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The efectz of random emore and of nonconetant heat of vaporization upon the estimation of 1he
second and third law heats of vaporizalion are examined. The mosi imporiant conclusion is that the
often noticed marked improvement in precision of 1he thivd law heat over that for the second Law heat
in real and s a petural conssquance of the difference beiween the two estimeigm. The sffects of
systematic errors upon ihe two heats are not investigated here.  Other results of imerest, but of dess
imporiance becangs of Lthe small magmitude of the effects, include: {1) the two heate are negatively
correlated, {Z) the second law heal is generally biased, (3) the third law heat is gol the minitum Tariance
unbingad =atimator of the= haat of vaporzabon, and (3) tha standard deviation obiained Erom lemst
equares filting consistently overestimatzq the e siandard deviation, bat by a negligible amonnt.
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1. Introduction

For some years it has been the practice when re-
porting high temperature vapor pressure data to.com-
pute and disconss “second law™ and “third law™ heats
of vaporization or sublimation. Because each experi-
mental temperatare yields a third law heat, the
individual values are often examined for consistency.
Since each of these should be estimating the same
quantity, grossly different values of one or of a few
individuals are suggestive of experimental difficulty.
With puotliers thus congidered, and generally discarded
from future consideration, the remaining data are
examined for irend, cither with temperature or with
chronological sequence. Trend with temperature is
generaily thought to be caused by systematic error in
temperature Measurement or in vapor pressure meas-
urement, or by systematic error in the tabular free
energy functions used to compuie the third law heats.
Trend with experimental sequence accasionally means
that window or similar corrections used for optical
ﬁ’mmﬁtr}r, were changing from run torun.  This could

caused by darkening of the observation window as
experimentation proceeds, for example. When the
third law heats appear to pass this critical evaluation,
the average is generally compared to the second law
heat. The latter is usually obtained from the slope
of aleast-squares fit of the logarithm of the pressure to
a straight line in the reciprocal of the abaolute tempera-
ture. This comparison is also supposed to serve as
a test of the experimentation [1]1 “. . . because if the

" Flyirrw in brackets imdicuie the Hwrsture raferences s iiw omd of 1his pigeet,

heata calcnlated by the two procedores de not agree
within the carefully cal.culateg ervars, then the experi-
ment containg inconsistencies which all too often
indivate either serious systematic errors or perhaps
unknown species.”

The nses described above to which the two eatimates
of the heat of transformation are put imply that those
estimates are not hiased by the method og eatimation
and furthermore that they are independent in the
probability sense. It is the purpose of this article w
point gut the failyre of these implicit conditions to
apply and to examine the consequences of this failure.
In general, the questions of unbiasedness and inde-
pendence are always pertinent when two experimental
values subject to random error are compared.  Shonld
either or both be biased by the means of computation,
the difference may be due to that rather than to factors
under study. Independence is always questionable
when, as in the case of the second and third law heats,
two estimates are computed using the same data.
Lack of independence in the atatistical sense would
mean that random errors causing one estimate to be
high would cause the other 1o be also, in the case
of positive correlation. Megalive correlation would
mean that random errors would have opposite effecis
on the two estimates. Independence wounld mean that
there ia no definite relation of this kind. The presence
of cortelation needs to be waken ino aceount when a
comparison is made.

It is found that the bias in the second law heat, as
usually caleulated, is generally negligible hecange of
the cumrently attainable precision of most methods for
measuring high temperature vapor pressures. The
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lack of independence of the rwo heats does nor sig-
nificantly aﬂF::t the size of the random error 1o be
atttibuted te their diference.  An important result is
the understanding that the greater imprecision of the
second law heat compared to that of the mean third
law heat is a nawral consequence of the difference
between the two estimators and of the eiperimental
temperatures usually involved. The usual method of
computing the variance for the second law heat over-
estimates the variance when the simplest linear equa-
tion is Gtted by least squares. This oversstimation is
quite small, however, and is naturally on the side of
congervatism. Although the usualy computed third
law heat is not the minimum variance unbiased eati-
mator, the loss of precision is quite small.  The vapori-
zation process is the main consideration here, but it is
obvious that any reversible process for which the
equilibrium constant is treated by a similar procedure
is governed by the same considerations. Simijlar

roblems arise when estimating the entropy of trans-
ormation as the least-squares intercept of the usual
gacond law treatment. As these problems will be
obvious after comsidering the aecond law heat, entropy
prablems will not be treated here.

