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Turbulence, Plasma Containment, and Galaxies*

C.C. Lin
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August 5, 1981

These three exciting areas of research, apparently disjointed in content, have similar basic mechanisms in
common which can be described by the same mathematical principles, concepts, and methods. Scientific prob-
lems will be discussed in all three areas. Emphasis will be placed on galaxies, where observational data are plen-
tiful for checking the theory. A unified mathematical approach applicable to all three areas will then be

described.

Key words: density wave; galactic spirals; hydrodynamic instability and turbulence; plasma dynamics; spiral

grand design; WASER; winding dilemma.

1. Introduction

Dr. Dillon, Miss Smith, Mr. Tsai, ladies and gentlement, I
am indeed honored by your invitation for me to speak on
the occasion marking the contribution of American citizens
of Pacific and East Asian heritage. I am especially pleased
by the fact that I, as a Chinese-American, have been chosen
to speak today, May 4th, 1979. For this day marks the 60th
anniversay of the celebrated May Fourth Movement, which
is generally recognized as the most important milestone of
vigorous new cultural developments in modern China.

My talk will be devoted to a discussion of the similarities
and differences among the three subjects mentioned in the
title. By using these as examples, I also hope to explain the
basic theme of an applied mathematician (physical mathe-
matician); that is, the fundamental concepts and mecha-
nisms that show similar mathematical characteristics are
also physically similar, and vice versa. [These discussions
were presented but omitted from this abbreviated record.]

Since my current research work is on the spiral structure
of galaxies, I shall begin my discussion with this subject.

2. Galaxies

A galaxy is essentially a collection of stars. Galaxies
exhibit a variety of morphological appearances: elliptical,
spiral, bar-spiral, and irregular. In figure 1, we show the
spiral galaxy M81 in an optical photograph. In figure 2, we

* (This is an abbreviated rendition of a lecture delivered at the National Bureau of
Standards on May 4, 1979, as a part of the program to mark the Asian/Pacific
American Heritage week.)

show the same galaxy observed in radio-frequency at a wave
length of approximately 21 cm. The latter waves are emmit-
ted by hydrogen atoms, which exist in the galaxy (instead of
the molecular form) because the medium is so rarefied. We
note that the spiral structures observed in optical and in
radio frequencies are quite similar. Such spiral structures
are observed in many galaxies.

How do we explain these spiral features? Let me first clar-
ify the issues by quoting from the famous Dutch astrono-
mer, Professor Jan Oort, who has been studying galaxies for
the past 50 years:

““In systems with a strong differential rotation, such as is
found in all non-barred spirals, spiral features are quite
natural. Every structural irregularity is likely to be drawn
out into a part of the spiral.”

That is, since the galaxy is in a disc form, with a nucleus in
the middle, it must be rotating, otherwise self-gravitation
would have pulled it together. It turns out that the inner
part is rotating faster than the outer part, in such a manner
that the liner velocity of rotation is nearly constant. So the
inner part, say at the distance of 5 kiloparsecs from the
center, is rotating twice as fast as the outer part at 10 kilo-
parsecs. (One parsec is about 3.3 light years.) Since the
inner part rotates faster, any material clump would be
stretched out into a part of a spiral structure.

“‘But this is not the phenomenon we must consider. We
must consider a spiral structure extending over the whole
galaxy from the nucleus to its outermost part, and consist-
ing of two arms starting from diametrically opposite points.
Although this structure is often hopelessly irregular and
broken up, the general form of the large scale phenomenon
can be recognized in many nebulae [galaxies].”
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FicurRe 1. The spiral galaxy M8] according to optical observations. The
line drawings show the locations of the shock wave in the interstellar

medium and the minimum of gravitational potential. Both lie close to the
dust lane.

This issue is often referred to as the existence of grand
design.

The other problem is the so-called winding dilemma, i.e.,
spiral galaxies, especially normal spiral galaxies, are classi-
fied by Hubble (see fig. 3) according to the tightness of
winding into Sa, Sb, and Sc sprials, Sc being the most open.
You might imagine that because of differential rotation, Sc¢
galaxies would soon wind toward Sa, because the inner part
is rotating faster, and like a spool of string, would therefore
tend to become tighter and tighter with rotation. But this is
not observed to be the case. Of course we cannot directly
follow the evolution of galaxies in our lifetime: this winding
would occur on the order of a few hundred million years.
However, we can make a statistical study and show that Sc
galaxies and Sa galaxies are physically different through
the observation of other physical characterisites; for exam-
ple, the gas content in Sc is much higher than in Sa. You
can say that Sc galaxies would have their gas formed into
stars and then become Sa at the same time. But if that were
so, the average mass and the number of stars formed would
be so large that Sc galaxies would be much more brilliant

Ficure 2. The spiral galaxy M81 according to radio observations at 21
cm. wavelength. The line drawings show the iso-velocity lines according to
observations and according to theoretical calculations.

than they actually are. Furthermore, the mass distribution
is such that there is a very small nucleus in Sc galaxies
whereas Sa galaxies have more massive nuclei. It is impossi-
ble for mass to accumulate so rapidly because the angular
momentum in the system cannot be adjusted so quiclkly.
Thus, the evolution from Sc to Sa in a reasonable period of
time is ruled out, and they must be rather permanent struc-
tures. The question is: If we have material objects arranged
like that in an Sc galaxy, why does it not wind down to an Sa
structure? This is the so-called winding dilemma.

The answer is, as it turns out, that Sc and Sa galaxies
have their large scale spiral structure in the form of perma-
nent or nearly-permanent wave patterns. These patterns
have now been calculated by using a number of methods
their

understood. Waves over a system in differential rotation are

and the mechanisms for maintenance have been
well-known in the study of turbulence. Theory of instabili-
ties of this kind goes back to Lord Rayleigh, in 1880, and
has been developed over the years. There were mathemati-
cal difficulties, so the theory was not fully developed until

much later. There were also experimental difficulties, so the
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Ficure 3. Hubble classification of galaxies.

theoretical predictions were not checked until the work at
the Bureau of Standards was carried out by Dryden, Schu-
bauer, Klebanoff and their collaborators. It is generally
accepted that the calculated instabilities in a sheared
boundary layer were verified by these experiments. More
recently, in Japan, they have also checked the calculations
for the more classical case of flow through a channel. Thus,
we are applying these wellknown concepts of waves of per-
manent structure over a system in differential motion (in
shear) to the study of galaxies.

The other question is: What are those brilliant stars which
mark the waves? How do they behave? They are, as a matter
of fact, like the white caps on the ocean: they come and go,
they are formed and then they disappear. They are now
believed to form out of the interstellar medium (the gas) and
then shine brilliantly by burning their nuclear fuel. After
exhausting their nuclear fuel, they disappear with a bang, a
supernova explosion. Can these things happen over the time
period under consideration? Indeed the answer is: Yes! For
the time scale for the evolution of such brilliant stars into
the supernova state and then into the white dwarfs is one to
ten million years, and the time of one period of revolution of
the galaxy is about 200 million years. So it is during a small
fraction of a period of revolution of the galaxy that the
whole phenomena of star formation and star disappearance
can occur, and they are no more permanent than the white
caps at the crest of waves on the ocean. This is another
example where the concepts used to explain the phenomena
of turbulence, hydrodynamics, and galaxies get together.

Let me provide some more details. Let us assume the
existence of a rotating wave pattern, and imagine ourselves

in a moving system in which the wave pattern is fixed (cf.

fig. 4). The flow of the interstellar medium follows the
arrow, and as it enters the density peak (the gravitational
minimum), the material would undergo an oblique shock

Shocks
Gas Streamlines

Qp

Spiral Pottern in the Galaxy
Ficure 4. Gaseous flow in a galaxy when there is a spiral gravitational
field. Streamlines are marked with arrows indicating the direction of

gaseous flow. The shocks are the heavy solid lines next to the hatched

regions
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which suddenly compresses the material and turns its flow  medium is compressed, forming stars out of a part of the
direction. This oblique shock forms a part of the spiral arm.  gas. As the stars emerge from these shocks, they go further
The material passing through the spiral arm follows the arm  and they disappear when their nuclear fuel is burned out.
over a considerable distance, and goes to the next arm The bright part of this diagram is the region of star forma-
where it goes through another shock compression in the tion and star evolution. As the hydrogen gas is compressed
same way, and comes around and closes the loop (approxi- by the shock, molecules are formed in the dense clumps of
mately). So the gas is going around not along a circular gas. There are also dust particles composed of elements of

path, but in a slightly distorted orbit which has two shocks higher atomic weights. So one would see, at the first sign of

near the two spiral arms. At these shocks, interstellar compression, a rather dark region—the dust lanes. (See figs.

. LEFT PICTURE: The location of the peak of the synchrotron emission in the right picture is shown and seen
incide with the location of the dust lane.
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1 through 5). This is followed immediately by a region of
bright young stars, which are expected to be very bright,
and in fact blue in color. This is indeed what is observed. In
any case, in the region of compression, one would also
expect to see a concentration of atomic hydrogen in the
slightly less brightly shaded area.

The young stars stand out well in the galaxy M51 in blue
light These young stars are indeed in a very narrow band
because their age is short and they do not move very far

before they burn themselves out. Through a study of the
nuclear reactions in stars, one can develop a connection be-
tween their color and their luminosity. The blue stars are
very luminous, but they also burn out quickly.

The Dutch astronomer Herman Visser has constructed a
model (cf. fig. 1) for the galaxy M81 based on these con-
cepts. In Visser's model, the shock essentially matches the
observed dust lanes (one is shown in dotted line and one in
solid line). He calculated the flow field of atomic hydrogen

Ficure 5. RIGHT PICTURE: The continuum radio map (at 20 em) of the galaxy M51

561



and its distribution in this galaxy, given such a gravitational
field. The calculated motion of atomic hydrogen is shown in
terms of iso-velocity lines; so are the data from observations
(see fig. 2). Indeed, the quantitative agreement is very good.

Can we see the density variation postulated in the theory?
It is not easy, but it has been done. Now, the bright young
stars which we see on the spiral arms are not the ones which
determine the gravitational field, because they are very few
in number. We must look beyond those stars, i.e., we must
filter out their light and look at the background stars which
are more like the sun, a rather average, dim star. The bright
stars are essentially those which are colored blue and the
dim stars essentially red. The astronomer Schweitzer made
the necessary observations with proper filters. When the
blue color is filtered out and the color is essentially orange,
one sees the fairly regular variations in the orange compe-
nents from the dim stars. On the other hand, a rather
chaotic variation is seen superposed when the blue compo-
nents are put in. This work was done during just the past
three years, so it could still be improved upon. But basically
the results bear out the idea that there is a small density
variation on the order of 10-20% (closer to 10%) in the
actual density of the stellar mass.

There is another way to look at the existence of density
waves. Roberts and Yuan made a calculation which pre-
dicted what is shown on the left hand side in the next figure
(fig. 5). In this galaxy (M51), you can see very clearly the
dust lane which is marked out by the dark strip side-by-side
with the bright stars. The line drawn along this lane is not a
physical object, but is drawn to show the location of the
peak of synchrotron emission as explained below. Now we
know that there is a shock, so there is a compression of gas.
If there is a magnetic field, that compression would also
strengthen the magnetic field because the latter is frozen
into the material. So one would expect a strong magnetic
field at the dust lane. This stronger magnetic field would
manifest itself by the stronger synchrotron radiation from
this region, because there are charged particles moving at
relativistic speeds in the galaxy. Those particles would then
emit at very high frequencies and one can detect them as a
continuum emission, The right picture in figure 5 is an
observed map of this emission by the radio telescope. The
results indeed show a peak as indicated in the diagram on
the left. The line was in fact drawn by the observers from
the map on the right. So the results do show that there is a
stonger radiation at the dust lane where the theory predicts
a stronger radiation due to the strengthening of the
magnetic field by a galactic shock.

We have thus seen two sets of data, one in M81 and
another in M51, supporting the density wave theory. There
are many other phenomena which have been observed to
agree with the predictions based on the density wave theory.

3. Basic concepts and mechanisms

We record briefly somie of the basic concepts and mecha-
nisms visualized for the explanation of the observed phe-
nomena.

(1) The above discussion places emphasis on the winding
dilemma and on the exisience of grand design. One should
recall that the spiral structure in galaxies is indeed “*often
hopelessly irregular and broken-up’’ and hence there is
coexistence of regular spiral patterns and spiral features in
bits and pieces. Some of these may be material arms; others,
waves. This situation is not very much different from that in
a turbulent jet which shows both small scale chaos and
large scale structures. There are only a few prominent
large-scale modes, and hence at any instant the large-
scale structure shows quite a deal of regularity. Hot-wire
anenometer records of turbulence motions in a boundary
layer (NBS) show similar behavior.

It is a matter for speculation how much regularity may be
expected in the observed patterns of galaxies. In the above
discussions, we assume a considerable amount of regularity
and hence we conclude that it is indeed possible to have the
Hubble classification in a statistical sense. Further detailed
studies are desirable to clarify these issues.

(2) There are a number of similarities in mechanisms
among the three subjects under discussion: galaxies, turbu-
lence, and plasmas. We shall only record some of them
without detailed explanation. [More details were given in
the verbal presentation.]

(A) Both in hydrodynamic stability and in the study of
spiral waves in galaxies, corotation resonance plays an
important role in energy transfer.
(B) Analogous mechanisms may be found between the
instability of the ballooning mode in contained plasmas
and the instability of Couette flow with inner cyclinder
rotating.
(C) The WASER mechanism (wave amplification by
stimulation of emitted radiation) is important for spiral
wave patterns in galaxies, as well as in plasma dynamics
and in the instability of supersonic shear layers. It in-
cludes the interaction of wave of positive and negative
energy densities. '

(D) There is similarity between the density waves in

galaxies and the Bernstein waves in magentically con-

tained plasmas. This is due to the similarity between the

Coriolis force in the former case and the Lorentz force in

the latter case.

(3) 4 unique feature. The maintenance of density wave
patterns must depend on waves propagating in opposite
directions. A naive view would then require the existence of
leading waves and trailing waves, and we may expect to find
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only bar-like structures. Actually, there are two kinds of
trailing waves propagating in opposite directions (see fig.
6). Thus, one can even form pure trailing spiral wave pat-
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FIGURE 6. Schematic diagram showing composition of a spiral pattern
by two trailing waves.

terns without any leading component. Obviously, there are
also barred spirals, which has contributions from leading
components.

4. Concluding Remarks

Since this is an occasion to mark the contribution of
Asian Americans, I should mention that a number of impor-
tant contributors to the subjects under discussion are
Asian-Americans. Contributors to the older subject of tur-
bulence are too numerous to be named. However, I do wish
at least to mention four persons who contributed both to
plasma physics and to the study of the dynamics of stellar
systems. They are James Mark, Y. Y. Lau, Linda Sugiyama,
and C. S. Wu. If one examines the list of references in this
subject one finds that the contribution of Asian-American
scientists far outweighs the total percentage of Asian-
Americans in the population as a whole. We have in this
country, indeed, great opportunities for all ethnic groups,
especially in science. By its very nature, science has a
tendency to permeate international boundaries. Science
and scientists do have a very important role to play in pro-
moting mutual understanding among the countries in this
world. American scientists with special ethnic backgrounds
can contribute greatly to this effort. With this hopeful note,
let me thank you again for inviting me here, and I wish you
great success with the rest of your program.
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Following a brief description of early semiconductor history, the invention of the transitor and subsequent
important events are presented in perspective, with emphasis on the role of semiconductor physics in device

development.
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I. Introduction

The agricultural civilization in the cultural history of man
was said to be the result of two genetic accidents which gave
birth to a new species of bread wheat some 10,000 years
ago, involving wild wheat and goat grass. Large-scale agri-
cultural activity in man’s society followed. Great inventions
or discoveries could be considered to be such genetic acci-
dents—mutations. New knowledge, arising from these
inventions, often leads to a large-scale engineering effort
which eventually has far-reaching consequences in our
society. The invention of the transistor by three solid state
physicists, Shockley, Bardeen, and Brattain, is one such
example. The development of the transistor began in 1947
through interdisciplinary cooperation with chemists, metal-
lurgists, and electronic engineers, at Bell Laboratories. A
large-scale development effort for a variety of semiconduc-
tor devices followed in a number of institutes throughout
the world. Semiconductor know-how, thus established, has
revolutionized the whole world of electronics—communica-
tions, control, data processing, and consumer electronics.

One of the major achievements of modern physics has
been the success of solid-state physics in creating new tech-
nologies. Solid-state physics, which invelves experimental
investigation as well as theoretical understanding of the
physical properties of solids, constitutes, by a substantial
margin, the largest branch of physics; probably a quarter of
the total number of physicists in the world belong to this
branch. Semiconductor physics, one of the most important
sub-fields of solid-state physics, covers electrical, optical,
and thermal properties and interactions with all forms of
radiation in semiconductors. Many of these have been of
interest since the 19th century, partly because of their prac-
tical applications and partly because of the richness of in-
triguing phenomena that semiconductor materials present.

Point-contact rectifiers made of a variety of natural
crystals found practical applications as detectors of high-
frequency signals in radio telegraphy in the early part of
this century. The natural crystals employed were lead
sulphide (galena), ferrous sulphide, silicon carbide, etc.
Plate rectifiers made of cuprous oxide or selenium were
developed for handling large power [1].' The selenium
photocell was also found useful in the measurement of light
intensity because of its photo-sensitivity.

In the late 1920’s and during the 1930’s, the new tech-
nique of quantum mechanics was applied to develop elec-
tronic energy band structure [2] and a modern picture of the
elementary excitations of semiconductors. Of course, this
modern study has its roots in the discovery of x-ray diffrac-
tion by von Laue in 1912, which provided quantitative
information on the arrangements of atoms in semiconductor
crystals. Within this framework, attempts were made to
obtain a better understanding of semiconductor materials
and quantitative or semiquantitative interpretation of their
transport and optical properties, such as rectification,
photoconductivity, electrical breakdown, etc.

During this course of investigation on semiconductors, it
was recognized in the 1930’s that the phenomena of
semiconductors should be analyzed in terms of two separate
parts: surface phenomena and bulk effects. Rectification
and photo-voltage appeared to be surface or interface phe-
nomena, while ohmic electrical resistance with a negative
temperature coefficient and chmic photocurrent appeared
to belong to bulk effects in homogeneous semiconductor
materials. The depletion of carriers near the surface primar-
ily arises from the existence of surface states which trap
electrons and, also from relatively long screening lengths in
semiconductors because of much lower carrier concentra-

! Figures in brackets indicate literature references at the end of this paper.
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tions than in metals. Thus, it is possible to create potential
barriers for carriers on the semiconductor surface or at the
interface between a semiconductor and a metal contact, or
between two semiconductors. The early recognition of the
importance of surface physics was one of the significant
aspects in semiconductor physics.

2. Transistors

Since the rectification in semiconductor diodes is analo-
gous to that obtained in a vacuum diode tube, a number of
attempts had been made to build a solid-state triode by
inserting a *‘grid”’ into semiconductors or ironic crystals—a
solid-state analog of the triode tube amplifier [3,4,5,)
Because of the relatively low density of carriers in semicon-
ductors, Shockley thought that the control of the density of
carriers near the semiconductor surface should be possible
by means of an externally applied electric field between the
surface and a metal electrode insulated from the surface—
the field effect device. The observed effect, however, was
much less than predicted [6). In 1947, in the course of trying
to make a good “‘field effect’’ device with two gold contacts
less than fifty microns apart on the germanium surface, Bar-
deen and Brattain made the first point-contact tran-
sistor where they discovered a phenomenon—minority car-
rier injection into a semiconductor [7]. The importance of
this phenomenon was soon recognized and led to the inven-
tion of the junction transistor by Shockley. The realization
of this junction device, which did not occur until 1950 [8],
was far more significant than its precursor.

The early version of the junction transistor was presented
by Shockley as a post-deadline paper at the Reading Con-
ference on *‘Semi-Conducting Materials,” held July 10 to
15, 1950. This conference is now called **The First Interna-
tional Conference on the Physies of Semiconductors.”
Shockley’s paper, however, was omitted from its Pro-
ceedings, apparently because a fabrication method used for
the junction transistor was then proprietary at the Bell
Laboratories [9).

The Foreword of the Proceedings of the Reading Con-
ference [10] states: “*During recent years physicists in many
countries have made rapid and important advances in the
field of solid state physics. Semiconducting materials, in
particular, have become a subject of great interest by
reason of their numerous practical application. . . .
Indeed, the development of transistors, as well as the pro-
gress in semiconductor physics of Ge and Si, would not have
been accomplished without the key contribution of mate-
rials preparation techniques. Soon after Teal and Little
prepared large Ge single crystals, Sparks successfully made
a grown junction transistor at Bell Laboratories [11}. The
subsequent development was Pfann’s zone refining and

then Theuerer’s floating zone method for silicon process-
ing. These developments made it possible to make Ge and
Si of controlled purities and crystal perfection.

The early Ge junction transistors had poor frequency
response and relatively low reliability. In fabricating these
transistors, the grown-junction technique, or the alloying
technique, was used to form p-n junctions; in other words,
these techniques were used to control the spacial distribu-
tion of donors and acceptors in semiconductors. Then a pro-
cedure for forming p-n junctions by thermal diffusion of
impurities was explored in order to obtain better reproduc-
ibility and tighter dimensional tolerances. This technique,
indeed, enabled bringing forth the double diffused transis-
tor with desirable impurity distribution, the prototype of
the contemporary transistor [12]. Attention was also turned
toward Si because of its expected high reliability and im-
proved temperature capability.

In the 1940’s, a team at the Bell Laboratories selected
elemental semiconductors, Ge and Si, for their solid-state
amplifier project, primarily because of the possible simplici-
ty in understanding and material preparation, in compari-
son with oxide or compound semiconductors. This not only
was a foresighted selection but also had important implica-
tions: Ge and Si single crystals exhibited long diffusion
lengths of hundreds of microns at room temperature, which
were prerequisites to the desirable operation of the transis-
tor, because of both reasonably high mobilities of electrons
and holes, and long trapless lifetimes of minority carriers.
The latter fact may arise from the indirect energy-gap in
these elemental semiconductors in contrast with the direct
energy-gap in some III-V compound semiconductors which
exhibit high rates of radiative combination of electrons and
holes. The exploration of the III-V compound semicon-
ductors was initiated through Welker’s ingenuity and imag-
ination, in the early 1950’s, to produce semiconductor
materials even more desirable for transistors than Ge or Si
[13]. Although this initial expectation was not quite met,
III-V compound semiconductors later found their most im-
portant applications in LED (light emitting diodes), injec-
tion lasers, Gunn microwave devices, etc.; these devices
could not have been achieved through elemental semicon-
ductors.

3. Important devices

Now, in order to reach a perspective in semiconductor
device development, it may be worthwhile to comment on
some selected semiconductor devices in chronological
order:

1) Solar Cells. In 1940, Ohl observed a photovoltage as
high as 0.5V by flashlight illumination in ‘‘naturally”
grown Si p-n junctions [14]. The modern Si solar cell,
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however, was created by bringing together seemingly unre-
lated activities, namely, large area p-n junctions by Fuller’s
diffusion method, Pearson’s effort for power rectifiers, and
Chapin’s search for power sources for communication sys-
tems in remote locations. According to Smits’ article [15],
Pearson’s diode showed *‘a conversion efficiency from solar
energy to electrical energy of 4 percent. Low as this efficien-
cy may seem today, in 1953, it was very exciting, improving
on selenium by a factor of five.”” Development and produc-
tion of solar cells were stimulated by the needs of the space
program.

In 1972, heterojunction solar cells consisting of p
Ga,..ALAs-p GaAsn GaAs, exhibiting power conversion
efficiency of 16-20 percent, were reported by Woodall and
Hovel [16]. The improved efficiencies were attributed to the
presence of the heavily-doped Ga,_.ALAs layer, which
reduced both series resistance and surface recombination
losses. The recent advent of the energy crisis has generated
a renewed interest in research and development of solar
cells which might be economically viable for terrestrial
applications.

2) Tunnel Diodes. Interest in the tunneling effect goes
back to the early years of quantum mechanics. Phenomena
such as rectification, contact resistance, etc. in solids, were
explained by tunneling in the early 1930’s. However, since
theories and experiments often gave conflicting results, not
much progress was made at that time. Around 1950, semi-
conductor p-n junctions generated a renewed interest in the
tunneling process. Experiments to observe this process in
the reverse breakdown of the junctions, however, were
again inconclusive.

In 1957, Esaki demonstrated convincing experimental
evidence for tunneling in his heavily-doped (narrow) p-n
junction—the tunnel diode [17, 18]. This diode found use in
microwave applications because of its differential negative
resistance being responsive to high frequencies. The dis-
covery of the tunnel diode not only generated an interest in
heavily-doped semiconductors but also helped to open a
new research field on tunneling in semiconductors as well as
in superconductors.

3) Integrated Circuits. In 1958, Kilby initiated the fabri-
cation of a circuit which included a number of transistors,
diodes, resistors, and capacitors, all residing on one semi-
conductor chip [19]. This structure is called the (monolithic)
integrated circuit. Around the same time, Noyce and Moore
introduced improved fabrication techniques called the
“planar’” process which enabled the birth of the first
modern transistor—a landmark in semiconductor history. It
was soon realized that this transistor with dished junctions
(extending to the surface) and oxide passivation (protecting
the junctions), was most suited for assembling integrated
circuits, because metal stripes evaporated over the surface
oxide layer could be readily used for interconnection [20].

Integrated circuits of digital as well as linear types have
had one of the largest impacts on electronics; they are now
the main building block in computers, instrumentation,
control systems, and consumer products. According to a
recent analysis by Moore [21], their complexity has almost
doubled each year, now approaching one hundred thousand
components on a single Si chip of, say, a quarter centimeter
square, and yet the cost per function has decreased several
thousandfold since their introduction at the beginning of
the 1960’s. Meanwhile system performance and reliability
have been tremendously improved.

4) MOS FET (Metal Oxide Semiconductor Field Effect
Transistor Devices. As mentioned earlier, the transistor was
invented while searching for a field-effect device. The field-
effect concept originated as early as the 1920’s, but no
successful device was made in spite of a number of attempts
because of the lack of adequate technology.

Thermally-grown Si0O, on Si single crystal surfaces, which
was originally developed for oxide passivation of junctions
in the later 1950’s, was found to be a most suitable insulator
for a field effect device by Kahng and Atalla [22]. This insu-
lator, indeed, had relatively low loss and high dielectric
strength, enabling the application of high gate field. More
importantly, the density of surface states at the Si-Si0,
interface was kept so low that the band bending in Si near
the interface was readily controllable with externally
applied gate fields. Thus, a simple, yet most practical, Si
MOS transistor was created whereby the surface inversion
layer conductance (*‘channel’’) was modulated by gate volt-
ages. This transistor is called a unipolar device because of
no minority carrier involvement; it requires fewer processes
in fabrication than the bipolar transistor because of its
structual two-dimensionality, and is especially adaptable for
large-scale integrated circuits.

Presently, integrated circuits, consisting of MOS FET or
MOS based components such as dynamic memory cells 23],
charge-coupled devices [24], MNOS (Metal Nitride Oxide
Semiconductor) memory cells, etc., are even more extensive-
ly used than bipolar transistors, in computer memories,
microprocessors, calculators, digital watches, etc., while
being challenged by advances in bipolar-based devices such
as I’L (Integrated Injection Logic). As the size of individual
FETs has continued to decrease for large integrated circuits
with the application of advanced processing techniques, the
““channel” distance is shortened to one micron or even less
and the oxide thickness is thinned to a few hundred ang-
stroms. If one pushed this to the extreme, new physical
problems arise from excessively high fields across thin oxide
films as well as in the ““channel’”” direction. There has been
some discussion on physical limits in digital electronics [25,
26).

While taking measurements of Si surface transport pro-
perties at low temperatures, Fang and Howard discovered
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that electrons in the ‘‘channel’” were two-dimensional [27],
which provided a unique opportunity for studying quantum
effects [28].

5) Injection lasers. Since the early part of this century,
the phenomenon of light emission from SiC diodes was rec-
ognized and studied, although a practical light emitting
diode had not materialized until the development of effi-
cient p-n junctions made of III-V compound semiconduc-
tors [29]. Apparently, reports of high-efficiency radiation in
GaAs stimulated a few groups to engage in a serious exper-
imental effort to find lasing action in semiconductors:
These possibilities were previously discussed [30, 31]. In
1962, the announcement of the successful achievement of
lasing action in GaAs came on the same date, independent-
ly, from two groups: Hall et al. at General Electric; and
Nathan et al. at IBM; and a month later from Quist et al. at
Lincoln Laboratory [32]. All of them observed a pulse
coherent radiation of 8400A from liquid nitrogen-cooled,
forward-bias GaAs p-n junctions. This occurrence is not
suprising in the present competitive environment of the
technical community where new scientific information is
rapidly disseminated and digested, and new ideas are quick-
ly implemented. There was a two-year interval between the
first reports of the Ruby and He-Ne lasers and the
announcement of the injection laser.

The performance of the device was improved with incor-
poration of heterojunctions by Alferov et al [33, 34]. With
double-heterostructure the threshold current density for
lasing was substantially reduced by confinement of both
carriers and photons between two heterojunctions [35].
Finally, in 1970, Hayashi et al. [36] succeeded in operating
the device continuously at room temperature. Because of
the compactness and the high efficiency of this laser, the
achievement paved the way towards many practical applica-
tions such as optical (light-wave) communication, signal
processing, display and printing. There is a development
effort in integrated optics to mount miniaturized optical
components, including injection lasers and waveguides, on
a common substrate using heterojunction structures of I1I-V
compound semiconductors, analogous to the integrated cir-
cuit, for improved signal processing.

6) Gunn and IMPATT (Impact Ionization Avalanche
Transit Time) Microwave Devices—In 1962, Gunn dis-
covered that, when the applied field across a short bar of
reasonably pure n-type GaAs exceeded a threshold voltage
of several thousand volts per cm, coherent microwave oscil-
lations could be extracted by synchronizing the random cur-
rent fluctuations with a resonator{37]. Furthermore, by his
ingenious probe technique, he was able to show that the
oscillations were related to the periodic formation and
propagation of a narrow region of very high field—
**domain.”’ It took two years to confirm that Gunn’s exper-
imental discovery of oscillations was indeed due to the

Ridley-Watkins-Hilsum transferred electron effect, pro-
posed in 1961 and 196238, 39).

As is true of any important discovery, Gunn’s work trig-
gered a wide spectrum of experimental and theoretical
activity from device physics to microwave engineering.
Apparently this achievement rejuvenated the work of
microwave semiconductor devices in general, and, in 1964,
IMPATT diodes finally started to oscillate—which was
rather overdue since Read’s proposal in 1958 [40]. The
operation of the device was explained on the basis of
dynamics of electrons involving the transit time and ava-
lanche. IMPATT and Gunn devices are now widely used in
many microwave gears: the former has high power capabili-
ties (~S0mW at 110 GHz), whereas the latter meets low
noise requirements.

4. Summary

Figure 1 schematically illustrates the development path
of a variety of semiconductor devices. It should be noted
that the development path of each device appears to have
had its own sequence of conception (theory) and observation
(experiment): Typically, the theoretical prediction was later
confirmed by the experiment, but, in may instances, the
experimental discovery came first, followed by the theory
and yet, in other instances, the initial idea which led to the
discovery was irrelvant to its consequence. Obviously, this
article cannot possibly cover all landmarks and indispen-
sable innovations, not to mention a great number of won-
derful, but nonworkable ideas. We will summarize some
important items in semiconductor devices and processing
techniques which have made remarkable progress since
1950: Si devices of new structures, such as controlled recti-
fiers, solar cells, photodetectors, I2L, etc.; development of
novel semiconductor devices, such as injection lasers, Gunn
microwave oscillators, Schottky junction FETs, infrared
detectors, etc., combined with the investigation of new
materials, such as III-V compounds; and the introduction of
new processing techniques for device fabrication, such as
alloy contacts, etching, thermal diffusion of impurities,
vapor and liquid-phase epitaxy, oxide formation, sputter-
ing, photolithography and, more recently, ion etching,
molecular beam epitaxy, etc.

Not all of this progress arises from engineering ingenuity
and advanced material technology; pioneering research in
semiconductor physics has also contributed to each signifi-
cant development, exploring intriguing phenomena in
semiconductors, for example, electron-hole multiplication
(avalanche), tunneling, hot electrons, lasing by high carrier
injection, two-dimensional electrons on the surface or in a
semiconductor superlattice, etc. For a qualitative under-
standing, semiconductor materials, crystalline or amor-
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FIGURE 1. Schematic illustration of the development path of a variety of semiconductor devices.

phous, as well as surfaces, have been extensively investi-
gated—often under extreme conditions with advanced
instruments; measurements at high pressure or in ultrahigh
vacuum, or under the synchrotron radiation fall into this
category.

Semiconductor physics has a strong interaction with
chemistry, metallurgy, and electrical engineering, and with
the broader field of materials science. The separation be-
tween basic discoveries and applications in this field of
physics is far less distinct than that in some of the other
fields of physics. Semiconductor physics has a particularly
effective interface with engineering,

“‘Science is the understanding of nature, whereas engi-
neering is the control of nature.”” Following this notion, in-
dustrial laboratories appear to have played a dominant role
as a junction between science and engineering in many
technological developments, wherein there may possibly be
a kind of gap between them, (Hopefully, this junction will
always be forward-biased so that electrons and holes, carry-
ing information, can flow easily from science to engineering
and vice versa.) In the field of semiconductors, one may
think that the coupling between science and engineering is
strong, or that the gap between them is indeed narrow.
After all, the semiconductor is a narrow-gap insulator!!

In the preparation of this manuscript, I am indebted to
many authors who kindly sent me advance copies of papers
which have appeared in the Special Issue of the IEEE
Transactions on Electron Devices, July 1976.
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1. Introduction

With the advent of the dynamic light scattering method
and the attendant detection techniques, [1-5], we are now
able to expand the application of light scattering methods
to a variety of diverse condensed medium systems hitherto
unexplored. In this paper, I will outline the kinds of light
scattering methods that we use in my laboratory at Wiscon-
sin to probe the structure and dynamics of polymers,
nematic liquid crystals, and biological membranes. Four
scattering techniques shall first be described with ap-
propriate examples in each case, and then I will move on to
the studies of (a) amphoteric latex system, (b) photo-receptor
disk membrane vesicles, (c) binary nematic solution, and (d)
intrachain dynamics of random coil polymers, in order to
bring home the power and limitation of various light scat-
tering techniques. At the outset I must emphasize that this
paper is not intended as an exhaustive review of the state-of-
the art of light scattering methods, but rather as a report of
how one academic research laboratory uses these methods
to explore diverse problems of interest.

2. Elastic Light Scattering

Extensive treatises have been written on the subject such
that I need not dwell on the historic overview or lengthy ex-
plication of the technique. Instead, I will focus on a rather

! Figures in brackets indicate literature references at the end of this paper.

narrowly defined problem of how to determine the linear
dimension of scattering particles with substantial symmetry
in shape, particularly when the linear dimension R is com-
parable to the incident wavelength \. The problem of this
kind arises for example in trying to determine the large
radius of gyration [9] of T even bacteriophage DNA whose
molecular weights are on the order of 10® daltons. If one
tries to effect the customary procedure of the Zimm plot [10]
to extract the radius of gyration, the scattering intensity
profile must be obtained at such small angles that one en-
counters substantial technical problems [9]. By small angle
scattering, I mean that one must obtain the data in the
Guinier region, [11] i.e., QR < 1 where Q is the momentum
transfer. We propose a new scheme to determine the linear
dimension R when the scattering particles are so large that
QR =< 1 is difficult to attain experimentally. The method is
to focus on the structure of scattering profile at higher
angles where the Bragg condition is fulfilled, i.e., QR =
m/m where m is an integral multiple constant. To be more
specific, I quote some simple examples such as solid sphere,
hollow sphere, spheroidal shape of either oblate or prolate
axial ratio, and the corresponding shell structures. The
isotropic parts of the particle form factor in the limit of
Rayleigh-Gans-Debye scattering [12] of some of these are
given below.

a. Solid sphere

P(6) = [ilx) + =) M
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where x = QR, R is the radius and ji(x) is the kth order
spherical Bessel function.

b. Hollow sphere [13, 14]

P(6) =[?(1_3—_F)— (sinx —sinz! — xcosx +xlooszl)]*  (2)

where x = QR, | = /R, R and a are respectively the outer
and inner radii.

¢. Ellipsoids of revolution [15]
J32(u)

0 ud

PO = S 1

cosf3df 3)

2
where 2 = Qa(cos?8 + % sin?B)%, a and b are semi-major

and semi-minor axes, § is the angle between the semi-major
axis and bisectrix, and Ji,, is the 3/2th order Bessel
function.

d. Circular cylinder

PO=55 1. g La (oos) LT 5.

1
2v 70 cos

where a and [ are the radius and length of the cylinder, u =
Qa, v = QI/2, and B is the angle between the cylinder axis
and bisectrix.

e. Spheroidal shells
Ro) = ]' sin? [x/1 — q2*] dt ()
° 21 — qt?)
_ (it =)
T )

for oblate shell wherex = Qb,y = Qa, ¢ = 1 — (&), and
b and a are respectively the semi-major and semi-minor axes
such that 0 < ¢ < 1.

