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The #xtrupolation of the malting poinls, Tu, of the n-parsffites (o large chain langtha {n =+ @) is
reexamined in order tq resolve tha diferences it the proposed values of the convergance temparature

= _'hin Ta. Experimental ligoid antroples cun be made consintant with & tetin, K In r, proposad by
n o

Florr and Vi), This term effectively replaces the well-known expregsion Ty =Ty (R + alin+&) with
an expransion Tm= Ty [k +alfiin+ I A+ b); thus, slowing the convergence rate and Increasing Ty from
141.] °C to 144.7 °C. Independent estimates of the parameters in the melllng relationabip were
obtained from thermodynamic date end the least squares eatimaie of 7= 144.7 *C {calculated from
33 melting points with a standerd deviation of Tu=10.3 °C) coald nor be eliered by more than = 0.5
by any¥ reasonable varistion of the ﬁlnlmetem. A gimplified melting expression is obtained for poly-
sihylana which includes bedh 1the chain end and fold surface encrgies, and it is shown thal chain end
effeats partly acoount far the discrapancy beiween the 144.7 °C convergencs lempemture and cxperi-

mental mehing temperaturen (<~ 139 "C) of extend=d chain polyethylen= crystals.

Key Wonde: Coovergence lemperature, melting temperatures, methyl surfaces, n-paraffing,
polyethviene, thermodynamic properles.

1. lntreduction

In 1962, T published a paper [1]! which was intended
to estahlish on thermodynamis grounds an analytical
expression Tw=F(n) for the orthorhombic normal
paraffin melting temperatures, T, a8 a function of the
number of carbon atoma pet molecule, n. That work
resulted in an expression,

R+

Tn=Te 3

i1}
of well-known form in ose singe 1331, The constants
were found to be a=—1.5, 5=5.4, and Ty = ljgﬂTm{n]

=414.3 K {141.1 *C) with an estimated error of
+=24°K,

In 1963 Flory and ¥rij [2] reexamined the thermo-
dynamic basis for the parafhin melting equation and
modified the assumption ][31] of a linear dependance of
the liquid entropy on n, by adding a term, K ln n, 10
account for the disordering of the methyl layers during
melting. The effect of this additipnal term was 1o
raiseniie valve of Ty from 414.3 "K (141.1 °C) as pre-
dicted by eq (1) to 4185 =1 °K {145.3 *C). The dif-
ference ﬁetwe&n these twoe values is quite stgnificant

* Figmred im bracloets indbe gta the Lkarsture ralarsnces #1 (ke end of s paper,

when calculating, for instance, the surface free energy
of polvethylene crystals from melting data or erystal
growth retes. It is the primary purpose of this paper
to investigate this discrepancy and to establish more
firmly a value for Th.

2. Liquid Entropies

The k-paraffin  melting relationship, AG{Tw, 8)
= AH(T o, 1) — TdAS(Tm, r)=0, can be obtained follow-
ing Flory and Vrij by equating the Gibbs free energy of
fusion {written 8s a function of temperature and ) to
zemo. If the dependence of AL on n is linear, one
obtaina equation {1} If not, one obtaine a more gen-
eral form of (1) where a and b are functions of R, The
limiting value, Ty, depends on the functional form of
AG(Tm, 7). The solid enthalpies and entropies and
the liquid enthalpies are expetimentally ohserved to
be linear with o [3], and the problem centers around
the functional form of the Ligquid entropies, S{T, ),
which experimentally are found to show some non-
linearity. This nonlinearity in 84T, n) appears in
AG(T, r} and alters Ty in a way which depends on the
magnitude and fonctional form of the nonlinear terms.

