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Velocity of Sound in Liquid Propane* 
Ben A. Younglovet 

National Bureau of Standards, Boulder, CO 80303 

November 19,1980 

Sound velocity measurements on liquid propane from 90 to 300 K and for pressures to 34 MPa are 
reported. Also included are saturated liquid sound velocities from 90 to 290 K. The data were combined with 
Pe T data to compute compressibility and specific heat ratio. Comparisons were made to computed values of 
sound velocity of Goodwin and to the data of Lacam. 

Key words: Adiabatic compressibility; liquid; pressure; propane; sound; specific heat ratios; speed; temperature; 
velocity. 

1. Introduction 

Thermodynamic and transport properties of propane are 
valuable to the energy industry in the design calculations 
relating to the handling, transporting, and storage of liq­
uefied natural gas. The data of this paper were obtained as 
part of a program to provide accurate thermodynamic 
properties data for propane to support the energy industry, 
especially the liquefied natural gas industry. 

Measurements of sound velocity were made from 90 K to 
290 K in the saturated liquid and from 90 K to 300 K and at 
pressures to 34 MPa in the compressed liquid. 

Sound velocities, W, were related to the adiabatic com­
pressibility, ks using 

w = (eks)-1/2 (1) 

and to the specific heat ratio, y, using 

w = ( oP) )1/2 
y oe T , 

(2) 

where P, e and T are pressure, density, and temperature 
respectively. 

2. Experimental Procedure 

Sound velocities were measured using a pulse superposi­
tion method. Pulses were generated with a 10 MHz quartz 
crystal and were allowed to reflect between a matched 
crystal mounted plane and parallel to the generating 

"This work was carried out at the National Bureau of Standards under the spon­
sorship of the Gas Research Institute. 
tThermophysical Properties Division, National Engineering Laboratory. 

crystal. Pulses were generated at a rate such that the 
reflected pulses were superposed with the new pulses. This 
condition is detected with an oscilloscope by maximizing 
the resulting reinforced waveshape as seen by the receiving 
crystal. This technique, developed by Greenspan and 
Tschiegg [1]; has been used on hydrogen [2], oxygen [3], 
fluorine [4], methane [5], and ethane [6] in this laboratory 
and the apparatus is described in detail in the earlier publi­
cations. Uncertainty in the measured sound velocities is 
estimated to be 0.05 percent Temperatures were measured 
using a platinum resistance thermometer calibrated by the 
National Bureau of Standards on the IPTS 1968. Uncer­
tainty in temperature is estimated to be 0.005 K at the lower 
temperatures and increasing to 0.03 K at 300 K6. 

The sample propane was commercially available ultra 
high purity grade (99.97 mole percent propane). 

3. Results 

Experimental values of sound velocity and temperature 
for the saturated liquid are given in table I with the corre­
sponding values of density, compressibility, and specific 
heat ratio. Table II gives the same quantities for the com­
pressed liquid with the measured values of pressure on 
isotherms. Isotherms were at 10 K increments from 90 to 
120 K and at 20 K increments from 120 to 300 K, and for 
pressures to 34 MPa. Densities, corresponding to the meas­
ured values of temperature and pressure were computed 
from the recent PeT surface of Goodwin [7,8]. These data 
are shown in figure 1. 

Experimental uncertainty in compressibility of 0.3 per­
cent is a result of the combined uncertainties in density and 

I Figures in brackets indicate literature references at the end of this paper. 
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sound velocity. The corresponding uncertainty for the spe­
cific heat ratio, y, is 4 percent which is due to the uncer­
tainty in the derivative ( ~p h. Ethane has very low com­
pressibility in the liquid ph~se, certainly so when compared 
with methane [5] and even with ethane [6]. The very rapid 
increase in pressure with respect to density puts consid­
erable demands on the ability of the Pg T surface to produce 
this derivative accurately since a small uncertainty in den­
sity corresponds to a very much larger uncertainty in pres­
sure. The uncertainty in the density measurements on 
which the Pg T is based will reflect in a much larger uncer­
tainty in a calculated pressure and even more uncertainty in 
a calculated value of the derivative ( ~~ h. 

Lacam [9] has measured sound velocities at 298.15 K (25 
0c) and at 25 K increments to 498.15 K (225 0c) for pres­
sures to 101 MPa. Figure 2 shows a comparison of his 25 C 
isotherm to the 280 K and 300 K isotherms of this report, 
where Goodwin's [8] computed sound velocities were used to 
make the comparison. It can be seen that there is about 0.2 
to 0.3 percent difference in the two sets of measurements, 
which is within the combined uncertainties of the measure­
ments Lacam estimated his uncertainties at 0.3 percent in 
sound velocity exclusive of temperature and pressure uncer­
tainty contributions. 
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TABLE I. Experimental values of saturated liquid sound velocity, WE, and 
temperature, T, with values of sound velocity, W", and density, (], com-
puted from the PeT surface [ref. 7, 8) The adiabatic compressibility, K .. 
and heat capacity ratio, 1', were computed from WE and PeT derived 
properties. 

T WE We I!. Q K, y 
K mls mls % mol/L GPa-1 

90.0 2106.2 21I5.8 0.46 16.52 0.309 1.366 
100.0 2037.6 2020.8 -.82 16.29 .335 1.418 
HO.O 1969.2 1932.5 -1.86 16.06 .364 1.462 
120.0 1900.8 1849.7 -2.69 15.83 .396 1.500 
130.0 1832.6 1771.3 -3.34 15.61 .433 1.531 
140.0 1764.9 1696.6 -3.87 15.37 .474 1.557 
150.0 1697.4 1625.1 -4.26 15.14 .520 1.578 
160.0 1630.3 1556.1 -4.55 14.91 .572 1.594 
170.0 1563.3 1489.3 -4.74 14.68 .632 1.606 
180.0 1496.5 1424.3 -4.82 14.44 .701 1.615 
190.0 1430.0 1360.9 -4.83 14.20 .781 1.620 
200.0 1364.4 1298.7 -4.81 13.95 .873 1.625 
210.0 1298.5 1237.6 -4.69 13.71 .981 1.626 
230.0 1167.1 H17.6 -4.25 13.20 1.261 1.623 
250.0 1036.5 999.3 -3.59 12.66 1.667 1.618 
260.0 971.6 940.4 -3.20 12.37 1.941 1.617 
270.0 905.4 881.5 -2.65 12.08 2.290 1.614 
290.0 775.1 762.2 -1.67 11.44 3.298 1.624 
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TABLE II. Experimental values of compressed liquid sound velocity, WE, temperature T, and pressure, P. Sound velocity, W c, and density, e, were computed 
from the PeT surface (ref. 7,8). Adiabatic compressibility, K" and specific heat ratio were computed from WE and properties derived from the PeT surface. 

2205.44 
2196.20 
2190.77 
2188.78 
2179.03 
2173.65 
2156.54 
2149.02 
2138.05 
2132.21 
2123.73 
2114.18 

2143.33 
2130.73 
2120.78 
2111.08 
2101.98 
2092.18 
2083.40 
2075.42 
2065.52 
2056.28 
2046.52 

2082.37 
2073.64 
2064.95 
2056.27 
2053.58 
2049.41 
2038.65 
2028.89 
2018.84 
2009.49 
1999.34 
1989.58 
1979.93 

2022.84 
2011.06 
2003.04 
1989.88 
1975.15 
1964.44 
1953.21 
1944.42 
1933.20 
1921.82 
1912.43 

1905.10 
1895.45 
1882.90 
1873.05 
1859.89 
1850.14 
1839.27 

2337.55 
2316.63 
2304.92 
2299.81 
2277.51 
2266.16 
2227.63 
2210.83 
2190.05 
2173.98 
2155.66 
2134.37 

2239.98 
2212.04 
2191.23 
2170.90 
2151.91 
2131.84 
2113.72 
2097.28 
2077.08 
2058.59 
2040.08 

2151.94 
2134.77 
2117.48 
2100.33 
2094.18 
2086.45 
2065.26 
2046.46 
2027.12 
2009.27 
1989.62 
1971.14 
1952.74 

2071.43 
2048.79 
2034.46 
2011.17 
1983.23 
1963.68 
1943.44 
1927.68 
1907.48 
1885.74 
1870.40 

1924.60 
1908.54 
1887.82 
1871.52 
1849.90 
1833.37 
1816.03 

11 
% 

5.99 
5.48 
5.21 
5.07 
4.52 
4.26 
3.30 
2.88 
2.45 
1.96 
1.50 
.95 

4.51 
3.82 
3.32 
2.83 
2.38 
1.90 
1.46 
1.05 
.56 
.11 

-.31 

3.34 
2.95 
2.54 
2.14 
1.98 
1.81 
1.31 
.87 
.41 

-.01 
-.49 
-.93 

-1.37 

2.40 
1.88 
1.57 
1.07 
.41 

-.04 
-.50 
-.86 

-1.33 
-1.88 
-2.20 

1.02 
.69 
.26 

-.08 
-.54 
-.91 

-1.26 

p 

MPa 

34.83 
31.43 
29.54 
28.71 
25.13 
23.32 
17.22 
14.58 
11.42 
8.86 
6.05 
2.80 

34.57 
29.99 
26.61 
23.34 
20.31 
17.12 
14.27 
11.70 
8.57 
5.73 
2.91 

34.56 
31.73 
28.90 
26.12 
25.12 
23.88 
20.49 
17.51 
14.46 
11.68 
8.65 
5.82 
3.03 

34.73 
31.00 
28.66 
24.90 
20.44 
17.35 
14.19 
11.76 
8.66 
5.37 
3.07 

34.90 
32.29 
28.94 
26.34 
22.93 
20.35 
17.66 
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T 
K 

90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 
90.00 

100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 
100.00 

110.00 
110.00 
II 0.00 
110.00 
110.00 
II 0.00 
110.00 
II 0.00 
II 0.00 
IlO.OO 
IlO.OO 
110.00 
110.00 

120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 
120.00 

140.00 
140.00 
140.00 
140.00 
140.00 
140.00 
140.00 

e 
mollL 

16.739 
16.719 
16.708 
16.703 
16.682 
16.671 
16.633 
16.616 
16.595 
16.578 
16.559 
16.537 

16.533 
16.504 
16.482 
16.460 
16.439 
16.417 
16.397 
16.379 
16.356 
16.334 
16.313 

16.330 
16.310 
16.290 
16.270 
16.262 
16.253 
16.228 
16.205 
16.182 
16.160 
16.135 
16.112 
16.089 

16.128 
16.099 
16.081 
16.051 
16.015 
15.989 
15.963 
15.941 
15.914 
15.884 
15.863 

15.724 
15.701 
15.671 
15.647 
15.615 
15.590 
15.563 

K, 
GPa-1 

0.279 
.281 
.283 
.283 
.286 
.288 
.293 
.296 
.299 
.301 
.304 
.307 

.299 

.303 

.306 

.309 

.312 

.316 

.319 

.321 

.325 

.328 

.332 

.320 

.323 

.326 

.330 

.331 

.332 

.336 

.340 

.344 

.348 

.352 

.356 

.360 

.344 

.348 

.351 

.357 

.363 

.368 

.372 

.376 

.381 

.387 

.391 

.397 

.402 

.408 

.413 

.420 

.425 

.431 

y 

1.218 
1.231 
1.237 
1.241 
1.254 
1.261 
1.286 
1.298 
1.310 
1.324 
1.336 
1.352 

1.266 
1.284 
1.297 
1.310 
1.324 
1.337 
1.349 
1.361 
1.375 
1.390 
1.402 

1.305 
1.316 
1.327 
1.339 
1.344 
1.349 
1.363 
1.377 
1.390 
1.403 
1.418 
1.432 
1.446 

1.338 
1.354 
1.363 
1.378 
1.398 
1.413 
1.426 
1.439 
1.454 
1.472 
1.483 

1.389 
1.399 
1.413 
1.424 
1.439 
1.451 
1.464 



TABLE II. Experimental values of compressed liquid sound velocity, WE, temperature T, and pressure, P. Sound velocity, We, and.densit~, e, were computed 

from the PeT surface (ref. 7,8). Adiabatic compressibility, K .. and specific heat ratio were computed from WE and properties deTlved from the PeT 
surface.-Continued. 

1825.05 
1813.01 
1801.58 
1790.56 
1779.49 

1788.31 
1777.79 
1764.69 
1753.72 
1739.54 
1726.90 
1715.11 
1700.99 
1673.66 
1645.12 
1674.66 
1664.70 
1651.34 
1638.39 
1623.96 
1608.47 
1593.23 
1579.41 
1562.04 
1546.24 
1531.56 
1514.50 

1568.77 
1569.08 
1554.50 
1542.61 
1524.37 
1513.91 
1493.44 
1475.66 
1458.18 
1440.66 
1420.44 
1400.22 
1380.82 
1468.01 

1452.62 
1434.94 
1417.61 
1399.99 
1380.17 
1361.07 
1341.26 
1319.31 
1297.42 
1274.40 
1252.92 

1366.78 
1354.79 
1331.98 

We 
rn/s 

1793.00 
1773.54 
1754.90 
1737.34 
1719.92 

1790.01 
1773.82 
1753.94 
1737.38 
1716.50 
1697.22 
1679.69 
1659.01 
1618.90 
1577.88 
1665.96 
1652.11 
1633.30 
1615.25 
1595.72 
1574.39 
1553.09 
1534.12 
1510.98 
1490.19 
1469.95 
1447.56 

1557.99 
1556.74 
1537.57 
1522.11 
1498.35 
1484.70 
1458.35 
1436.01 
1413.81 
1391.79 
1366.69 
1341.84 
1317.96 
1455.94 

1437.01 
1415.24 
1394.05 
1372.70 
1348.72 
1325.71 
1302.34 
1276.56 
1251.03 
1224.42 
1I99.96 

1356.03 
1341.71 
1314.77 

!J. 
% 

-1.76 
-2.18 
-2.59 
-2.97 
-3.35 

.10 
-.22 
-.61 
-.93 

-1.32 
-1.72 
-2.07 
-2.47 
-3.27 
-4.09 
-.52 
-.76 

-1.09 
-1.41 
-1.74 
-2.12 
-2.52 
-2.87 
-3.27 
-3.63 
-4.02 
-4.42 

-.69 
-.79 

-1.09 
-1.33 
-1.71 
-1.93 
-2.35 
-2.69 
-3.04 
-3.93 
-3.78 
-4.17 
-4.55 
-.82 

-1.07 
-1.37 
-1.66 
-1.95 
-2.28 
-2.60 
-2.90 
-3.24 
-3.58 
-3.92 
-4.23 

-.79 
-.97 

-1.29 

p 

MPa 

14.15 
11.22 
8.44 
5.86 
3.33 

34.57 
31.99 
28.86 
26.28 
23.07 
20.15 
17.53 
14.48 
8.70 
2.97 

34.08 
31.94 
29.07 
26.36 
23.46 
20.35 
17.30 
14.62 
11.42 
8.60 
5.90 

2.98 

34.67 
34.48 
31.63 
29.36 
25.94 
24.00 
20.33 
17.29 
14.33 
11.45 
8.26 
5.18 
2.29 

35.01 

32.30 
29.24 
26.33 
23.45 
20.29 
17.34 
14.42 
11.28 
8.26 
5.22 
2.50 

34.75 
32.79 
29.19 
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T 
K 

140.00 
140.00 
140.00 
140.00 
140.00 

160.00 
160.00 
160.00 
160.00 
160.00 
160.00 
160.00 
160.00 
160.00 
160.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 
180.00 

200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
200.00 
220.00 

220.00 
220.00 
220.00 
220.00 
220.00 
220.00 
220.00 
220.00 
220.00 
220.00 
220.00 

240.00 
240.00 
240.00 

e 
mol/L 

15.528 
15.498 
15.468 
15.441 
15.413 

15.319 
15.292 
15.259 
15.232 
15.196 
15.163 
15.133 
15.097 
15.025 
14.951 
14.912 
14.887 
14.852 
14.818 
14.781 
14.740 
14.699 
14.662 
14.616 
14.574 
14.533 
14.487 

14.520 
14.518 
14.478 
14.447 
14.397 
14.368 
14.312 
14.264 
14.216 
14.167 
14.111 
14.055 
14.000 
14.126 

14.084 
14.035 
13.986 
13.937 
13.880 
13.826 
13.769 
13.706 
13.643 
13.576 
13.514 

13.722 
13.687 
13.621 

.438 

.445 

.452 

.458 

.465 

.463 

.469 

.477 

.484 

.493 

.501 

.509 

.519 

.539 

.560 

.542 

.550 

.560 

.570 

.582 

.595 

.608 

.620 

.636 

.651 

.665 

.682 

.635 

.634 

.648 

.660 

.678 

.689 

.710 

.730 

.750 

.771 

.796 

.823 

.850 

.745 

.763 

.785 

.807 

.830 

.858 

.885 

.916 

.951 

.987 
1.029 
1.069 

.885 

.903 

.938 

y 

1.480 
1.495 
1.510 
1.523 
1.537 

1.422 
1.433 
1.446 
1.457 
1.471 
1.485 
1.497 
1.512 
1.544 
1.575 
1.443 
1.451 
1.463 
1.475 
1.488 
1.502 
1.517 
1.531 
1.547 
1.563 
1.579 
1.596 

1.446 
1.448 
1.461 
1.469 
1.485 
1.494 
1.511 
1.525 
1.540 
1.556 
1.574 
1.592 
1.611 
1.445 

1.455 
1.467 
1.480 
1.492 
1.508 
1.522 
1.537 
1.554 
1.572 
1.591 
1.608 

1.438 
1.445 
1.460 



TABLE II. Experimental values of compressed liquid sound velocity, WE, temperature T, and pressure, P. Sound velocity, We, and density, e, were computed 
from the PeT surface (ref. 7,8). Adiabatic compressibility, K .. and specific heat ratio were computed from WE and properties derived from the PeT 
suiface.-Continued. 