PO) = j: sin? [xyT + pff] 4, @

dt (6)

(1 + pe?)
1 in? ___P.__‘I*+;’ %
- 50 smyz[:(]l* z )) ] @)
*p

for prolate shell where x and y are the same as above, a and
b are respectively the semi-major and semi-minor axes, and
p = (&b ~ 1suchthat0 < p < oo,

As an illustration of the proposed method, we take the
simplest structure, i.e., sphere, and show how the Bragg
condition is extracted from which the radius of sphere is
deduced. The isotropic particle form factor of sphere in the

Rayleigh-Gans-Debye limit is given by the square of the sum
of the zeroth and second order spherical Bessel function as
in eq (1), and its structure is a monotonically decreasing
function from unity at zero scattering angle to x = tanx
where it gives the first minimum. This is illustrated in
figure 1 where a semi-logarithmic plot of the particle form
factor P(6) versus sine of one-half of the scattering angle 8 is
given for spherical particles having the radii of 100, 110,
120, and 130 nm suspended in water and scattered by inci-
dent blue light of 436 nm in wavelength. It is clear from the
plots that under these conditions the radius must exceed
120 nm for P(f) to give the first minimum; A@) is fairly
structureless for the radius less than 120 nm. If, on the other
hand, we plot (QR)*P(f) against sin(0/2), the graphs as shown
in figure 2 result. This arises because the damping profile of

Rayleigh Scatteri \9\‘//
ayleigh Scatfering ol
=2~ for Isotropic Sphere \/.?\\\\ _

Ao=436nm (blue)
n=1.33{water)

tog P(x)

4 .6
Sin (6/2)

FICURE 1. The isotropic part of the particle form factor P(x) of Ray-
leigh-Gans-Debye scattering from solid, isotropic spheres against sin (6/2)
for the radius of 100, 110, 120 and 130nm, with the incident wavelength of
436 nm (blue) in a medium with the refractive index n of 1.33 (water). Note

that x= QR hence P(x) = P(8).

5 7 8 9 0
Sin (6/2)

FIGURE 2. x*P(x) versus sin (6/2) of figure 1. In place of R = 130 nm,
plot for 200 nm is shown.
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P6) in eq (1) is compensated by the factor (QR)%. Thus, the
monotonic descrease of P(f) for small particles is rendered
to have a maximum by multiplying by (QR)*. Algebraically
this is easily seen from eq (1);

AR =9 (—Si;‘i ~ cosx)? ©)

darn sin(f/2)+R and the extrema posi-

where x = QR =
tions of P(6) appear at

¥ ___ for maxima

tanx =

and

tanx = x for minima

The plots in figure 2 are drawn for the common experimen-
tal scattering conditions in mind, namely the scattering
angle spans from 30° to 150°. Experimentally the ordinate
scale is immaterial to the extent that one is interested in
determining the extrema positions to extract the particle
radius. For completeness sake, we show in figures 3 and 4
the analogous set of plots for spherical particles with longer
radii as though they could be analyzed by the Rayleigh-
Gans-Debye approximation, whereas its applicability is
limited [8] in this size range, and P(f) itself contains suffi-
cient structure that x*P(f) plot affords at best sharper max-
ima and smoother minima. I shall later return to the limit of
applicability of Rayleigh-Gans-Debye scattering relative to
the particle size. We display in figure 5 why the factor «* is
chosen as the multiplication factor to Af) in order to
moderate its damping at higher angles. For a given radius
of a particle, we show three profiles whereby it is made clear
that a factor x* does not reduce the damping sufficiently,

0
T 4l
g

6 -

,8.__

. | . | | L ] .
0 2 4 .6 .8 1.0
Sin (6/2)

FicuRe 3. Similar to figure 1 with R = 200, 300, 400 and 500 nm.

¢

whereas a factor 2° overcompensates the damping. The op-
timum is clearly the x* factor.

Turning to the experimental verification of the proposed
method, [16], we show in figure 6 a plot of I,,(6)sin%(6/2)
versus sin(/2) for a polystyrene latex standard (Poly-
sciences, Lot 2-1435), whose radius is given as 87+4 nm

determined by transmission electron microscope, sus- -

pended in distilled water. Here, the subscripts v of the scat-
tered intensity stand for the polarized scattering, namely
the polarizer and analyzer are both oriented vertically
relative to the scattering plane. We should note that the or-
dinate scale is arbitrary and x*P) is proportional to
L,,(6)+sin%0/2), since P(f) is the isotropic part of the particle
form factor. The data points were taken at 1° increments
and the solid curve was drawn according to eq (9) with \o =
436, n = 1.333, R = 80 nm. The discrepancy of 10 percent
between the radius of 87 nm by electron microscopy and
that of 80 nm by this method may be ascribed to a number
of artifacts arising from electron beam optics in the electron
microscopy technique. In figure 7, we show a test of another

x*Px) (a.u.)

A 0
Sin (6/2)
FIGURE 4. Similar to figure 2 with R = 200, 300, 400 and 500 nm.
' .’
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FICURE 5. x*P8) and x°P(f) versus x.
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polystyrene latex standard (Polysciences, Lot 2380), having
the radius of 139 nm again determined by electronic
microscopy. Two curves are drawn for comparison. The first
(solid curve) is that predicted by the Mie scattering function
with R = 136 nm and the other (dashed curve) is that pre-
dicted by eq (9) with the same R. In the Mie function fitting,
we use the refractive index ratio m of the particle to
medium as 1.21 [17]. In the inset, the scattering profiles at
different concentrations of the latex particles are shown
where the concentration range of the most (a) to the least (d)

T 1 T T T T
Polysciences Latex Std.
5" R:=87t4nm 7
Ag=436nm
RAYLEIGH
R=80nm
3 -

Iyy(6)+Sin®(8/2)
(a.u.)

0 I | | ! I | A
.8 9 1.0

.6 7
Sin (8/2)

FIGURE 6. Calibration run of the light scattering method with Polysciences
latex standard with R = 874 nm (mean % s.d.). The scattering intensity
here is observed with the incident and scattered beams vertically polarized
relative to the scattering plane. The ordinate is scaled in arbitrary units,
and the solid curve represents the Rayleigh-Gans-Debye scattering func-
tion for an isotropic solid sphere with 80 nm raduis.

.37 A3 .99 53 i W
Sivsrd)

Ficure 7. Calibration run with Polyscience latex standard with R = 135+
I nm. Experimental conditions are identical with those in Figure 6. Dashed
curve is drawn with the Rayleigh scattering function with R = 136 nm and
solid curve with the Mie function with R = 136 nm. The inset shows the
concentration dependence of scattering profile whereby a represents the
most concentrated and d the least concentrated. The number density of
latex particles in a is about one order of magnitude larger thanind.

concentrated is about one order of magnitude. It shows well
that the scattering profiles are weakly dependent on the
concentration, and we could have deduced the radius of 130
nm from the most concentrated case (a) shown in the inset.
The least concentrated case (d) is expanded in the plot of
figure 7. Ignoring the matching with the entire scattering
profile but focusing on the maximum and minimum posi-
tions inferred from eq (9) for the Rayleigh-Gans-Debye scat-
tering, we would have deduced the radius of 144 nm. Thus
for this size particle, either scattering function would have
sufficed if the radius determination within 4 percent is
acceptable. It should however be noted that the discrepancy
of the radius determinations by the two scattering functions
exceeds the precision limit of extrema position determina-
tion in this size range.

Having thus established that our proposed method works
for the radius determination of a spherical particle of R <
140 nm suspended in aqueous media, we now turn to the ap-
plicability limit of Rayleigh-Gans-Debye scattering and
when one must use the Mie scattering function. In order to
stipulate the applicability limit, we compare the extrema
positions predicted from eq (9) and those computed from
the Mie functions. The latter computation was performed
on a Harris/7 computer. The comparison is provided in
figures 8(A) and 8(B) where the reduced size parameter o,
defined as 27wR/\, is given in terms of the extrema positions
in the scattering angle of x*A(6) profiles for the polarized
and unpolarized scatterings respectively,. When m =
1.0001, we recover the predictions of the Rayleigh-Gans-
Debye scattering as given by eq (9); this particular value of
m is not significant as long as m is very close but still larger
than unity for the Mie function to be evaluated. These
figures allow us to understand why the radius deduced from
the Rayleigh function always overestimates. At any given
extreme position, be it a maximum or minimum, « values
for m > 1 invariably lie below that for m = 1 although the
relative error committed by assuming m = 1 is not a mono-
tonically increasing function of m for any size particles.
This is particularly true with the maximum positions which
show oscillation with respect to m. Hence, the relative error
should also oscillate. In fact, we can evaluate the error. This
is illustrated in figure %(A) and %B) where the percent error
of analyzing the scatterng profile extrema according to the
Rayleigh-Gans-Debye scattering is plotted against the
reduced size parameter o at different values of m. The
polarized and unpolarized scattering cases are shown in (A)
and (B), respectively, In either case, the error can be equal
or less than 10 percent if m < 1.15 for @ < 7. The oscilla-
tion in the error estimate becomes progressively larger in
amplitude as the m value increases. For the values of m
close to unity, the error with respect to the particle size is
sensibly constant though with a slight increase with o in
each m. Hence, one should not approximate with impunity
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the scattering of small particles by the Rayleigh scattering
function regardless of the refractive index ratio m.

In closing this subject, let me emphasize that the spher-
ical particle size analysis can be effected by determinations
of the extrema positions of sin*(6/2)I(f) profiles and these
are provided by analytical solutions of
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FICURE 8A. Ratio of isotropic solid sphere’s circumference to wavelength
in scattering medium, o= 2nR/A, versus sin (8/2) at different extrema
positions of the Mie function for x*A@). Each set is drawn at different
refractive index ratios m. The maxima and minima are distinguished by
solid and dashed curves respectively. This is for the Mie function at the
vertical/vertical optical configuration.
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Ficure 8B. Analogous to (8a) for the case of Mie function at unpolar-
ized/unpolarized configuration.
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FIGURE 9A. Percent error of analyzing the profile extrema positions
according to Rayleigh-Gans-Debye scattering as a function of the reduced
size parameter a at different refractive index ratios m, for the polarized
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FI1GURE 9B.Analogous to (9a) for the unpolarized scattering.
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in the case of Rayleigh-Gans-Debye scattering whereas they
must be evaluated numerically in the case of Mie scattering.
Because the method depends on the structure of scattering
function at high @, it is restricted to monodisperse systems
and extrapolation to infinite dilution is not an essential step
in the procedure provided the scattering suspension is
dilute enough. ’

3. Quasielastic Light Scattering

Here, we restrict our discussion to the thermally induced,
spontaneous concentration fluctuations whereby the trans-
lational diffusion coefficient of the scattering particles at in-
finite dilution is deduced. The homodyne power spectrum
(1] S(Q,») of the Doppler broadened scattering from a
monodisperse system of particles is

A,

Q) = A4—— e

+ B (10)

where 4 is an optical constant which depends on the inten-
sity factor of the spectrum, B is a constant, a measure of

POLARIZER
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TEMPERATURE

CONTROLLER

PROGRAMMABLE
TIMER

TELETYPE

PDP-8/E
COMPUTER

OSCILLOSCOPE

shot-noise level and the spectral half-width at half-height
Avy, is related to the translational diffusion coefficient D by

Avy, = DQ%lT a1y
Our instrument [18} is schematically depicted in a block
diagram in figure 10. A typical power spectrum obtained
from a Dow Polystyrene Latex standard suspension (45.4
nm radius) is shown in figure 11 and the corresponding
spectral halfwidth against Q%/x is displayed in figure 12
where the scattering angle spans the range 10°-100°. The
diffusion coefficient deduced via eq (11) is (5.39+£0.04) X
10~%cm?/s which is in turn converted to the Stokes radius of
45.5 £0.4 nm. Progression of the S/N ratio of the observed

power spectrum with the number of accumulations is shown
in figure 13.

4. Electrophoretic Light Scattering

The technique was first developed by Ware and Flygare
in 1971 [19] and subsequently by Uzgiris in 1972, [20] and it
has since undergone substantial refinements [21-29]. The
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FIGURE 10. Block diagram of Rayleigh spectrometer.
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advantages that it offers over the conventional electrophor-
esis methods have now been well-documented in the liter-
ature [25, 27]. As with any new technique, this one also had
to first be calibrated against those of more conventional
methods with the use of a test system. Ware and Flygare
chose bovine serum albumin (BSA) for the purpose because
it was one of the best characterized globular proteins and
commercially available in a relatively pure form. Others
have subsequently chosen BSA for the same reason to
calibrate their instruments [28-32].

The method is no more than another application of laser
velocimetry. A monodisperse system of charged particles in
dilute solution under the influence of an applied electric
field would drift uniformly to the oppositely charged elec-
trode. The diffusion equation governing this situation [4] in

HRLF WD 233

xXi1gac
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Ficure 11. Homdyne power spectrum of a polystyrene latex standard at 2
kHz bandwidth with Av, = 299 Hz.
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FIGURE 12. Av. versus g*/mn whose slope yields D = (5.39+0.04) x

10-2m?/s and the Stokes raduis 0f45.6 + 0.4 nm.

terms of the self part of the space-time autocorrelation func-

tion G,(R,?) is

% G(R,j) + VooVG,(R,j) = DVG,(R,)  (12)
with the initial condition
G(R,0) = ¥R) (13)

where V, is the uniform drift velocity, D the translational
diffusion coefficient of particle and &R) is the Dirac delta
function. Upon taking the space Fourier transforms of the
above, we have

%F,(Q,t) + iQ-V.EQ) = — Q*DF,(Q,t) (14)

with
FQ0) =1 (19)
The solution of eq (14) with the initial condition, eq (15), is

F Q1) = 2t eVs (16)
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FIGURE 13. Power spectra of polystryene latex standard taken at 60° scat-
tering angle. A, B, and C are 250, 1000 and 4000 scan averages, respec-
tively.
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The power spectrum of heterodyne beating from a system of
charged particles governed by eq (16) is a Doppler shifted
Lorentzian whose shifted angular frequency Aw, is given by

Aw‘ = Q‘Vd (17)

Our scattering geometry is represented in figure 14. In
order to effect heterodyne beating, the scattering angle has
to be fairly small (2°-8°) so as to make use of cell surface
reflected light as the local oscillator component. Thus the
shifted frequency

Av, = QV, cos(0/2)2m = mnu(0V,,)360d\, (17)

where n is the refractive index of scattering medium, p the
electrophoretic mobility (the drift velocity per unit field
strength), @ the scattering angle, V,, the peak-to-peak ap-
plied voltage, d the electrode spacing (1.84 mm in our case)
and )\, the incident wavelength in vacuo. Hence, the shift
frequency A, should be proportional to the product, 67,,,
and the electrophoretic mobility u can be deduced by deter-
mining Av, measured at different scattering angles and V.

Since there were some discrepancies in the mobility
values of BSA reported by Ware and Flygare [19, 21] and
Mohan et al. [28] by electrophoretic light scattering and
those by Schlessinger [30], Alberty [31], and Longsworth and

Jacobsen [32] with the moving boundary method, we have
set out to examine the discrepanices [33]. The purpose was
to test the accuracy attainable by this technique vis-g-vis
that of a more conventional method. In so doing, we have
not only found the mobility by this technique to be in com-
plete accord with those of the moving boundary method but
also established that the BSA mobility depends on the ionic
strength of the suspending medium according to Henry’s
formulation [34, 35]. The latter finding is neither without
parallel nor unexpected [36-38], but the ease of the experi-
ment to confirm it points to the utility and power of the
technique. At the same time, our experiment, which covers
a wide range of ionic strength, points to certain limitations
and the complementary nature of the technique with more
conventional methods.

The discrepancies referred to above were entirely due to
the sample polydispersity and had little bearing on the
veracity of the electrophoretic light scattering technique.
This was confirmed by examining the two sets of samples.
First is the so-called Fraction V of Armour (Lot A21505)
which was used by Ware and Flygare as well as by all others
with the moving boundary method, and the other is the BSA
Monomer Standard of Pentex brand from Miles Labora-
tories. Polyacrylamide gel electrophoresis patterns of the
two are compared in figure 15. In figure 16, we display how
well the shifted frequency depends linearly on the product
(6+V.,,) for the Fraction V sample. Finally we compare the
deduced mobilities, corrected to 20 °C in water, of the two
samples relative to their ionic strength dependence in
figure 17. In the same figure, we plot all other available

GEQMETRY OF ELECTROPHORETIC SCATTERING

vlectrode(+)

B
A\ Vv,
electrode(-) e - -

L)l‘
1=
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FIGURE 15. Polyacrylamide gel electrophoresis patterns of polydisperse
BSA Fraction V of Armour and Pentex brand BSA monomer standard.
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FIGURE 16. Electrophoresis Doppler shift frequency Aw, versus 8V, for
Fraction V samples at 5 mM ionic strength. Three independently prepared
samples are examined. Scattering angles of two preparations are distin-
guished as (@) 2°, (®) 3°, (O) 4°, (O) 4° and third preparation is meas-
ured at ((J) 6°.

BSA data in the literature at pH 8.7-9.4 after making ap-
propriate temperature correction. Two solid curves are
drawn according to Henry’s equation

= O
= 6mR ———= flxR)

(18)
where Qf is the net charge of the electrokinetic unit, 5 the
viscosity of the medium, R the radius of the unit, ™" is the
Debye screering length, and f{xR), which accounts for the
ionic strength dependent charge screening, is given by

(19)
+[ (K§)4 (xR) ] ® = r erdt)

where the integral in the last term is the exponential in-
tegral E,(xR) [39]. With use of the Stokes radius of 36A
deduced from the translational diffusion coefficient of BSA
by Baldwin et al. [40] and with the dependence of x™* on
ionic strength I at 20 °C as x~'=3.045//I(A), the two
curves are drawn with 20 and 26 electronic charges per BSA
molecule for @, respectively, for the lower (Fraction V) and
upper (Pentex) sets. Since the data by the moving boundary
method are all obtained with the Fraction V samples, it is

/1,;!0"
{emtv s) i

.01

I(m)
FicuRe 17. Electrophoretic mobility, corrected to 20 °C in water, versus
ionic strength. Open circles with error bars are Fraction V sample, filled
circles with error bars are Pentex sample. * is from the slope of figure 16.
All others are from the literature; () Schlessinger, (®) Alberty, (O and V)

Longsworth and Jacobsen, (4) Ware and Flygare [20] and (A) Ware and
Flygare22 and ({)) Mohan et al. [29]
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not surprising that they belong to the lower set and are con-
sistent with ours. The results in figure 17 represent the first
instance, to the best of our knowledge, of a systematic study
of BSA mobility dependence on ionic strength at a given
pH. It is clear that Henry’s equation can well account for
the ionic strength dependence of electrophoretic mobility.

5. Forward Depolarized Scattering (FDS)

The technique was first proposed and utilized by Wada
and coworkers in 1969-70 [41, 42] for the determination of
the rotatory diffusion coefficient of a rod-like molecule, i.e.,
tobacco mosaic virus. A further refinement was reported by
Schurr and Schmitz in 1973 with the same system [43] and
an extension to calf-thymus DNA followed [44]). I will illus-
trate the technique with use of an example, namely the
intrachain dynamics of linear flexible macromolecules in
dilute solution. A theoretical formulation of the spectral
profile of a scattered optical field is provided by Ono and
Okano. We have slightly generalized the scheme by con-
cluding that the FDS spectrum is a superposition of uni-
formly weighted multiple Lorentzian as long as there exists

the normal coordinate transformation for the intramolecu- S, (0, »)=4 (112x7) (22)
lar chain dynamic modes [45]. 10 v2+(1277)
NEUTRAL
SHUTTER
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A model of dilute polymer solution is composed of opti-
cally isotropic solvent and linear flexible chains, each of
which is constituted of n +1 anisotropic elements with cylin-
drical symmetry. The FDS spectral profile is formally given
by

u P
& o May

)

Ly (@)=BN/V) |2, < & ©)> eiordr (20)

where B is an optical constant, (N/V) is the number density
of polymer molecules within the scattering volume, the sub-
scripts ¥ and A refer to the vertical and horizontal polariza-
tion directions of the incident and scattered optical fields,
respectively, and < > refer to the equilibrium ensemble
average. If the normal coordinate transformation is possi-
ble, the long wavelength modes in hydrodynamic regime is

I/Tk

arany @

Iy, (@) =BW/Y) (Aal3y £,

where Aw is the optical anisotropy of each element and 7, is
the kth normal mode relaxation time. In case of a monodis-
perse system of dilute rigid rod molecules, the heterodyne
power spectrum corresponding to eq (21) is

Ficure 18. Block diagram of the Rayleigh spectrometer in the FDS configuration and the filter train. Here, I', I and F stand for the incident, leakage
and scattering intensities, respectively, and the subscripts V and H designate vertical and horizontal polarization directions.
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where 7 is the relaxation time of rotatory diffusion of the
rod.

The optical train of our apparatus [46] is shown in figure
18, and an example of S (O, ») for a dilute solution of
poly(n-hexyl isocyanate), a rigid rod chain of 3500A in
length, is given in figure 19.
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FIGURE 19 FDS power spectrum of PHIC (M.W. 3.2 x 20%) in n-hexane at
C = 216 mg/mL with single Lorentzian fit (—) and Zimm spacing fit
(—-—). Upper and lower graphs are distinguished by linear and
logarithmic frequency scales.

The four light scattering techniques that we employ to
study a variety of scattering systems are summarized above.
Before leaving this section, I note parenthetically that our
data acquisition and analysis system makes use of a mini-
computer (PDP8/e) and a set of two microprocessor com-
puters (Apple II) interacting with a Harris/7 system. This is
shown schematically in figure 20 where only the part deal-
ing with computer controlled automatic goniometer on
SOFICA light scattering photometer is yet to be imple-
mented while all others are now in operation.

6. Systems

Turning to the four systems that were studied by one or
more of the above techniques, table I summarizes what we
were able to learn about these systems by the light scatter-
ing methods. For the sake of brevity, I will not discuss all of
them in the same detail but rather highlight some selected
aspects of some of them.
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Ficure 20. Data acquisition and analysis system of
quasielastic light scattering in time domain
(Malvern autocorrelator) and in frequency domain
(PDP 8/€) and those of elastic light scattering.

a. Amphoteric Latex Particles

Monodisperse latex particles have been utilized in a wide
variety of fields including immunochemical assays [47, 48]
and biomembrane studies [49] in addition to their more con-
ventional applications as the markers and calibration stan-
dards in microscopy and light scattering and as the model
colloids [50]. Our interest coincides with the last instance
where an amphoteric latex system with the well-defined
number of charges can be invoked as a model for globular
proteins and biomembrane vesicles relative to the ioniza-
tion behavior of their surface groups. Recently, Homola and
James [51] were able to prepare an amphoteric latex system
without any added surfactants which now meets the require-
ment of a well-defined charge number. The latex particles
consist of three monomers, styrene (S), methacrylic acid
(MA), and N,N-diethylaminoethyl methacrylate (DEAM),
emulsion polymerized with persulfate at 70 °C.

We were mainly interested in whether there exists any
size change at different pH [52]. One of the transmission
electron micrographs taken of the samples is shown in
figure 21 which makes it evident that the sample has a
relatively homogeneous size distribution. Results of the con-
ductometric and potentiometric titrations, as shown in
figure 22, give clear evidence that the latex particles are in-
deed amphoteric in nature and the titration valences at the
extreme pH of 3 and 11 are fairly symmetric at about 6 X 10°
electronic charges per particle. This was deduced from the
titration results and the size determination, which was per-
formed by elastic light scattering according to the method
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TABLE 1. List of the four systems studied by light scattering techniques

TECHNIQUES

SYSTEM STRUCTURE or PROPERTIES VARIABLES
Amphoteric Latex Particles ELS Surface Layer Dilation; pH
QLS electrostatic interactions
EPLS
Photoreceptor ELS l. osmotic deformation l. photochemical states
Retinal Disc Membranes QLS 2. membrane lateral stiffness 2. chemical potential gradiem
EPLS 3. ion permeability 3. 1on concentration

Nematic Liquid Crystals

Optical Birefringence

NMR Line Splittings

L surface 1on binding

l. Orientation Distribution

Funetion

l. nor -nemalogen composition

2 lemperature

FDS 2

2. order fluctuation dynamics

Linear Macromolecules FDS internal normal modes

ELS: elastic light scattering—total scattered intensity profile

QLS: quasielastic light scattering—angular dependent spectral shape
EPLS: electrophoretic light scattering—electrical field dependent QLS

FDS: forward depolarized scattering

o

00¢

[ 1 " ; e
! amphateric latex particles at X67,000.
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FIGURE 22. An example of potentiometric and conductometric titration. For the conductometry, the
left intersection point of extrapolated lines is taken as the starting point of protonation of amino
groups and the right intersection point as the termination point of protonation of carboxylate ions.

outlined earlier. In figures 23 through 25, we show the scat-
tering profiles, plotted according to eq (9), at nominal pH of
3,7 and 11, all at the same ionic strength of 1 mM. We dis-
play in figure 26 all the radius data so obtained at different
pH from 3 to 11 at the same ionic strength. It is evident that
there is a symmetric size change with respect to pH and the
point of minimum radius at around pH 7 coincides with the
isoelectric point determined by titration. The Stokes radii
obtained by quasielastic light scattering agree with those in
figures 23 and 25, 125 £3 nm and 123 +3 nm respectively at
pH 3 and 11, while that of 118+2 nm at pH 7 does not
agree with the radius in figure 24, 112+ 2 nm. Collecting all
these results, we propose a model as depicted schematically
in figure 27. It consists of hydrophobic core mainly con-
stituted of styrene monomer and of hydrophilic shell made
predominantly of ionic comonomers, MA and DEAM. The
observed size change is then attributed to the chain expan-
sion in the shell layer due to electrostatic repulsive interac-
tions while the core remains relatively intact with respect to
pH changes in the suspending medium. What remains
uncertain however is the difference between the Stokes
radius and that determined by elastic light scattering at pH
7. Whether the difference could be attributed to the
thickening of the hydration layer at the isoelectric point
must be examined by another technique such as NMR.
Before closing I must remark that one could raise the
issue of whether our scheme of size determination is indeed
probing the outer radius of swollen latex particles as con-
trasted to some ill-defined average of the inner and outer
radii. After performing a set of simulation studies with con-
centric spheres having different segment densities in the
shell volume relative to that in the core, we are convinced
that our method is likely to underestimate the outer radius

0
.25 .35 .45 .55 .65 .75 .85 .95

3 —
1(6)-Sin*(e72)
(a.u.)

2_

Ap=436nm

1 | | ]

Sin (8/2)
FiGURE 23. Light scattering profile of amphoteric latex at pH 2.97 where
the polarization condition was unpolarized/unpolarized. Solid curves
represent an isotropic solid sphere with the indicated radius in the
Rayleigh-Gans-Debye scattering.
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FIGURE 24. Same as figure 23 at pH 6.75.
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FICURE 27. Schematic representation of pH induced swelling and deswelling of latex particles.

in the swollen state. Hence the latex particle dilation could
easily be larger than what we report here. Unambiguous
confirmation of the concentric sphere model is not possible
with light scatterings alone. It might be possible to employ
small angle neutron scattering [53] with perdeuterated core
(with fully deuterated styrene monomer) and an appropriate
D,0/H,0 mixture to contrast match the core and solvent
such that the scattering due to the shell volume can be ac-
centuated, whereby we could indeed measure the shell
thickness dilation with pH.

b. Photoreceptor Disk Membrane Vesicles

The vertebrate visual process involves complex sequences
of events in transducing photochemical energy to electrical
energy [54-56]. A vast literature exists concerning the role
of the visual pigment membrane in this process [57, 58]. Our
goal has been to isolate disk membranes from vertebrate
rod outer segment (ROS) as intact as possible {59] and focus
on their static and dynamic structure relative to the photo-
receptor function. I shall now discuss what we have learned

pH 7

130
126}
1221
Rinm)
RR1:2 od

R10] od

10

pH

FICURE 26. The particle radius versus pH. The dashed curve represents
the degree of ionization and the solid curve a model of simple polyelec-
trolyte effect for the shell layer.

pH Il

about these membranes by isolating the disk membranes
from ROS, swelling them into vesicles in hypotonic media
and examining them in dilute suspensions by quasielastic
and elastic light scatterings.

A typical homodyne power spectrum is shown in figure 28
and the spectral halfwidths obtained at different scattering
angles are displayed in figure 29. From these, we deduced
the Stokes radius of 0.51 £0.05 um. If the vesicles were
spherical in shape, then modelling them as spherical shells
was quite reasonable because the bilayer thickness [60] of
about 75 nm was negligibly small compared to 500 nm for
the Stokes radius. Analogous to eq (9), one obtains from Egs
(5) through (8) in the limit of p=¢=0,

22P(f)=sin*x 23
for spherical shell. The results of elastic light scattering
plotted according to eq (23) are shown in figure 30. The
equilibrium radius calculated from the Bragg condition of
OR=n=l2, where the maxima are given by n =0dd integers
and the minima by n =even integers, is 0.48+0.06 ym. In
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FIGURE 28. An example of homodyne power spectrum of the scattered
light from photoreceptor disk membrane vesicles at 50° scattering angle.
Each solid curve in the upper figure represents a single Lorentzian profile
with a halfwidth Av% of 16 Hz. In the lower figure, the normalized resid-
uals of fitting to the single Lorentzian is plotted against frequencyv.
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Ficure 29. 4v,, versus k*/m. Three independently prepared samples are
distinguished by different symbols.

view of the agreement between the results of quasielastic
and elastic light scattering, we take the spherical shell
model for the vesicles to be valid in this particular suspend-
ing medium [61, 62].
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FIGURE 30A. The scattered intensity modulation profiles of two indepen-
dently prepared vesicle suspensions of ROS membranes are displayed by
plots of 1..(8) sin? (8/2) against sin (§/2). The two sets are vertically shifted
to exhibit the reproducibility of the extrema positions. The solid curves
22Hx) or (QR.P<AB)> is plotted against sin(8/2). The parameters used for
the theoretical profiles are R = 0.48 um for monodisperse shells (h = )
and R, = 0.48 um for polydisperse shells of the indicated distribution
index h. Zimm-Schulz distribution function is used for the number fraction
of shells with radius R as

1 (h+1\™ (r+DR
MR =31 (-,%-) Rrexp[-—x )

where R, is the weight average radius.

Ficure 30B. Comparison of the intensity profiles of solid sphere (solid)
and sperical shell (dashed) is given by two theoretical curves; the experi-
mental data for polystyrene latex sphere (0.45 pum radius) are represented
by the circles. Here, the plot is I(6) versus sin (6/2) unlike those in (30a).
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Upon changing the osmotic pressure of the suspending
medium by an impermeable second solute, e.g., sucrose, we
observe that the vesicles deform by deswelling, which is
caused by the chemical potential gradient of the principal
permeable component, namely H,0. From the osmotic
deformation behavior of the vesicles we were able to
estimate the lateral compressive modulus of the membrane
bilayer [63). This turned out to be around 3 X 10°Pa.

Since the membrane vesicles respond to the chemical
potential gradient of water across the bilayer, their defor-
mation behavior can be used to probe the permeability of
ionic components including the hydrogen ion. Elastic light
scattering studies of the vesicle shape have shown that the
hydrogen ion is completely permeable within the pH range
of 6-8 [64]. This is shown in figure 31 where the scattering
profile of the spherical shell shape of the vesicles is hardly
affected.

The binding of Ca*? on vesicles was then studied by elec-
trophoretic light scattering [65]. The Doppler shift spectra
all at 7° scattering angle and 20 °C at a constant ionic
strength of 1 mM are displayed in figure 32. The corre-
sponding electrophoretic mobility profile at different Ca*?
concentrations is shown in figure 33 where the solid curve is
drawn with a two-binding sites model. It can be represented
by

l+KC"’)

r/C=K,C(n,~r)+n,K, (1+KC

(29
where r is the number average bound Ca*? per vesicle, 7,
and K, are respectively the number of high affinity, a sec-
ond order cooperative binding sites and the corresponding
binding constant, and n, and K are the other set of con-
stants for low affinity, a first order non-cooperative binding.
By replotting the data in figure 32, a Scatchard plot shown
in figure 34 results, from which we estimate n, =
(1.4£0.1)X10* and K, = (7£2)x 10" M2 while n, and K,
are subject to a good deal of uncertainty.

c. Binary Nematic Solutions

Here, our interest was focused on examining how the
phase behavior [66) and dynamic twist modes [67] were af-
fected by mixing of non-nematogens (biphenyl and benzene)
to a thermotropic nematic liquid crystal, methoxy benzyli-
dene butyl-aniline (MBBA). The scattering technique is the
FDS method where the director of the nematic system is
oriented parallel to the polarization of incident light while
that of scattered light is perpendicular to the director axis
[68). Two examples of the FDS power spectra are displayed
in Fig 35. With use of the twist viscosity of Gahwiller [69],
we were able to determine the twist elastic constant of pure
MBBA as a function of the reduced temperature. This is
shown in figure 36. Incorporating the concentration de-
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pendence of a non-nematogen to that of temperature, we
could deduce the mapping of the twist diffusivity coefficient
over the entire binary nematic phase region. In figure 37,
such a mapping is displayed where the non-nematogen is
biphenyl [68]. Fearing that this might have been unique to
the biphenyl-MBBA system, benzene-MBBA nematic solu-
tion was also examined [70]. The result, as shown in figure
38, indicates that such a behavior is not restricted to the
bipheny-MBBA system.

pH effect at total osmolarity
of 2mM

0o .2 4 .6 .8
Sin (6/2)

Ficure 31. Light scattering intensity profiles of the vesicles at different
pH to show that hydrogen ion is completely permeable to the membranes
within the pH range studied. Profiles give no indication of the osmotic
deformation which is clear evidence for shape invariability,
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FicURE 32. Three heterodyne spectra of electrophoretic light scattering,
all at 7° scattering angle and 10V peak-to-peak (27V/cm) at three different
Ca*? concentrations at 1 mM ionic strength solution
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FIGURE 33. The electrophoretic mobility, corrected to 20 °C in water, is
plotted against Ca*? concentration in log scale. Error bars apply to every
data point although only three are shown. The solid curve is drawn ac-
cording to the model discussed in the text.
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FIGURE 34. A Scatched plot where the number average degree of binding
per unit ligand concentration r/C is plotted against the degree of binding
r. Error bars apply to every data point although only two are shown. Solid
curve is drawn according to the model discussed in the next while dashed
line is drawn by ignoring lower five points in r. The intercept with the
abscissa of the dashed line gives the apparent first order binding site
number 7, and its slope the apparent first order dissociation constant K,
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FicuRE 35. Heterodyne power spectra of pure MBBA at 36.90 °C, Av,, =
30.120.1 Hz(upper) and at 44.95 °C, Av,, = 6.920.6 Hz (lower).

587



Kgaltv'dyne)

|
° .0[8 e
~TI1)

o4 .02 )

FIGURE 36. The elastic constants of pure MBBA versus the reduced tem-
perature 7{T). The bend (@ = 3) and splay (o = 1) elastic constants are from
the work of Haller and the twist constant (@ = 2) is ours with use of the twist
viscosity of Gahwiller.

106 T T T ¥ L
8} A +r + :
ettt ]
o i,
Lot T 7
Na ‘ O‘.?/ + -
:E‘ .
9 e ¢ . n
? B )
% . 0 ~
2 B
\: 2+ -8 AN T
X bix =
6 \
002 0T
X 06 .08
|0~ L I l 1 |
.08 06 08 02 00
TiT,Xx)

FIGuRE 37A. Composition reduced twist diffusivity coefficient K,,/y,$(X)
versus the reduced temperature (T, X) = T— Ty,(X)/ To(X), where T,,(X)
= (0)(1-250X) as observed from the phase diagram, The filled circles are
from temperature scan of pure MBBA, the open circles are from
temperature scan of 0.081 mole fraction biphenyl solution and the crosses
(+)are from composition scan at 23 °C.

Ficure 37B. &(X), the composition dependent factor of the twist diffusivi-
ty coefficient at constant reduced temperature versus mole fraction of
biphenyl.
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FrcuRe 38. Same as figure 37 for the MBBA-benzene system.

d. Intramolecular Chain Dynamics of Isotactic Polystyrene

A typical FDS power spectrum [46] of an isotactic polysty-
rene sample (Mw=3.5x10%, <s?>%*=1270 A)in tetrahy-
drofuran at 4.0 mg/mL is shown in Fig 39. All spectra were
analyzed according to eq (21) with the Zimm spacing [71] of
relaxation times up to five relaxation modes. Truncation
beyond the 6th mode was called for due to the chosen band-
width of 2 kHz whereby the higher modes were obscured by
the shot-noise level. Spectral analysis was effected by a
3-parameter fitting routine; the parameters were the spec-
tral intensity, shot-noise level and the terminal relaxation
time 7,. By fixing the spacing to that of Zimm type, what we
extract from the experiment is 7,, the slowest relaxation
time of internal normal modes. Because all measurements
were performed at finite concentrations, we had to extrapo-
late the data to infinite dilution. This is effected by plotting
7, against relative viscosity 7, of polymer solution and ex-
trapolating to n,=1. Such a plot is shown in figure 40 from
which 7, at infinite dilution is determined as(1.2-1.5)x10™
sec with an experimental uncertainty of £30%. The theo-
retical value of 7, for the polymer sample is 1.5x10™ sec.
Within the experimental error the two are in agreement.

