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The effects of random errors and of nonconstant heat of vaporization upon the estimation of the
second and third law heats of vaporization are examined. The most important conclusion is that the
often noticed marked improvement in precision of the third law heat over that for the second law heat
is real and is a natural consequence of the difference between the two estimators. The effects of
systematic errors upon the two heats are not investigated here. Other results of interest, but of less
importance because of the small magnitude of the effects, include: (1) the two heats are negatively
correlated, (2) the second law heat is generally biased, (3) the third law heat is not the minimum variance
unbiased estimator of the heat of vaporization, and (4) the standard deviation obtained from least
squares fitting consistently overestimates the true standard deviation, but by a negligible amount.
Any reversible process for which the equilibrium constant is treated by a similar procedure is governed
by the same considerations. The results apply approximately at any temperature although the stimulus
for these considerations comes from high temperature chemistry.

Key Words: Bias of least squares estimators, coefficient of variation, correlated estimators,
enthalpy adjustments, heat of vaporization, high temperature Chemistry, overestima-
tion of standard deviation, second law heat, slope estimators, third law heat, vapor
pressure.

1. Introduction

For some years it has been the practice when re-
porting high temperature vapor pressure data to.com-
pute and discuss "second law" and "third law" heats
of vaporization or sublimation. Because each experi-
mental temperature yields a third law heat, the
individual values are often examined for consistency.
Since each of these should be estimating the same
quantity, grossly different values of one or of a few
individuals are suggestive of experimental difficulty.
With outliers thus considered, and generally discarded
from future consideration, the remaining data are
examined for trend, either with temperature or with
chronological sequence. Trend with temperature is
generally thought to be caused by systematic error in
temperature measurement or in vapor pressure meas-
urement, or by systematic error in the tabular free
energy functions used to compute the third law heats.
Trend with experimental sequence occasionally means
that window or similar corrections used for optical
pyrometry, were changing from run to run. This could
be caused by darkening of the observation window as
experimentation proceeds, for example. When the
third law heats appear to pass this critical evaluation,
the average is generally compared to the second law
heat. The latter is usually obtained from the slope
of a least-squares fit of the logarithm of the pressure to
a straight line in the reciprocal of the absolute tempera-
ture. This comparison is also supposed to serve as
a test of the experimentation [1]* ". . . because if the

1 Figures in brackets indicate the literature references at the end of this paper.

heats calculated by the two procedures do not agree
within the carefully calculated errors, then the experi-
ment contains inconsistencies which all too often
indicate either serious systematic errors or perhaps
unknown species."

The uses described above to which the two estimates
of the heat of transformation are put imply that those
estimates are not biased by the method of estimation
and furthermore that they are independent in the
probability sense. It is the purpose of this article to
point out the failure of these implicit conditions to
apply and to examine the consequences of this failure.
In general, the questions of unbiasedness and inde-
pendence are always pertinent when two experimental
values subject to random error are compared. Should
either or both be biased by the means of computation,
the difference may be due to that rather than to factors
under study. Independence is always questionable
when, as in the case of the second and third law heats,
two estimates are computed using the same data.
Lack of independence in the statistical sense would
mean that random errors causing one estimate to be
high would cause the other to be high also, in the case
of positive correlation. Negative correlation would
mean that random errors would have opposite effects
on the two estimates. Independence would mean that
there is no definite relation of this kind. The presence
of correlation needs to be taken into account when a
comparison is made.

It is found that the bias in the second law heat, as
usually calculated, is generally negligible because of
the currently attainable precision of most methods for
measuring high temperature vapor pressures. The
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lack of independence of the two heats does not sig-
nificantly affect the size of the random error to be
attributed to their difference. An important result is
the understanding that the greater imprecision of the
second law heat compared to that of the mean third
law heat is a natural consequence of the difference
between the two estimators and of the experimental
temperatures usually involved. The usual method of
computing the variance for the second law heat over-
estimates the variance when the simplest linear equa-
tion is fitted by least squares. This overestimation is
quite small, however, and is naturally on the side of
conservatism. Although the usually computed third
law heat is not the minimum variance unbiased esti-
mator, the loss of precision is quite small. The vapori-
zation process is the main consideration here, but it is
obvious that any reversible process for which the
equilibrium constant is treated by a similar procedure
is governed by the same considerations. Similar
problems arise when estimating the entropy of trans-
formation as the least-squares intercept of the usual
second law treatment. As these problems will be
obvious after considering the second law heat, entropy
problems will not be treated here.