1315.98 
1295.35 
1273.86 
1255.72 
1227.37 
1205.33 
1175.71 
1149.59 
1123.73 

1273.83 
1254.47 
1235.06 
1215.65 
1212.25 
1193.35 
1166.47 
1142.69 
1120.08 
1091.48 
1034.53 
1001.40 

1181.52 
1163.44 
1142.6O 
1117.30 
1095.25 
1070.45 
1042.41 
1002.42 
977.47 
946.83 
909.95 
860.05 

1098.21 
1071.17 
1055.73 
1048.97 
1017.21 
1010.40 
989.11 
976.05 
965.74 
944.24 
942.26 
908.52 
904.05 
876.16 
868.38 
847.35 
827.58 
792.52 
787.49 
748.57 

We 
mls 

1296.06 
1272.20 
1247.34 
1226.66 
1194.90 
1169.98 
1137.32 
1108.82 
108 l.l 9 

1265.36 
1243.15 
122l.l3 
1199.46 
1195.70 
1174.68 
1145.01 
1118.92 
1094.75 
1063.69 
1004.14 
970.76 

1174.36 
1154.56 
1131.55 
1104.02 
1080.16 
1053.86 
1024.19 
982.81 
957.07 
926.01 
889.29 
84l.l9 

1093.27 
1063.71 
1047.03 
1040.11 
1006.15 
999.13 
976.70 
963.07 
952.41 
930.41 
928.64 
894.37 
889.83 
861.82 
853.89 
833.36 
813.96 
780.58 
775.71 
739.26 

-1.51 
-1.79 
-2.08 
-2.31 
-2.65 
-2.93 
-3.27 
-3.55 
-3.79 

-.66 
-.90 

-l.l3 
-1.33 
-1.37 
-1.56 
-1.84 
-2.08 
-2.26 
-2.55 
-2.94 
-3.06 

-.61 
-.76 
-.97 

-1.l9 
-1.38 
-1.55 
-1.75 
-1.96 
-2.09 
-2.20 
-2.27 
-2.19 

-.45 
-.70 
-.82 
-.84 

-1.09 
-1.l2 
-1.25 
-1.33 
-1.38 
-1.46 
-1.45 
-1.56 
-1.57 
-1.64 
-1.67 
-1.65 
-1.65 
-1.51 
-1.50 
-1.24 

p 

MPa 

26.74 
23.70 
20.62 
18.13 
14.42 
11.61 
8.06 
5.10 
2.35 

35.00 
32.12 
29.34 
26.68 
26.22 
23.71 
20.29 
17.38 
14.79 
11.58 
5.84 
2.87 

34.56 
32.14 
29.40 
26.23 
23.57 
20.75 
17.70 
13.67 
11.30 
8.58 
5.56 
1.92 

34.75 
31.35 
29.49 
28.73 
25.12 
24.40 
22.14 
20.80 
19.78 
17.73 
17.57 
14.54 
14.15 
11.83 
11.20 
9.61 
8.17 
5.83 
5.50 
3.19 
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T 
K 

240.00 
240.00 
240.00 
240.00 
240.00 
240.00 
240.00 
240.00 
240.00 

260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 
260.00 

280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 
280.00 

300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 
300.00 

e 
mol/L 

13.574 
13.513 
13.449 
13.395 
13.311 
13.244 
13.155 
13.075 
12.997 

13.326 
13.267 
13.207 
13.148 
13.137 
13.079 
12.995 
12.920 
12.850 
12.758 
12.576 
12.472 

12.911 
12.853 
12.786 
12.703 
12.631 
12.550 
12.456 
12.323 
12.238 
12.134 
12.008 
11.839 

12.506 
12.412 
12.358 
12.336 
12.224 
12.201 
12.125 
12.079 
12.042 
11.966 
11.959 
11.838 
11.821 
11.720 
11.690 
11.614 
11.541 
11.413 
11.394 
11.250 

.965 
1.000 
1.039 
1.074 
1.131 
1.179 
1.247 
1.312 
1.382 

1.049 
1.086 
l.l26 
1.167 
1.175 
1.218 
1.283 
1.344 
1.407 
1.492 
1.685 
1.813 

1.258 
1.303 
1.359 
1.430 
1.497 
1.577 
1.675 
1.831 
1.939 
2.085 
2.281 
2.590 

1.503 
1.592 
1.646 
1.671 
1.793 
1.821 
1.912 
1.971 
2.019 
2.126 
2.136 
2.321 
2.347 
2.521 
2.572 
2.719 
2.869 
3.164 
3.209 
3.597 

y 

1.470 
1.484 
1.499 
1.511 
1.530 
1.546 
1.567 
1.587 
1.606 

1.425 
1.436 
1.448 
1.459 
1.462 
1.472 
1.489 
1.505 
1.518 
1.538 
1.576 
1.595 

1.416 
1.425 
1.436 
1.451 
1.463 
1.476 
1.493 
1.516 
1.532 
1.551 
1.574 
1.603 

1.401 
1.417 
1.425 
1.428 
1.446 
1.449 
1.461 
1.468 
1.474 
1.485 
1.487 
1.505 
1.509 
1.525 
1.531 
1.543 
1.555 
1.575 
1.579 
1.603 
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FIGURE 1. Sound velocity in compressed liquid propane as a function of 
pressure on isotherms. Closed circles are for saturated liquid. 
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Modeling methods are developed to predict the discharge characteristics of simulated simplified configura­
tions for plumbing fixtures connected to horizontal drain branch piping. Computations are carried out to illus­
trate several methods of determining the effect of various loss coefficients of the drain connection, pipe length, 
pipe diameter, and friction factor. Solutions are obtained for the case of a fixture with a constant head (contin­
uous refill) and a falling head (emptying of a sink). Numerical solution of the non-linear differential equation for 
the falling head case was obtained by the Runge-Kutta method. Discharge characteristics are presented for a 
range of flows and pipe diameter-t().length ratios representative of plumbing installations. The feasibility of 
developing predictive models for hydraulic characteristics of interconnected plumbing fixture and drainage pip" 
ing systems is shown. The variations of efflux rate with the drain pipe diameter, length, and slope obtained from 
the assumed models are similar in trend to the available experimental data. 

Key words: characteristics; discharge; drainage; flow; model; plumbing; quasi-steady; unsteady. 

Nomenclature 

A = cross-sectional area of the container 
a= cross-sectional area of the pipe 
d= pipe diameter 
f= pipe friction factor 
g= acceleration due to gravity 
h= instantaneous elevation of the free surface in the 

container above the center of the outlet of the drain 
ho = initial value of h 
he = initial elevation of the free surface in the container 

above the center of the outlet section of initial pipe or 
inlet section of drain pipe (see fig. 3) 

k, = loss coefficien t for the tank drain connection 
kb = loss coefficient for the initial pipe bends and the 

initial pipe-exit pipe coupling 
Rc = loss coefficient for the sudden change in pipe 

diameter at the location where the initial pipe is 
coupled to the drain pipe 

Qj = ajU j = ideal efflux rate, i.e., the efflux rate when all 
head losses are neglected 

Qe= efflux rate = a"U" 
u = instan taneous flow veloci ty 

Ue = mean velocity of flow in the exit pipe 
Uj = mean ideal velocity of flow in the exit pipe, that is the 

velocity when all head losses are neglected 
p= pressure 

·Center for Building Technology, National Engineering Laboratory. 

Pa = atmospheric pressure 
s= tan c:r = slope or pitch of the drain pipe 
c:r= drain pipe slope angle 
{3 =d./di 

l' = specific weight of water 
cP =(1 + kl + flJd) 

CPl = (k1 + Kb + ftL,/dt) 
CP2 =(f. L./d. + kc) 

1 refers to initial pipe 
e refers to drain pipe 

Subscript 

Metric Conversion 

feet X 0.3048 = meters 

1. Introduction 

The mathematical modeling for determining the time 
dependent capacity characteristics of the drain-waste-vent 
plumbing system requires that the prescribed wastewater 
loads from a variety of fixtures and devices be determinable 
as the initial and boundary conditions. The development of 
models for calculation of time dependent discharge flows 
from plumbed fixtures as the forcing functions required to 
describe the loads on the drainage system is not well estab-
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lished. The dynamics of the fixture discharge loading are 
mostly derived from experimental data sources that provide 
the combined loss effects as empirical factors. The theoret­
ical developments are rendered difficult by the complex 
geometric configuration of the connecting elements of the 
fixture-drainage system (e.g. traps, elbows, tees, overflow 
drain, stopper flow area control, and branch drains) and by 
the turbulent flow conditions and secondary swirling. Fur­
ther difficulties in a complete theoretical development are 
encountered due to the transition from full pipe flow to par­
tially filled pipe flow downstream of the trap in the horizon­
tal branch where changes in the size of elbow fittings, pipe 
diameter and slope often occur. 

The dynamic transient characteristics of connected fix­
tures are generally assumed to be, a priori, independent of 
the downstream connections, drain or stopper geometry, 
elbow, fittings and the branch piping [1,2].1 Pressure varia­
tions within the drainage system (propagation of down­
stream conditions typical of incompressible low flow 
phenomena) are neglected in the usual methods for testing 
fixture performance in open air discharge tests at atmos­
pheric pressure. The pressure variations, above and below 
atmospheric, occur in multi-story buildings as shown by 
Konen [3] and can influence fixture outflow. 

Requirements for sizing the drain system as embodied in 
the plumbing codes in the U.S. are based upon the concepts 
of "fixture units." This traditional approach for water sup­
ply pipe sizing was extended to drainage systems, since the 
outflow very nearly equals inflow. This method, however, 
does not introduce the transient dynamics of the discharge 
flow phenomena and is applied as a ffquasi-steady-state" 
loading for pipe sizing; it does, however, provide the signifi­
cant input for peak water loads. 

Test data comparing isolated open air fixture discharge 
characteristics with pipe connected fixtures show that the 
discharge curves are influenced by the connections to the 
drainage system; the predictive models should include the 
relevant constraints due to these connections. The model 
adopted in this study is for a horizontal drain carrying 
waste water from a fixture. The fixture discharge charac­
teristics are found to be modified when losses due to piping 
and connections are introduced in the flow equations. The 
characteristics of interest are peak efflux rate, efflux rate­
time history, maximum flow velocity in the horizontal drain, 
velocity-time history and the time required to empty the fix­
ture. The parameters of interest for fixtures are the volume 
of water in the fixture, geometrical shape of the fixture, fix­
ture to drain connections, drain exit conditions and physical 
characteristics of the drain pipe (i.e. diameter, length, slope, 
and friction factor). 

I Figures in brackets indicate literature references at the end of this paper. 

This investigation is intended to be a parametric study 
only, varying each characteristic, one at a time; subsequent 
experiments are required to provide specific loss factors. 

The plumbing fixtures are connected to the horizontal 
drains via connecting elements such as traps, downpipes, 
elbows, tees and other pipe fittings. The fixture discharge 
characteristics are influenced by the pressure losses and 
energy dissipation in these connecting elements, and by the 
physical characteristics of drain pipe. Predictive mathemat­
ical models and experimental validations are required to 
determine the effects of connecting elements and drain pipe 
characteristics on the fixture discharge parameters. The 
discharge characteristics of various plumbing fixtures with 
drain pipes of different physical characteristics (i.e. 
diameter, length and slope) was reported by HansHn and 
Perrier [4] in an experimental investigation. Classical ap­
proaches based upon fundamentals and overly simplified 
models concerning the effects of the variables on the efflux 
rate from fixtures are available in basic hydraulic texts [5 
and 6]. However, these studies for predicting the discharge 
characteristics of plumbing fixtures did not utilize repre­
sentative models for effects of connector variables on the 
discharge characteristics. 

This report illustrates the development of mathematical 
models for predicting the transient and quasi-steady state 
hydraulic discharge characteristics of a fixture coupled to 
the piping of a plumbing systems. This effort is the first step 
in developing the details of the dissipation effects from 
losses experienced in the flow within plumbing fixtures and 
connecting pipes. The next significant effort is required to 
develop a detailed analytical basis for the partially filled 
horizontal drain pipe. The effects of drain pipe parameters 
on the discharge characteristics of an open container, such 
as a lavatory or sink, under different flow conditions are 
presented. The number of variables for each model studied 
have been reduced in order to illustrate the most significant 
effects. For the steady state efflux rate from a constant head 
(continuous refilO container the effects of drain pipe 
parameters, taken one at a time, are shown. Also the solu­
tion for emptying a fixture based upon the instantaneous 
efflux rate from a falling head container (emptying fixture) 
is presented. 

2. Unsteady flow drain-Falling head 

Consider an open container with the uniform diameter 
drain pipe of length L fitted with a quick opening valve as 
shown in figure 1 to simulate a lavatory branch drainage 
pipe. Initially the container is full and the valve is closed. 
When the valve is rapidly opened, the available head will 
accelerate the fluid, the velocity of flow and rate of efflux 
will increase from zero to a maximum value. After attaining 
the maximum value, the flow velocity will decrease, because 
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QUIa( OPEIIIIIG VALVE 

F,GURE 1. Lavatory.branch drain schematic. 

the elevation of the water surface in the container will be 
decreasing as the water leaves the container. The final out­
flow from the tank drain into the pipe would exp~rience a 
discontinuity in the water surface area. 

A one-dimensional unsteady flow analysis is adopted that 
leads to the non-linear equation of motion of the liquid dis­
charged from a simulated lavatory-branch drainage pipe. 
The one-dimensional method assumes a uniform velocity 
across the flow area. Resistance and dissipation such as 
shear at the wall, turbulent mixing and drain vortex forma­
tion, and shedding losses are introduced through an empir­
ical quasi-steady state set of constants. The losses are 
assumed to be proportional to the square of the velocity. 

The equation of motion for the one-dimensional flow is: 

(1) 

where: h= instantaneous elevation of the free surface 
above the center of the outlet section of the 
drain 

u = instantaneous flow velocity in the drain pipe 
~ = dissipation factor 

The forcing term on the right hand side of eq (1) causing 
acceleration or deceleration of the fluid is dependent upon 
the decreasing head and the dissipation function. In this 
simplified model the losses accounted for are the friction in 
the pipe, and the loss coefficient for the tank to drain con­
nection [5, 7]. The function is given by: 

~ = 1 + kl + fl/d (2) 

where: kl = loss coefficient for the tank drain connection 
1= friction factor for the pipe taken as a constant 

factor for the range of Reynolds numbers 
Lid = length to diameter ratio 

The first term of eq (2) simply accounts for the decrease in 
total pressure head as a driving force due to the frictionless 

conversion to the dynamic pressure. The ideal frictionless 
fluid case results from the assumption of kl =1=0. 