7. Concluding Remarks

It is my hope that the readers of this report would be as
excited as I have been about the potentials of light scatter-
ing techniques and have some appreciation for what kinds
of problems can be tackled. I must again emphasize that
this is intended only as a sketchy review of what my students
and I have been able to do and not as an up-to-date review
of the field. I have cited several excellent reviews in the text.
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Ficure 39. FDS power spectrum of isotactic polystyrene (M.W. 3.5x 10¢)
in THF at C = 4.0 mg/mL. The solid curve is for a single Lorentzian fit
and the dashed curve is for Zimm fit with the first five relaxation times
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FIGURE 40. The terminal relaxation time deduced from the Z5 fit of the
FDS power spectra of isotactic polystyrene in THF is plotted against rela-
tive viscosity at different concentrations (0.65 mg/mL — 4.0 mg/mL. Error
bars define 95% confidence limit of the fit and the theoretical value of the
Zimm modelis designated as 19, in the ordinate.
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The ALOHA System, an experimental UHF radio computer communication network, was developed at the Uni-
versity of Hawaii, 1970-76. In this survey paper, we give a general overview of packet communication techniques
applied to computer networks. Then we discuss the concept of packet broadcasting and give a short description
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1. Introduction

Developments in remote access computing in the
1970’s have resulted in greater and greater importance
attached to computer-communication networks. In discuss-
ing computer-communications it is useful to distinguish
between communications among computers, and commu-
nications using computers. For example, the ARPANET
[l]I is a computer-communications network that intercon-
nects a collection of large or specialized research com-
puters and uses both kinds of communications. Com-
munications among the ARPANET computers is made
possible through the use of message switching computers
called IMP’s (Interface Message Processor) and TIP’s
(Terminal Interface Processors).

In discussing the ALOHA broadcast packet communica-
tion network, we concentrate on communications using
computers. The term “‘broadcast’” implies radio.
ALHOHA is one of the world’s first time-sharing networks
that uses packet radio as the communications medium.
By the word “‘packet”’ we mean an allocated unit of
transmitted information in terms of a specific number of
bits. For example, in the mail system, a packet is a letter
with a variable number of bits; in the ARPANET, a
packet is a string of data of 1024 bits. Before we discuss
the specifics of the ALOHANET, it is useful to examine
what we mean by packet communications.

*The writing effort was supported by the Office of Naval Research under Con-
tract No. N0O0O14- C-78-0498.
! Figures in brackets indicate literature references at the end of this paper.

2. Packet Communications

In the early days of time-sharing, remote access to the
central computer depended almost exclusively on the use
of leased or dial-up facilities provided by the telephone
company. Generally the terminal-to-computer access was
by means of dialup facilities which made use of
telephone circuits on a circuit-switched basis. In circuit
switching the telephone system’s exchanges are switching
nodes which piece together a continuous path or circuit
from caller to receiver. The connection is maintained un-
til either party hangs up. Usually the call is charged on
an elapsed time and/or distance basis. Circuit switching is
a technique that was developed at the turn of the cen-
tury for voice communications. When applied to com-
puter-communications, circuit switching is applicable but
not totally satisfactory for one reason: cost effectiveness.
Computer data is usually transmitted as bursts in-
terspered between varying quiescent periods. When two
people are conversing over a voice circuit, the circuit is
used quite efficiently. However, for interactive computing
on a time-sharing system, the circuit is utilized only a
small percent of the total connect time for actual
transmission of data [2].

Packet switching is a technique which has evolved in
the late 1960°s and early 1970’s and is ideally suited for
computer data communications. In a packet switching
network, the topology takes the form of a highly con-
nected (but not fully connected) set of nodes. At each
node is a computer that acts as a message switch. In the
case of the ARPANET this computer is the IMP or TIP.
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Messages from Computer A to Computer B in the net-
work are transmitted in the form of packets of a given
number of bits. Each packet has a “header’’ which con-
tains information giving a complete specification of the
communication desired (e.g. destination, source size se-
quence number, priority, etc.). Each packet also has a
given number of checksum bits for error detection pur-
poses. A packet sent from A to B does not have a fixed
route. It is sent to intermediate nodes in a store-and-
forward manner. Each node examines the packet for its
ultimate destination and makes a parity check to deter-
mine any error. If the packet is received with no errors,
an acknowledgement is sent to the previous node
traversed and the packet is successively forwarded to the
next node down the line until it is received, error free at
its ultimate destination. Route selection is dynamic in
that each packet is directed along a path for which the
total estimated transit time is minimum. This path is not
predetermined but calculated at each intermediate node.

Since packet switching uses computers so heavily in the
communications process, it has only become feasible in
the past few years because of the increasing speed and
lowered costs of digital computers. Roberts [3] makes
clear this point in the introduction of his paper:

*'Packet switching (is) strongly dependent upon the cost
of computing since it uses computers to correct transmis-
sion errors, to provide high reliability through alternate
routing, and to allocate communication bandwidth on a
demand basis rather than as a preassigned bandwidth.”

Metcalfe [4] gives a good summary of the reasons why
packet switching is too efficacious for computer com-
munications,

“In pure packet-switching, on the other hand, the com-
munication system does not dedicate circuits to set up
connections; rather, the messages which form a conversa-
tion are injected individually at the exact moment of
their readiness. Because there is no connection setup to
amortize over a conversation, short conversations are not
seriously disadvantaged relative to long ones; because a
packet-switching system allocates its resources to
messages rather than conversations, the inactive periods
in one conversation can be used to support other conver-
sations. Packet-switching makes good use of communica-
tions facilities when the conversations being carried are
either short or very bursty.”

3. Packet Broadcasting

Packet broadcasting is a technique whereby data is
sent from one node in a net to another by attaching ad-
dress information to the data to form a packet typically
from 30 to 100 bits in length. The packet is then broad-

cast over a communication channel which is shared by a
large number of nodes in the net; as the packet is
received by these nodes the address is scanned and the
packet is accepted by the proper addressee (or ad-
dressees) and ignored by the others. The physical com-
munication channel employed by a packet broadcasting
net can be a ground based radio channel, a satellite
transponder or a cable.

Packet broadcasting networks can achieve the same
efficiencies as packet switched networks [1] but in addi
tion they have special advantages for local distribution
data networks, and for data networks using satellite chan-
nels [5]. In this paper we concentrate on those charac-
teristics which are of interest for a local distribution data
network. In particular, we discuss the design and imple-
mentation of the ALOHANET, a packet broadcasting
radio network in operation at the University of Hawaii
during 1970-76.

The ALOHANET was the first system which success-
fully utilized the packet broadcasting concept for on-line
access of a central computer via radio. Although it has
not been in operation since 1976, its design principles
have been applied to a number of successfully operating
present-day networks including ETHERNET [6], the
Packet Radio Network (PRNET) [7], and the Packet
Satellite Net (SATNET) [8]. In the next section we will
briefly examine the operations of the ALOHANET [5].

4. Alohanet operations

In the ALOHANET, two 100 KHz channels were used
in the UHF band—a random access channel for user-to-
computer communication at 407.350 MHz and a broad-
cast channel at 413.375 MHz for computer-to-user
messages. The original system was configured as a star
network, allowing only a central node to receive transmis-
sions in the random channel; all users received each
transmission made by the central node in the broadcast
channel. However, the subsequent addition of ALOHA
repeaters generalized the network structure.

A block diagram of the ALOHANET is shown in figure
1. The central communications processor of the net is an
HP 2100 minicomputer (32K of core, 16 bit words) called
the MENEHUNE [5] (Hawaiian for IMP) which functioned
as a multiplexor/concentrator in much the same way as an
ARPANET IMP [1}. The MENEHUNE accepts messages
from the UH central computer, and IBM System 370/158
running TSO or from ALOHA’s own time-sharing com-
puter, the BCC 500, or from any ARPANET computer
linked to the MENEHUNE via the ALOHA TIP. Outgoing
messages in the MENEHUNE are converted into packets,
the packets are queued on a first-in, first-out basis, and are
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then broadcast to remote users at a data rate of 9600 baud.

The packet consists of a header (32 bits) and a header
parity check word (16 bits), followed by up to 80 bytes of
data and a 16-bit data parity check word. The header
contains information identifying the particular user so
that when the MENEHUNE broadcasts a packet, only the
intended user’s node will accept it.

The random access channel (at 407.35 MHz) for com-
munication between users and the MENEHUNE was
designed specifically for the traffic characteristics of
interactive computing. In a conventional communication
system a user might be assigned a portion of the channel
on either an FDMA or TDMA basis. Since it is well
known that in time sharing systems, computer and user
data streams are bursty [2] such fixed assignments are
generally wasteful of bandwidth because of the high
peak-to-average data rates that characterize the traffic.
The multiplexing technique that was utilized by the
ALOHANET was a purely random access packet switch-
ing method that has come to be known as the pure

ALOHA technique [9]. Under a pure ALOHA mode of
operation, packets were sent by the user nodes to the
MENEHUNE in a completely unsynchronized manner—
when a node was idle it used none of the channel. Each
full packet of 704 bits required only 73 ms at a rate of 9600
baud to transmit (neglecting propagation time).

The random or multi-access channel can be regarded
as a resource which is shared among a large number of
users in much the same way as a multiprocessor’s
memory is “‘shared.”” Each active user node is in conten-
tion with all other active users for the use of the
MENEHUNE receiver. If two nodes transmit packets at
the same time, a collision occurs and both packets are re-
jected. In the ALOHANET, a positive acknowledgement
protocol was used for packets sent on the random-access
channel. Whenever a node sent a packet it had to receive
an acknowledgement message (ACK) from the MENE-
HUNE within a certain time-out period. If the ACK was
not received within this interval the node automatically
retransmitted the packet after a randomized delay to
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avoid further collisions. These collisions, however, limited
the number of users and the amount of data which could
be transmitted over the channel as loading was increased.

An analysis [9] of the random access method of
transmitting packets in a pure ALOHA channel showed
that the normalized theoretical capacity of such a channel
was Voe = 0.184. Thus, the average data rate which can
be supported is about one sixth the data rate which could
be supported if we were able to synchronize the packets
from each user in order to fill up the channel completely.
Put another way, this result shows the ALOHA 9600
bit/second random access channel could have supported
between 100 and 500 active teletype users—depending
upon the rate at which they generated packets and upon
the packet lengths.

4.1. ALOHANET Remote Units

The original user interface developed for the system
was an all-hardware unit called an ALOHANET Terminal
Control Unit (TCU), and was the sole piece of equipment
necessary to connect any terminal or minicomputer into
the ALOHA channel. As such it took the place of two
dedicated modems for each user, a dialup connection
and a multiplexor port usually used for computer net-
works. The TCU was composed of a UHF antenna,
transceiver, modem, buffer and control unit.

The buffer and control unit functions of the TCU were
also handled by minicomputers or microcomputers. In the
ALOHA system several minicomputers were connected in
this manner in order to act as multiplexors for terminal
clusters or as computing stations with network access for
resource sharing. A later version of the TCU, using an
Intel 8080 microcomputer for buffer and control, was
built. Since these programmable units allowed a high
degree of flexibility for packet formats and system pro-
tocols, they were referred to as PCU’s (Programmable
Control Units).

Since the transmission scheme of the ALOHANET was
by line-ofsight, the radio range of the transceivers was
severely limited by the diversity of terrain (mountains,
high rise buildings, heavy foliage) that exists in Hawaii. A
late development allowed the system to expand its
geographical coverage beyond the range of its central
transmitting station. Because of the burst nature of the
transmissions in the ALOHA channel it was possible to
build a simple store-and-forward repeater which accepted
a packet within a certain range of ID’s and then repeated
the packet on the same frequency. Each repeater per-
formed identically and independently for packets directed
either to or from the MENEHUNE. Two of the repeaters
were built which extended coverage of the ALOHANET

from the island of Oahu to other islands in the Hawaiian
chain.

5. Satellite communications

Because of the geographic isolation, one of the original
objectives of the ALOHA system was to study the
feasibility of the computer-communications by means of
satellite. With the development of digital communication
systems by COMSAT in which data at the rate of 50K
baud can be transmitted through a single voice channel
data transmission by satellite has become both
technologically and economically feasible [10].

There is a basic and important difference between the
use of a satellite channel and a wire channel for data
communications. The satellite channel is a broadcast
channel as opposed to a point-to-point wire channel, so
that a single voice channel, say between ground stations
A and B can be used in broadcast mode among any set of
ground stations, providing a full broadcast capability of
two 50K baud channels. Thus a single commercial satel-
lite voice channel could be employed with the following
characteristics:

1. The single voice channel could provide two up-link
and two down-link 50K baud data channels.

2. Each of these four channels could be simultaneously
available to any COMSAT ground station in sight
of the satellite.

In December 1972, the ALOHA system became the first
operational satellite node on the ARPA network. The
satellite used was the Pacific Ocean INTELSAT IV, and
the mode of operation is the single-channel-per-carrier
PCM voice link that is employed on the SPADE demand
assignment system [11]. The PCM voice channel converts
analog voice into 56 kilobit PCM. With 50 kilobit data
transmission the conversion is unnecessary. The tariff for
this service is charged on the basis of a single voice chan-
nel, which is a remarkable savings over land-line rates.

In addition to the operational satellite link on IN-
TELSAT, we also worked on the NASA satellite ATA-1
doing experiments on packet broadcasting. In contrast to
the standard 97 foot earth station of INTELSAT that
costs several million dollars, the ATS-1 ground stations
operating on a VHF channel used an antenna as small as
ten feet and total ground station electronics costs were
less than $5,000. In conjunction with NASA-Ames
Research Center (ARC) and the University of Alaska we
set up an experimental packet broadcasting network in
which the ATS-1 VHF transponder was utilized as a
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broadcast repeater and was operated in the ALOHA ran-
dom access burst mode.

6. Present-DayPacket
Broadcasting Networks

When funding ran out from the various U.S. Govern-
ment sponsors, the ALOHANET stopped operations in
the FALL of 1976. However, the spirit of ALOHA lives on
in the following networks which are in operation today.

6.1 ETHERNET [6]

This network was one of the first cable-based local area
networks ever developed. The basic concept of operation
of ETHERNET is to use the cable transmission medium
(The “ETHER”’) in an ALOHA mode with some embel-
lishments such as reducing the probability of packet colli-
sions by listening before and while transmitting
ETHERNET, developed by Metcalfe and Boggs at the
Xerox Palo Alto Research Center in 1973-75, has
spawned a number of imitators in the burgeoning field of
local area networks. Thus, it appears that three genera-
tions of techology have evolved from the original ALOHA
technology, developed only 10 years ago.

6.2 Packet Radio Network [7]

The PRNET is a direct descendent of the ALOHANET
and was developed by a constortium, including the
University of Hawaii, under the sponsorship of the
Defense Advanced Research Projects Agency (DARPA).
Although the original ALOHANET did use repeaters, it
nevertheless represented a centralized system in that
there existed only a centered computing facility to which
the remote TCU’s served as subscribers. The PRNET is a
basic extension of ALOHANET and extends the domain
of packet communications to permit mobile applications
over a wide geographic area by the extensive use of
repeaters and sophisticated protocols for addressing and
routing. The PRNET is in prototype operation in the San
Francisco Bay area, with its central station located at SRI
International in Menlo Park, California.

6.3. Packet Satellite Network [8]

The Atlantic Packet Satellite System or SATNET, is
another DARPA-sponsored effort that has led to a quasi-
operational packet broadcasting system operating on a
INTESAT 1V satellite over the Atlantic. One of the most
significant achievements of the SATNET experiment was
the development of a very sophisticated demand-
assignment protocol called PODA (Priority-Oriented De-
mand Assignment). Its design represents an integration of
both circuit and packet-switched demand assignment and
control techniques. For large populations of low duty-
cycle stations, random access techniques (known as slotted
ALOHA) are used in the system known as CPODA (Con-
tention-PODA). Thus, it appears that the contention
techniques, pioneered in the original ALOHANET, are
being used in some of the most advanced packet com-
munications systems of the 1980’s.
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A method is presented which corrects the one-fluid conformal solution viscosity model for size and mass
difference effects. This correction, which is based on the Enskog model for hard sphere mixtures, is empirical as
applied to transport but has a rigorous basis in equilibrium theory. Comparisons of predictions and experimen-

tal viscosities for 24 binary mixtures are presented.
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1. Introduction

In a series of recent reports[1, 2, 3],* Ely and Hanley have
proposed a corresponding states method for the prediction
of the viscosity and thermal conductivity of pure hydrocar-
bons and their mixtures. This work was an extension of the
previous work of Hanley [4, 5], which dealt with the trans-
port properties of liquefied natural gas mixtures, to molecu-
lar weight ranges corresponding to C,, and other chemical
types (e.g., aromatics). The method is based on a one-fluid,
conformal solution concept and requires only pure compo-
nent, equilibrium parameters such as the critical parame-
ters as input. No transport data are required.

Extensive comparisons of the predictions of the model
with experimental data have been reported and are sum-
marized in tables 1 and 2. In general the results are ex-
cellent with the average absolute error between experiment
and prediction being less than 8 percent for both pure
fluids and mixtures. It was noted, however, that when the
size difference of two binary mixture species becomes large
(e.g., Vi/V: ~ 6), the predictions of the viscosity model
become markedly worse. This failure of the one-fluid model
for viscosity has been explained by the nonequilibrium
molecular dynamics studies of Hanley and Evans [6, 7).
These studies have shown that for mixtures of molecules of
substantially different size, the mean density approximation
inherent in the one-fluid theory for the binary pair distribu-
tion function fails, even for a conformal mixture. A conse-

*Partially supported by the U.S. Department of Energy, Office of Basic Energy
Sciences, Contract No. DE-A101-76PR06010.

tThermophysical Properties Division, National Engineering Laboratory.

! Raised figures indicate literature references located at the end of this paper.

quence of this failure is that the local or ambient concentra-
tion of the mixture components is not the same as the bulk
concentration. This is shown in figure 1 for a 50/50 mixture
of a conformal system whose size difference is two [7]. As
one can see, the concentration of the larger component
about a central large molecule (x,,) is greater than the bulk

TABLE 1. Summary of One-Fluid Corresponding States Viscosity Results

for Pure Fluids.®

Fluid Type N AAD BIAS
n-Paraffins 1301 4.89 -0.48
i-Paraffins 155 21.17 -21.17
Alkenes S8 11.29 7.85
Cycloalkanes 89 40.56 —40.56
Alkylbenzenes 155 8.45 —0.69
Carbon Dioxide 111 4.75 —4.53
Overall 1869 8.42 -4.10

* AAD = Average absolute percent deviation. BIAS = Average percent
deviation.

TABLE 2. Summary of One-Fluid Corresponding States Viscosity Results

Jfor Binary Mixtures.®
Mixture Type N AAD BIAS
Alkane/Alkane 303 5.89 -1.79
Alkane/Cycloalkane 24 17.31 -16.51
Alkane/Alkylbenzene 128 741 —-0.01
Overall 455 6.95 -2.07

¢ AAD = Average absolute percent deviation. BIAS = Average percent
deviation.

These results were obtained using the empirical size difference correc-
tion proposed by Ely and Hanley [1].
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FIGURE 1. Local mole fractions for a conformal mixture of soft spheres
with a mass ratio of 10 and size ratio of 2 plotted versus reduced inter-
molecular separation r*[7].

concentration until one exceeds four or five molecular
diameters. Since the viscosity (as well as other thermophy-
sical properties) are determined from relatively short-range
forces, the large component dominates the value of the mix-
ture viscosity. Ely and Hanley [1] attempted to correct for
this effect with an empirical relation based on the size ratios
in the mixture. Although this function was somewhat suc-
cessful (as is reflected in table 2), the size difference effects
persist in the model predictions.

In this manuscript, a systematic correction to the one-
fluid viscosity model is proposed for size and mass dif-
ference effects. This correction is based on the exact solu-
tion of the Enskog model for a multicomponent mixture of
hard spheres [8]. This approach has a rigorous foundation
in the perturbation expansion of an equilibrium property of
a fluid [9], but is empirical as applied to transport
phenomena. In spite of this empiricism, the proposed cor-
rection does improve the viscosity predictions for mixtures
which exhibit large size and mass differences, for both the
dense liquid and dilute gas states.

Section 2 of this article summarizes the assumptions and
working equations of the one-fluid, conformal solution
viscosity model (CSVM). Section 3 discusses the hard sphere
expansion model and describes the Enskog solution for a
multicomponent mixture of hard spheres which is the ana-

Iytical formulation used to correct the CSVM. In section 4
the predictions of the corrected and uncorrected models are
compared with experimental data for both the dilute gas
and high density fluids. Unfortunately, for methane/n.
decane like systems where the size and mass difference ef-
fects would be the most pronounced, no dilute gas experi-
mental viscosities have been measured. For this reason, the
model predictions are also compared to calculated Lennard-
Jones viscosities.

2. One-Fluid Viscosity Model

In the one-fluid conformal solution viscosity model there
are three basic assumptions: (1) the viscosity (5) of a mixture
at a density g, temperature T and composition {x,) can be
equated to the viscosity of a hypothetical pure fluid, i.e.,
Noix (@5 T, {2.})=n.(0,T); (2) the viscosity of the hypotheti-
cal pure fluid may be evaluated via a corresponding states
principle

1:(e: 1) =1:(0 T} F, (M

where F, is a dimensional factor defined below and (3) the
reference fluid density and temperature (g, and T,) may be
evaluated via an extended equilibrium corresponding states
principle [10] viz.

e.=¢h. and T,=T/f, @
where h, and f; are defined by the relations
A0, D =fA%eho T/f)
and

Z(0,T)=Z,(0h T/.).

A® denotes the residual Helmholtz free energy of the
hypothetical or reference fluid (subscripts x or o, respective-
ly) and Z is the compressibility factor, p/gRT. In eq (1), F, is
given by

F, =(%:__)“2ﬂ/2 Rz )

where M denotes the mass.

In order to apply the model to pure fluids or mixtures,
analytical expressions for f,, h., and M, as well as for the
reference fluid equation of state and viscosity surface are
required. In our previous work, methane was chosen as the
reference fluid owing to the availability of p¥ T and viscosi-
ty data for that fluid. The appropriate correlations have
been reported previously [1} and will not be repeated here.
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For a mixture, f,, h,, and M, must be obtained via mixing
and combining rules for the corresponding mixture compo-
nent parameters. We have adopted a set of one-fluid mixing
rules given by the following

fo = b T E xefughas @
he = £ T xtshas ©)

and
M, = [Z § zaxomif? 35 hF) £ ©)

The combining rules for the binary pair parameters (as
denoted by an “a8’’ subscript) are given by

foa = (" (1 =k ™
has = g (B2 B (1= L) ®

and
Mos = 2mamlm+ ) ©

In eqs (7) and (8) ku.s and [,z are the binary interaction
parameters which can be set equal to zero in viscosity pre-
dictions. The parameters f, and hs are the equivalent
substance reducing ratios for the energy and volume for
component « in the mixture. They are given by

fo = (T/TS) 0(V2, T2, wa) (10)

ha = (Ve/V) oV, T, w) an

where the subscript “‘¢”’ indicates a critical value,
denotes a value reduced by the critical point and w is
Pitzer’s acentric factor. 6 and ¢ are the shape factors of
Leach and Leland [11, 12] whose detailed functional forms
are given in reference [1]. T denotes the absolute tempera-
ture, V is the molar volume and m is the mass.

The mass mixing rule given by eq (6) was derived by
Evans and Hanley [6] in their study of the viscosity of a mix-
ture of conformal soft spheres. It arises by examining the
potential contribution to the pressure tensor in terms of the
nonequilibrium radial distribution function and thus is a
mixing rule for the potential or in practice, high density
contribution to the viscosity. This rule was adopted for all
densities, however, since the emphasis of our previous work
was on the dense fluid states. One might expect, therefore,
that the CSVM might be somewhat less accurate for the
dilute gas, kinetic regime where the mixture mass depend-
ence is effectively proportional to m'/? f'/2 h™%/3 rather than

ek

m'/? fi/2 h*3 a5 given in eq (6). This point will be discussed
further in section 4.

3. The Enskog Correction

Mansoori and Leland and their co-workers [9, 13] have
proposed a conformal solution model for equilibrium ther-
modynamic properties in which a dimensionless or reduced
property of a mixture is expanded about the corresponding
property of a hard sphere mixture. For example, if X,
represents the value of the real mixture property, one
obtains

Xoir(@, T xa}) = X725k (@03, [2ad) — X2 02) + X 00, T2) (12)

In this equation X%5, denotes the value of the property in a
mixture of hard spheres of diameters {0.]), {x.] denotes the
mixture composition, X¥5 is the property value in a pure
hard sphere fluid of effective diameter o, (e.g., a one-fluid
approximation) and X, is the value obtained from a real,
pure fluid reference substance, evaluated at the state point
(0w T,) where g,=g0alod and T,=TeJ¢,. In terms of inter-
molecular potentials the parameters o and € correspond to
the points where u(6)=0 and min(z)= —e. Both o, and ¢,
are one-fluid parameters which must be evaluated via mix-
ing rules. The difficulty in applying this approach lies in
assigning values to 0 and e for the mixture components.
One possible approach is to assume that 6 ~ V. and e ~
T. which leads to factors such as those given in eqs (10-11).
The choice of parameters used in this work will be discussed
in section 4.

Although transport properties cannot, in general, be ex-
panded in a perturbation series [14], it is tempting to apply
the hard sphere expansion (HSE) formalism to the confor-
mal solution viscosity model presented in section 2. For-
mally this may be written as

ﬂmix(QaT: {x,}, {mu}) = ﬂ'.f.";,({@aﬁ}. {x,}, {m,,}) -

¥ (eat, m,) + n.(e., To) F, (13)
where the notation is the same as defined previously. Note
that in the case of transport we must also consider the
masses of the particles {m,}.

In practice, we do not have an exact model for the viscos-
ity of a hard sphere fluid (pure or mixed) at all densities. For
this reason, the Enskog model {15], which has been solved
for a multicomponent mixture of hard spheres by Tham and
Gubbins [8], was selected to calculate 3%}, and n%. Their
solution is given by

WO = B(T) ¥, + i T xx uy,
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where
Y. =2l + %;ijﬂyU]

and the f3; are the solutions to the set of linear equations
defined by the following

F BB =Y.

where

m; m;
——') 6(‘1 - %(E) 5ﬂ] .

m

By = 2 & xixeya M, (wd™ [(1 + %

In these equations, by = 2w0}/3, 0, = Ya(o: + 0;), M;; =
mylim, + m), uy= bynny, ny = %y (Lo, my =
2mM,, yy = n bygyloy), n = number density, g; is the
hard sphere radial distribution function for the ij pair, and
6 is the Kronecker delta function. Although these equations
are somewhat complex, they may be readily solved on a digi-
tal computer.

The final model, which we shall call the hard sphere
expansion-conformal solution viscosity model (HSE-CSVM),
is given by

Nmie (0,1, {22}, {ma}) = Ay ¥¥5%96 4 4 (0, T.) F, (14)
with

ENSKOG — . ENSKOG
nmix

Ay ({eat}, {x}, {ma}) ~

V%0 (ga2, m,) (15)

4. Results

In order to apply eqs (14) and (15) values for the hard
sphere diameters o, must be chosen and mixing rules for
the one-fluid values o, and m, in the hard sphere system
must be selected. As was mentioned previously, consid-
erable freedom exists for the choice of the molecular diam-
eters. Unfortunately, the hard sphere contributions to the
viscosity are rather sensitive to this choice, thus several

possibilities were considered. The relationship which was
selected is given by

6. = (V: h,/3.058 N, )» (18)
where A, is the ratio defined in eq(11) and is obtained in the
CSVM calculations and N, is Avogadro’s number. The fac.
tor 3.058 was chosen so that methane would have a diameter
of 3.758 107'° m which corresponds to the Lennard-Jones
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(12-6) intermolecular potential value given by Reid, et a!.
[16). This choice, although resonable, is still somewhat arbi-
trary. The mixing rules for the one-fluid hard sphere system
were chosen to be consistent with those used in the CVSM,
eqs (5) and (6), viz.

0} =L L %a%p 02 (16)

and
M. =[Z X 2%, mih 0% ] o°

where 0., = Y2 (0. + 05) and m,, is defined in eq (9).

4.1 Results for the Dilute Gas Limit

The correction was first tested on the dilute gas viscosity
of a methane/propane mixture with the results being given
in table 3. This table gives the experimental data [17],
CSVM predictions and the HSE-CSVM predictions ol')-
tained using eqs (14-16). As one can see, the HSE-CSVM is
consistently more accurate with average absolute percent-
age deviation being 3.6 percent as compared to 6.29 percent
for the CSVM.

The size and mass difference in the methane/propane
system is not very great—a,/0, ~ 1.4 and m,/m, ~ 3. One
would expect that the effect of the correction would be more
pronounced in a system like methane/n-decane where the
size and mass ratios are 1.8 and 9, respectively. Unfor-
tunately no experimental measurements for the dilute gas
viscosity of this mixture have been reported. For this
reason, the Lennard-Jones gas viscosities of this system
were calculated using the standard kinetic theory formalism
[15]. Although it is impossible to assess the absolute accu-
racy of these values, they do serve as a rational basis upon
which the HSE-CSVM and CSVM may be compared.

In order to perform the dilute gas Lennard-Jones (I:J)
calculations, values for the intermolecular potential
minimum ¢, for the mixture components must be chosen as
well as values for the o,. The o, were obtained from eq (18)
and e./k where k is Boltzmann’s constant were calculated
from the empirical relation

e/k = TS £,/1.282

where f; is the CSVM reducing parameter given in eq (10).
The factor 1.282 was chosen so that methane would have a
value of e/k of 148.6 which is the Lennard-Jones value
reported by Reid, et al. [16).

Table 4 summarizes the results obtained with the LJ
kinetic theory model and the HSE-CSVM and CSVM at

three compositions and four temperatures. Comparing the



TaBLE 3. Comparison of Calculated and Experimental [17] Dilute Gas Viscosities of Methane/Propane Mixtures at 1 atm.

CSVM

Composition Temperature tep, 107 Pass N nHsE-CsVM
mol %, methane K 107 Paes % 107 Paes %

22.07 310.928 89.2 93.1 4.37 90.6 1.57

344.261 98.8 103.2 445 100.7 1.92

377.594 108.3 113.5 4.80 111.0 2.49

410.928 118.0 123.8 4.92 1213 2.80

38.78 310.928 93.0 99.2 6.67 95.6 2.80

344.261 103.0 109.9 6.70 106.5 3.40

377.594 113.0 120.6 6.73 117.0 3.54

410.928 122.5 131.2 7.10 127.7 4.24

61.39 310.928 99.6 107.3 773 103.6 4.02

344.261 109.6 118.4 8.03 1149 4.84

377.594 119.5 1294 8.28 1259 5.36

410.928 129.2 140.1 8.44 136.7 5.80

79.10 310.928 107.2 112.6 5.04 110.2 2.80
344.261 1174 123.7 5.37 121.4 3.41

377.594 126.8 134.5 6.07 132.3 4.34

410.928 136.6 144.8 6.00 142.8 4.54

Average absolute percent deviation 6.29 3.62

TaBLE 4. Comparison of Calculated and Lennard-Jones (12-6) Dilute Gas Viscosities of Methane/n-Decane Mixtures and CSVM Predictions

Composition Temperature 2,107 Pass e PlSE-CSVM
mol %, methane K 107 Pass % 107 Pass %
25.0 300 46.5 549 18.06 434 -6.67
400 65.4 76.2 16.51 62.8 -3.98
500 86.4 99.2 14.81 84.1 —2.66
600 108.8 124.2 14.15 107.6 -1.10
50.0 300 56.4 749 32.80 50.1 ~-11.17
400 79.2 103.1 30.18 749 -543
500 103.7 1334 28.64 102.4 ~1.25
600 129.1 165.2 27.96 1323 248
75.0 300 75.2 104.2 38.56 70.6 -6.12
400 103.6 140.5 35.62 104.8 1.16
500 132.2 177.0 33.89 140.5 6.28
600 160.7 2115 31.61 1754 9.15
Average absolute percent deviation 20.17 3.59
Average percent deviation 20.17 -2.40

results we see a substantial difference in the CSVM predic-
tions and the LJ calculations. In the case where the methane
content is high, (75 percent) the HSE-CSVM is in better
agreement with the L] calculations by 20-30 percent. Also,
the overall absolute percentage deviation for the HSE-
CSVM is 3.6 percent as opposed to 20 percent for the
CSVM version. Although the accuracy of the LJ calculations
is uncertain, similar calculations on the methane/propane
system where experimental data do exist yielded agreement
between the LJ and experiment of better than 2 percent.
One can postulate, therefore, that discrepancies similar to
those shown in table 4 would exist between the CSVM and
real experimental data for the methane/n-decane system.
Note that in both comparisons the CSVM predicts values
which are too large in the dilute gas limit. We attribute this

to the potential or high density mass mixing rule which is
used in F, in eq (3). Thus, we see that in the low density
limit the HSE Enskog correction is negative and lowers the
predicted viscosity.

4.2 High Density Results

The initial motivation for this work was to obtain a cor-
rection for the effect of size differences on the predicted
high density viscosity of systems like methane/n-decane mix-
tures. Figure 2 compares the experimental [18] and CSVM
predicted viscosities of methane/n-decane mixtures as a
function of reduced density at three different compositions.
Note that the predictions are worst for the high methane
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FicURE 2. Comparison of calculated and experimental viscosities of
methane/n-decane mixtures using the uncorrected model. Note that the
predictions are worst (" 30 percent error) for the highest methane concen-
tration.

composition and improve with increasing decane content.
This is somewhat surprising since methane is the reference
fluid in the CVSM calculations. This result was explained in
the introduction and is attributable 10 a failure of the one-
fluid theory to adequately represent the size difference ef-
fects in the high density region.

Figure 3 compares the experimental and calculated
results for the HSE-CSVM. We see in this case that there is
a marked improvement in both the bias and overall devia-
tion. Note that in this case the HSE correction is positive.
The density dependence of the HSE correction is illustrated
in figure 4 which shows _}5&_ = (nf'zzsxoo _ ,IfN-‘KO"')/TVz
plotted against reduced density at a size ratio of 0,/a, = 2.0
and mass ratio of m,/m, = 8 at three compositions. This
corresponds approximately to a methane/decane like
system. In figure 4 the density was reduced by an approx-
imation to the critical density of the mixture given by o;' =
3.058 N, (x,03 + x,03). This figure demonstrates that the
correction decreases in magnitude with increasing concen-
tration of the larger component (x,) and is small and
negative below reduced densities of 1.5. Also the correction
increases sharply above reduced densities of 1.5.

Table 5 compares the overall predictions for both the cor-
rected and uncorrected model for 24 binary systems. The
literature references for the experimental data are given in
(1]. The systems where the size difference is large [g,/0, =
(Vi/V<)»] show substantial improvement while those of
similar size are essentially unchanged. It may be possible to
further improve the corrected model by a judicious choice
of the o,. This possibility is currently being examined.
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Ficure 3. Comparison of calculated and experimental viscosities of
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TABLE 5. Summary of Calculated and Experimental Dense Fluid Binary Mixture Viscosities.®

Component 1 Component 2 o,la, N AADSVM BIASCsv™ AADHsSE-CsVM BIASHSE-CsvM
Methane Propane 1.273 134 5.91 -5.29 4.62 —-3.45
n-Nonane 1.778 32 6.37 —5.58 4.12 -2.61
n-Decane 1.839 71 14.43 —-14.43 5.35 -1.54
2,3-Dimethylbutane n-Hexane 1.014 2 5.32 ~5.32 5.31 -5.31
n-Octane 1.110 2 6.03 -6.03 5.65 -5.65
n-Hexane n-Tetradecane 1.304 10 2.15 -1.15 1.92 0.54
n-Hexadecane 1.356 26 4.04 -3.85 2.59 -1.97
n-Heptane n-Dodecane 1.185 3 247 247 3.44 3.44
n-Tetradecane 1.242 3 1.19 0.10 1.82 1.51
n-Hexadecane 1.291 3 3.03 -3.03 2.52 -1.32
n-Octadecane 1.333 2 295 ~295 1.92 -0.71
n-Octane n-Decane 1.074 2 3.09 3.09 3.27 3.27
n-Tetradecane n-Hexadecane 1.040 11 2.31 2.08 2.32 2.10
Benzene n-Hexane 1.130 15 5.85 -2.70 5.74 -2.28
n-Heptane 1.186 3 4.68 4.68 5.85 5.85
2,2,4-Trimethylpentane 1.218 26 13.14 -13.14 12.46 —12.46
n-Decane 1.329 3 445 0.73 5.47 3.46
n-Dodecane 1.406 3 2.87 2.87 6.47 6.47
n-Tetradecane 1.473 3 296 -147 3.63 2.55
n-Hexadecane 1.531 3 3.75 -2.80 3.76 1.46
n-Octadecane 1.581 3 299 -2.99 273 1.97
Toluene n-Heptane 1.110 21 5.15 5.15 5.32 5.32
n-Octane 1.157 20 9.03 9.03 9.50 9.50
2,2,4-Trimethylpentane 1.140 28 6.61 —4.64 6.62 -437
Overall 429 7.45 -5.23 5.31 -1.86

= The CSVM results were obtained without the empirical size difference correction give in {1].

5. Summary and Conclusions

We have shown that a relatively simple correction to the
one-fluid conformal solution viscosity model may be ob-
tained from the Enskog hard sphere theory. This function
effectively corrects for errors in the mass mixing rules at low
density and also for size difference effects at high density.
Even though the effective correction is not substantial for
systems of similar size and mass, it does systematically cor-
rect the model predictions as is reflected in the BIAS as
given in table 4. In addition, when the size and mass dif-
ference is large, as in the methane/n-decane system, the im-
provement in the model predictions is substantial. Further
work is in progress to extend this approach to other struc-
tural features such as branching and polarity which are not
adequately handled by the one-fluid corresponding states
model.

