electrolyte was then poured from the dish into a Teflon
beaker and the electrodeposited silver in the dish was washed
with dilute (1 + 9) NH4OH.

The electrodeposited silver was dissolved with (I + 4)
HNO3 diluted to about 150 mL and the solution was made
ammonical with concentrated NH4OH. Additional NH4 NO,
electr.lyte was added and the silver was again electrodepos-
ited by plating at 1.0 V for 24 h.

The electrolyte was then poured into the Teflon beaker,
and the silver was washed with water. The dish and contents
were then dried and weighed. The electrodeposited silver was
then dissolved with (1 + 4) HNO3 and transferred to a Teflon
beaker. The dish was washed with water, dried, and weighed
to obtain the approximate weight of purified silver.
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Calculations based on the starting weight of silver, and the 2.3 Preparation and Analysis of Separated Isotope
weight of purified silver showed that more than 99 percent
of the silver was recovered in each case.

The effectiveness of this purification procedure was first
tested by purifying a solution of natural silver which had been
doped at the 1000 i'g 1g level with each of thirty common
impurity elements. The results of the analysis of this purified
silver are shown in table 1. All of the impurity elements were
reduced to 10 rg/g or less (the analytical method will also
be described later).

Since the method was effective in purifying grossly con-
taminated silver, it was applied to each of the silver separated
isotopes, which were of much higher initial purity.

The acids and water used in these purifications were pro-
duced at NBS by sub-boiling distillation [23] and have been
shown to be extremely low in trace metal contamination. The
NH 4OH was produced by saturating high purity cold water
with high-purity NH3 gas and allowing the resulting solution
to warm to room temperature. Apparatus such as beakers and
filters were cleaned with ACS Reagent Grade acids and rinsed
with high purity water before use.

TAB]r 1. Analysis of impurilies in silver separated isotopes.

a Original concentration-1 0 0 0 pAg/g each.
6 - denotes data not reported.

Solutions

Each isotope ('0°Ag and io'Ag) was transferred to a spe-
cially constructed and tared 500mL quartz flask. These flasks
were constructed from a standard taper joint 500 ifL quartz
flask by cutting the neck of the flask about I cm from the
body and tooling the neck to fit a number zero polyethylene
stopper and a standard aluminum serum cap. Final solutions
were diluted to about 350 mL and final acidity was about
0.5 N HNO,. The solution of ° Ag was labeled "Ag-107"
and the solution of 'wAg was labeled "Ag-109".

Portions of each separated isotope solution, equivalent to
about 40 mg of silver, were taken for detenmination of im-
purities. Each sample was spiked with 10-7 g of "Ca, iilCd,
5 3 Cr, 6

5Cu, 
5 'Fe, 71Ga, 26 Mg, 9 7 Mo, i4 sNd 6 2 Ni, 2 "Pb, ilPd

a2 Se, ii7Sn 8 6 5r, 12 'Te, 2 03 T1, 6 7Zn, and °1 Zr. Each spiked

solution was then treated as follows: the solution was diluted
to about 40 mL with H20 and a slight excess of HCI was
added to precipitate AgCI. The beaker and contents were
allowed to stand in the dark overnight. Most of the supernatant
liquid was removed from the precipitated AgCI by decantation
into a second Teflon beaker. The last approximately 10 mL
was removed by means of a plastic syringe and platinum
needle and added to the decanted solution. The precipitate
was washed with a few mL of (I + 9) HNO3 which was also
combined with the decanted solution by use of the syringe.
This solution was then evaporated to a few mL, removed from
any remaining AgCI with the syringe and transferred to an-
other beaker. This solution was evaporated to a large drop
and transferred to specially prepared gold wire electrodes for
analysis by spark source mass spectrometry using a peak
switching electronic detection system.

The results of the anslysis of the purified separated silver
isotopes are shown in table 1. In addition to the spiked
elements, the concentrations of other elements were estimated
by comparison to spiked nuclides using the assumption that
the sensitivity of the natural element and spike nuclides are
the same. The results show that most elements are at the low
ppm level or less. The only elements found at concentrations
of greater than 10 ppm were Al and Na. These contaminants
may have resulted from the Pyrex glass flask used to store
the spike isotopes. Even if they were present in the amounts
indicated, the effect would be negligible since sodium would
not interfere with the analysis at this level, and aluminum,
as AI(OH)3, would cause an error of only 0.001 percent in
the assay of each isotope.

2.4 Assay of the Separated Isotope Solutions

The method developed for the high-precision assay of the

silver solutions was based on a combination of gravimetry for
the detenmination of most of the silver (greater than 99.5
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percent) as AgI and isotope dilution mass spectrometry (IDMS) solution was heated until NH3 was no longer detected. The
for the remainder. Silver iodide was selected as the gravi-
metric form since, of all the silver halides it is the least light
sensitive, least soluble, and has the highest gravimetric fac-
tor. In fact, it was found that dry stoichiometric silver iodide
was not detectably sensitive to fluorescent lighting since the
material remained lemon yellow and no change in weight
could be detected on prolonged exposure. The material was
also found to be non-hygroscopic up to relative humidities of
90 percent.

The "Ag-107" solution and the "Ag-109" solution were
each sampled for assay of silver in the following manner: four
weighed portions of about 35 g, containing about 0.25 mmol
Ag were withdrawn from each flask. A 10 cm platinum needle
which had been inserted through a No. 0 polyethylene stopper
was used to replace the stopper on the quartz flask. A 20 mL
polyethylene hypodermic syringe, the plunger of which had
been covered with a sheet of Teflon-FEP, was attached to the
Kel-F hub of the needle and the desired amount of solution
was withdrawn. The syringe was then disconnected from the
hub and the tip was capped with a Kel-F cap. The syringe
and contents were then weighed on a semi-micro balance to
+ 0.02 mg. (Any static charge on the syringe was dissipated
by placing the syringe on the balance pan which was sur-
rounded by several polonium anti-static sources and waiting
2 min before taking a weight.) The solution was then delivered
to a 100 mL Pyrex beaker with a Teflon coated rim and the
syringe was again capped and weighed. The weight of the
sample taken was determined from the weight of the syringe
before and after delivery of the sample. A second weighed
portion wn r taken in the same manner and combined with
the first po.tion for each assay sample. Two assay samples
were withdrawn from each solution before and after with-
drawing the calibration samples to ensure that no change in
concentration had occurred during the time interval of with-
drawing samples (about 6h).

Each sample was then assayed as follows: 20 mL of con-
centrated high-purity NH4OH was added and approximately
a 1 percent excess of 0.5 N NH4 I was added slowly from a
small wash bottle. The solution was heated covered on a hot
plate.

Precipitation from ammonical solution resulted in the for-
mation of a white precipitate, AglI1/2 NH3 [24]. Heating the
solution drives off ammonia and results in the conversion of
this white compound into yellow AgI. The AgI formed in this
manner is composed of relatively large, easily filterable crys-
tals that do not pass into the colloidal state when washed with
water. The fact that Agi is slightly soluble in dilute NH4OH
also contributes to the formation of larger crystals.

After digesting overnight, the cover was removed and the
solution was evaporated to a volume of 20 mL. Removal of
NH3 was tested by holding moist p-Hydrion paper over the
hot solutions. If the paper indicated NH3 in the vapor the

beaker was then removed from the hot plate, covered, and
allowed to stand overnight.

The solution was then filtered through a tared platinum-
Munroe crucible and the precipitated AgI was caught on the
platinum mat. The beaker and precipitate were washed with
several small increments of water. The filtrate and washing
were transferred back to the original beaker and reserved for
the determination of dissolved and untransferred silver. The
crucible and contents were dried for 3 h at 200 'C. Pure AgI
is only very slightly reduced by light when wet. To guard
against any possible decomposition, the precipitation, filtra-
tion, and drying were carried out in orange light or darkness.
(The pure compound is lemon yellow and even slight decom-
position causes the AgI to darken.)

After heating, the crucible was cooled in a desiccator and
transferred to the case of a micro-balance and allowed to
stand for at least 2 h. The crucible and contents were then
weighed on a micro-balance to ±0.002 mg. An effective
buoyancy and adsorption correction for the platinum crucible
was made by averaging three empty tare crucibles. (The drying,
cooling, and weighing were repeated to ensure constant weight.)
The apparent mass of the Ag! was then determined and con-
verted to true mass using a 5.66 g.cm- 3 for the density of
i0 °AgI and 5.71 g.cm- 3 for the density of ' 9AgI. These
densities were calculated by assuming that they are propor-
tional to the density of natural aAgI, D30 = 5.68 g-cm- 3 ,
in the same ratio as their molecular weights. The vacuum
weight of the silver iodide was converted to millimoles of
silver using the calculated atomic weight for silver and 120.9045
for iodine. The formula weights used were 233.8909 for 0 7 AgI
and 235.8087 for "'AgI.

To determine the soluble and untransferred silver, the fil-
trate and washings, which had been reserved in the original
beaker, were spiked with I to 2 Vtmol of either 107Ag or 1 9Ag.
Five mL of ammonium hydroxide solution and 0.25 g of
potassium cyanide (ACS Reagent Grade) were added to dis-
solve silver iodide and the solution was well mixed by stirring
with a magnetic stifring bar for a few hours. Silver was then
separated electrolytically by plating overnight with a potential
of 2.6 V onto a platinum wire anode. Silver was then dissolved
from the electrode with a few mL of (1 + 1) HNO3 and the
resulting solution was evaporated to dymess. The residue was
taken up in (1 + 49) HNO3 and the 107/109 ratio was
determined by surface ionization mass spectrometry. The
amount of silver as Kfmol of Ag was then calculated and added
to the silver from the gravimetric determination to yield the
total silver in the sample.

This method of assaying silver solutions was first tested on
solutions containing known amounts of silver. The material
was SRM 748 which is 99.999 + percent silver. The solutions
were prepared in the approximate concentration range of 0. 10
to 0.16 mmol Agi. Four portions containing from 0.9 to 1.1
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mmol Ag were withdrawn front each solution and silver was eter sources were cleaned between the analyses of the ' 0'Ag
determined as described above. Nine sets of four samples
were analyzed in this manner.

Statistical analysis of the data from these nine sets showed
that the standard error of the mean of four values was 5.2 x
106 mmollg and that the coefficient of variation (standard
error/mean) for a set of four was 0.003 percent. Comparison
of calculated to measured concentrations showed a small pos-
itive bias of about 0.005 percent, but this would have a
negligible effect on the ratio of two assays.

The results of the assay of the separated isotope solutions
are shown in table 2. Pooling the results of the assay of the
separated isotope solutions and the nine sets of natural so-
lutions, yields a value of 0.0000009 mmol Ag/g for the stan-
dard error of the average concentration of each separated
isotope solution. The uncertainty associated with this value
at the 95 percent confidence level is 1.8 x 10-6 mmol Ag/

g.

2.5 Isotopic Analyses of the Separated Isotope
Solutions

Each of the separated isotope solutions was analyzed eight
times on each of two mass spectrometers, MS #1 and MS
#5, by Operators 1 and 2, respectively. The mass spectrom-

and ioOAg as a precaution against the possibility of contam-
ination from source parts, although back-to-back analyses of
the two separated isotopes on the same source failed to yield
any evidence of contamination. The corrected isotopic com-
positions of the two isotopes are shown in table 3.

The measured imprecision of the ratio measurements for
each of the separated isotope solutions was less than 3 percent
(2 standard deviations), however an uncertainty of 7 percent
was placed on the ratios for the separated isotopes to cover
possible measurement system nonlinearities and isobaric in-
terferences. Several possible species have a potential for pro-
ducing isobaric interferences in the silver mass region. These
include CaPO2t, SiPO3+, and AsS'. Any interferences from

CaPO2+ can be detected by monitoring mass 103 which results

from the major isotope of calcium ("Ca : 96.9 percent abun-
dant). However, the major isotopes of silicon and sulfur would
produce SiPO3 and AsS+ interferences at mass 107. Thus

extremely small quantities of either of these species could
not be detected by examining other masses in the silver spec-
tral region. A SiPO species has not been reported or ob-

served in a thermal ionization-silica gel analysis but is in-
cluded herein because of the nearly infinite supply of these
elements on the filament, and the fact that an intense and

TABLE 2. Con cnragion of silcer separated isotope solution

Weight Ag from Ag from Total Weight

Sample Ag I Ag I Filtrate Ag Sample Concentration
Solution No. (g) mmo Iimmol I mmol) i g) (immol Ag/g)

1 0.223445 0.955668 0.002583 0.958251 34.00905 0.0281760
"Ag 107- 2 0.231677 0.990876 0.002358 0.993234 35.25092 0.0281761

Ag 1073 0.234055 1.001047 0.001176 1.002223 35.56893 0.0281769
4 0.228265 0.976283 0.001211 0.977493 34.69020 0.0281778

_________ ____ ___ ________ ________ _____ __ ________ __ _____ ________Average 0.0281767

1 0.229478 0.973153 0.003956 0.977109 35.78498 0.0273050

"Ag 109" 2 0.228795 0.970257 0.002316 0.972573 35.62279 0.0273020
"Ag 109" 3 0.226974 0.962534 0.001029 0.963563 35.28974 0.0273044

4 0.231376 0.981202 0.001614 0.982814 35.99738 0.0273024

Average 0.0273034

TABLE 3. Isotopic composition of fihe sAce, separated isotopes

Isotopic Composition
Separated Isotope (tom percnI)

"Ag 107" '°'Ag 99.97136 ± 0.00206'
I§Ag 0.02863 ± 0.00206

"Ag 109" ° 'Ag 0.02865 ± 0.00203-
'asAg 99.97135 ± 0.00203

'The uncertainty of the ratio detenmination is taken to be 7 percent, which
is much larger than the 95 percent confidence limit, to take into account
possible biases and non-linear instrumental behavior for ratios as large as
these.
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sustained P0; ion beam is observed in the negative ion
spectra under the analytical conditions reported in this paper.

Kelly and Wasserburg [251 reported the existence of AsS +
which, if present, would enhance the measured 1071109 ratio.
The measurement of the '3Ag separated isotope is particu-
larly sensitive to this interference because AsS+ would pro-
duce a 107/109 ratio of 22. Efforts to generate as AsS4 ion
beam by loading As462 and H2SO4 onto the filament using
the procedure described in section 2 were unsuccessful. Since
the silver was loaded in (1 + 9) HNO3, it is felt that the
nitric acid allowed oxidation of the sulfur to sulfate, thus
reducing any AsS+ to an undetectable level.

Analysis under identical conditions of "SAg samples rang-
ing in amount from 4 p~g to 0.005 pg indicated a possible
mass-107 isobaric interference at a level of 1 (± 11 x 10- 6

A. This level of interference is below the direct measurement
detection limit of the instrument but can be inferred from the
slight decrease in the observed 109/107 ratio with decreasing
sample size. This suspected interference would produce a
bias of approximately 2 percent to the observed ratios of the
'o`Ag separated isotope and a bias of approximately 0.002
percent to the observed ratios of the reference sample and
the calibration mixes.

2.6 Preparation of Calibration Samples

Eight calibration mixes were prepared by blending weighed
portions of the "Ag-107" and the "Ag-109" solutions to pro-

duce 107/109 ratios ranging from 0.5 to 2.0. Six of the cal-
ibration mixes were within a few percent of the natural ratio
107/109 of 1.076.

The portions for mixing were withdrawn from the flasks
and weighed in the manner previously described for the assay
of each solution. Each portion wieghed about 10 g and was
weighed to ±0.05 mg. It is therefore estimated that the
weighing error for each mix should not exceed one part in
io 5 . To minimize any significant possibility of change in
concentration of the isotope solutions with time, the portions
for the calibration mixes were withdrawn from the flasks be-
tween the samples taken for assay, over a period of about

6 h.
Each calibration mix was thoroughly mixed, the sides of

the beaker were washed with water, and the solution was
evaporated to dryness. The residue was taken up with dilute
(1 + 9) HNO3 and the mixing, washing, and evaporation
were repeated. The calibration mixes were then taken up in
11 + 91 HNO3 to a concentration of 0.8 mg AgImL and
transferred to small Teflon bottles. The isotopic compositions
of the calibration mixes are given in table 4.

