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The BKZ elastic fluid theory is used to correlate experimental results obtained in biaxial strain
and steady simple shear. With a heuristic potential function involving three material properties,
excellent agreement is obtained between theory and experiment. In the special case where one of
the material properties is dominant, the behavior in steady simple shear is calculated from dynamic
measurements in the infinitesimal range and is compared with actual data.
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1. Introduction

In a recent paper [I],1 excellent agreement was
shown between experimental results and predictions
of the BKZ elastic fluid theory [2]. This theory in-
volves a potential function, £/, but leaves it unspeci-
fied. For a given material, a knowledge of the results
of a sufficient number of biaxial stress-relaxation ex-
periments will enable one to predict with the BKZ
theory the stress response to any other deformation
history. However, if one knew a specific functional
form by which U could be closely represented, then
one would be able to correlate the behavior of differ-
ent materials and different strain histories from the
results of only a few experiments.

Encouraged by these results [1], I constructed a
form of U with which the BKZ elastic fluid theory
could quantitatively describe biaxial strain at large
deformation, biaxial creep, and simple extension of
vulcanized rubbers. This form of U involves three
material properties. In simple shear it can quanti-
tatively predict non-Newtonian behavior, including
normal stresses. The ratio of the shearing stress to
the rate of shear depends on the rate of shear in such
a way as to describe either shear thinning or shear
thickening behavior or both, depending on the relative
magnitude of the material properties. In the special
case where one material property is dominant, one
may use dynamic data taken at infinitesimal strains
to predict the dependence of viscosity and normal
stresses on rate of shear. This is presented in section
4 of this paper and the agreement is excellent.

I want to emphasize that the form of U presented
here is heuristic. The purpose of this paper is to show
that with a relatively simple form of £/, one may use
the BKZ elastic fluid to describe very well the behavior
of materials which can be considered isotropic and
incompressible.

2. Theoretical Considerations

The BKZ elastic fluid is a fluid with an elastic poten-
tial. The effect of the configuration at time r < t on
the stress at time t is equivalent to the effect of a stored
elastic energy with the configuration at time r as the
preferred configuration. The effect depends on the
amount of time elapsed between r and t. The stress
at time t is the sum of contributions from all past times.
For an extensive description of the theory, we refer the
reader to the initial papers [2] and [3].

A particular motion of the material may be specified
in terms of the Cartesian coordinates x\ of each particle
at each time. Let X\9 X2, X3 be the position coordinates
of the particles in a reference configuration. Then,
a motion is given by a set of functions

£ ,4=1,2 ,3 .

At time r, (2.1) becomes

(2.1)

(2.2)

If we eliminate Xu X2, Xs between (2.1) and (2.2)
we may write

Xi{t)=Xi{xk{T), t, T) i, k= 1, 2, 3

where xi{t) and XI(T) are the position coordinates at
time t and T respectively of the same particle. The
relative deformation gradients Xik(t, r) are defined by

1 Figures in brackets indicate the literature references at the end of this paper.

xik(t, T) = Y
dxk(r)

The left Cauchy-Green tensor Cy(£, r) is then

Cij(t, T) = xik(t, r)xjk{t, T)
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where repeated indices indicate summation over the From (2.3), (2.4), and (2.5) we get
values 1, 2, 3.

The principal invariants of cy(£, r) are ) — O-33W

= 2 - ^
X?(T)XK- at/ x|(t)d£/1 , m^

w,+W)mdT (2-6)

where £? = A|(£, T) are the principal values of cy(£, r)
and Xi is the stretch ratio in the x% direction.