The author would like to acknowledge Dr. J. M. Kincaid
of NBS and Professor G. Stell and Dr. John Karkheck of the
State University of New York at Stony Brook for providing
the original computer program which calculates the mixture
Enskog viscosity. Further, the author would like to acknowl-
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1. Introduction

The bond-energy-bond-order (BEBO) method is a procedure for calculating the activation energies of
hydrogen transfer reactions from bond energies. When combined with absolute rate theory, it also yields
values for the rate constants. It was formulated over 10 years ago by Johnston and Parr [1], and has since
been applied with considerable success to the calculation of a large number of activation energies. Less fre-
quently, it has been used to evaluate rate constants. Although the details of the BEBO method itself have

* Figures in brackets indicate literature references at the end of this paper.

*Center for Thermodynamics and Molecular Science, National Measurement Laboratory.
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been published by Johnston [2], this aspect represents only a relatively small part of a rate constant calcula-
tion. The purpose of this report is to give a detailed account, not only of the BEBO method and its
theoretical background, but also of the absolute rate theory portion of the calculation. In addition, instruc-
tions are provided for the use of a computer program which calculates rate constants based on the BEBO
method. The discussion is limited to linear transition state models.

2. Theory
2.1. Absolute Rate Theory & Transition State Model for BEBO Calculations

For a bimolecular reaction, 4 + B — [4B]* — products, absolute rate theory utilizes the concept of a
molecular complex made up of the two reactants. This complex is assumed to be in equilibrium with these
reactants. The resuiting expression for the classical rate constant k., is

_ kT Qt"e-v'/n

where k is the Boltzmann constant, T is the absolute temperature, k is Planck’s constant, Q¢! and Q% are the
classical partition functions per unit volume for reactants 4 and B, Q. is the classical partition function per
unit volume for the complex, and 7™ is the potential energy of the complex relative to that of the reactants.
The complex contains one unstable vibrational mode whose evolution brings about its dissociation into
product fragments. The partition function Q% is evaluated with this mode missing. A detailed derivation of
eq (1) which explains all its inherent assumptions has been given by Mahan [3]. Quantum mechanical correc-
tions to the partition functions at room temperature and above need be applied only to vibrational factors.
For a particular vibration of frequency »;, the quantum correction I'; is given by the expression

- u,',z
© 7 Tsinh (u./2)

, where u; = hv/kT (2)

We assume that all vibrational modes are independent so that the total quantum correction for a particular
species is simply the product of terms given by eq (2), one for each vibrational mode. There is also a quan-
tum correction to the unstable vibrational mode of the complex which we denote by I'*. This results from
the effect of quantum mechanical tunneling through the potential barrier between reactants and products.
It will be considered in detail in section 2.5. Applying these quantum corrections to eq (1) yields the rate
expression

LT Q:l {pr’:} rue-v’/u‘

k = 3
R 04 T O T @

The general class of reactions we are considering has the form
A-H + Be — A-H-B — A« + HB 4)

Radical Be abstracts a hydrogen atom attached to 4, the net result being the transfer of H from 4 to B. For
this system, we take the most general transition state to be linear, having up to 5 mass points. Its structure
and the notation which we shall use are shown in figure la. There can be up to four internuclear distances,
R., R,, R., and R.. The bonds associated with R, and R, will be assumed to be rigid. (The two vibrational
modes involving these bonds will have infinite frequencies and need not be formally included in the calcula-
tions.) Thus, there are only two vibrational stretching modes to be considered for this molecule, one of which
will be unstable. These modes arise from the stretching of the two central bonds b and ¢ which are shown by
dotted lines to indicate their unstable character. Of the five possible masses, M, will normally be that of the
hydrogen atom; the other masses will be assigned values in the manner described below. The three angles
¥,,¥,, and ¥, are defined by the bonds (a,b), (b,c), and (¢,d) in the plane of the figure while the primed sym-
bols denote the corresponding angles in the plane perpendicular to the figure. Changes in these angles from
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2 3 4
FicURE la. Notation for five mass point linear transition state.

180° give rise to three doubly degenerate bending vibrations. To calculate the frequencies needed in eq (3),
we require values for the two stretching force constants associated with bonds b and ¢, and three bending
force constants arising from the three bond angles. As we shall see, these values can be generated by the
BEBO process.

Within the framework of the transition state structure shown in figure la, it is possible to include all types
of reactions implied by eq (4) by considering four cases; one having a 3 point transition state, two having 4
point states, and one having a 5 point state. These four cases are shown in figure 1b. In this figure, the
subscript s appearing on the internuclear distances and force constants denote equilibrium values found in
reactants or products. Because bonds a and d are assumed to be rigid, their bond distances will always be
denoted by the single symbols R,, and Ry, respectively. The bond distance between M, and M, goes from
R, t0 R, in the transition state, while that between M, and M, goes from oo to R, in the transition state. In
the transition state, the force constant F,, is modified and combined with that of the newly formed bond be-
tween M, and M, to produce two force constants F, and F,. F, corresponds to the stable symmetric stretch
and F, to the unstable asymmetric stretch. In cases IVa and V, the bending force constant Fy,, becomes Fy,
in the complex. The newly formed bond angle made by M,, M,, and M, leads to the force constant Fy; in all
cases. Finally, in cases [Vb and V, we also have an additional bending force constant Fy, which goes to Fy,,
in the second product. The force constants associated with the out-of-plane bends are not shown since they
are the same as the in-plane constants.

The way I have chosen to assign values to the mass points is somewhat arbitrary and is best explained by
an example. Consider the reaction

CH,-CH,H + CH, — CH,CH,++H.-CH, — CH,-CH,» + H-CH,
Species A B c D

which is the abstraction of hydrogen from ethane by methyl radicals. The masses are assigned according to
the following rules:

1) The mass of the transferred H is always assigned to M,; therefore M, = 1.008 atomic mass units
(a.m.u.).

2) The mass of the atom joined to the transferred H in reactant 4 is assigned to M,; in this case M, =
12.011 a.m.u.

3) The masses of all the remaining atoms in A are added and assigned to M;; thus in this example M, =
17.051 a.m.u.

4) The mass of the atom joined to the transferred H in the product D is assigned to M,; here M, = 12011
a.m.u.

5) The masses of all the remaining atoms in D are added and assigned to M;; thus M; = 3.024 am.u. in
this example.

Different models for the transition state, and different ways of arranging the masses in linear models have
been explored in a limited way by Johnston [4] and by Sharp & Johnston [5]. They did find significant dif-
ferences between various options. Presumably, complete vibrational analyses of the reactant and complex
would yield more accurate rate constants than the linear models outlined above. Unfortunately, complete
analyses are extremely complex even for fairly small molecules, and the ability to program the calculations
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FicuRE b, Reaction cases to be used in BEBO calculations. All transition states shown here are linear. Masses are denoted by M, inter-
nuclear distances by R, and force constants by F. The subscript s denotes bond distances and force constants in the stable reactants and

products.

in a general manner would be lost by such an approach. Also, it is unlikely that all of the force constant
values required would be available for a complete analysis. In view of the crudity of the rest of the calcula-
tion, it is unnecessary to strive for high accuracy in the vibrational analysis. Intuitively, one expects that the
major features of these reactions are controlled by the nature of the atoms adjacent to the H atom being
transferred, with the effects from the remainder of the molecule appearing in the bond energy values. If this

M, — M=—=M_ooM ooM—M5 — }41—M2 + M'—M—M

1 2 3 4 3 L 5
Ra s R'b Rc Rds Ra s Rcs Rds
Fp, Fo ch
F, F,_ F F
¥o "¥3 ¥y ¥4s

is the case, then the linear models should at least be able to match trends within homologous series.

So far, we have seen in this section that evaluation of rate constants by the use of eq (3), based on the
linear models shown in figure 1b, requires a knowledge of the potential energy V* of the complex, two
stretching force constants, and from one to three bending force constants. The potential energy of all of
these linear models could, if it were known, be shown on a 2-dimensional contour diagram like that shown in
figure 2 where the independent variables are the bond distances R, and R.. The required value of the poten-
tial energy ¥ is that at the saddle point position shown by the asterisk. For a region close to the saddle point,
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FIGURE 2. Typical potential energy diagram for H atom exchange reaction.
The position of the saddle point is shown by the asterisk. The direction g is
that in which the potential energy decreases most rapidly. The direction ¢
is perpendicular to the g direction.

it is customary to assume that the first derivatives of V with respect to R, and R, are negligible, and that the
potential energy can be approximated by a power series containing only quadratic terms. Thus, for small
displacements from the saddle point, we have

26V = F,, (8R,)* + 2F,(6R,)(BR.) + F,,(6R.)? (5a)
4 v v

where Fll - a_Ri’ Flz = le = m, F22 = 'FR:—.

These derivatives are evaluated at the saddle point, and are, by definition, the stretching force constants of
the complex. In matrix notation, this equation is

28V = (SR){F,6R) (Sh)

where F, = [g" ;:z] and 6R = [gg:] .

21

This is the force constant matrix that will be used to calculate the vibrational stretching frequencies.
Starting at the saddle point, suppose we move in the direction in which ¥ decreases most rapidly; call this

the o direction, and let o denote the direction perpendicular to g. These directions define a rotated set of
cartesian coordinates which we assume makes an angle « with the R, axis; (positive « is measured in the
counter-clockwide direction). The transformation between the two sets of coordinates is given by the equa-
tion

rR-[pl=l0s o] - ®

the matrix U can now be used to express changes in ¥ at the saddle point in terms of changes in @ and o in-
stead of R, and R.. Thus, eq (5b) becomes

26V = (OR){F (6R) = (UsP)TF(UsP) = (P)HUF,U)(6P) 0]
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The matrix UtF,U has the elements
(UtF,0),, = F,,cos’a + 2F,cosasina + F,,sina
(UtF),, = (UF,U),, = (F,; — F,))cosasina + F(cos’a — sin‘a) 8)
(U3F1),, = F,, sin*a — 2F cosasina + F,cos*r

As we shall see in the next section, the BEBO method provides values for the second derivatives of V (i.e.,
the force constants) in the g and o directions. This will allow us to evaluate the matrix UtF,U. The stretch-
ing force constant matrix F,, can then be obtained by inverting the transformation given by eq (6).

In this section [ have presented a formula (eq (3)) for the rate constant and outlined the factors required to
evaluate it. The details of the BEBO method will be given next. It will provide values for 7* and all of the
necessary force constants, both the stretching and the bending ones.

2. BEBO Method

The BEBO method is based on the concept of bond order. In the reactants the bond b of figure 1a is said
to have a bond order of unity, while in the products, its bond order is zero. The reverse of this situation
holds for bond ¢. BEBO assumes that during the reaction, the total bond order of the two bonds is con-
served; if n is the order of bond b, and m of bond ¢, then we have always n + m = 1. This is the basic
assumption of the method. One bond is breaking at the same time that the other is forming. To apply this
conservation condition it is necessary to relate the energies and lengths of bonds b and ¢ to their bond
orders n and m.

For the relationship between order and length, Pauling [6] proposed the formula

R, = R, — Aln(n) )
where R, is the length of the bond which is considered to be representative of a single bond between the two

elements of interest. The parameter \ is taken to have the same value for all element pairs. A plot of bond
length versus the logarithm of the bond order is shown in figure 3 for certain element pairs. The data were

Rn

0.371 —»—0-0

0327 --0--N=N N
0291 + C-O N

N
0306 -o-C~C o"

In(n)

Ficure 3. Plot of R, = R, — Aln(n} bond distance versus the natural loga-
rithm of the bond order for selected element pairs.
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obtained from table 4-3 of Johnston’s book [2]. Values of A obtained from least squares fits are given in the
figure for the different bonds. The constancy of X does not seem particularly striking. Pauling chose a value
of 0.26 for \; he writes, *“This equation, which is based upon the study of interatomic distances for non-
resonating and resonating covalent bonds in simple non-metallic substances of known structure, is found to
agree reasonably well with those data for metallic crystals which are suited to a check on its validity, and its
use permits a penetrating analysis of the structure of metals and intermetallic compounds to be made. There
is some evidence that the constant . . . varies with the kind of atom and with the type of bond; but the
evidence is not sufficiently extensive to lead to the determination of the nature of this variation.”” Certainly
Pauling’s value doesn’t appear to have been based very heavily on the data in figure 3 since none of these A
values are close to 0.26. Although 0.26 can hardly be construed as universal, it has nevertheless been the
value used for most BEBO calculations. There appears to be no reason why a different value shouldn’t be
used if it gave better results.

Consider next the dependence of bond energy on bond order. Johnston [4] proposed the following rela-
tionship between the two quantities

E, = En* (10)

where E, is the bond energy of a single bond and is analogous to R, of eq (9). Note that this energy is the
electronic dissociation energy of the bond in question; the zero point energy is not meant to be included in
E,. Plots of 1n(E) versus 1n(n) are shown in figure 4 for the same bonds used in figure 3. The data are again
from table 4-3 of Johnston [2]. We see that p depends on the kind of atoms in the bond. If more than one
bond type occurs for a pair of atoms, then it is possible to extract values for p from plots like figure 4 pro-
vided we are not unduly bothered by a lack of linearity. When only a single bond type exists, then some
other method must be devised. Actually, since we are interested in E, and R, for bond orders less than unity,
even if multiple bonds were available for a plot like figure 4, some method of extrapolating to zero n would
be necessary. Johnston [2], inspired by Badger’s rule for force constants, has devised a way. Let us first elim-
inate n between eqs (9) and (10); this yields

In(E,.IE,) = (p/\XR, — R.) (11

This expression is analogous to Badger’s rule (see Herschbach & Laurie [7]), which is a universal empirical

e
w
£ a
e O-
o—-
+ C-
o a C-
L ]
L

In(n)

FiGURE 4. Plots of I(E,) versus In(n) for certain bonds.
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relation having the form r = ay — by log(), where r is the bond distance,  its force constant, ¢; and b, are
constants, and { and j are the numbers of the rows in the periodic table in which the bound atoms are
located. Johnston [8] found that plots of log(f) versus r extrapolated very nicely to two-atom Lennard-Jones
noble gas clusters. For clusters having Lennard-Jones parameters o and €/k, the “"bond”’ distance is 2%g and
the “‘force” constant is 40.06(e/k)/o>. He then examined plots of In(E,) versus R, to see if a comparable
extrapolation would be possible. The results are shown in figure 5. The data are mostly from Johnston [2],
tables 4-3 and 4-1. Values of E, and R, for the He-Ne cluster were taken from Gilliom [9]. The energies for
the bonds examined in figures 3 and 4 are supposed to extrapolate to the Ne-Ne cluster. The lines shown
were drawn to connect the corresponding single bonds with this cluster. Points corresponding to multiple
bonds fall more or less in the general direction of these lines. The assumption made in BEBO is that such an
extrapolation adequately represents the bond energies for n < 1. Therefore, if we have a bond A-H, where A
is some atom in the first row of the periodic table connected to an H atom, and R, and E, are its bond length
and energy, then if this bond were perturbed in some fashion so that its bond length were greater than R,,
then its bond energy would fall on the line drawn between the A-H and He-Ne points. Bonds involving atoms
A from other rows of the periodic table will extrapolate to the appropriate rare gas-helium cluster. The slope
of the line joining A-H to the cluster is, from eq (11), ~p/\. Since the value of X has been chosen, we have a
way of calculating p for the A-H bond of interest. Formally, in this case,

_ A
PER TR In(Esie-n/F) (12)

The parameter p thus depends on A, the bond energy and internuclear distance of A-H, and the interaction
parameters for the appropriate rare gas cluster.

In{E,)

Rn

FicuRe 5. Extrapolation of bond energy to large bond distances. A of A-H
is an atom in the first row of the periodic table in this case.

We have now almost all of the information needed for the BEBO calculations. Consider a triatomic com-
plex A-H-B; there are three interactions; two between H and the atoms A and B considered above, and the
interaction between A and B themselves. If H is to form stable bonds its electron spin must be opposite each
of the spins of A and B. Consequently, A and B will have parallel spins and must repel each other. Johnston
uses one half the value of the Sato [10] triplet function to represent this interaction. He uses the modified
function because it more closely approximates the calculated H-H triplet interaction. This function has the
form
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V.= E, E1 + E) (13)

where E = 4e®, AR, = R, — R, = R, + R. — R.,. E, is the electronic dissociation energy, R,, the
equilibrium internuclear distance, and 3 the Morse parameter (see Herzberg [11] p. 101) of the ground state
of the diatomic molecule made up of A and B. Values of these paramaters for a number of such atom pairs
are given in Table 11-1 of Johnston [2]. AR, is the difference between the actual distance R, between A and
B in the complex and the equilibrium distance R,, it would have in the diatomic molecule. It is worth point-
ing out that many people use E,, as an adjustable parameter to fit the BEBO calculations to their experimen-
tal data. Other forms of the triplet function have been used and are discussed briefly in the Appendix. ¥, can
be expressed as a function of , the bond order of the b bond, through the conservation conditionn + m =
1, and through eq (9) which gives the distances R; and R. in terms of n and m.

We are now able to give the BEBO expression for the energy of the complex in terms of the bond order n.
The energy is assumed to be given by

Vin) = E;, — Eun® — E.m® + Vi(n) = Eo(1 — n?) — E,(1 — n)? + Vi(n) (14)

E,, and E,, are the single bond energies (electronic) for bonds b and ¢, and the parameters p and q are calcu-
lated from eq (12) for b and ¢, respectively. When n—1, then m—0, ¥,—0, and V-0, so that the energy is
measured relative to the energy of the reactants. When n—0, then m—1, ¥,~0, and ¥~ E;,~E,, which is
the difference in the bond energies. BEBO assumes that the maximum value of ¥intherangel = n 2 0is
the desired potential energy of the saddle point. This value #*, is obtained by substituting into eq (14) that
value of n which makes d¥/drn = 0. In what follows, all quantities are considered to be evaluated at the sad-
dle point.

Next, we must determine the stretching force constants in the g and o directions shown in figure 3. Equa-
tion (14) does not give the complete potential surface, but only that portion lying along the line of constant
total bond order. BEBQ assumes that at the saddle point, this path of constant bond order lies in the g
direction. This assumption will enable us to calculate the force constant F, = 3*¥/dg* from the second
derivative of ¥ with respect to n, which we get by differentiating eq (14).

From eq (9), we can calculate the changes produced in R, and R. when # is changed. In vector notation
these are

=[] [ 2 Jowe s

Because a change in n for constant total bond order is supposed to produce a move in the g direction, the
slope of a line in this direction can be gotten from eq (15). It is

6R.JOR, = —n/m = tana (16)
where « is the angle which g makes with the R, axis as discussed earlier. From eq (15) we can show that
cosa = m/+/(n* + m?); sina = —n//(n* + m?) amn

The matrix U defined in eq (6) can now be written in terms of n and m.

By means of eq (6), 6R can be expressed in terms of 8P; i.e., 8¢ and é¢. Combining the differential form of
eq (6) with eq (15), we get

UsP = -\ [ _‘{’,’m] on (19)

613



Solving for 6P gives

— 59 _ . lin _

RCEL) e ) [ ] [—1{7m]‘5" = ~AV® + m) [”’o’”’ on (20)

As expected, o does not change when n changes. From eq (20), we have for the derivative of n with respect to
]

on dn 1 nm
oA LSO B | 21
b de N V@ + m?) @)
The second derivative of ¥ with respect to g is obtained from the sequence
dV _ dV dn
do ~ dn do
d’V_d’V(dn)z dV dn
de* ~ dn* \ do dn dp?
Since dV/dn = 0 at the saddle point, we have
_d¥ _d*V  n*m?
F= d@®* ~ dn®* N{(n*+m? 22)

This gives one of the stretching force constants.

In the ¢ direction, the stretching motion is assumed to be that of a normal molecule. Thus Badger’s rule
should be applicable. This says that the bond distance is proportional to the logarithm of the force constant,
while eq (9) says that the bond distance is proportional to the logarithm of the bond order. Therefore, the
force constant should be proportional to the bond order. We assume that

F,=F,n, and F.=F.,m (23)

where F,, and F., are single bond force constants. Consider the change in ¥ when R, and R. are changed by
motion in the o direction. This is assumed to be given by

206V)s =Fpn(6Ry):+ F.m(6R.): + Rz (BR,)2 =F 60y (24)

To evaluate F,, we must express (OR)% (6R.)%, and (6R.)? in terms of (60)%. From Eqs (6) and (18), we have

6R, ] m n 6,
For 8¢ =0,
(8Ry)o=ndal\/(n? +m?), (3R.),=mbalx/(n?+m?
(8R). =(8Rs)o+(BR.), =(n +m)dalx/(n? + m?)=0l/(n* -+ m?).
Therefore,
269, =(Fond + Fom? +2 3R V) (50Pi(n? +m?).
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Comparing this with eq (24) gives

Fyn® + F,m® + 0*V,/0R?
n® + m?

F = (26)

The method assumes that if V is expanded at the saddle point in terms of g and o then there is no cross
term; i.e., 3210000 is assumed to be zero. Thus, we have

F, 0
28V = (6P)t| ° | (6P 27
( )T[O FJ( ) 27
The use of eq (7) shows that
e 0
= 28
UiF.U |:0 FJ (28)
Inverting this equation gives
Fo 0 F, 0
F,=UN[ U =10°"|U 29
(U¥) [0 F‘J |:0 F] i (29)

where use has been made of the fact that U-! = Ut. Substituting eq (18) into (29) gives the desired stretch-
ing force constant matrix.

F_ 1 mn FQO m —
T+ m? |, OF| |nm

1 I:F,,mz + F,n? —F,mn + F,,mn:I - [ F, F, ] (30)

n* + m* | ~F,mn + F,mn, Fn* + F,m? F, F,

To complete the discussion of the BEBO method the bending force constants will now be evaluated. Con-
sider first the one involving M, as the center mass. This will be Fy,_ and appears in all of the transition states
shown in figure 2. It is defined as the second partial derivative of J with respect to the angle made by the
bonds b and ¢, with the bond lengths R, and R. held fixed. At equilibrium, this angle is 180° for our transi-
tion state models. The geometry, when the angle is less than 180° is shown in figure 6. To get Fy_, we dif-
ferentiate ¥ twice,

(AN _ V. _ 9V, 8R.
3 ’R,,R.~ 9 ~ OR 09
v _ V. _ &V, (dR.}\ . aV. &R,
( 9¢* “R,, R. T a¢*  OR: 3¢) + oR, 9¢* (31)

FiGURE 6. Definition of center bond angle.

The derivatives of ¥, with respect to R, can be gotten from eq (13). The dependence of R, on ¢ can be deter-
mined from the following vector relationships,
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R, « R. = R,R.cos¢
R,=R. - R,

R =R, R, = R + R? — 2R,R. cos¢

%_{i - R;zR‘ sing — 0 for ¢ = 180°
¥R, _ R.R. iR R,R. .
= Rf°5¢ — e sind — - 5= for ¢ = 180 (32)
Thus,
__OV.RR _ _ V. RR
Fo=-%""K = 3R & + & ©3)

The other two bending force constants F,, and F,, are assumed to obey Badger’s rule. We assume
F‘(,z = F¢hn, and Fg,‘ = F“,m (34)

This concludes the BEBO part of the calculation. It has provided us with the potential energy 7* of the sad-
dle point, the stretching force constants F,,, F,,, and F,, and the bending force constants Fy,, F,, and F,,.
In the next section we shall use these force constants to carry out a frequency analysis for each of the transi-
tion state models shown in figure 2.

2.3. Vibrational Analysis

As we have seen in the force constant derivations, the potential energy V of the most general 5 mass point
complex can be considered to depend on the variables R., R, R., R4, ¥,, ¥, ¥,, ¥,, ¥;, and ¥,. These are
called the internal coordinates. Because our model is linear, ¥ increases when any of the angles departs
from 180°. Since we assume a and d to be rigid, R, and R, need not be included in the list of variables. For
the time being, however, they will be included in the analysis. Let F be the complete force constant matrix
for the complex. We have

[ = |
Fll F12
F, F, O
=<}
F = F¢z (35)
F,,
0] o
F,,
Fy,
Fy,

The two infinite force constants come from the use of rigid bonds for a and d. Let S be the (column) vector
which denotes small changes in the saddle point values of the variables.

St = [6R., 6R,, 6R., 6R,, 6¥,, 6Y¥,, 6¥,, 6%, 6¥, 6¥,] (36)
The potential energy is assumed to be given by
V — v* = 1%SiFS @7
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Suppose there exists a matrix G, such that the kinetic energy in terms of the internal coordinates is
= 1%£516G'S (38)

Consider a new set of coordinates Q, the so-called normal coordinates, related to S by the linear transforma-
tion

S=LQ (39)

such that
V- V* = 15Q1AQ = AV (40)
= 1LQIEQ (41)

where A is a diagonal matrix having elements A;, and E is the identity matrix. In this coordinate system
there are no cross terms in ¥ and T.
Let Q: denote the i’th normal coordinate. The Lagrangian equations of motion for the system are

d ( BL) - 42)
where L = T —AV = %[QIEQ — QfAQ] = (L 0; - T\Q31, (43)
aL _ ~
aQ" - i (44)
aL
‘?@‘ - )\iQh (45)
Therefore
0+ M@ = 0. (46)
The solutions of this equation are
Qi = QPcos(A it + €). (47

Thus the \/* = 27w, are the frequencies of the vibrations of the Q, coordinates. These are called the normal
mode vibrations.
Solving eq (39) for Q, and substituting into (40) and (41) yields
V — V* = (L 'S)FAL™S) = LLSHL")TAL™S 48)
= V(L S)tE(L"S) = %SHLHEWL™S (49)

Comparison with eqs (37) and (38) yields

F = (L)AL™) (50)
L{FL = A G
G = (L™)E(L™) (52)
LiG'L = E (53)
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Next, solve eq (53) for L = LG, substitute this into eq (51) and multiply by L on the left. This gives
GFL = HL = LA (54)
as the set of equations which determine the transformation L. Written out, eq (54) is
LiH; — 65MlLy =0 (55)
This equation has solutions if the determinant
|[H-E\| =0 (56)

This is the so-called secular equation which must be solved to get the X, the eigenvalues of H and thus the
normal frequency values. Before doing this, it is first necessary to evaluate the matrix G.

Equation (38) gives the kinetic energy in terms of the internal coordinates. As such, it does not include the
kinetic energy of the center of mass or the rotational energy. We need to express the kinetic energy in terms
of cartesian coordinates, transform the result to internal coordinates, and subtract out the center of mass
and rotational energy. This will yield G™. Let us begin by expressing the internal coordinates in terms of
cartesian coordinates, Assume that the molecule lies along the x axis. A particular mass point M; will have
coordinates (x;, ¥;, z;) where ¥, and z; are small and describe the departures of the molecule from linearity
during bending vibrations. Because y; and z; are small, the bond distances can be expressed as functions of
the x; only. Thus,

R.=2x, ~ x

Ry = x; — x, -
5

Ro==x, — x,
Ry ==z, — x,
Since there are 5 cartesian x coordinates we need one more coordinate for the internal system. This is taken

to be the x-component of the center of mass of the molecule multiplied by the total mass, and is defined by
the equation,

Mx = Z° M, (58)
where M = ® M. (89
In matrix form these equations are
R. -1 1 0 0 0 x
R 0 -1 1 0 0 x.
- R 5 2
R = [Mx] = Rel=]0 0-1 1 o x, =MX (60)
R, 0 0 0 -1 I x,
Mx M M, M, M, M x5

Note that the vector R is basically that defined by eq (15). Here we have included R, and R..

We must next express the bond angles in terms of the cartesian coordinates. Consider ¥,, the angle
formed by bonds a and b. The geometry and notation for this angle are shown in figure 7. The two vectors
along the bonds a and b are given by
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Ity =[x — %, — 3,
(70)

Tl =[x — 2,05 — 3]

Y~

NIRRT
\l/ X

X
¥

FIGURE 7. Geometry of the bond angle W,.

¥, is related to these by

Ty * Tyy = Iy7pc0s¥,. (71)

Substituting eq (70) into (71) gives

—R.Ry + 0 — %05 = 72) = {[R + (1 — 7)°I[R} + (s — %.)*]} ¥%cos¥, (72)
Because the y; are small compared to R, and R, the radical can be expanded to give

—R.Ry + 0 — 7005 — 32) = [RaR,y + YRR, — 72)* + Y(RJR)ys — 3,)*]
* cosY, (73)
Let ¥, = 180° + ¥, where ¥, is small. Then
cos¥, = —cos(d¥,) = —1 + La(6¥,)f

Substituting this into eq (73) and keeping terms through second order gives

(0¥,)* = VR, — 7)* + @IRR)n — )05 ~ 32) + (VR — 32)°

oY, = —[(5; — yYR. + (y; — %2YR:] = =y /R, + (VR. + lRs)y, — y:/Rs (74)

To see why the minus sign is needed, let y, = y, = 0; then fory, > 0, ¥, < 180°, so that 8%, must be < 0.
There are analogous equations for the angles ¥, and ¥,; there is also a set, identical in form, for the angles
¥/ in the x-z plane. These contain the z, rather than the y, coordinates. In these equations, the equilibrium

values of R.,‘. .. ,R4 will be used.
The set of equations typified by eq (74) gives 3 equations in terms of the 5 y, coordinates; two more are
needed. We have one defining the y coordinate of the center of mass, like eq (58), and another defining a

quantity 7,, which is given by the equation

N = E’Mix{y; (75)

7, is related to the z component of the angular momentum m, by the relation

m, = 1, (76)



The xf are the equilibrium x, values; these can be gotten relative to the center of mass component x, by in-
verting eq (60) and inserting equilibrium values for R,, . .. ,R,. In matrix form, these equations relating y; to
the bond angles in the x-y plane are,

5y, —0:. Q.t0 —@s 0 0 %

_ ¥ &y, 0 —e @te —e. 0 2
¥ = =] 8,]=1]0 0 -@. Q.+0s —pQa Y =AY (77)

My s M x; Mox; M Mx; Mx; Ys

My Mx Mz Ma M, M, ¥s

where g., . .. ,Qa are the reciprocals of the equilibrium values of R., . .. ,Rs. There is an analogous equation
involving the z; coordinates.

Having obtained expressions (60) and (77) for the internal coordinates in terms of the cartesian coor-
dinates, we can now invert these equations and insert them into the expression for the total kinetic energy
which we shall call T. Therefore

T = 1% XiD.X + % YiD,Y + W%ZiD,Z

" ﬁT(M-’)TDm(M-')ﬁ + %'\;yf(A")TDM(A")“i; + z-term

It

BRIG R + %346, ¥ + zterm

BT + 1eM@E* + 7 + £#) + Ya(m? + m?)/]

BRIG, 'R + 1¥iG,™¥ + zterm + 1eMG2 + 32 + ) + Ya(m? + m3)I (18)

where I = .-2; 5 M,x?* is the moment of inertia, and

M, ", O

D, = M, (79)

0O ™.

We can satisfy eq (78) by writing 6," and (};‘ in the partitioned forms

=, _16G™ o (80)
=[5 4]

- G 0 o _
Gl= 10 I 0 = G,
0 0o M

We can get G, and G, simply by inverting G, and 62‘.

This gives
= G, 0
G, = E) Azl = MD'Mt (81)
_ G, 0 o0
0 0 M
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Since D,y is diagonal its inverse is easily evaluated and we therefore require only matrix multiplications to
get G, and G,.

The complete G matrix for the internal coordinates in partitioned form is

G, 0 0
G=]0 G, 0 (82)
O 0 G;'

F,. 0 0
0 0 F,

Note that F, here is like eq (30), but contains the two infinite force constants corresponding to the rigid a
and d bonds. The matrix H in partitioned form is

GF, o 0 H o0 0
H= |0 GF, 0 =|o H, 0 (84)
0 0 G\;.F ' 0 0 Hg,'

Because H factors in this way, we can set up separate secular equations for the stretching and bending

modes. Note that H is normally unsymmetric.
Before solving the secular equations, let us write down explicit expressions for G, and G,. The direct

evaluation of G, from eq (81) yields

s ~ 0 0 0
—~ THe Bty “Ha 0 0
G, = 0 -y Bstp, ity 0 (85)
0 0 — iy Byt its 0
0 0 0 0 M

where the g, are the reciprocals of the masses M;. Comparison of this equation with eq (81) yields G,.
Because we are treating the a and d bonds as rigid, the stretching part of the problems is equivalent to a 3
mass point system where the first mass is M, + M, and the third is M, + M,. The resulting 2 X 2 matrix is
the one actually used in the calculation. It is

(—’i‘—) B2t i s
G, (rigid end bonds) = i (86)

—Hy Bstp, (-—l‘;—’:_ou—s—)

The stretching force constant matrix to be used with eq (86) is that F, as given by eq (30).
The G, matrix elements for this 5 point case are

Gy, = eim + edny + (0. + @),

(Gy)z: = 0B, + @p, + (@5 + @)%,

((;\;),a = oims + olps + (e + ed)’n, 87
Gy = —esllea + @sdia + (@5 + @Isl

(Go)as = —eclles + s + (o + et} (Go)is = erocts
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There are the expressions used in the calculation. Actually, they were not derived from eq (81) but were ob-
tained from Wilson et. al. [12). However, eq (81) was used for a numerical check of eq (87). To get the matrix
elements for the two 4 mass point cases, simply delete from eq (87) those elements which contain either a
missing o or a missing p or both. Do the same for the 3 point case, but delete also (G,),,; (there is only one
element, (Gy),,, in this case).

We are now ready to consider the secular equation. For the rate constant calculation only the Ay are re-
quired, so that a solution of eq (54) for the transformation matrix L is not necessary. Nevertheless, L is easily
obtained and is convenient to have for the purpose of illustrating the actual vibrational motions of the com-
plex. Thus we shall solve eq (54) as well as eq (56). According to eq (84), there are two secular equations to be
solved (H, and H,, are equal). Because we are using rigid @ and d bonds, the dimension of H, is 2 X 2. The
maximum dimension of H, is 3 X 3 and occurs for the 5 point model. Thus a solution of a 3 X 3 problem
will suffice for our purpose and will also illustrate how an n X n problem is to be solved.

We begin by assuming that eq (56) has been solved. In the present work this was accomplished by expand-
ing (56) and solving the resulting polynomial in X. In our case, the maximum degree was cubic, so that this
part of the calculation was easily performed. As eq (47) shows, the desired frequencies are », = A}/*/2x. For
the stretching modes of the complex one of the two frequencies will be imaginary because its A, value will be
negative. As mentioned earlier, this corresponds to the asymmetric stretch.

Consider now eq (55) for a general 3 X 3 H matrix. Written out in full, it is

(Hy — ML + H,L,, + H.,Ly, =0
HyLi + (Hy — NoLas + Hylyw =0 (88)
H,L,, + HpLaw + (Hy; — MN)Lsx = 0
where A, is one of the three values of A determined from the solution of the cubic (in this case) eq (56).
Divide the first two of these equations by L, and define the ratios gi = L;x/Ls,. This yields two equations

to be solved for the two unknowns g,, and gs.

(Hy, — Mg + Hygu = —Hy,
(90)

H,gu + (sz — M)gan = —H,

We get two g, values for each value of A, substituted into eq (89), or six g, values in all. Using these values,
we can express L in terms of the product of two matrices defined by

&n &1z &1 L, 0 0
L= |ga 822 823 0 L, © =T¢ (90)
1 1 1 0 0 L,

To determine the components of §, insert eq (90) into eq (51). We get
& T{FTe=A=0¢ T{FT 91)

The final reordering is possible because £and A are diagonal and therefore I'{FT is diagonal. This equation
is easily solved for the elements £i€ to give

(650ux = L3 =M/(TTF )i 92)
The other elements of L are gotten from these values and the ratios g already determined.

The actual motions in the cartesian system can now be obtained by combining eq (39) with the inverse of
eq (60) or eq (77). For the stretching motions we have

622



- LQ.
X=M"R=M" (93)
0

where L, arises from the secular equation containing H,. Q, is the normal coordinate vector and the
x-component of the center of mass has been set to zero. A similar equation results for the bending modes.
This is

- L.Q.
Y=A"¥=A"| 0 (94)

0

where the z-component of the angular momentum and the y-component of the center of mass have been set
to zero.
This completes the frequency analysis. In the next section we will consider the partition functions.