The relationship between the velocity u, at the drain of 
cross-sectional area, a, and the head, h(t), in the tank of 
cross-sectional area, A, is obtained from the continuity 
equation, 

(3) 

The minus sign accounts for the falling head in the direc­
tion of the velocity. 

The simultaneous eqs (1) and (3) are combined by assum­
ing ~ independent of time, differentiating (1), substituting 
(3) for dhl dt and rearranging the terms to yield 

2 ~ du a g _ 
cPuldt + TUlIt + ATu - 0 (4) 

when 

h < h" alA = 1. 

The initial conditions are: 

t = 0, h = ho, u = 0, ~~ = gholL 

with the last condition from eq (1). Equation (4) is recog­
nized as a non-linear equation with constant coefficients 
when ~ is assumed to take on quasi-steady values. The 
dissipation factors are functions of the local time dependent 
flow conditions; the terms of the function are taken as con­
stant values over the flow regime, i.e. quasi-steady condi­
tions, in this report. The solution by a numerical method 
based upon finite difference techniques is readily obtained. 

The solution of eq (4) provides the flow velocity as a func­
tion of time. The numerical integration of the equation was 
obtained from a computer programmed Runge-Kutta 
method. A numerical integration method provides for 
adjustments in the value of alA, k, and 1 at various points in 
the stepwise calculation, if it is desired to account for their 
variations. For a container with constant cross-sectional 
area, alA changes only when the container empties and 
fluid is still present in the vertical section of the drain, i.e. 
when h is less than hi' 

Example discharge velocity variations with time are 
shown in figure 2. In each of the three samples shown the 
acceleration from rest is very nearly constant over the initial 
time to attain the maximum flow. Since the velocity, u, is 
shown to be linear, it can be inferred from eq (3) that the 
height, h, varies with square of the time, t. The predicted 
discharge characteristics resemble the experimental dis­
charge characteristics for various plumbing fixtures 
published in the literature [8 and 9]. To obtain quantitative 
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2 1.25 0.25 1/81 2 * 
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FIGURE 2. Discharge characteristics of a container·drainage system. 

agreement between the predicted and experimental results 
it is necessary to determine the values of various loss coeffi­
cients from the experiments. As anticipated, the smallest 
time of discharge is obtained for the larger drain area ratio 
when holding the other terms constant; the maximum efflux 
velocity occurs with the lowest dissipation values. 

3. Effects of drainage piping 

The dependence of the discharge characteristics upon the 
interconnections of fixtures and devices with the piping 
system and the fittings at drain connections are investi­
gated. The schematic for the steady state efflux from a con-

stant head (continuous refill) open container and drainage 
piping system is shown in figure 3. The assumption of con­
stant head refill condition simplified the problem to a 
steady state analysis. The governing equations do not re­
quire the development of computer based numerical solu­
tions of the differential equations. The effects of the 
variables of the piping system and drain connections can 
then be more readily evaluated in a parametric manner. 
The drainage system consists of an initial pipe of constant 
inside diameter d1 and length Lh the initial pipe is coupled 
to a drain pipe of constant diameter de, length Le and slope 
angle a. The mean velocity of the flow (U.) in the drain pipe 
may be obtained by applying the modified Bernoulli equa­
tion between H 0" and U e" as: 

174 



----~-----~----------------~ 

ho + L. tin a 

11-aJ 

FIGURE 3. Constant head container drainage system. 

Pof'Y + Zo U~/2g = 
(5) 

with the conditions at inlet and outlet given by: 

where s = sin ex and U} the velocity at the exit of the trap, 
i.e. the inlet of the drain pipe. 

The dissipation functions are t:/>} and t:/>2 where t:/>} is the 
function representing the losses at the tank to drain connec­
tion and in the initial pipe, and t:/>2 is the function represent­
ing the losses at the step change in diameters and the 
horizontal drain. The equations are: 

(6a) 

(6b) 

The simplification of terms result in the velocity and flow 
rate equations 

(8a) 

or 

where the symbols are defined in the nomenclature. 

Let Ur represent the mean velocity of flow and Qr the ef­
flux rate when the drainage system of the container of fig­
ure 3-a consists of just the initial pipe as shown in figure 3b. 
The expressions for Ur and Qn are obtained by letting L, 
and t:/>2 equal to zero and {3 = I as: 

(9a) 

and 

(9b) 

Equations (5) through (9) show the dependence of U, and 
Q, on the drain pipe variables (i.e., d" L" s, and J.). For a 
falling head container where the conditions are slowly vary­
ing (i.e. area ratio of pipe to container less than 0.1), and 
may be considered as quasi-steady, these equations also 
give the instantaneous flow velocity and instantaneous ef­
flux rate. The instantaneous flow velocity and efflux rate 
may be found by replacing ho with the instantaneous value 
of the height, h, of the free surface in the container above 
the exit center of the cross-section of the initial pipe. 

Using eqs (8a), (9a), (8b) and (9b), the quantities U. and Q, 
may be nondimensionalized as: 

The continuity equation requires that for full bore pipe flow and 

(7a) 

and the flow rate 

Q. = a.U •. (7b) 

The condition of partially filled pipe flows is not consid­
ered here. A more extensive analysis is required to establish 
the transition condition for break away from full flow to par­
tial filled flow. 

(lIb) 

Equations (6) through (11) are applied to examine the ef­
fects of variations of any of the drain pipe variables on U. 
and Q" as described in the following sections. 
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3.1 Effects of variations of the exit pipe diameter. d. 

For examining the effects of de on Ue and Qe the following 
simplification can be made without loss of generality: (1) s is 
equal to zero; and (2) drain pipe is very smooth and has a 
short length so that the quantity (j;Lel de) is negligible in 
comparison with the quantity kc in dissipation function ~2 
that is ~2 = kc • 

The value of kc is dependent upon the diameter ratio. For 
{J less than 1 (i.e. de < d1) the value of kc has been experi­
mentally determined by several researchers and may be 
found in the literature, typical values are shown in table 1. 
For {J > 1 the relationship between kc and (J is given by the 
following expression: 

(12) 

Variations of the quantities Uel Ui' Uel Un Qel Qi and Qel Qr 
due to variations in del d" for 3 different representative 
values of~" are presented in graphical form in figures 4 
and 5. 

TABLE 1 
V alues of loss coefficient, K •• for sudden change in pipe diameter, taken 
from reference 7 

fJl 
K. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
0.37 0.35 0.32 0.27 0.22 0.17 0.10 0.06 0.02 0.00 
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In the case of velocity ratios, in figure 4, it is seen that as 
the diameter ratio increases the velocity ratio decreases 
toward zero. As the drain pipe diameter increases for a 
fixed initial pipe diameter the velocity in the drain pipe will 
decrease or as the initial pipe diameter decreases for a fixed 
drain pipe diameter the velocity in the drain pipe will 
decrease. In figure 5 the efflux rate ratio QelQr goes to 
unity after obtaining a local maximum. The ratio QJQi 
reaches different asymptotic levels in the limit because the 
higher losses result in lower efflux rate as compared with 
the no loss condition required by Qi' The critical value of 
diameter ratio {Jet at which QelQr is maximum is determined 
by setting 

(13a) 

which yields 

(13b) 

The value of QelQi will also have the maximum value at {Jc' 

3.2 Effects of drain pipe length 

To examine the effect of exit pipe length on the efflux the 
pipe slope, s, is assumed equal to zero and dt equal to de. 

«1>, Ue/Uy Ue/Ui 

0 l-a l-b 

2-a 2-b 

3 3-a 3-b 

0.0 2.0 3.0 4.0 5 6 7 8 9 10 

DIAMETER RATIO deldl--

FIGURE 4. Water velocity ratio versus drain diameter ratio for efflux from a constant head container. 
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FIGURE 5. Efflux rate ratio versus drain diameter ratio for efflux from a constant head container. 

By substitution and rearranging terms, the efflux rate 
equation becomes: 

The variations of Qel Qr due to variation in drain pipe 
length are presented in figure 6 for these representative 
values of ~h and for one value ofle (0.01)_ 

t ... 
E!. c 1.0 
CI 
c 
~ 
~ 0.8 

~----...­............. -....... --=_~_I----_-------:-----------r-----._ 
4>1 = 0 

LENGTH TO DIAMETER RATIO ILe/d) --

FIGURE 6. Efflux rate ration versus drain length to diameter 
ratio for efflux from a constant head container. 

3.3 Effects of drain pipe slope 

For this case with diameters d 1 equal to d~, the equations 
may be simplified to illustrate the effects of changes in 
pitch. If the drain pipe is short and very smooth, so that 
quantity leL~1 d is negligibly small in comparison to the 
quantity (1 +~l)' then the equations are further reduced: 

and 

The variations of Qel Qr due to variations in s, for three dif­
ferent values of Lei ho, are shown in figure 7. The increase in 
efflux with increasing pitch is consistent with the effect of 
the larger gravity force component that accelerates the flow. 
For the longer pipe a greater influence is obtained_ 

3.4 Effects of drain pipe friction factor 

For examining only the effects of pipe friction on the flow it 
is assumed that s is equal to zero and d 1 is equal to de - The 
simplified equations become: 
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(17) 

and 

The variations of Q,IQr due to variation in!., for three dif­
ferent values of~, and two values of L,I d" are shown in 
figure 8. 

It is noted that for a given value of the friction factor the 
ratio Q,IQr increases with increasing ~I' The physical 
interpretation is that increased losses at the tank drain exit 
and the initial pipe section without the added length rapidly 
decrease Qr. In terms of actual efflux rate, Q" the rate of 
flow is actually falling off with increased losses, but at a 
reduced rate as compared to Qr. 

4. Effects of drain variables on the fall of 
water level and time needed to empty a 

container 

The depth of water and time required to empty the con­
tainer of figure 3 is considered under quasi-steady flow 
conditions analagous to the region of slowly varying velocity 
shown in figure 2. When the free surface in the container is 
at height, h, above the center of the exit cross-section of the 
drain pipe, the instantaneous mean velocity, Ue , is given by 
the relationship: 

(19) 

The continuity eq (3) may be written as: 

(20) 

To determine the time required to empty the container, eq 
(20) should be solved rigorously by a succession of integra­
tions, each over a small range of hand U, with approximate 
mean values for the time interval of the ~ 1 and ~2 values be­
ing used. This differs from the approach [6] where along a 
streamline of the flow the head varies with time and a solu­
tion is obtained based upon the exit pipe velocity. However, 
for examining the effects of the parameters on the time re­
quired to empty the container, the values of ~1 and ~2 are 
assumed constant and the equation is integrated in closed 

form following [6] with the initial condition t= 0, h= ho, 
which yields 

where t is the time required for the liquid level in the con­
tainer to fall from he to h. The time required to empty the 
container, te , is obtained by setting h= hI (see fig. 3). 

The non-dimensionalized value with respect to 1,. is given 
by: 

tel t, = (l/W)[(l +f34~1 +~2)/(1 +~1)]1/2 

where t, = (Alal)(2Ig)1I2f.Yhe - yh1Xl +~1)1/2 is the time 
required to empty the container when the drainage system 
consists only of the initial pipe. 

The equations indicate that the time required to empty 
the container will increase when ~2 is increased and all of 
the other variables are kept constant To examine the effect 
of the variation of d, on the time required to empty the con­
tainer, the quantity tel/d. may be assumed negligible in 
comparison with the quantity (l + kc). 

Another form of the equation is: 

(h-h,)/(h,,-h l ) = 1 + 7]2t2/(h.-h 1)-27]hJh)(h.-h
l
) (23) 
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where 

(24) 

Equations (22) and (23) are presented graphically for differ­
ent representative conditions, in figures 9 and 10, respec­
tively. Higher efflux rates are anticipated (as has been 
shown) with lower dissipation values, and consequently the 
time for discharge is smaller. The maximum discharge 
value for (3 = V2 results in the minimum time value shown 
in figure 9. 
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FIGURE 9. Time to empty sink versus drain diameter ratio. 
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FIGURE 10. Water level ratio versus time for a falling head container. 

5. Conclusions 

Although the predictive models developed in this paper 
are for simple plumbing systems, the examples demonstrate 
the feasibility of developing mathematical models to predict 
the hydraulic characteristics and performance of complex 
plumbing systems. The theoretical discharge characteristics 
obtained by numerical methods of solution of the governing 
differential equation qualitatively resemble the experimen­
tal discharge characteristics for various fixtures reported by 
Wyly and Hintz [8] and Pink [9]. To obtain quantitative 
agreement between the predicted and experimental results 
it is necessary to determine the values of various loss coeffi­
cients from the experiments. The results presented showing 
the predicted variations of efflux rate with the diameter, 
length and slope of the drain pipe are similar to trends to 
the experimental results reported by Hanslin and Perrier 
[4]. 
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The hydrate transition temperatures of Na1S04 'IOH10 to Na1S04' KF· 2H10 to KF, and Na2HPO.· 7H20 
to Na2HPO. '2H10 were established using AeS grade salts as 32.374 °e, 41.422 °e, and 48.222 °e, respectively. 
A simple and reliable procedure involving inexpensive materials was used to realize these transitions as temper­
ature fixed points. Each transition temperature was attained within 30 minutes of hydrate initiation and 
remained constant to within ±0.002 °e for more than 10 hours if the mixture was stirred. The established tran­
sition temperatures were sensitive at the 0.001 °e level to the amount of impurities, so the materials used should 
be of the highest quality available. 

These systems fill a gap in the existing spectrum of temperature standards and should be useful in biomed· 
icallaboratories for calibrating thermometers. 
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1. Introduction 

Researchers in biomedical laboratories have become 
increasingly aware of the importance of temperature meas­
urements as they strive to improve the overall quality of 
their tests and medical procedures. Currently, biochemists 
and physiologists are studying the temperature dependence 
of enzyme [1] 5 and cellular [2] reactions, while in the clinic, 
hyperthermia is being examined as an adjuvant therapy in 
cancer treatment [3], hypothermia is being used to prolong 
cardiac surgery in infants [4], and cryogenic techniques are 
being studied for organ and tissue preservation [5]. 

At the same time, there have been dramatic developments 
in biomedical instrumentation that both require and pro­
vide greater accuracy in temperature measurement. For 
example, electronic digital thermometers equipped with a 
variety of specialized sensors [6] are now available which 
indicate temperature to a resolution of 0.01 °C. These new, 
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Urbana-Champaign, Urbana, IL 61801 
1 Center for Absolute Physical Quantities, National Measurement Laboratory 
J Present address: Department of Chemistry, University of Southern California, Los 
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sophisticated instruments are being used to automate many 
test procedures. Valid measurements with these devices, 
however, require precise temperature control and accurate 
temperature measurement 

The only way to maintain thermometer accuracy, as with 
any other measurement, is through careful and well-docu­
mented calibrations at periodic intervals [7]. The purpose of 
this paper is to present a series of transition temperatures 
between the hydrates of inorganic salts as fixed points 
which can be used to calibrate thermometers quickly, easily, 
and with sufficient accuracy for most experimental pur­
poses, i.e., to about ± 0.01 °C [8]. These could be used in 
conjunction with existing temperature fixed points such as 
the ice point and the gallium melting point (National 
Bureau of Standards, SRM 1968) [9]. Many inorganic com­
pounds form crystals in definite states of hydration. The 
phase transitions which occur when states of hydration 
change were suggested long ago as potential temperature 
fixed points [10]. Specifically, we report in this paper a 
detailed study of three hydrate transitions: (1) the anhy­
drous to decahydrate transition of sodium sulfate (N a2S04), 
(2) the anhydrous to dihydrate transition of potassium 
fluoride (KF), and (3) the dihydrate to heptahydrate transi­
tion of disodium hydrogen phosphate (N a2HP04). In addi­
tion, we present the results of a preliminary study which in­
cluded three other salts (FeC13, Zn(N03h, Na2S203)' 
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1.1 History of the method 

The idea of using the transition temperatures between 
hydrates of salts as fixed points for the calibration of 
thermometers was first suggested by M. Jeannel in 1866 
[11], but received little attention until T. W. Richards redis­
covered it in 1898 [12]. Richards and J. B. Churchill inves­
tigated several salt hydrate systems in considerable detail 
[13]. Their research demonstrated that such systems provide 
stable and reproducible temperature fixed points [14-19]. 