Since it is the liquid entropy that supplies the non-
linear terma to the melting relationship one can in-
vestigate these terms independently of the melting
temperatures by looking at the a-dependence of experi-
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mental liquid entropies. Experimental liquid entropies
for the a-paraffins from CsHie through CisHas at 300 °K
are listed in table 1.2 If §; were linear, then differences
between consecutive values of 5= S¢EH+Se! wolld be
constani, and if (S~ K In »j were linear as indicated
by the work of Flory and ¥rij then differences between
consecutive values of (3:— R In n)= Sant + Se would be
constant. These differences are plotted in Agure 1
as a fonction of a. Figure 1 shows that neither 5;
hor 5 — R ln R are linear with &, and that the & In a
term is too strong and overcompensates for the non-
linearity in S;. The magnitude of the R In n term
could be redoced or alternatively a term like 1{r could
be added with or without the B In rterm. Included in
figure 1 are consecotive differences of the function
i5— R In R—5.6/r) which do not show any increasing
or decreasing trend with n.

TABLE 1. Experimentol safues of the obaplute fquid entropies in
ceelfmol - deg ar 300 °K for the n-poraffins with from 5 eo 18 carbon
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FIGURE 1. Differences berween experimental liguid empropies, 5,
{open circlesk: 5 — R In nitriangien); and 5 — R e n— 5.6/ {closed

cirches), for conseculiie n-pe at 3M *K persus arerage anm-

ber gf carbon aloms,

tions resulting from least squares Bz of the liguid
entropy data for several functions. The lowest stand-
ard deviation was obtained using §)=S8,;+S,+ K loa
+¢fr, but the fit using S=541+84+cR In r was also
quite satisfactory. The inclusion of a 1/n® term seems
an unnecessary complication. But we are still not
able to select unambiguously a fuactional form for
5: based on the data alone. In order to clarify this
situation we have examined the statistical theory of
polymer chains hased on the liquid lattice model.
Thia model allows one 1o calculate an expression for
the entropy of a polymer chain in its liguid phase and
leads not only to an unalterable B In & term as pointed
out by Flory and ¥1ij but also predicts terms in powers
of 1/n {(see appendix A).

It seems most reasonable to conclude then that the
correct expression for the liquid entropy of the r-paraf-
fins a= a functon of r and T is

Siin, Ty =8(Tt +8(TV+ R In »n+ 5.6/n, (2}

where terms in 1fn® have been ignored as haa the tem-

Eferamre dependence of the relatively umimportant
A lerm

Tabik 2. Least squace fits of the liguid n-poraffins entropies ot 308 °K for several functions

Fumcti Constants amd 1hei
umeten Standerd nandaed deviellangt
of
Function 5, 5 ¢ ¥

By=Sn+Sa {00610} | 7,78 {008 | 244 0003}

Ri=Sm+5,+cRina [CLely | 771 W10 | 234 N0 | 0 0

S —Rlma=Sn+i, 000 | 7.5% {0006 | 219 .02}

5 —Rlaa=Syn+3x+e % ALGTTE | 785 sy | 20T 00 0L | 561 e
5—Rlma=Syn+Sn+c l" +d {%}’ {00 | .00 HR015 | 203 0050 | 7T 4REIN | —60d (1500
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3. Malting Equation

By expanding AG=AGn+ 46— RT In n—5.6T/r
about T'=T, (see reference 2 for details) one finds,

AT ACH [ | (l)]
nﬂHTﬂ nznmﬂ T |RInn+506 -

= Tmﬂe -— ﬁﬂe + %-.E{ﬁng [3]
1

which differs from Flory and Vrij’s eq (&) only in that it
inclodes the (1/r} term and the ACg: term which they
chose to neglect. Direct l::al{:u]';tiuns show that
neglected terms remain below 1 percent of the magni-
tude of the leading terms ineq{3). Here AT=Ty—Th;
—AHIT, and —AC,ITy are the hrst and second tem-
perature derivatives of Afr, at =Ty —AS. and
— ALy /Ty are the first and second temperature deriva-
tives of A7, at T="Ty; and AN, = Al + TWAS.,. Rewrit-
ing (3} in the form of {1} one obtains,