In what follows, the second and third law heats are
discussed with a minimum of mathematical statistics.
Staxistical derivationa, which are either already avail-
able elsewhere or are straightiorward, are relegaied to
an appendix for statistically minded readers. Fol-
lowing the theoretical discussion of second and third
law heats, a numerical example is given to illustrate
the magnitudes of the effects.

2. Theorefical
2.1. Second Law Heat

Empirically, the vapor pressure, p, generally fits
the equation

Rlnp=d—% {1

within experimental ervor, where B is the gas constant,
A and B are assumed ts be constant and T is the abso-
lute temperature. However, thegretically at a single
temperature

R1n p=as— 22 @

where AS® and AH, the entropy and enthalpy changes,
are slowly varying functions of 7. The superscript °
specifies the substances to he in standard states.
Equation (2} assumes that the pressure ia sufficiently
low for the gas to be assumed ideal. One method of
treating the data fits experimental values of B 1ln p to
/T and adjusts B, the least squares estimate of B in
eq (1), to a reference temperature Tr. £ might be
considered a reasonable estimate of AF® for some
representative temperature within the experimental

range: the enthalpy change at a commonly used ref-
erence lemperature far removed from the region of
the experiment is somewhat different. Adjustment of

A to such a temperatare is given by

L=.&—J:‘a.c;dr 3)

where &; iz used to represent the estimate of the sec-
ond law heat obtained by adjusting & from the experi-
mental temperature, Ty, to the reference temperature,
T:. The quoantity ACT s the heat capacity of the vapor
minns the heat capacity of the condensed phase at
constant pressure. ALY is a function of T, but is
independent of p.

The reason, of course, that ag (1) ia usable without
peripus error is that ACT is sufhciently small that jts
integral over a short range is negligible compared to
AH®. The use of eq (3) is strai l&mard as long as
one knows the comrect value of T, Some workers
make allowance for this problem by using heat capacity
data as in the sigma method [2,3] More often than
not, however, the additional computational lahor is not
felt to be warranted and is not camried put. Instead,
the experimenter chooses some bemperature within
the range of the experiment as corresponding to the
leazt-squares slope in order that the adjustment by
eq (3) may be carried out. Some authors use the arith-
metic: mean of the experimental temperatures. (thers
nse the temperature corresponding to the arithmetic
mean of the reciprocal temperatures.  Still others use
a rounded value somewhere near the midrange. How-
ever, it is shown below that if the data are required to

fir eq (1), the quantity & does not represent unambigu-
ously the heat of vaporization at any recognmizable
temperature within the range of experiment. Instead
the quantity represents a combination of enthalpy and
entropy terms and of the coefficients of the heat
capacity equation.

It is particularly convenient in what follows to re-
place the variable — T! by x. Then the exact vapor
pressure equation may be written as

Rln p=a+ac+ /X, 4

where a function of x {and thevefore of T) has been
added to the simplest form in order to make it exact.
There iz no other limitation on the form of this function.
Then ithe usunl least-squares slepe for fitting eq (1)
has as its expected value

-~ Xx— Elf [E]
=g+ -
BT ®
Alternatively it is possible to show that if gx) repre-

sents the sloﬂe of the secant connecting the paint
{x, & In p) with the point on the curve at ¥,
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HE = Six—%R

{6)

Thus, the least squares linear slope is a weighted
average of the wrue slopes of the set of secants where
the weighting ie proportianal to the square of the dis-
tance from X.