Although J eannel had proposed using sodium acetate tri­
hydrate, Richards began his research with sodium sulfate 
decahydrate, Glauber's salt In 1898, he reported in a pre­
liminary paper that Glauber's salt melts at 32.378 °C [12]. 
Then, in 1902, Richards and R. C. Wells carefully estab­
lished the transition temperature for the complete dehydra­
tion of sodium sulfate decahydrate as 32.383 ± 0.001 °C 
[13]. H. C. Dickinson and E. F. Mueller, working at the Na­
tional Bureau of Standards in 1907, confirmed these results 
when they obtained a value of 32.384 ± 0.003 °C on the 
International Hydrogen Temperature Scale [14] for the so­
sium sulfate transition temperature. As a result of these re­
searches, the sodium sulfate decahydrate transition temper­
ature and the freezing point of water [15] were the most 
accurately determined temperature fixed points of the time. 

In 1899, Richards and Churchill outlined a research pro­
gram to investigate the transition temperatures of nine salts 
which preliminary studies had shown were potentially use­
ful as fixed points [16]. During the following twenty years, 
Richards and his coworkers established the transition tem­
peratures between the hydrates of seven of those salts 
[17-21]. In addition to Richards, several other researchers 
have considered using salt hydrate transitions as fixed 
points in thermometry [22-24]. In 1930, H. O. Redlich and 
G. Loffler-Wein studied the transition temperatures of some 
ternary systems composed of two different salts and water 
using a platinum resistance thermometer [25]. In 1938, E. R. 
Washburn and W. J. Clem also used a platinum resistance 
thermometer to measure the metastable sodium sulfate hep­
tahydrate to anhydrous salt transition temperature as 
23.465 ± 0.004 °C [26]. These latter investigators all used 
the sodium sulfate decahydrate transition temperature to 
standardize their thermometers. Since 1938, a few papers 
have appeared concerning the use of salt hydrate transition 
temperatures as fixed points [27-30], but these are con­
cerned only with attempts to use the sodium sulfate system 

and contribute little new information. 
A list of the established salt hydrate transition systems 

with the reported transition temperatures is given in table 
1. Although these systems cover the temperature range from 
10 to 90°C fairly well, there are some sizable gaps. Of par­
ticular significance to biomedical researchers is the gap 
from 35.36 to 50.664 °C. A literature search for salt hydrate 

TABLE 1. Temperature feud points established using transitions between 
different states of hydration of salts. 

Hydrate Transition Transition Temperature 
("C) 

States of 
Salt Hydration As Reported On IPTS-68 Ref. 

NaZCr04 IOHzO-6HzO 19.529 19.522 19 
NaZCr04 IOHzO-4H1O 19.987 19.980 19 
NalS04 7H1O-OHzO 23.465 23.457 26 
NaZC03 10HlO-7HlO 32.017 32.008 24 
NalS04 10HzO-OHlO 32.383 32.373 12,13,14 
NaZC03 IOHlO-IHzO 32.96 32.95 20 
NalC03 7HlO-IHlO 35.37 35.36 20 
NaBr 2HzO-OHzO 50.674 50.664 17 
MnCl1 4HzO-2HzO 58.089 58.079 18 
SrClz 6HlO-2HlO 61.341 61.331 21 
SrBrl 6H1O-2HlO 88.62 88.62 21 

TABLE 2. Transitions potentially useful asflXed points. 

Hydrate Transition Transition Temperature 

Salt States of Hydration Reported (0C) Ref. 

Ba(C1H3OJl 3HlO-IHlO 24.7 31 
Na1Se04 10H1O-OH1O 32 38 
NazHPO. 12H1O-7HzO 35.0,35.2 32,33 
Zr(N03h 6H10 congruent 36.1 34 
Ba(CzH30 1)Z 1 HzO-OHzO 41 31 
KF 2HzO-OHzO 41 35 
NaZS103 5HzO-2HzO 48.17 36,37 
Na2HP04 7HzO-2HzO 40.0,48.3 32,33 
Na3P04 12HzO-unknown 73.5 16 
Ba(OHh 8H1O-unknown 78.0 16 
Na2HP04 2H2O-OH1O 95.2,95 32,33 

transitions has produced the supplemental list shown in 
table 2 [31-38]. These systems were considered to have po­
tential as temperature fixed points to fill the gaps in table 1. 

2. Experimental method 

2.1 Salt transitions 

The hydrated crystal is a distinct phase of the water: salt 
binary system. The phase transition which occurs when a 
hydrated inorganic salt changes its state of hydration may 
be either congruent or incongruent depending on whether 
one or two solid phases are involved. In the former, the hy­
drated salt forms a saturated solution of the same composi­
tion. The liquid, solid and vapor phases (P= 3) all have the 
same composition. Hence, the system may be considered to 
have but one component (C= 1). In this instance, the Phase 
Rule [39], F = C - P + 2, predicts that the number of 
degrees of freedom (F) will vanish and a triple point will re­
sult. This is an unrealistic situation, of course, because it re­
quires the salt to have the same vapor pressure as water at 
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the transitlon temperature in order for the vapor phase 
composition to be the same as that of the solid phase. Fur­
thermore, if the starting material deviates from the crystal 
stoichiometry, the composition of the solution will change 
as the transition progresses, and with it, the temperature. 
This behavior can be understood by considering the phase 
diagram for the system Zn(N03h: H20 shown in figure 1 
[34]. If a solution with composition 63.6 percent Zn(N03h by 
weight is cooled from 40°C, the hexahydrate will form, the 
composition of the solution will remain unchanged, and the 
temperature will remain at 36.1 °c during the entire hydra­
tion process. Thus, the phase transition is congruent and 
simulates the liquid-solid transition of a single pure ma­
terial. If a solution of composition 60 percent Zn(N03h by 
weight is cooled from 40°C, however, it will not start form­
ing the hexahydrate until the temperature is below 34 °C. 
Once crystallization starts, the solution becomes more 
dilute and the transition temperature decreases. Thus, a 
congruent transition is very sensitive to composition. 

By contrast, a salt undergoing an incongruent transition 
exhibits four phases: liquid, vapor, and two solids in dif­
ferent states of hydration. In this case, the Phase Rule un­
equivocally predicts a quadruple point with zero degrees of 
freedom for the two component system. The presence of 
four phases lends a degree of compositional stability to the 
quadruple point as long as the system is sufficiently rich in 
salt to keep the solution saturated at the transition. This 
situation is illustrated by the phase diagram for 
Na2S04: H20 shown in figure 2 [40]. In this case, any mix­
ture of salt and solution with a total composition of 33.2 per­
cent or more Na2S04 cooled from 40°C will start to form 
crystalline decahydrate at about 32.4 °c and will remain at 
that temperature until either the water (if the Na2S04 com­
position is greater than 44.1 percent) or the anhydrous 
phase is exhausted. 

As shown in figure 3, the system Na2HP04: H20 exhibits 
two incongruent transitions [32,33,40]: one at about 48°C 
from the heptahydrate to the dihydrate, and the other at 
about 35 °C from the dodecahydrate to the heptahydrate. At 
each of these transitions, the behavior of this system should 
be similar to that of sodium sulfate. It is possible for a single 
system to have both congruent and incongruent transitions, 
as illustrated by the phase diagram for KF : H20 shown in 
figure 4 [35,40]. 

Two additional salt: water systems were surveyed: (1) 
the FeCI3 : H20 system, which has a phase diagram [40] 
qualitatively similar to that for Zn(N03)2 : H20, and (2) the 
sodium thiosulfate system, Na2S203 : H20, which has a very 
complex phase diagram [36,37,40] with several metastable 
phases in a small temperature range about 48 °C. 

The six systems investigated are listed in table 3 along 
with the number of tests conducted on each salt and with 
the type of transition observed. 
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FIGURE 1. Phase diagram for the system Zn(N03)2: H20. The melting 
points of the dihydrate, tetrahydrate, and hexahydrate are all congruent. 
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TABLE 3. Salt systems examined in this reporL 

Transition Transition Number of 
Salt Hydrate Temperature (0C) Type Tests 

Na1SO. 'IOH1O 32.4 incongruent 19 
Zr(NOl )1·6H1O 36 congruent 5 
FeCIJ '9HzO 37 congruent 3 
KF·2H1O 41.4 incongruent 20 
Na1SlOl·5H1O 48.2 incongruent 6 

Na1HPO. ·7H1O 48.2 incongruent 18 

2.2 Salt samples 

Analytical grade samples of each of the salts just dis­
cussed were obtained in 454 gram quantities from commer­
cial (J. T. Baker, Fisher, Mallinckrodt) sources. In most 
cases, the samples came in glass bottles with lot number and 
lot analysis (or maximum impurity levels) on the bottle 
label. The KF'2H10 samples were received in plastic bot­
tles. Except for a few samples of sodium sulfate, all samples 
were obtained in crystalline form and were the highest puri­
ty grade available from each supplier. In table 4, the manu­
facturer's analysis of each lot studied is presented. 

2.3 Thermometry 

The temperature measuring apparatus used in this exper­
iment employed six very stable and well-aged thermistors as 
sensing elements. The thermistors were connected in a 
series circuit with a constant current source and a thermo­
stated, precision, ten kiloohm resistor as shown sche­
matically in figure 5. The resistance of each thermistor was 

determined in terms of the resistance of the precision 
"standard" resistor by measuring the potential differences 

TABLE 4. Impurity analysis, supplied by manufacturer. of each lot used in 
the determination of the transition temperatures. 

Na1SO. '10H1O Lot Number 

Contaminant (ppm) 092 558 026 824· 

Insoluble Matter 20 20 50 
Chloride 5 3 3 
Calcium, Magnesium 20 30 40 
Phosphate 5 4 
Free Acid (as H2SO4) 20 50 
Free Alkali none none 
Nitrogen Compounds (as N) 3 2 5 
Arsenic 0.5 0.1 0.1 
Heavy Metals (as Pb) 2 2 5 
Iron <3 2 3 

KF·2H1O 

Contaminant (ppm) 165 498 533 644 

Iron 10 2 10 10 
Chloride 10 10 50 50 
Sulfate 30 10 50 50 
Sulfite 50 50 
Free Acid (as HF) 1000 40 500 500 
Heavy Metals (as Pb) 10 5 30 30 
Insoluble Matter 20 50 200 200 

Free Alkali (as K2C03) none none 1000 1000 
Silicofluoride (K2SiF 6) 100 60 500 500 
Sodium 200 200 

Na2HP04 '7H2O 

Contaminant (ppm) 150 149 478 876 

Insoluble Matter 5 30 50 50 

Chloride <5 10 10 10 

Sulfate <20 20 50 50 

Heavy Metals (as Pb) <5 <5 10 10 

Iron 5 <5 10 10 

Nitrogen Compounds (as N) 3 3 10 10 

Arsenic 2 5 5 5 

·Technical grade 

across the thermistor (Vr) and the ff standard" (Vs) in the se­
quence: v,. v., - v., -v,. The measuring current was 10 IlA in 
all measurements and calibrations. The potential differ­
ences were measured with a precision digital voltmeter 
(DVM) which had an input impedance in excess of 109 Q 

and a sensitivity of 10-7 V on the lowest scale. Five digits 
were displayed with a 160 percent overrange capability, so 
that the least-count resolution of the system in terms of 
temperature was about a quarter of a millidegree Celsius 
(m°C). The thermometer circuit was controlled by a mini­
computer operating through an instrument bus so that the 
selection of sensors, thermistor current, and reading rates 
could be preprogrammed. The data were logged onto a 
magnetic disc at predetermined intervals during each ex­
periment and later plotted as time-temperature profiles. 

The thermistors were calibrated against a Standard Plat­
inum Resistance Thermometer (SPRT) whose resistance was 
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FIGURE 5. Temperature measurement system. 

measured with a Cutkosky AC Resistance Bridge [41]. The 
calibration was done with thermistors and SPRT inserted 
into a copper block immersed in a well-stirred constant 
temperature bath. The temperature of the copper block was 
kept constant to within a few tenths of a millidegree Celsius. 
When the calibration data were fitted to a modified Stein­
hart equation [42], the largest deviation was one-half of a 
millidegree Celsius. The uncertainty in realizing IPTS-68 
temperatures by the SPRT, in terms of the scale as main­
tained at NBS, was no more than ± 0.001 °C. The uncer­
tainty in the thermistor measurements was about ± 0.001 °C 
as a result of (a) calibration, ± 0.0005 °C; (b) drift of therm­
istors between calibrations, ± 0.0002 °C; (c) limiting pre­
cision of the measurement, ± 0.0002 °C; and (d) possible 
variations in the self-heating of thermistors during measure­
ment, ± 0.0001 °C. Thus, the overall uncertainty in the tem­
peratures is ± 0.002 °C. 

2.4 Apparatus 

A diagram of the apparatus used for the transition tem­
perature determinations is shown in figure 6. During the 
measurements, the salt hydrate mixture was contained in a 
665 mL glass dewar covered by a styrofoam lid through 

Glass 
Thermometer --I-+JI·II 

Well 

Variable Speed 
Induction Motor 

---St''1rofoam Lid 

Dewar 

I~-H-- Polypropylene 
Propeller Stirrer 

Oil Salt-Solution 
----+-i~lf-:1 r·;:-:-_.~H--- Mixture 

Thermistor Bead--lH'l""~:;1 

FIGURE 6. Schematic of experimental apparatus showing placement of 
thermistor temperature sensor and stirring propeller in 665 mL dewar. 

which holes were drilled to accommodate a polypropylene 
propeller stirrer and glass thermometer wells. Normally, two 
thermistors in glass wells were used to measure the temper­
ature of the mixture, one located 1 cm below the surface of 
the liquid and the other positioned 0.5 cm above the stirrer 
blades (3.5 cm below the surface of the liquid). The stirrer 
was driven at slow speed (200 rpm) by an induction motor 
with a variable speed drive attachment Commutating 
motors could not be used as the electrical noise generated 
by the commutators affected the voltmeter readings. 

A smaller, styrofoam-insulated beaker apparatus was used 
in a series of preliminary experiments. That apparatus con­
sisted of a glass beaker (250 or 400 mL), plastic acrylic lid, 
and paired high density styrofoam sides (2 to 4 cm thick). 
The stirring method and the arrangement of glass thermis­
tor wells were the same as that used in the dewar apparatus, 
except that commutating motors were used in these ex­
periments. 

2.5 Procedures 

The transition temperature of each sample was determined 
in the following manner. The dewar, propeller stirrer, and 
glass wells were cleaned in tap water, rinsed with distilled 
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water, and soaked overnight in a dilute solution of HCl. 
Following the acid soak, the components were rinsed thor­
oughly with distilled water and allowed to drain. Bottles 
containing 454 g of a hydrated salt were partially immersed 
in a water bath whose temperature was approximately ten 
degrees Celsius above the transition temperature. Within 
one to two hours, the hydrated salt lost its waters of hydra­
tion, leaving a fine powder of the anhydrous salt (or lower 
hydrate) settled out of the solution. Occasionally, while the 
hydrated salt was being heated, the less hydrated form 
would crystallize in a hard mass on the bottom of the bottle, 
and it was necessary to break up this mass by very vigor­
ous shaking. The water bath containing the bottle of the 
salt: Solution mixture was allowed to cool to a few degrees 
Celsius below the transition temperature. The hydration 
process was initiated when the bottle was removed from the 
bath and shaken. Normally this procedure would result in 
the onset of crystallization which could be detected by ob­
serving the sudden appearance of solid on the walls of the 
bottle. At this point, the bottle was opened and the contents 
poured into the dewar. The amount of residual salt remain­
ing in the bottle was between five and ten grams. 

On the few occasions when the transferred mixture had 
not begun to crystallize, the transition was initiated by add­
ing a small quantity (1 to 5 g) of powdered hydrated crystals. 
When it was necessary to take this approach, we found that 
using finely powdered crystals generally resulted in a more 
rapid recalescence and a flatter plateau than did a few large 
crystals. As soon as the hydrating salt mixture was in the 
dewar, the thermometers and stirrer were inserted, the lid 
assembled and the stirrer started. The transition tempera­
ture was then monitored continuously for the next 15 to 
30 hours. 