2.7 Isotopic Analyses of the Calibration Mixes and the
Standard Sample

Two complete sets of analyses of the calibration mixes and
reference sample were performed by Operator 1 on MS #1
and Operator 2 on MS #5. Operator 1 performed three anal-

TAELE 4. IJsotopic composition ofcalibraion mixes

"'AO 116Ag

Weight Ag from from frnm Total Total
Solution Isotope Solution Solution Solution Solution 1""Ag "'Ag Ratio

No. Solution (g) I mmoll) (Immoll 'mmot tmmoPl Inmol) 107/109

1 gAg 107" 10.02135 0.282369 0.282288 0.0008 0.282364 0.263439 0.07184
I Ag 109" 9.64836 0.263433 0.000-076 0.2633L58 0.834 .239 0074

2 ,"Ag 107T 8.95832 0.252416 0.252344 0.000072 0.252412 0.237226 1.06402
2Ag 109" 8.68835 0.237222 0.000068 0.237154

"Ag 107" 9.24458 0.260482 0.260407 0.000075 0.260477 0.243049 107171
"Ag 109" 8.90162 0.243044 0.000070 0.242974

"Ag 107" 9.75636 0.274902 0.274823 0.000079 0.274897 0.251233 0.06867
"Ag 109" 9.42110 0.257228 0.000074 0.257154

"Ag 107" 9.59357 0.270315 0.270237 0.000078
"'Ag 109" 9.11603 0.248899 0.000071 0.248828 0.270309 0.248905 1.08599

6 Ag 107" 10.11275 0.284944 0.284862 0.000082
6 ".Ag 109" 9.87378 0.269588 0.000078 0.269511 0.284940 0.269592 1.05693

"Ag 107" 10.01824 0.282281 0.282200 0.000081
7 '"Ag 109" 18.94756 0.517333 0.000148 0.517185 0.282348 0.517264 0.545849

"Ag 107" 18.47706 0.520623 0.520474 0552 0.270624 1.92353
"Ag 109" 9.90908 0.270552 0.000078 0.270475

15



yses of each calibration mix and 24 analyses of the reference
sample. Operator 2 performed four analyses of each calibra-
tion mix and 32 analyses of the reference sample. The samples
were run in a pattern alternating randomly selected mixes
with the reference sample.

3. Results and Discussion

The results of the measurement of the eight calibration
mixes are shown in table 5. The calibration factors for each
analyst varied over a range of 0.011 percent for Operator 1
and 0.019 percent for Operator 2. In addition, the calibration
factors for those mixes with a 107/109 = 2 and 107/109 =
0.5 were indistinguishable from those bracketing the refer-
ence sample, indicating an insignificant degree of nonline-
arity over the measured range.

Table 6 summarizes the observed and corrected ' 07Ag/
iO'Ag values for the SRM for Operators 1 and 2 as well as
the absolute isotopic abundance ratio for silver and its un-
certainty.

Table 7 gives summary calculations of the reference sam-
ple. The atomic weight is calculated from the absolute isotopic
abundance by summing the product of the nuclidic masses
obtained from Wapstra and Bos [17] and the corresponding
atom fractions.

The atomic weight of silver, 107.868 ± 0.001, as rec-
ommended by the IUPAC Commission on Atomic Weights,
is based on the isotopic abundance measurements reported
by Shields, Gamer, and Dibeler [1] in 1962. This ratio is,
in fact, the average of their isotopic abundance measurements
published in 1960 [26] and the results of the mineral survey
described in the 1962 publication.

A reanalysis of sample C-140, a nugget of native silver
from Ontario, Canada, which had yielded anomalous data in
the 1962 study [1], was undertaken. One section of this
nugget, referred to as position 1, had yielded a ratio of 07Ag/
'9Ag which was 0.3 percent higher than three other sections,
designated positions 2, 3, and 4; all of which mirrored the
10 7Ag/]" Ag ratio of the natural silver reference sample (SRM
948). At the time, little or no chemistry was performed to
purify the samples prior to analysis, and it was believed that
the "anomaly" might be due to natural differences or chemical
impurities. A reanalysis of the four sections of C-140, con-
firmed that position 1 yielded a "' 7Ag/1 9Ag ratio that was
higher than the ratios for positions 2, 3, and 4, which again
yielded ratios indistinguishable from the natural silver ref-
erence standard. Subsequent analyses indicated the major
impurity at position 1 was mercury. Following purification by
electrodeposition and ion exchange chromatography, the '07Ag/
'9Ag ratio for position 1 matched the ratios obtained for

TABLE 5. Determination ofcorrectionfactors

Calibration Isotopic Ratio. "'7 Ag"'9 Ag Correction Factors
Sample No. Calculated Operator 1 Operator 2 Operator 1 Operator 2

1 1.071840 1.081566 1.081420 0.99100367 0.99114511
2 1.064016 1.073622 1.073579 0.99104924 0.99109658
3 1.071705 1.081345 1.081214 0.99108175 0.99120936
4 1.068671 1.078304 1.078236 0.99106309 0.99113312
5 1.085996 1.095850 1.095681 0.99100465 0.99116505
6 1.056931 1.066516 1.066407 0.99100878 0.99111770
7 0.5458493 0.5507895 0.5506505 0.99102567 0.99128580
8 1.923532 1.941050 1.940748 0.99097136 0.99113254

Mean Values of Calibration Factors 0.9910261 0.9911607

TABLE 6. Determination of corrected isotopic ratios

Observed Correction corelctd
.... Ag X7Ag Factor "'>7Ag'09 Ag

Operator 1 1.0861089 0.9910261 1.076362
Operator 2 1.0859898 0.9911607 1.076390

MEAN 1.07638
+ 0.00022

Uncertainty components:

95 percent confidence limits in ratio determination .+.. ±0.00003

Bounds due to possible systematic error in composition
of separated isotopes .± 0.00009

Bounds due to possible systematic error in chemical
analysis. +0.0010
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TABLE 7. Summary calculations of the atomic weight of silver

Uncertainty Components

Possible Systematic Possible Systematic
Mass Spectrometric Errr in Composition of Error in Chemical

Values Overall Limit of Error Analytical Error Separated Isotopes Analysis

Atomic Weight = 107.86815 ±0.00011" ±0.0000137 ±0.0000408 ±0.0000466

Nuclidic Masses
('2 C = 12)

a'?Ag = 106.905095 ±0.000012
'"Ag = 108,904754 ± 0.000010

Atom Percent
""Ag = 51.839170 ±0.005057 ± 0.000687 ±0.00204 ±0.00233
'Ag = 48.160830 ±0.005057 ±0.000687 ±0.00204 ±0.00233

Isotopic Ratio
1.7 Ag/19ig = 1.07638 ±0.00022 ±0.0000296 ±0.0000880 ±0.0001006

The overall limit of error is the sum of the 95 percent confidence limit
Includes a component for uncertainty in nuclidic masses.

positions 2, 3, and 4, and thus, the reference standard. This
experiment clearly documents the critical importance of
chemical purification in the determination of accurate isotopic
ratios and in establishing the limits for natural isotopic var-
iations. The data reflecting the effects of purification on sam-
ple C-140 are shown in table 8.

TABLE 8. Effect of Puification on C-140

Corrected
Chemical Procedure "'-Ag

Initial Electrodeposition 1.07686
Additional Electrodeposition 1.07676
Anion Exchange, Prcipitaion and Electrodeposition 1.07634

All ratios have been placed on an absolute basis using the absolute
isotopic abundance ratio for silver from Table 7 ("`?Ag/lIAg = 1.07638).

In an attempt to establish the limits of isotopic variability
among commercially available silver, a series of analyses were
performed on silver metal samples of varying purity, which
had been obtained from refineries throughout the world. The
results are shown in table 9. With the exception of the mars
grade silver from Materials Research Corporation, all samples
yielded isotopic ratios which were in excellent agreement with
the natural reference standard. Although a deviation of 7.6
parts in 104 is small, it is not known whether the difference
is real or an artifact due to a chemical impurity. Additional
testing of this material will be done in conjunction with a
more thorough mineral survey in the future.

The effect of this isotopic survey of commercial silver on
the atomic weight is small- A recalculation of the atomic
weight of silver based on the isotope ratios of these materials
yields a value of 107.86816 ± 0.00032 at the 95 percent
confidence level, which is nearly identical to the atomic weight

s and the terms covering effects of known sources of possible systematic error.

of the reference sample (107.86815) as given in table 7, the
major difference existing in the uncertainty.

The reference sample used in this atomic weight deter-
mination will be issued as both an isotopic and assay Standard
Reference Material (SRM) and will be designated as SRM
978a. Its isotopic analysis was found to be experimentally

TABLE 9. Isotope Ratios of Commercial Silver

Correctled
Description' IaAgyLoAg

Needle Ag, 99.995%, Engelhard, Indiana, USA 1.07650

AgNO,, 99.999%, Engelhard, Indiana. USA 1.07633

Ag, Msn Grade, Materials Research Corp.. USA 1.07557

Ag, Single Crystal, Man Grade, USA 1.07622

Refined Ag, Por Pine, Australia 1.07634

Ag, Normal Purity, Johnson Mathey, Canada 1.07640

Ag, High Purity, Cominco, TADANAC. Canada 1.07648

Refined Ag, Mixture of Swedish Ores 1.07646

Electrolytic Ag, Boliden Mine, Sweden 1.07670

Ag, Crystalline, Mexico 1.07638

Ag, 99.99-+I%, Lima, Peru 1.07653

Ag, Plata Fina, GnCnulla, Mexico 1.07656

Average 1.07637
Standard Deviation 0.000282

All descriptions are as stated by the producer. No further purity veri-
fication was made.

H All ratios have been placed on an absolute basis using the absolute
isotopic abundance ratio for silver from table 7 (l0Ag?'9lAg = 1.07638).
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identical to SRM 978, the major difference existing in the [6] Catanzaro, E. 1.; Murphy, T. J.; Gamer, E. L.; Shields. W. R. Absolute
uncertainty placed on the measurement.

The redetermination of the atomic weight of silver has
allowed the recalculation of the Faraday from the electro-
chemical equivalent of silver as determined by Bower and
Davis [5], yielding a value of 96486.18 ± 0.13 ANns-smol -

(one standard deviation). Further details of the calculation of
this constant are given elsewhere in this issue of the Journal
of Research [27].

The reduction of the overall uncertainty in the Faraday
constant has allowed discernment of the discrepancies which
existed between the Faraday determined from electrochemical
experiments, and the Faraday calculated from other funda-
mental constants. It is expected that the new NBS value of
the Faraday will be included in the 1981 CODATA least
squares adjustment of the fundamental constants.
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Mexico; Empresa Minera Del Centra Del Peru; Johnson-
Matthey, Ltd., Canada.
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A report of the Faraday constant as determined at NBS via silver coulometry and atomic weight measurements
is presented. The uncertainty of the reported result represents a five-fold improvement over measurements made
at NBS 20 years go. The result should contribute to an analysis of the self-consistency of several other fundamental
constants measurements. Experimental details have been reported in other publications which are cited in the
text.
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The Faraday constant, F, may be derived from the following
relation:

A (~Ag)F=
EAg

where EA, is the electrochemical equivalent of pure silver
and Aj(Ag) is the atomic weight of the silver used in deter-
mining EAS. In 1975, coulometric measurements of EA, un-
dertaken at the National Bureau of Standards [11] achieved
sufficiently high precision to warrant a careful re-evaluation
of the purity of the silver used [2] as well as a more accurate
redetermination of its atomic weight [3]. This last work, which
is the previous paper published in this issue of the Joumal
of Research, completes our efforts to measure F via the silver
coulometer. Our results are:

FNUS7S = 96 486.17(13) A..s 7. ssmol' (1.3 ppm)

FBI69 96 486.06(13) AB0 6 9 snmol" (1.3 ppm)

Fs, = 96 485.44(14) A rs' smol' (1.4 ppm)

where the subscripts identify the electrical units used; that
is,

NBS75-electrical units as maintained at the National Bu-
reau of Standards in March of 1975, the time of the coulo-
metric measurements.

* Center for Absolute Physical Quamities, National Measuremetm Laboratay. V. E.
Bower's prsent address: 9906 Po.moa Drive, Bethesda, MD 20034.

t Center fr Analytical Chemistry, National Measurement Laboratory.
** Previous publications of this autbor have been under the name of L. P. Dunstan.
] Figumes in boackets indicate litertur refermnces at the end of this paper.

B169-a convenient reference set of "as maintained" elec-
trical units defined in ref. [4]. (BI is an abbreviation for
Bureau International des Poids et Mesures (BIPM), the In-
ternational Bureau of Weights and Measures in Sevres, France.)
We useAN~mJA,6, 9 = 1-(1.2±0.1) X 10-6 [5].

Sl-electrical units as defined in the Systeme International
(i.e., absolute units). The transformation from NBS75 to SI
amperes has been made by using what we believe to be the
best available conversion factor, ANJSBS/SI s = 1- (7.6±0.5)
x 10-6 [5], although this is by no means a closed question
[6,7].

All uncertainties, which have been given above in paren-
theses, are meant to correspond to one standard deviation.
In addition, the draft recommendations of the BIPM [8] re-
garding the calculation of uncertainty have been followed,
the most noteworthy being that all uncertainties are combined
by taking the square root of the sum of their squares to produce
a total uncertainty. These procedures for computing uncer-
tainty were also adhered to in reporting the most recent meas-
urements of the electrochemical equivalent of silver [1,2] as
well as in recent compilations of the fundamental constants
[4,6]. in reporting the new atomic weight of silver [3], how-
ever, a more conservative approach has been taken. That is,
if the BIPM recommendations were followed, the total un-
certainty (at a level of one standard deviation) in the atomic
weight of silver reported in ref. [3] would shrink from 0.5
ppm to 0.3 ppm [9]. It is this latter uncertainty which we
have used in the results reported above. The total uncertainty
at a level of one standard deviation for FNBS75, calculated
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according to the BIPM recommendations, is shown in table Vol. 5. J.H. Sanders; A.H. Wupstra, eds. New York: Plenum Press;

1. Thus the new measurement of the atomic weight of silver

reported in ref. [3] has reduced the role of atomic weight in

the uncertainty calculation of the Faraday experiment from
dominance to insignificance.

TABLE 1. Estimate of Uncenrainties in Fm,,7,rom Known Sources

SouFerUndetailrnty (ppRf2

Elecnrochlemical equivalent of silver 1.3-
Alomie weight of silver 0.3
Combined uncertainty1.3

- Funther details in Ref. [21.

Figure 1 shows the value of the Faraday calculated here

as well as Faraday constants measured by other scientists.

Point D is the present CODATA recommended value of Cohen

and Taylor [4], which is calculated from other physical con-
stants via least squares. It may be noted that not only has
the overall uncertainty in the Faraday constant been reduced
through this determination, but the new value of the Faraday
is now essentially the same as that calculated from the proton
gyromagnetic ratio determined by Kibble and Hunt [13]. No

further work using silver coulometers is planned since it would
be extremely difficult to reduce the uncertainty of the meas-

urements below their present values.
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An analysis of the dynamic behavior of a single-pan mechanical balance is presented. In particular, errors
caused by a swinging pan are analyzed in detail. Results point to a large effect which, though apparently not
previously appreciated, is nevertheless easily verified experimentally. It is suggested that this effect can be reduced
to insignificance in a balance whose beam is servo-controlled to an angle perpendicular to the local gravitational
field.

Key words: Analytical balance: balance dynamics; balance sensitivity: balance suspension: knife-edge bearings:
Mathieu's equationu single-pan balance.

1. Introduction

The single-pan analytical balance has become standard equipment in laboratories performing precise mass
determinations. The mechanical balances with which this paper is concerned include those having built-in
dial weights, a damped beam, and an optical scale which is directly related to beam angle and which has a
range equal to or greater than the increment of the smallest dial. Many commercial models of this type of
balance achieve a precision of better than 0.5 x 10-6 of maximum load. Indeed, the most precise kilogram
comparator-an undamped version of these balances-achieves a relative precision of 1 x 10-9 [1])
Equations derived below also treat the case of undamped balances.

It is a common experience of users of one-pan analytical balances that, occasionally, a badly-centered
load will cause the pan to swing which, in turn, produces an oscillation of the optical-scale indication. When

this occurs, one generally discards the reading and repeats the operation with more care. The question we
posed, however, was: By what physical process does the pan-swing manifest itself as an oscillation of the

balance beam? The answer might lead to the minimization of the unwanted effect.
The only previous attempt, to our knowledge, at addressing this question has been in a paper by Bowman

and Macurdy [2]. These authors reject attempting an analytical solution to the dynamic errors associated with
a swinging pan because such a solution would be difficult except under unrealistic conditions. Instead, they
point out that a significant part of the dynamic swing-error is due to the centripetal acceleration of the pan.
The maximum amplitude of this acceleration is gy 2 for small j,, where g is the local acceleration of gravity
and jy is the peak angular amplitude of the pan swing [2]. Even qualitatively, however, this component may

be excluded as dominant, at least on many analytical balances. The reason is that a swinging pan is seen to
produce an oscillation in the optical indication at the same frequency as the pan oscillation, whereas the
centripetal acceleration is modulated at twice thefrequency of the pan (i.e., the centripetal acceleration passes
through two maxima during one complete period of pan swing).

Our approach to obtaining a solution to the question posed above has been to generate a complete analytical
solution to the equations of motion of an idealized single-pan balance. Our idealized balance operates with

knives and flats acting as pivot bearings. The knives do not have perfectly sharp edges but instead have

finite radii of curvature. This complexity was added to help elucidate the role of imperfect bearings in the

dynamic behavior of the balance.
While our balance model, as will be seen below, requires definite restrictions (such as small-angle motions)

and contains some unrealistic assumptions (such as perfectly parallel knives), it nonetheless includes many

$ Ceneur for Absolute Physicl Quanities., Nationa Measurn ent LabotLory.
Fig.res in brackets indicate literature refeences at the end Of this paper.
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of the fundamental physical aspects of the problem and is amenable to analysis. Seniiquantitative predictions
of the dynamic behavior of analytical balances can be made based on solutions of the model. These predictions
have been verified experimentally as described in section 5 below.