"+ Me - Tnﬁﬂ&-}'ﬂ

(4}

T .=Tn AH —ToAL,12 _
et gracs|(s ) -2
n+ﬁH—Tu.&Cp!2[(£SE > +&lnr+56 n 5 R+ 2 )T,

This result i3 equivalent, except for the In a and {1/n)
terms, to eq (L.6) in reference [1]. Equation (4) can
be abbreviated as

_ rR+a
Tu=To r+ Bin)

which can now be treated as a generalization of (1)
One can calculate from experimental Ty values

Bin) = TL: n+ @) — n, 5)

and these B{n) values are shown in figure 2 for various
values of Ty and a. The quantity Bir) can also be
expresged from eguation {4} in the following ferm;

——To _AL
Bin)=zg—Tac, [(‘15*‘ z )

56_(AC,  ACw\(,_Ta
+8lnn+ - (2 rn+ 5 )(l Tu)]' (6}

The thermodynamic quantities in eq {6) were as-
signed values as follows. The molar entropies and
enthalpies for the liquid and solid k-paraffins (see
footnote 2) were plotted as a function of . The slopes
and intercepts of these curves equal respectively
SdT, HAT) and SAT), HAT) and differences beiween
the liquid and solid values gave ASAT), AHJAT) and
ASAT)., AHAT) which were then extrapolated to
T=Tsto give AH, A8, AS,, and AH.. AC, and AC
were taken as the slopes of the AH(T) and ﬁ.H,{ﬁ
curves at =T, {A more detailed descripiion of
this procedure can be found in 53].] The results of
these calculations are summarized in table 3. Num-
bers from table 3 were used 1o evaluate the various
terms in eq {§) and these terms are shown in fgure 3.

TanLE 3. |, The valucs of several quantities at 418 “K determined

Jrom thermodynamic dota o the n-parafing
Quaniiy Vil Enabmuted) ponsdble arvert

&l oon b R

Ak, % L5 calimol deg
&b, — 300 =H) ol

a4, = 300 500 ealfmal

&5, 1.0 =6 calmid dog
A, -n.0 = 4t oalioel deg

TThe eaatimoigy o grror e islopdbomelly  pes-
winbiic dtd bevve woby nn & guide i ewuminitg ke
senaitivily of eq W La paireme vansthins of ihese
quanibe

Figures 2 and 3 are useful for getting a feeling for
how the various terms in Rin) affect Ty and a. In
figure 2 the change in shape of Bin) at small » is asso-
ciated with & change in a, whereas a change in the
slope of B(r) at large » is associated with a change
in Ty. Figure 3 shows that the term which accounts
mostly for the shape of B(r) at large » iz the ln & term
and that the remaining three n-dependent terms in
B{r) mostly affect the shape of Bin) at small 7. The
gquantity (AS.— AC.f2) is reated here as an adjust.
able parameter and is used to regulate the vertical
position of B{r).

When £ (a) was assumed constant a= was done in
[1], eurve fitting of the melting equation gave a=—1.5
and Te=414.3 °K. These resulis can be anticipated
from figure 2 which shows that straightest curve is the
a=—1.5 curve and the flattest curve would be for Te
a lictle less than 415. Including a In 7 term and &
partially compenszating AC, term in B {n) as was done
by Flory and ¥nj gives B {n} a shape similar to the
o=—3.0 curve and a large-n slope similar tp the
419 °K eurve. Thus one can amicipate their results
of Ta=418.5 °K and a=—2.7. In this presem paper
we are adding to B (x) the 1{r and A€, 1terms and from
fgure 3 we can anticipate that these will raise ihe
small-n end of the corve and thus significantly reduce
the magnitude of a but only slightly lower the large-a
slope and thus only slightly reduce the T valye found
by Flory and Vris.
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In cther words, the In 1 terin is the crucial one in
B ir) as far as establishing Ty is concerned, and the
conistants in the other terms can be varied within the
generous range of uncertaiinties given in table 3 without
appreciably affecting T).  In the following section the
results of fAtting the melting temperatures to eq (4
will be shown 1o verify these anticipated results.