2.4. Partition Functions.

Herschbach et. al. [13] have shown how to express the classical partition function for polyatomic
molecules in terms of local properties. We shall use their method because it allows for cancellations of con-
siderable portions of the partition functions of the complex and reactants when their ratios are evaluated in
the rate constant expression, eq (3). We begin the discussion with the classical partition function for a linear
polyatomic molecule. This is (see Herzberg [14], pp. 502-509),

N-5
qa=q.V2aMET/h?y'2 (kTI(ghceB)) 3I;I (kTl(w;hc)) (95)

where gq. is the electronic partition function, ¥ is the volume, M is the total mass of the molecule, c is the
velocity of light, w; is the frequency of the i’th vibrational mode in cm™ (w; =»:/c), IV is the number of atoms
in the molecule, B is the rotational constant; B =Fh/(82cI), where I is the moment of inertia of the molecule;
o is the symmetry number which is the number of indistinguishable positions into which the molecule can be
turned by simple rigid rotations. For linear molecules 0 =1 or 2. Equation (95) neglects nuclear spins, anhar-
monicity, and non-rigidity of the molecule. Let us rewrite eq (95) in terms of I and u,=hv,/kT. It becomes

3N-5
gu=q.Viro™ kT M2 1 11 ' (96)

g can also be written in the form

qa=q.0'Z Iﬁ AZ 97
where
Z=f..... fe ¥ Tdx. . ..... dz, (98a)
A.=h@rMET) % (98b)
Z is the so-called configuration integral, ¥V is the potential energy, and x,, ¥, z). . . - . - Xy, ¥n, Zn are the

cartesian coordinates of each of the V atoms. Eliminating q., between egs (96) and (97) gives
¥ 3¥-5
Z = Van(2nkTh™ 2 4N-91)3/2 | 11 M2 ITwt (99)

Consider now the matrix H=GF defined by eq (84). A theorem of matrix algebra states that the determi-
nant of H equals the product of its eigenvalues (see Hohn [15], p. 283). There is also a theorem (Hohn, p. 65),
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stating that the determinant of product of two matrices equals the products of the determinants of the
matrices in the product. Consequently,

-5 -5
[H|* = |G[#[F|* = TI \¢ = @ekT/AY™* T u, (100)

Solving for the product over u; gives

3H5 ui' = @ukT/hPYS |G| % |F| ™ (101)
Inserting eq (101) into (99) yields
Z = Vaxn(2xkTysCr- M2 | If[ M2 |G| %|F|™ (102)
This can be rearranged to give
|F|% @rkTy%eN Z = ParM? | I:I M2 |G| ™ = Iy (103)

The left side of eq (103) does not involve the masses, while the right side does not contain force constants.
Therefore, the quantity denoted by Jy does not depend on either the force constants or the masses, but must
depend only on geometrical parameters. Herschbach et. al. [13] have shown that for linear molecules

N-1
JN - V47r |I=Il R?oi_( (104)

where Ri.., is the equilibrium distance between mass M; and M..,. For a general linear molecule, the
classical partition function per unit volume can now be written

N
Qu = qu/V = V' g  IM2mkT)AON |F| IIAZ (105)

This form of the partition function is suitable for the reactant molecules.
Let us now consider the partition function for the complex. Using eq (96), we have

N-6
kTh™ q* = kTh™ q.07" Var(2rkTh7P?? M2 1 11 ui (106)

Note that the product is over 3V —6; i.e., one less vibration than in a stable linear molecule. Consider next
the quantity

3IN-6 IN-6 3N-6
(T uf') kTh™ = (kTP T w7* = (RTAPYS T1 20N
IN-6
= (KT/RYY-S @™o N*% II NP\~
= Q@ukT/hY S v*|F|4| G| % (107)

where \* is the negative eigenvalue and »* is the associated imaginary frequency; eq (100) has been used.
Using eq (107) in (106) gives

N
kTh™ Q* = kTR ¢V = V™' g0 (VamMP? [TI Mz |G| 4)p* | F | “42ak Ty~
N
o 1 M2

= 1 g™t Jw® |F| @ekTysovo [T A2 (108)
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This equation is very similar to eq (105), the partition function of a stable molecule. Note that |F| will be
imaginary for the complex.

We can now write down the specific partition functions per unit volume for the four reaction cases shown
in figure 1b.

Case III,

Species 4 = M,—M,

Species B = M,

Species C = M,. . .M,.. .M,

Q4 = quads' 47RE, (2wkT)AF;% (A,A)°

QB = quA;J

QckT/h = q.cod' 4nwRERZV* |F, | 4F, 27k TP (A,AA)7°

The matrix F, is the 2 X 2 one given by eq. (5b), and not the 4 X 4 used in eq (83).

Case IVa.

Species 4 = M,—M,— M,

Species B = M,

Species C = M, —M,. . .M,. ..M,

Qa = quaos' 4TRLRE @rkT (FuFu)#F3l (A,A,4)°

QB = qch:s’ )

QckT/h = q.coc! 4mRERER2Y *F o4 | F, | AF L F, QukT)? (A AAA)7

Note that I have included F,, in Q4 and Qc even though it is supposed to be infinite; it will cancel out when
the ratio Qc/Q. is taken. Also note that the bending force constants appear with twice the power of the
stretching force constants. This is because of the degeneracy.

Case IVb.

Species 4 = M,— M,

Species B = M,—M;

Species C = M,. . .M,.. M,—M,

Q4 = quaod' 47RE 2mkT)4FL% (AA)7

QB = QcBUE’ 47R%, (27"" T)l/i Fa# (A.;As)‘a

QckT/h = q.co3! 4nRIRERLY* | F,|#F L F, 2nkT) "2 (A, A A Ao

Case V.

Species 4 = M,—M,—M,
Species B = M,—M;
Species C = M,~M,. . .M,. . .M, M,
Q4 = quac? ATRLRE, CrkTHFFo ) 4F), (A ALA)
Os = q.s07' 47RE QrkT)AFz% (A A)
QckT/h = q.coz* AxRLRIRERE, v F2 | F,| “FatFiFa Fsh (2rkTY (A,A,A,A,A)°
We now have everything for eq (3) except the tunneling correction. This will be taken up in the next
section,

2.5. Tunneling Correction
The one-dimensional Eckart potential function was used to approximate the barrier to quantum

mechanical tunneling from reactants to products. Three parameters are required for its definition; these are
shown in figure 8. Its functional form is
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Yy = _ By (109)

I-y  (1-y7
where
y = _eltx/L
4 =r-V
B =Vt + V¥
L =2a(-2IFy4 (V% + V%)™, and
_ &y
F =%

evaluated at the maximum in the curve. F is a force constant. Using this potential function, Eckart [16]
solved the wave equation and obtained the transmission coefficient for a particle with mass m approaching
the barrier from the left with an energy E. His result is

cosh[2m(a, —a,)] +A
cosh[2m(e; + )] +A

K(EV,VF) =1 - (110)

where A = cosh[278] if 8 is real, and A = cos[27|5[] if & is imaginary. The relationships of «;, &,, and & to
the parameters of figure 8, are

o, = Va(E/C)%
a, = W[(E—-A4)/C}*

8 ;1/2[(B—C)/C]‘A (111)
C = K(8mL?)
F

7\ “

!

X

FicuRE 8. Eckart potential function.

Given the transmission coefficient, Johnston [2], pp. 42 and 43, has derived the correction factor I'* which is
the ratio of the quantum barrier crossing rate to the classical crossing rate. His result is

I'* = e"/*7 {7 K(E)e™™*" dE/KT (112)

where E, = Owhen ¥, < V, and E, = V, — ¥, when ¥, > v,
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Let us rewrite this in a more symmetrical form. We define a new variable e = (E — V)JAT,E = kTe + V.
Equation (112) becomes

r* = ]:K(e)e“de (113)
where ¢, = —V,/kTwhen ¥, < V,and ¢, = —V,/kTwhen ¥V, > V,.
With this substitution, the parameters , and «, become
o; = W(kTe/C + V/Cy4, i=1&2 (114)
From eq (110) we have
K = K(a,,a,,8) = K(kTe/C,V,/C,V,/C,B/C)
But
B/C = V,/C + 2[(V,/C)(V,/C)% + V,/C (119)
is a function of ¥,/C and V,/C. Therefore
K = K(ep.p.,p) (116)
where
p =kT/C,p, = V,/Cand p, = V,/C.

I'* thus depends on three parameters. Furthermore, it is invariant when p, and p, are interchanged; i.e.,
I"(p,psps) = I'*(p,po»py)- To see this let p; = p, and p, = p,. From eq (115) we see that

(B/CY = py + 2pip,)* + p; = p, + 2Ap,p)* + p, = B/C
Thus, 8’ = 8. From eq (114) we have

o) = Yalpe + p;)* = Yelpe + p)* = a,
o, =

Using these results in eq (110), we get

Ke,p.p,:p.) = K(e,p.p,p) = Kle.p,p,.p,) (117

Suppose that p; > p,;ie., V] > V,. Using eq (117), eq (113) becomes

I*e.pip) =13, Keppipede= [, Klepp,p)ede=T"(p.p..p)

The way Eq (113) was integrated to get I'* will be considered later when the computer program is
discussed.

In applying this correction, it is assumed that the x coordinate of Eckart’s potential lies in the g direction
discussed earlier. This is that direction at the saddle point in which the potential energy decreases most
rapidly. It is also the direction of the path of constant total bond order. We therefore use the force constant
F, given by eq (22) for the second derivative of the Eckart potential at its maximum. The effective mass for
tunneling, M,, is the proportionality factor between the kinetic energy and 14g* We can calculate M, in the
following way: As far as tunneling is concerned, in the 4 and 5 mass point cases there are effectively 3
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masses, since the end bonds are supposed to be rigid. Thus, there are only the two variables, R, and R.,
involved. (Bending modes are not considered.) The kinetic energy T, for changes in these two bonds is given
by

T, = BRG;R (118)

where R is the 2-dimensional vector defined by eq (6), and G, is the 2 X 2 matrix given by eq (86). The
inverse of this matrix is easily calculated and found to be

MM, +M) MM, |
G* = M (119)
MM, M+ MM,

where M, = M, + M,and M; = M, + M, in the 5 point case. The transformation between R,, R, and g, o
is given by the matrix U whose value, determined by the BEBO calculation, is given by eq (18). U can be
used to express T, in terms of g and o. Thus

T, = % R1G;R = 15 PHUGUP

The desired quantity M, is simply the matrix element (U1G;*U);;. This is

MM, + M)m*—2MM!nm +(M; + M)M;n? 120
(P +mdM ’ (120)

M=

where n and m are the bond orders from the BEBO calculation, and M is the total mass of the molecule.

The bases from which the tunneling parameters ¥, and ¥, are measured are taken to be the zero point
energies of the reactants and products, respectively, and not the potential minimums as might be expected.
The maximum of the potential, on the other hand, is placed at the potential minimum of the complex; i.e., at
the saddle point. Johnston {2], pp. 190-196, gives reasons for this particular method of using the Eckart
function for tunneling corrections.

We finally have everything needed for eq (3). In the next section explicit rate constant expressions will be
given for the four reaction cases of figure 2.

2.6. Rote Constant Expressions
The rate constant expression eq (3) is not quite complete. It should be multiplied by the number of
equivalent H atoms on the molecule being attacked. Let us call this factor the chemical multiplicity, o... For
example, there are 6 identical reaction paths for H abstraction of the 6 terminal H atoms on propane, and 2

paths for abstraction of the 2 central H atoms. Thus 6., = 6 in the first case, and 2 in the second. With this
factor added, the rate constants for the four cases shown in figure 2 are

Case IIl. M,—-M,+M,—M, . M, ..M,
k = SF3! (2zkTy" (2
Case IVa. M, ~M,—~M,+M,~M,~M, . M, ..M,
k = SF,(Fi,Fo ) @ukTy? (T (T (121)
Case IVb. M,—M,+M,~M,~M, . M, ..M~ M,

k = SF,F. )" QukTys 2 (T4
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Case V. M,—M,—M,+M,—M;~M,~M,. . .M, ..M,~ M,
k = SF,, (Fi,F, ,F, )" @nkTy"* (O30T Y (T7) (A

The common factor in all these expressions is

Jec Ta0p R:R? »* FET? * _-V'/AT
Geaqen 0c RS, |F. % T '

S=ad.

The calculated factors in S are:
1) R, and R,; these are calculated from n and m through Pauling’s relation, eq (9).
2) »* is the imaginary frequency obtained from the vibration analysis for the asymmetric stretch.
3) |F.| is the determinant of the matrix given by eq (30). It is negative.
4) I'?is the quantum correction factor for the symmetric stretching frequency obtained from the vibra-
tional analysis.
5) I'* is the tunneling correction factor obtained in section 2.5.
6) V*is the saddle point potential energy given by the BEBO calculation.
Other calculated factors are:
1) F,, is the bending force constant given by eq (33).
2) F,, and F,, are the bending force constants given by eq (34).

3) The quantum correction factors I'}, I'}, I'} for the bending modes come from the frequency analysis via

eq (2).

This concludes the theoretical part of this discussion. The next section contains a brief discussion of the
computer program which was written to implement the rate constant calculations. This will be followed by
instructions on how to use it.

3. Computer Implementation of BEBO

The computer program consists of a main section and six subroutines. It is written in an enhanced form of
BASIC for use on a Hewlett-Packard 9845A computer.

3.1. Description of the Main Program

The main program begins by reading the following data:
1) Runid$

This is a string variable having up to 79 alphanumeric characters to be used for the run identification.
2) Op{M),M=1,7

These are flags which provide a series of available options. These will be described in detail in the instruc-
tion section.
3) Ntemp

This is the number of temperature values at which the rate constant is to be evaluated. A maximum of 16
values will be allowed.
4) Tmin, Tmax

The minimum and maximum temperature values desired. The reciprocal temperature scale is divided
into Ntemp — 1 equal intervals and the temperature evaluated from the reciprocal values. This gives a better
distribution on an Arrhenius plot than if the temperature scale were divided into equal intervals.
5) M1,M2,M3,M4,M5

These are the five mass point values determined according to the rules given in section 2.1.
6) Ras,Rbs,Rcs,Rds

These are the equilibrium bond distances for single bonds.

7) Ebs,Ecs,P,Q
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The first two parameters are the electronic energies for single bonds b and ¢; the last two are the BEBO
parameters obtained from eq(12).
8} Rts,Ets,Beta
These are the bond distance, bond energy, and Morse parameter f§ for the triplet interaction.
9) Fbs,Fcs,Fpsi2s, Fpsids
These are the stretching force constants for single 4 and ¢ bonds, and the bending force constants about
the M2 and M4 masses.
10) Sa,Sb,Sc
These are the partition function symmetries 0,4, 05, and 0,.
11) Schem
This is the chemical multiplicity o..
12) Sea,Seb,Sec

These are the electronic degeneracies q.4, q.5, and q.c.

The program next prints out this input data to provide an easily read record and a check of the numbers,

After these preliminaries, the program then determines the saddle point position. This is done by an
iterative procedure; 2 is initially set to 0.5; then the potential energy ¥ is calculated according to eq (14)
along with its first and second derivatives, ¥n and Vnn, with respect to n. The subroutine Trpl is used to
calculate the triplet part of V. A new n is estimated by the Newton, Raphson method from the formula n’=n
—Vn/Vnn. The process is repeated using n’ and continued until covergence is obtained. This yields a value
of n which makes Vn zero; this will correspond to the desired maximum in V. (I have not investigated the
conditions for which a maximum is expected or if there could be more than one maximum.)

Having obtained the value of n for the saddle point, the program calculates the stretching force constant
matrix Fr given by eq (30), its determinant, and the saddle values of Rb and Rc from Pauling’s relation eq
(9). It then evaluates the mass to be used for tunneling from a somewhat rearranged eq (120). Next, the 2 X
2 matrix Gr is calculated from eq (86). This is then combined with Fr to form Hr, and the stretching frequen-
cies obtained by solving the resulting quadratic secular equation. The bending frequencies are next deter-
mined through the matrices F (eq (35)) and G (eq (87)). The sizes of these matrices will depend on the type of
reaction. For the three mass point model there is only one element and thus a linear secular equation with
one bending frequency. The two four point models require solving a quadratic secular equation for two fre-
quencies. The five point model uses the subroutine Cubic to solve the cubic secular equation for three fre-
quencies. The subroutine Normod then calculates the matrix for the normal coordinate transformation of
the stretching modes.

At this point, the program prints out a number of properties of the complex. This will be discussed in
detail in the instruction section.

The rate constants are then evaluated from eqs (121) at the different temperatures. The activation energy
is gotten by numerically differentiating the logarithm of the rate constant by means of suitable finite
difference formulas. Subroutine Fit is a least-squares routine which is used to fit Arrhenius equations
through the calculated points, The program concludes with subroutine Pltk which draws an Arrhenius plot
of the results.

3.2. Discussion of Subroutine Tun

The only subroutine worth discussing is Tunl, the routine for evaluating the integral of eq (112) for the
tunneling correction factor I'*. Johnston and Heicklen [17] calculated this integral numerically by an
unspecified method for a range of input parameter values. The three input parameters which they used were
hv*/kT, where v* = (= F/m)(27), 2r¥,/(hv*), and 27V, /(hv*). Their results are in the form of a table. The
method used in the present program is a modified 6-point Gaussain quadrature formula based on Legendre
polynomials (see Abramowitz and Stegun [18]). This was used even though the nature of the integral sug-
gests using a formula based on Laguerre polynomials. Neither of these formulas was satisfactory for the
whole range of parameter values given by Johnston and Heicklen, so a modification of the first method was
developed. It was based on the following ideas: When e gets large, the transmission approaches unity. The
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idea is to use the Gaussian formula for that part of the integral where K(¢) < 1. After K(e) has gotten suffi-
ciently close to unity, the remainder of the integral can be evaluated analytically; i.e., if K{e)=1 for e>¢,,
then

]: K(e)ede =~ j:e"de =e™b

The problem is to estimate ;. Let us examine eqs (114) as € — co. We get o, V2£%, where £ = kTe/C. From
eq (110), we have

K~—1-(1+ AVzexp(2nE"s) + A = K,

We can set K, to some arbitrary value close to unity and solve this equation for € and then £ and then ¢,
which will be our cutoff point. The result is

& = C{2n) ' n [201 + A)(1 — K]} {kT)

1t turns out that this value is not entirely satisfactory and subtracting from this the average value of ¥, and
V, works better. Also it can happen that ¢, as calculated from this formula can be very large when K is close
to unity. Thus, exp(~—€,) will be very small. There is no point in using a value for € as the upper bound to the
Gaussian formula if the integrand at this point is negligible because of the exponential factor. Thus ¢, was
kept below a certain fixed value ¢,,,. This yielded two parameters, K, and €,... which were adjusted to
minimize the squares of the differences between the results of this method and the results of Johnston and
Heicklen. The differences averaged 1.3 percent with only two value differing by as much as 6 percent. Such
accurancy should be quite adequate for the rate constant calculations.

4. INSTRUCTIONS FOR USING BEBO

4.1, Input

It will be assumed that the reader is familiar with the general operation and command system of the
HP9845A. The program lines 5000 to 5240 contain a series of DATA statements which hold the input data.
As an example, data for the ethane plus methyl radical reaction is contained in these statements. The
general nature of the input has been discussed briefly in the last section; here this is considered in more
detail.

1) Runid$ is a string variable containing identifying information; 79 characters can be used.
2) OptM),M=1,7 are flags for the following options:

Opt(0): This picks out the version of the triplet function ¥; these different forms of ¥, will be discussed in
the Appendix.

Opt(1): As mentioned earlier, the activation energy Eact at any temperature is obtained by numerically
differentiating the logarithm of the rate constants. This is done in either of two ways. The more accurate
method evaluates the rate constant three times at each temperature; at the particular point and slightly
above and below the point. The derivative is then estimated from a 3 point finite difference formula. This is
automatically the method used when only a single temperature point is requested. The second, less accurate,
but faster method uses the rate constants calculated at Ntemp (see last section or below) points and usesa 5
point difference formula for the derivative. The more points requested and the narrower the temperature

range, the more accurate is this method. The value of Opt{1) determines which of these methods will be
used. Thus, when

Opy1)=1, 5 point difference formula used to get Eact (fastest method).
Opy1)=2, 3 point difference formula used to get Eact (most accurate method).
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Opt(2): When
Opt(2)=1, the Inatural logarithm of the rate constant is calculated.
Opt(2)=2, the logarithm, base 10 of the rate constant is calculated.

Opt(3): When
Op3)=1, the cathode ray tube is used for the printout. In this mode, execution of the program pauses
before the Arrhenius plot is produced, and before the caption to the plot is generated. In each case execu-
tion can be resumed by pressing the “cont” key.
Opt(3)=0, the internal printer is used for the output.

Opt(4): When
Opt(4)=1, the rate constant is in cm*®/mole-s.
Opt(4)=2, the rate constant is in cm*/molecule-s.
Opt(4)=3, the rate constant is in liters/mole-s.
Opt(4)=4, the rate constant is in liters/molecule-s.

Opt(S). Not used.

Opt(6): When
Opt(6)=0, the Eckart tunneling correction is not applied. It will automatically not be applied if the zero
point energy of the reactants is greater than the potential energy #™ of the saddle point.
Opt(6)=1, the tunneling correction is applied.

Op(7): When
Opt(7)=3, the three parameter Arrhenius type equation, AT, _r,.esrr is fit to the calculated rate constant
values.
Opt(7)=2, the standard two parameter Arrhenius equation de =***RT is fit to the calculated rate constant
values.
3) Ntemp is the number of temperature values (up to 16) at which the rate constant is to be evaluated. Use
the absolute temperature scale.

4) Tmin, Tmax are the minimum and maximum temperature values to be used. If Ntemp=1, then only one
temperature value should be entered on this line.

S) M1,M2,M3,M4,M5 are the five mass point values determined by the rules on page 5. For 3 point models
set M1 and M5 to zero. The 4 point models will have either M1 or M5 equal to zero. Atomic mass units are to
be used.

6) Ras,Rbs, Res, Rds are the single bond distances in A. For 3 point models set Ras and Rds to zero. For 4
point models, set either Ras or Rds to zero.

7) Ebs,Ecs,P,Q; the first two parameters are the electronic energies for single bonds in kcal/mole. The
quantity normally available is the bond dissociation energy DH" which is defined as the enthalpy change in
the process in which one mole of the bond of interest is broken, with reactants and products being in their
standard states as ideal gases at 1 atm and 25 °C. This is not the energy we want. The desired energy E is
shown in figure 9, which illustrates the energy relationships involved in the removal of an H atom from some
group A. Z,_4 and Z,. are the zero point energies for the reactant and molecular product, and HX-», HX.,
and HF. are enthalpies of the speices 4-H, A-, and H-, respectively. In general, a particular enthalpy is the
sum of the translational, rotational, vibrational, and P¥ contributions. We have

H™ = H(trans) + H'(rot) + H(vib) + PV
By examing figure 9 it is easy to derive the relationship between E and DF". It is
E =DH + (Hi-y — HL) + (Za-w — 24) — HL. (122)
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FicURE 9. Bond energy relationships.

The second term is
HE_,, —HI, = H%_{trans)~ HJ.(trans)+ Hj_{rot) — H}(rot) + Hj_.{vib)

Hi.w — Hi = Hi.trans) — Hp.
Assuming equipartition of energy, the translational and rotational enthalpies will be the same and the dif-
ference in vibrational enthalpies will normally be negligible. Thus, the second term in eq (122) can be
neglected. The last term H;. = Ef. + PV = 3RT/2 + RT, where 3RT12 is the translational energy of the H
atom and RT is PV for an ideal gas. Thus, eq (122) becomes

E=DH°=(Z,-4—2,.)-5RT/2
As an example, consider the process CH;—H—>CH; + H-. To estimate the difference in zero point energies
between CH;—H and CH;, I have assumed that one C-H stretch of 3100 em™ and two H-C-H bends of 1450

cm™ have been lost in going from A-H to A- and H-.This corresponds to a zero point energy difference of
8.575 kcal. For cases like this, the bond energy will be

Ecs = DH + 8.575 - 5RTy4s/2 = DH + 7.095 keal

The zero point energy difference for other types of bonds can probably be satisfactorily estimated in a simi-
lar manner. Having obtainedf Ebs and Ecs in this manner we can calculate P and Q from eq(12).

8) Rts Ets,Beta are the triplet interaction parameters in A keal and A7, respectively. I have been using the
values given in Johnston[1966], table 11-1.
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9) Fbs,Fes,Fpsi2s, Fpsids are the single bond force constants. The first two are the stretching constants in
dynes/cm; the second two are bending force constants in dyne-cm. In the 3 mass point case, both the bend-
ing force constants are set to zero. For 4 point models, only one of the bending force constants will have a
value of zero.

10) Sa,Sb,Sc are the partition function symmetries for A-H, B-, and A- -H- - B, respectively.
11) Schem is the chemical multiplicity.

12) Sea,Seb,Sec are the electronic degeneracies for A-H, B-, and A--H- -B. Sea will normally have the
value one. Since B- and A- -H- B each have an unpaired electron, Seb and Sec will normally have the value
two.

4.2. Output

BEBO first prints out the input data. It then the following properties of the complex:
1) The potential energy of activation ¥* in keal/mole.
2) The bond orders n and m of the b and ¢ bonds.
3) The bond distances Rb and Re in A.
4) The force constant in the ¢ direction in dynes/cm and the angle ¢ makes with the Rb axis on a contour
plot like figure 3.
5) The force constant in the o in dynes/cm, and the angle to the Rb axis.
6) The force constant in the unstable normal mode direction in dynes/cm, and the angle to the Rb axis.
7) The force constant in the stable normal mode direction in dynes/cm, and the angle to the Rb axis. Note
that the normal mode directions are usually not orthogonal.
8) The stretching force constant matrix Fr in dynes/cm.
9) The equations for transforming back and forth between the normal mode and valence bond coordinates.
10) The bending force constants in dyne-cm.
11) The two stretching frequencies in cm™.
12) The one to three bending frequencies in cm™.
13) The zero point energy of the complex in kcal/mole.
14) The zero point energy of the reactants in kcal/mole.
15) The zero point energy of the products in kcal/ mole.
16) The Eckart potential function parameters ¥1 and /2 in kcal/mole.
17) The reduced mass for tunneling M, = Mrho.
18) The second two of Johnston and Heicklen's tunneling parameters (see section 2.5).
The program then prints out the rate constants as a function of temperature. Also given at each temperature
is the logarithm of the rate constant, the logarithm of the Arrhenius preexponential factor, the activation
energy, the tunneling correction factor, and the first of Johnston and Heicklen’s tunneling parameters.
Since the tunneling algorithm has not been checked outside the parameter ranges used by Johnston and
Heicklen, their parameters values are listed to make sure that they are within the proper ranges. The limits
are A1 and 42 = 01020, and U* = 0 to 16.

Finally, there are listed the differences between the calculated values of the logarithm of the rate constant
and the values predicted by the least squares fitted Arrhenius equation. This fitted curve is shown by the
dotted line on the Arrhenius plot. The fitted Arrhenius parameters are given in the caption ot the plot. On
the next two pages there is a sample output for the ethane and methyl radical reaction.
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6. APPENDIX: Various Triplet Functions

The subroutine Trpl is able to provide three different triplet functions which are selected according to the
value of flag Opy0). They are as follows:

Opt(0)=0: This is the modified Sato triplet function with a small portion neglected. Instead of Eq. (13), V,
= E., is used. This simpler formula seems to have been used in the days of mechanical desk calculators. This
option is useful when attempts are being made to reproduce the results of earlier workers.

Opt(0)=1: Eq. (13) is used.

Opt(0)=2: Arthur et. al. [19] have developed a triplet energy formula by fitting a function to the H-H
triplet potential energy values given by Hirschfelder and Linnett[20]. Their formula is

V. = 5.8T3E,e - Berusra (R, +R))-

They claim better results in certain cases when this function is used.
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yields the following values for the par

A*(T*n]*EXP(~Earr/RT],
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! 6 point Gaussian Lengendre
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PLtk(Opt(*) ,Nm,T(*),Lk[*),E(*))

(INT(Xmax/Xticl+1)*Xtic

-Xmax>1E-2*Xtic) THEN Xstop
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JOURNAL OF RESEARCH of the National Bureau of Standards
Vol. 86, No. 6, November-December 1981

Enthalpy of Combustion of Microcrystalline Cellulose

J.C. Colbert*, He Xihengt}, and D.R. Kirklin*

National Bureau of Standards, Washington, DC
20234

August 14, 1981

A test substance with characteristics and properties similar to those of cellulose-based solid waste products
is needed to calibrate calorimeters and combustors which will be routinely burning these materials to determine
their calorific values precisely for use in commerce. Microcrystalline cellulose was found to be a good calibrant
for this purpose. The enthalpy of combustion of microcrystalline cellulose AH? at (25 °C), and its estimated
uncertainty, was determined to be —2812.401+1.725 kJ/mol based upon the sample mass.

A calculated heat of wetting correction of 1.514 kJ/mol was applied to the combustion data.

Keywords: alternative fuel, bomb calorimetry, cellulose, enthalpy of combustion, refuse-derived-fuel, test

substance.

1. Introduction

The enthalpies of combustion of heterogeneous
feedstocks such as refuse-derived-fuel (RDF) and wood
wastes, are important thermochemical data because of the
potential application of these materials in commerce as sup-
plemental or alternative fuels. When determining the en-
thalpy of combustion of RDF in a conventional bomb
calorimeter or a newly designed multi-kilogram flow
calorimeter, it is desirable to have a ‘‘test substance’’[1]’
which can be used for their calibration which is as close to
RDF in character as possible. This test substance will per-
mit the intercomparison of the thermochemical results of
different investigators in the new field of fuels from
cellulose-based solid wastes and will essentially serve to con-
trol the chemical part of the investigation. Since there is a
large fraction of cellulosic materials (i.e., paper products) in
municipal solid waste (MSW), we decided to investigate the
possibility of using a pure cellulose as a test substance.
Cellulose not only has a close compositional relationship to
the major components of MSW, but also possesses a similar
kinship to wood species, wood wastes from the manufacture
of paper, bagasse from the sugar refining industry,
agricultural wastes, and some forms of peat. These
materials have a potential as supplemental or alternative
fuels just like RDF.

1Guest worker from July 1980-February 1981, Chemistry Laboratory, National
Institute of Metrology, P.0. Box 2112, Peking, People’s Republic of China.

*Center for Chemical Physics, Chemical Thermodynamics Division

‘Numbers in brackets indicate literature references at the end of this paper.

A search was carried out to find a suitable cellulosic test
substance. We needed a cellulose which was high in purity,
homogeneous, inexpensive, easy to pelletize, and one which
could be obtained in large quantities. Avicel,? a readily
available commercial cellulose, was chosen because it pos-
sesses most of the requirements for use as a calibrant in a
bomb calorimeter. This cellulose is very homogeneous,
99.81 percent pure, and presses into a pellet very easily.

Calibration of the oxygen bomb calorimeter was per-
formed using SRM benzoic acid, standard sample, 394,
which is the accepted primary standard substance for
calibrating bomb calorimeters. Comparative calorimetric
measurements were conducted on the cellulose sample.
These measurements for benzoic acid and cellulose, along
with the heat of wetting correction for cellulose, are
presented in this paper.

2. Experimental

2.1 Sample Characterization

Avicel, pH-101, lot 1018-152, is a microcrystalline
cellulose, which is an acid hydrolyzed derivative of a dissolv-
ing grade of wood pulp. It has an average particle size of 50
micrometers and a pH of 5.5 to 7.

The sample was not subjected to any further purification
but these additional analyses were made to further

*The commercial sources cited in this paper are included 1o adequately describe
the experimental procedure. Such identification does not imply recommendation or
endorsement by the National Bureau of Standards.
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characterize the cellulose. The percent moisture of seven
cellulose samples was 4.910 + 0.060 (sd.) at a relative
humidity of 36 percent, as determined by drying in a 105
°C oven until a constant weight was reached.

The water soluble impurities of fluoride, chloride, nitrate,
and sulfate were analyzed for by the method of ion-
chromatography.®> Two cellulose samples of different
masses, 0.51 g and 1.62 g were diluted in a solution contain-
ing the buffer: 0.003M NaHCO0,/0.0018M Na,CO,. The
diluted sample was mixed, allowed to settle, and filtered
through a 0.2 micrometer syringe filter. The average con-
centration of water soluble impurities for the two samples
was 62.46 ppm. This level of anions is negligible when look-
ing at the overall sample purity.

The amount of ash was found to be negligible when deter-
mined according to the American Society for Testing and
Materials (ASTM) Standard Test Method D-3174-73 for
Coal and Coke. The samples were fired for two hours in a
furnace operating at 575-600 °C.

The purity of the Avicel was determined in duplicate CO,
analyses of the bomb combustion products. The gaseous
products of combustion were released from the bomb and
passed through absorption tubes containing Ascarite and
magenesium perchlorate for removal of CO, and H)0,
respectively, and phosphorus pentoxide [2] to prevent the
back-flow of moist room air into the absorption system. The
amount of CO, was then determined gravimetrically. The
purity of the cellulose was found to be 99.809 + 0.103 (sd.)
percent.

2.2. Description of Calorimeter

The combustion measurements were made in an iso-
peribol oxygen bomb calorimeter. This is an isothermal-
jacket calorimeter with the calorimeter reaction vessel
submerged in a water bath at 301 K and controlled to
+0.003K. This prevents any thermal leakage between the
laboratory environment and calorimeter. The heat gen-
erated when a measured amount of sample is burned is
compared to the heat evolved when a measured amount of
standard substance is burned in the same calorimetric sys-
tem. Benzoic acid, the primary calibrant, is burned and
produces a three degree temperature rise in the calorimeter.
The energy equivalent of the calorimeter is determined
from the amount of energy produced by the benzoic acid
and divided by the temperature rise. The temperature rise
is corrected for the stirring energy produced in the stirred
water of the calorimeter vessel and any thermal leakage
between the environment and calorimeter.

In a cellulose experiment, the corrected temperature rise

*The analyses were performed by the Inorganic Analytical Research Division of
the National Bureau of Standards.

is multiplied by the energy equivalent of the calorimeter.
This calulation gives the total energy produced in a cellu-
lose combustion experiment. This total energy is finally cor-
rected for any side reactions, or thermal corrections, and is
divided by the mass of the cellulose sample to produce the
internal energy of combustion at constant volume, AUL,
Conversion to the enthalpy of combustion at constant pres-
sure, AH;, carried out by applying a correction term for
pressure-volume expansion (AnRT). The ArnRT term for
this reaction is 0, therefore AU? = AH.

All of the cellulose samples for combustion are pressed
into pellets under an approximate force of 44.4 kN. A sam-
ple weight of 2.3 g was pre-determined in a trail experiment
as the necessary amount of sample required to produce a
three degree temperature rise.

2.3 Sample Preparation

A dried sample weight is necessary for the combustion
experiments. Since cellulose is very hygroscopic, this was
very difficult. The samples were placed into pre-weighed
ground glass neck weighing bottles, dried at 105 °C until a
constant weight of + 0.3 mg was obtained, and stored in a
desiccator over P,0; until ready for testing,

2.4 Example of Calorimetric Procedure

A dried pellet was transferred from the weighing bottle to
a preweighed platinum crucible. The empty weighing bottle
was again weighed to account for any cellulose remaining in
the bottle. The platinum crucible with pellet was placed on
the crucible support of the bomb head. The fuse leads had
been previously connected with a 2 ¢cm length of 0.075 mm
platinum wire which is placed in contact with the top of the
pellet. Normally, 1 ml of water is added to the bottom of the
bomb to provide a saturated atmosphere and ensure that
water formed as a combustion product is present in the
liquid state. For this series of cellulose combustions, 0.2 ml
of water was added directly to the pellet in the crucible and
0.8 ml added to the bottom of the bomb. The sample was
wetted before burning because it was found in the previous
study by Jessup and Prosen [3]* that a more complete com-
bustion results with a wetted sample rather than a dry one.

The sealed bomb is charged with 3.10 MPa (30.62 atm) of
high purity oxygen and placed on the bench for approxi-
mately 1 hour for the sample to equilibrate with the moist
environment inside the bomb. The calorimeter vessel is
filled with a known amount of water, the bomb is lowered
into the vessel, and the covered calorimeter is submerged in
the constant temperature water bath. The rate of tempera-

*In a private consultation with EJ. Prosen, who had done a similar study in 1950,
we were advised to wet the cellulose sample before placing it in the bomb.
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ture rise is measured during the period before the sample is
ignited, during the reaction period immediately after the
sample is ignited, (main reaction period), and during the
period after the reaction is completed. The difference be-
tween the temperature at which the final drift rate begins,
and the temperature at which the sample is ignited, gives
the observed temperature rise. The slope of the fore- and
after-periods allows one to calculate that portion of the
temperature rise due to stirring energy and thermal leakage

4).
3. Results and Discussion
3.1 Correction for Heat of Wetting of Cellulose

Since the samples were wet when they were ignited in the
bomb, the heat produced in the combustion reaction is
lower than for a dry sample. This amount of heat is equal to
the heat of wetting and has to be corrected for in the calcu-
lation for the enthalpy of combustion. These heat of wetting
determinations were not experimentally performed in the
laboratory because of time constraints, and after searching
the literature, it was felt an adequate amount of data
already existed so that a calculated correction could be
made.

The literature search extended back to 1948 or to about
the time period when Jessup and Prosen’s calorimetric work
on cellulose was carried out at NBS [3]. Table I gives a sum-
mary of the heat of wetting data on cellulose in the litera-
ture. Rees’ result of 46.02 [12] was in the same range as the
other data listed, but his heat of wetting data also included
the actual data points at different moisture contents of the
sample. It was also presented in such a way as to easily
select which sample was the closest counterpart to our
Avicel sample.

TaBLE I. Published Data on AH Wetting of Cellulose

AH wet.

Researcher Type of cellulose T °C| callgllig)
Jessup, et al, 1950{3] wood pulp 30 | 141 (58.95)
Jessup, et al. 1950[3] cotton linters 30 11.2 (46.80)
Wahba, et al, 1952[5] standard cellulose 20 | 110 (46.02)
Wahba, 1948[6] raw cotton 30 12.2 (51.04)
Wahba, 1950[7] standard cellulose 30 | 10.72 (44.85)
Wahba, 1959(8] stabilized cellulose® 30 | 10.52 (44.02)
Wahba, 1959(8] unstabilized cellulose | 29.8| 10.70 (44.77)
Wahba, 1975[9] stabilized cellulose 15 11.48 (48.03)
Argue, et al, 1935[10] standard celluloseb — 10.16 (42.51)
Morrison, et al, 1959[11] cotton celluloset e 12.33 (51.59)
Rees 1948[12] American cotton 25 1.0 (46.02)

a Cellulose treated by repeated wetting and drying.
b Heated samples in air at 100 °C.
¢ Dried at room temperature.