2. Equations of Motion

2.1 Method

The equations of motion for a damped, single-pan balance will be obtained by using the Principle of Virtual
Work and D'Alembert's Principle [3, 4]. The suspension system, the balance beam, and the counterweight
are initially represented by point masses located at their respective centers of gravity; they will later be treated
as distributed masses.

The first step is to determine the coordinates of these point masses as a function of time. This information
is used in the Principle of Virtual Work to obtain the generalized torques-and thus the balance beam stiffness
and sensitivity expressions. The kinetic energy of the system is also obtained from the equations describing
the locations of the point masses. The kinetic energy, the generalized torque, and a velocity-dependent
Rayleigh dissipation function [3] are then used in accordance with D'Alembert's Principle to generate the
equations of motion for the system.

2.2 Coordinate System

Figure 1 shows the coordinate system for the balance. Note that the z axis, which is defined to be parallel
to the local gravitational field, arbitrarily points downward. The y axis is thus parallel to the direction that
the plane, defined by the two knife edge contact points (P) and (C), would have if this plane were at gravitational

x

(gravitational horizon)

MA g

FIGURE 1. The coordinate system and quantities used in the equations of
motion. The balance beam woates in the y-z plane, while the suspension
system-load mass combination, represented by a simple pendulum, swings
either in the x-z or the y-z plane via crossed knives at pivot point (PI). The
origin is fixed at point (C), which is the center knife contact point for 3, = 0.
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horizon; i.e., if f, = 0. The x axis is directed into the figure so that the coordinate system will be right-

handed, and the origin of the balance coordinate system is fixed at point (C), which is the center knife contact
point for , = 0. Therefore, the balance beam swings in the y-z plane about gravitational horizon. The time
development of PY(t) describes this motion.

Points 1, 2, and 3 of figure 1 represent the centers of mass of the suspension system-load mass combination

(MA), the balance beam mass (Mb), and the counterweight mass (MB). respectively. A velocity-dependent

damping force, F., is applied at point 4. The knife shown at point (P) is actually assumed to be two knives
crossed in the same plane (see figure 5 of reference [1] or figure 3 of reference [5]). These crossed knives
consist of a load knife, L, with a symmetry axis in the x direction and an intermediate knife, 1, pointing in

the y direction. Therefore, the suspension system is free to pivot in any direction about point (P) with an
instantaneous angle y. If the knives do not cross in the same plane, then the center of mass length, L.., can

be replaced by (L,,) and (L,)Y. (The purpose of the intermediate knife in balance design is to compensate
for non-parallelism of the two main knives [5]. In our model the main knives are assumed parallel, however.
Thus, in our model the only effect of the intermediate knife is to allow a second degree of freedom for a

swinging pan.)
Normally, the suspension system would include a gimbal-like device to minimize the positional effects of

weights on the scale pan [2]. This would involve a double pendulum on a balance beam-making the problem

analytically intractable, and also masking the physical effects. (Actually, the gimbal often has enough friction

to quickly dampen the suspension system motion to that of a single pendulum, so the results of this paper

still apply to many single-pan balances.)
We will assume the motion of the suspension system to be that of a simple pendulum. In order to gain the

maximum physical insight, we consider its motion either to be entirely in the x-z plane or entirely in the y-

z plane.
SI units will be used in the derivations, with masses in kilograms, lengths in meters, forces in Newtons,

torques in Newton-meters, and angles in radians. Note that the quantities y., y,, P,, e, f,, and $LB have
signs associated with them-and that they are arbitrarily given positive signs in the instantaneous configuration

at time t shown in figure 1. Small angle approximations: cosy 1, cosj, 3 1, siny 2 y, and sinpI -30
will be made at the appropriate places. The y approximations are made because precision balances cannot
function with large suspension system amplitudes, while the fly approximations are made in order to obtain
analytical solutions.

2.3 Coordinates of the Balance

2.3.1 'y. and 1B, Motions

Assume that the center, load and intermediate knife edges are symmetrically honed cylinders such that
they have radii of curvature Pc, PL and p', respectively. Then, with the aid of figures 2-4, the coordinates
of points 1, 2, and 3 of figure 1 are:

Xi = L0.siny. - PiY.

y = - LAcospY - pLsinp, + Pcp,

z, = -LAsinbi,- p,(l - cosl3,) - pc(l - cosPb) - pi(l - cosyJ) + Lccosy,

2= 0

Y2 = -ebsinI
3 , + PcI,

Z= ebcos,3 - Pcl - coslp3 )

X= 0

y3= Lcospy - eBsingoy + pc

z= LBsinj3y + scosriy - pc(I - cosYiy),

where y, and PY are functions of time.
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FIGURE 2. Effect on balance beam of center knife rolling onits flat. The
origin is fixed at point (C), with the positive x axis directed into the figure.
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FIGURE 3. Effect on balance beam of the load knife flat rolling on the load
knife edge.
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- x

z
FIGURE 4. Effect of the intemediate knife rolling on a flat. The positive y
direction, pointing towards the center knife, is out of the figure. For sim-
plicity, the edges of the crossed knives are assumed to lie in a plane.

2.3.2 y, ond br Motions

The coordinates of points 1, 2, and 3 of figure 1 are:

xI = 0

Yl = -LAcoslY - POSinW3 , - pLsiny, + PCP, + Lcmsinyy

Z = -LAsinp 3 , - PLCOSYY + PLCOSI3Y - PC( - cosp3 ,) + LCICOS-Y

X= 0

y = - esinp, + pcpy

e= COS13, - pc(l - cosl3)

Xp 0

Y= LecosI3Y - eBsinp3, + PC13 y

= L1 sinpy + eBCOSp, - pc(l - cos 1y).

2.4 Principle of Virtual Work

The Principle of Virtual Work [3,4] states that

3 3

8W = F. - de, = E [(FS),Sx; + (F)y8yj + (FjibztI
i=1

where x; = xj(y,jy), yj = yAyPy3) and zi = zi(yj,), and i represents any of the three points shown in figure
1.
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Since (Fj, = (Fj), = 0 for this problem, the expression for the virtual work reduces to

BW = 2 (F,)8z,

= t [(F).( 'z) by, + (F5 ). by, + (Fe). ) apij (

= Qz-y,. + QB, + QaSB

where Q7, Q7, and QR, are the generalized torques for the ye, y,, and b, motions. It follows from eq (1) and

figure 1 that

QO = Mg aft + Mbg ±ap + Mzg ap'. (2)

Analogous expressions are readily obtained for Q., and Q,, but we will only be concerned with the conse-

quences of torques about the center knife, rather than about the load or intermediate knives, because we are
interested in investigating causes of read-out fluctuations of balances.

2.5 Generalized Torques

Using the coordinates listed in section 2.3.1 for y, and b, motions, and small angle approximations, eq
(2) becomes

Q13 = [M1gLB - MAgLA] - [MAg(pL + PC) + Mbg(fb + Pc) + Msg(e1 + Pc)]jY. (3)

This expression for Qp, also applies exactly for y, and 13, motions.

2.6 Balance Beam Stiffness and Sensitivity

Assume the balance beam is in static equilibrium; therefore, QP, = 0, and (3) becomes

[MagL1 - M1gLA] = [;Mg(pL + PC) + M19(e6 + PC) + M8lg(f + Pc4.

which is of the form fra = KPy, where Fa, is the torque about the center knife, the symbol "^" represents

equilibrium values, and K is the balance-beam stiffness:

K = [MAg(PL + PC) + Mbg(Cb + PC) + M1Bg(eB + PC] (4)

This result is the single-pan analogue to the stiffness of a two-pan balance with knives of finite radius [6,

7].
The balance sensitivity, S, to changes in torque is

s = Ar = I 1 (5)
AF13 K

and has the dimensions of rad/N-m.2

2 Note that if the balance has ideas bearingi (PL = pc 0) and if the position of the counter-pois i. adjusted so that ea = 0. the sensitivity is
completely independent of MA and M, This esult senms to be in contrdiction to eq (7) of [71 and to one statement made in that paper The fanaulation
of [71 can be r.onciled with our ow. if one realies that the coordinate system of 17] is itself a function of Mb. Hence, for halances whose coatiruction is
close 1t ideal (i.., C. << (MJM5)t). the static proerics (such . sensitivity) do not depend stongly on load. The dynamic properies (such a period
of the balonc) do depend stmgly on load: If. I-kg singlc-pan mass coanparatar is convetned to . 2-kg compartor by doubling the mass of the counter-
poise, the sensitivity of the balance will nat change appreciably provided the beam and knives do not defo.n under this modification. The period of the
undamped balance will incase nmakedly, however. (A clea and succinct discussion of this point can be found in section 3.A of refrencneo [12]).
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Note that the balance sensitivity depends upon both eb and 4g-and that in general neither their individual
magnitudes nor signs are known. This does not matter, however, since the sensitivity is a directly measurable
quantity.

Equation (3) can be rewritten as Qp, = [MBgLa - MAgLA] - KP,. Therefore, the effective changes in

lever arms LA and LB-due to the knife edges rolling on their flats-enters into the quantity Ke3,; also, K and
S will not be constant if the effective values of Pc and PL vary with Bye

2.7 Kinetic Energies

2.7.1 y. and P3, Motions

The kinetic energy of the system is

T = T1 + T, + T2

1 1 )22 3 1 6T = 2-MN(X ; + .7; + ZIP) + 2- M 6 (X + 5Z + iZZ) + 2- M8 (X + 7-3 + i3) (6)
2 ~~~~~22

Using the coordinates listed in section 2.3.1 in eq (6), employing small angle approximations, and keeping
only the significant terms, yields the result

T = - MA[L32(0)2 + L2 (t) 2 - 2LemPiC~) 2

2

+ 2LAL.mmyJijP] + -Mbe2() (7)
2 b

+ -MB[JL + tB] (a!)2.
2 B

2.7.2 -y and Pr Motions

When the coordinates listed in section 2.3.2 are used in eq (6), the kinetic energy expression becomes

T = 2-M,[L,2(f3)2 + L.m. i2 - 2k.PL 

+ 2LALem(Yy + P)tPYY + 2LjpC - PL)YYPY] (8)

2 Mbeb(1i,) + 2MB[La ± fB]QB 2 .

2.8 Rayleigh's Dissipation Function

We will assume that if the balance beam is mechanically or electronically damped, that the damping force
is proportional to the velocity. Let the damping occur at point 4 of figure 1. Then for small angles, the
Rayleigh dissipation function [3], F, is

F = -2 2z = -2 as(Pj2 (9)

and the damping force, F., is

F. = - = _QtXA0 (10)
94
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2.9 D'Alembert's Principle

2.9.1 y.ond p, Motions

D'Alemberts' Principle [3,4] for the equation of motion of the balance beam about the center knife may
be written:

d / iT\ aT aF
dt taj TB a Qo' 11

Substituting the expressions for Q,3, T and F given by eqs (3), (4), (7), and (9) into (11), and replacing the

point masses of figure 1 with distributed masses, yields the result

[iCdI,, + [4]$i, + Kjy - [MagL1 - MAgLA] = -[MALALm](i
2 - [MALALCm]yX%. (12)

Ic is the moment of inertia of the balance about point C of figure 1 when 13,, = 0; i.e.,

IC = 11 +12 +1 (13)

IC = [MALi] + [(Qj,. + Mbeb] + [Q1 )1 .X + MB(LB + fB)]

where (ib)cm and (IB)inn are the respective moments of inertia of the balance beam and the counterweight about
the x axis through the center of mass, points 2 and 3 of figure 1. The M6 e2 and M8(L.2 + f2 terms result

from the parallel axis theorem. The combination of suspension system plus load acts as a point mass-as far

as the center knife is concerned-because of the crossed knives at point P.
Equation (12) has the form

bl,, + crp, + KO, - d = -eQyj2 - ey~y (14)

Appendix A lists all algebraic substitutions used in the derivations, such as those for the coefficients b, c,

K, d and e of (14).

The r.h.s. terms of (12) and (14) can be explained by considering the torques about the center knife due

to the radial and tangential accelerations of the suspension system-load mass combination about point (P')

as shown in figure 5. The torque I, is

1' = (Macosy.)(-L~cos,3 - p~sin,, - Pc) (15)

+ (MAazsiny.)(-LAcos3, - pLsinO - P,)

where a, = L,m(i')2 and a, = L_,ft. Note that the torque rc is about the pivot point (0) of the center knife

rather than about the origin (C), or about the contact point (C'); (see fig. 2). For small angles, eq (15) reduces

to

1c = -[M,,LALCI,](Qj)2 - [MALAL.m]yxy, = -e(y=) 2 - ey,

thus accounting for the r.h.s. terms of (12) and (14) by using Newtonian mechanics.

2.9.2 y, and p, Motions

Substituting the expressions for Qa, Tand F given by eqs (3), (4), (8) and (9) into (11), and using distributed

masses for the balance, yields the result
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[IJ0I + [ tB] + KR,7 - [MgL, - MAgLA]

= -[MALALCJ(4)2 - [MALALcm](Yy + - [MAL.m(PC - PL)]VY, (16)

which has the form

bO, + Co, + K y- d = -e(yj) 2 - e(y, + pBy)t -1, . (17)

Referring to figure 5, the torques about the pivot point (0) of the knife due to the radial
accelerations of the suspension system-load mass combination are

and tangential

rc= (MAaRcosyj,)( -LAcosP3, - psin 43,, - pLsinfl, - pcp,)

+ (MAaRsiny,)[-LAsinP, - pLcosy, + pLcosf, - p,(1 - cosj) - Pc]

+ (MAacosy,)[ -LAsinP, - PLcosy, + PLcosp,, - pJ1 - cosfiy) - PC]
(18)

+ (MAaTsinyJ(-tLcosp - pLsinOS - ksin-y, - -cp,) -(MAaT)( -pL) 

where aR = L.(i') 2 and ar = L,.a,,. The last term in (18) results from a torque about the center of curvature

of the load knife due to an action-reaction force MAaT applied to the non-slipping contact point (P'); this
torque is transmitted to point (0) because the balance beam is rigid.

(P)

. .y.r. t.t.o. .. r n. . . .(gravitational horizon)

MAaT
z

MAaR

FIGurE 5. Dynamically induced forces on the swinging pendulum. These forces produce toques about the pivot
axis of the center knife. This axin, which is in the x direction, passes through the center of curvature of the center
knife at point (0).

For small angles, eq (18) becomes

rC = - [MALALm](jy)2 - [MALALjm](YY + I3)Y?, - [MAL4m(PC - PL)IVY

= -e('j) 2 - e(y, + B)y, - fy,,

thus accounting for the rh.s. terms of (17).
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The - [M4AL4Lom]l,% = - e%3.,% term of (16) (which is due to MA times the horizontal component of the
tangential acceleration times the change in height from gravitational horizon of the load end of the balance
bean) will later be seen to have a special significance. We will refer to this quantity (divided by *,) as the
Mathieu term. (There is also a Mathieu term contribution due to the horizontal component of the radial
acceleration; but it is negligible for small angles.) The quantity [MAL.-(pc - p1)/c1ft will later be referred to
as the knife-edges term.

2.10 Physical Pendulum

2.1 0.1 y. and P, Mation.

We assume that the motion of the suspension system-load combination is that of a physical pendulum, and
arbitrarily choose by to be a minimum at time : = 0 and to have an amplitude -yx; i.e..

(19)' = - ?Ccos(O ,

where

< [HMgLQ
1;

t20)

(21)= (1;) + 41 A2

and

(0 = 
A.

(22)

I, is the moment of inertia of the physical pendulum about the y axis at point (P) of figure 1, (1t),, is the

moment of inertia of the suspension system-load mass combination about the y axis through the center of
mass point 1 Of figure 1, and Py, is the pendulum period.

The higher order modulation terms have been ignored in (19) because they do not significantly affect the
balance beam motion. They could be readily obtained by considering the equations of motion about point (P)
of figure 1.

2.10.2 y, and PL, Motins

Analogous to section 2.10.1:

,Y~ = -yOL~t

2 = [=M gL/j
Vy Ip

(23)

(24)

(25)P = (15 ).m + MAL m_

and

W07 = -. (26)

4p and (IS)cm are the moments of inertia about the x axis through points (P) and 1, respectively of figure 1.
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3. Solution for y. and fr, Motions

The equation of motion can now be expressed in final form by substituting eq (19) into (14), and by using
the identity cos2e-sin 2W = cos2t; it is

K d e
, + + 0, ± ; BY - = b '¶2LD2cos2,t. (27)

The general solution of (27) will consist of the solutions to the homogeneous equation (where the r.h.s. of
(27) is zero), plus a particular solution.