4. Fitting the Melting Data

Previously, eq (1) was fit to 14 values of Ty Tor the
orthorhombic-liquid transition of the n-paraffina with
d4= pn=<100 {I. Flory and Vrij calculated 19 addi.
tional values for 11 = & < 44 from data on the enthal-
pies and temperatures of the orthorhombic-hexagonal
and hexagonal-liquid transitions. The resulting 33
values are listed in their paper. The vaiues for the
five shortest paraffins were found to be smaller by
0.1, 0.4, 0.2, 0.2, and 0.1 *C respectively than those
given by Flory and Vrij, bazed on quadratic extrapola-
tions of experimental free energies.

These data were fit by least squares using an Om-
nitab program to eq (3 in the form:

T =T+ Tl 503

where B(n) iz given by eq (6).

Such a fit yields leas=i squares estimates of Ty and
To with the assomption that the hracketted terms are
known functions of n and that all experimental un-
certainty is contained in Fpir). Thoas all constants
in Bi{r} had to be assigned values before fitting. To
adapt to these restrictions we assigned values o A,
A, and the factor Tof{AH —TALL2) from table 3
and then did the least squares fitting for each of a
series of cloaely apaced values of (AS, — ACp./2). The
hest value for (AS: — ACu./2) was taken as that which
gave a minimum standard deviation in T'm for fxed

values of ACp, ACu.. and Tof{AH—TeAC,/2). This

10

FI:URE 3. A. Bin), celeulated from eq () wxing different valicer for
the thermodynamic gquentite), B. Vaolyss od,fg; Jour variable
terma in Kg () and their sum using the rolues in cable 3 ond
To=418°K.

The curves. (1} B In o fwheera by Tofld N — Fulipf3} = 047 (5 54 beilink 3}
Mﬂnﬁ'-l’;lﬁ.ﬁm.; mﬂ-ﬁi ?ﬂ B AL ST = Tt Tud, Adg. = =B {4 Jum o curva HE.
15) snmr nn (5} with — gl B By addedd 7] sama a 46 with Slpy == 12, (B} same
ax () wilh AT = 100, (%) sdme an 6} with A8, =20,

method vields a pseudoleasr-aguares wvaloe for
(A5.—ACs/2), and the standard deviations were
adjusted 1o account for this third constant. The other

canstants in B{#) could have been handled in the same
way except that the bt was fairly insensitive to them.
Instead, the values of ACg, Ay, and Tof(AH — ToAC,f2}
were varied either mgeLﬁer or singly within the range
allowed by table 3 and the fit was repeated each time
yielding new values for Ty, Toa and (AS. — A€, 2).
In this way the effect of variations in the assigned
constants on the values of the derived constants eonld
be observed directly. To eliminate the difficulty of
having the ratic AT/T, appear in Bin}, calculated values
for thiz ratioc were fed back into Bi{n) ontil the cal-
culated T became constant. The results were quite
insensitive to the initially assumed value of AT{T,, and
To converged to a constant value to better than 4 figures
after 2 jterations.

Using TMAH—Toldlpf2)=047, AC,=0.5 and
Al,.=—8.0 gave best fit values of Ty=417.9 °K,
a=—L15 and (A8, —AL,.{2)=5. The values in table
3 rive independently ¢ =—1.5 and (A8, — AC,./[2)=35,
whick is encouraging agreemenm. The standard devia-
tions for T and Ty based on 33 minus 3 degrees of
freedom were calculated to be 0L30 and 0.12 *K respec.
tively.? Changing the assumed valoes of AC,, AC,,,
and Tof(AH — ToAC,/2) within the limits allowed in
table 3 did not alter the calculated vahie of Ty by more
than =0.5 *°K. The resulis are as anticipated by the
arguments of the previous section.