Using his data for cotton we were able to fit it to a least
squares program and generate a polynomial expression for
the data. Using that curve we selected hypothetical mois-
ture contents for the cellulose sample that gave a calculated
heat of wetting that reached a minimum value. The equa-
tion which was generated is given below:

Y=10.8719-2.16135X +0.13516 X*

where Y is the resulting calculated heat of wetting correc-
tion, 2.23134 cal/g (9.33592 J/g), and where X is the mass
fraction of the moisture present in the cellulose sample
before absorption begins. The value for the heat of wetting
of cellulose was multiplied by the mass of cellulose burned
in each experiment and the resulting numbers used as the
correction for each heat of combustion measurement.

3.2 Bomb Calorimetric Measurements

Standard Reference Material, benzoic acid (SRM 39i),
was used as the calibrant for the calibration experiments
and has an energy of combustion of 26 434 + 3 J/g at 25°C
and standard bomb conditions. The average energy equiva-
lent of the calorimeter (Esi) was determined from nine
benzoic acid combustions and was found to be 14 347.75 +
0.82 J/K (sdm) at 301 K. Table II contains the detailed
presentation of the nine calibration experiments, numbered
from 1000-1013. The headings, in the order in which they
appear in the table, are defined as follows:

Expt. No., the number of the experiment, which can easi-
ly be traced back to our records.

AU (28 °C), the internal energy evolved by the combus-
tion of benzoic acid at the selected final temperature in J/g.

m-BA(vac), the mass of the benzoic acid sample, in g,
reduced to mass in vacuum.

g-BA4, the energy evolved by the combustion of benzoic
acid,in].

g-ign, the electrical energy added to the system to ignite
the sample, in J.

g-HNO;, the energy evolved by the formation of nitric
acid in the combustion process, in J. (usually due to nitro-
gen impurities in the oxygen).

g-WC, The Washburn Correction [13, 14, 15] applied to
correct the combustion data from bomb conditions to condi-
tions in which the reactants and products are in their pure
standard states at one atmosphere pressure, inJ.

Q-total, the total energy delivered to the calorimeter after
corrections for ignition energy, formation of nitric acid, and
Washburn correction, in J.

AT-corr, the observed temperature rise of the calorimeter
corrected for stirring energy and thermal leakage, in K,

E-cal, the energy equivalent of the actual calorimeter
system at the final temperature, (28 °C) in J/K.
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TasLE 1. Benzoic Acid Calibration Results.

Exot. No AU2(28 °C)| m-BA(vac) g-BA gign |¢-HNO, q-WC Q-total AT<corr E-cal Ei-cont | Esi-empty
PR e g ] ] ] J J K JK JK JK
1000 —26410.68 | 1.636294 | —43215.64 | 1.16 6.24 34.646 —43257.62 | 3.010633 14368.28 18.92 14349.36
1001 —26410.68 | 1.629256 | —43029.76 | 1.16 5.72 34.415 —43070.99 | 2.997890 14367.10 18.89 14348.21
1002 —26410.68 | 1.632134 | —43105.76 | 1.21 5.07 34.461 —43146.44 | 3.002835 14368.57 18.88 14349.69
1004 —26410.68 | 1.630985 | —43075.41 | 0.94 344 34.463 —43114.21 | 3.001051 14366.37 18.89 14347.48
1008 —26410.68 | 1.629405 | —43033.69 | 1.16 5.66 34.503 —43074.97 | 2.998000 14367.90 18.93 14348.97
1010 —26410.68 | 1.630515 | —43063.02 | 0.94 4.55 34.580 —43103.42 | 3.001390 14361.15 18.95 14342.20
1011 —26410.68 | 1.630601 | —43065.29 | 0.94 299 34.500 —43103.98 | 3.000125 14367.39 1891 14348.48
1012 —26410.68 | 1.630203 | —43054.76 | 1.06 6.04 34.625 —43096.67 | 2.999317 14368.83 18.97 14349.86
1013 —26410.68 | 1.630414 | —43060.33 | 1.16 5.33 34.567 —43101.69 | 3.000575 14364.48 18.95 14345.53

E,si-mean JIK 14347.75
Std. Dev. JIKK 2.47(0.017%)
Std. Dev. Mean J/K 0.82(0.006%)

Ei-cont, the heat capacity of the initial bomb contents,
including the sample, crucible, water, and oxygen, in J/K.

E,si-empty, the energy equivalent of the empty calorime-
terat28 °C,inJ/K.

E,si-mean, the mean value of the measured energy equiv-
alent, in J/K.

Std. Dev., the standard deviation of a measurement, (sd),
in J/K (and the percent standard deviation, %sd).

Std. Dev. Mean, the standard deviation of the mean,
(sdm) in J/K (and the percent standard deviation of the
mean, % sdm).

The combustion data for Avicel are presented in table III.
These are additional headings used in the table that were
not described previously and are identified as follows:

g-wetting, a correction to the overall energy due to the
combustion of the wetted sample, in J. When the sample is
wetted, heat is evolved. During the burning process, that
amount of water used in pre-wetting the sample is dried
during the combustion. Therefore, the amount of heat gen-
erated in the combustion reaction is less than would be
expected due to the amount of heat required to dry the sam-
ple. The number of joules due to the combustion of the com-
pound initially is smaller and the amount of heat due to the
wetting must be put back in to produce the correct enthalpy
of combustion.

g-corr to t, A correction applied for the deviation of the
actual final temperature from the selected standard final
temperature (ussually 28 °C), in J.

Q-cellulose, total energy delivered to the calorimeter after
corrections for ignition energy, formation of nitric acid,
sulfuric acid, heat of wetting and the like, in J.

m-cellulose, mass of the Avicel (cellulose) sample, in g,
reduced to mass in vacuum.

AUZ (28 °C), the internal energy of combustion of the cel-
lulose sample at constant volume inJ/g.

AnRT, the correction term needed to change AUT to AHY
at a given temperature.

AHJ28 °C), the enthalpy of combustion of the sample in
pure oxygen at the final temperature, in kJ/mole.

AC,AT, a correction which includes the calculated
change of heat capacity of the calorimeter system with tem-
perature (25-28 °C), in kJ/mole. The following values for
C,/Jmol* at 298 K were used: a-cellulose Cg¢H,q04c),
188.554[16}: 0,(g), 29.355: CO4(g), 37.112: H,0(lig), 75.291.

AHQJ25 °C), the enthalpy of combustion of the sample at
the standard temperature, in kJ/mole.

A mean value of —17 340.76 + 3.44 J/g (2 sdm) was
obtained for the internal energy of combustion, AU, of the
Avicel sample at 28 °C, according to eq.(1).

CeH,004(c) + 604(g) = 6CO(g) + SH,0(liq) )

The formula weight of cellulose used in this study is
162.1439 g/ mole.

The results of this study and the values derived from the
results are summarized in table IV. The uncertainties
assigned to AU? and AH; were obtained by combining
(square root of the sum of the squares) 2 sdm (in %) for the
calibration experiments, 2 sdm (in %) for the combustion
experiments, 0.01 percent for the possible effect of organic
impurities in the sample, 0.01 percent for the uncertainty in
the certified value for benzoic acid and reasonable esti-
mates of all other sources of error, 0.01 percent.

Our values are calculated at 30 °C for purposes of com-
parison with work that was carried out by Jessup and Prosen
[3]. Their AU? (30 °C) for wood pulp is —17 385.9 + 18.9
J/g(sdm) which is a mean of three experiments. Our results
are AUY30 °C) = —17 337.86 + 3.44 J/g (2 sdm). Both of
these values are calculated based upon the mass of sample
burned. A 0.276 percent difference exists between the two
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TABLE III. Combustion Data on Cellulose

Expt. No. 1014 1015 1016 1018 1020 1021 1023 1024 1032
Esiempty JK 14347.75 14347.75 14347,75 14347.75 14347.75 14341.75 14347.75 1434775 1434175
Ei-cont JIK 28.04 28.62 2879 28.47 28.24 2828 28.15 28.46 28.29
Ecal JK 14375.79 14376.37 14376.55 14376.23 1437599 14376.03 14375.90 14376.22 14376.04
AT<orr K 2.755973 2894679 2.941978 2.858541 2.801024 2811611 2779214 2851034 2816332
Q-total J —39619.30 —41614.99 —42295.48 -41095.04 ~4026749 ~40419.82 -39953.71 —40987.08 ~40487.71
g-ign J L16 L16 1.49 1.22 1.49 1.18 1.24 0.92 0.84
g-HNO, J —44.5308 —45.3003 —23.7486 -45.0477 -459112 ~44.7364 —45.6938 ~43.9845 - 26,0646
g-wetting J —21.2809 -22.3577 —22.7384 —22.0796 —-21.6333 —21.7140 —21.4625 —22.0711 ~21.7420
g-WC ] 34.6815 36.8266 37.5677 36.2776 35.3811 35.5512 35.0807 36.2219 35.6218
gcorrtot, J -2.0237 —1.4655 -~ 1.2200 -1.5837 - 1.7402 -1.8014 —1.9352 - 16774 -1.77142
Qcellulose  J ~39562.23 ~41555.25 —42256.64 ~41036.15 ~40208.08 ~40361.86 —39895.09 ~40929.65 —40445.70
m-cellulose g 2.281250 2.396698 2437510 2.366881 2319141 2.327693 2.300729 2.360262 2.330697
AUL(28 °C) Jig ~17352.35 —17338.66 —17355.98 ~17337.65 ~17337.49 -17339.86 —17340.20 —17341.15 ~17353.48
*AnRTe  kJ/mol 0 0 0 0 0 0 0 0 0
AH?(28 °C)kJ/mol | —2811.956 ~2811.358 —2810.923 —2811.194 ~2811.168 —2811.553 —2811.608 —2811.762 —2813.761
ACAT)  k/mol -0.703 —0.703 -0.703 ~0.703 -0703 ~0.703 -0.703 —0.703 -0.703
AH2(25 °C)kJimol | —2812.659 ~2812.061 -2811.626 —2811.897 -2811.871 | —2812.256 —2812311 I —2812.465 —2814.46%

2The values of atomic weights used in this work are:
0 = 159994, C = 12,0112, H = 1.00797

Mean, AHS@8 °C)  Mmol  —2811.698
Std. Dev. kJ/mol 0.84 (.030%)
Std. Dev. Mean kJ/mol 0.28 (.010%)

TaBLE IV. Data Summary with Estimated Uncertainty.

AU2(28 °C) —17 340.76 * 10.64 J/g
AH?(28 °C) —2 811.698 = 1.725 kJ/mol
AHZ(25 °C) —2 812401 = 1.725 kJ/mol

values, but considering that Jessup and Prosen’s sample
was not well characterized and its purity uncertain, the
values are in very good agreement. Qur precision indicates
that the Avicel can be burned very reproducibly.

4. Summary and Conclusions

A test substance with characteristics and properties simi-
lar to those of cellulose-based solid waste products is needed
to calibrate calorimeters and combustors which will be rou-
tinely burning these materials to determine their calorific
values precisely for use in commerce.

Microcrystalline cellulose is a good calibrant for this pur-
pose because it is ashless, of high purity, homongeneous,
inexpensive, and easy to pelletize, For hygroscopic cellu-
lose materials a heat of wetting correction is neccessary.
Extremely dry cellulose does not produce a complete burn
in a combustion calorimeter. Our heat of wetting correction
of 1.514 kJ/mol was calculated based upon previous data in
the literature. The enthalpy of combustion of microcrystal-
line cellulose, AH? at(25 °C), and its estimated uncertainty,
was determined to be —2812.401 % 1.725 kJ/mol based
upon the sample mass. Microcrystalline cellulose appears to

have good potential for serving as a test substance in the
combustion calorimetry of cellulose-based solid waste pro-
ducts.
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Accurate, efficient, automatic methods for computing the complex error function to any precision are
detailed and implemented in an American Standard FORTRAN subroutine. A six significant figure table of erfc
z, e erfc z, and e erfc(—z) is included for z in polar coordinate form with the modulus of z ranging from 0 to
9. The argand diagram is given for erf z.

Key words: Argand diagram; complex error function; continued fraction; Dawson’s function; FORTRAN
subroutine; Fresnel integrals; key values; line broadening function; plasma dispersion function; Voigt function.

1. Introduction

In computing many of the functions of mathematical physics, for example, Fresnel integrals, Dawson’s
integral, Voigt function, plasma dispersion function, etc., difficulties are frequently encountered. Since
these functions may be expressed in terms of the error function of complex argument, we have chosen this
function for Part IV.! The major part of the coding of the power series, continued fraction and asymptotic
expansion computations for complex arguments will carry over equally well for other functions.

As Part 1 was devoted to the error function of a real variable, the probability function and other related
functions, Part IV will only emphasize those functions and pitfalls due to complex arguments.

While accuracy over the entire domain of definition remains our main concern, the methods employed
ensure efficiency, portability and ease of programming and modification.

If one supplies appreximate values for the maximum machine value, minimum machine value, the upper
bound of the sine, cosine routine, and the upper bound to the acceptable relative error and gives the square
root of 7 to the required number of significant figures, the detailed methods will work for computations
ranging from very low precision to multi-precision.

The argand diagram of erf z is included as well as the implementing ANS FORTRAN program and a six
significant figure table of erfc z, e’ erfc z and e*’ erfo(—z) for z in polar coordinate form with the modulus
of z ranging from 0 to 9.

2. Mathematical properties

Relevant formulas are collected here for completeness and ease of reference. In keeping with the conven-
tion of the Handbook [1),2 z = x + i y is a complex variable.

*Mathematical Analysis Division, Center for Applied Mathematics.

! Part L. Error, Probability, and Related Functions. J. Res. Nat. Bur. Stand. (U.S.). 743): 211-224; 1970. Part II. The Exponential Integral E.(x). J. Res.
Nat. Bur. Stand. (U.S.). 78(4): 199-216; 1974. Part HI. The Sine, Cosine, Exponential Integrals, and Related Functions. J. Res. Nat. Bur. Stand. (US.).
B0(2): 291-311; 1976.

2 Figures in brackets indicate literature references at the end of this paper.
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A. Definitions
_ 2 : 2
erf z =T fo e dt

erfc z = L]:’e"zdt =1-erfz

NES

x

(The path of integration is subject to the restriction arg t — a with || < 4

as t — oo along the path. If

R# remains bounded to the left, @ = -ZL is permissible.)

w(z) = e (1 + :/2; [2e” dt) = e erfc (~iz) = et erfc £ (£= —~iz)

2 . 2
i e €V dt 2z o€t dt
T x % z—t ¢ 0 P2—g (I'z>0)
with  F(z) = e f2e dt (Dawson’s Function)
1l e e?dt . . .
and Z(z) = T e T2 (Plasma Dispersion Function)

E(@) = C(3) +iS(z) = [} e™™dt = f5 cos ( 7“; )dt + i { sin( gtz)dt
v

14;
;z erf [Tx (1-1) 7] (Fresnel Functions)

2
W w €% du T
Wix,t) = @7 i prwe i (—_4t 32 e? erfe w

where

w= (1-ix)2 o7

Ux,t) + i V(x,1) (Voigt Function)

1 e—(x—y)2/4l i ye-(x-ylzfdt

@r” S-u: T+ dy + @r)”? i:o T+9 dy

2
a e dt 1
H(a,u) = P i G " p g U(u/a, 1/4a®)  (Line Broadening Function)

B. Series Expansions

2 = (=lpa
fz =

otz = B e

_ 2 2= 2n zZnH

v ¢ B T3 @y

C. Continued Fraction (Rz>0)

elerfer =L [ L U2 1 32 2 ]
Ve tz+ oz ZF z¥ z+

= 2z [ 1 1‘2 3.4 ee L3 ]
Jr U824 - 2745 — 49 — -] ("Even” Form)
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D. Asymptotic Expansion

(=1y1+3.. .2r—1) 4
! z(22)" 1

! I ¢l
e erfc z \/’n‘[z + 3

(wh]

(e, farg 2| < =)

E. Symmetry Relations
erff(—z) = — erfz
erf 7= erf z

w(—z)= 2" — w(z)

w(z)= w(-z)
C(—z2)= — C(z), S(=2)= - S(z)
Cliz)= i C(z), S(iz) = —i S(z)

Cz)= C(2), SG) = 5(z)

3. Method

The main functions under consideration are the error function ERFZ, the complementary error function
ERFCZ, and the exponential of 2% times the complementary error function EZ2CZ. All other functions may
be obtained from these three. To simplify testing, computations are performed for z in the first quadrant AZ
and symmetry relations are then employed to make adjustments for other quadrants. For the special case z
= 0, no computations are performed and the following function values are returned: ERFZ = 0, ERFCZ =
1 and EZ2CZ = 1.

Real type variables are used throughout to readily allow for double precision computation if greater accu-
racy is needed. The machine dependent constants are placed in a labeled section at the beginning of the
subroutine. Function references are likewise grouped together when possible and attention called to the
statement labels of the remaining function references. Real and imaginary parts of complex variables have
R and 1 as final characters.

Since EZ2CZ for z in the first quadrant is machine representable even with the real and imaginary parts
of z equal to the maximum machine value CMAX (provided its reciprocal is larger than the minimum
machine value CMIN), checking for the range of the argument z has been omitted. However, the extensive
range necessitates a fair amount of testing for overflows. Underflows are assumed to be set to zero.
Overflows are set equal to the maximum machine value and an error indicator IERR set for the number of
functions affected. If only EZ2CZ lies outside the machine range, IERR = 1, otherwise IERR = 3. As often
as possible, computations are arranged so as to give the correct results for the three functions if they lie
within the range of the machine.

In computing the modulus RHO = /(AZR)? + (AZI)? of a complex quantity AZ = AZR + i AZI in the
first quadrant, RHO may lie in the machine range but (AZR), (AZIY or their sum may be outside the range.
We select the larger ARIMX and smaller ARIMN of either AZR or AZI, and compute the ratio RMNMX =
ARIMN/ARIMX. A factor of RHO called PRHO is computed as the square root of (RMNMX*RMNMX +
ONE). This factor, which is greater than or equal to one and less than or equal to the square root of 2, can
then be used to check for overflow. The quantity ARIMX must be less than CMAX divided by PRHO for
RHO to lie in the machine range. A similar procedure is followed in computing the real and imaginary parts
of (AZ)? = Z2R + i AZ21 = (AZR)* — (AZI)®> + i 2AZR*AZI with first checking to ensure ARIMX is
greater than or equal to 1.

Analysis has indicated and testing confirmed that the power series PS is most useful from the standpoint
of accuracy and efficiency for RHO less than RHOLS(=1.5) and when AZR is less than or equal to 1 provid-
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ed RHO is less than AELL (=+/ — 1n(TOLER)) where TOLER is the upper limit for the relative error. The
continued fraction expansion CF is most useful for AZR greater than 1 and RHO greater than or equal to
RHOLS. The asymptotic expansion AE is most useful for AZR less than or equal to 1 for RHO greater than
or equal to AELL. For RHO greater than or equal to RHOLC (=+/0.5/TOLER) a rearrangement of arith-
metic operations for the first term of the asymptotic expansion is necessary to maintain the accuracy of
EZ2CZ. In the continued fraction and asymptotic expansion regions only, EZ2CZ is first computed; it tends
to zero for large |z| and the exponential of —2* tends to infinity for small AZR. To maintain accuracy
here, we compute the exponential of —Z2R/6 and do continuous muitiplication and testing with appropriate
factors to obtain ERFC. The imaginary part of (AZ) is tested against ULSC, the upper limit of the sine,
cosine routine.
Figure 1 below maps the regions for the various methods.

Ye ) ‘_Ol:(;
6
AE
5
AELL|._
O T
3
Ps CF
2 .
1 \fr
¢
\ ¢
iy X

1 ST T 1 |
1 2 3 4 5 6

FiGURE 1. Parameter plane.

The dividing line RHO = AELL between the use of the power series and the asymptotic expansion and
RHO = RHOLC are the only boundaries subject to the required precision. Single and double precision
results, for example on the Univac 1108, are the results of two different methods in the region where RHO
roughly lies between 4.3 and 6.4.

This mapping of the region ensures for the required precision that the least number of terms are com-
puted and the loss of significance is kept to a minimum. While the second form of the power series is prefer-
able for real positive z, since all terms are positive, the first form ensures greater accuracy for complex z
since the real and imaginary parts of the terms may be positive, negative or zero for any RN(=r). The power
series is there more rapidly convergent; the relative error may then be approximated by the ratio of the term
to the sum of terms; comparison of this approximant with the tolerance for the relative error controls the
number of terms needed. Since the terms tend to zero through underflow, there will always be convergence
even if the tolerance is made considerably smaller than the precision of the machine. The power series is
evaluated using recurrence relations in the following form:

_Two _ RNF . _TWO
ERFZ = SoRTpD pot_, SONERNITMRN) = grrpr—* SUM

where

SGN(0) = 1, SGN(RN + 1) = —SGN(RN)

TM(RN) = ((AZ**(2*RN + 1))/1*2* ... RN)/(2*RN + 1)
TM(RN) = PTM(RN)DN(RN)

PTM(0) = AZ, PTM(RN + 1} = (AZ**2)*PTM(RN)(RN + 1)
DN(0) = 1, DN(RN + 1) = DN(RN) + 2
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In determining the terminal value of RN, normalization is necessary to avoid overflows and underflows.
The normalization factor TMAX is the maximum of the absolute value of the real and imaginary parts of
TM and SUM. If TMAX equals zero or | TM/ITMAX|? underflows, RNF = RN.

If |SUM/TMAX|? underflows, additional terms are obtained. Otherwise, if |TM/TMAX|%|SUM/
TMAX |? is less than TOLER?, then RNF = RN.

The continued fraction expansion starts to converge more slowly as z tends to zero. The “‘even” form is
used since the required number of terms is halved at the expense of very little extra computation for suc-
cessive numerators and denominators. The continued fraction is evaluated by using the recurrence relations
in the “forward” direction. The number of terms needed is determined by checking to see if the relative
error of two successive convergents is less than the tolerance. On the other hand, if the relative error
remains constant or starts to increase, the recurrence is terminated and the prior convergent taken as the
value of the continued fraction. In this way, the process is always terminated when maximum precision is
attained.

The ““even’’ form of the continued fraction takes on the following implementation:

RNF
)
ooz I AMERN)
EZ2CZ = o1 BN =1 B3N
with AM(I) = 1, AMRN + 1) = —WMEN + I)*(WM@EN + 1) + 1)

BM(1) = 2*(AZ**2) + 1, BM(RN + 1) = BM(RN) + 4

where WM(1) = -1, WM(RN + 1) = WM(RN) + 2

EZ2CZ = (AZ*(FM/GM))*2/RTPI = (AZ*F(RN))*2/RTPI

where FM(-1) = 1, FM(0) = 0
GM(-1) = 0, GM(0) = 1
and FM(RN) = BM(RN)*FM(RN - 1) + AM(RN)*’FM(RN - 2)

GM(RN) = BM(RN)*’GM(RN - 1) + AM(RN)*GM(RN - 2)

The relative error may be approximated by [F(RN) — F(RN — D)J/F(RN) = RE(RN). If the modulus
squared of the relative error REM2(RN) is less than the square of the tolerance divided by 8, RNF = RN. If
REM2(RN) is greater than or equal to REM2(RN — 1), then RNF = RN — 1. Normalization is likewise
necessary here to avoid overflows in computing the relative error and its modulus squared and also in the
generation of the successive convergents.

The asymptotic expansion is likewise evaluated using recurrence relations in the following form:

1 RNF
EZ2CZ = ceees= L SGN(RN)'TM(RN) = SUM/RTPI
SQRT(PD prrg CNEN"TMRN)
where SGN(®) = 1, SGN(RN + 1) = —SGN(RN)

TM(RN) = (/AZ)*(1*3* ... 2*RN — 1)I2*AZ**2))**RN
TM(0) = 1/AZ, TM(RN + 1) = DNRN + 1)* TM(RN)*(1/2%AZ**2)

with DN(1) = 1, DN(RN + 1) = DN(RN) + 2.
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The relative error may be approximated here by the ratio TM/SUM. The convergence test pr‘ecedes the
divergence test and is implemented as REM2 less than (TOLER**2)/8 to attain greater accuracy in both the
real and imaginary parts. If the modulus squared of the term remains the same or increases, the prior sum is
taken as the final sum.

For z along the imaginary axis, the error function is purely imaginary; the real part of erfc z = 1 and of
e” erfc z = e""2?, No difficulties arise in the use of the power series. However, since the asymptotic expan-
sion is given for |z|— oo, the correction must be applied for AZR — 0.

The following table gives an indication of the number of terms needed to obtain maximum machine accu-
racy on the Univac 1108 with the various methods of computation.

Method Number of Terms
Single Precision Double Precision
TOLER = .745E-8 TOLER = .867D-18
Power Series 50 112
Continued Fraction 25 99
Asymptotic Expansion 22 45
4. Range

If the real part of z is zero or positive, e*” erfc z is valid for z throughout the entire machine range. Other-
wise, the real part of z° is essentially limited by the range of the exponential library subroutine with the
imaginary part of z* limited by the range of the sine, cosine library subroutine.

5. Accuracy and Precision

The maximum relative error, generally in erfc z, except for regions in the immediate neighborhood of
zeros of the real and/or imaginary parts of the functions is 8E-6 for single precision computation on the
Univac 1108.

The precision may be varied by changing the value of TOLER.

6. Timing (Univac 1108 Time/Sharing Executive System)

The time estimates given below are highly dependent on the operating system environment and conse-
quently should not be relied on for critical timing measurements.

Time (Seconds)
Single Precision Double Precision
Region TOLER = .7T45E-8 TOLER = .867D-18
ZR = 014, ZI = O(.2)8 (1681 values) 594 225
Method Maximum Time/Evaluation

Power Series 0101 038
Continued Fraction 0088 052
Asymptotic Expansion .0035 .0093

7. Testing

The language of the subroutine was checked for conformity with the PFORT VERIFIER.? Test argu-
ments were devised and used in the analysis of the subroutine with the PROFILER.*

> The PFORT Verifier, A. D, Halt and B. G. Ryder, Bell Laboratories, Murray Hill, N.J. Pr dings of the Comp Sci and Statistics Eighth
Annual Symposium on the Interface, University of California, Los Angeles, February 13-14, 1975

* Program Execution Profiles, G. Sande, World Bank, Washington, D.C. Proceedings of the Computer Science and Statistics Eighth Annual Symposium
on the Interface, University of California, Los Angeles, February 13-14, 1975.
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The subroutine was used to obtain related functions which were checked against available published
tables ([1]-[5], [7]1-[9], [13], [15]. Single precision results covering the 9 X 9 grid were compared against
double precision results. This precision test particularly verified that the scaling operations were valid and
undetected overflows had not occurred.

Where applicable, results were obtained by independent methods, for example, the power series and con-
tinued fraction, the power series and asymptotic expansion or all three methods. Otherwise, both forms of
the power series or continued fraction were used. In addition, numerical integration of various forms of the
integral representation was employed.

8. Test Values

Six-significant figure tables of erfc z, e erfc z and e?® erfe(—2z) are included in the appendix. The com-
putations were performed with double precision arithmetic to provide more accurate values for checking
purposes. The arguments are in polar coordinate form z = ge® for ¢ = 0{.02).2(.1)3(.5)9, © = 0°(15°)30°,
37.59 45° 50°(10°)90°. Values of the functions for z in other quadrants are readily obtainable with sym-
metry relations.

z=peif
9. Argand Diagram of erf z = 72— 77 e dt
T
Since erf z and erfc z are complementary functions, erf z is not tabulated but the argand diagram of the
function is included to illustrate divergent and convergent spirals.

erf =, 6=0° 11
Convergent spirals, 8<45° el
Cornu's spiral of Fresnel integrals, 8=457
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10. Special Values

Relevant values are collected here for completeness and ease of modification and checking of the
program.

Zeros

erf z,=0
zl
1.45061616 + i 1.88094300
2.24465927 + i 2.61657514
2.83974105 + i 3.17562810

TN RS

w(z,)=0
2z,
1.99146684 - i 1.35481013
2.69114902 ~ i 2.17704491
3.23533087 ~ i 2.78438761

L By =

C(Z,) =0 S(Z,) =0
2z, 2
1.7437 + i .3057 2.0093 + i .2885
2.6515 + i.2529 28335 + i.2443
3.3204 + i.2240 3.4675 + i.2185

WK —

Maxima and Minima of Fresnel Integrals

s M, = C(&+]1) m, = C(J&+3) T = S(/4s+2) m? = S(\f4s+4)
0 .779893 .321056 713972 .343416
1 .640807 .380391 .628940 .387969
2 605721 404261 .600362 408301
3 .588128 417922 584942 420516

Radius of Univalence @
fre® dr e’ fLer dt
o = 1.5748376 92413887

Maximum and Inflection Point for Dawson’s Integral
F(.92413 88730) = .54104 42246
F(1.50197 52682) = .42768 66160
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Related Constants

foedt =

1° = 1,74532 92519 94329 57692 36907 68488 61271 (—2)r
m = 3.14159 26535 89793 23846 26433 83279 50288
w2 = 1.57079 63267 94896 61923 13216 91639 75144
7 = 1.77245 38509 05516 02729 81674 83341 14518
Vw2 = 88622 69254 52758 01364 90837 41670 57259
27 = 6.28318 53071 79586 47692 52867 66559 00576

27 = 3.54490 77018 11032 05459 63349 66682 29036
e = 271828 18284 59045 23536 02874 71352 66249

lI/m = .31830 98861 83790 67153 77675 26745 02872

2r = .63661 97723 67581 34307 55350 53490 05744

Uvr = .56418 95835 47756 28694 80794 51560 77258

27 = 1.12837 91670 95512 57389 61589 03121 54517

27 = .15915 49430 91895 33576 88837 63372 51436

12J7 = .28200 47917 73878 14347 40397 25780 38629

lle = .36787 94411 71442 32159 55237 70161 46086

erf 1 = .84270 07929 49714 86934 12206 35082 60926

WrlDerfl = & E%I%T) = 74682 41328 12427 02539 94674 36131 85300

Wrl2eterf 1 = £ 1—-§—~2727+—1) = 2.03007 84602 78704 97553 90899 25665 95044
- ]

];e’zdt =Y

%

E,, 1¢3.. (d4n+1)

5 T3 . @ty -

il
Hetdt = B T3 TG -

@n+Ddn+3)

£

1.46265 17459 07181 60880 40485 86856 98815

"0 nl(2n+1)

@ 1 _
"Za)o D - 1.10473 79393 59804 31710 17580 11494 42058

1 .35791 38065 47377 29170 22905 75362 56757

2n
2 = 1.28407 89880 95736 69733 77386 73036 75360

221-4»1

74599 94811 82968 27820 13512 52629 19684

(Z1'2" _ _ 53807 95069 12768 41913 63874 20407 55675

Typical Tolerances and Their Natural Logarithms

2—16
2-24
2—27
2-36
2-48
2*56
2-60

2-]08

log,(279)
log,(27%)
log,(27%)

1 I T T | B T I |

o n

0.15258
.59604
74505
14551
.36527
13877
86736
.30814

—11.09035
—16.63553
—18.71497

78906 25(—4)

64477 53906 25(—7)

80596 92382 8125(—8)

91522 83668 51806 64062 5(—10)

13678 80050 09293 55621 33789 0625(—14)

78780 78144 56755 29530 58511 35253 90625(—16)

17379 88403 54720 59622 40695 95336 91406 25(—18)

87911 01957 73648 89564 70813 58837 09660 96263 71446 21112
38390 20729 06494 14062 5(—32)

48889 59124 95067 57139 43330 82508
23334 38687 42601 35709 14996 23763
38751 18523 35426 52672 79370 76733
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log,(27) = —24.95329 85001 58031 13902 03563 72494 35645
log.(27*) = —33.27106 46668 77374 85202 71418 29992 47526
log,(27%) = —38.81624 21113 56937 32736 49988 01657 88781
log.(2™9) = —41.58883 08335 96718 56503 39272 87490 59408
log.(27'%) = —74.85989 55004 74093 41706 10691 17483 06935

Maximum and Minimum Machine Values and Their Natural Logarithms
(Univac 1108 Single and Double Precision Limits)

NBC =Number of binary digits in the (biased) characteristic of a floating point number

- (2NBC-1 NBC-1.
270" <y < 9

NBC = 8

21 0.17014 11834 60469 23173 16873 03715 88410(39)
271 = 14693 67938 52785 93849 60920 67152 78070(—38)

1l

log,(2') = 88.02969 19311 13054 29598 84794 25188 42414
log.(27'%) = —89.41598 62922 32944 91482 29436 68104 77728
NBC = 11
2198 = 0.89884 65674 31157 95386 46525 95394 51236(308)
271028 = 27813 42323 13400 17288 62790 89666 55050( —308)
log.(2'°%) = 709.08956 57128 24051 53382 84602 51714 62914

log.(271°%) =—710.47586 00739 43942 15266 20244 94630 98227
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LANGUAGE. AMERICA
(SUBROUTINE SUBJE
DEFINITICNE. Z, A
ERF(Z)=(2/S0R
=ERFZR
ERFC(Z)=(2/SQ

=1=~ERF
=ERFCZ
EXP(2%%2)*ERF
SYMMETRY RELATI
ERF(~2}==~ERF(
ERF{Z CLNJG)I=
ERFC(~2)=2-ER
ERFC{Z CONJG)
EXP(Z*%2)*ERF
EXP(Z CONJG**
SPECIAL CASE, 2Z
ERF(2)=0
ERFC(Z)=)

APPENDIX

IMPLEMENT ING PROGRAM
N NATICNAL STANDARD FORTRAN
CTED YO PFORT VERIFIER*)

COMPLEX VARIABLE=ZR+I 21
T(PI))*INTEGRALIEXP(~T*%2))DT FRCM O TO 2
+1 ERFZ1
FT(FI) )*INTEGRAL(EXP(~T**2))DT FROM Z TO

INFINIYY
(z)
R+l ERFCZ21
C(2)=EZ2CZR+]1 EZ2C21
CNS
2)
CONJGERF(Z))

FC(Z)

=CCNJG(ERFC(2Z))

Cl=Z)=2%EXP( Z**2)~EXP(Z**21*ERFC{Z)
Z}FERFC(Z CONJG)=CCNJIG(EXP(Z**2)*ERFC(Z))
=0

EXP(Z**2)*ERFC(Z)=1

USAGE. CALL ERRZ

ARGUNENTS
(REAL TYPE
ALLEWw FCR D
INAGINARY P
1 AS FINAL
ZRe Z1
ERFZRe ERF
ERFCZRLEF
EZZCZIR,EZ
IEFR
T1ER
0

1
2
3

CCMMCAL
AELL

AZL
AZR
AZ21
CMAX
CMIN
REM2

REPN2
RHO
RHCLC

RHOL S

(ZRs ZILERFZRWERFZ [ 4ERFCZRIERFCZT 4EZ2CZR,
EZ2CZ1+ IERR}

VARTABLES ARE USED THRCUGHOUTY TC READILY
CLELE PRECISION CCMPUTATIONe REAL AND
ARTS CF COMPLEX VARIABLES HAVE R AND
CHARACTERS.)