Assuming incompressibility, we have h(t, T ) = 1 ,
and the constitutive equations for the BKZ elastic
fluid become [4]

and

tT22(t) —

- . L X K T ) xf(t)XK«). f+x f^ /J * - (2-7)

-oo loll Ol2

In the case of a single step stress-relaxation experi-
(2.3) merit where A/(T) = 1 for times r smaller than zero and

\j(r) = kit) = kt for times t, r greater than zero, (2.6)
yields

where cry- are the components of the stress tensor,
p is a hydrostatic pressure, U is a function of /i , h,
and t — T

U=U{h{t,T),h(t,T),t-T),

and c^(t9 r) are the components of the inverse of the w n e r e

matrix \\cij(t, r)||. We may describe an isochoric ho-
mogeneous biaxial strain history by writing for (2.1)

and

- - f°°
(2.9)

The matrix of the left Cauchy-Green tensor aj(t9 r)
becomes

1 A 2

0 0

and

flt) X|(t) Xf(T)Xj(T)

XKT)
X«)«t) X«(T)X|(T)

Similarly (2.5) becomes

/aw aw\
U S / J (2-10)

Superficially, expressions (2.8) and (2.10) appear to
be the same as the relations given by Rivlin and Saun-
ders [5]. However W, here, depends on time as well
as strain and is designed so that (2.10) gives the stress
during stress relaxation. On the other hand, the W

(2.4) of Rivlin and Saunders depends only on strain.
In the case of simple shear, we introduce an orthog-

onal set of coordinates as shown in figure 1, where xi
(2.5) ^s ^ e direction of motion of a particle and x2 is the

direction of shear. In the case of a steady shearing
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O"i2 —.

where

and

h(t, t-£) = hit, t - 0 = 3 + y*

FIGURE 1. General coordinate axes for description of flow.

motion with constant rate of shear, y, (2.1) reads

*I(*) = *I(T)+(*-T)?*2(T)

xiit) = x2ir)

x3it) = x3ir)

Thus,

l+y2it-T)2 yit-r) 0

yit-r) 1 0

0 0 1

and

1 -yit-r) 0

yit-r) l+y2it-T)2 0

0 0 1

Substituting in equation (2.3) with t — r = £, one gets

These relations hold independently of the form of £/.

3. Experimental Procedure

From the theoretical considerations of the previous
section, we see that we may determine dW/dh and
dW/dh as functions of h, h, and t from data taken in
single step stress-relaxation experiments in biaxial
strain. For vulcanized rubbers we may regard the
long time isochrones in creep to within a good approxi-
mation as isochrones of single step stress relaxation.
This is true for a material only if the deformation at
constant load remains almost constant for long times,
although not necessarily to infinite time. For this
reason we elected to do our experiments on vulcanized
butyl rubber. The experiments were carried out
using a test piece in the form of a square sheet having
sides of 8 cm and a thickness of about 0.07 cm. The
test piece was cut and marked in a fashion described
by Rivlin and Saunders [5]. One square surface of
the sheet was marked in ink with two sets of four
parallel straight lines so as to form a square grid with
1 cm spacings. In drawing the outer lines of the grid,
great care was taken that they be straight and form a
perfect square. In figure 2 is shown part of the ap-

FIGURE 2. Schematic diagram for the biaxial extension experiments.
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paratus with the sample S. As can be seen from the
figure, the sample was stretched in the A-B and C-D
directions with the aid of strings. One end of each
string was tied to a lug of the sample and the other
end was attached to a weight or to a turnbuckle. The
strings were made from unspun fibers of Mylar. For
the study of the variation of dW/dh and bW\bh with
respect to time, the two sets of the three middle lugs
in the A and C directions were tied to strings support-
ing weights. The other 14 lugs were tied to strings
in which tension was controlled with the turnbuckles,
which could be adjusted to keep the ink lines on the
sample straight and parallel. With the aid of a two-
way traveling microscope, whose axes of travel were
set parallel to the stretch directions, we could check
the uniformity of stretch and measure the extensions.

In our other sets of biaxial experiments, we loaded
the sample by first stretching it a predetermined
amount in the D—C direction and then applying weights
in the A—B direction. This was done in order to avoid
difficulties due to the history of loading. In these
experiments, only the three middle lugs in the A direc-
tion carried supporting weights. The strings attached
to the other lugs were adjusted to keep the lines
straight and parallel to the stretch directions. The
final readings were taken after 18 hr from the time of
loading. After each measurement the material was
allowed to relax for 24 to 48 hr before another loading
was started. Thus, the values that we obtained can
be considered as isochronal values of stress relaxation
at 18 hr.