1 For comparnisos, the nsltiog datn were B 4o eq {1} aod Tem 4138 K whk siatdard
:;‘Iﬁilillﬂ'la ‘I_JI.]aﬁ and 0,14 *K respestively.  Foms, wq mdlu sOmE impToTeTrem
aver eq {1
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v The results lead strongly to the conclugion that Ty
is very nearly equal to 417.9 °’K. To apply an uncer-
+ tainty based on three standard deviations (3 X (.12 °K)
is misleading since il does not take account of yncer-
* tainties in the functional form of (4), but it is difficult
to see how Ty could be altered by more than 0.5 "K by
" any reasonable means. Hence, the resuits essentially
. confirm those of Flory and Vrij with a slight bui sig-
* pificant reduction in their estimate of Th=418.5
. =1.0 *K because of two relatively small terms which
they neglected.

5. Discussion’

+ The highest experimentally observed melting tem-
perature for polyethylene is 138.7 °C, and for poly-
t methylene, 1414 *C [6, 7). Both of these were ex-
tended-chain pressure-crystallized specimens.  Brown
and Eby [8] used a form of eq (1) to extrapolate the
meiting temperatures of pelyethlene to infinite molecu-
lar weight and found F3=143.5 “C. By the same
. procedure Fujiwara and Yoshida [9] found Fo=144.8
"C. Weeks [10] used a plot of crystallization versus
- melting temperaiures and extrapolated the data 1o
the line T;="To to find Ty,=145.5 *C. Thus, a value
of Ty {paraffins) = 145 *C is not out of line with extrap-
olated values for Ty (polyethylene), but is significantly
* higher than experimentally observed meliing poinis
. for extended chain polyethylene where there should
ke no effect from chain folded surfaces, An overall
explanation of the meliing data for polyethylene seems
still to be lacking.
It iz of interest to examine eq (3) in the limit of large a,

T (paralfive, n > )= T, (1+ 5= 0 8}

For a polymer, one would observe some contribu-
tion frotn the K In A verm if the chain ends were ordered
in the crystal. Given a oparrow length-fraction of
polyethylene, one might find a high degree of chain
enc{ ordering in extended chain crystals, and very
little chain end ordering in the folded chain crystals.
Assume thar AG, is the same for any type of crysial

- and that a term BTy In &« = takes care of end group
ordering effects where o has a valve from 1/ {com-

" pletely disordered) to 1 (completely ordered), depend-
ing on =, the distribution in length and the mode of
cryatallization. Assome further that Afsr is the free
energy contributed to the crystal by a ma{e of folds in
excess of that attributable to the associated CH.-
groups if in a nonfolded configuration, and that the
folds, when present in the crystal, occur in regular
planes separated by ay carbon atoms. We can now
modify eq (7} as follows,

T (polyethylene, r 2 1)

A, —T lnan Al

}nlsrder to explicitly account for both chain ends and
olds,

Equation (8) can be compared to the well-known
equation,

. 2,
Tn=t3[1-2|. o)
Here o=—{C{2A)ALF ergfem?, A=18.5X10-" cm?
=the effective cross-sectional area of 8 CH; chain,
C=6.95%10"" erge-molesfcal-molecule is a dimen-
sional conversion constant, I=1.27 ny 2 109 ¢m and
Alr=(C1.2T X 108 )AH =29 x 10" ergsfcm? s
the heat of fusion of a CH, chain crystal,

One can now write (8) in the form of (9} to a good
approximation by letting

{10)

—— [1+ AG.~ToR In om-]

nAH

where T} is the effective convergence temperatore for
a polymer containing end groups. T§ was calculated
nsing Te=417.9, Al =—3400 calfmole, AR = 1000
calfmole for the two limiting values ol oy, and the
results are shown in figure 4, plotted as & function of
the number of chain ends per 1000 carbon atoms.
HNotice that the apparent convergence temperature for
owr hypothetical polvethylene is lower when the chain
ends are ordered (a=1) thao when the chain ends are
disordered («=1/r). This result is of interest pri-
marily because the experimental results mentioned
at the beginning of this section give higher values for
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T4 for folded erystals of polyethylene than the actual
medsured valies for extended chain poiyethylene.
{The former would presumably exhibit more randomi.
zation of ends than the later.) Also notice that the
depression in T3 is not insignificant {or typical poly-
ethylene where the weight average molecule has about
1000 carbons {2 ends per 1000 carbons) [7].  We shall
not procede further to inclode the additional effects of
length distribytion and side branching but mereiy
emphaaize the significamt point here that chain ends
play an important part in caleulabing thermodynamic
gquantities for polyethylene and one can use the
To=417.9 °K calculated in this paper only if one in-
cludes A7, — BTy ln r explicity in polyethylene melling
expressions like (8).