REAL{OR DOUBLE PRECISICN) TYFE INPUT

21 (SAME TYPE AS 2Z) ouTPUT
FCZ1 " ouTPUT
2CZ1 L oUTPUT
INTECER TYPE QuUTPUT

R
NORMAL RETURN
EXP(Zx%2) *ERFC(Z) INVALID
ERF{Z)+ERFCL(Z) INVALID
ERF(Z)¢ERFC(Z)4EXP(Z**2)*ERFC(Z) INVALID

(Z IN 2ND CR 3RD QUADRANTS(ZR +LTe 0))
Y LSED INTERNAL VARIABLES
LGWER LIMIT OF 12! FOR ASYMPTOTIC
EXPANSICN(ALEs) ABS(ZR) oLE. 1
ABS(ZI)
ABS{ZR)
ABS(IMAG(Z**2))
MAXIMUM MACHINE VALUE
MINIMUM MACHINE VALUE
MODULUS SQUARED OF RELATIVE
ERROR(Re+Es)
1RsEs t X*2=REM2(N)
REM2(N-1)
121=SCRT{ZR*%2+Z1%%2)
LOWER LIMIT OF RHC FOR USIAG ONLY
1ST TERM OF AlEs
UFPER LIMIT OF RHOes UNRESTRICTED
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ABS(ZR)s FGR POWER SERIES

RTPI SQRT(PI=3e1480es)
SUMM2 ISUMI %% 2=SUMR* %2+ SUMT *%2
OR 1SUM/TMAX1*%2
TMAX NCRMALIZATION FACTOR
TMM2 ITMI*¥2=TMR**24+TM I *%2
OR ITM/TMAXT#*%2
TOLER UPPER LIMIT FOR RELATIVE ERRORS
TCLER2 TCGLER**2
TOL2 TCLER2/8
uLsc MAXIMUM ARGUMENT FOR SIN/CGS ROUTINE

MOCIF ICATICNS.
THE CODE IS SET UP FCR SINGLE PRECISION COMPUTATION
wWITH SINGLE FRECISICN FUNCTICN REFERENCES AND SINGLE
PRECISICN MACHINE DEPENDENT CONSTANTS. FOR THE UNIVAC
11089 CMAX AFPFCXe 2%%1274CMIN=2%*(7129)4+ULSC=2%x%20 AND
TOLER=+745E~8+ RTPI IS GIVEN IN DOUEBLE
PRECISICN FCRMAT TO 19 SIGNIFICANT FIGURES.
DCUBLE PRECISICN RESULTS ARE OBTAINED BY INSERTING
(1) THE DCUBLE PRECISION TYPE STATEMENT
(2) DCUELE PRECISION INTRINSIC FUNCTION REFERENCES -
DABS¢CMAX1 ANC CKINL
(3) DOUEBLE PRECISION EXTERNAL FUNCTICN REFERENCES -
DCCSyDEXPe¢CLOGyDSIN AND DSQRT AND
(4) FCR ThE UNIVAC 1108 ADJUSTING THE CONSTANTS
CMAX APPROXe 2%%1023,CMIN=2%%(=1025) ,ULSC=2%*56 AND
TCLER=.EC7C-18.
THE DETAILED METHCDS SHOULDO WORK FOR ANY PRECISION
IF THE MACHINE CEFENDENT CONSTANTS ARE CHANGED
WITH RTPI GIVEN TC THE REQUIRED NUMBER OF SIGNIFICANT
FIGURESe.
METHOD . 2=ZR+1 21 =RHC*EXP(I*ARCTAN(ZI/ZR))
ALL METHGDS APPLY TO AZ=ABS(ZR)+I ABS(ZI)=AZR+
I AZ1e LSE 1S THEN MADE OF SYMMETRY RELATIONS.
POWER SERIES
FRHC oLTe RHOLS(=1,5)
AZR elEe 14 RHOLS oLEe RHO oLTe AELL
AELL=SORT.(-LOG(TOLER})
ERF(AZ)=(2/SQRT(PI) )*SUM(SGN(RN)}*TM(RN))
RN=0s1940e00sRNF
SCN(0)=1
SGAN(RN+1)==SGN(RN)
TM(RN)=((AZ**(2*¥RN+1))/1%2.4eRN)/7(2%RN+1)
TM(RN)=PTM(RN)/0ON(RN)
PTM(0)=AZ
FTM(RN+1)=(AZ**2)*PTM(RN)/(RN+1)
ON(O) =1
DN(RN+1)=DN(RN)+2
FNF=FRN IF TM=0 AND SUM=0s IF ITM/TMAX1*32(=TMM2)
z0 OR IF $SUM/TMAXI*%2(=SUMM2) ,NEe 0 AND
FEM2(=TNMZ/SUMM2) LT. TOLER2
CONTINUED FRACTICN
AZR eCTe 1+ RHOLS eLEe RHO oLTe RHOLC
RHOLC=SQRT (ONE/( TWC*TOLER) )
EXF(AZ**2 )*ERFC(AZ) =
(2*%AZ/SQRT(PI))*(1 I/1 (2%(AZ*%*2)+1)-
1%2 I/1 (2*%(AZ**2)+5)-
3%4 I/1 (2*%(AZ**2)+9)=eee)
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144
14
14€
147
148
145
1£0
1£1
182
1€2
1£4
1€€
1€¢€
1£7
1€€
185
l1€0

(\nﬁﬂf\ﬂhﬁﬂﬂ(\ﬂf\ﬁﬂﬁﬂf\f\ﬁf\ﬂ(\(‘ﬂﬁﬁhf\f\(‘\ﬂﬁf\(‘\ﬂf\ﬁnf\"lf\ﬁf\ﬁﬁf‘.r‘vf\f\f\{‘xﬁnr\"

S(Z%AZ/FTPI)*I1(AM(RN) I/1 EN(RN))
RN=14Zse0esRNF
AN(1)=1
AV (ENEL )==WA(RN41IX(WN (RN+1)+1)
BN(1)=2% (AZ%%x2) 41
BM(RN#1)=ENM(RN) +4
WM(1)=m]
AM{FKN+1)=WM(RN) +2
=(AZ¥(FM/GM) ) *2/RTFI
=(AZXF (FN)I¥2/RTPL
FV(-1)=1
CH(~1)=0
FN(a)=u
CVM(O)=1 . .
EM(RN)I=BM(ANI*F M (RN-1)+AM(RN) *FN(RN-2}
GM(ANDI=BMIRN ) XGM{FN~1 )+ AM(RN) 2CNVN(RN=-2}
FNF=RN IF REMR{FCR ReEs=(F(RAN)}=F(RN=1)}/F(RN)}
«LTs TCLZ OR
FNF=kR=1 IF REM2(RN) «GEs REM2(RN-1)
ASYMETCTIC EXFANSICN
AZK oLEe 1+ AELL oL.Ee RFQ oLTe RHOLC
(FCR FFCLC oLEs RHC oLEs CNAX, TO PRESERVE
ACCURACY AN ALTERNATIVE CCMPUTATICN OF
TFE FIRST TERM GF ThE AeEs IS EMFLCYEDW)
EXF(AZ¥¥Z )H¥ERFCIAZ)=(SUM{SGN(FN)#TM(RN) ) ) /SQRT(PT )
RN=Qyly ss e s RNF
SGN(0)=1
SCEA(FA+1}==SGN(RN)
TVMLRN)=(1/AZ)*(1%30e o (2¥RN-1) )7/
(2%(AZ432) ) **RN
TM(CI=1/AZ
TH(RN41)=CNIRN+1 )R TMIRN)*(1/(2%(AZ#%2))))
ch(1)=1
CN(FN#1)=DN(RN)}+2
RAF=AEN IF REM2(FGR ReEe=TN/SUM) +LT. TOL2
ENF=FEN-1 IF TMM2(RN) o.GE., TMPM2(=TMN2(RN=-1))
{DIVERGENCE)
QANCE o
EXP(Z¥%Z)%ERFC(2) IS VALID FOR ZR .GEe O THRCUGHOUT
THE ERTIRE MACFINE RANGEe ERF(Z).ERFC(Z) ANC
EXF(Z*32)%ERFC{2)(FCR ZR .LTe €) ARE LIMITED EY THE
RANGE AND ACCURACY OF THE SINE.COSINE AND/OR THE
EXFCNENTIAL LIERARY ROUTINES.
ACCURACYs THE MAXIMUM RELATIVE ERRCR (GENERALLY IN ERFC)
SXCEPT IN THE IMMEDIATE NEIGHECRHMCCD CF ZERCSs
IS E(=€) LN THE UNIVAC 1108 FCR
SINGLE FRECISICN CUMPUTATICN, THE REAL
ANC INAGINARY PARTS INDEPERKDENTLY AS WELL
PE THELF ZERCS ENTER INTC CONSIDERATICN,.
PRECISICNs. VARIAELE -~ EY SETTING A PREDETERNINEC VALUE OF

TCLER
NAXIMUM LNIVAC 110€ TIME/SHARING EXECUTIVE SYSTEM
TINING. SeFe DePe
(SECONCE) «0101 «052

STGRAGEs. 1171 WCRCS RECUIRED EY THE UNIVAC 1108 CCMPILER
(212 FCRTRAN STATEMENTS, 95 VARIABLES)

C* THE PFLRT VERIFIER.24CoHALL AND BeGoRYDER
C (BELL LAECRATCRIES,NURRAY HMILL+ NoJe) PRCC.CF THE COMPUTER
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174
17¢
176

¢ SCIENCE AND STATISTICS EIGHTH ANNUAL SYMPOSIUM ON THE
C INTERFACEg¢ UNIVe CF CALIFes LOS ANGELESs FEEe13-144197S.

CHxddk
SUBROUTINE ERRZ(ZR+Z1+ERFZR+ERFZI +ERFCZRLERFCZI,
1 EZ2CZR+EZ2CZ14 IERR)
C MACHINE CEFENDENT CONSTANTS

CMAX=e1701411EZE3S
CMIN=414€93€7G4E~38
ULSC=+1048S7€E7
TOLER=e745E-8
C NCTE TOLER IS SET TC THE PRECISIGN CF
C THE UNIVAC 1108 SINGLE PRECISICN ARITHMETIC,
RTPI=14772453£5090E51602700

[« CTHFER CCMSTANTS
ZERC=0
CNE=1
Twg=2
THPEE=32
FOQUFR=4
CNPTFV=THREE/TWC
< INITIALIZATION OF ERROR INDICATORS
IEFR=0 '
Ia=0 ,
C FUNCTICN REFERENCES
C NOTE FUNCTICN REFERENCES CCCUR IN THE REGIONS OF STATEMENT
C LABELS S¢1& AND 85 AND IN STATEMENT LABELS 110,315,515,
C €17 AND SEE.
C SET UP FCR Z IN FIRST QUADRANT AZ=AZR+1 AZ1

S AZR=AES(ZR)
AZ1=ABS(21)
ARIMN=ANMIN1(AZRAZI)
ARINX=AMAX1(AZR,A21)
IF (ARIMX oCTe ZERC) GO TQ 10

C SFECIAL C(ASEe 2=0
ERF2ZR=2ERO
ERFZI=2EFRQ
ERFCZF=CNE
ERFCZI=2ERC
E22C2k=CNE
EZ22CZ1=2ERC
RETURN
C CCNTRCL VARIAELES

10 TOLER2=TCLER*TCLER
TCLZ=TCLER2/FCULR/THC
RHCLS=CNPTFV
RMAMX=AFIMN/AFIMX

15 CMAXLN=ALCG(CNAX)
CMINLN=ALOG(CNMIN)
AELL=SCRT(~-ALCG(TCLER))
RHCLC=SGRT(CNE/Z/(TWC*TOLER) )
PRHC=SGRT(RMANX*RMAMX+CNE)

C CCMPUTATICN GF AUXILIARY QUANTITIES

C CCMEUTATICN QF AZ**2=Z2R+1 AZ21
IF (AFIMX +LT. CNE) GC TO 60

C CVERFLOW CHECK CN Z2PN=-22R

TEVEB=((CANE~RNEMX) #ARIMX ) * (CNE+RMNMX)
IF (TEMPE «LTe CMAX/ARIMX) GO TG 20
TEMPC=CMAX
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GO TO 20
TEMFC=TEMPEXAFINMX

IF (AZF=ARIMX)} £0440,50

22RN=~TENVPC
GC TC 70
Z2RN=TEMFC
GQ T0O 70

Z2RA=(AZ1+AZR)*(AZ1~-AZR)

GC TC g0

CVERFLOW CHECK CN AZ21
IF (ARIMN LT. (CMAX/TAC)/ARIMX) GG TO 80

AZ21=CNAX
GQ TC <0

AZ2I=(TWOXARINMNIX*ARIMX

PRELIVMINARY CCMPUTATICNS FOR EXP(AZ#%2) AND

EXP(~AZ#22)

CHECK IF VALID ARGUMENT FQR SIN/COS
IF (AZ21 4CGEe ULSEC) GO TO 90

COAZ21=CCS(AZEL)
SIA221I=SIN(AZZY)

TEMF=Z2RN/THREE
22R==2ZHRN

CVERFLOW CHECK
IF (TENP oLTe CMAXLN} GO TO 100

EMZ2D3=CMAX
EZ2R=ZERC
GC TO 190

UNDERFLOW CHECK
IF (TENF +4CTe CNINLN) GG TO 110

EMZ2C2=2ERC

EXP{AZ**%2) OVERFLOWS (1Q=1)

1a=1
GC YC 1€¢

EXTENCING RANGE OF EXP RCUTINE

EMZ20€E=EXP(TENMF/TWA)
ENZ2D2=EMZ20€CHENZ2DE

EZ2LE=CNRE/EMZZCE

1F (EZ20€ +LEe CNE} GO TO

J=1 )
PEXP=ZEFG
TEMF=E22D6

IF (TEMP «GEes CMAX/EZ2D6) GO TO

TEMF=TEMF*EZ22C6
J=Jd+it

IF (J4-5) 12041200140

PEXP=TEMP
GC 10 120
EZ2R=TEMP
GO TO 190

IF (PEXP) 17041€04170

PEXF=CNAX
EZ2R=CNAX

Go TO 1S0
PEXP=E22D6%%S
E2Z2R=PEXP*E22CE

TEZ2=(PEXP*TWC)*EZ2D€

CCMFLTATICN GF RHO
CVERFLOW CHECK
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190

200

210

220

300

3€0

IF (ARINX oLT. CMAX/PRHC) GO TC 200
RHG=CMAX
GC TC 210
RHC=AR INX*PRHC
METHCD SELECTICN
IF (RHEC oLTe RHCLC) GO TO 220
IMERCVE ACCURACY FOR LARGE RHO
FA=AZR/ARIMX
FB=AZI/ARIMX
FC=RTFI® {RMNM X*RMNNX+0ONE )
EZ2CZR=(FAZARIMX)/FC
EZ2CZ1=={FB/ARIMX)}/FC
GO TC €00
IF (RHC oLTs RKCLS) GO TO 300
IF (AZR +GTe CNE} GC TO 500
IF (RFC~AELL) 3004700+700
PCWER SERIES FOR ERF(AZ)

INITIALIZATION
SUNR=ZERG
SUMI=ZEFG
SGN=CNE
RN=ZERC
ON=CNE
PTMR=AZR
PTMI=A21
CCMPUTING SUM
TNR=FTVNR/ON
TVI=FTNI/CN
SUMR=SUMR+TNR¥SGN
SUMI=SUMI+TNI*SGN
SCALING TO AVOIL OVERFLOW OR UNDER~
FLCW IN APPROXIMATING ReE.
TMAX=AMAX1 (AES(TMR) ,ABS(TMI ) s ABS(SUMR) s AES(SUMI))
IF (TMAX) 22043604320
TNMZ:(TME/TNhX)**2+(TNI/TMAx)*ta
SUMMZ=(SUMR/TNMAX)¥%24+ (SUMIZTMAX) *%2
IF (TMM2) 33093€0,230
IF (SUMM2) 240,350,340
REN2=TMMZ/SLNN2
TOLERANCE CHECK
IF (REM2 +LT. TCLER2) GC TO 360
ACDITIONAL TERMS
DA=DA+TWC
RAN=RM+CNE
SGN==SGN
TEMF=(FTMR*22R=-PTMI*AZ21)/RN
PTMIZ(FTME*22ZI+PTMI*Z2R ) /RN
PIMR=TEMP
GC TC 210
FUNCTIGNS EVALUATED IN FIRST GUADRANT
ERFZR=SUMRFTWC/RTRI

ERFZI=SUMI*TWC/RTPI
ERFCZR=CNE~ERF2R
ERFCZI==-ERFZI
EZ2CZR=(CCAZ2 I*ERFCZR~SIAZ21*ERFCZI )*EZ2R
EZ22CZI1=(SIAZ2I*%ERFCZR+CUAZ2I*ERFCZ1)*E22R
GC T 40
CONTINUED FRACTION FGR EXP(AZ*%2) *ESFC(AZ)
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< INITIALIZAYICON
SO0 wW¥==CNE
BMP=TRC*Z2R+LNE
BMI=TwC*A22]
AM=CNE
FMNZR=CNE
FMN2I=2ERC
GMM2R=2€ERU
GNM21=2ERC
FMMIR=ZERQO
FMN¥M1I=ZERQ
GMNMIR=CNE
GMNM1 I=2ERQ
REFN2=CMAX
FPR=ZEFC
FPI=2EFQ
C RECURRENCE RELATION
510 FNR=ENR*FVMIR-BMIXFMML I+ AMXFMMZR
FNISENI*FNV1IR+BMRXFMM] [+ AMXFMM2 |
GNR=ENR¥GMM1R~BMI*CMM1 I+AMXGMM2R
GNI=ENI*CMMIS4EMR¥CMMI IT+AMXGMM2 |
CCNVERGENY F=FM/GM
SCALING TO AVQID QVERFLOW IN
CCMPUTING CONVERGENT
THAX=AMAX1 (AES{FMK)}sABS(FMI ) 9o ABS{GMR ) ABS(GNI})
SFMR=FNMR/TMAX
SFMI=FMI/TMAX
SGMR=GNR/TMAX
SGMI=CNI/TMAX
TEMF=SGNR*SCMR+SGMI*SGMI
FR={SFMR*SCNMNR+SFMI*SGMI ) /TEMP
FI=(SFMI*SGNMR~SFMR*SGMI) /TEMF
C APPROXIMATING ReEe
TEMF=FR*FR4+FI*F1
TEMFA=FR~FPK
TEMFE=FI-FFI
REM2= (TEMFAXTEMPA+TEMPB*TEMPE) /TEMP
c TCLERANCE CHECK
IF (REM2 oLTe TCLZ) GO TO 530
IF (REM2 .GEs REPM2) GO TO 520
C ACDITIONAL, CCNVERGENTS
WN=RV+TWC
EMR=EMR+F CUR
AN==aNx (WNH+LNE)
FNM2R=FMMN1FR
FNNZ2 I=FMMII
GMM2R=GNM1R
CMNM2I=GVMVLT
FMM1R=FMR
FNNML I=FMI
GMM1R=GMR
GVV1I=GMI
FPR=FR
FPI=F1
REFNMZ=REM2
C SCALING
C SCALING SHCULD NCT EE CELETED AS THE VALUES OF FMR,FMI
C CMRyGMI MAY CVERFLCW FCR SMALL VALUES OfF REAL OF 2

lalalal

o
-
m
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446
447
448
445
4€¢
ag1
ag2
453
4€4
4Es
4s€
a£7
ase
45¢
4€0
aet
4€2
a6z

£17 AENZAMAX] (AES(EMR ), AQS(BMI))

IF (TVMAX +LTe (CMAX/FCURDIZ(TWC*AEM=AM)) GC YO 510

FAMZR=FMNZE/TNAX

FMMZ I=FNMM2I/TNAX

GNMZEZGMMZR /TVAX

GMNZ I=CGMNZI/ZTNAX

FYMIA=FAMIRZTMAX

FNMLI=ENM]T/TNAX

GMMIF=GMMIR/TMAX

GMM1I=GrNLI/ZTMAX

GC TC £10

SELATIVE ERRUR INCREASED~ROUNDCFFS
ACCEPT PRICR CCNVERGENT
£20 FA=FPF
FI=FPI
EVALUATE EXP(AZ#x2)}*%ERFC(AZ)
EZ2CZR=(AZR#FR-A213F1)XTHC/RTP]
EZ2CZ1=(AZI*FFR+AZR*FLIXTWC/RTPI
GC YC €c¢0
ASYNFTICTIC EXPANSION FCR EXP(AZ**2)*ERFC(AZ)
INITIALIZATION

o
{u
<

700 TZ2R=TWC*Z22Fk
Tzzl=TwC*AZ21
TEMFSTZZR¥TZ2R+TZ21%7221
RTZZR=TZZR/TENMF
RTZZI=-T221/TENF
TMMIR=(AZR/RHC) /RHC
TMMLII==(AZ1I/RFC /R
TMENZ=TMMLIR*TVN IR+TMML I TMMLT
SUNF=TVMIR
SUMI=TNMMLI
DN=CNE
SGA==ChE
CCMFUTING SUM
710 THVR=CNX(TPMIR*RTZ2R-TMML I*RTZ221)
TNI=CN*(TMM1I*RTZ2R+TMMLIR*RT Z21)
SUMR=SGN*TMR+ SUMR
SUMI=SGN*TMI+SUM]

APPROXIMATING RJE«
SUMNZ=SUMRRSUNR+SUMIRSUMI
TMN2=TMRXTVR+TNI#TML
REM2=TMMZ/SUNMNM2

TCLERANCE CPFECK
IF (REM2 4LTe TCL2)} GG TO 730
IF (TMMZ2 LLTe TMPM2) GO TO 720

CIVERGENT PATH
SUMR=SUMR~SCN*TMR+ SGN*TMMLIR
SUMI=SUMI-SCNFTMI+SGNXTMMLIT
¢C TC 730

ADDITIONAL TERMS

T20 SGA==-SGN

OA=DM+TRO

TVMIR=TNR

TMM1I=TMI

TMFNZ=TMM2

GC TC 710

EVALUATE EXP(AZ*%2)*ERFC(AZ)

730 EZ2CZR=SUMR/RTP1
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ac4 EZ2CZI=SUMI/RTPI

4€c C VMAINTAINING ACCURACY IN EZ2CZR
4€€ C FCR SMALL AZR

4€7 TEMF=E22CZR*TCLER

4€E IF (TEMP +GTe EZ2R) GO TO 800

GES TENMF=CNIN*RHCLC

470 IF (EZZ2C2K oGTe TEMP) GO TO 7S50

471 IF (EZZR «GTe TEMP) GO TO 750

a72 IF (AZFf) 74C+75C,740

47z C INDICATE RESUW TING ERRCRS IN ERFC
474 C (AND ERF) (IERR=2)

47c 740 IERR=2

47¢€ 7EQ0 EZZ2CZR=EZ2CZR+4EZ2FR*CQAZ21

477 C EVALUATE ERFC AND ERF FOR AZ IN CCNTINUED
47§& C FRACTICN AND ASYMPTOTIC EXPANSICN REGIONS
47¢ 800 IF (A221 +LTe ULSC) GO TO 830

4€Q C INVALID ARGUMENT FOR SIN/COS

491 C ERFC(AND ERF) INVALID (IERR=2)
QqEZ IF (AZR-ARIMX) £E20+,2810.,820

433 C AZR oGEe AZI

4€4 810 ERFCZR=ZERC

4ED ERFCZI=ZEKRC

aEe GC TC s10

4€? C AZR oLTe AZI

4EE 820 ERFCZR=CNMAX

48¢ ERFCZI=CNAX

450 GC 7C S190

4s1 C VALID ARGUMENT FOR SIN/COS

4sz 830 IF (RFC oGEe RHCLC) GO TO 840

4<3 C RHC oLTe. RHOLC

asa TEMPA=EZ2CZR*(CAZ2I+EZ2CZI*SIAZ21

4cc TEMFB=-EZ2CZR#+S1AZ21+EZ2CZ1*COAZ21

4c€ TEMPC=EMNZ2C3

4<? GG TC €S0

4c<t C RFEC «GEe RHOLC

4GG £40 TEMFA=(FAXCCAZ21-FE*SIAZ21)/FC

see TEMPB=(~FA*SIAZZI-FEXCOAZ2I)/FC

<Cl TEMF=ENZZD2/AFINX

€02 TEMFA=TEMPAXTENF

€02 TENFE=TEMPE*TENF

€J4 TEMFC=CNE

2635 &350 IF (EMZZD3 oLEfe CNE) GD TO 920

50¢€ C EVALUATE ERFC(AZ)(AZI +GTe AZR)
SC7? 1=1

SCE TEMF=TEMFA

306 A€o J=1

€10 SGA=CANE

€11 FC=TEMFC

€1 IF (TEMP +CEe ZERC) GO TO 879

£1:3 SCN==SGN

€14 TEMF==TEMP

1€ 870 IF (TEMF +LTe CMAX/FD) GO TO 880

tle TEMF=CNAX

c17 Ic=2

1z GC YG 8so

€19 &R0 TEME=TEMF»FD

&29 J=J+1

L2 IF (J «CTe 2) GC YO 890
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850

900

S10

S20

$30

940

1.1+

S70

Q8o

950

1000

1010

1020

FD=EMZ2C2
GC TO &87¢

IF (1 «GEe 2) GO TO 900
ERFCZR=TEMFASEN
I=1+1
TEMF=TEMPE
GC TC 860
ERFCZI=TEMP*SCN
IF (1G JNEe 2) GO TO 930
ERFC(AND ERF} INVALID (IERR=2)
OVERFLCW CF ERFC(AZ)(1Q=2)
LERR=2
GC TC s30
EVALUATE ERFC(AZ)(AZl +LE. AZR)
ERFCZR=(TEMPABEMZ20Z)#EMZ2D3*TEMPC

ERFCZI=(TEMPE#ENMZ2CZ)*EMZ203*TEMPC
SPECIAL CASE (AZR=0)
IF (AZF JL.Ee ZEFG) ERFCZR=CNE
EVALUATE ERF(AZ)
ERFZR=LNE~ERFCZR
ERFZI==ERFCZI
SYMMETRY RELATICNS APFLIED
IF (ZR=AZR) 950+1000,950
FEAL CF Z 4LTe O
ERFZR=~ERFZR
ERFCZR=TWO-ERFCZR
IF (A22)Y «CEe ULSC) GO TO 960
IF (IC 4EGe 1) €O TC 960
MAINTAINING ACCURACY IN 23EXP(Z**2)
IF (AZR «LEe. #21) €O TO S80
TEMP=AMAX1(AES(SIAZ21)e ARS(CUAZ21))
IF (TENP +LTa. ((CMAX/TWO)I/PEXFP)I/EZ2D6) GO TC S70
EXP(2#%2)#ERFC(Z) INVALID {IEPR+#1)
IERFR=IERR+1
EZ2CZR=CMAX
EZ2CZI=CMAX
GO TO 1000
TEZZR=((PEXPHCCAZ211*EZ2DE }*TWO
TEZ22I=((PEXP*STAZ2I)*EZ2DE) *TWC
GC TO %80
TEZ2R=TEZ2%CCAZ2Z1
TEZ21=TEZ2*S1AZ21
EVALUATE EXP(Z*%2)%ERFC(Z)
E22CZR=TEZE2R=-EZZCZR
EZ2CZI=€22C21-TEZ221
IF (21-«AZ1) 3010,1020,1010
INAGINARY CF Z +LTs O
ERFZI==ERFZI
ERFCZI=~ERFCZ1
EZ22C2I=-EZ2C2Z1
RETURN
END
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189

RHO\THETA

«00 «100000+01
002 «977435+00
«04 +954889+00
« 06 «932378+400
«08 «909922+400
«10 «887537+400
o112 «865242+00
14 +843053400
o116 «820988+00
18 «765064+400
«20 «777297400
«30 «671373400
«40 «571608+00
«50 «479500+00
«60 «396144+00
«70 322199400
+«80 «257899+00
«90 «203092+00
1.00 «157299+00
110 e116795+00
120 +896860-01
1.30 «659921-01
140 «877149-01
150 «338949-01
160 +236516-01
170 «162095-01
1 .80 «109095-01
190 ¢720957-02
2.00 «467773-02
2410 «297947-02
2420 «186285-02
230 «114318-02
2.40 «688514-03
280 »406952-03
2460 «236034-03
270 «134333-03
2.80 «750132-04
2490 «410979-04
3 .00 ©220905-04
3 .50 «743098-06
4.00 «154173-07
4450 ¢196616-09
500 «153746-11
5450 «735785-14
6400 e215197-16
6450 «384215-19
700 «418383-22
7450 0277665-25
8400 «112243-28
8450 «276232-32
9.00 «413703-36

«100000+01
«978204+00
¢956420+400
0934662400
«912942+00
«891273+00
«869667+00
«848138+00
«826697+400
«805358+00

e784132+00
«680129+00
«580740+400
«487320+400
«401058+00
©322926+00
«253631+00
e193577+00
« 142847400
«101201+00
«680972-01
08427427-01
¢241557-01
«112438-01
«288326-02
-e200643-02
—e440212-02
-e¢513475-02
-e486777-02
-+ 409504-02
-e315468-02
-e225377-02
-¢149843-02
—-e924217-03
—¢523179-03
-+265334-03
~+113783-03
-¢339435-04

«198248-05
«383634-05
-+50€480-07
-e172664-08
«43138%4-10
-e401550-12
0222076-14
-¢905982-17
0276523-19
=e517996=-22
+396093-25
«111560-28
-¢213063-31

15’
«000000
-.583879-02
-e116648-01
-e174654-01
-e232279-01
-e289397-01
-+345886-01
-+401625-01
-e456493-01
-e510376-01

—¢563161-01
-+806921-01
-¢100871+400
—+115988+00
-e125565+00
—¢129533+400
-¢128213+00
—e122258+00
—e112577400
=e¢100228+00
—+863111-01
—e718743-01
-¢578252-01
-¢448760-01
—¢335145-01
—e240031-01
-¢164025-01
-«106123-01
-e641967-02
—=e¢354979-02
-e170957-02
-¢621965-03
-+481389-04
«201683-03
02€€848-03
¢241454-03
«183127-03
«122861-03

«741051-04
-e¢331302-06
-¢121829-06

«241877-08
-e812606-11
—e137042-12

+150084~-14
-e633184-17

«109112-19

+562585-23
—e443759-25

0427748-28
-+174915-32

TABLE
ERFC(

«100000+01
«980456+00
¢960912+00
«941368+00
«921824+400
«902280+00
«882738+400
«863197+00
«843€57+400
«824121+400

«804890+00
«707071 400
«610081+00
«514270+00
©420627+00
«330478+00
¢245436+00
¢167296+00
¢978859-01
«388720-01
—+844458-02
-e433244-01
-e657413-01
=e764609-01
=e770202-01
=e666000-01
=e5€7ST76-01
—-e413301-01
—¢287133-01
-e119733-01
—¢144281-02
«531649-02
«847425-02
«872881-02
«709056-02
¢860569-02
e214179-02
«2%£793-03

—¢830403-03
¢361438-04
—-¢10CS583-04
©342245-05
-¢410390-06
-¢988639-10
¢136924-08
«477805-10
+941894-12
¢233092-13
«731135~15
¢130672-16
+313042-20

1
Z)

30°
«000000
-+112808-01
- +225435-01
-¢337702-01
-+449428-01
-+560434-01
-+670542-01
-e779575-01
-.887357-01
-¢993713-01

-+ 109847+00
-+¢159241+00
-¢202202+400
= 0236937400
=¢261983400
—e276308+00
=e279418+00
=+ 271437400
—¢253165+400
-e226077+00
—e192259+00
-e154271+400
=¢114934+00
—=e770708-01
—e¢43213€-01
—«153368-01

¢535338-02

«185261-01

«247077-01

«251347-01

«215037-01

«156622-01

+930477-02

¢372996-02
=¢293708-03
- ¢253794-02
-e321372-02
—e279917-02

—-e184961-02
«343118-03
—e454411-04
«358814-0S
«€90194-07
- e274562-07
-¢383336-09
«324007-10
«157586-11
«393021-13
«506747~15
~343079-17
-+160996-18

37.5°
«100000+01 000000
¢982095+400 =+137355-01
0964183400 -.274543-01
¢946257400 -,411398-01
0928310400 ~¢547751-01
¢910337400 ~«683437-01
«892330+00 -.818288-01
«874283400 =.952136-01
«856190400 -.108481+00
«838045+00 -+121615+00
¢8198444+400 =0134568+00
e727824400 —-¢196662+00
¢633845400 =¢252418+00
«537866+00 =¢299764+00
0440342400 —¢336667+00
0342317400 —¢361274+00
0245465400 =¢372052+00
e 152078400 —¢3679794+00
064978701 —+348749+00
—e126659-01 -,314972+00
—eTT76217-01 =+,268341+00
—e126958+00 —-+211694+00
—e158478+00 ~¢148963+00
=e171150400 =.849352-01
—el65475+400 -4+248347-01
~e143694+00 +262601-01
—e109748+00 +641075-01
= ¢689521-01 +859866-01
=e273484-01 +9123¢8-01
¢916428-02 +815039-01
¢358034-01 +605788-01
¢497620-01 «337876-01
¢S507367-01 +700451-02
¢409438-01 -,1452€4-01
¢245557-01 —-+272819-01
0664754-02 =e301636-01
=¢B809354-02 —.245881-01

—e165397-01

—el78141-01
¢663124-02
—-e¢206887-02
«149447-03
«163226-03
¢529439-06
-¢550781-05
-¢126107-05
—e¢164519-06
«525818-10
«420606-08
«123912-09
-¢862157-10

-¢138997-01

=e225516-02
«774278-03
«808579-03
—e641621-03
«593711-04
¢406179-04
¢636094-0S
«886874-06
«187753-06
«356932-07
«160997-08
-+485650-09
«168052-10

«100000+01
«984040+00
+968068+00
+952070+00
¢936033+00
«919G64¢+00
¢903796+00
«887571+400
«871258+400
+854845+00

«838321+00
«753652+00
«664672400
«570447+00
¢470518+00
+365070+00
«28E10€+00
e142621+00
«307358-01
-e762502-01
-e172938+00
—e¢253111+00
-«310259+00
-e¢338390+00
-¢333094+00
-0292775+00
—e219843+00
-e¢121580+00
-+103117-01
«974865~01
«183390+00
«23048€+400
«227631+00
¢173531+00
«792740-01
-¢321336-01
-+130154+00
-¢185124+400

-e¢178018+00
¢146013+00
—+704373-01
=¢697054-01
«909031-01
¢945377-01
+562713-01
«498547-01
«710858-01
+667858~01
~e258232-01
-+475602-01
0623821-01

45°
+000000

—+159556-01
-¢318984-01
-e478156-01
-¢636943-01
~e795217-01
—e952846-01
-¢110670+400
-¢126564+00
-+ 142053400

- 157424 +00
-e231995+00
-¢301347+400
-¢363359+400
~+415645+00
—+455585+00
—e 480414400
-e487404+400
—+474148+00
—¢438939+00
-¢3812652+00
-¢302268+00
-¢205369+00
-e965018-01

«157600-01

« 120601400

«205946+00

«260096+00

0273926400
¢243355+00

«171536+00

«700421-01
-e417236-01
-¢139462+00
—¢ 199249400
- 0204295400
-e¢151392+400
—e¢545715-01

«564096-01
~e667835-01
«121816+400
—-¢103987+00
—-e666628-01
¢396363-01
¢ 752047-01
«710156-01
¢379415-01
-¢345871-01
-¢656143-01
¢462887-01
-+ 612171-02



¢89

RHONTHETA
«00 «100000+01
«02 «985491 400
«04 ¢970967+400
«06 «95641 1400
«08 «541809+00
«l0 «927144+00
o12 «912401¢00
«l4 «897565400
«16 «882621 +00
«18 «B67552+400
«20 «852345+00
«30 «773712+00
«40 «689468+400
« 50 «S5GE041+00
«60 «498195+00
«70 «389205+00
<80 «271098+00
«90 «144933+400
1.00 «131385-01
1«10 -4120165+400
120 =.248882+00
130 =4364829+00
1,40 =-,457890+00
150 =.516623+00
1460 =4529455+00
1«70 =.486589+00
180 =-.382619+00
1.90 =.219614+00
2.00 =,101646-01
2.10 «220530+00
2.20 «434783+00
2430 «586112+00
2,40 «627560+00
2.50 «524677¢00
2,60 «271303+00
2470 =-.961516-01
2.80 =.492661+400
2490 =4794447+00
3.00 -.870118+00
3.50 «128375+01
4,00 =-.143233+01
4,50 =-.153046+01
S.00 «818979+401
550 e141149+402
6 .00 2892289401
6450 e 767743401
7 .00 e164446403
7.50 «126058+04
8.00 ¢231199+04
8,50 =-.1814294+05

9.00

«404091 405

50°

«000000
—e172863-01
-¢345615-01
~«518226-01
~e690545-01
—+862497-01
~¢103399+00
—¢120493+00
~e137521+00
~«154473+00

—-e171339¢00
=~ 253982400
~e332643+00
—¢405420+00
=+469950+00
—-e523342+00
~¢562163+00
~¢582512+00
~+5E0211+00
—¢551166+00
~¢491928+00
~+400481+00
=e277246+400
-e12€215+00

«439353-~-01

«219059+00

«379468+00

«501C81+00

«558267+00

«S2E666+00

«399806+00

«176582+00
-¢112358+400
—e412231+00
—~e647141+00
-e735167+00
—-+613886+00
~e271241+00

«227570+00
~ 438817400
«176970+01
—-¢394580+01
—¢289861+01
¢136673+402
«480481+02
«133290+03
«364872+03
¢375323+03
=e413300+04
-+441024+04
«6970S0+0S

«100000+01
«988713+400
«977408+400
«966067+00
«954672+400
«943204+00
«921646+¢00
«919978+400
«908183+00
+896242+00

«884135+00
«820454+400
«749698+00
«669242+00
« 576286400
«467898+400
«341135+4+00
«193283+00
«222736-~01
-«172655400
=¢389989+00
~e624572+400
~«865837+00
~«109565+01
~¢128600+01
-«139708+01
-e137659+01
-e116196+401
-¢687539+00
+100155+00
«121649+01
«260024+01
«406480+01
¢524907+01
¢556076+01
+436233+01
«827238+00
=¢542122+01

-+139065+02
«436770+02
~e286672+03
«303475+04
—¢236016+05
-e192298+06
0434327407
«130111+09
«3C8919+10
0 107926+12
«557097+13
«231401+15
-e117844+17

60°

«000000
-e¢195441-01
-« 390882-01
—-e586322-01
—~e781761-01
—e977195-01
-e117262+00
~e136803+00
=¢ 156342400
~-e175878+00

—«155409+00
~e292919+00
-¢389843+00
~-e485367 400
~e578076+00
=e665719+00
—~¢ 744933400
—e810912+00
~eB857061 400
—-eB74670+00
~eB852699+00
~e 777828400
—¢ 635009 +00
-¢408856+00
~e¢863300-01

«338770+00

«859011+00

«144402+01

«202914+01

«250402401

«270506+C1

¢241951+01

«141207+01
-¢S511462+00
-e¢339050+01
—e 634257401
~e103663+02
-e121876+02

—e102944 +02
«609546+C2
~e315634+03
+899044+03
194203405
=¢331209+06
~¢444020¢07
« 950077407
«172358+10
«606848+11
«462008+12
—-e228725+15
~e213680+17

ERFC(Z)

70°
«100000+401 000000
¢962279400 =~.212081-01
984542400 -.424252-01
976774400 ~+636604=01
*9E8659400 -.B84922€-01
«961080400 =-106221+00
«953123400 -4 127564400
«945070+00 —-.148961+00
2936506400 ~+170421+400
«928€12+00 ~.191952400
0920173400 -+213564+00
«875153400 ~o323124400
0823615400 -435932400
«762712400 -.552889+00
2688562400 =.6746€5+00
+598036+400 =+ 801524+00
«484501400 ~+933057+00
¢341532400 ~+106775+01
«160625400 =-+120233+01
—e686592-01 ~-+133079+01

—¢358812+00
~e724161+400
—¢118000+01
~¢174051+01
~e241452+01
~e319777+01
~+405945+01
—e452C09+01
~e561710+01
~+«585370+01
—=e512891+01
~e265168+01
¢274334+01
¢126293+02
«288616+02
«530807+02
«854€77+02
«122167+03

