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Slit shaped apertures are usually used in small-angle x-ray scattcring measurements in order to
obtain eaaily measurad imenaities of acattered cadiation. As a resplt, the scaitering intensity at a
given angle determined by the camera, the center of the sample, and the central incident x-ray beam
ia nol simply related to the scattenng Ffrom the sample only ar that angle.  The expetimentally deter-
mined intensities f{x) are related to the yrue scattering intenaities hy the following integral equation:

f{xa-f Itst + AR Wi,

This integral equatkon has been previously solved only for certain simplified functisnal forma foc Fir

and %x). In thig paper, a fprmal procedure i3 developed For calcolating fix) from the abserved angular
meaauraments, which doss oot necessitate making any a priori assumption about the form of Wi

and f.{x},

Key words: Distribution of intensity, integrel equation, scatteting cross section, slit commection,

small-angle v-ray seatterng.

1. Introduction

Narrow slits are often used in small-angle x-ray
scaflering measurements to collimate the incident
beam sufficiently to allow scattering measurements
extremely close to the incident beam. Compared to
a pinhole of diameter approximately equal to the slit
width, the slit system increases the availahle scatter
ing energy. However, the scattered radiation meas-
ured in a given solid angle can no longer be simply
described as the scattering coming from a point source.
Instead, the actual angular scattering measurements.
which are summations of the scattering contributed by
each scattering center along the height of the sample
glit, must be resolved to give the scattering of an inb-
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nitely small arca at the center of the sample slit. In
this paper, a formal procedure is described for calculat.
ing tﬂe tree scattering cross sections from the obaerved
angular measurements when fong bul very narrow-
width slits are used for collimation.

A diagram for the slit system of a small angle x-ray
system is given in figure 1. This is a modification
of the diagram given by Shull and Roess [1).' The
plane of the guadrangle txyr is perpendicular to the
camera axis which is in the vertical plane containing
the collimating slit and the sample zlit. The col.
Limating slit nearest the x-ray tube has length 2i,, the
effective length of the slit at the sample iz 2}, and the

3 Figures in brackets indicate the termare referencen b tha swd of this paper.
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FiGure 1. Dingram of a siit coflimation ayztem,
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scanning slit at the detector is of lengtk 2y The
scanning slit and sample slit are shown in figure 1 to
be in & plane making an angle # with the plane con-
taining the camera axis and the collimating slit. Let
us consider 8 ray which makes an angle i with the
camera axis and after it hits the sample is scattered
by an angle £ with its original direction. Since the
angles &, #, and 7 are in practice small, they can be
replaced by the following rakios:

e=riL,
o=x/L, (L)

and p=(¢t—s)}{L.
Since =2+t — ), it follows that

E’=ﬂi+{1}+ (?’)T

Let fi#} be the intensity striking the scanning slit cen-
tered at 0, and let Xeldn represent the increment in
intengity of scattering in an element dn. The fol
lowing equation defines /(@) by averaging Ke) over the
entire sacanning area.
in=2|" a f’ ds
2y0 )0 L

(2)

e+, KL

fe)dy. (3

fr=liYila

Equation (3) is the one obtained by Shull and Roessa[1]

The triple integral in egq (3) can be redoced w a
single integral. One way to do it i3 by the method
employed by Schmidt [2} By changing ¥, s, and »
into the dimensiondess variables

3’1=3"sz, =73 (ﬁ—i—%)_’ h=%— 15:

the limits of the integrations are replaced by constants
which are descriptive of the geometrical parameters
of the salit system. One can then integrate the re-
sulting expression over s and y. After substituting

£ N .
'y =T for s+, the resulting integral equation is

fior=a f " 6+ VW ), @

However, F(2) is a complicated function of the geo-
metrical parameters of the system. In general, Fin)
is a quadratic function of £, repsesented by different
functions for different interv of £ Also, Fin)
royst be premultiplied by 2 unit step function which
becomes zero when

| ey

ye+lz+{li+ 1) E‘a’ |‘

The advantage of atarting with eq (3) is that Ly is
the coordinate of the length of the slit nearest to the
x-ray tube. Thus, in the more general case when the
intensity along v, is not uniform, but is given by a
general distribution function g{n:), eq {4) will still be
obtained. However, Wi(t,) will be represented by

doubile integrala of the general form
jjg{n:—s:—y:}dsidy:,

with the ranges of integration being determined by
the parameters of the system. In other words, Fin)
in eq (4) results from the projections of the variables -
5; and ¥, onto the plane of registration, corrected for
a possible nonuniformity in the distribution of intensity -
of scattered ratiation along m:. The only restrictions
imposed are on the variables 51, 7, and y:. Theae
angles must be sufbciently small to justify their re-
placements by ratios of coordinates (eq (1)).