Finally, it should be mentioned that the increase in
Te to 1447 °C does not greatly alter the results in
reference [3] where the thermodynamic properties of
an infinite CH; chain erystal and liquid were obtained
from paraffin data. Also the intreduction of the R ln»
term does not affect those resnlts since the nonline-
arity, although not understood, was recognized and
taken into account empirically io that paper.

6. Appendix A

In order to examine the theoretical form of the liquid-
glass entropy difference, ASy, as predicted by the
liquid lattice theory {for & general discosaion of the
theory see Miller [4]), it is convenient to star with eq
20 in reference [51.* This equaton includes the im-
portant effects of chain stiffness, Letting their z, the
primary valance of the backbone chain atoms, equal
4 and writing AS;; a= a molar quantity, eq 20 [3] is,

ASptR=n ln(FofSe)+ np In(FofSE)

+In 3irn—1)+{r— A {A.1)
where R =molar gas constant, ® =number of carbon
atoms in the chain, p=nafn n=fraction of vacant, ng,
te occupied, 7 nr, lattice sites (ry=number of n
—mers), Fo=mnofin rty+no)=pfil+p)=volume frac-
tion of vacant to tolal lattice sites, go=2no}'[{n+ Lin:
=+ 2ing] and

2A8 exp — Af)
1+2exp (— iR

A=In[1+2 exp (—AM] +

where AB=le;—eWRT and (e3—&;} is the energy
difference between the trans and gauche configurations
for a carbon-carbon bhond.

Ignoring p compared to 1 (the derivation was carmed
out without simplications and gave eszentially the same
results), writing FofSa=({1/2)(1 + 1/n} and drepping the

* Thin equuiion actuglly deale with the configursimnal awiropy difference between the
Iijuld and u 3400 configmrational entopy dess wed beoce sbould equally well apply to the
confyporatonsl eowopy dilference batween the Bgusd snd urdared craeal,

second term in {A.1) gives,
ASigtR = In (121 + 1in)+In 3r(l + Lin)+(n—3)4
=n{=In 2+ A)+(r 3—34)+1tn r+{rn+1) In {1+ n),
Expanding,

Inil+1/n}=(1jk—1/2r*+1f3R% . . )
and
ASIR=n{—In Z+A)+{1+In 3 —34

+ln r+ 112 (Ifm— /6 (1%, 1A-2)
Thus we have in addition to the linear and constant
terms an wnalterable In 2 term and a power series
in (1fs).

(H some further interest are the predicted magni-
tudea of the coefhcients. Letting (g —e¢)=300
calfmole, then A= 1.0 at 300 K and we have,

(AS/R}=0.3r— 0.9+ In n+(1/2) {1/r)— (L{6) (1/n?).

Experimentally, the liguid erystal entropy differ-
ences at 300 “K for the n-paraffins fit roughly,

(AS/Ry=1a+0.5+In n+2.6(1/m)— 3{1/r%).

The agreement is not good but we can improve things
samewhat by taking sccount of the extra valume of
a CH; group compared to a CH: group. From the
x-ray length of the ortharhombic phase {={1.27 n+ 2
* 10-* ¢m indicating an effective CHj length of roughly
twice a CH: length. Replacing n by r + 2 gives,

{(AS/R)=0.3n—0.3+1n n
+250(fa—32(1/r®+ . ..

Even the discrepancy in the constant term is now
not too disturbing, and the numerical agreement lends
some support to the adoption of the above form for

Sie.
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