An additional set of experiments investigated the charac­
teristics of the sodium sulfate decahydrate transition under 
various conditions. In several of these experiments, the 
samples were prepared and solidified in 250 mL or 400 mL 
glass beakers, or in 265 mL dewars. Samples of 250 g or ca. 
350-420 g were prepared by ei ther driving off the waters of 
hydration, as described above, or by combining distilled 
water with anhydrous salt in the same proportion as that in 
the hydrated salt In both cases, the mixture was brought to 
equilibrium several degrees Celsius above the transition 
temperature before cooling. After the mixture had super­
cooled about 0.3 °C below the transition temperature, the 
transition was initiated by adding 0.1 to 10 g of finely 
ground crystals of the appropriate hydrated salt 

3. Results 

3.1 Preliminary survey 

The six hydrated salts considered in the initial survey are 
listed in table 3. On the basis of the survey results, three of 

the salt systems were not considered further in this study. 
The hydration transitions of the ferric chloride system, 
FeCb : H20, were difficult to initiate. Once the transition 
was started, the temperature did not maintain a plateau and 
displayed fluctuations of ± 0.03 °C. Although sodium thio­
sulfate at first appeared stable, during subsequent trials 
the temperature displayed sharp, random changes of order 
0.01 °C. Also, the measured values of the transition temper­
atures from different trials varied by as much as ± 0.1 °C. 
This behavior may reflect the presence of several metasta­
ble phases, as indicated by its phase diagram [36]. It was dif­
ficult to initiate the formation of zinc nitrate hexahydrate, 
although once started, the transition temperature appeared 
quite stable. Further difficulty in working with this system 
was encountered when lots labelled hexahydrate exhibited 
transitions at about 42°C, indicating that the samples were 
of composition closer to that of the tetrahydrate (see fig. 1). 
Each of the three remaining salts appeared to exhibit suffi­
cient stability and reproducibility to merit a more thorough 
examination. 

During the preliminary experiments, a hydrated salt was 
sometimes reheated and the transition temperature meas­
urements repeated. In these cases, the plateau temperatures 
determined were between 2 and 10 mOC less than the initial 
value. Because of this plateau temperature depression, 
probably due to contamination introduced during the first 
rehydration, only single runs on each hydrated salt were 
used for the principal temperature determinations. 

3.2 Principal temperature determinations 

In the principal set of experiments, time-temperature pro­
files were made of the hydration transitions of 57 samples of 
the three salts N a2S04 '10H20, KF· 2H2 0, and 
Na2HP04 . 7H20. The transitions were studied by monitoring 
the temperatures of the hydrating samples following the 
general procedure outlined above. 

A typical time-temperature profile for each salt is shown 
in figure 7. The maximum temperature sustained during 
the Hplateau period" was taken as the plateau temperature. 
The average plateau temperature, the number of samples, 
and the standard deviation of the temperatures for each lot 
are presented in table 5. 

Both table 5 and figure 7 point out the substantial differ­
ences in behavior between the three salts. The sodium sul­
fate decahydrate was by far the most consistent Nearly 
every profile was almost identical to that shown in figure 7. 
The recalescence period was so short that the sample tem­
perature was within 0.002 °c of the plateau temperature in 
less than 15 minutes from the start of the transition. In the 
few instances in which the temperature of the mixture was 
not constant at the plateau temperature, it decreased by less 
than 0.002 °c in 20 hours. 
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FIGURE 7. Typical temperature versus time profiles for the three reported 
salt transitions. Each transition was initiated at zero hours and the mixture 
stirred continuously. 

3.3 Immersion studies 

In order to determine the best value for the hydration 
temperature of each salt, it was necessary to ascertain the 
effects of thermometer immersion into the stirred salt: solu­
tion mixture. Several experiments were conducted in which 
two or three thermometers were immersed to different 
depths in the mixtures. Figures 8, 9, and 10 show results for 
each salt which indicate an apparent top to bottom temper­
ature gradient within the hydrating mixture of approxi­
mately 5 mOC. In addition, a single thermistor was used to 
probe vertically a N a2HP04 : H20 mixture two hours after 
the transition had been initiated. The mixture was probed 
at three radial positions, 0.9 em, 1.8 em, and 2.7 em, from 

TABLE 5. Results of principal temperature determinations, summarized by 
salt and lot. 

Average Plateau 
Number of Temperature Standard 

Salt Hydrate Lot Samples (0C) Deviation (0C) 

Na1S04 ·IOH2O 
092 7 32.3730 0.0006 

558 3 32.3732 0.0008 

026 3 32.3733 0.0007 

824 6 32.3738 0.001. 

KF·2H1O 
165 5 41.3938 0.0014 
498 8 41.421 5 0.001 7 

533 6 41.3835 0.001 0 

644 41.410 

N a1HP04 ·7H1 O 
150 4 48.2155 0.0023 

149 8 48.2165 0.0041 

478 3 48.216. 0.0030 

876 3 48.221 7 0.005. 

The shape of the time-temperature profile for KF·2H20 
was nearly as reproducible as that for sodium sulfate, i.e., it 
displayed a rapid recalescence followed by a gradual 
change in the temperature of less than 0.002 °C over the 
next 20 hours. As can be seen from the data in table 5, how­
ever, the measured plateau temperatures varied considera­
bly from lot to lot 

The most variable behavior within a lot was recorded for 
Na2HP04 ·7H20. The shapes of these profiles ranged from 
the eighteen hour plateau shown in figure 7 to those that re­
mained constant for only a few hours before rapidly de­
creasing at up to 0.005 °C/h. With the exception of one 
contaminated lot which has not been included, however, the 
temperature of hydration changed by less than 0.010 °C 
over a period of at least 20 hours. 
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FIGURE 8. Temperature versus time profiles for the NaIS04 ·IOHIO transi· 
tion recorded at 3.5 cm (_) and 1.0 cm (e) below the surface of the mixture. 
The stirring propeller was located 4.0 cm below the surface. 

41.425 

~ 41.415 

~ 
.. 41.410 

& 
~ 41.405 

41.400 

41.395 

14 16 18 20 22 24 

Time, Hours 

FIGURE 9. Temperature versus time profiles for the KF.2H20 transition 
recorded at 3.5 cm (_) and 2.5 cm (A) below the surface of the mixture. 
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FICURE 10. Temperature versus time profiles for the Na1HPO. ·7H10 tran· 
sition recorded at 3.5 em (_), 2.5 em (A), and 1.5 em (+) below the surface 
of the mixture. 
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FICURE 11. Temperature depression versus immersion depth at 0.9 em (e), 
1.8 em (_), and 2.7 em (+) from the center of a 665 mL dewar containing a 
Na2HPO •• 7H20 transition. 

the center of the 3.5 cm radius dewar. The results are shown 
in figure 11, where AT is the difference between the temper­
ature of the thermistor at the indicated depth and that at a 
depth of 3.5 cm from the surface (0.5 cm above the stirrer). 
The roughly linear dependence of the data in figure 11 

shows an exponential temperature change of the thermistor 
upon immersion in the thermistor well. These results indi­
cate that the temperature at the depth at which the experi­
mental measurements were made was depressed by heat loss 
to the surroundings by less than a millidegree Celsius. 

3.4 Kinematic effects 

The tf true" tranSItIon temperature, whose stability is 
predicted by the Phase Rule, is maintained by the free 
energy available at the liquid-solid interface. Thus, in the 
non-equilibrium circumstance of constant heat loss from the 
vessel, there will be a temperature gradient from the inter­
face through the liquid. Even if the mixture of solution and 
microcrystals is sufficiently well stirred to be homogeneous 
to a macroscopic thermometer, this average temperature is 
still somewhat lower than the interfacial temperature. The 
magnitude of the difference will depend upon the rate of 
heat loss, the thermal conductivity of the solution, the 
amount of surface available at the interface, as well as de­
tails in the mechanism of crystallization. Some of these ef­
fects were investigated in a series of experiments on the so­
dium sulfate: water system. This transition was studied at 
an ambient temperature of 24°C in three vessels: a 665 mL 
dewar, a 265 mL dewar, and a 250 mL beaker insulated by 
styrofoam, as described previously. The data presented in 
figure 12 illustrate the results. The temperatures obtained 
in the large dewar, which should have the lowest heat loss, 
are the highest with the least fluctuations and longest 
period at maximum, while the converse is true for the tem­
peratures measured in the relatively poorly insulated 
beaker. 

To investigate the effect of interfacial area, we initiated 
sodium sulfate transitions with different quanitities of de­
cahydrate crystals of various sizes. It was difficult to control 
precisely the depth of supercooling for each of these exper­
iments, so the results were not quantitative. Nevertheless, a 
few grams of granular decahydrate (crystals of 0.5 to 1 mm 
in diameter) resulted in a very extended recalescence and a 
rounded plateau, while a few grams of finely powdered ma­
terial resulted in a rapid recalescence and a flat plateau. 

An additional kinetic effect arises from the viscosity of 
the mixtures, due to heat generated as a result of mechani­
cal stirring. The stirring is necessary to provide chemical 
and thermal homogeneity throughout the mixture. The 
plateau temperatures were not sensitive to stirring speeds 
between 200 and 600 rpm. At speeds less than 100 rpm, 
temperature gradients due to the settling of the more dense 
hydrate were observed and shorter plateau periods occur­
red, as shown in figure 13, whereas an increase in speed to 
greater than 600 rpm caused a step-like elevation in the 
measured temperature and a reversal in the direction of the 
transition. 
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FIGURE 12. Temperature versus time profiles for the Na1S04 ·10H10 tran­
sition in a styrofoam insulated beaker (e), a 265 mL dewar (_) and a 665 
mL dewar (+). Ambient temperature was 24°C. 
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FIGURE 13. Temperature versus time profiles for the Na2HPO. ·7H10 tran­
sition at a slow, 100 rpm (x), and fast, 300 rpm (e), stirring speed. 

4. Discussion of Results 

4.1 Effects of atmospheric pressure 

The experiments were conducted in air at atmospheric 
pressure, rather than at the quadruple point predicted by 
the Phase Rule. It is necessary, then, to assess the effects of 
pressure upon the transition temperature. This is given by 

the Clapeyron equation for a first order phase transition 
[43]: 

dP _ L 
dT - TAV (I) 

where L is the latent heat of the transition, T is the transi­
tion temperature, and AV is the change in specific volume. 
We can apply this simple relation to each of the three salts 
with the following result: 

Salt 

Na2S04 'lOH20 
KF'2H20 
N a2HP04 . 7H20 

dT/dP, °C/Pa 
2 . 10-8 

23 . 10-8 

8 . 10-8 

As a check on these calculations, consider first a more so­
phisticated calculation which takes into account the fact 
that two components, and hence four phases, are involved 
in the first order transition. This generalized Clapeyron 
equation takes the form [44] 

AS, - A AS" 
AV, - A AV" 

(2) 

In this expression /lSI,,, = S.ol -SI,,,, where SI> S" are the 
specific entropies of the lower and upper hydrates, S.ol is the 
specific entropy of the solution, and /lVI,,, = Vsol-VI,,, 
where Vh V" are the specific volumes of the lower and up­
per hydrates, and V.ol is the specific volume of the solution. 
The constant, A, is A = (XI-X.ol)/(X" -X.ol), where X", X h 

and X.ol are the weight fraction of upper hydrate, lower 
hydrate and the solution, respectively. These parameters 
are not available for all of the salts, but for sodium sulfate 
[45] the result is 

~~ = 1.4 • 10-8 °C/Pa (3) 

Tammann [46] has measured this quantity experimentally 
for sodium sulfate and obtained 

;J = 0.5 • 10-8 °C/Pa (4) 

Note that the estimates formed using the Clapeyron equa­
tion, either eq (1) or its generalized version (2), are quite 
sensitive to the values of the specific volumes of the various 
phases. 

Atmospheric pressure fluctuations over a period of 24 
hours are typically less than ± 5 percent, so that differences 
in transition temperatures from sample to sample that 
might be attributable to such pressure changes are ± 0.10 
maC, ± 1.2 maC, and ± 0.4 maC for Na2S04 'lOH20, 
KF . 2H20, and N a2HP04 . 7H20, respectively. 
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4.2 Effects of impurities 

The effects of impurities can be estimated by assuming 
that they are present in sufficiently low concentrations that 
the laws for ideal dilute solutions apply. Then the depres­
sion in the transition temperature, 1lT, is given by [43] 

(5) 

in terms of the gas constant, R, the heat of fusion, L, the 
transition temperature, T, and the impurity concentrations 
in the liquid, U .. and in the hydrated solid phase, Us. The 
Ucryoscopic constant," k = R'PI L, can be evaluated [45] 
for each salt hydrate as 9.9 for Na2S04 'IOH20, 32.9 for 
KF· 2H20, and IS.5 for Na2HP04· 7H20. The value of this 
constant for Na2S04 'IOH20 has been calculated using a 
more precise expression [47] and it has also been measured 
experimentally [48]. Both values were found to be in very 
close agreement with the one given above. 

Applying eq (5) to the specific samples used in this study 
would require determining the impurities and their concen­
tration, as well as knowing the relative solubility of each im­
purity in both the solid and the liquid phases. Since there is 
no simple way to obtain this information, we have taken the 
approach that an upper limit can be estimated by using the 
manufacturer's lot analysis and by assuming that all impu­
rities are only liquid soluble. On this basis we have obtained 
the following estimates, using eq (5), for the depression in 
the transition temperatures due to impurities. 

Salt Hydrate Lot 
Temperature Depression 

(m°C) 

092 1.5 
558 2.0 
026 2.5 
824 >4.0 

165 4.0 
498 1.0 
533 4.5 
444 4.5 

150 2.1 
149 2.5 
478 3.4 
876 3.4 

4.3 Stability and reproducibility of the transition 
temperature 

From the results presented in table 5, it is apparent that 
the behavior of each system is quite distinctive, reflecting a 
different balance between heat generation by hydration and 

heat loss to the surroundings. The transition temperature of 
disodium hydrogen phosphate is about 4S.2 °C, or some 
24°C above ambient, while that of potassium fluoride is 
about 17 °C above ambient, and for sodium sulfate, it is 
only about S °C above ambient. In addition, the latent heat 
of hydration of Na2HP04'7H20 is only 172 Jig, while for 
KF ·2H20 it is 262 JI g and for Na2S04 ·IOH20 it is 245 JI g 
[45]. It is, therefore, no surprise that the Na2HP04 exhibits 
a much longer recalescence, as well as a shorter plateau, 
than either of the other salts. This effect may also be impor­
tant in determining the observed variation in transition 
temperature since the variation within lots shown in table 5 
is of the same order of magnitude as the lot to lot variations. 
These results suggest that there is a correlation between 
impurities and observed transition temperature for 
Na2HP04' but the scatter of temperatures within a given lot 
is too great to establish this relationship precisely. 

Potassium fluoride, on the other hand, shows much 
smaller variation of plateau temperature within a lot, 
though even this 0.002 °C variation could arise partly from 
variability in heat loss. Much more dramatic are the lot to 
lot variations, which in this case are as much as 0.04 °C. Al­
though the listed impurities appear unable to account for 
these differences, it seems most likely that contamination is 
the cause. Potassium fluoride is a very reactive salt and it is 
difficult to control its level of purity. 

Sodium sulfate is almost anomalously reproducible. On 
the basis of both pressure and impurity effects discussed 
above, variations of as much as 2 mOC appear possible. The 
variation actually observed was closer to I mOC. 

5. Conclusions 

The three salts studied exhibit transitions between differ­
ent states of hydration for which the temperatures are stable 
to better than 2 m °c for several hours when the mixtures 
are well stirred in a dewar. The transition temperatures of 
all the salts are sufficiently reproducible for use as tempera­
ture fixed points, but since a few potassium fluoride tem­
peratures were low by as much as 0.04 °c, the KF transition 
should not be used for high accuracy work. The disodium 
hydrogen phosphate transition temperatures, however, fell 
within a 0.007 °c range, while all the sodium sulfate transi­
tion temperatures were within a 0.002 °c range. The best 
values for the transition temperatures are: Na2S04 to 
Na2S04 ·IOH20-32.374 °c, KF to KF· 2H20-41.422 °c, 
and Na2HP04 '2H20 to Na2HP04 ·7H20-4S.222 °c. 

We wish to thank H. S. Gutowsky and F. Dunn for sug­
gesting improvements to the text. 

190 



6. References 

[1] Bowers, G. N. Jr.; Bergmeyer, H. U.; Moss, D. W. Provisional recom· 
mendations (1974) on IFCC methods for the measurement of cata· 
lytic concentration of enzymes. Clin. Chern. 22: 384; (1976). 