Because B does not represent the slope at any easily
defined point, the nsual choices for T in eq (3) lead to

bias in 3:, the second law heat. The hias, however,
is quite amall and is given by the integral of AC7 from
the chosen T, to the correct, if unknown, value of T..
Examples of its magnitude are given later. The main
advantage of the modified procedures mentioned ear-
lier appears to be that they avoid the ambiguoity of the
temperature to which the slope applies. Oecasional
extended discussions arise, however, about the “cor-
rect” temperature to use, and it is well 10 recognize
that there is no easily defined one when the data are
fitted directly to eq (1n The bias iz not small if the
_ lowest or highest experimental temperature is chosen
rather than one near the midrange. Further discussion
of thiz point is relegated to a later section. Removal
of the small hias by some means may be considered
desirable because, hopefully, vapor pressure data
collection will improve over the years and, secondly,
because comparizon with third law heat for significant
difference should be made with estimates known to
be unbiased with respect to sources not being tested
by the comparison.

Because the experimental data are fitted to a siraight
line and hecause thecretically the correct function is
known to be more complex, the computed standard
deviation is estimating a value larger than the true
standard deviation. It is shown in the appendix that
the increase in vatiance (the square of the standard
deviation) is given by

EVF=(n—2) I[Z{I—ﬁ - mﬁfﬁ_f"z]a (7

where n is the number of ohservations and fix) has
been shortened to f for convenience. This quantity,
the extra variance function, is always positive and, as
shown in the numerical example, is negligible for the
tvpe of experiments being considered.

2.2, Third Low Heat

Alternative to the second law treatment is that of the
third law wherein for each experimental point, £, there
is computed

bi=Ti8i—R In pJ, (8)

Gi—Hp

where E:=.ﬁ.[— 7| the change in free energy

function for the provess [4]. The free energy function,

=K . . .
— 7 for each anhstance is generally available in
T

tabulations or may be computed from other data. The
bz are examined individually, as suggested in the
introduction, and they are also averaged to give

& =i % by )

the estimator for the third law heat.

Thiz estimator is unbiased. Heowever, if the random
errors are essentially constant when measured in
R In p at different temperatures, random ervors in the
by will be & function of T because of the term 8T In p.
As a consequence By as given by eq (9) is not the esti-
mate with the least variance. There will generally be a
larger error associated with & than with another

estimator, b, where

i ZxiRInp—8 ZT-Y%§—F Inp)
S T

This is an unbiased estimator also. It can be shown
that A is, of all unbiased estimators of the hea, the
ong with minimum variance and may be called the
“minimum variance unbiased estimator™ [(MVUE).

Because 5; has a smaller variance than bs, it might be
preferred. However, it will be shown in the numerical
example that for high temperature experiments the
improvement in precision is amall and does not war-
raot the lozs of convenient computation. As already
pointed cut, the individual &y serve a useful purpose.

2.3, Similarity of Formulas for the Estimators

The estimators by, &, and &, each of which is an
estimate of A, can be written in similar notation and
the similarity is striking when these are placed side
by side as fallows:

Six—%R In p—8_E(T-'—7T-96—R In p)

b = Six—3)t E(T_I_TTI}!
aa _ZxWRIlnp—8 _ITE—RInp) (10)
R R
53=E.t{R Inp—8) _ET '8 —RInp)
p IT-¢

Although they are aot treated in this article the effects
of systematic errors, such as in the thermodynamic
data, may be readily investigated using these equa-
tions, The comparison of the different estimators is
particularty facilitated.