«150602+03
—-e185185+04
«142504+05
—¢581405+05
—e301677+05
~e27G467+09
«640472+11
~e962019¢13
0442269415
«371118+18
-+ 785527+19
—e624892423
—-e554262+26

-e¢144298+01
=-¢152248+01
—¢154380+01
~e146840+01
~e¢123975+01
~eT777391+00
¢291660-01
¢132454+01
«328529+01
«610278+01
+993582+01
«148074+02
«2040€2+02
«257378+02
e285642+02
«245883+02
«644245+01
-e¢371981+02

—~¢121463+03
~e 696951 +03
¢ 268505+05
- ¢694896+06
«237891+08
~e117057+10
«633707+11
«967322+12
=+ 156615+16
+125665+18
+138783+21
«370071+23
-+ 688648+25

80°

«100000+01
¢996080+400
«G92150+00
«988203+00
«984228 400
«980217+00
«976160+00
«972048+00
«967870+00
«963617+400

«969279+400
«935924+00
«908660+400
+875613+00
«834330+00
«781501+00
«712565+00
«621138+00
«498184+00
¢330784+00
«100318+00
~e220245+00
—¢670390+00
~¢130809+01
~¢221880+01
—e352885+01
-e¢542509+01
~¢818351+01
—¢122098+402
~-¢180944+02
—e266833+02
~e391538+02
~e570679+02
—e823162+02
~-e116747+03
~e161012+03
-¢211587+03
~e¢253771+03

~e246068+03
«126726+05
2414164406
-¢104472+08
—e159723+10
«155714+12
«196750+14
-+152018+17
0619376+19
—e143772+22
—e257275+25
e11516€6+¢29
~¢488030+32

«000000
—¢222273-01
-e444703-01
—e667446-01
—~«B890659-01
~e111450+00
-« 123913400
~e¢156471+00
-+ 179140+00
-¢201936+00

-e224877+00
~¢342344+00
—e466C59+00
~e598673+00
~e742997+00
~¢902533+00
—«¢108143+01
—+1284€8+01
~-+151831+01
—-e178947+01
~¢210652+401
—-e247879+01
—e291589+01
-+342593+01
~+401186+01
~e466405+01
~e534607+01
~e596797+01
—~e633691+01
—e606686+01
~¢441546+01

«862691-02

«976572+01

0294995402

«675244 402

«138532+03

«268092+03

«499853+03

¢906353+03
«110011+405
~e267047+06
-e211627+08
«902680+09
e 170313412
—e425327+14
«205488+16
«519583+19
-e¢670033+22
«B897512+25
-e168785+29
«526592+32

o1+01
«1401
«1401
«14+01
1401
el +01
«1+401
«1401
«1401
«1401

«1+01
+1401
«1+401
«1401
el1401
«14+01
«1401
«1401
«1401
e1401
o1+401
«1401
«1401
o1+01
«1+01
e1401
«1401
e1401
«1401
el+01
«1401
«1401
«1+01
1401
«1+01
«1+01
«1+01
«1401

01401
1401
e14+01
o1+01
«1+401
el1401
e1+01
«1401
« 1401
e1401
e 1401
sl1+01
1401

°
90

« 000000
-e225706-01
~e¢451593-01
—e677841-01
=-¢904633-~01
-« 113215+00
—¢136058+00
-+ 159011400
-+ 182093+00
~e205323+00

~e228721+00
~e¢348949+00
~e476625+00
~e614952+400
-e 767853400
~e¢940283+00
~e113867+01
—e137154+01
~«165043+01
—-e199117+01
-¢241591+01
~+295609+01
~e365696+01
—~e458473+01
~+583773+01
~e756418+01
-e999112+01
=e134718+02
-+ 185648+02
~e261677+02
~e 377471402
-+557397+02
-+ 842631+02
-+ 130396+03
~¢206519+03
~e¢ 334671403
~e554777+03
~+940470+03

~¢ 162999404
—+352823+05
-« 129696+07
-¢801975+08
-+ 829827+10
-e143210+13
—e411275+15
~e 196225+18
~e1655349+21
~¢203882+24
~e443245+27
~¢ 159530+ 31
—e¢950078+34



€89

RHONTHETA
« 00 «100000+01
«02 «977826+00
«04 «95€418+00
« 06 «935741+00
« 08 «915764+00
«10 «896457+00
012 «877791+00
«14 «859740+00
«16 «842277+4+00
18 «825378+00
«20 «806020+00
«30 « 734569400
«40 «670788+00
«50 «615690+00
«60 «567805+00
«70 «525930+00
«80 «489101+00
«90 ¢456532+00
1.00 «427584+00
1.10 «401730+00
1.20 «378537+00
130 «357643+00
140 «338744+400
1.50 «321585+00
1460 «305953+00
170 «291663+00
1.80 «278560+00
1.90 «266509+00
2.00 «255396+00
2.10 «245119+00
2020 «235593+00
2.30 «226742+00
2.40 ¢218499+400
2450 «210806+00
2.60 «203€13+00
270 «196874+00
2.80 «190549+00
2.90 +184602+00
3.00 «179001 +00
3.50 «155294+00
4.00 «136999+00
4450 «122485+00
5.00 «110705+00
550 «100962+00
6.00 «927766-01
6450 +858057-01
7.00 «768001-01
750 «745737-01
8400 «655€52-01
8450 «659251-01
9.00 «623077-01

0
.0

0
‘o
0
.0
«0

0

«0
0
«0
.0
.0
«0
«0
.0
0
«0

«0
«0

«100000+01
«978544+00
«957755+00
«937610+00
«918086+00
«869159+00
«880810+00
«863016+00
«845758+00
«829017+00

«812775+00
«738441+00
«6741774+00
«618355+00
0569635+00
¢526911+00
«489272+00
+455962+00
«426354+00
¢399923+00
«376233+00
«354G616+00
«335662+00
«318209+00
«302334+400
«287848+00
«274589+00
0262415400
«251208+00
+240863+00
¢231289+00
«222408+00
«214150+00
«206456+00
¢159271+00
«152549+00
«186248+00
«180331+00

«174766+00
«151281+00
«133241+400
«118978+00
«107435+00
«979088-01
+899189-01
«831244-01
«772774-01
«721940-01
«677345-01
«637913-01
«602800-01

15°
+000000
~-e564511-02
-+109148-01
-.158323-01
-.204192-01
-.246960-01
—-e286817-01
-+323942-01
-.358502-01
-+390656-01

—-¢420551-01
-+540691-01
-« 621855-01
-e674592-01
—e706620~01
—e723596-01
~e729681-01
-e727939-01
-e720633-01
-¢709434-01
-+ 695576-01
-e679971-01
—e663291-01
-e646026-01
-¢628545-01
—e611100-01
—-¢563879-01
-¢577015-01
-«560596-01
—-e544681-01
=¢529306-01
-¢514490-01
-¢500239-01
—+8486549-01
~e473413-01
-+460815-01
—e448740-01
—¢437168-01

—e42€079-01
—e377161-01
~e¢337346-01
-+¢304579-01
—e277278-01
—-e254257-01
—¢234628-01
-e217720-01
—e203020-01
-e190134-01
-e178753-01
-«168633-01
-e¢159579-01

TABLE 2

«100000+01
«980656+00
«961711+00
«943165+00
«925014+00
«907257+00
+889890+00
«872508+00
«856308+00
+840085+00

«824233+00
«750340+00
«684812+00
«6268154+00
«575515+00
«5301254+00
«489917+00
«454239+00
«422513+00
« 394231400
«3€68549+00
«346284+00
+«325505+00
«307525+00
¢290896+00
«275808+4+00
«2€2075+00
¢249540+00
«238065+00
«227532+00
«217837+00
«208891+00
«200€15+00
¢192641+00
«185809+00
«179166+00
«172G67+00
«167168+00

«1€1735+00
¢139036+00
«121846+00
«108404+00
«976147-01
«887699-01
+813899-01
«751359-01
«697797-01
«651222-01
«610646-01
«574747-01
«542832-01

EXP{Z*%2) *ERFC(2Z)

30°
« 000000

-.109433-01
-.212290-01
-.308907-01
- ¢399605-01
~e484692-01
-¢564458-01
-.639183-01
-e709132-01
-+774557-01

-¢835698-01
-«108476+00
-+125660+00
-¢137032+00
-+144060+00
-+147863+00
—¢14929€+00
-+149005+00
=¢147478+400
—-¢145081+00
-+142050+00
—-+138710+00
-+135093+00
—e¢131350+00
-+ 127564400
—e123794+00
-¢120081+00
~e¢116455+00
-+112935+00
-+ 109534400
-+¢106258+00
—-¢103112+00
-+100095+00
—¢972068-01
—e944437-01
- ¢918020-01
-+ 892774-01
-+ 868650-01

=+845599-01
—-+744669-01
-¢663430-01
-¢597166-01
-«542350-01
—e456392-01
-+¢457386-01
—+423911-01
-+394900-01
-+ 369532-01
—e347176-01
-¢327332-01
-+ 309606-01

37.5°
«100000+01 « 000000
982202400 -«133574-01
«964623+00 —+259749=-01
947276400 -+378843-01

«G30171+00
«913315+00
«896717+00
«880383+4+00
«864318+00
+848526+00

«833010+00
«759640+00
+693269+00
«633647+00
«580342+00
«532829+00
2490547+00
«452940+00
+419480+00
«389679+00
«363094+00
«339332+00
«318044+00
«298923+00
«281701+00
«266147+00
+252058+00
¢239260+00
0227600+00
¢216948+00
«207188+00
«198222+00
+189963+00
«182336+00
e175275+00
«168723+00
«162630+00
«156950+00

«151645+00
«129658+00
+113196+00
«100432+00
«902530~01
¢819492-01
«750469-01
¢652162-01
«642331-01
«599186-01
«561483-01
«528254-01
«498745-01

—-¢491167-01
=¢597018-01
~-¢696688-01
—e790455-01
~¢878590-01
~¢961353-01

=¢103900+00
-¢135855+00
—¢158259+400
~e173298+00
-«182718+00
-«187900+00
-¢189926+00
~e¢189631+00
-+ 187662+00
=+184510+00
-«180548+00
—«176056+00
=¢171244+00
=¢166267+00
-¢161236+00
-+156235+00
-¢151319+00
—e146528+00
-e141889+00
=¢137417+00
=e¢133122+00
=+129008+00
~e125073+00
=-+121315+00
=+117730+00
—+¢114311+00
=e111051+00
=e¢107943+00

-+104980+00
-+920841-01
=+817946-01
—e734593-01
—e666012-01
—-+608758-01
-¢560327-01
~+¢518878-01
—+483034-01
-e451746-01
—+424219-01
—«399814-01
—=+¢378026-01

45°

«100000401 000000

«984046+00 —4¢155616-01
«968117+00 -,303494-01
+95223€6+400 -.443878-01
«936422400 -.577025-01
920696400 -4+703184-01
+9050754+00 -.822605-01
+88957E5400 -,935532-01

«874212+00
«8589G8+00

«843946+00

-+104221+00
-+114286+00

-e123774+00

«7714534+00 -,163319+00
¢ 704192400 =.191604+00
¢642609+00 —-.210932+00
«586778+00 -.223250+00

«536524+00
+491521+00
«451358+00
«415588+00
«3E37€0+00
«355440+00
«33202223+00
«307738+400
«287653+00
«269672+00
«253535+00
«239013+00
¢225508+00
«214048+00
«203282+00
«193480+00
«184530+00

«17€324+400
«16E8808+00
«161878+00
«155479+00

«149556+00
«144061+00

«138950+00
«117689+400
«102526+00
«906646-01
«812804-01
«736702-01
«673720-01
«620749-01
«57€547-01
«536520-01
«502479-01
«472522~01
¢445653-01

-+ 230166+00
-¢232989+00
-e232766+00
—e230320+00
—-e226295400
-e221186+00
=e¢215369+00
—¢209128+00
-¢202672+00
~e196156+00
-+ 189690+00
-¢183351+00
-e177191+00
—-e171246+00
-«165535+00
-+ 160068+00
-+ 154849400
-+ 149876400
-¢145143+00
-+140642+00
-¢136364+00
—e 132298400
-¢128434+00

-+ 124761400
-+ 108897+00
-+ ©63790-01
-¢863253-01
-e¢781076-01
-e712820-01
-+ €55313-01
—-e606252-01
~+¢563934-01
-«527075-01
~e8494694-01
-+466031-01
—-e440484-01



$89

RHONTHETA 50°
.00 +100000+01 .000000
«02 985430400 -.168969-01
.08 +GT0750400 ~.330243-01
06 955991400 —-.484013-01
.08 +G41179400 =.630470-01
.10 «9263384¢00 =.765$813-01
12 4911494400 =.902242-01
e18  LB9666T400 ~4102796400
.16 +BB1B78400 -+114717400
18 867146400 —.126007+00
.20 +852490400 -.136687400
+30 780658400 -.181638+00
40 713036400 —.214294+00
50  +649979+00 =.236926+00
«60 +592156400 4251548400
«70 4539686400 ~.259892+400
«BO 4492447400 -.263412400
.90 +450161400 ~,263301400
1.00 4412460400 —+.260519+00
1e10  +378634+400 -.255830+400
1.20 +349161400 —e249826400
1.30 «322730400 -.242965400
1440 «299256400 —.235563+00
1.50 ,278384+400 —e227969+00
1.60 4259793400 -.220280+00
1.70 2243198400 =+212662+00
1.80  ,228349+00 —.205210+00
1.90 2215025400 =+197986+00
2.00 +203034+400 -.191033+00
2410 192211400 -.184372400
2.20 +182411400 =,178015400
2.30 «173510400 =¢171964+00
2,40 «165400400 =+166214400
2.50 «157988400 -.160758+00
2.60 151195400 —-.155584+00
2.70 4144650400 -.150680+00
2.80 +139193400 =.146031+400
2.90 4133871400 —.141624+00
3,00 +128940+00 -,1374454+00
3.50 «108892400 —=.119509+00
4,00 +542797-01 —.105481400
4.50  +B31655-01 =,942896-01
5400 +744259=01 -,851875~01
5¢50 4673700-01 ~,776560~01
6.00 «615511-01 -,713293-01
6450 56667901 =-.659441-01
7 .00 «525101=01 ~,613075-01
7450 489261 -01 =,572750-01
8.00 «458040-01 =-.537368~01
8.50 +430594-01 =.506078~01
9.00 +306273=01 =.478214-01

«100000+01
«988522+00
«976680+00
«964508+00
+«952039 +00
«939307+00
«926342+400
+213175+00
+859834+00
«886348+00

«872742+00
«803774+400
« 735131400
«668830+00
«606260+00
+548281+00
+495329+00
+447520+00
«404741400
¢366725+400
«333111+400
+303494+00
«277452+00
+254575+00
«234476+00
«216798+4+00
2201224400
«187470+00
« 175289400
« 164467400
«154819+00
«146185+00
«138430+00
«131439+00
+125111+00
«119364+00
« 114124400
«109330+00

«104930+400
«874505-01
«750909~01
«658787~01
«587346-01
«530232-01
«483467-01
+444434-01
«a411335-01
«382898-01
¢358190-01
+336516-01
«317343-01

°
60

«000000
-+191978-01
~e¢377036~01
-+¢555200~-01
—+726507-01
-e891010-01
-«104877+400
~¢119987+400
-+ 134439+00
—e148243+¢00

-+1€1410+00
~e218107+00
-+ 260834 +00
=e291462400
~e311920+00
-+ 324060+00
-e329575+00
—e329960+00
~e326488+00
~+320215+00
~+311694+00
-«302503+00
~-e292262+00
-+ 281666400
~+271004+00
~+e260483400
~e250247+00
~-+240389+00
-e230965+00
~e222006400
~+213521+00
-+ 205507400
-e 197951 +00
~¢190836+400
~e 184138400
~¢177833+400
~+171899+00
-+ 166309400

~+161041+400
~+138780+400
~e121741400
~-¢108356+00
-+ 97591901
—-+887581-01
—+813834-01
~e751362-01
-+697775-01
-«651309-01
-e610637-01
-e574741-01
—-+«542828-01

EXP(Z¥¥2)*ERFC(2)

o

70

«100000+01
+9916G80+00
«983379400
«G742284+00
+9E45594+00
¢ 954404400
2943794400
+932761+00
«921336+00
+909%51+00

« 897434400
«832921400
«7T€4351+00
+694712400
«£26410+00
«5£1255400
«500496+00
+444890+400
«354786+00
+350217+00
+310985+400
«276740+00
«247038+400
+221396+00
«199324+00
+ 180352400
« 164045400
+150014+00
«137912+00
«127441400
«11834S5+00
¢110409+00
+103450+00
«973162-01
+918€12-01
«870395-01
»827037-01
«788013-01

«7%2717-01
«617C88-01
«525024-01
«458048-01
«406890-01
«3663299-01
«333477-01
«306137-01
«283042-01
+2€3257~01
+246107~-01
¢231091-01
+217828-01

« 000000
~e209465-01
-e8413619-01
~e612308~01
~¢ 80539901
~e992776-01
-+ 117434400
~e135001+00
-« 151972400
~+ 168342400

~+184108400
~+253864400
~+308806+00
-+ 349876400
~-e378484400
~¢396308+00
~+805125+00
~e 406682400
-2 402602400
~+ 394324400
—+383080400
—«369883+400
-+ 356543+00
-+340682+00
-+ 325767400
~e311128+00
= +296992+00
-+2B83502+00
~e270739+400
—-e2587374+00
~¢247499+00
-+237007+400
-+ 227227400
-+218118+00
—+209636+00
-+201733+00
-e194364+00
-«187486+400

-¢181058¢00
—+154443+400
-+ 134607+00
=e119295+00
-¢ 107125400
-+ 972205~01
~+890010~01
~+820692-01
-e761436~01
~“e710192-«01
~4665434-01
~e626001~-01
- e590993-01

°

80

«100000+01 4000000

¢ 995708400 —+220828-01
«990684 400 -,438614-01
«984947+00 ~-4653065-01
«978518400 -.863902-01
«971421400 ~4107C86+00
0963679400 ~e127369+00
« 956317400 -+147215+00

«946360+00
¢936834+00

«926768+00
«869300+00
«802581+400
«730181+00
+655426+00
+581214+400
+509895+00
«443222400
«382368+400
« 327976 +00
«280243+00
«239021+00
«203509+00
«174350400
+149701 400
«129300+00
+112501+00
+987098-01
«873871 =01
+781048-01
«704459-01
+641001~01
«588065-01
«543547-01
«505775-01
«473424-01
+445450-01
«421033-01

«399530~01
+«321214~-01
+270928-01
«235275-01
+208412~01
«187325-01
«170271~01
«156161-01
«144276~01
«134115-01
«125322=-01
«117632-01
«110848-01

~e166602+00
-+185511+00

~-e¢203921+00
~e287964+00
~e¢357672+00
—e412479400
-e¢452678+400
~e479263+400
~+493727+00
~e 497872400
—-e493623+00
-«482883+00
~s467415+00
~e448772+00
~e428255400
~e4069094+00
-«385528+400
~¢364688+00
—+344773400
-«326022400
~¢308553+00
-«292400+00
-e277541400
-«263913+00
~e251431+400
~¢240002+00
-+ 229528+ 00
~+219915+00
-+211075400
-e202926+00

-+195396+00
~s 165001400
~e143006+00
~e¢126308+00
~+113170+00
-+102546+00
-+937703-01
~+863935-01
-+801C29-01
~e746733-01
—+699379-01
-« 657709-01
~e620752-01

90’
«100000+01 +000000
+999£00400 —e225616-01
+998401 400 -+450871-01
«996406+400 -+6754065-01
+993620400 -.898862-01
+990050+00 -4 112089400

¢ 985703400 =4134113+400
2980591+00 —4155925+00
0974725400 = 177491400

« 968119400 -, 198777+00
~e219753400
=+318916+00
=+406153+00

«960789+400
«913931+400
«852144¢00

«7788014+00 ~4478925+00
«6976T76+00 -4535713+00
e612626400 ~4576042+400
«527292+00 =+ 600412400
2444858+00 -«610142400
«367879+00 ~.607158+00
¢2981974+00 ~+593761+00
+236828400 «,572397+400
« 184520400 ~+545456+00

«140858+00 ~¢515113+00

+105399400 ~,483227+00
«773047-01 «4451284400
«565762~01 ~.420388+00
239163901 -+391291+400
«270818-01 ~4364437400
+183156-01 ~+340026+00
«121552~01 ~+ 318073400

«7907065~02 ~4+2984684+00
«504176~02 ~,281026+00

31511102 ~4265522+400
«193045-02 ~4251723+00
+115623~02 -,239403+400
«682328~03 ~.228355+00
¢393669-03 ~4218399+00
¢222€630-03 -.209377400

-e201157+400
-+ 168830+00
-« 145954400
—~e1287354+00
-« 115246+00
~e 104367400
~-+953562~01
~e 87864401
~eB814475~01
-+ T769126~01

«123410-03
«478512-085
+112535-06
«160523-08
«138879~10
«728772~13
¢231952~15
«447773~18
«524289-21
«372336-24

«160381-27 -,710831-01
¢419009-31 -,668445~01
¢ 663968~3E ~,630821~01



689

RHO\THETA
«00 +100000+01
«02 «102267+01
«04 «104678+01
« 06 «107147+01
«08 +109708+01
o10 «1123€4+01
ol2 «115122+401
«l4a «117985+01
e16 «120958+401
.18 «124048+01
«20 «127260+01
«30 «145375+01
.40 e 167623401
x-14 «195236+01
«60 0229885401
«70 «273870+01
«80 «330386+01
«90 +403928+01
1.00 «500898+01
1e10 «630524+01
1 .20 «806285+401
130 e104813+402
140 «138559+02
1 .50 «186539+02
1 60 «255657+02
1«70 «35€950+02
1 .80 +507889+02
190 «736656+02
2.00 «108941+403
2410 +164294+03
220 0282703403
2430 «396460+03
2440 634478403
250 «103581+04
2460 «172508+04
270 2293054404
2.80 «508022+404
2.90 «898334+04
3.00 ¢1€2060+05
3.50 «4175€2406
4.00 «177722408
4 .50 e124593+10
5400 «144010¢12
3450 e274434+146
6400 «862246+16
6450 ¢ 44€655+168
700 «381469+22
750 «e537149425
8.00 «124703+29
8450 0477316432
9.00 ¢301219+36

«100000+01
«102215+01
«104502+01
«106863+01
«109302+01
«111821+01
«114424+401
«117112+01
«119891+01
¢ 122763+01

«125731 +01
«142149+01
«161572+01
«184573+01
«211791+01
*243899+01
«281529+01
«325121+01
«374645401
«429102+401
«485657+01
«538160+01
«574679+01
«573426+401
«496175+401
0277771401
-e190182+01
-¢108404+02
—e268411+02
-+542404+02
—e995202+02
-e171913+03
—e283609+03
=e448599+03
-e6779554+03
=e9€7019+03
-+126560+04
~+141486+04

-+102319+04
e 759689405
-e303148+06
—e632047+08
«504457+10
-¢398070+12
«A457872+14
-e1007164+17
«433489+19
=e283374+22
«196497 +25
-e989764+25
=+¢549838+31

15°

+000000

«604525-02
«12€170-01
«194435-01
«268548-01
«347828-01
«e432622-01
¢523294-01
0e620234-01
«723862-01

«834622-01
+151332+00
«245769+00
«377084+00
«559713+00
+813903+400
«116807+01
«166206+01
«235168+01
«3314744+01
«465908+01
«6£3258+01
«913501+01
« 127298402
«176520+02
«243017+02
«331040+02
«443947+02
«581561+402
¢ 734660+02
«874162+02
«930880+02
«759226+02
«748935+401
-e1€4667+03
—e¢532419+403
—e124780+04
—-e254465+04

—e874402404
~e127565+05
0206132407
—-e532606+08
-¢335304+09
0262492+12
~e520744+14
e118452+17
—~e317887+19
e426347+21
«129886+¢25
~-e298524+28
«194934+31

TABLE

3

EXP(Z*%2) *ERFC(-2Z)

+100000+01
«101974+401
«103989+01
«106043+01
«108137+01
«110269+401
e112441401
«114€50+01
«116896+01
«119178+01

«121495+01
«1233536+01
«146100+01
«158657+01
«170249+01
«179848+01
«185201+01
«183636+01
e171277+01
«143482+01
«938062+00
«151541+00
—~e998816+00
—e257674401
—e462254+401
—e708673+401
—e980423+01
-e124081+02
—e142543+02
-¢143607+02
-e114096+02
=¢389141+01
+950566+01
«291411+402
¢532363+02
«763516+02
«879744+02
0722456402

«105895+02
—e345002+03
+165184+04
«127488+05
~+¢505861+06
«359254+07
2127587409
«133025+10
«207275+10
«630673+11
«683728+14
«943832+16
«397876+18

30°

«000000

e1163€3-01
«240025-01
«371373-01
+510811-01
«658763-01
«815669-01
+981992-01
«115821+00
« 134483400

«154237+00
«271371+400
«424910+00
+623876+00
«878536+00
«119994+401
«159889+01
«208415+01
+265934+01
«331817+01
«403754+01
«476793+01
«542135+401
«585743+401
«587039+01
«518191+01
«344908+01
«301777+400
—-e457065+01
-e112626+02
-e194032+402
-e278220+02
—-¢341808+02
-e347103+402
-+243320+02
«239913+401
«489857+02
«112885+03

«179798+03
-e846681 +03
«572854+04
—e¢ 482630405
«179234+06
«647823+07
—¢210891¢08
-e267648+410
—e873217+11
-e327704+13
-e142358¢15
-e252614+16
«666613+18

o
37.5

«100000+01
«101801+01
«103620+01
«105458+01
«107311+01
«109177+401
¢111056+01
«112943+01
«114836+01
«116733+01

¢118629+01
«127976+01
+136645+01
«143813+01
«148357+01
«148800+01
2143293401
«129634+01
«105379+01
«680682+00
«156290+00
=¢530066+00
-e137052+01
-e232809+01
—¢332543+01
—e423536+01
—~e487786+01
—¢502963+01
«445375+01
«295578+01
- 468263 +00
2284504 +01
«649023+01
+959591+401
«109818+02
+941085+01
«405857+01
=+485116+01

-+154399+02
«352504 +02
~e121850+03
«286262+03
2714413403
=+294447404
- e2174564¢05
-e112172+406
—¢630212+06
—e252634+07
«165524+08
«206701+09
—e243169+10

«000000

«141302-01
+290671-01
«448455-01
«615C09-01
«790701-01
¢975904-01
«117100+00
¢137638+00
+ 159244+00

«181958+00
¢313595+00
¢479143+00
«683551+ 00
«930808+00
«122283+01
«155787+01
«192846+01
«231879+01
«270192+01
«303701+01
¢326754+01
«3321€4+01
«311621+01
«256681+01
+160541+01
2206798+ 00
-e157716+401
-«¢358054+01
-e549415+01
—e686146+01
=e712231+401
~e572745+01
—e233541+01
«292473+401
«919036+01
«147289+402
e171054+02

»138266+02
—e318118+02
«315751+02
¢246430+C3
-+107588+04
=e8407345+04
~e4T76709+404
«340422+04
-+ 132005+06
—e336114+07
—e2€5076+08
«164806+09
«751742+09

«100000+01
«101595+401
«103188+01
«104775+01
+106354+01
«107920+01
«109472+01
«111004+401
«112513+401
+113995+01

«115445+01
«122045+01
«127026+01
«126522+01
¢128502+01
«122814+401
«111267+401
«927639+00
«665017+400
«322278+00
=945630-01
~e568066+00
~e106664+401
~+154400+01
=¢194085+01
-e219087+01
—-¢222634+01
~e201049+01
-+152134+01
~e798885+00
«610500-01
«907518+400
«155613+01
«183009+01
«161505+01
«913632+00
-e121594+00
-e119668+01

~e196121+01
«178275+01
~e201785+01
«248394+00
«190112+01
+714128+00
=323300+00
= «383674+00
«543630+00
«185781+01
«733467400
~e204721+01
«150878+01

as’

000000

«163619-01
¢ 335494-01
.515878-01
+705024-01
.903181-01
«111059+00
«132751400
« 155415400
«179075400

«203753+00
«343076+00
«510240+00
«705740+00
«927798+00
«117142+01
«142738+01
+168134+01
«191326+01
¢ 209753+01
«220410+01
«220118+01
«205955+01
«175882+01
«129487+01
«687583+00
~+¢131466-01
~e725740+00
~e 134236401
-e174372+01
-e 182367401
~e152069+01
-+ 849408400
«787847-01
«105855+01
«182663+01
«213210+01
«182716+01

+948998+00
—-e513342+00
~e 479428400
«205738+01
- 186596400
~e176703+01
~e191803+01
=¢191335+01
~e 185111401
~e¢535787+00
«188952+01
«598650-01
~e121573+01



989

RHONTHETA
«00 »+100000+01L
« 02 2101443401
«04 »1028€9+01
«06 +104275+401
«08 «1068656+01
«10 «107009+01
o112 «108331+01
«14 «109617+01
o186 «110862+01
«18 «112062401
«20 2113213401
+30 +11E8040+01
240 «120806+01
«50 «120731 401
«60 «116980+01
«70 «108743+01
+80 +953336400
«90 « 763292400
100 «517275+00
110 +221086400
1.20 =4112292+400
130 =4462011+400
1440 =4799794400
150 =4109192+01
160 =4130302+01
170 =+140154+01
180 =4136640+401
190 =o119347+01
200 -4900424+00
2410 =4527958+00
2,20 =~4135761+00
2430 «207215+00
2440 «437243400
2.50 «512073400
2.60 «824377+00
2,70 «207358+00
24,80 =.711724-01
2,90 «a326684+00
.00 —0483674+400
3450 +999905-01
4,00 =~,21B410+400
4,50 =,558352-01
500 —,517307-01
Se50 me679421-01
6,00 =,639612-01
650 =4.5760853-01
700 =,52€816-01
7«50 -~.488796-01
8,00 =-,457747-01
8,50 —,430626-01

9 .00

~+806279-01

s0°

«000000

«176847-01
«361748~01
+554874-01
«756385-01
«966430-01
«118515+00
«141267+00
+164G10+00
+189453+00

«214506+400
«355926+00
«519531+00
+703662+00
«903774400
«111228+01
«1J16817+01
+150697+401
+166123+01%
+17€167+401
«178923+01
«172780+01
+156770+01
«120526+01
«965812+00
+585275+00
«145150+00
~e231426+00
-+523642400
~+682837400
-e683750+00
-+529536+400
-e2856054+00
«744257-01
«381557+00
«591072+400
+654101400
«563991 400

«360592+00
«472332-02
«993987-01
«147044400
«724167-01
«672C66-01
+683196~01
W €E5C358-01
«605424-01
«571703-01
+537426-01
«506142-01
«478200-01

«100000401
«101108+01
«102172+401
«103189+01
«+104154+401
«1050644+401
«105916+01
+ 106704401
«107424+01
«108074+01

«108648+01
« 110242401
+109341+401
+105496+01
+983747+00
«878285+400
«739549+00
«571471400
«381152+00
«178694+00
-¢234440-01
-«211562+00
-+372237400
~+494065+00
~+¢569332+00
-¢595323+00
-+574932+00
-e516381+00
—e432005+00
-¢336258+00
—e243313400
-« 1€4751+00
~¢1078454+00
-« 748106-01
-+631827-01
~+671444-01
~e754229-01
~¢932090-01

~¢ 103603400
-e891007-01
~-e749050-01
~-e658583-01
~«587417-01
-+530230~01
-+4B83467-01
~¢444434-01
~+411335-01
-+382898-01
-+358190-01
-+ 336516~01
~e3173643-01

+ 000000

«198904~01
240472701
«617442-01
«837004~01
2106335400
«129639+400
+153603+00
0178212400
«203453+400

60

«229307+00
«366982400
«S18837+400
« 670616400
«824347400
« GEBS587400
+109394+401
«119083+01
«125055+01
«126642+401
+123493+01
°115668+01
+103688+01
«885190¢00
«714952400
+541594+00
«380624+00
«245402+00
«145177+400
«837718-01
«592582-01
«647151-01
«899283-~01
«123641+00
« 155822+00
«179408+400
+191148+400
2191421 +00

+183219+00
«134728+00
+122386+00
«108279+00
+975944-01
«887586-01
«813834-01
«7513€2~01
+697775-01
+651309-01
«610637-01
+ 57474101
«542828-01

EXP(2Z#%2)*ERFC(~Z)

«100000+01
«100741401
«101417¢01
«102026+01
«1025644+01
»103029+01
«103418+01
«103728+01
«103956401
«104100+01

«1048157+401
«103071401
s 995893400
+ 935432400
«851095+00
«745231+00
+ 622230400
«487972400
«349369+00
«213743+00
«881139~01
-+215044~01
~e110704+00
=e177075400
—~42203374+00
~e242190+00
~e245914400
—-e235801+00
—e216510+00
-e192467+00
~e 167392400
—e144013+00
—e123586+00
-e107586+00
~e959278-01
-e872383-01
~e811203-01
-s767654-01

—e734611-01
—~+617122-01
—¢525086-01
—+458045~01
—-e406890-01
—eJEEIGS-01
-+333477-01
-+306137-01
—e283042-01
—~+263257-01
-+246107-01
—-+231091-01
—~+217828-01

70°

+ 000000

«214606~01
+434163-01
+658462-01
+887273-01
«112035+400
+135743+00
+159822+00
«184242+00
+208971+00

+233974+400
«361797+¢00
+490450+00
«614113+00
« 726620400
« 821976400
«894945+00
+941619+400
+959889+00
« 949748400
«913353+00
+ 854822400
« 779790400
« 694764400
«606395+00
«8520751+00
«4427254+00
«375650+00
«321167+00
e 279344+00
¢ 24E5G€+00
«228112¢00
«214327+400
«205321+00
¢ 199114400
+ 194224400
+189696+00
» 185036400

«180089+00
«154611+00
¢ 134600400
¢119265+00
+107125+00
«$72208-01
+890010-01
«820692-01
«761436-01
+710192-01
¢ 665434-01
«626001-01
+590993-01

a0°

«100000+01
+100354 401
«100631+01
«100830+01
«1009394+01
«100986+01
+ 100942401
+100814+01
+100603401
«100307+01

«999272+400
«967640+00
+915655+00
+845306+00
« 759756400
+6631054+00
+560035+00
«455412+00
«JS3B€3+00
«2594 08400
«175175400
+ 103231400
»445420~-01
~e945684-03
~«¢341317-01
~+566267-01
~e699973-01
~e765256~01
-s780102~01
~2761241-01
-eT722347-01
~«673774~01
~-e622737-01
-sS5T3770-01
~+¢529309~01
~¢490308~01
~e456768-01
~+428169-01

“e403769-01
—¢321314~01
~e270923~01
~e235275-01
~+208412~01
~+187328-01
~+170271-01
~e156161-01
~+184276-01
—+134115-«01
—+125322-01
—e117632-01
—«110848-01

+000000

«223563~01
+449542~-01
«677607-01
«907418~01
«113862+400
«137086+400
+ 160377400
«1836G7400
+207C09+400

«230273400
«384526+00
+451794+00
+547520+00
«627812400
+689772+00
«731740+00
«753367+00
«755730+00
«740868+00
«711800+00
¢672034+00
«625237+00
«574901+00
«5240754+00
«475193+00
«429992+00
+389521+00
+354223+400
+324056+00
«298640+00
«277393400
«259650400
¢ 244750400
«232099+00
+221154+400
+2116364+00
+203120+00

« 195423400
+ 164984+ 00
«143006+00
«126308+00
¢113170+00
«102546+00
«937703-01
«863935~-01
«B801025-01
«746733-01
« 69937901
«657709-01
«620752-01

90°

«100000401 000000

2999600400 L225616~01
«$58401400 450871-01
+ 996406400 +675405~01
«993620400 «B898862~01
+990050400 112089400
+985703400 134113400
»980591+00 +155925+00
«974725400 L 177491400
«968119400 198777400
«960789400 4219753400
¢913G31400 +318916+00
«852144400 4406153400
« 778801400 +478925+00
«697676400 +S535713+00
061262€+00 +576042+00
«527292+400 4€00412+00
2444858400 +610142+400
«367879+00 +607158+00
¢298197+00 593761400
¢236928+400 ,L,572397+00

+184820+00
«140858+00
+105399+00
«773047-01
«565762-01
«351639-01
«270518-01
«183156~-01
+121652-01
+«790705-02
+504176-02
+315111-02
+193045-02
«+115623-02
+682328-03
¢36366$-03
«222630-03

«123410-03
+478512-0S
«112535-06
«160523-08
«138876~10
«728772-13
«231652-15
«447773~-18
+524289-21
e37233€6~24
«160381-27
«419009~-31
2663968~35

«545456+00
«515113+00
«483227+400
«451284+00
«420388+00
«391291+00
« 364437400
+340026+00
+318073+00
« 298468400
« 281026400
¢ 265522400
« 251723400
2239403400
«228355+00
«218395+00
¢ 209377400

«201157400
« 168830400
«145954+00
« 128735400
« 115246400
«104367+00
«953962-01
«878644-01
«814475-01
¢ 759126~01
«710881~01
«668445-01
«630821-01



	Page 2
	jresv86n6p557.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8

	jresv86n6p565.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	jresv86n6p571.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

	jresv86n6p591.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6

	jresv86n6p597.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9

	jresv86n6p605.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51

	jresv86n6p655.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7

	jresv86n6p661.pdf
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27