The homogeneous solution to this equation is easily obtained by standard techniques. The particular solution
can be found by writing (27) in the form

0 + Up, + V2PR -6 =wcoskt

and by assuming that the solution is

= Dcoskt + Esinkt +

which yields the results

awkD=
[(v2

- k2
)

2
+ POk

2 ]

and

w(v2 - k2 )
[(V2 - k2)2 + W2k2]

The general solution of (27) is therefore

j, = {e 26 [A exp\/wi2t + B exp-3V i2t]

or (A + Bt)e 25 or

e 26 [Acoswo4 t + Bsino,.t]}

+ + e ?2 2 (w24, - 4w2o,)cos2wt (28)

( - 4X12)2 + 4- w2]

+ 2 ce Xy20°3 sin2wtt

x [(Q - 403,2) + 4 Wb2

where

(42= Klb, (29)

2

W'2= T-2 ~~~~~~~~~~~~(30)
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and

d _M 09gL - MAgLA] (31)

K [MAg(pL + PC) + Mbg(e4 + Pc) + A41g(t1 + PC)]

The choice of terms in eq (28) arises because the balance may be overdamped, critically damped, or
underdamped depending on whether c2/4b is greater than, equal to, or less than K. For all damping conditions
the motion of the balance beam about the equilibrium angle p', is modulated at an angular frequency which

is twice that of the natural angular frequency WoI of the physical pendulum. This modulation effect is due to

the radial and tangential accelerations of the suspension system-load mass combination.

4. Solution for y, and fla, Motions

4.1 Equation of Motion

The equation of motion is obtained by substituting eq (23) into (17), and by using the identity cos2W -

sin2 * = cos2Q:

do + c d-- + K -+-J uu cOSWo tj = -b + - 12W cos2w.ot - %2 - ° coSOt. (32o
de2 6bdt \-b b I' h 6 6 ' I

The 1YwO} cos(oi,t) I, term of eq (32-which is the Mathieu term referred to in section 2,9.2-omplicates

the problem; yet it cannot, in general, be neglected when considering the dynamical effects of precision
balances. Therefore, (32) will be converted to a more tractable form.

First, we change from the time variable, t, to the dimensionless variable z by making the substitution

Wt = 2z. (33)

Equation (32) thus becomes

+_ 2[to] d+ ([4 to - 2[7! %] cos2z)i3.

[4 1 + [4 t] eos2w,.)- [4 6jy% cosw ,t , (34)

Or

dp + 2k d3 + (0 - 2qcos2z)P, = h + fcos4z - mcos2z = f(z). (35)
d2 dz

We then replace P, with the quantity [10]

Al, = e u(z); (36)

thus obtaining the equation of motion in final form:

dJ + (a - 2qcos2z)u =~) (37)
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where

a = a -12 = 4
ta2

_K c2

lyb 462
(38)

The quantity a is negative if the balance beam is overdamped, zero if critically damped, and positive if
underdamped; whereas q is always a negative number. The quantities z, 7(z), u(z), k, a, a, q, h, e, and m
are all dimensionless. The general solution of (37) consists of the solutions to the homogeneous equation,
plus a particular solution.

4.2 Homogeneous Solutions

The homogeneous equation

a" + (a - 2qcos2z)u = 0

has the canonical form of Mathieu's equation [9,10]. The reader is referred to reference [10] for an excellent
account of how to obtain solutions to this equation.

Figure 6 shows an isostability diagram [10] of v for possible solutions to eq (39). We are only interested
in underdamped or critically damped solutions because laboratory analytical balances are seldom designed
to operate in the overdamped mode; therefore I >> a 3 0. Also, the quantity q = -2MALALC.. S''c is

always a very small negative real number for precision balances; so - 1 << q < 0. The region of interest
for these values of a and q is indicated by an arrow in figure 6. Clearly, the solutions of (39) cannot be
"simple" Mathieu functions of the sine or cosine types s(el), c(en) or c(ei) [9,10], but instead are more
complicated functions.

a

-q

FIGURE 6. An isostability diagram of v for possible solutions of Mathieu's
equation given by (39). The snow points to the region of interest for precision
balances; i.e. I >> a - 0 and -I C< q < 0. Solutions in the shaded
region am unstable. This does not mean that an overdamped balance (a < 0)
is mechanically unstable because u(z) is multiplied by the factor e-L in the
solution for 3,.

35

(39)



Since q is small, we guess that the solution is of the Floquet form [9]

u =ei. -qe i(V+2)t qe a(.-2). 40
4(v + 1) 4(v - 1)

where v is not an integer; (i.e., u(z) is not a Mathieu function). For small values of a, v is defined by [9]

cosvlr (I a + + .. ) =[I + a(1 _) +± ]
+4(T4_ 25iT2 + +

~9 6 256

We then use the identity ei0 = cosO + i sinO in (40) to obtain the two independent solutions of eq (39);

they are

u, = cosvz - 4cosvzcos2z - vqsinvzsin2z (41)

and

U2 = sinvz - 4sinvzcos2z + vqcosvzsin2z, (42)

where terms of order q2 have been neglected, and

- 2( 1-v2) ' (43)

v - I (for a > 0), (44)

or

v < q (for a = 0).

The homogeneous solution of (39) is therefore

Au,(z) + Bu2(z). (45)

4.3 General Solution

4.3.1 Particular Solution

We must next find a particular solution, up(z), of

"I + (a - 2qcos2z)u = etf(z), (46)

which has the form of Hill's equation [10]. The solution is obtained from the expression

tP(z) = 2 - L[u (z) ft u2(z)et -z)z U2(Z) f ui(z)ekp(z)dz] (47)

where ul and U2 are given by eqs (41) and (42),f(z) = h + ecos4z -mcos2z, and
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= uI(z)uz(z) - u2(z)t4(z) = v. (48)

The evaluation of eq (47) is straightforward, but very lengthy; the result is included in the next subsection.

4.3.2 Complete Solution

The general solution to eq (35), using (36), (45), (47), and (48), has the form

= e u(z) = e [Aul(z) + Bu2 (z)] - [it)zi J u2(z)e'Az)d)z - u2(z) f u(z)etf(z)dzlj1 (49)

which, when using (41) and (42) is

Ia,. = Ae- cosvz - 4cosvzcos2z - vqsinvzsin2z]

+ Be-X[sinvz - 4sinvzcos2z + vqcosvzsin2z]

-vk2+v2] {(h + 2 m) [-v + e"k(vcosvz + ksinvz)]

- (qh)[-vcos2z + e"'(vcosvzcos2z + ksinvzcos2z)]

- (vqh)[ksin2z + e-"(vsinvzsin2z + kicsvzsin2z)]}

2v[k2+(v-2)2] 1(-m - - e-vqh + e)[-2sin22

- (v-2)cos2z + e-t((v-2)cosvz + ksinvz)]

+ (qm)[-ksin2zcos2z - (v-2)cos2 2z + e-=((v-2)cosvzcos2z + ksinvzcos2z)]

+ (vqm)[-(v-2)sin2 2z + ksin2zcos2z + e`((v-2)sinvzsin2z - kcosvzsin2z)]}

m -4h e+ vqh-vj ii~
2[2 + (v+2)2] (-m - 2 2 -v~e) [ksinz

- (v+2)cos2z + e-h((v+2)cosvz + ksinvz)]

+ (qm)[ksin2zcos2z - (v+2)cos22z + e"'((v+2)cosvzcos2z + ksinvzcos2z)]

+ (vqm)[ksin2zcos2z + (v+2)sin2 2z + ehS((v+2)sinvzsin2z - kcosvzsin2z)]}

2 + ()2] (e + m + vi-m) [-sin4z - (v-4)cos4z

+ e-&((v-4)cosvz + ksinvz)]

- (qe)[-kcos2sin4z - (v-4)cos2zeos4z + e-t'((v-4)cosvzcos2z + ksinvzcos2z)]

- (vqe)[ksin2zcos4z- (v-4)sin2zsin4z + e-2((v-4)sinvzsin 2 z - kcosvzsin2z)]}

2v[k2 + (v +4)2] {(e + M- v 2- m) [Lsin4z - (v+4)cos4z

+ e-k((v+4)cosvz + ksinvz)]
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- (qe)[kcos2zsin4z - (v+4)cos2zcos 4 z + e ((v+4)cosvzcos2z + ksinvzcos2z)]

- (vie)[ksin2zcos4z + (v+4)sin2zsin4z + e-4((v+4)sinvzsin2z - kcosvzsin2Ol}

2v(I&2 + (v-6)2]{[( - 2-e - V e)[-sin6z - (v-6)cos6z

+ e-&((v-6)cosvz + ksinvz)]}

-2v[k + (±+6)2] {( - 2 e + V 2 e)[ksin~z - (v+6)cos6z

+ e"((v+6)cosvz + ksinvz)I}. (50)

This is the exact solution (in reduced notation) for small angle y, and P, motions. It is obviously much more
complicated than the solution for small angle y. and Pf3 motions given by eq (28).

It requires too many printed pages to provide an expanded form of eq (50) written in the notation of (28).
(There are 74 terms in that notation.) However, the reader can readily transform any. term of (50) into that
notation with the aid of Appendices A and B. Equation (50) is provided so that readers seeking solutions to
problems similar to our own may be spared the considerable tedium of its derivation and so that the terms
neglected in the sequel may be recovered by the interested reader.

5. Special Cases

5.1 A Freely-Swinging Balance

In a completely undamped balance, k = c = 0. and ma = wa; so eq (28) becomes

= Acosw,1 ,t - Bsinwp,t + Is, + j - ------ cos2wt. (51)

Using Appendices A and B, and keeping only the largest terms, (50) becomes

13, = Acostopt + Bsinwp~t + [ b2 W3 -o4Ws
22 N w~(w2 -4

e (0~~2 fc2
+ - R ((0 _ 2- ) cOs.t 6 - coswtb r W2 -4 b (

2 )-W

+ W2 c2"u ,z W4 cos~o, t (52
6 r ( 02 _- 4,2) cos2w(W 4w~,j) - 9W ) 2)

where 6 = , e = MALAL.cD and f = ML,.,lpc- pL). Only cosine modulations of the Acoswoz +

Bsinwat motion appear in (51) and (52) because of the choice of the phases of the y, and y, motions given

by eqs (19) and (23), respectively.
The cos3a.t term of (52) is much smaller than the cos2wYt term, and is therefore negligible. There is a

systematic error term in the equilibrium angle: -eftoX4,/[26 2cw2,(w2 - 4o4,2)]. This term is ptobablynsmall

for most precision balances and may in fact be an artifact of our initial neglect of terms in 52.
The size of the cosw,1 modulation depends upon the knife edge radii Pc and pL, and also upon the value

of ,,.. The coswwt modulations will be at a minimumn for a given 5, when 13, is chosen (usually via an
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appropriate adjustment of MA) such that the Mathieu term contribution is nearly equal and opposite to the

knife-edges contribution. These two terms then nearly cancel, and one should observe pure cos2wbt mod-

ulations. In most realistic cases, the knife-edges term can be safely ignored. (The radius of curvature of a

good knife is usually less than 1 p.m [12].) Then the Mathieu term vanishes when the equilibrium position

of the beam is parallel to the gravitational horizon (I,=O). Note that a test for the absence of a systematic

error contribution to P, does not afortiori assure a negligible knife-edges contribution to the coswot modulations

because the error term goes as jY, whereas the modulation term depends upon %y-and is therefore much

larger.

5.2 A Damped Balance

5.2.1 Theoreticoi Predictions

We shall now investigate the motion of a damped balance at a time t which is long enough so that quantities

involving the factor e-& = e-' t 25 become negligible; (i.e., a time such that, in the absence of 'y motion,

the balance beam would be at rest at the equilibrium angle Iy). Equation (31) thus becomes

3, = , ± b o 4(wn, - 4w2,) cos2wt

6 '3 - 42)2 + 4 s]

+ -2 12 sin2wt, (53)

62 W2[( 4W -4o4,)
2 + 4c'2

and (50) becomes

[ 2b w3!t, 4(2a)

+ - 1 i -coaw, 

6 (o 2 - _ )2+

6' - ± co;] t

bc (0 2

_ of 1¾ to sin sinYt

(o 2, -W)+)

62-K sinbi't

,[! 2V)2 + 12m 

+ j W - - 4w2,) cos2yt
[(W - 4ow2)2 + 4 2+ 2 Y 3rSb2W 

[(p_4WY+ 4 b27wZ 
2c __ _ __ _ __2__ _ __ _+6 -~4w + 4 to;]sn( 
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+ - 3 jC - R' 2 cos3w t

(W, - 4wpo,) it[ (, - 9W2 )2 + 9 b2 Id ,

± 3ce2 3 wY, sin3wy,t (54)

(w2 - 4o2)[(W2 - 9Wc)2 + 9 W w0,

where b = c = ah, e = MALALcm, f = MALC(pc- pL), and o4, = 0 at critical damping.

Sine modulation terms now appear in (53) and (54) because the damping effects introduce phase shifts into
n

the balance beam responses to the pure cosine y, and -y, motions. The sin - wot terms are smaller than their

n . 2c
equivalent cos 2W. terms by the ratio b, where n 2 , 4, or 6.

The 3wYot modulation terms are negligibly small compared with the 2wy,t terms-as was the case for a

freely-swinging, undamped balance. The presence of a systematic error term in the equilibrium angle can,
in principle, be tested by observing the apparent 1y values for pure y, and 'y, motions. In practice, however,

the over-simplifications of our model may cause problems in interpreting such a test. The modulations of

frequency -y} can again be minimized by choosing a nominal value of By such that terms involving the

quantity MALALCmjVy are nearly equal in magnitude and opposite in sign to the knife-edges terms which

include the factor MAL.n.(PC - PL5-

5.2.2 Experimental Verification

We have tested some of the predictions of section 5.2.1 by using a Mettler MS balance,' which has a
velocity-dependent damping produced by an air-dashpot. This balance has a maximum load of 2 0 g, an on-
scale range of 20 mg, and a readability of 2 p.g. An analysis of some important features of this balance can
be found in ref. [7]. The weighing pan is attached to the lower part of the suspension system by a hook and
ring, so that the initial motion of the suspension system is that of a double pendulum. This motion quickly
dampens to that of a single pendulum-which is a necessary condition for our model. The presence of the
hook and ring, however, makes it difficult to generate pure y,, or pure ry, motion. We therefore temporarily
locked the hook and ring together to provide a rigid suspension system for these tests. The tests described
below were performed by gently starting the pan swinging at an amplitude of 4 ± 1 mrad about equilibrium.

What can be inferred from eq (54) about the dynamic behavior of this balance? First, eq (54) can be
simplified because W4, 0 and W2, << t2

1by = const.

+ - I + (b )2 ] "cos(wvt + Arctan b (A)

ft F (\ 211I2 .. (W 
+ '1 + + Arctan - (B)

b 4 [ + (2hw)2] co5(2wYt + Aretan 2cbw (C)

+ higher order terms. (55)

3 Brand names mm ued only for purposes of identification.. Such use implies neither endoreme by the National Burea of Standards nor assurance
that the equipment is the best available.
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Term A, the Mathieu term, arises from the tangential acceleration of the swinging pan. Term B is a consequence

of having knife edges of finite radius. The last term considered, C, has its origin in the centripetal acceleration

of the pan. The latter is the only term of importance in eq (52).

We have made the following estimates for the balance being considered:

e 5 x 103 g cm2

If 2.5 X 102 g cm 2

b 3.5 x 103 g cm 2

c - 5 .5 x 10 g cm 2 st

Also, w(. was measured to be 7.8 rad/s.

On the basis of these numbers, one may observe that term B always has much smaller amplitude than term

C and is, therefore, always masked. We are left only with terms A and C. Equation (55) predicts that term

A will dominate when I 13| >»> y but that term C will dominate when the inequality is reversed. Thus, under

the condition that I0,I >> ry we would expect an oscillation in the beam at the same frequency as the pan

oscillation whereas the oscillation frequency of the beam should double when 1, = 0. The ratio of the amplitudes

in the two regimes is predicted to be

4.4 0/-y, . (56)

Note that this result is independent of the estimate of e given above and only weakly dependent on c and b.

These predictions were tested in the following way.
With the balance arrested, a load of nearly 2 0g was placed on the pan. When the balance was released,

the optical scale reading was found to be near zero (i.e., 1i, was near its maximum value of +22 mrad [7]).

Pure -y motion produced a small modulation of the balance beam read-out angle, P,, at a frequency twice

that of the suspension system-as predicted by eq ( 5 3)-at an amplitude of 2 ± I tog. Pure by motion

yielded a modulation having an amplitude of 32 ± 2 iLg-with a frequency which was the same as that of

the suspension system. The phase shift due to damping effects was too small to observe, so that this modulation

was a nearly pure cosai,'t function. Our measurements could have detected a phase shift as small as 7r/6 but

eq (55) predicts a phase shift of about 7r/16.

We then changed the sign of f, by adding 20 mg of tare weights, thereby moving the equilibrium of the

beam near to the maximum on-scale reading (i.e., 1, near its minimum value of -22 mrad [7]). The result

of pure y, motion at this position produced a 1800 phase shift in the coswit modulation of P., as predicted

by eq (55).
The magnitude of MA was then reduced by removing 10 mg so that the equilibrium position of the beam

was at the middle of the optical scale. At this position, where the beam is nearly horizontal, the Mathieu-

term contribution of the cosoo, t modulation nearly vanishes. The 8, modulation now became that of the small

cos2wo, t contribution (in agreement with the case of -y motion.)

These tests clearly verify several important predictions of eqs (53) and (55). The observed ratio of amplitudes

in the two frequency regimes is 16, which agrees satisfactorily with the value 24 predicted by (56).