1.4. Varionce and Covatiance of the Extimates

Becauss th_e second and third law heats are obtained
by gn_essentmﬂy statistical estimation procedure, the
statistical properties of the eatimators are of intereat.
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Of greatest inlerest are the expected values of the
estimators, their variances, the covariance and the
correlation coeficient. Knowledge of the law govern.
ing the random errors would be desirable, but is not
necesgary. At this time it can only be stated as likely
that the random deviations from eq (1) are of the Gaus-
gian type when measured as deviations in Rlnp. That
errorz are pften uowarraniedly assumed to have this
characteristic has been shown by Clancey [3] For
least-aquares fitting it is merely necessary that the
random errors have mean zero, constant variance and
be tndependent of one anotker in the probability sense.
An examination of representative data is proceeding in
this laboratery to ascertain the validity of the normal
assumption but sufficient infermation is not yet avail-
able. At this point, it does seem very likely that the
magnitude of random errors in the logarithm of the
pressure is not lempetature dependent.

If the vapor pressure data are treated by the sigma
methad or an alternate, then the slope obtained by the
second law is for an unambiguous temperature. Cor-
respondingly, there will be na bias in the second Jaw
heai. From the definitions [6] of expected values,
variances, covariance and correlation cocfhicient, p,
the following relations are found.

E(b)=AHT {11)
E(b)=AHT (12)

Var (b =o' —T- )3 (13)

Var (b= ?5T¥n? (14)

Var (bs)=at/ET-? {15)
Covar (b, byma2(l —TT-yS(T-1—T-1p (16)
pibs, by) = =TT 17

ETs(f-1—T- e

In these equations ¢ is the standard deviation of ll'te
random errors in R In p. It follows from Cauchy’s

inequality that T7-! is alwa ater than or equal to
l.t;nit':lg-r 50 Fhat the second andﬁliﬁle]aw heats are always
negatively correlated in the statistical sense. In most
high temperature experiments the degree of correla-
tion is quite small as illustrated by an example later,

Because relative values are more informative, the
following ratios are of interest:

Var {33}= I3 — 2P

Var thy e (18}
Cav [32, 53] _ =
w— 1+Tx (19
Var (by) _ ST?3a? 20

Var {E} T ont

{In these equations both T and x have been used for
compaciness.) All of these quantities have idemtical
powers of T and x multiplying one another. Comse-
quenty, the magnitude of the mean absolute tempera-
ture of the experiments doesz not greatly affect the
magnitude of the rafios. Instead these quantities
and the correlation coefficient are functions of the co-
efficient of variation of the temperatares CF(T}, where
this represeats the relative spread among the tempera.
tures chosen for the experiments rather than relative
ertors in the temperature. In face, it can be shown
that for moderately small values of CF(T the follow-
ing are reasonable approximations.

plba. by} ~—CH(T)
Yar . revens @y
C:‘:’a—{rb:1 ba:l T [EV{T}]"". J

Trial caleulations have shown that the approximation
fuor g is high by only 2 percenmt at CHF{T1=10.15. A1
this game vglue the approximation for the ratio
Var (&) ¥ar (#) is low by 13 percent, and the covari.
ance ratio approximalion is low by 4 percent. The
ratio given by eq (18} can be greater than unity, but
this is only true for experiments for which the CH(T)
is about 0.6 or greater. Application of Cauchy's in-
equality to eq (20) shows this ratio to be always greater
than unity, as it must be if b, ia the minimum variance
unhiazed estimator.

3. Mlustrative Calculations

In order to illustrate the magnitude of the effects
discussed above, data for the vapor pressure of tung-
sten [7] will be used. ‘Tahle 1 shows pertinent data
from that study 1ogether with third law heats as naually
computed. Table 2 compares resultz from various
methods of compoting the heat of sublimation {rom
the daia of table 1. The number of figures shown is
not indicative of uwacertainty. The choice was made
merely in order to have at least two digits for the
smallest difference between values.