[2] Bhuyen, B. K.; Day, K. J.; Edgerton, C. T.; Ogunbase, O. Sensitivity of 
different cell lines and different phases in the cell cycle to hyper­
thermia. Cancer Res. 37: 3780; (1977). 

[3] Cancer therapy by hyperthermia and radiation, Proceedings of 
the 2nd International Symposium, Essen, Germany, June 2-4, 
1977, ed. C. Streffer, Urban and Schwartzenberg, Baltimore 1978. 

[4] Moksi, H.; Dillard, D. H.; Crawford, E. W. Method of super­
induced deep hypothermia for open-heart surgery in infants. J. 
Thorac, Cardiovasc. Surg. 58: 262; (1969). 

[5] Popovic, V.; Popovic, P. Hypothermia in biology and medicine. New 
York: Grune and Stratton, Inc.; 1974. 

[6] Cromwell, L.; Weibell, F. J.; Pfeiffer, E. A. (eds). Biomedical in­
strumentation and measurements, 2nd edition. Englewood Cliffs, 
NJ: Prentice-Hall; 1980. 

[7] Mangum, B. W.; Thornton, D. D. The importance of temperature stan­
dardization in medicine. Laboratory Management. I: 32; (1978). 

[8] Magin, R. L.; Statler, J. A.; Thornton, D. D. The use of salt-hydrate 
transition temperatures as fixed points in biomedical ther­
mometry, in 1979 Advances in Bioengineering, ASME, New York, 
1979. 

[9] Thornton, D. D. The gallium melting-point standard: a determination 
of the liquid-solid equilibrium temperature of pure gallium on the 
International Practical Temperature Scale of 1968. Clin. Chern. 
23: 719;(1977). 

[10] Washburn, E. W., ed. International critical tables of numerical data, 
physics, chemistry and technology. Vol I. New York: McGraw-Hill 
Co., Inc; 1926. p. 66. 

[11] Jeanne~ M. Note pour Servir a Phistoise de Pacetate Ie Soude. Compt 
Rend. 62: 834; (1866). . 

[12] Richards, T. W. The transition temperature of sodic sulphate, a new 
fixed point in thermometry. Am. J. Sci. Ser. 46: 201; (1898). 

[13] Richards, T.W.; Wells, R. C. The transition temperature of sodic sul­
phate referred anew to the international standard. Proc. Am. 
Acad. Arts. Sci. 38: 431; (1902). 

[14] Dickinson, H. C.; Mueller, E. F. The transition temperature of sodium 
. sulphate. J. Am. Chern., Soc. 29: 1381; (1907). 

[15] Burgess, G. K. The present status of the temperature scale. Orig. 
Comm. 8th Intern. Congr. Appl. Chem. 22: 53; (1911) 

[16] Richards, T. W.; Churchill, J. B. The use of the transition temperature 
of complex systems as fixed points in thermometry. Proc. Am. 
Acad. Arts Sci. 34: 277; (1899). 

[17] Richards, T. W.; Wells, R. C. The transition temperature of sodic 
bromide: a new fixed point in thermometry. Proc. Am. Acad. Arts 
Sci. 41: 455; (1906). 

[18] Richards, T. W.; Wrede, F. The transition temperature of manganous 
chloride: a new fixed point in thermometry. Proc. Am. Acad. Arts 
Sci. 43: 343; (1907). 

[19] Richards, T. W.; Kelley, G. L. The transition temperatures of sodium 
chromate as convenient fixed points in thermometry. Proc. Am. 
Acad. Arts Sci.,47: 171;(1911). 

[20] Richards, T. W.; Fiske, A. H. On the transition temperatures of the 
hydrates of sodium carbonate as flXed points in thermometry. J. 
Am. Chem. Soc. 36: 485;(1914). 

[21] Richards, T. W.; Yngre, V. The transition temperatures of strontium 
chloride and strontium bromide as fixed points in thermometry. 1. 
Am. Chern. Soc. 40: 89; (1918). 

[22] Meyerhoffer W.; Saunders, A. P. Ein Neuer Fixpunkt fur 

Thermometer Vorshlag fur Eine Normalzimmertemperature. Zeit. 
Phys. Chern. 27: 367; (1898). 

[23] Geer, W. C. Thermostats and thermoregulators. 1. Phys. Chern. 6: 85; 
(1902). 

[24] Wells, R. C.; McAdam, D. J. Phase relations of the system sodium 
carbonate and water. J. Am. Chern. Soc. 29: 721; (1907). 

[25] Redlich, 0.; Loffler-Wien, G. Neue Temperaturfixpunkte. Zeit Elec­
trochem. 36: 716; (1930). 

[26] Washburn, E. R; Clem, W. J. The transition temperature of sodium 
sulfate heptahydrate. J. Am. Chern. Soc. 60: 754; (1938). 

[27] Hole, J. Thermometer standardizing with sodium sulphate. Chern. and 
Met. Eng. 52(6): 115;(1945). 

[28] Constable, F. H.; Cansever, W. Variations in apparent transition point 
of sodium sulphate. Rev. Faculte Sci. Univ. Instanbul, IS: 47; 
(1950). 

[29] Masuda, S. Transition temperature of Na2S04 'IOH20 as a tempera- . 
ture scale calibration point Kanto Gakuin Daigaku Kogakubu 
Kenkyu Hokoku, 1l(1): 7; (1966). 

[30] Masuda, S.; Mieko, O. Transition temperature of Na2S04 '10H20 as a 
standard temperature point II. Kanto Gakuin Daigaku Kogakubu 
Kenkyu Hokoku, 13(1): 29; (1968). 

[31] Walker, 1.; Fyffe, W. A. The hydrates and the solubility of barium 
acetate. J. Chern. Soc. 83: 173; (1903). 

[32] Menzies, A.W.C.; Humphrey, E. C. Disodium monohydrogen phos­
phate and its hydrates: their solubilities and transition tempera­
tures. Orig. Com. 8th Intern. Congr. Appl. Chern. 2: 175; (1912). 

[33] Hammick, D. L.; Goadby, H. K.; Booth, H. Disodium hydrogen phos­
phate dodecahydrate. J. Chern. Soc.1l7: 1589; (1920). 

[34] Ewing, W. W.; McGovern, J. J.; Mathews, G. E. The temperature 
composition relations of the binary system zinc nitrate-water. J. 
Am. Chern. Soc. 55: 4827; (1933). 

[35] J atlov, V. S.; Poljakova, E. M. Equilibrium in the systems KF-H20 and 
KHFrH20. Zhur. Obs. Khimi.8: 774;(1938). 

[36] Young, S. W.; Burke, W. E. Further studies on the hydrates of sodium 
thiosulfate. J. Am. Chern. Soc. 28: 315; (1906). 

[37] Cramer, J.S.N. Sodium thiosulfate for standardization in thermome­
try. Chern. Weekblad. 28: 316; (1931). 

[38] Funk, R. Uber die Natriumsalze eineger, der Schwefelsaure analoger 
zweibasischer Sauren. Studien uber die Loslichkeit der Salze VI. 
Ber. Dtsch. Chem. Ges. 33: 3696; (1900). 

[39] Ricci, J. E. The phase rule and heterogeneous equilibrium. New York: 
D. Van Nostrand; 1951. 

[40] Seidell, A. (ed) Solubilities of in organic and metal organic compounds. 
Vol. I, 3rd edition. New York: D. Van Nostrand; 1940. 

[41] Cutkosky, R D. An A-C Resistance-Thermometer Bridge. J. Res. Nat 
Bur. Std. (U.S.). Eng. and Instr. 74C(1 & 2): 15-18: 1970 January­
June. 

[42] Steinhart, J. S.; Hart, S. R Calibration curves for thermistors. Dee~ 
Sea Research. 15: 497; (1968). 

[43] Maron, S. H. and Prutton, C. F. Principles of physical chemistry New 
York: Macmillan; 1959. 

[44] Donnan, F. G.; Haas, A. (eds). A commentary on the uientific writings 
of J. Willard Gibbs. VoL I Thermodynamics. Chapter 6, The phase 
rule and heterogeneous equilibrium. G. W. Morse. New Haven: 
Yale University Press; 1936. 

[45] Weast, R. C. (ed) Handbook of chemistry and physics, 55th edition. 
Cleveland: CRC Press; 1975. 

[46] Tammann, G. the states of aggregation, The changes in the state of 
matter and their dependence upon pressure and temperature. New 
York: D. VanNostrand; 1925. 

[47] Fernadez·Prini, R.; Prue, J. E. Salt cryoscopy: the depression of the 
sodium sulphate decahydrate transition temperature by dissolved 
solutes. J. Chern. Soc. (Ar. 1974; (1967). 

191 



[48J Briggs, C. C.; Freemont, P. S.; Lilly, T. H. Effect of solids on the 
sodium sulphate decahydrate transition temperatures. 1. Chem. 
Soc. (A}. 2603; (1971). 

192 



JOURNAL OF RESEARCH of the National Bureau of Standards 
Vol. 86, No.2, March-April 1981 

A Game-Theoretic Model of Inspection-Resource 
Allocation* 

Martin H. Pearlt and Alan J. Goldman t 

National Bureau of Standards, Washington, D.C. 20234 

JUly 2, 1980 

This paper presents a generalization of a game.theoretic model, first described in an earlier paper, of the 

relationship between an inspectee who may decide to "cheat" or not, and an inspector whose task it is to 
minimize the expected gain that the inspectee achieves by cheating. When cheating is detected by the inspector, 

a penalty is assessed against the inspectee. The generalized model permits imposing a relationship between the 
level of the penalty to the inspectee when he/she is caught and the value to the inspectee of not being caught 

when he/she is cheating. The solution of the game takes on different forms depending on whether or not the 
inspector's resources are sufficient to make the detection of cheating likely. 

Key words: Inspection; mathematical model; regulation; theory of games. 

1. Introduction 

In an earlier paper [2],1 the authors presented three simple mathematical models of game-theoretic type, 
with the aim of exploring "strategic" aspects of the inspector-inspectee relationship. These models arose in 
the context of a study performed for the NBS Office of Weights and Measures, and were tailored to fit the 
specific situation encountered there. We also discussed a number of possible directions for generalizing the 
models in order to make them relevant to other situations involving an inspector-inspectee relationship. 

Shortly thereafter, the opportunity arose to investigate the inspector-inspectee relationship inherent 
between the Internal Revenue Service and taxpayers. Indeed, the direct impetus for the current study was 
an attempt to apply the models of [2] to the problems faced by the Audit Division of IRS when trying to 
promote compliance by taxpayers to the Income Tax Regulations [1]. In each of the models of [2], the 
penalty imposed on the inspectee when cheating is detected by the inspector was assumed to be the same in 
all cases (P). For the purposes of [1], we were obliged to investigate the consequences of dropping that 
assumption: in particular, of relating the level of the penalty to the magnitude of the gain from cheating (if 
undetected). The present paper's model is sufficiently general to permit introducing such a relationship. 

The definitions, notation, terminology, etc. used in [2] are retained here. Although it has been necessary 
to repeat parts of the earlier paper in order to make this one self-contained, this has been kept to a 
minimum. For this reason we recommend that the reader become familiar with the earlier paper, whose 
sections 1 and 2 describe the general aim of this line of research as well as (on p. 192) the motivation for 
~he extension treated here. 

2. Formulation of the Model 

This mathematical model takes the form of a 2-player zero-sum game. The "players" are the inspector (an 
aggregate representing the inspection agency) and the inspectee (an aggregate representing all those whom it 
is the inspector's province to inspect). Goldman and Shier [3] have shown that in a non-cooperative game, 
with payoff functions satisfying an assumption obeyed by (2.4) below, such an aggregation of players into a 
single unit does not change the solution of the game. 

• A\IS ~uhjel't c1as,ifil'ation: 901Ho 
, Cent«.>r for Appli«.>d :\Iath«.>matics. :'-iational Enp:ineerinp: Laborat()r~·. 
I Fip:ures in hrark«.>ts indicate literature references at the end of thi~ paper. 
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As in [2], the inspectee can either cheat, or not, for each of a set of devices, D I , D'!., '" , Dn' (These 
"devices" might be the measuring devices in n retail establishments, or the tax returns of n individuals.) 
The inspector selects some of these devices for inspection, up to the limit of his/her resources. The 
detection of a cheat, if the device is inspected, is assumed to be certain. We set: 

n 

I~ 
P; 
m = 

the number of devices available to the inspectee, 
the payoff to the inspectee from cheating on D;, 
the penalty imposed on the inspectee when cheating is detected on D;, 
the number of devices that the inspector can inspect. 

We assume that m <n, and that all V; and P; are positive. It will be convenient to number the devices so 
that 

(2.1) 

A strategy for the inspectee is an n-component vector 

where C; is the probability that the inspectee will cheat on D;. A pure strategy for the inspector is the 
specification of a subset M of the set N={I, 2, ... , n}, where i E M denotes that D; is inspected. Then, a 

(mixed) strategy for the inspector is a vector p = (p(M), where 

p(M) = Prob [{Di : i E M} are the devices inspected]. 

With each such p we associate the quantities 

Pi Prob [D; is inspected] 

~ {p(M) : i E M}. 

Since Ci and Pi represent probabilities, we must have 

o < C i < 1, o < Pi < 1, i = 1, 2, ... , n. (2.2) 

There is no further restriction on c. However, as was shown in [2], the limitation of the inspector's 

resources2 (m) which prevents him/her from inspecting all of the devices (n) can be expressed as 

n 
~ Pi = m. 

i=I 

(2.3) 

The net expected payoff to the inspectee from device Di is the expected gain from cheating minus the 

expected penalty, i.e. 

Thus, the total net expected payoff to the inspectee when the two players choose strategies c and p 

respectively, is 
n 

F(c,p) = ~ [Vi - PiPJci' 
i=I 

(2.4) 

:! Th .. rI •• tri,·lion Ihal m I ... an inlej!er i. inherenl in the ,( .. finilion of .v. """('\'er, it is nol ('s"enlial in whal follows. Equalion (2.:J). wilh any choiee of m, 

fl<m<n. "an lit" 11.('.1 Itl ,j('fin .. Iht· in'llt"dion r('.nllrfes 3\'ailahle 10 Ih(' in'p('clor. 
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From the "zero-sum" assumption that the interests of the two players are diametrically opposed, it follows 
that -F(c,p) is the expected payoff to the inspector. (Two of the three models in [2] involve alternatives to 
this assumption, but we shall retain it here.) 

For each i, i = 1, 2, ... , n, define qi by 

Then the objective function (2.4) can be rewritten as 

n 
F(c,p) = l: Pi (qi -p;}Ci. 

i=1 

As in [2], we set N={1, 2, ... , n} and let 

T {i : 17; > p} = {i : qi > I}, 

T N - T = {i : 17; <; p} = {i : q .. <; I}. 

(2.5) 

(2.6) 

Thus, T represents the set of "tempting" devices, those on which the inspectee can profit from cheating 
even if the cheating is detected. For any subset S of N, we denote the number of members of S by I S I. 
Also, we set 

P(S) = ~ Pi' q(S) = l: q .. , 
E S E S 

V(S) = l: Vi' p(S) = l: Pi' 
E S E S 

etc. 

The solution of the game which we have just described takes different forms according as 

m;> ITI + q(1) (Case I) (2.7) 

or its opposite 

m < ITI + q(1) (Case II) (2.8) 

holds. These cases correspond roughly to adequate and inadequate inspection resources, respectively. Note 
that the adequacy of inspection resources is influenced by the size of the penalties as well as by m; the 
larger the penalties, the smaller the term q(1) in (2.7) and (2.8). 

Cases I and II will be analyzed in sections 3 and 4, respectively. For illustration, section 5 applies the 
results to the situation in which penalties for detected cheating are proportional to gains from cheating, i.e., 
all q,.'s have the same value. 
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Here we assume that 

which can also be expressed as 

It will be convenient to set 

u 

W 

3. Case I 

m > ITI + q(1) 

n 

m > l: min (1, q). 
i=1 

{i: Vj < pJ 

{i: Vj = pJ 

{i : qj < I} 

{i : qj = I} 

so that T=U U W. Then (2.7a) becomes 

m > I T U WI + q( U). 

THEOREM 1. (i) The value of the game is 

FO V(T) - P(T). 

(ii) If pO 
is a strategy for the inspector such that 

p~ > min (1, q;) for all i 

then p O is optimal. 

(iii) If CO is a strategy for the inspectee such that 

c~ = 1 for i E T 

for i E U 

then C
O is optimal. 