In order to be able to compare with experiment the
predictions of our theory for simple shear flows, we
performed dynamic and constant rate of shear meas-
urements on solutions of polyisobutylene B—140 in
Mentor 28 oil. Two concentrations were used. They
shall be designated as 10 percent and 5 percent. We
do not know the actual concentration accurately, be-
cause we lost an unknown amount of solvent while
preparing what was to be the 10 percent solution.
We do know that the ratio of the two concentrations
is two to one. The dynamic data at very small defor-
mations were obtained through the cooperation of
R. W. Penn, using a torsion pendulum at the W. R.
Grace Laboratories. The torsion pendulum is essen-
tially the same as the one described by Morrison,
Zapas, and DeWitt [6]. The data on viscosity as a
function of rate of shear were obtained in a capillary
viscometer.

4. Experimental Results and Discussion

The purpose of this paper is to show that with a
relatively simple form of the potential function £/,
the BKZ elastic fluid can be used to correlate different
types of behavior of elastomeric materials. The
heuristic form of the potential function U which I
shall use here involves three material properties a(f),
f$(t), and c(t). These material properties are positive
monotonically decreasing functions of time. The
form of U is given by the following expression:

W In

+ 2408'-cO In g (4.1)

yhere

, doit) , d&t) , , dc{t)
a. = — — , B = j , and c =—rjL'

dt M dt dt

From equations (2.9) and (4.1) we get

= 4.5)8 24(13-c)
/ i+ / 2 + 3 72+15 (4.3)

where it is understood W, a, /3, and c are functions of
time.

In a pure shear single step stress-relaxation experi-
ment with A 2=l , and / i = / 2 , we get from eq (2.8)

-33(t)= ?(dW dW\
1 \dli dh)

9/8
(4.4)

Since a{t) is taken to be a positive monotonically de-
creasing function of time, or zero, eq (4.4) says that

11 one plots at constant t versus

one should get either a curve which is concave up-
ward or a straight line. In the case of a straight line
the slope is equal to 18/3, the intercept, 2c, and a
equals zero.

In figure 3 we show the data of Rivlin and Saunders
[5] on pure shear for vulcanized natural rubber. In

this figure we plotted —j yx— a{I\—3) versus
2 IX2 — —

for a = 0 and a = 0.06. As can be seen for the case
where a = 0, the curve is concave upwards. Here
a = 0.06 was found by trial and error. Actually, if
there is a well defined minimum, one could obtain a
by following the procedure presented in a previous
paper [3]. So it is evident that by using the relation
(4.4) one could get the three material properties from
pure shear experiments.

In figure 4 we present a similar check of the ade-
quacy of the assumed form of U by plotting

— OL{I\ — 3) versus
2 A?- /1+/2
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FIGURE 4. Biaxial extension data of vulcanized butyl rubber.
The abscissa is given in (dynes/cm*)10~6.

FIGURE 3. Pure shear data ofRivlin and Saunders on vulcanized
natural rubber.

Open circles, a — 0. The abscissa is given in kg per cm2.

using data obtained on vulcanized butyl rubber in
biaxial and simple extension deformations as de-
scribed in the previous section. For butyl rubber, the
value of a(t) is small and estimated to be 0.015. Since
/3 and c are equal, as determined from the pure shear
data, in a plot of this type the experimental points
should fall in a straight line. Considering experimen-
tal difficulties and uncertainties, the agreement is
excellent.