6. Conclusions

In summation, it will be useful to recall some of the important simplifications in our mathematical model.

All knives have been assumed to be symmetrically honed and to roll on perfect flats. The two main knives

of the balance are assumed to contact their respective flats in straight lines which are parallel to each other

and to the x-y plane. Many authors have dealt with static errors which result from a violation of those conditions

(e.g., [5, 11, 12]). An analysis of the corresponding dynamic errors is clearly beyond the scope of this paper.

We have also chosen to look at pan oscillations in the context of the small-angle approximation of an idealized

balance. While we believe this is appropriate, it should be mentioned that small variations in balance sensitivity
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as a function of ft2 can be observed in many analytical balances having a large on-scale range [7]. Such

behavior cannot be predicted from our equations, which ignore angular terms higher than first order.

The above considerations serve as a caveat to the quantitative application of our results to real balances.

Nevertheless, the solutions found have proved valuable. The question posed in the introduction has been

answered: Two processes are important ius analyzing the effect of a swinging pan on balance read-out. One,

which has been mentioned in the past [2], is due to centripetal acceleration of the pan. The second-and

often predominant-process is a more subtle effect by which the tangential acceleration of the swinging pan

leads to a torque on the beam if the latter is not at the gravitational horizon and if the former has a component

of motion in the y-z plane. Even a crude approximation of the tangential acceleration (e.g., ar(max.) -

gj) suggests that its influence will exceed that of the centripetal acceleration if IE > y. A convincing argument,

however, can only be advanced through the rigorous mathematical solution to the equations of motion as

presented in section 4.
The disappearance of this second, or "Mathieu" process when the rest-angle of the beam is near gravitational

horizon may be used to minimize the effect. Alternatively, it may be possible to use the effect to adjust the

beam angle in a class of experiments [13, 14, 15] where it is advantageous that the beam be parallel to

gravitational horizon. Here the radii of the knives must be determined (under load) in a separate experiment

[12].
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Appendix A.
Algebraic substitutions and changes of variables

This appendix lists all of the algebraic substitutions and changes of variables used in the derivations.

Therefore, any equation given in the main text can be readily expressed in terms of the basic quantities ye,

'yr, Py, Lams LA. e6, LB, 2B, Enf, MA, M6t MB, g, a, t, Pc. PL, and p,-as defined in figures 1-4.
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K = [MA g(PL + PC) + Mb g(Cb + PC) + MB g(fB + Pc)]

S
K

F. -rSY

IC = MALA + [('b)es + Mbtem] + [(B)cm + M1 (L + eC)]

Ip = (Is)cm + MALrm

Ip= (I:)c + MAL2.m

= [MAgLcm]

I;

'P.2iw

2w

-~z = p orttys Co p'

>Y =- cos wvyr

b = Ic

d = [M~gL, - MAgLA]

e = MALALCm

f = MAL..(Pc - PM -

A d [M89LB MAgLA]

K [MA&(PL + Pc) + Mbg(eb + PC) + MBg(CB + Pc)]

- K c2
2 2'r

b 4b 2 p,;

-g pp 3UhJ = - = _

b Ic

lb
e - 2 = MALAL'm 2 2

k = 2oth

iiwk

D [(V2 - k2)2 + U2k2]

E [£t,2 W(t2 -k 2)
[(v2 - k2 )2 + ii 2k 2]
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= 2

- C _ ____

402
a = 2

2e2M AL AL.
q -2j-bt!= -2 / Y

IC 

4d [MHgLS - MAgLA]

=4 -b Y2 = 4 MALL Y

m f= 4 = 4 MLeni (Pc- Pt)Y

j(z) = h + ecos4z - mcos2z

P1 = e-,' U(z)

4 [K c_2 ] '

'J3 = 0 (if a = 0)

q 2(1 - V2) b ( yO -

v V- - i 2f(if a > O)

V r q q V 2 .2 eY. (if a = )

u,= cosvz - q cosvz cos2 z - vq sinvz sin2z

u2 = sinvz - q sinvz cos2z + vq cosvz sin2 z

Z= UlU2 - U; = V

vz = Lp,

2z= 0 1 5 tt

- ct

2b

vjq= -2e- Wt,, _ 4l2 

Appendix B

An aid to identifying terms in eq (50)

This appendix provides some relationships that can aid the reader in transforming the terms in eq. (50)
for y, and P, motions into the notation used in (28) for y, and 1¾ motions. The combination

[kZ + (v + n)2] + [k2 + (v -n)2 (Bl)
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often occurs in (50), where n = 0, 2, 4 or 6. By using the common denominator

[(a a-)n - 4n2a] = 16~
oO ' -

2 n 2 C2 ]
+ T~(2I,1 

(BI) can be written as

nvkwi,
(02 ,&c: 1

-[() 2))+T 0v[( 4 _ )2 4b ]'

k(4wa, + n 2&th',)w,

[( -2') + W2

v(4wa, - n2ow2),2
I8j W2-2 \2 n2~ 1flu 0)2 -. 0,)2 + n ... , ]
n 462 +YYJ

(44,3 + fl2w2 -8w2,w2

(if X = k and Y = -k);

(if X = k and Y = k):

(if X = (v + n) and Y = (v - n));

(if X = (v + n) and Y = -(v - n)).
2 n t) + n CE2]

With the help of eqs (B1)-(B5) and Appendix A, the terms of (50) can be expressed in the notation of
(28). For example:

mk sin2z

2v [k2 + (v + 2)2]

mk sin2z

2v[k 2 + (v - 2)21
= Cf W, - inW 

-= -b2 'YJ sin(Q, - 0,)2+ Eb2

vqhk sin2z vqhk sin2z ce

2v[k2 + (v + 2)21 2v[2 + (v - 2)2] = 2
OY~g, .tt Bz sin Witt .(0,)4 - 4w'fL)[2) - o,) 2+ - sn02.
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A 30 kg Capacity High Precision Load Cell Mass Comparator

Randall M. Schoonover*

National Bureau of Standards, Washington, DC 20234

April 15, 1981

Described here are simple means to fabricate a 30 kg mass comparator based on an ordinary direct reading

load cell. The mass comparator performs with a precision of 1 ppm.

Key Words: Constant loading; high precision; load cell; mass comparator; substitution weighing; weighing.

1. Introduction

A paper [1]1 describing a high precision load cell mass

comparator was published in 1979. The principle of that

device was the maintenance of a spring force on the active

load cell element nearly equal to the gravitational forces of

the weights being compared, even during the period when

weights were exchanged. Doing so caused an ordinary load

cell which had a precision of I part in 10,000 as a direct

reading instrument to perform with a precision of a few parts

per million (ppm) as a mass comparator. This work was with

loads of 225 kg, and it was speculated that scaling the method

to 30 kg would be quite useful in small-mass metrology.

Personal communication with several members of the meas-

urement community, however, revealed their unanimous opinion

that such scaling would result in serious loss of precision.

The work reported here results from the successful fabri-

cation of a 30 kg mass comparator based on the above prin-

ciple that has a precision of about 1 ppm.

LOAD CELL AND
SPRING ASSEMBLY

,- WEIGH PAN

-SUPPORTING FRAME

WEIGHT TRANSPORT
AND LOADING MECHANISM

FIGURE 1. Cross-sectional view showing the essential components of the

constant loading mechanism.

2. The Instrument

The comparator differs significantly in design from the 225

kg version in several ways. The instrument is self-supporting

and is provided with a built-in weight exchanger as shown in

figure 1. This feature not only loads the cell without shock,

but also aligns the weight in the center of the weighing pan.

The cell itself is supported by four parallel springs in tension

rather than a single spring in compression as before. Finally,

the flexure universals above and below the cell are replaced

with gimbaled joints fabricated from ball bearing assemblies.

The load cell incorporates a solid state bridge and has a

capacity of 45 kg (100 lb,). A schematic view of the load cell

and spring assembly is shown in figure 2.

* Center for Absolute Physical Quantities National Merernem Laboatoq.
Figures in baackets indicate literatue r fences t the end of this paper.

It is noteworthy to report one major operational change in

the use of the comparator. Unlike the previous instrument

the springs are used to support the load cell during the weigh-

ing mode, whereas before a mechanical shunt intervened and

supported the cell. This method of supporting the cell appears

to improve the isolation from ambient vibration as has been

observed independently by others [2]. In addition nearly 100

percent of the load is maintained on the cell at all times.

3. Test Results

The test weighings were made in the usual manner, that

is, six double substitutions between two 23 kg weights (50

lb.) comprised one test. The data was reduced and the stand-

ard deviation was calculated in the usual way.
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During the above testing the mass comparator was uncased
L-k t \¾S and exposed to the detrimental effects, if any, of air circu-

SPRING _ j @ lation in the laboratory.

noun HgT HUH;ST BEARING A -.

LOAD

FiGURE 2. A schematic view of the complete weighing system.

Three different electronic load cell voltage measuring in-
struments were used in collecting the data and the pooled
standard deviation, SDP, for each group of three tests is given
in the following table.

Current Bridge Used Cutkosky & Davis [41
in Ref. 1 DJIOl [3] Bridge

SD5 58 mg 24 mg 30 mg

The Cutkosky and Davis circuit was especially adapted for
this application. That data was supplied by R. S. Davis (per-
sonal communication).

4. Discussion

A standard deviation of 24 mg for a 30 kg comparator is
about 1 ppm of the applied load. A review of commercial
mechanical instruments of this capacity that contain knife
edges or flexure bearings indicate that the units from a given
manufacturer have a standard deviation, when used as a mass

INDICATOR comparator, which varies between 1 and 20 mg. It appears
to the author, that if more effort is given to the load cell and
associated electronic indicator design and careful attention
is paid to ambient vibration isolation, this device would out-
perfonm the conventional mass comparator and operate with
a precision a few parts in 107 or better. This instrument would
be more rugged, would reduce the measurement time, provide
much more on-scale range, and, because of its mechanical

KEY simplicity be of substantially lower cost.

The author wishes to thank Albert Tholen of the National
Bureau of Standards Office of Weights and Measures for
financial support for this work.
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Electron Impact Ionization of Lithium
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The electron impact ionization cross section of the neutral lithium atom has been calculated in a distorted
wave exchange approximation. The total cross section is in good agreement with available experimental data at
incident electron energies above 10 eV. Analytic fits are provided for tlhe is and 2s subshell partial cross sections.
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1. Introduction

Cross sections for the electron impact ionization of lithium
atoms are required for studies of neutral beam injection in
thermonuclear plasma machines. Experimental electron im-
pact ionization cross sections for neutral lithium have been
reported by Jalin et al. [1] for the incident electron energy
range 100 to 2000 eV and by Zapesochnyi and Aleksakhin
[2] for the threshold to 30 eV range. Earlier experiments
include the relative measurements of Brink [3] and the ab-
solute cross sections of McFarland and Kinney [4], both
restricted to energies well above threshold. Theoretical cal-
culations [5, 6, 7], mainly in the plane wave Ban approx-
imation, support the high energy data of Jalin et al. [1],
which is more than a factor of two below the McFarland and
Kinney [4] results.

The present work describes the application of the distorted
wave exchange approximation to the calculation of the neutral
lithium electron ionization cross section. This method, which
has been described in detail in previous publications [8, 9,
10], is an improvement over previous theoretical work on
lithium in that: (1) it utilizes a more accurate ground state
target wavefunction, (2) it allows for potential distortion ef-
fects for all three continuum electrons involved in the ioni-
zation process, (3) it considers the effect of scattering ex-
change, and (4) it includes inner shell ionization.

2. Technique and Results

The distorted wave exchange approximation used in the
present work has been described in detail in previous pub-
lications [8-10]. The target was described by the Hartree-
Fock ground state wavefunction given by Clementi and Roetti

S Center for Radiation Reseach, National Measrement Labonaty.
tSuppoed in part by the Departmem of Energy. Office of Fusion Energy.

[11]. The ionization energies for the ejection of a 2s and a
is electron were 125 = 5.393 eV and 115 = 64.9 eV. The
incident and final scattered partial waves in the direct matrix
element were computed in the static local potential of the
ground state plus a semiclassical energy dependent exchange
potential. The ejected partial wave was computed in the po-
tential of the ion with a 2s or ls vacancy depending on whether
outer or inner shell ionization was being considered. For the
exchange matrix elements the final state partial wave poten-
tials were reversed, and the phase of the matrix element was
chosen so as to maximize the effect of exchange and hence
minimize the total cross section [8]. The maximum partial
wave orbital angular momenta considered were 14 for the
incident and scattered waves and 10 for the ejected waves,
sufficient to obtain convergence of the partial wave series.

The total cross sections for outer and inner shell ionization

of Li I are given in table 1.
Rather than calculate individual cross sections at high

incident electron energy, which would be costly due to the
large number of partial waves involved at high energies, we
have used a fitting procedure [12] to obtain analytic expres-
sions for the cross sections based on low energy distorted
wave data and a Bethe slope derived from the photoionization
calculations of McDowell and Chang [13] for the 2s subshell

TABLE 1. Electron impact ionization cross ctions for Lithium (10 l cm2)

Is subshell 2s auhbhell

,, Ex- No-Ex- u2, Ex- No-ex-
change change change change

1.25 0.0155 0.0184 1.25 2.95 2.50
1.50 .0292 .0356 1.50 3.91 3.53
2.25 .0523 .0632 2.25 4.51 4.35
3.50 .0627 .0711 3.50 4.01 4.35
4.00 .0629 .0729 4.00 3.76 4.16
5.00 .0611 .0696 5.00 3.35 3.76
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and of Manson [14] for the Is subahell. The resulting expres- 10 eV (u2, < 1. 85) where a more complex interaction between
sions describing the electron impact ionization of lithium are

EQz, = 251. ('K) -121. ( - 1
I)s

+ 1 1. 1 enu, - -enu,
U2,

and

EQ13 = 26.9 (i - U)- 12.5

+ 10.7 enul, - -nui
U1,

;(1- 1 1 - --

where ul, = Elfl, and u2, = El/, with the incident electron
energy, E, in eV. Q is the cross section in 10-16 cm2 .

Figure I compares the present results with the available
experimental data and other theoretical calculations. The dis-
torted wave data are in good agreement with the more recent
experiments, except for incident electron energies below about

the target and scattering wave is present. The Born approx-
imation calculations of McGuire [5] and of Peach [6] are 10-
50 percent lower than the present results, and are in slightly
better agreement with experiments at very low and very high
incident electron energies. McGuire's calculation includes
the contribution from Is ionization; Peach's results are for 2s
ionization only.

The distorted wave method is essentially a model potential
scattering theory which assumes that the target atomic struc-
ture is unaffected by the presence of the scattered electrons.
While numerous attempts have been made to include polar-
ization effects, electron correlation and even relativistic cor-
rections in a distorted wave model, it is not clear to what
extent such modifications are true improvements in such a
simple theory versus attempts to obtain a better fit to nu-
merical data. The present choice of a direct local potential
with a semiclassical exchange potential has been found to
yield partial wave phase shifts in remarkable agreement with
frozen core Hartree-Fock calculations, and to produce rea-
sonably accurate total ionization cross sections for a wide
variety of atoms and ions [8-10, 12]. Attempts to improve
the distorted wave exchange ionization theory, specifically by

300 j
Lithium I

5~ 200

LU

150

100 -

1 2 5 10 20 50 100

u2 1 = E/I

IFIcURE 1. Panio plot of the electron impact ionization cross section of lithium, - total ionization cross section
computed in the distorted wave exchange approximation (present); - - - 2s ionization cross section. distorted
wave exchange approximation (present); --- Plane wave Born, Ref. [5]; -- Plane wave Born, Ref. 6; 0
Bethe theory, Ref. 7 * Crossed-beam experiment, Ref. [41; A Cmssed-beam experiment, Ref. 2; Crossed-beam
experiment, Ref. [11
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means of polarization potentials, have met with mixed suc- [3] Brink, G.O., Phys. Rev. 134, A345 (1964).
cess, improving agreement with experiment in some cases
and causing greater disagreement in others. The present re-
sults are felt to represent a realistic compromise between the
simplicity of the plane wave Born approximation and the rigors
of a full many body approach.
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We consider the problem, arising in nuclear spectroscopy. of estimating peak areas in the presence of a
baseline of unknown shape. We analyze a procedure that chooses the baseline to be as smooth as is consistent
with the data and note that the estimates have a certain minimax optimality. Expressions are developed for the
systematic and random emors of the estimate, and some large sample approximations am derived. Procedures for
choosing a smoothing parameter are developed and illustrated by simulations.

Key words: linear models; mininms; peak area; smoothing; spectroscopy; splines.

1. Introduction

The estimation of peak area in the presence of a baseline of unknown shape is a common problem in

nuclear and other spectroscopies. In this paper we analyze some of the properties of a generalization of a

procedure proposed by Currie [2]' and note that the procedure has a certain minimax optimality.

We first introduce the problem and some notation. We suppose that counts are accumulated in n channels

over a length of time T, and that the total number of counts has mean p, = vT, where v = mean counting

rate per unit time. We let y, denote the proportional count in the j'b channel, i.e. the total count in the j"'

channel divided by >, and we assume that

v; = P.,.j + + Ej j =1..