PROOF: First, set 

p~ = 1 for i E T U W 

From (2.3) and (2.7b) we have 

q(U) < m - IT U WI 

and 
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and hence the above settings can be extended to yield a strategy pO for the inspector such that 

for i E U. 

Thus the hypothesis of (ii) can be satisfied. Set F ° = V(1)-P(1) and let c be any strategy for the inspectee. 

It follows from (2.4) and (2.5) that 

FO - F(c,pO) = V(1) - P(1) - ~ (Vi - PJCi - ~ (Vi - PiP~)Ci 
iETUW EU 

~ (Vi - PJ(l - c) - ~ Pi(qi - p;)Ci (3.1) 
E T E U 

> o. 

Now let CO be any strategy for the inspectee satisfying the conditions of (iii). Then, for any strategy p for 

the inspector, 

F(cO,p) _ FO ~ (Vi - PiP) - V(1) + P(1) + 
E T 

~ (Vi - PiPi)c~ 
E W 

~ Pi (l - p) + ~ Pi (l - p)C~ 
i E T E W 

> o. 

Combining equations (3.1) and (3.2), we have 

(3.2) 

for all p and for all c. Hence the value of the game is F 0, po is an optimal strategy for the inspector and CO 

is an optimal strategy for the inspectee. 
We now wish to determine whether or not there are any other optimal strategies. In Theorems 2 and 3 

we will show that when m> IT U WI +q(lf) then no other optimal strategies exist for either player. 
However, when m = IT U WI +q(U) then another class of optimal strategies for the inspectee exists. 

THEOREM 2. The strategy pO for the inspector is optimal if and only if 

p~ > min (1, q) 

for all i. 
PROOF. Let pO be an optimal strategy for the inspector. It follows from eq (3.2) that if there exists 

JET such that pjo < 1, then 
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where CO is the strategy defined in (iii) of Theorem 1. Hence pO is not optimal. This is a contradiction and 
so 

for allj E T. 

Similarly, if there exists JEW such that pj < 1, then 

(for any choice of cj>O). Again, pO is not optimal. This is a contradiction and thus we have shown that 

pj = 1 for allj E W. 

It remains to show that 

for all i E U. 

Suppose there exists j E U such that 

Consider a strategy c for the inspectee for which: 

C; = 1 for all i E T, 

S = 1, 
C; = 0, for i =1= j, i E U. 

Then 

Thus pO is not optimal. This is a contradiction and so we have shown that 

for allj E U. 

Hence p;>min (1, q) for all i. 
The converse is part (ii) of Theorem 1. 

We wish to show that if m> IT U WI +q(U), then every optimal strategy for the inspectee is given by 
(iii) of Theorem 1. The proof of the following Lemma is trivial. 

LDf~fA 1. If m > IT U WI + q(U), then there exists a strategy p for the inspector such that 

i E U 

Pi = 1 iET U W 

THEOREM 3. If m > IT U WI + q(U), then c is an optimal strategy for the inspectee if and only if 
Ci = 1 i E T 

Ci = 0 i E U 

(so that Ci is arbitrary for i E W). 
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PROOF. Let CO be an optimal strategy for the inspectee and suppose that there exists JET for which 
cj < 1. By eq (3.1) 

where pO is the strategy for the inspector define in Theorem 1. Hence CO is not optimal. This is a 
contradiction and thus 

for allj E T. 

Similarly, suppose that there exists j E U such that 

Let p be the strategy for the inspector described in the Lemma. By equation (3.1) 

Hence CO is not optimal. This is again a contradiction and so we have shown that 

for allj E U. 

The converse follows from (iii) of Theorem 1. 
The hypothesis that m> IT U WI +q(lI) of Theorem 3 was used only via Lemma 1, when showing that 

cjO =0 for all j E U. Hence, the following corollary is a consequence of the proof of Theorem 3 (whether 

m> IT U WI +q(lI) or not). 
COROLLARY 1. If CO is an optimal strategy for the inspectee then 

for all i E T. 

In order to complete our consideration of Case I, it remains only to examme the situation where 

m= IT U WI +q(lI). 
LEMMA 2. Let m = IT U WI + q(U) and let CO be an optimal strategy lor the inspectee. For h, j E U we 

hal,Je 

PROOF. Suppose that for some h, j E U, we have 

say 

cZ 
cj Pj 

Ph 
a > o. 
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Let b=min (qj' I-qh)· Since h,j E U, it follows that b>O. Define the strategy p for the inspector by 

Pn qh + b, 

PJ qj - b, 

p; min (I, qj) i =1= h,j. 

Note that p is a strategy vector since 

n 

~ p; = IT U WI + q(U) = m. 
i=1 

It follows from eq (2.4) and Corollary 1 that 

~ (~- PJc; - V(1) + P(1) + 
i f T 

L (Vj - P/lf;)c; 
i E U 

- L (~- PJ(l - en + [Vh - (qh + b) Ph]c~ + [Tj - (qj - b)Pj]cjO 
i f T 

< o. 

This is a contradiction of the optimality of CO and hence we have shown that 

Let m = IT U WI +q(U) and let CO be an optimal strategy for the inspectee. Since m <n it follows that 
U is not empty. By Lemma 2 there exists a number M(cO) such that M(cO)=e~Ph for all h E U. 

LDIMA 3. Let m= IT U WI +q(U) and let CO be an optimal strategy for the inspeetee. Then 

ct Pi :> M(cO) for all i E W, 

Pi :> M(cO) for all i fT. 

PROOF. Let j E U and suppose there exists hEW such that 
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Define the strategy pfor the inspector by 

Pi = 1, 

min (1, q;), i -=/=- j, h. 

Then, using Corollary 1, we have 

F(c°;P) - FO = (1 - q)PhcZ + (qj - l)Pj cj + l: (Vi - P;}(c; - 1) 
E T 

< o. 

This is a contradiction and hence 

for all i E W 

Now suppose that there exists h E T such that 

With pthe strategy vector for the inspector as defined above, we have 

F(c°,'P) - FO = (qh - q)PhcZ + (qj - l)Pj cj - Vh + Ph + l: (V; - P;)(c; - 1) 

E T 
i-=/=-h 

< 0 

since PhcZ <Ph <M(cO). Again we have reached a contradiction and thus we have 

for all i E T. 

We are now able to determine all of the optimal strategies CO for the inspectee in the special case where 

m=IT U WI+q(U). 
THEOREM 4. Let m = IT U WI + q(U). A set of necessary and sufficient conditions in order that the 

strategy vector CO be optimal for the inspectee are 
(i) there exists a real number M(cO) such that 

a) c~ Pi = M(cO) 
b) c~ Pi > M(cO) 
c) Pi > l\f(CO) 

(ii) c~ = 1 

for all 
for all 

for all 

for all 
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PROOF. The necessity of the conditions follows from Corollary 1; Lemma 2 and Lemma 3. 
Now let CO be a vector satisfying the conditions of the theorem. Then, for any strategy p for the 

inspector, 

Set 

Then 

since 

~ (17; - PiP) - V(1) + P(1) + l: Pi (1 - p)c~ + l: (qi - p)Pi c,~ 
eT ieW ieU 

~ Pi(l - p) + l: Pi (1 - pJc~ + ~ (qi - p)M(cO). 
eT ieW ieU 

for all i e W, 

for all i e T. 

n n 

~ min (1, q)­
i=l 

~ PJM(cO) + ~ (1 - p)bi + l: (1 - p)ai 
i==l ieT ieW 

~ (1 - p)b i + ~ (1 - p)a i 
i e Tie W 

n n 

~ min (1, q) = IT U WI + q(lJ) = m = ~ Pi· 
i=1 i=l 

Hence F(cO,p)-F°;>O for all p and so CO is an optimal strategy for the inspectee. 
COROLLARY 2. Let m = IT U WI +q(l!) and let M be a real number. A necessary and sufficient 

condition that there is an optimal strategy CO for the inspectee such that M(cO)=M is that 

0<; M <; min Pi. 

PROOF. Let CO be an optimal strategy for the inspectee with M(cO)=M. Then 

for all i e U, 

for all i e W, 

J,1 <; Pi for all i e T 

and so ill :< min Pi. 
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Conversely, let M be any number such that O<M< min; P; and define CO by 

c7 = 1 for all i E T U 117, 

for all i E U. 

Then CO is the desired optimal strategy for the inspectee. 
This completes the case in which the inspector's resources are at least adequate for the job of inspecting 

the devices under his/her jurisdiction. The value of such a game is F ° = V(1)-P(1), which is independent of 
m. The inspectee cannot, of course, be prevented from benefitting by cheating on the tempting devices (1), 
but he/she gains nothing (or actually decreases his/her expectation) by cheating on the other devices 
(U U W). When the inspector's resources are just barely adequate for his/her responsibilities (i.e. 
m = IT U WI +q(U)), the inspectee has a wider variety of optimal strategies to choose from (e.g., 
including cheating on the devices in U U 117 with probabilities inversely proportional to the associated 
penalties) but the value of the game remains the same. We now turn to the case of inadequate inspection 
resources. 

4. Case II 

The defining relation for Case II, which describes the inspection resources as being below a certain 
adequacy threshold, is 

n 
m < IT U WI + q(U) ~ min(l, qJ. 

i=1 

Recall that in (2.1) we have numbered the devices so that 

It follows from (4.1) that there exists an integer k, O<k <n, such that 

k 
~ min(l, q) < m < 

i=1 

k+l 
~ min(l, q). 

i=1 

(4.1) 

(4.2) 

If the P;'s are not distinct then the condition of (2.1) does not assign a number to each device in a unique 
manner. This ambiguity in numbering the devices may in turn affect the value of k as defined by (4.2). 
However, the subsequent material does not depend on which of the possible numberings obeying (4.2) is 
used. Once k has been determined, we set 

L = {i I P; < Pl + 1} 

Note that G, E and L are independent of which of the possible numberings of the devices obeying (2.1) has 
been used. Clearly E is not empty, although either G or L might be. Set K ={1,2, ... , k} with the 
understanding that K is empty if k = o. Then 

G h K C K U {k + I} ~ G U E 
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and so 

k k+1 
~ min(l, q) < ~ min(l, qJ < m < l: min(l, q) < l: min(l, qJ. 

i E G i= 1 

Then, setting 

we have 

We will show that 

is the value of the game. 

i=l i E G U E 

g m - l: min(l, q) 
i E G 

m - I G n TI - q(G n 1), 

o < g < ~ min(l, q). 
i E E 

V(G n 1) + V(E) + V(L) - PHlg - P(G n 1) 

LEMMA 4. Let FO be defined as in (4.5) and let pO be any strategy for the inspector which satisfies 

(i) 
(ii) 
(iii) 

p~ min(l, q;) 
p~ 0 
p~ < min(l, qj) 

Then F°;;"F(c,pO)for all strategies cfor the inspectee. 
PROOF. It follows as a consequence of (i), (ii) and (4.3) that 

Substituting (i) and (ii) into (2.4), we have 

for all i E G, 
for all i E L, 
for all i E E. 

F(c,pO) = ~ (Vj - P)cj + l: _ (Vj - Pjq;)cj + l: (17; - PHI p;)C j + l: 
i E G n T iEGnT iEE iEL 

But Vj-Pjqj=O for all i E G n f. It follows from (4.5) and (iv) that 

~ Pj (qj - 1)(1 - c) + ~ (Vj - PHIP~)(l - c) + l: Vi (1 - c
j
). 

iEGnT iEE iEL 

However. q; -1 > 0 for i E G n T and, by (iii), 

for all i E E. 
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Hence each term on the right hand side of the last equation is non-negative and so 

for all strategies c for the inspectee. 
COROLLARY 3. Let'Cbe a strategy for the inspectee. In order that F('ir,p)=Fo for all strategies p for the 

inspector which satisfy conditions (i) through (iv) of the lemma, it is necessary and sufficient that 

(v) ,-.oJ 

Ci = 
(vi) ,-.oJ 

Ci = 
(vii) ~ 

Ci = 

1 

1 
1 

for all i f G n 1: 

for all i f L, 
for all i f E. 

PROOF. It follows immediately from (4.6) that conditions (v) through (vii) form a set of sufficient 
conditions that F(C',p)=Fo for all strategies P which satisfy conditions (i) through (iv). 

Since qi-1>0 for all i f G n T and Vi>O for all i E L, (4.6) also shows that (v) and (vi) are 
necessary conditions that F(~p) =F ° for all strategies p satisfying (i) through (iv). It remains to show that 
condition (vii) is also necessary. By (4.4), for each j f E there exists a strategy for the inspector, pi, 
satisfying (i) through (iv) and such that 

p~ < min(l, q). 

Then 

By (4.6), in order that F('C:pi)=Fo, it is necessary that Cj= 1. Hence we have shown that condition (vii) is 
also necessary. 

LEMMA 5. If'C is any strategy for the inspectee which satisfies conditions (v) through (vii) of Corollary 3 
then 

F('C:p) - FO = ~ (Pi - Pk+l)(l - pJ + ~ (Pk+l - Pi)Pi + ~ (P;<; - Pk+l)(qi - PJ (4.7) 
if G n T fL ifGnr 

for all p. Ifc is any strategy for the inspectee which satisfies conditions (v) through (vii) and, in addition, 
satisfies 

for all i f GnU 

then 

F(c,p) - FO = ~ (Pi - Pk+ I)(1 - p,) + l: (Pk+l - P')Pi + 
f L 

~ (Pli - Pk+I)(1 - p,) (4.8) 
i f G n T e G n w 

for all p. 
PROOF. Let c be a strategy for the inspectee which satisfies (v) through (vii). Substituting (v) through 

(vi) into (2.4), we have 

F(~p) = ~ (Vi - PiP) + l: Pi (qi - p)C; + 
ieGnT ifGnr 

l: .(Vi - PH1P) + 
f E 

V(G n 1) + V(E) + V(L) + PH,[q(G n 1) - p(G n 1) - p(E)] 

~ PiPi - l: PiPi + ~ (P;'C( - PH ,)(qi - Pi)· 
fG fL ifGnf' 
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It follows from (4.5) that 

F(c,p) _ FO = P"+I[q(G n 1) - p(G n 1) - p(E) + g] - ~ PiP; 
i € L 

+ ~ _ (P/C; - P,,+ l)(q; - p;) + ~ P;(l - p;}. 
i € G n T i € G n T 

Solving eq (4.3) for m, we have 

m = g + / G n T/ + q( G n 1) 

and so the last equation becomes 

F(c,p) - FO = PH1[m - p(G n 1) - p(G n 1) - p(E) - p(L)] + ~ (P"+l - P;}p; 

i € L 

+ ~ (Pi - P"+I)(l - Pi) + 
i E G n T 

By eq (2.3), 

m = p(G n 1) + p(G n 1) + p(E) + p(L) 

and consequently we are left with 

F(c,p) - FO = 1: (PHI - P)Pi + ~ (Pi - PH1)(1 - p) + 1: (P/c-: - P"+l)(qi - p;) 
iEL i€GnT i € G n T 

which is eq (4.7). 

If c is a strategy for the inspectee which satisfies condition (viii) then 

for all i E Gnu. 

Thus, if c satisfies conditions (v) through (viii) then eq (4.7) becomes (4.8). 
It follows from equation (4.8) that: 
COROLLARY 4. If CO is a strategy for the inspectee which satisfies conditions (v) through (viii) and also 

satisfies 

for all i E G n W, 

then F(cO,p»Fo for all p. 
We can now describe the solution of the game in Case II. 
THEOREM 5. (a) The value of the game is FO. (b) If pO is a strategy for the inspector which satisfies (i) 

through (iv) then pO is optimal. (c) If CO is a strategy for the inspectee which satisfies (v) through (ix) then CO is 

optimal. 
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PROOF. First we wish to show that there exist strategies pO and CO which satisfy conditions (i) through 
(iii) and (v) through (ix) respectively. It is readily verified that if pO is defined by 

min(l, qJ 
o 
g min(l, q)l{ l: min(l, q)} 

jeE 

for all i e G, 
for all i E L, 
for all i E E 

then pO is a strategy for the inspector and pO satisfies (i) through (iv). 
Similarly, if CO is defined by 

° 1 for all i e G n T, Ci 

° 1 for all i e L, Ci 

° 1 for all i e E, Ci 

° PH/Pi for all i E G n T, Ci 

then CO is a strategy for the inspectee and CO satisfies (v) through (ix). 
The Theorem now follows from Lemma 4 and Corollary 4. 
Theorem 5 provides sets of sufficient conditions for stategies of each of the players to be optimal. In 

Theorem 6 we will show that the converse of part (b) of Theorem 5 holds, that is, conditions (i) through (iv) 
are both necessary and sufficient for a strategy for the inspector to be optimal. However, conditions (v) 
through (ix) are not necessary for a strategy for the inspectee to be optimal. In Theorems 7 and 8 we will 
provide a set of necessary and sufficient conditions that a strategy for the inspectee be optimal. 