In what follows, the second and third law heats are
discussed with a minimum of mathematical statistics.
Statistical derivations, which are either already avail-
able elsewhere or are straightforward, are relegated to
an appendix for statistically minded readers. Fol-
lowing the theoretical discussion of second and third
law heats, a numerical example is given to illustrate
the magnitudes of the effects.

2. Theoretical

2.1. Second Law Heat

Empirically, the vapor pressure, p, generally fits
the equation

Rlnp=A~ (1)

within experimental error, where R is the gas constant,
A and B are assumed to be constant and T is the abso-
lute temperature. However, theoretically at a single
temperature

Rlnp = AS°-
AH°

(2)

where AS° and A//°, the entropy and enthalpy changes,
are slowly varying functions of T. The superscript °
specifies the substances to be in standard states.
Equation (2) assumes that the pressure is sufficiently
low for the gas to be assumed ideal. One method of
treating the data fits experimental values of R In p to
1/7" and adjusts B, the least squares estimate of B in
eq (1), to a reference temperature Tr. B might be
considered a reasonable estimate of AH° for some
representative temperature within the experimental

range; the enthalpy change at a commonly used ref-
erence temperature far removed from the region of
the experiment is somewhat different. Adjustment of
B to such a temperature is given by

AC°pdT (3)

where 62 is used to represent the estimate of the sec-
ond law heat obtained by adjusting B from the experi-
mental temperature, Te, to the reference temperature,
Tr. The quantity AC£ is the heat capacity of the vapor
minus the heat capacity of the condensed phase at
constant pressure. AC° is a function of T, but is
independent of p.

The reason, of course, that eq (1) is usable without
serious error is that ACp is sufficiently small that its
integral over a short range is negligible compared to
AH°. The use of eq (3) is straightforward as long as
one knows the correct value of Te. Some workers
make allowance for this problem by using heat capacity
data as in the sigma method [2,3]. More often than
not, however, the additional computational labor is not
felt to be warranted and is not carried out. Instead,
the experimenter chooses some temperature within
the range of the experiment as corresponding to the
least-squares slope in order that the adjustment by
eq (3) may be carried out. Some authors use the arith-
metic mean of the experimental temperatures. Others
use the temperature corresponding to the arithmetic
mean of the reciprocal temperatures. Still others use
a rounded value somewhere near the midrange. How-
ever, it is shown below that if the data are required to
fit eq (1), the quantity B does not represent unambigu-
ously the heat of vaporization at any recognizable
temperature within the range of experiment. Instead
the quantity represents a combination of enthalpy and
entropy terms and of the coefficients of the heat
capacity equation.

It is particularly convenient in what follows to re-
place the variable — T~l by x. Then the exact vapor
pressure equation may be written as

(4)

where a function of x (and therefore of T) has been
added to the simplest form in order to make it exact.
There is no other limitation on the form of this function.
Then the usual least-squares slope for fitting eq (1)
has as its expected value

(5)

Alternatively it is possible to show that if g(x) repre-
sents the slope of the secant connecting the point
(x, R In p) with the point on the curve at 3c,
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(6)

Thus, the least squares linear slope is a weighted
average of the true slopes of the set of secants where
the weighting is proportional to the square of the dis-
tance from x.

Because B does not represent the slope at any easily
defined point, the usual choices for Te in eq (3) lead to
bias in 62, the second law heat. The bias, however,
is quite small and is given by the integral of AC£ from
the chosen Te to the correct, if unknown, value of Te.
Examples of its magnitude are given later. The main
advantage of the modified procedures mentioned ear-
lier appears to be that they avoid the ambiguity of the
temperature to which the slope applies. Occasional
extended discussions arise, however, about the "cor-
rect" temperature to use, and it is well to recognize
that there is no easily defined one when the data are
fitted directly to eq (1). The bias is not small if the
lowest or highest experimental temperature is chosen
rather than one near the midrange. Further discussion
of this point is relegated to a later section. Removal
of the small bias by some means may be considered
desirable because, hopefully, vapor pressure data
collection will improve over the years and, secondly,
because comparison with third law heat for significant
difference should be made with estimates known to
be unbiased with respect to sources not being tested
by the comparison.