Here, r = ('Y1 .. , yn)f is a vector representing a peak shape, which is assumed known (F might be

known from theory or from measurement of pure specimens, for example), P. is its unknown amplitude, which

we wish to determine, and Pi, is the unknown baseline mean in the j'" channel. The 6;s are random counting

errors with mean zero and nonsingular covariance matrix L- W-' where W is a matrix which is assumed to

be known. (In applications, W is typically estimated rather than known. An application of the 8-method [7]

to the perturbation thus introduced shows that the asymptotic means and variances are unchanged.) In vector

notation the model can be written

Y= [r:i]p + e

= AP3 + e

where Y = (yr,..., yj)T P3 = (Po, j3,,... Pj3)T and e = (e 1 . .., en)T. We note that this model is

underdetermined, and that even in the limit, with no counting error, there is no unique solution for ,4.

Currie [2] proposed estimating &5 by forcing the baseline to be as smooth as is consistent with the data (in

sense explained below), taking as measures of smoothness

* Statistical Engineering Division, Center for Applied Mathematics.
Figures in brackets rfer to literatue refnces at the end of this paper
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a-I
S= E (P i - 3+,)

.- 1=

or

n-2

S2= 2 (p3i - 2,Bj+1 + 13+2)
2

j=l

or generally

n-k
Sk = E (A'p$)2

J,1

where A is a differencing operator. The estimate 5 is formed by minimizing Sk subject to the constraint

(Y-Aj)TW(Y-A1) =

where the constraint c is obtained from the x2 distribution. Using the technique of Lagrange multipliers, the
solution is found to be

X = (AIWA + XUrU)-'A T WY

when X is chosen to force 1i to satisfy the constraint and Sk is expressed as

Sk = - 112311.

By considering numerical examples, Currie reached some empirical conclusions about the statistical behavior
of the method, with special attention to the bias, or systematic error, of the method.

Techniques of this kind have been used in solving ill-posed problems such as integral equations of the
first kind [1] and in smoothing data via smoothing splines [8, 11]. Motivated by such problems, Kuks and
Olman [5] and Speckman [9] have considered the problem of estimating a linear functional hTP by linear
functionals of the data, eY. Their result is the following: Consider the linear model

Y = AP3 + e

where E has a nonsingular covariance matrix a2W1, and assume that IUR111312 > a 2 for some matrix U such
that N(U) n N(A) = 4) (N(A) = null space of A). Then the estimate e~Y for which

E(CWY-hT13)2 = min max E (e4TY -hrP)2

e 11U11112 < a2

is unique and is given by

eATY= h"(ATWA + (crtLc2 )UTU)-'AT WY.

Identifying A with cr2/a 2 this solution is seen to be formally the same as the estimate proposed by Curre
for estimating the peak amplitude P.o = (1, 0 . . . 0),. An operational difference is that the minimax
theorem assumes the smoothness parameter a2 to be known, whereas Currie implicitly estimates it from the
data. It should be noted that the estimate is minimax for estimating any single linear functional but is not
generally minimax for estimating several linear functionals simultaneously [10].

In the next section we will consider the more general problem of several peaks of known shape and unknown

amplitudes, superposed on an unknown baseline (Currie considered only the single peak case). We will
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develop expressions for the bias and variance of the amplitude estimates and limiting approximations as the
expected total count j±-*w which give some insight into the properties of the method. In section 4 a procedure
for choosing A from the data is discussed and is illustrated by some simulations.

2. Bias and variance

In this section we will assume the following, multi-peak model:

Y = ,P11rl + ***+ SPj, + 82 + E

= [rdl] 1 + g

= AP + e

where Y is an n-vector, r = [ r,, . . . Ir], 2 = (021, . . ., I 2 )r is the vector of mean background
counts, Or = (PlT, p2, and E is a vector of random errors with nonsingular covariance matrix p, tW- 1. We

will derive expressions for the bias and variance of the estimate

p = (ArWA + AXUU)-IATWY

when U is of the form

U =
(A+p-A) x (nA+-p)

and thus UT1 is of the form

uTu
(A + P) . (n-p)

0 o
pxp pxn

0 U, I

(n-k)xp (n-k)xn

E Q

0 D ,
_pp nxn_

where

D = UfUl

(D is not diagonal) and A = I/Ipc2 is given. If A is estimated from the data these expressions are conditional
on A. The unconditional bias and variance are different.

We will focus attention on the estimate B, of the vector of peak amplitudes, which is of primary interest.
It is thus useful to partition the matrix (ATWA + AUTO- 1:

-= [Wr W+ADJ

= Bi
IB21

B12

B22z

From an identity for the inverse of a partitioned matrix [7],

Be] = (r Twr) -' + (r TWr)- r TWWJW+ AD - wr(r Tw') - 'rFTW - 'wr1(ruWr) -

= C0'+G-1 0TR-1 0G-0
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where G = (IrrWr), 0 = Wr, and R is the matrix given in square brackets. With this notation,

B,2 = -G-IOTR- I

B,2 = B2'1; we will not need B22 . Now,

EB = (ATWA+AUU)-lATWAI3

and

ArWAP - Frwrp, + rrwo32
[WrF ± + WBZ J

- [GP, + O± 0T
IOPI + WP2 j 

so that

E3, = (G-I+G-'OTR-iOG-I)(G3,+OT 02) - G-0TR-l (01,+W3 ).

We thus have, after simplification, an expression for the bias of B.:

B, - EB, = - G-10T[I - R-'(W - OG-'efl]j2. (1)

Note that the bias does not involve 13 and that the derivation of the bias expression has not assumed that

IL-'W-I is the true covariance matrix of the random errors. In the appendix it is shown that the bias is zero

if U112 = O.
A simple bound for the bias may be obtained as follows: from the expression above, the squared bias for

a particular component fl, say, may be written in the form

11,k -EB = =JrT12I2

Let P = U11 (UUO)- U, be the matrix which projects onto N(U1), let Q = I - P project onto N(U,), and

express PI = PB2 + QP,. Noting from above that rTQP, = 0, we may write

IrTP2 12 = rUT (U 1UD-UD B1 2

'iii tsup IrTUTR(UIUD-'U 132
(P2 : IIU,13211

2 C0
2
)

= a21J1T(ULf~l2UTI2zur

We now consider the variance of the estimate. Under the assumption that the covariance matrix of the

errors is p-'W-', it is immediate that the covariance matrix of 1 is

I = A- '(ATWA + XUTU) - lATWA(ATWA + AUU)-'

In an appendix it is shown how this matrix may be partitioned and that the covariance matrix of B, can

be expressed as

p,-F = (2)

where
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F = W-"2 [-(W-OG-'DD)R-lOEG-1

and W"2 is the symmetric square root of W.

We will now develop approximations to the bias and F., for large samples by examining their behavior as

T and thus ta-m and A-O. The expressions for 1,, and the bias both involve the matrix

I - R-'(W-OG-'OT) = I - [w+xD- wr(rrwr)-vriwv- (w- wr(r1w -'yrI )

As A-0o, RpW- Wr(rrwr)W -irTW, but this matrix is singular (the null space is spanned by r .,...,

d*. A further complication is that 1) will typically not be of full rank (for example, D may annihilate constant

and linear functions). However, our assumption that N(U) nN(A) = ¢ guarantees that D'j * 0j=1..

p and thus that the matrix R is invertible. In the appendix we prove the following:

LEMMA. Suppose the C is an nxn non-negative definite matrix with p dimensional null space spanned by

v, . . . vp. Suppose that D is another nrn non-negative definite matrix and that N(C)flN(D) = (P. Then as

A-_0

I - (C + XD)-yC = V(VTDV)-'VTD + O(X)

where V = [v ... , vj] is an nxp matrix.

Applying thislemma to the expressions for!l, and the bias of J3C, with W- WI(FWTr)- irrW corresponding

to C and r corresponding to V we have,

COROLLABY: Under the assumptions of our linear model, as X-A O -D *),

P,-E01 = - (rT&r)-'frDP,2 +o(A) (1)

1±12, = (rrDr)-1(rTDw-1D'r)(rfDr)- + 0(A). (2)

The expression for the bias is simpler to understand if we write it as

3, -e, E - [(,r)r(,r)]-' (u r)T(u432)

and keep in mind that U,, is a differencing operator. The bias is determined by the relationships of the

vectors UlrJ,, j= 1, . . ., p and U11,1. If the baseline 12 is quite smooth U1, will be small. If a particular

peak shape ri does not overlap any other peaks then the limiting (IL1 -.x) bias of the estimate of its amplitude

is simply

(U- r)(U d2) a
P li -o Pli I-U,rg112 Urj

which follows from the rule for the inverse of a partitioned matrix and the Cauchy-Schwartz inequality. The

large components of Ul7j will be those near the peak center and if the true background fez is smooth in this

region, the bias will be small.

When two peaks overlap substantially, however, the bias will typically be worse than the bias if either one

of the peaks were absent, since corresponding elements of the matrix [(Ur)r(Ujr)]-, will be large.

Finally, we note that this limiting bias does not depend on the weighting matrix W and that it depends

linearly on the baseline proportion.

The variance of the estimate p1 of a peak amplitude can also be expressed simply in the case that the

matrix W is diagonal and the peak does not overlap other peaks:

Var(fL) a (Uyr.)Tu1w- UIr(U,r.)

but in the case that there is considerable peak overlap the variance may be inflated considerably.
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It is of some interest to consider the relative size of the bins to the standard error and to understand

qualitatively how this is affected by varying the baseline amplitude. To this end we consider a single peak

model with a peak shape standardized so that yYj = I and a standard baseline profile with 2131 = 1. Any
j=i

mixture of this peakshape and background profile with peak proportion Po and background proportion I -Po

can be expressed as Por + (1- Po)P, where 0 6 pO < 1. Denoting Dr by V = (VI . . . ljV and taking
W- = diag (POyj + (1- PI)Pj). the appropriate bias (B) and standard error (a) of Pc given by the equations

above are

IB1 = (i -Po) Vip13/Viyj

r , [( 1 P.) EVAp + p% ' ... I'Fly

From these expressions we may make some observations that agree with observations made by Currie on the

basis of empirical experiments: (1) The bias is proportional to the background proportion; (2) For small values

of Po the standard error is proportional to the square root of the background proportion; (3) Since 1VpjPi is

typically less than XV~y;, the standard error increases with increasing peak area proportion.

We conclude this section with a brief consideration of the problem of mis-specification of F. Suppose that

the true peak profile is F. = r + Sr; from calculations similar to those done above for the bias, we find that

the additional bias introduced by Sr is

G-1 eT [I-R-'(w-eG-'E T )]F1rp,

which, as it-, tends to

(rFDF)-' (r TDsr),1.

In the single peak case, the Cauchy-Schwarz inequality shows that this quantity is bounded in absolute value

by pjiijU8raij/1Urli. Thus a variation Sr such that U1BF is highly correlated with UI' will give rise to a

relatively large bias proportional to the peak amplitude.

3. Choosing A

If the parameter a 2 is known, the minimax A is A = 1/1±a2
. In the absence of this knowledge, A must be

chosen from the data. In this section we discuss a class of such procedures and illustrate them with examples.

Given a non-negative definite matrix B, one might attempt to choose A to minimize

E(Y(A) -EY) TB (Y'(A) - EY) = ET,(A)

where

f(X) = A(ATWA + AUTU)-IArWY

= A(X)Y.

ETB(X) is a weighted mean-square error. This quantity may be estimated from the data by using

RSS11(A) = (Y - V(x))TB (Y-Y(A)).
= yr (I-A(A)) TB (I-A(k))Y
= Y TGY.
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The expectation of RSS1 (A) can be computed to be

ERSSB(A) = ETB(A) + pL-'tr (BW-') - 2p-1 tr (BA(A)W-')

and thus an unbiased estimate of ETB(A) is

PB(X) = RSSB(A) - pU-tr (BW-1 ) + 2pctr (BA(T)WW')

We note that if Y follows a Gaussian distribution, then

Eart(A) = 2 j.- 2tr (CO- 1)2 + 4 pt-I (AP)rGW- 1 AP

For a given B we propose choosing A to minimize fB(A) . (Similar procedures with B = I have been discussed

in [3, 6].)
If it were possible, we might choose B so that ETB(A) = E111P - pf(A)JJ2, the total mean square error of

the estimates of the peak amplitudes. However, if we write

EY= [r:i][p31P

ET,(A) may be expressed as

ETB(A) =E(Pt - 31 (A))f T BrF (p1 -

+ E(P,- I,(A))TB (P, - 0V(A))

+ 2E(p, - 01(A))TrTB (P2 - O2(A))

from which it is apparent that it is imposible to choose B so that the second two terms vanish and the first

does not.
We have experimented with three choices of B: B1 =I, B 2 =r(rrr)-lrT and B= r(F(rTr)-2rr. B2 is the

matrix which projects onto the column space of r; the motivation for choosing B2 is that P2 - P32(A) will

hopefully not be highly correlated with the columns of r and thus the second two terms will be small and

the first term will dominate. Choosing B, reduces the first term to E111P - PA(A)112 and hopefully causes the

other terms to be small. A disadvantage in using B2 or B3 is that if there are two or more peaks with
considerable overlap, the variance of ?B(X) may be rather large, causing the procedure to be rather unstable.

Currie suggests choosing A so that RSS,(A) = nij/. The motivation for this is that p,-RSS, would follow

a chi-square distribution with n degrees of freedom if EY(A) = EY and no parameters were estimated from

the data. In fact, however, parameters have been estimated from the data, although it is not clear how many

"degrees of freedom" remain, and EY(A) $ EY. Thus the application of the x2 distribution is questionable.

The procedure outlined above with B = W would choose A to minimize

Tw(A) = RSSw(X) - n&'- + 2p'-' trA(A)

which would cause RSSW(A) to be somewhat smaller than n/pt. (In a vague sense, the "degrees of freedom"

of the Chi-square statistic are reduced.)
We now briefly discuss the results of some simulations of this technique. The configurations are the

following: (1) two slightly overlapping peaks on a linear baseline, (2) the same peaks on a quadratic baseline,

(3) two highly overlapped peaks on a quadratic baseline, and (4) a single peak on a quadratic baseline which

also contains a small "unsuspected" peak obscured by the dominant peak. All the simulations were done

over a width of 20 channels with a total count it = iO. The sum of squared second differences was used

as the smoothness measure. Computations were done on the Univac 1100 at the National Bureau of Standards.

Subroutines from the IMSL library were used to generate random numbers and for matrix calculations. The

most numerically sensitive calculation is the inversion of the matrix ATWA + AUTU, which in theory is
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positive definite; however, the matrix may be for practical purposes numerically singular for very small or

very large values of A, so it is important that a good algorithm be used and that diagnostic messages be

printed when instabilities arise. (An alternative to actually forming and inverting this matrix is to simultaneously

diagonalize ATWA and U£U; having done this once, (ATWA + AUrU)-' may be computed quite rapidly for

various values of A.)

1. Two peaks on a linear baseline; the peak shapes were Gaussian with locations at channels 8 and 12

and standard deviations 1.5. Each peak contained 30 percent of the total area. The baseline was Pi =

c(l + j) where c was chosen so that the baseline area was 40 percent. For this configuration the optimal

(minimum variance unbiased) method of peak area estimation is weighted linear least squares; we are interested

in seeing what "price" has to be paid for the additional flexibility of the smoothing method in this null case.

Table la shows the bias, variance, and total mean square error of the peak area estimates for various values

of A. From the table we see that ETB decreases as A increases (for A greater than 107 numerial problems

develop). For A = 105 the variance is very close to that for the linear least squares.

TABLE i.

X Bias Pj3, Var Bias P,2 Var %, Total MSE ETB, x 10 EMR2 x lO 5 ETB, X 10

100 0 0.559(-4) 0 0.593(-4) 0.115(-3) 0.664 0.180 0.985

10' 0 .315(-4) 0 .345(-4) .660(-4) .404 .178 .975

10' 0 .108(-4) 0 .126(-4) .234(-4) .278 .176 .963

103 0 .692(-5) 0 .772(-5) .146(-4) .237 .175 .956

10' 0 .519(-5) 0 .596(-5) .111(-4) .217 .174 .952

105 0 .487(- 5) 0 .575(- 5) .106(-4) .214 .174 .951

least 0 .486(-5) 0 .575(-4) .106(-4)

squares

(XA= ) I I I

Table lb shows the results for one realization with random Poisson noise added. As stated above, the total

count was 105. PB, is minimized at A = 103 and TB2 and PB3 are minimized at A = 105. (In this and in the

later simulations in which noise was added, the weighting matrix W was estimated from the data.)

TABLE lb.

X , 012 TB, X 101 TB2X 101 TB3X x10o

10° 0.295 0.298 0.692 0.180 0.984
10' .295 .299 .515 .178 .972
102 .297 .302 .389 .173 .948
103 .299 .302 .340 .171 .942
10' .299 .300 .370 .171 .933
105 .299 .300 .381 .170 .932

2. Two peaks on a quadratic baseline-the peaks were as above and the background was Pj = c(l + j

+ j2/20) above c was chosen so that YPj = 0.4. This shape deviates only slightly from a linear baseline.