In the process of determining the forma] solution of
the integial eq (4), one has to calculate derivatives of
Wit), and for this rea=on, it would be more advan- -
tagegus to start with a continuous expression for this
functign. This difficulty is eliminated ¥ one starts
with the experimentally determined W) or by using
the smoothed curve obtained from the calculated
segments.

Starting with eq (3}, but omitting the slit coordinate
1, we have the following equation, with wif) repre. .
senting the intensity distribution ik the ¢ direction

f{x}=f _mumf{ [a%+{e— ]2 }dady.  (5) -

Imerchanging the order of integration and making use
of the fact that ¥(6 = F{— 5, we cbltain

f)=2 f T WGR + ] de ©)
[ 1]
with

W)= f" sy 7

#it) can be determined by measuring the intensity
in the plane of registration. This iz done by taking
various intervals equal to 2y, along the ¢ axis. These
intervals are equal to the length of the scanning slit.
The finite length of the scanning slit restricts the range
of the variable ¥ in eq (7). Therefore, a unit step
function A({y) has to be introduced, with A{y)=10 for
y>=k and h{y)=1 for 0= y< k. This process will
modify () into a convolution integral of i) and A,

Wi = _E wlylhie— yidy. (8

The oniy known solutions of the integral eq (8) were
obtained for certain special forms of F{) and of

Iix). Guinier [3], Fournet [4], and DuMond [5] have
solved this integral equation for slits of infinite height
i(Fity=1). Their method was extended by Kratky,
Porod, and Kahovee [6]), and by Gerold [7] to finite
beams where B could be represented by a step

function, or a (zaussian distribution, or a particular
trapezoidal distribotion. Sholl and Boess [1] have
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presented a solution for an arhitrary FFin if the scat-

tering cutrve f(x) can be regolved into a packet of Gans-
sian functions. The earlier attempts to solve eq {6)
have been recently reviewed by Beeman, Kaesberg,
Anderegg, and Webb [8], and by Kratky, Porod, and
Skaia [9].

In the following section a formal solution to eq (6}
is presented which does not requite any a pricri as-

$ﬁpﬁuns about the particular forms of f[x} and of
th

2. Solution of the Integral Equation

2.1. General Considerations and Discussions

Equation {6) ia rewritten as

fx)=2 j” YEPF iy — x5 W2)dy

(¥ —xiz

To salve this integral equation in one of the standard
forms it is essential to remove its singuiatity, since
the kernel of the equation iz infinite at y=x. The
_ transformation of this equation, which removes this
singnlarity follows the method employed in connection
with the celebrated Abel’s integral equation. A new
variable in a suitable form is introduced, and both
gides of the resulling integral equation are integrated
over the variable x between the value of the new vari-
able and infinity. This, combined with the inter-
change in the order of integration of the nght-hand
side of the resulting integral equation, through the
use of the Dirichlet formula, has the effect of remaoy-
ing the singularity. The new kemel is fnite every-
where, but it is replaced by a bounded integral whose
E}egyand invelves the original distribution function

(£

The solution thus obtained is an implicit one, since
the left-hand side of the integral equation involves
the integrated form of the experimental funetion f{x}.
In order to obtain an explicit form for the integral
edquation, two additional steps are required: (1) Solution
of a subzidiary imegral equation for another function,
which essentially compensates for the slit weighting
function W, (see following section), and {2) differentia-
tion of the experimental intensity function Hx) with
respect to x. The details of the solution are given in
the following section. Here we give the two aclutions,
the implicit and the explicit one in their final forms:
Implicit Solution:

L)

Explicit Solution:

Kuy=—= 1 j

The function F satisfies the following Volterra equa-
tion of the second kind;

Iy + up)

T Fiyidy,

(1)