Because the experimental data are fitted to a straight
line and because theoretically the correct function is
known to be more complex, the computed standard
deviation is estimating a value larger than the true
standard deviation. It is shown in the appendix that
the increase in variance (the square of the standard
deviation) is given by

EVF=(n-2)-4l.(f-f)2-[- }
y

where n is the number of observations and f(x) has
been shortened to / for convenience. This quantity,
the extra variance function, is always positive and, as
shown in the numerical example, is negligible for the
type of experiments being considered.

2.2. Third Law Heat

Alternative to the second law treatment is that of the
third law wherein for each experimental point, i, there
is computed

=Ti(8i-Rln (8)

1—=,—- , the change in free energy

function for the process [4]. The free energy function,
G°i-H°rL, for each substance is generally available in

tabulations or may be computed from other data. The
bzt are examined individually, as suggested in the
introduction, and they are also averaged to give

03 — ~~n (9)

the estimator for the third law heat.
This estimator is unbiased. However, if the random

errors are essentially constant when measured in
R In p at different temperatures, random errors in the
b3i will be a function of T because of the term RT In p.
As a consequence 63 as given by eq (9) is not the esti-
mate with the least variance. There will generally be a
larger error associated with 63 than with another
estimator, 63, where

63 =
In p-d)_ZT-1(8-R In p)

This is an unbiased estimator also. It can be shown
that $3 is, of all unbiased estimators of the heat, the
one with minimum variance and may be called the
"minimum variance unbiased estimator" (MVUE).
Because 63 has a smaller variance than 63, it might be
preferred. However, it will be shown in the numerical
example that for high temperature experiments the
improvement in precision is small and does not war-
rant the loss of convenient computation. As already
pointed out, the individual b^i serve a useful purpose.

2.3. Similarity of Formulas for the Estimators

The estimators S2, £3, and 63, each of which is a\i
estimate of A//°, can be written in similar notation and
the similarity is striking when these are placed side
by side as follows:

- _
2 X(x-x)2

I _
03

(10)

Although they are not treated in this article the effects
of systematic errors, such as in the thermodynamic
data, may be readily investigated using these equa-
tions. The comparison of the different estimators is
particularly facilitated.

2.4. Variance and Covariance of the Estimates

Because the second and third law heats are obtained
by an essentially statistical estimation procedure, the
statistical properties of the estimators are of interest.
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Of greatest interest are the expected values of the
estimators, their variances, the covariance and the
correlation coefficient. Knowledge of the law govern-
ing the random errors would be desirable, but is not
necessary. At this time it can only be stated as likely
that the random deviations from eq (1) are of the Gaus-
sian type when measured as deviations in R In p. That
errors are often unwarrantedly assumed to have this
characteristic has been shown by Clancey [5]. For
least-squares fitting it is merely necessary that the
random errors have mean zero, constant variance and
be independent of one another in the probability sense.
An examination of representative data is proceeding in
this laboratory to ascertain the validity of the normal
assumption but sufficient information is not yet avail-
able. At this point, it does seem very likely that the
magnitude of random errors in the logarithm of the
pressure is not temperature dependent.

If the vapor pressure data are treated by the sigma
method or an alternate, then the slope obtained by the
second law is for an unambiguous temperature. Cor-
respondingly, there will be no bias in the second law
heat. From the definitions [6] of expected values,
variances, covariance and correlation coefficient, p,
the following relations are found.

(11)

(12)

(13)

(14)

(15)

(16)

(17)

E(b3) =

Var (iz) =

Var (6s) =

Var (b3) =

A A

A A

P(&2, 6a) =

In these equations <x is the standard deviation of the
random errors in R In p. It follows from Cauchy's
inequality that T T~x is always greater than or equal to
unity so that the second and third law heats are always
negatively correlated in the statistical sense. In most
high temperature experiments the degree of correla-
tion is quite small as illustrated by an example later.

Because relative values are more informative, the
following ratios are of interest:

(18)

(19)

(20)

Var (&>)

A A

Cov (62, b3)
Var(S2)

(In these equations both T and x have been used for
compactness.) All of these quantities have identical
powers of T and x multiplying one another. Conse-
quently, the magnitude of the mean absolute tempera-
ture of the experiments does not greatly affect the
magnitude of the ratios. Instead these quantities
and the correlation coefficient are functions of the co-
efficient of variation of the temperatures CF(7), where
this represents the relative spread among the tempera-
tures chosen for the experiments rather than relative
errors in the temperature. In fact, it can be shown
that for moderately small values of CV{T) the follow-
ing are reasonable approximations.