Table 2a exhibits the biases, variance, and total mean square error for various values of A; as A increases

the variance decreases and the bias increases. For this discretization the minimum total mean square error

occurs for A = 350 (MSE = .17 X 10-4). The mean square error for the least squares method is much

larger, being dominated by the bias (MSE = 0.42 x 10-3). The minima of ETBJ, ETB2 , and ETB3 occur

at A = 250, 450, and 550 respectively, over which range the MSE does not change appreciably.

Table 2b summarizes the results of a single realization with random Poisson noise. B, TB2, and TB3 are

minimized at A = 350, 250 (or 350), and 350, respectively. It is noteworthy that the estimates do not change

substantially over the tabulated range of A. Other realizations gave similar results.

For this example there is little difference in the results for B1, B2, or B 3 -any choice would give satisfactory

results. B is somewhat easier to compute.
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TABLE 2a.

Total
A Bias B, Bias 8,Var B,, Var Ou MSE x 10' ETB, x 105 ETB, x 105 ETB, x 105

50 -0.327(- 4) - 0.291(- 4) 0.144(-4) 0.169(-4) 0.312 0.304 0.174 0.949
150 - .649(-4) - .185(-4) .899(-5) .111(- 4) .201 .272 .173 .944
250 .245(- 3) .468(-3) .787(-5) .976(-5) .179 .266 .1723 .942
350 .448(-3) .750(-3) .740(- 5) .911(-5) .1727 .267 .17219 .9413
450 .658(-3) .102(- 2) .714(- 5) .868(-5) .1728 .270 .17216 .94099
550 .867(-3) .127(- 2) .696(- 5) .836(- 5) .177 .275 .17218 .94097
650 .107(-2) .151(- 2) .684(- 5) .811(- 5) .184 .281 .17225 .94117
750 .128(-2) .173(-2) .673(- 5) .791(- 5) .193 .288 .1723 .942
850 .148(- 2) .195(-2) .665(- 5) .774 - 5) .204 .296 .173 .942
950 .167(-2) .215(-2) .657(- 5) .759(- 5) .216 .304 .173 .943
least .156(- 1) .128(-1) .465(- 5) .579(- 5) 4.19

squares
(A = W

TABLE 2b.

x TB, i TBX105 TR2 X 105 TR, X 105

50 0.300 0.305 0.256 0.173 0.945
150 .299 .303 .206 .1721 .9415
250 .299 .302 .196 .17190 .9405
350 .298 .302 .195 .17190 .9404
450 .298 .301 .199 .17196 .9406
550 .298 .301 .205 .1721 .9409
650 .298 .301 .213 .1722 .9412
750 .297 .300 .222 .1723 .9416
850 .297 .300 .232 .1724 .9421
950 .297 .300 .242 .173 .943

3. Two peaks on a quadratic baseline; the peaks were
so that there was no trough between them when they were

close enough together (centers 9, 11, o = 1.5)
superimposed. The peak areas were 0.3 and 0.3

again and the baseline was as in the previous example. On a grid of A values spaced linearly by 150 the
minimum MSE occurred at A = 800 (MSE = 0.20610 X 10-4); the minimum of ETBI was at A = 350
(MSE = 0.213 X 10-4); the minimum of ETB 2 was at A = 650 (MSE = 0.20611 X 10-4); the minimum
of ETB3 was at A = 950 (MSE = 0.207 X 10-4). The MSE for a linear least squares fit was 0.241 X

o - 3
. Table 3 records the minimizing values of A for Bt, B2, and B3, and the corresponding MSE's for.

4 realizations. The results suggest that MBI may be a more stable criterion function in this situation, but we
would not wish to make a conclusion on the basis of a sample size of 4!

TABLE 3. Minimiing values of A and corresponding MSE's for four realizations.

TB, TB, TI,

I 5O(279X/0- 4) 1400(217X 10)- 1300(217xIo- 4 )
2 500(208 x 10') 3000(288 x 10-4) 2150(246 X 10-')
3 500(208 x 10-') 1100(210 x 10-" 2600(267 X 10-4)
4 950(207)x 10`) 5000(407X 10-l) 6500(501 X 10-4)

4. A single peak (center = 10, ta = 2) on a quadratic baseline with a hidden peak centered at 12 with
standard deviation 2. The peak area of the dominant peak was 0.8 and the area of the hidden peak was 0.02.
In an attempt to mimic a situation in which the hidden peak is unsuspected, a single peak model was fit.
The behaviors of ETB,, ETB2, and ETB3 were somewhat different. ETB1 had a minima at A = 10 (MSE =
0.55 X 10-4) whereas ETB2 and ETBJ had minimum at A = 104 (MSE = 0.96 X 10-4). The MSE was
minimum at A = 107 (MSE = 0.18 X 10-4). The MSE of the linear least squares procedure was 0.21 X
10-4. The reason that ETB1 was minimized for a smaller value of A is that this criterion gives greater weight
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to fitting the baseline as well as the peak than do the other two, which concentrate more on the peak. The

baseline (which includes the hidden peak) is fit well with small values of A since it is not very smooth. Since

the hidden peak has substantial correlation with the modelled peak, however, B2 and B3 fail to choose A

large enough.

On several realizations with random noise PBI achieved a minimum at small values of A and PB2 and PB3
at larger values of A. On some occasions TB2 and PB3 also had local minima at small values of A. Figure 1

shows the estimated baseline for A = 20, which was the attained minimum for TBI on a particular realization.

The unsuspected peak shows quite clearly, giving valuable diagnostic information! The estimated baseline

for the larger value of A = 104 at which TB2 and TB3 were minimized smooths over the peak (fig. 2). We

also plotted residuals on a square root scale to stabilize the variance, y; = %-Ay. Figure 3 shows

the residual plot for A = 104; there is a hint of a discrepancy near channel 12.

Estimat6d Background (A= 20)

-2!LO X 10

1.1 K 10

1.1 X10 3

1

1.9X 1-2

1.0 x 10o2

75 X 10-4

20
Channel

FIGURE 1.

Estimated Background (A= 104)
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Rooted Residuals (A= 10 4

3.2 x 10 3 X X

-1.5 x 10 3 X X X X

. . X~~~~

-6.2x 10 '3 X

1 20
Channel

FIGURE 3.

If the hidden peak is incorporated into the model, the total MSE, ETB,, ETB2 and ETB3 are all minimized
for A - 103. The total MSE is 0.36 x 10 -4 and the individual MSE's are 0.20 X 10 -4 and 0.16 x 10- 4

for the large and small peaks respectively. The bias and variance for the small peak are 0.99 X 10-3 and
0.15 X 10-4 so that the relative error in estimating this peak area is quite large. For the linear least squares
method the total MSE is 0.13 X 10-3; the bias and variance for the small peak are .36 X 10-2 and .12
X 1o-4.

On the basis of these computations there is no clear evidence that would favor B2 or B3 over B., despite
the fact that they were designed to focus more on the peak. The last example shows that focusing on the
peak may hide unsuspected features of the baseline. The computations suggest that choosing A to minimize
TB(A) is reasonable, but they are not nearly extensive enough to give insight into the stochastic behavior of
the minimizing A.

There are many possibilities we have not investigated. Other choices of B are possible; for example B =

r1?A1Th) - rT would focus on the jth peak if there were more than one peak, B = W-l would weight the
deviations according to the variances of the observed counts; a possible advantage of this choice is that the
statistics RSSw(A) might be compared with the percentiles of a x2 distribution (above, however, we have noted
some difficulties with this procedure). Another possibility is to attempt to choose between several smoothness
criteria by computing tB(k)(A) for k = 1, 2, 3 . . K and choosing the solution corresponding to

min inf RBkI(A)

k X

4. Final Comments

The results above leave several questions unanswered and suggest problems for further research. The
following is perhaps the most immediate: in many applications the peak vector is not known exactly, but is

1 j-j
assumed to have a parametric form such as yj = y,(Ra) = -iy I, where y is a given function p, and a

are location and shape parameters and must be estimated from the data. If the peak profile r is estimated
from other experiments, for example from pure sources, the variability of the estimate will affect subsequent
analyses in which it is used. We plan to pursue the analysis of these problems in the future.

An alternative approach to the problem is to use the method of maximum likelihood with the assumption
of Poisson statistics; which might be more appropriate for small counts. The likelihood function of fS could
be maximized subject to the constraint IU1112 = a

2
. Although we conjecture that the large sample properties

of the estimates would be equivalent to the results above, the small sample properties would be different.
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Finally, we note again that in the multi-peak situation the estimates we have considered are minimax for

any single peak amplitude but are probably not jointly minimax. One might attempt to solve the simultaneous

minimax problem by numerical optimization; we conjecture that the results would not be substantially different.
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6. Appendix

Here we derive an expression for the covariance matrix of 31 and prove the lemma in section 2 of the text.

The covariance matrix of Bi is, with the notation of section 2,

pL = (A"WA + AXUU) -ATWA(ATWA+AUTU)-'

[Bit B12 G OT][ B B1
IB21 B223 106 W] LB2, B221

We are interested in Me. Multiplying through and noting that B2, = BHr

P1 = BiiGBi, + B120Bl + BIOTBT, + B,,WBT,

= B 1rrTWrB1l + B12WrB,, + B,,r1 WB,2 + Bf2WB,2

= (W"VIB1, + W1I2BT,)r (W"12rB,, + W"2BT,)

= FF .
Now, using the expressions for B,, and B52, and r = W-'E)

F = W"' (rG-t + rIG-1eTR -'G-i - R`eG-I)
- W`2 (W-' + W-'eG-teTR-l-R-l) eOG-

W- 1w 2 [I - (W-eG-1'0)R-'] eG-1 ,

which is the expression to be derived.
We now prove the lemma. The key to the proof is the fact that under the assumptions of the lemma C and

D may be simultaneously diagonalized [4]; there exists a nonsingular matrix X such that

XrCX = a
X`DX = M

where CZ and M are diagonal matrices with elements w( and IL;. From this representation we note that the

null space of C (resp. D) is spanned by those columns of X corresponding to zero diagonal elements of fi

(resp. M). The assumption of the lemma guarantees that the two null spaces contain no vectors in common.

Now expressing C and D in terms of X, 0, and M, and writing I = XX-'
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I - (C+XD)-'C = X[V-(fl+XM)-l 1 ]X 1

= XRX-1

where RX = diag [XpJ/(wi + xpJd].
We note that if j3,eN(Ul) = N(D) this representation makes it clear

column of X corresponding to Rj = 0, then
that PI is unbiased, for if xj is a

XRxX-Ixj = X -pR e; = 0
Wj +X Rj

where ej is the jph unit vector.
The diagonal elements of Rh corresponding to wj = 0 are l's, so that

XRX-' = X ( I- ±XX NX 0( °°)i
l i ' \o 0 ,,

where N, = diag [jui/(wi + XjPt)]. It is easily verified that the first matrix, call it P, on the right hand side
of the expression above has the following properties: (1) it is idempotent with range N(C); (2) Pv = 0 if
VEN(D); (3) for any vector v, (Pv)TD(f-P)v = 0. P is therefore a projection matrix which projects orthojonally
with respect to the pseudo inner-product (uv) = uTDv, and may be written

P = V(VTDV)flVTD

where V = (vl 1 .. vp) spans the null space of C. Finally noting that NX is bounded, we have

XRJX'- = P + O(X)

Finally, we note that expansions for small values of A (corresponding to large samples) or small values of
A -' (corresponding to a nearly linear background and moderate sample size) may be carried using identities
of the form

1 E2

(1 + ) .
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A Note on the Behavior of Least Squares Regression Estimates
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For the errrs in variables model X = U + V, Y = Of(U) + W, sufficient conditions are given for the L. S.

limiting estimate of I to satisfy POP < 1) = 1 or Pl/ > 1) = 1 as the sample size tends to infinity.

Key words: Errors in variable; structural; functional; regression; large sample, convex.

The problem of linear regression when both variables are subject to error is known to be difficult, see

Madansky [1],' and Moran [2]. In particular under general conditions there is no consistent estimator for ,3

in the model (1.1), (1.2) below based upon only the first two moments of X and Y. Let

X =U+V (1.1)

Y = jf(U) + W, where (1.2)

U, V, and W are unobservable independent random variables with EV = EW =0. In addition 13 is an unknown

constant andf is a given function. We suppose that EX2 and Ey 2 are finite. This is known as the structural

form of the errors in variables problem. Since there is a great deal of confusion in the literature between the

case when U is a random variable and when U is not (the functional case), only the structural case is dealt

with directly. Parallel results for the functional case can be obtained in a straightforward manner. These

results will, however, restrict the values that a sequence of constants U. . . ., U. can take.

The least squares estimate of B is, of course,

1 = 2 Yif(X,)/X (f(X,))2 (2)

where the observable random pairs (XI, Yj) i= 1, . . , n, are independent and have the same joint distribution

as X and Y, see (1.1) and (1.2). It is well known that when 13 7 0, andf(X) = X that

P( < 1) >1 as no t. (3)

(The least squares estimate is biased toward zero.)

It is also known (see Kendall and Stuart [3]) that for f(X) = Xk, (k = 1, 2, . . .), and X and Y are normal

that result (3) holds. However until now general conditions under which (3) holds were not available. We

give sufficient conditions under which either (3) (Theorem 1) or the opposite result (Theorem 2)

P > 1) > as n -* holds. (4)

While the author has not found these two results in the literature he believes that they may be well known

by somebody.

Center for Applied Marhematics, National Masument [.ab1ratory.

Figurac in brackets indicate literre references at the end of this paper
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THEOREM 1. If f(X)2 is convex and not constant a.s. then (3) holds for 1 #i 0.

PROOF:

0 Xf(U.)f(X,)
=, Y73(X,)-

1I X-Wf(X~)
1 Mm2f(xj

= off(U)f(x) + 0 (c-1/2)
7Xf(X2

Sincef2(X) is convex it follows by Jensen's inequality that

Ef(X) 2 a E(f(E[XIU]))2 = Ef(U) 2

From another application of Jensen's inequality we have

Ef(X) 2 > E(E[f(X)IU])2

(6)

(7)

In addition notice that

Ef (U)f(X) = E(f(U)EVf(X)IU)]
b e E(yj(U)hEhLf(X)iU]) -T (Erf(U)2)E(Ey.(X)eU])2)e62

by the Cauchy-Swartz inequality. Therefore by (6) and (7)

(Ef(X)2)2 > (Ef(U)f(X))2

which implies that

Ef (X)2 > Ef(U)f(X)

The theorem now follows by applying the strong law of large numbers to the terms

n in (4).

-f(U)f(X 1)
n and

If f 2 is not convex a positive 1 may be overestimated. Theorem 2 provides the necessary support for this
statement.

THEOREM 2. 1fI has two continuous derivatives and satisfies

> (f'(z))' ~~~~~~~~~~~(8)
2

for z in some interval I then there exists distributions for U, V, and W such that (4) holds.

PROOF: Following statements in the proof of Theorem I it is sufficient to show that there exists distributions
for U, V, and W such that

Ef(U)f(X) > Ef(X)2.

Sincef has two continuous derivatives it follows that

f(X) = A(U) + f'(U)V + PA(O )
2

f(X) 2 = f(U)2 + 2f(U)f'(U)V + Vf'((2)f(02) + (f'(E2))2]V2

where 6, and 02 are points between U and V.
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Take uo to be in I. Let m be any point such that

inf Af(Uoyf"(zi) _ f(z)f'(z 2 ) > (f'(Z2))2. ()
u I.+- 2

Such a point Tr exists becausef' is continuous, and (8) holds by hypothesis. Take V to have a two point
distribution

P(V='q) = P(V= - q) = 1/2.

Then

EVf(uo)f(X) - 2(X))

= f(uo)(f(u,) + ET(O) 11i ) - [f(%)2 + E(rf(62)f(62) + f'(62 )2) > 0.

Finally we note that, since this last inequality is strict, U may have uniform distribution in a narrow interval
around the chosen point U,.

EXAMPLE 1: Let f(X) = Xa, X > 0. Then, if 0! B 1/2 the conditions of Theorem 1 are satisfied. On the
other hand if at < 1/3, the conditions of Theorem 2 are satisfied. This example is important for NBS standards
work for concrete strength, see [4]. (However, the functional case is appropriate.) It is also important for
background characterization in x-ray spectroscopy.

EXAMPLE 2: The conditions of theorem 2 are not necessary. Iff(X) satisfies condition (8) for Z a rational
number in the unit interval and arbitrary elsewhere, then the proof of Theorem 2 can be used to construct
distributions such that (4) holds.

COMMENT 1: The conditions of Theorems 1 and 2 can be used to check parameters are estimated in the
new model.

X as in 1.1 (1.3)

Y' = Yajhj(U) + W (for example hj(x)=xi-')

by considering orthogonalized hj's, see Ferguson [5]. Since (X-at) 2 is always convex Theorem I holds for
the slope in the linear case when a constant term is in the model (1.1), (1.3).

COMMENT 2: While the results given here directly relate to the property of being biased toward or away
from the origin they do not relate to attenuation of slope. Attenuation requires the extra condition that

EQ'> o) I~* as n-* oc

To see that this extra condition may fail in Theorem I take

f(x) = x2 - 2cx, where c is a fixed positive constant,

P(O G U c C) = 1, and P(IVI > 4c) = 1.
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An inequality is provided for medians which is an analog of a theorem due to Karamata, dealing with
majorization.