TABLE 1. Biaxial creep of vulcanized butyl rubber

Time

Hours
3

20
23
47
66
90

117
164

3.1043
3.1125
3.1134
3.1160
3.1177
3.1199
3.1211
3.1233

3.1050
3.1125
3.1131
3.1156
3.1172
3.1191
3.1203
3.1224

^ X I O - 6

Dynes/cm2

2.15
1.91
1.83
1.80
1.78
1.74
1.71
1.69

f X10-

Dynes/cm2

- 0 . 1 0
.07
.14
.16
.17
.19
.20
.21

In the course of our experiments in biaxial deforma-
tion, in a different set of measurements we observed
a negative value of dW/dh at very small extensions,
while at higher extensions dW/dh was positive. This
was observed in three samples with different degrees
of vulcanization. For a further study of this peculi-
arity we selected a relatively high cross-linked speci-
men of butyl rubber and we studied its biaxial creep
behavior at small deformations. In table 1 we show
the calculated values of dW/dh and dW/dh as func-
tions of / i , /2, and time. This table shows large varia-
tions in dW/dh for small changes in I\ and h. A plot
of dW\dl\ + bW\dl<2, versus the logarithm of time is
shown in figure 5. We see that even in greatly ex-
panded scale for dW\dh+bW\dh the points fall in a
straight line. Moreover, after 150 hr the data still

to
00

b

1.8

1.7

1.6

Log [t, hours]

FIGURE 5. Biaxial creep data on vulcanized butyl rubber.

did not indicate any suggestions of leveling off. This
shows that we cannot neglect the behavior with re-
spect to time. From single step stress-relaxation
experiments in simple extension in vulvanized rubbers,
we observed that (3 decays with time much faster than
c. From (4.3) we can see that dJF/dI2 will be negative
when ft is larger than 1.6c. One can see, at least
qualitatively, that what seemed to be a paradoxical
inversion in sign for dW/dI2 is predictable from eq
(4.3).

4.1. Steady Simple Shearing Flow

We can substitute eq (4.1) into eq (2.11) to get

Jo I
(4.5)
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Since the viscosity 77(7) is defined to be the ratio of
CTi2 to y, eq (4.5) can be written

4.2. Comparison of Steady Simple Shearing Flow
With Measurements at Infinitesimal Deformations

For a simple shear deformation, which is specified
in terms of a single parameter, say y — y(r)y (2.2) may
be written

(4.6)

By considering special cases for which the dominant
term is that containing a'(£), £'(£), or c'(£), one can
see that (4.6) could predict a viscosity independent of
rate of shear, or viscosities as observed in shear thin-
ning or shear thickening materials.

In figure 6 we show schematically the type of be-
havior predicted from eq (4.6). For the sake of
simplicity we can write

(4.7)

where

ndy)=-2 f°° a!
Jo

^(yH-2 r -1

Jo -. _

Jo

<%

(4.7a)

(4.7b)

(4.7c)

We observe that in the case where r)a(y)=r)i3(y) = 0
one gets a viscosity independent of rate of shear.
When only rja(y) = 0, one gets a behavior shown in
curve II of figure 6. Curves III and IV represent the
cases where r)a(y), ydj), and r)c all contribute to the
viscosity. Naturally, curve IV sl|ows the case where
r)a(y) is the dominant quantity.

-IV

LOG

FiGURE 6. Schematic representation of form, of steady shear
viscosity curves which can be predicted by eq (4.6).

x2(r)=X2 (4.8)

e n t s i n g l e s t e p s t r e s s relaxation, we take
g T < 0 and yir) = y = constant for r > 0,

and we get

II CO II =

(4.9)

where / , = / 2 = 3 + y2. From (2.3), (2.9), (4.2), (4.3),
and (4.9), we obtain

(4.10)

f o r v a n i s h i n g y gives us the relaxa-T h e l i m k o f

tion function, G{t), for infinitesimal deformations:

G(t) = 2/3(t) + 2c(t). (4.11)

From the general relation of linear viscoelasticity [7]
between periodic and steady-state functions

Jo

we can express 77'M m terms of (S(t) and c(t) as

foe

V M = {2fi(t) + 2c(t)} cos (otdt. (4.12)
Jo

Integrating (4.6) by parts we get

(4.13)