, b3)~-CV(T)

(21)

Cov (62, b3)
Var (82)

Trial calculations have shown that the approximation
for p is high by only 2 percent at CV{T) = 0.15. At
this same value the approximation for the ratio
Var (S3)/Var (b2) is low by 13 percent, and the covari-
ance ratio approximation is low by 4 percent. The
ratio given by eq (18) can be greater than unity, but
this is only true for experiments for which the CV{T)
is about 0.6 or greater. Application of Cauchy's in-
equality to eq (20) shows this ratio to be always greater
than unity, as it must be if 63 is the minimum variance
unbiased estimator.

3. Illustrative Calculations

In order to illustrate the magnitude of the effects
discussed above, data for the vapor pressure of tung-
sten [7] will be used. Table 1 shows pertinent data
from that study together with third law heats as usually
computed. Table 2 compares results from various
methods of computing the heat of sublimation from
the data of table 1. The number of figures shown is
not indicative of uncertainty. The choice was made
merely in order to have at least two digits for the
smallest difference between values.

TABLE 1. Vapor pressures and heats of sublimation of tungstenc

=

Var (63) re2

Temperature

°K

2786
2773
2679
2574
2925
3034
2614
3068
2934
3183

Vapor pressure

atm X 109

5.42
5.21
1.26
0.250

30.8
98.3
0.534

197
40.0

542

A//°(298)

kcal mole ~l

203.7
202.9
203.5
203.7
203.9
204.6
203.0
202.7
203.0
204.0

a Data from reference 7.
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TABLE 2. Comparison of sublimation heats for tungsten

Second Law, uncorrected (Ti)a

Second Law, uncorrected (T)
Second Law, uncorrected (7A)
Second Law, corrected
Third Law, usual
Third Law, MVUE

201442.5 cal/moleb

201619.6
201885.1
201626.3
203474.9
203457.5

a The temperature indicated in the parentheses is that to which it was assumed the slope
corresponded: 7\ = lowest experimental temperature, 7/, = highest temperature, 7"= arith-
metic mean temperature.

bThe number of figures shown is not indicative of the uncertainty. The choice was
made merely in order that the smallest difference among values would have at least two
digits. For all, the reference temperature was 298 °K.

In order to give an unbiased second law treatment,
logarithmic vapor pressures were corrected by an
equivalent to the sigma method. The equation

R lnp- (22)

has a form such that the entropy and enthalpy functions
are easily evaluated by computer using the OMNITAB
language [8] and the JANAF tables [9]. The differences
between second law heats from corrected and uncor-
rected logarithmic vapor pressures is seen to be of the
order of hundreds of calories depending upon the tem-
perature assumed to correspond to the slope. In the
corrected case the "experimental temperature" was
chosen to be the arithmetic mean of those listed in
table 1, 2857 °K. If the slope of the uncorrected sec-
ond law treatment is assumed to correspond to a tem-
perature near 7\ the table shows that for the tungsten
work the error is of the order of only 10 calories.

Table 2 also shows the usual third law result and the
minimum-variance estimator. The difference of 17
calories per mol (0.008%) is also too small to be of
importance.

TABLE 3. Variance functions

Variance, Second Law he*
Variance, Third Law heat,
Variance, Third Law heat

[Hovariance (62,63)a

Correlation coefficient
Extra variance function8

i t a

usuala

MVUEa

1.76 X1O«
8.20 x 105

8.05 x 105

- 8 . 1 2 X 1 0 5

- 0 . 0 7
6.24 X10- 5

a Variances are relative to that for R In p.

Table 3 is probably of more interest because the
improved precision of the third law heat over that for
second law heat is very evident. The square root of
the first two entries gives the ratio of standard devia-
tions, about 15. It should be emphasized that this is
a natural outcome of the methods of estimation and is
not a result of imprecision that can be overcome by
better experimentation. Also evident in table 3 is
the small decrease in variance for the minimum vari-
ance estimator compared to that for the usual third law
heat. As mentioned earlier there would be little
gained and some definite loss in using this estimator.