Key words: concave; convex; inequality; majorization; median.

There has been a great deal of recent emphasis on majorization and related correlation inequalities, for
example Marshall and Olkin [11' and Karlin and Rinott [2]. These inequalities have a variety of important
applications. However they are based solely on mathematical expectations, for example the result below due
to Karamata [3]. After stating this result we give our analog for medians.

Karamata's result (THEOREM): Let F and G be distributionfunctions, on (c, d). Let p. = F-G. Then f 4dp
a Ofor all convexfunctions, :(c,d)-*R, if and only if

f dp, = f xdpt = 0 and

.(cx] 3O, c x d.

Also see Spiegelman [4], for a different presentation of the direct part.

It should be noted that the direct part of Karamata's result is a generalization of Jensen's inequality. As
previously suggested, characterizations such as this hold for medians as well. We define a median M of a
random variable X to satisfy

P(X - M) - 1/2 s P(X s M).

It is clear that M may not be uniquely defined. In order to avoid technical difficulties we define a p-median.
Suppose a and b are endpoints of the largest closed interval such that every point M

a S M - Ib is a median of X .

Then for p, such that 0 < p < 1, define the p-med X = pa + (1 - p)b.
The use of p-medians complicates the statement of the theorem below. If all the random variables in the

remainder of this paper have unique medians and, in addition, the class of convex functions is reduced to
the class of strictly convex functions, then we get a less complicated analog to Karamata's result. In the new
statement of our result the p-median notation is replaced by the word median. However, even under these
more restrictive conditions, the converse part of Karamata's theorem has no explicit analog. (This is easy to
see for random variables X such that p(X= ro) = p(X= -c)>.25, and a convex function defined on the
extended real line.) Our analog to Karamata's converse requires the class of functions '1' = {ft} where each
tI: R ¢ {0, 1} and has the form tj, = 1 - X, where XI is the characteristic function of some bounded interval.

The following theorem gives an analog to the theorem of Karamata. The direct part is an extension of
Tomkins' [5] version of Jensens' inequality for medians. Tomkins' inequality is for conditional medians and

* Ceter for Applied Mathmatics, National Engineering Labotnory.
Figurs. in brackets indicate lerturm refenc.. at the end of this paper.
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a restatement of his theorem is too lengthy. His result for unconditional medians is cast in our notation at
the end of the theorem's statement.

THEOREM: (Direct part) Let F and G be distributionfunctionsfor the random variables X and Y respectively.
Let F and G have a common set of medians (the interval) [a,b].

Also assume:

F(t) G(t) t -ii a (la)

Git) aF(t) t -a b . (lb)

Then for any convex function 41 defined on the support of both F and G and for every p, 0 < p < 1, there
exists a q, 0 < q < 1 such that

q-med 41(X) -- p-med d,(Y). (2)

In addition, if 41 is monotonic over the range of all p-medians for Y and p -< .5 then q may be taken equal
top.

A partial converse of this result holds which requires an extra condition on the class, T

For some p median of X, M, (3)

f(M+) or t(M-)=0.

If for all +1 satisfying condition (3) above + (X) is stochastically larger than 4+(Y), i.e. P(1(X)>t) a P(4i(Y)>t),
and if for all monotonic functions, +1, (2) holds, then (la) and (lb) hold.

COMMENT: Tomkins' inequality when applied to unconditional medians is a special case of our direct part.
Simply take Y to have unit mass at p-med X.
Proof of the direct part: la and lb hold.
Case 1-- is monotone. Then clearly

p-med 41 (X) = p-med + (Y).

Case 2--<, has a minimum at a point t

i.e., 41(z) a 41 (t) for all zER.

Define F- E (q) = inf {xIF(x) a q}.

Let r-med 41(Y) 4=(z4j)j= 1, 2 with z,, < z,2 . It follows immediately from Tomkins' result that there exists
an r such that z,n < p-med Y < z2.

If all the p-medians of Y lie on one side of the value, t, where 41 (z) takes its minimum and p 6 .5, it
follows that 41(p(0-med Y) + (1 -p) (1-med Y)) 6 p 41 ((0-med Y) + (1 -p) 4d (1-med 1)). Since + is
monotonic in the interval between the 0 and 1 medians, it follows that p 4d (0-med Y) + (1 -p) 41 (1-med Y)
< p-med dh(Y). Thus in this case we may take r=p. Otherwise:

for z C *

F(z) a G(z)

which implies

z 7 F-2(G(z))-
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Similarly for z a z,

z _ F`l(G(z)).

Note that if G is continuous and strictly monotonic F- IG(Y) may be taken equal to X. By definition

1/2 C P(Q(Y) a r-med 41(Y))

= P(Y z*,) + P(Y a Z).

Notice that

P(Y < *l) < P(F-1G(Y) < z*)

and P(Y a z,2) s P(F-1 G(Y) a zg) (by assumptions la and lb).

Therefore

P(41(X) a r-med 41(Y)) a 1/2.

If Y does not have a continuous distribution standard, approximation procedures can be applied to complete
the proof.
The converse case:

Since +(x)=x and 41(x)= -x are convex functions, if follows that p-med X=p-med Y. Suppose at some point
to the left of the smallest median of X, G(t)>F(t), then if

l if z ci t

(z)= Z 0 if t<z c; 
sup (p-median of X)

(1 if z > sup (p-median of X)

(I if z ci t

and $ 2 (Z) = 0 if t < z < sup (p-median of X) .
if z a sup (p-median of X)

Then either $,(Y) or qf 2(Y) is stochastically larger than ki,(X) or 4,2(X), respectively.

Q.E.D.

COMMENT: A. Marshall in a private communication has pointed out that the proof of the direct part of the
above theorem is easily expanded to include functions 41 s.t. {x1l4(x)<c} is an interval.

Churchill Eisenhart, Editor, asked if the definition of median given by Dunham Jackson; Bulletin of the
American Math Society, 1921 160-164, "Note on the Median of a Set of Numbers," also 1923, 17-20, "Note
on Quartiles and Allied Measures," could be used as a unique choice of median in the preceding theorem?
The answer is yes; I conjecture more is true. Let 0 < c < 1 and let L(X) = (1-c) XP for X a 0, L(X) =

c(-X)P for X 6 0, p a 1. Let A,(L,X) denote the minimizer of EL(X-a) with respect to a. Then for any
convex function +; lim A,(L,+(X)) a lim 4,(AP(L,X)). A detailed proof will appear later. Thus, Jackson's

definition of quantiles also satisfies a version of Jensen's inequality. Versions of Karamata's theorem also
hold.
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Given a finite sequence D of nonnegative integers, let M((D) denote its maximum element and S(D) its sum.
It is known that D is realizable as a degree sequence by some graph if and only if S(D) is even, and by a loopless
graph if and only if the even integer S(D) - 2M(D) a 0. Here it is shown that if the even integer 241(D) -
S(D) is positive, then one-half this integer is the minimum number of loops in graphs realizing D, and that the
minimum-loop realization is unique. These results ae extended to a more general loop-cost minimization problem
in which loops incident at different vertices can have different costs. The possible numbers of loops, in graphs
realizing D, are also determined.

Key words: graph, loopless graph, degree sequence, incidence sequence, partition.

1. Introduction

This note deals with finite undirected graphs. Our usage of "graph" permits both loops (edges from a vertex

to itself) and multiple links (bundles of two or more edges with the same pair of distinct endpoints). The

degree of vertex v in graph G, denoted dG(v), is the number of incidences upon v of edges of 0; here a loop

is considered to be twice-incident upon its single endpoint. Any enumeration of the set {vi}, of the vertices

of G gives rise to a sequence {dc(vi)J} of nonnegative integers which is called a degree sequence of G; it is

clearly unique up to permutations.
Given any sequence D = {d1 i} of nonnegative integers, we set S(D) = A:, di and M(D) = max; di. If

graph G is such that D is a degree sequence of G, we shall say that G realizes D. The theory of such realizations

(and their analogs for directed graphs) has a considerable literature including papers [1], [ 5 1-[7]t on topics

close to the present one; an extensive account is given, for example, in Chapter 6 of Chen [2]. Here we

require only the two basic results of that theory ([3], [7]):

THEOREM A. Sequence D is realized by some graph G if and only if S(D) (and hence S(D) - 2M(D)) is even;

in that case G can be chosen free of multiple links.

THEOREM B. Sequence D is realized by some loopless graph if and only if S(D) is even and 2M(D) -= S(D).

Our purpose here is to provide explicit statements and a convenient reference for some elementary results,

probably largely of "folklore" nature, related to Theorem B. We shall determine the possible numbers of

loops in graphs realizing a given sequence D, and also solve an associated loop-cost minimization problem

in which loops incident at different vertices can have different costs.

2. Results and Analyses

Our first objective is to round out the information contained in Theorem B, by presenting the following

result.

* AMS Subject Classificaton: 05C35. 05A17
t Dcparment of Mathematical Sciences. The Johns Hopkins Univerity, Batimor., MD 21218, and Center for Applied Mathematics, National Bureau

of Standards, Washimgton, DC 20234.
i Numbers in brackets indicate literature efernces st the end of the paper.
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THEOREM 1. If sequence D has 2M(D) - S(D) = 2L where L is a positive integer, then D can be realized by
a unique graph with L loops, but not by a graph with fewer loops. The "unique graph" has all its loops incident
at the unique vertex of maximum degree.

It will be convenient to base this theorem's proof on the following:

LEMMA. With D as in Theorem 1, any graph which realizes D has at least L loops at its unique vertex of
maximum degree.

PROOF (of Lemma): (a) Let G be a graph which realizes D; choose the numbering so that M(D) d,. Since
2M(D) > S(D), v1 will be the only vertex of maximum degree. Suppose G has L1 loops at v1.

(b) By Euler's handshaking lemma, the number of edges of G is S(D)/2. Of these, the S(D)/2 -L, which
are not loops at v, each have at least one endpoint in {vA2, and so each contributes either 1 or 2 to the sum

12 di = S(D) - M(D). It follows that S(D)12 -L, * S(D) -M(D), yielding

L, a M(D) - S(D)12 = L.

PROOF (of Theorem 1): (a) By the Lemma, no graph which realizes D can have fewer than L loops.

(b) Choose the numbering so that M(D) = d,. Then a graph with L loops, which realizes D, is obtained
by placing L loops at v1 and drawing di edges from v1 to v; for 2 : i 6 n; the correctness of this graph's
degree at v1 follows from

>2 di + 2L = S(D) - M(D) + 2L = M(D) = d,.

(c) Now let G be any graph which realizes D and has exactly L loops; by the Lemma, all these loops are
incident at v,. Let dj be the number of edges from v, t0 v; in G, for 2 S i C n. Then on the one hand

X2 do* = di - 2L = Xy d,, and on the other hand d* 6 d for 2 > i < n. It follows that dal = di for 2

i ai n, so that G coincides with the graph constructed in (b). This completes the proof of Theorem 1.
We turn now to a more general problem. Suppose given a sequence C = {c,}1 of nonnegative real numbers,

and interpret c, as the "cost" per loop incident at v,; i.e., if graph G with vertex-set {v,}] has Xi loops attached

at v,, then the total loop-cost of G is X1 c, Xi. We seek a graph G which realizes a given sequence D as

degree-sequence, and does so at minimum total loop-cost. (Theorem I treated the special case in which all
c= 1.)

By Theorem A, this problem has a solution if and only if S(D) - 2M(D) is even. When this is the case
and 2M(D) 6i S(D), it follows from Theorem B that the optimal solution is found as a loopless graph realizing
D. The remaining possibility is resolved by the following theorem, which shows that the solution is essentially
independent of the cost-structure C.

THEOREM 2. Suppose 2M(D) - S(D) = 2L where L is a positive integer. Then an optimal solution, unique if
all cl > 0, is given by the "unique graph" of THEOREM 1.

PROOF: This is an immediate consequence of the Lemma and Theorem 1.
The uniqueness assertions in Theorems 1 and 2 bear the same relation to uniqueness results by Hakimi

[4], Owens and Trent 17] and Senior [8], as do the remaining assertions of Theorems 1 and 2 to Theorem
B.

Finally, we wish to determine the possible numbers of loops in graphs which realize a given sequence D.
Theorem B and Theorem 1 specify the minimum of these numbers; it remains to specify their maximum, and
to ascertain which values between the two can actually arise. To this end it is convenient to define, for D
= {dj7,, Odd (D) to be the cardinality of {i: di is odd}.
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THEOREM 3. Sequence D, with its number of positive entries different from 2 and with S(D) even, is realized
by a graph with precisely k loops if and only if 2k lies between max: (0, 2M(D) - S(D)) and S(D) - Odd(D)
inclusive.
PROOF: (a) Theorems B and 1 give max(O, 2M(D) -S(D)) as the minimum possible value for 2k.

(b) From D = {d,}i we determine a sequence A = {8,}n of nonnegative integers as follows: by requiring

di = 28; + 1 if di is odd, di = 28; if di is even. Then S(D) = 2S(A) + Odd(D), so that Odd(D) is even.
Clearly any graph with vertex-set {v,}l that realizes D can have at most 8; loops incident at v;, thus at most

S(A) = (S(D) - Odd(D))/2 loops in all. This upper bound is achieved by attaching 8; loops to v, for 16 i-n,
pairing off in any way the members of the even-cardinality set {v,: d, is odd} counted by Odd(D), and joining
the vertices in each pair by a single edge. So S(D) - Odd(D) is indeed the maximum value for 2k.

(c) Beginning with the graph constructed in (b), repeat the following step as long as possible, producing
a sequence of graphs each realizing D and having one fewer loop than its predecessor: if the current graph
has three distinct vertices, vi, v,, vq such that v; bears a loop e and some edge e joins v, and vq, then replace
C and e by a pair of edges from v; to vp and to vq respectively.

Let G be the graph with which this process terminates and let XA be the number of loops of G at vj (ljn),
for a total of k loops. If k= 0, we are done, so assume k>O. For any vertex v; such that Xi>O, it follows from
the construction of G that

d;- 2A; = 2j*1 (di - 2A,,. *

It follows that there is either just one such vertex, say v1, or else exactly two, say v1 and v, with d1 - 2X,
= d, - 2X2 and with d, = 2XA = 0 for all j>2. The latter case is ruled out by the theorem's hypothesis
on D. In the former case, (*) yields

d, - 2X, = S(D) - d,

from which it readily follows that

2k = 2X, = 2d, - S(D) = 2M(D) - S(D);

again we are done.
It only remains to treat the exceptional case excluded by the hypothesis of Theorem 3.

THEOREM 4. Sequence D, with exactly two positive entries and with S(D) even, is realized by a graph with
precisely k loops if and only if 2k lies between 2M(D) - S(D) and S(D) - Odd(D) inclusive and 2k 2M(D)
- S(D) (mod 4).

PROOF: (a) Number so that d1 and d2, with d, - d4, are the two positive entries of D. Since S(D) = d +
d2 is even, dc and d2 have the same parity; Odd(D) is 2 or 0 according as the parity is odd or even.

(b) The arguments in (a) and (b) of Theorem 3's proof still apply, to show that S(D) - Odd(D) and 2M(D)
- S(D) are respectively double the maximum and minimum numbers of loops in graphs that realize D. These
extreme values of 2k differ by 2d2 - Odd(D), a multiple of 4.

(c) Define A = {8,}r as in the proof of Theorem 3. Form a graph realizing D which has 8, loops incident

at v1, 82 loops incident at v2, and Odd(D) edges between v, and v2. Then repeat the following step as long
as possible, producing a sequence of graphs each realizing D and having two fewer loops (hence, a value of
2k less by 4) than its predecessor: if the current graph has loops at both v, and v2, then delete one loop at
each of these vertices and replace them by two new edges between v, and v2.

The final graph in this process has a number k of loops (all at v1) given by

2k = 2(8k - 82) = d, - d2 = 2M(D) - S(D).

Thus all values of 2k identified in Theorem 4 's statement are indeed achieved.
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(d) To show that no other values can be achieved, consider any graph realizing D, with Xj loops at vy
(j= 1,2) for a total of k = Al + A2 loops. Counting the edges from v, to v2 in two different ways (by incidences
on vl and by incidences on v2) yields the relation d, - 2X, = d - 2A2 , so that

2k = 2(Xt - tA) + 4X2 = (dc - d4) + 4A2 = 2M(D) - S(D) + 4X 2 ;

thus the residue of 2k (mod 4) is as stated in the theorem.
The following observation is included for completeness. Let XG(v) denote the number of loops incident on

vertex v in graph G with vertex-set {vjl; then A(G) = {AX(vU)}? is the loop-sequence of G corresponding to

this enumeration of the vertices. Given a pair (DA) of sequences D = {djd and A = {Xj' of nonnegative

integers, it is natural to ask whether there exists a graph G with D = D(G) and A = A(G). But this is the
case if and only if D - 2A = {di - 2XJ1 is the degree sequence of a loopless graph, and a necessary and

sufficient condition for that to hold is found by applying Theorem B to D - 2A.
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