Several interesting observations can be drawn re-
garding the behavior of a material which can be de-
scribed by a potential function U of the form of (4.1)
by comparing (4.12) and (4.13). First, it is obvious
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that in general 77(7) cannot be predicted from measure-
ments of r) '(<w), since the term in a(t) does not show
up in 7)'(of) at all. Also, (B(t) and c(t) cannot be sepa-
rated by measurements of r)'((o). However, if we
encounter a material for which either /3 or c is the
dominant term in (4.13) and (4.9) then in principle
77(7) can be calculated from rjf(a)). If c is the dominant
term, we will have a situation in which 77(7) is inde-
pendent of rate of shear, but r}'(co) may vary with fre-
quency and normal stress effects may be observed in
steady shearing flow. If /3 is dominant, both V M
and 77(7) will vary with o> ory.

For many materials a(t) is negligible, but ordinarily
both /3(t) and c(t) contribute to 17(7), with /3(t) contribut-
ing the dominant term within experimentally acces-
sible rates of shear. However, at very high rates of
shear, any nonzero c must become dominant. For
the range of rates of shear for which

1
we may utilize 77'(to) to evaluate (3(t) and calculate a
lower bound for the measured 77(7). The calculated
77(7) should be in close agreement with that measured
at low values of 7, but would fall below the measured
values at high rates of shear.

For the actual comparison of the two measured func-
tions 77 f((o) and 17(7), it is better to formulate our ex-
pressions in terms of relaxation spectra corresponding
to fi(t) and c(t) entirely analogous to the spectrum repre-
sentation of G(t). The relaxation spectrum F(r) may
be defined by [7]:

Jo
G{t)

and may be expressed as the sum of two terms
and FC(T) defined by

- \ :

(4.14)

2c(t)

In terms of (4.14) we have

> - J :
and in the case where a(t) = 0 from eq (4.6)

IT

FlGURE 7. Dynamic data on 5 percent solution of B-140 in Mentor
28 oil. S o l i d circles represent the values calculated from data given in table 2.

TABLE 2. Relaxation spectrum for 5 percent solution of polyiso-
butylene B-140 in Mentor 28 at 25 °C

T

19.0
15.2
10
3
1.0
0.3

.1

.03

.01

H(T)

0.0
.1
.5

7.3
39

120
245
410
420

We calculated H(T) = TF(T) from measurements of
r)'((o) and G'(co) on the five percent solution of B—140
by an iterative method which will be described in
another paper. In figure 7 we show the dynamic
rigidity and viscosity as a function of frequency.
The black points represent points calculated from
H(T) as obtained by our iterative method and tabu-
lated in table 2. The agreement indicates that we
have a good representation within the range of meas-
urements. In figure 8 we show the viscosity at steady
shearing flow as a function of rate of shear, with the
open circles representing values calculated from eq
(4.17) assuming that the contribution of the integral
of FC(T)T is negligible. The agreement between ex-
perimental and calculated values is excellent.

The same arguments can be used for the deter-
mination of the normal stress differences crn — cr,
o"22~o", and 0-33—0- (where 3cr=crn+0*22+0*33) as can
be seen from eqs (2.12) to (2.14). An interesting result

is that the limiting value of the ratio at small

(4.17)

—O"33

rates of shear is 0.46 in the case where /3 is the domi-
nant term. This compares very well with the value
of 0.4 reported by Markovitz [8] for a 5.39 percent
solution of polyisobutylene in cetane.
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FIGURE 8. Dynamic viscosity and steady shear viscosity data on
5 percent solution of B-140 in Mentor 28 oil.

Solid circles are the calculated values.

In conclusion, we should emphasize that all these
derivations were obtained with the assumption of
incompressibility. In reality dWjdh and dW/dh de-
pend also on /3, the influence of which can not be
evaluated from the experiments reported above.

I thank B. Bernstein, E. A. Kearsley, and R. S.
Marvin for their valuable discussions during the
preparation of this manuscript.
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