A A

The correlation coefficient for b2 and 63 given in table
3 is seen to be a small negative quantity. Because of

this, the correlation is of no great importance when
comparing second and third law heats. In fact, be-
cause the third law heat is also much more precise
than the second law heat, the random error in the
comparison is contributed almost solely by the latter
quantity.

The extra variance function is truly negligible, show-
ing that the use of the simpler method of straight line
fitting for these experiments has no important effect
upon the estimate of error.

4. Appendix

The question of bias in the second law heat as illus-
trated by eq (5) is treated by assuming that if the "true"
equation is given by (4), experimental values of R In p/,
represented by yi, are given by

(23)

where the e* are assumed to behave like random errors.
Equation (5) results from application of the well-known
formula for the slope of a linear least-squares fit to this
equation and taking expected values.

Consider the curve giving the true values, F2, as a
function of the experimental values, xu Let g{x) be
the slope of the secant joining any point (x, Y) with
the point (x, Y(x)). Then for a given i

(24)
xx—x x—x x—x

Multiplying by (x — xf and summing over i yields

Replacing Y by y — €, dividing by
expected values gives

2g(x). (25)

; — xf and taking

(26)

The left-hand member is the expression used to cal-
culate the least squares slope of a linear fit and the
right hand member is that for eq (6).

When a straight line is fitted to data which are known
to be nonlinear it is expected that the computed vari-
ance will be biased upwards. Although the deriva-
tion is straightforward, the expression for the excess
appears not to have been presented before. For
this purpose let y = a H- fix +/(#) + € represent experi-
mental values and let y = a + fix represent estimates
obtained by a least-squares linear fit. The € are
random errors with zero mean and variance equal to
cr2. Also let x — x~ u and %(x — xf = 2&2 = S.
Then for a given i
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where for simpler writingf(x) has been replaced by/. (17) is by definition given as
But since

where subscript i has now been indicated. The
brackets segregate two terms, one with error terms
and one without. Thus,

The first term of the right-hand member is

The second term becomes

where in the right-hand member subscripts have been
dropped as they are no longer needed for clarity.
This expression is evaluated easily as (71 — 2)cr2.
Because the computed variance is given by (71 — 2)"1

— y)2, the expected value follows as

Covar (62, 63)/VVar (S2) • Var (53).

In order to obtain the approximations of eqs (21),
the Taylor's expansion for x around T is useful:

From this one obtains

To determine what the usually computed variance is
actually giving we need the expected value of the sum
of squares for y — y, or and

1
x ~——

T
=

From the expression for x, the relation

1 + fx g g _ S ( r ~ r ) = _ [CV(T)]*
nT2

is obtained, which by virtue of eq (19), gives the third
approximation in (21).

In the exact expression XT2 = 2 ( 7 - F)2 + nT2 the
sum of the squared differences may be neglected when
the CV(T) is small, and one can use S772 « nT2. Using
both T and x the square of (17) may be written as

X{T-T)2_
nT2

E{Var (y)} = cr2 + (n - 2)"' [ s i / - / ) 2 ~

The second term of the right-hand member is equiva-
lent to eq (7) and has been termed by the author the
extra variance function. From its equivalent,

22 [«K/"-7Jj-«(/•-/)«]•

(n-2)S

wherein the summations over i and j are limited by
i # j and j > i, the extra variance function is seen to
be always positive.

The last equation of (10) results from dividing eq (8)
by Ti and minimizing the sum of squared residuals
with respect to 63. Equations (13), (14), and (15) are
the results of taking the variances of the linear forms,
(10). Equation (13) also follows from the well-known
results for a straight line. Equation (16) follows from
the expected value of (S2 — A#°)(S3 — A//°). Equation

We note that taking the square root of both sides now
gives ambiguity with regard to sign, but it has already
been pointed out that this must be negative. Thus,
the first approximation of (21) is obtained. The sec-
ond approximation follows readily from expressions
already used here.

It is a pleasure to acknowledge helpful discussions
held with staff members of the National Bureau of
Standards. The derivation of the extra variance
function which appears in this paper is due to J.
Mandel and replaces an earlier, less simple one origi-
nated by the author. The great utility of Taylor's
expansion for the derivation of the approximations
was pointed out by J. R. Rosenblatt. Thermodynamic
notions were discussed with E. R. Plante and statis-
tical notions with J. R. Rosenblatt, T. A. Willke, and
D. Hogben.
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