COROLLARY 5. If CO is an optimal strategy for the inspectee then CO satisfies conditions (v) through (vii). 
PROOF. Let CO be an optimal strategy for the inspectee and let p be any strategy for the inspector which 

satisfies conditions (i) through (iv). By Theorem 5 (b), p is an optimal strategy for the inspector. By 
Theorem 5 (a), F(co,p)=Fo and by Corollary 3, CO satisfies conditions (v) through (vii). 

We can now identify all of the optimal strategies for the inspector. 
THEOREM 6. The strategy pO for the inspector is optimal if and only if pO satisfies conditions (i) through 

(iv). 

PROOF. By Theorem 5 (b), a strategy pO for the inspector which satisfies conditions (i) through (iv) is 
optimal. Conversely, let pO be an optimal strategy for the inspector and let CO be a strategy for the inspectee 
which satisfies conditions (v) through (viii) and also 

for all i E G n W. 

Since condition (x) is stronger than condition (ix), it follows from Theorem 5 (c) that CO is optimal. It then 
follows from Theorem 5 (a) that F(co,pO)=Fo. Consequently, eq (4.8) becomes 

o = ~ (Pi - PHI)(l - p;) + l: (P"+I - PJp;. 

But 

Thus, we must have 

eGnT iEL 

Pi-P'+I > 0 

PHI - Pi> 0 

for all i e G n T, 

for all i E L. 

for all i e G n T 

for all i E L. 
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Now, for each h E G n T we define two strategies for the inspectee, c" and ch
, as follows: 

'"t' and c" satisfy conditions (v) through (vii) 

,...;, -" Cj = Cj for all i E G n f, i -=/= h 

,...;, 
1, C" = c1 = o. 

Since pO is an optimal strategy for the inspector we have 

F O 
- F(Ch,pO) > 0, 

FO - F(c",pO) > O. 

Sincec" and c" satisfy conditions (v) through (vii), we may apply Lemma 5. Substituting eq (4.9) and (4.10) 

into eq (4.7), we have 

from which it follows that 

FO - F\c',pO) = (P" - PH1)(qh - p~) > o. 

F O - F(c",pO) = (-P"+l)(q" - p;) > 0, 

for all h E G n T. 

We have now shown that po satisfies conditions (i) and (ii) and consequently, as in Lemma 4, we have 

It remains only to prove that po satisfies condition (iii). 
Suppose that there exists r E E for which p:>qr. We define the strategy cr for the inspectee by 

cr 
satisfies conditions (v), (vi) and (viii), 

C~ = 1 

c~ = 0, 

for all i E E, i -=/= r, 

that is, c
r 

differs from the strategy c of Lemma 5 for the inspectee only in that c;=O whereas cr = 1. By a 
computation similar to that of Lemma 5, we find 

E E 
i-=/=r 

:! PH1(qj - p;) - V(E) + gPH1 - P"+l(qr - p;) 
E E 
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However, since pO is an optimal strategy, we must have 

This is a contradiction and so we have shown that 

for all i E E, 

which proves that pO satisfies condition (iii). 
It remains to find a set of necessary and sufficient conditions that a strategy for the inspectee be optimal. 
LEMMA 6. If CO is an optimal strategy for the inspectee then CO satisfies 

for all i E G n T. 

PROOF. For j E E, let pj be the optimal strategy for the inspector defined in Corollary 3, that is, pj 
satisfies conditions (i) through (iv) and 

p~ < min(l, q). 

Consider any h E G n T; it follows from condition (i) that 

We choose any u such that 

o < u < min(qh' 1 - p~ 

and define the (not optimal) strategy p by 

Pi p~ + u, 

~ = p{ - u = qh - U, 

[/; = p~ 
I 

for all i, i =1= j, h. 

Since CO is an optimal strategy, 

and, by Corollary 5, CO satisfies conditions (v) through (vii). By eq (4.7), 

l: (Pjc; - P/c+I)(qj - PJ 
E G n f 
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and so CO satisfies condition (xi). 
LEMMA 7. If CO is an optimal strategy for the inspectee then there exists a real number M(cO);>O such that 

(xii) for all i E GnU, 

(xiii) for all i E G n w. 

PROOF. If GnU is empty then, by Lemma 6, 0 will do for M(cO). Hence we assume that there exists 
j E GnU and consider any h E G n f, j=l=h. Choose u such that 

o < u < min(q", 1 - q). 

Let pO be an optimal strategy for the inspector and define p by 

p" q" u, 

...... 
qj + u, Pj 

p; = p; for all i, i =1= j, h. 

By eq (4.7), we have 

Since CO is an optimal strategy, 

Hence 

We set 

Thus we have shown that 

for all i E G n T. 

If h (as well as J) belongs to GnU then this argument can be repeated with j and h interchanged. Thus 

for all h, j E Gnu. 

By Lemma 6, M(cO);>O. 
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LEMMA 8. Let CO be an optimal strategy for the inspectee. If g>O and GnU is not empty then M(cO)= 

0, that is, CO satisfies condition (viii), namely, 

for all i E Gnu. 

PROOF. Since Gnu is not empty, we may select j E Gnu. Let pO be an optimal strategy for the 

inspector. Since g> 0, (iv) shows that there exists h E E such that 

Choose a real number u such that ° < u < min(p~, 1 - q) 

and define the strategy p for the inspector by 

p" p~ u, 

""oJ 

p; + Pj u 

p; p; for all i, i =1= h, j. 

Then a simple calculation yields 

Since j E GnU, it follows from Lemma 7 that 

F(co,'j)) _ FO 

However, CO is optimal and thus 

By Lemma 6, M(cO);>O and so we have M(cO)=O, which is equivalent to condition (viii). 

We are now able to identify all of the optimal strategies for the inspectee. Theorem 7 wiII show that if 

GnU is empty or if g> 0, then the optimal strategies are those described in (c) of Theorem 5. However, 

when both of these conditions are violated then there is an additional class of optimal strategies. These wiII 

be described in Theorem 8. 
THEOREM 7. If either GnU is empty or g>O then CO is an optimal strategy for the inspectee if and 

only if CO satisfies conditions (v) through (ix). 
PROOF. Let CO be an optimal strategy for the inspectee. By Corollary 5, CO satisfies conditions (v) 

through (vii). If GnU is empty then condition (viii) is satisfied vacuously. If g>O and Gnu is not 

empty then, by Lemma 8, condition (viii) is satisfied. Finally, by Lemma 6, condition (ix) is satisfied. 

The converse is (c) of Theorem 5. 

THEOREM 8. Let g=O and let GnU not be empty. Then CO is an optimal strategy for the inspectee if 
and only if CO satisfies conditions (v) through (viz) and there exists a real number l\1(CO), 

° <; M(cO) <; Min Pi - PI..+l' (4.11) 
iEG 

such that c ° satisfies 

(.~iz) PiC~ - PI..+1 = M(cO) for all i E Gnu, 

(xiiz) PiC~ - PHI ;> M(cO) for all i E G n W. 
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PROOF. ° Let CO be a strategy for the inspectee which satisfies conditions (v), (vi), (vii), (xii) and (xiii), 
where M(c ) be a real number satisfying (4.11). By Lemma 5, 

F(co.p) - FO= ~ (P; - Pk+1)(1 - p) + ~ (Pk+1 - P)p; + ~ _(PiC; - Pk+I)(qj - p) (4.12) 
iEGnT iEL iEGnT 

for any strategy p for the inspector. For each i E G n ,set 

PiC; - PHI - M(cO) = a; ;> O. 

Then eq (4.12) becomes 

F(cO,p) - FO ~ (P; - PH 1)(1 - p) + ~ (Pk+1 - P)Pi 

i E G n T i E L 

+ ~ (M(cO)(q; - pJ + ~ [M(cO) + aJ(l - pJ. (4.13) 
i E G n U i E G n IF 

Since g=O, it follows from eq (4.3) that 

m = I G n TI + q( G n 1) 

= p(G n 1) + p(G n 1) + p(E) + p(L). 

Thus, 

q(G n 1) - p(G n 1) = p(G n 1) + p(E) + P(L) - IG n TI. (4.14) 

Substituting eq (4.14) into eq (4.13) yields 

F(cO,p) - FO = ~ (P; - PH 1)(1 - pJ + 
i E G n T 

~ (PH 1 - PJpi 
i E L 

+ M(cO)fp(G n 1) + p(E) + p(L) - I G n TI] + 
i E G n IF 

= ~ [Pi - Pk+1 - M(cO)](l - pJ + ~ [Pk+1 - Pj + M(cO)] p; + ~ M(cO)p; 
iEGnT iEL iEE 

+ ~ a; (l - pJ ;> 0 
i E G n IF 

for all strategies p for the inspector, since P; -Pk+ I-J1(CO);>° for all i E G n T. Thus we have shown that 
CO is an optimal strategy. 

Conversely, let CO be an optimal strategy for the inspectee. By Corollary 5 and Lemma 7, CO satisfies 
conditions (v), (vi), (vii), (xii) and (xiii) for some Jl(cO);>O. It remains only to show that M(cO) satisfies the 
right-hand inequality in (4.11). Suppose it does not. Then there exists h E G n T such that 

Jl(cO) > Ph - P"+I' 
that is, 

Ph - P,,+ 1 - Jl(cO) < O. 
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Since Gnu is' not empty, there exists j E GnU and so qj< 1. Define the strategy p for the inspector 
by 

Ph qj 

Pj 1 

Pi 1 for all i E G n T, i =1= It, 
Pi qi for all i E G n T, i =1= j, 
Pi 0 for all i E E n L. 

Then 

which contradicts the fact that CO is an optimal strategy for the inspectee. Hence M(cO) satisfies (4.11). 

Table of Results 

Case Definition I nspectee' s Strategy Inspector's Strategy Payoff 

m > ITI + q(T) p~ ~ min(l,q,) Cj = I i E T FO= l'(T) - PIT) 

C j = 0 i E [! 

Case I 

m = ITI + q(f) p; = min(l,q,) C~Pj = M(c°) i E U FO = I'(T) - I'T) 

C~Pj ;;. M(cO) i E W 

Cj = I i E T 

C j = I i E G n T 

° = I i E L Cj 

C j = 1 i E £ FO= pC; n T) + I'(f:) 

C j = PH/Pj i E G n U + 1,(/, ) - P, + I t: - IV; n T) 

p~ = min(l,q,) i E G 

Case II m < ITI + q(f) p~ = 0 i E L c; ;;. P,+/Pj i E G n W 

for G n (! = ~ or g > 0 

p~ ..;; min(l,q,) i E £ 

pOlE) = ° = 1 i E G n T g c j 

C j = I i E L 

C j = 1 i E £ 

C;Pj - PHI = M(cO) 

i E G n (! 

c;Pj-PHI ;;. M(cO) 

i E G n W 

for G n u =1= ~ and g = 0 
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5. Example: Proportional Penalties 

Our aim in this section is to illustrate the preceding material by applying it to some simple situation. 
Three possibilities suggest themselves for this illustrative role. One is the situation in which all penalties Pi 
have a common value P. This, however, is precisely Model 1 of our previous paper [2], and so it need not 
be repeated here. The other two "scenarios" are both natural generalizations of Example 1: Equal-Sized 
Firms given in section 3 of [2]. One of them involves a common value V for the cheating-gains Vi; the other 
postulates a common value q for all the quotients qi= V/ Pi. The latter situation, in which penalties for 
detected cheating are proportional to gains from cheating, leads to results which are simpler and more 
readily interpretable and it is also more relevant in the (income-tax return audit) context of [1]. This 
constant-q situation was therefore selected for presentation below. 

Suppose first that q> 1. Then all n devices are "tempting", i.e., T=N, while T, U and Ware empty. The 
right-hand side of (2.7) and (2.8) reduce to n. Since m<n, Case II is governing. It follows from (4.2) that k 
is the greatest integer not exceeding m, which we denote k=[m]. From (4.3), we have g=m-I G I. 

The value of the game, according to (4.S) and (a) of Theorem S, is given by 

FO V(G) - P(G) + V(E U L) - PH~ 

(q - l)P(G) + q[P(N) - P(G)] - PH1(m - I G /) 

qP(N) - mPk+1 - [P(G) - PHil G I]. (S.l) 

It is interesting to think of the P,.'s as fixed and to see how F 0, a measure of the (mis)performance of the 
inspection system, varies with m (a measure of the inspection-resources available) and q (a measure of the 
incentive to cheat). For each integer k, with O<k<n-1, it follows from (S.l) that F ° is linear in q and m in 
the vertical strip {(m, q):k<m <k + 1, q> 1} of the (m,q)-plane; as would be expected, F ° increases with q 
and decreases with m. 

The optimal strategies pO for the inspector are given by (b) of Theorem S: one should always inspect 
those devices with penalties greater than the critical level PHI' never inspect those with penalties below 
this level, and allocate the balance (if any) of his/her effort arbitrarily among the remaining devices. The 
optimal strategy for the inspectee is given by Theorem 7 (since U is empty), and requires always cheating 

on every device, a natural conclusion since all devices are tempting. 
Now suppose that q=l; thus W=N, while T and U are empty. The results are just the limiting case 

q = 1 of those given above, except for the optimal strategies of the inspectee. Hel she need not always cheat 
on those devices Di with the higher penalties (Pi> Pk+ I)' but hel she must do so with high enough 
probability (c~>PH.I P,) to keep the inspector from diverting effort from certain inspection of these devices 

to more frequent inspection of the others. 
Finally, suppose that q< 1. Thus all devices are untempting (U=N), while T and Ware empty. The 

right-hand side of (2.7) and (2.8) reduces to nq; thus Case II governs if min <q< 1 while Case I governs if 

q<.mITl. 
For mln<q<l, (4.2) yields k=[mlq], while (4.3) givesg=m-qIGI. Again the value of the game FO.is 

given by (4.S), yielding 

F
O 

= V(E U L) - Pk+lg 

q[P(N) - {P(G) - Pk+11 GI}] - mPH1 · (S.2) 

For each integer k, with 1 <.k<.n-l, F ° is linear in q and m (increasing with q, decreasing with m) in the 

angular sector {(m,q):k<mlq<k+ 1} of the positive quadrant of the (m,q)-plane. 
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Still under the assumption that mln<q<l, the optimal strategies for the inspector are given again by 
(b) of Theorem 5; again the devices with penalties Pi exceeding the critical level PH I are always to be 
inspected, while those with lower penalties should be left uninspected. The balance (if any) of inspection 
resources can be allocated arbitrarily among the remaining devices, Di' subject only to the no-overkill 
proviso p~ <qi' If either G is empty (i.e., PHI =maxi P) or if g=O, then the unique optimal strategy for the 
inspectee is given by Theorem 7: cheat on the high-penalty devices (Pi>PHI ) with probability PH'; Pi' and 
always cheat on the other devices. But if g=O and G is non-empty (i.e., there are mlq high-penalty 
devices), then Theorem 8 shows that the inspectee has an additional one-parameter family of optimal 
strategies specified by the behavior Pi c~ -PH I =M(cO) on the high-penalty devices Di (and always cheating 
on the other devices), where the range of the parameter M(cO) is given by (4.11). 

The only remaining situations are those with q<mln. As noted above, Case I applies. The game-value FO 
is 0, by (i) of Theorem 1, so that the inspection-system succeeds in preventing illicit gains by the inspectee. 
In fact, if q<mln then Theorem 3 shows that the system succeeds in inhibiting all cheating (in optimal 
behavior) by the inspectee. If q=mln, however, the inspectee has (by Theorem 4) optimal strategies 
involving cheating on the various devices Di with probabilities inversely proportional to the associated 
penalties Pi' By Theorem 2, the optimal strategies for the inspector are precisely those in which each device 
is inspected with probability at least q. 
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