TagLe 1. Fapor pressures and Roais of sublimagion of tungsten™

Temperature Y¥opor presaure M AT}
°X am X 1 Read mode -1

TI86 EE. L) Mar
ey 591 He
b3 L 24 .5
514 mm %;
s k
EhT WLl a1
4 058 ot}
i m Mk
034 a0 20340
1T: -1 2 M0

" [vata fram reference 7.
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TaBLE 2. Comparisen of sublimation heats for tungseen

Sooined L, et rres:conid ‘;'J. 1445 calimowle
Secomd Law. uhooHmoted (Fr WI6196
Sevond Law, enoorrected (T 1] L]
Bacond Law, ¢imecied 16261
Third Lpw, wsual b b
Third Law. MYUE HAMST S

" The & ture indicnied in the in'thart to which It wes gxuzmed He dope

- mmlpnndéd: Foor bowest up-arirrbenill temperniure, Ty = highas 1emperanars, Fogrith-

WG MTHERN B P DU b,

. oumber of Bgures sbows in oot indicatlve of ibe uncertaluty,
ol maraly b ogrder ahar cha amatlanr diffevams smong oo
digitn.  For all, the ceference tempemiore was 258 “K

The chola was
d bave at beant two

In order to give an unbiased second law treatment,
logarithmic vapor pressures were cortected by an
equivalent to the sigma method. The equation

AH —H_ AHS

RIn p—A(S°—S)+=——p—S=A8 -2 (22)

has a form such that the entropy and enthalpy funciions
are easily evaluated by computer using the OMNITAB

* language [8] and the JANAF 1ables [%). The differences

between second law heats from corrected and uncor-

" rected logarithmic vapor pressures is seen to be of the

* table 1, 2857 “K.

order of hundreds of calories depending npon the tem-
perature assumed fo correspond to the zlope. In the
cotrected case the “experimental lemperature” was
chosen 10 be the arithmetic mean of those listed in
If the slope of the uncorrected sec-
ond law treatment iz assumed to correspond to a tem-
perature near T, the table shows that for the tongsten
wark the error is ol the srder of only 10 calories.

Table 2 also shows the nsnal third law result and the
minimum-variance estimator. The difference of 17
calories per mol (0.008%) is also oo small to be of
importance.

TaBLE Y. Forance functions

Yawianee, Saciond Law hoa ™ LTt 10®
Variance, Third Law hent, waunl® B Miw 1l
Yarinoee, Third Law beas. MYOE®" LEL ]
Covarinnee $ed;1" —4.1T% 1
Comalmin oogificdnn — 107

Extra sarinnce fwoction® LR Tl

‘\r;ﬂlm;rrrdlﬁuhlhllfnrﬂhp.

Table 3 is probably of more interest because the
improved precision of the third law heat over that for
second law heat is very evident. The square root of
the first two entries gives the ratio of standard devia-
tigns, aboat 15. It should be emphasized that this is
a nalural outcome of the methods of estimation and 1s
not a result of imprecision that can be overcome hy
better experimentation. Alse evident in table 3 is
the small decrease in variance for the minimum vari-
ance estimator compared to that for the usual third law
heat. As mentioned earlier there would be little
gained and some definite loss in using Lhis estimator.

The correlation coefficient for bz and 5y given in table
2 is seen o be a amall negative quantity. Because of

this, the correlation is of no great importance when
comparing second and third law heats, In fact, be.
canse the third law heat is alse much more precise
than the second law heat, the random error in the
comparigon is contributed almost solely by the latter
quantity.

The extra variance lunction is truly regligible, show-
ing that the use of the simpler methed of straighi line
fitting for these experiments has na important effect
upon the estimate of error.

4. Appendix

The question of bias in the second law heal as iilus-
trated by eq (5)is treated by agsuming that if the “true”
equation is given by (4}, experimental vatues of R In g,
represented by yi, are given by

vi=a+ B+ fln) e, (23)
where the € are assumed o behave like random errors.
Equation (5) results from application of the well-known
formula for the slope of a linear least-squares ht to this
equation and taking expected values,

Consider the corve giving the troe values, Fi, as a
function of the experimental values, x;. Let gix) be
the slope of the secant joining any point (x, ¥) with
the point (¥, ¥(%)). Then for a given {

Y—Yil]=}"—f+}’—1"£lj

xX—X xX—Xx xXx—K =g{x}. {24}
Multiplying by (x — £* and summing over { yields
Ix— (Y — V=5 - et {25)

Replacing ¥ by y—e¢, dividing by Z{x — x)* and taking
expected values gives

Zx—-Biy—9_ Zix— el
Zfx — %) Sx—xP

The lefi-hand member is the expression used to cal-
culate the least aquares zlope of a linear fit and the
right hand member is that for eq (6L

When a straight line is fitted to data which are known
to be nonlinear it is expected that the camputed vari-
ance will be bizsed upwards. Although the deriva-
tion is straightforward, the expression for the excess
appears not 1o have heen presemed before. For
this purpose let ¥ = & + Bx + f{x) + € represent experi-
mental values and let #=& + fx represent estimates
abtained by a least-squares linear fit. The € are
random errors with zeto mean and vatiance equal to
o, Alse let x—~r=u and Zix—XPF=3u*=85
Then for a given i

{26)

y=F=@—Put+-Ji+e—2
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where for simpler writing f{x} has been replaced by f.
But since

¥i—¥= [-u!§#+[ﬁ"f}]+ [—ue ET"’E+ I[ei-i'l],

where subscript { has now been indicated. The
brackets sepregate [wo terms, one with error terms
and ong without. Thus,

¥i— 5‘ =4; + e
To determine what the usually computed variance is

actually giving we need the expected value of the sum
of sguares for ¥y — ¥, or

E{L(y — 3} = 24} + EZel).
The first term of the right-hand member is
sai -3y - 2.
The second term hecomes

ECen= E;BF

ot~ L E(Sute— O ue) + E(Sie— o)

where in the right-hand member subscripts have been
dropped as they are no longer needed for clary.
This expression is evaluated easily as {n— 22
Because the computed variance is given by (r—2)y'
Ziy— ¥, the expected valne follows as

E{Var (9} =ot+{n—2" [EU—}}*-ETW]'

The second term of the right-hand member is equiva-
lent to eq (7) and has been termed by the author the
extra variance function. From its equivalent,

EUE Ladf —Po— uff — il
{n—2)8 '

wherein the summations over { and § are limited by
i# j and j> i, the extra vatiance function is seen to
be always positive.

The last equation of {10) results from dividing eq (B)
by T; and minimizing the sum of squared residuals
with respect to b;. Eguations (13), {14), and (15} are
the results of taking the variances of the linear forms,
(10). Egquation {13) alse follows from the well-known
results for a straight ine. Equaton (16) follows from
the expecied value of ibs— AHDBy— AHS). Equation

(17} is by definition given as

Covar (by, bl Var (bet - Var (By).

In order to obtain the approximaticns of eqgs (21),
the Taylor’s expansion for x around T is useful:

w1, =N T-7¢
x T+ T T +.. ..

From this one obtains

o 1 3r-Tp
T rT?

and

Sy ST
P
From the expression for X, the relation
1+ T =2 ey
alt

is obtained, which by virtue of eq {19), gives the third
approximation in (21).

In the exact expression ETE=Z(F—TE+aT* the
sum of the squared differences may be neglected when
the CF(T) is amall, and one can nse 372 = pT:.  Using
both T and % the square of {17) may be written as

A+ Tap _ S(T-T7
SPZix—2F Al

= [CHTIE.

We note that taking the square root of both sides now
gives ambignity with regard to sign, but it has already
been pointed out that this must be negative. Thus,
the first approximation of (21} is obtained. The see-
ond approximation follows readily from expressions

already nsed here.
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tical rotions with ). K. Rosenblatt, T. A. Willke, and
I». Hogben.
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