Fiy)= 1—% ¥ J: FiK[(v — 22dz,  (12)
i o

The kernels of the implicit and explicit solutions, eqs
(1¢a) and (12a}, are similar in their general forma,
axcept that the first one involves the skt correction
function I, and the second one involves its derivative,
The implicit selution is suitable only with the nse of
a digital computer. Both sides of eq (10} are solved
simultaneously as a set of shmultaneous linear equa-
tions through a matrix inversion method. Thias method
can be employed also in order to obtain F(u) from
eq (12). However, the latter equation can be solved
by expansion of Fiu) in a Liouville-Neumann seties.
These series will converge rapidly, if & good initial
assumption is made about the approximate form of
the function M),

Summarizing, one can demonsirate that the solu.
tion to the problem of slit correction always leads to
a single integral equation provided thal all angular
variables of the x.ray camera-slit system are small,
The solution of this integral equation invariably leads
to a solution of the Volterra equation of the second
kind which has for jts inhomogensous part a constant
term, and whose kernel involves an integrated expres-
gion of the denivative of the experimentally determin-
able zlit correction function.

At the present time a compuler program for the
numerical solution of the eqs {(10-12) is being
develaped.

2.2. Derivation of Equations {10-12)

In Abel's integral equation, the kernel Kix, ¥} is of
the form ——, with 0<e=<1 and x>y For

a=1/2, the singularity of the kernel is removed by
multiplication of both sides of the integral eqnation by

J-.= Rt - u iy =2 J-n AN —ut)y, (16 (o= ai? and integrating with respect to x. This is
i v done to make use of the fact that

. dx

th =
" - J: [ a—alE " a3

l’x! - _
Kwy= | {1 —omdn VY oel (108 wih Wlnt— ] =Kx, 5, eq ) is written in
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Abelian form:

=2 f: "{——gf E‘i’;‘}i A gy,

For this particular equation, the transformation which
remove= the singularity is based not on eq (13), but
on an equoivalent form: Use is made of the fact, that

W xofx _
w L — ) x? —
since eq (15) can be shown to reduce to eq {13).
therefore multiply both sides of eq (14) by
xedx

(14}

T
7 (13)

WWe

and integrate over x from o to %, obtaining

- ad@ds__, [ [ mlL e
o AR e [P e

=2 [" stokitu, iy, 016

with

(¥ x — xT] ey
&, ) ‘L [ix'W—TJ:‘]I (=P

{17)

In obtaining eq (16) and {17, the order of integration
was exchanged using the lollowing Dirichlet formaola:

J:t dx J:: &y, x}dy=jj dy L" Cly, xdx.  (18)

The implicit solution {eq (10-10a} is obtained from

{16) and (17} in a straightforward way: we replace
¥ —22 by 2. The kernel (17) simplifies to
n—up ¥isdi
Kis, ¥i= . (A — ud— PP {19

and eq (10-10a) follow directly. To obtain the ex-
plicit solution of eq (14}, we muitiply the integrands of
both sides of eq (16) by Flx?—p?)¥*]), Fi{z) 12 an on-
known function to be determined subsequently. In
the right-hand side of eq (16) Kxk, ¥) replaces Ei(s, v)
and is given by eq (20

¥ xF {22 — u?)VZ) (% — x3)V2]
. [Pt — )]

Kelae, y)=
(20

Both sides of the rescltiing eq {19) are now differ-
entiated with respect Lo u:

i ' ﬂtxw[u: —_ u!}h’:] .
dut, (B uEpE

—— uk()Ksl, )+ 2 f "y BT gy )

We need a function Fiz), {z*=»*—u%, which leads to
Kslu, ¥I=x, independent of & and 3. If Kjix, 5} 32
constant, Fiz) then would be a constant alse, equnal
to Zfr. We would then have an Abel-related integral
?:uation with a wellknown sclution for fixl. With

(i, ¥ =A, the solution of eq (21) iz readily obtained:

1 d %z '
Mgt [ fle+atprl e, (22

or

(23)

w- e
f{u}=_21_h,‘:} Mﬁﬂ&_

(2 + wlpR

Equation {23) was obtained by Kratky, Porod, and .

Kahovee [6], using a different method of derivation.

At firat glance, the difficulty we encountered in
solving the original integral eq (14), which is brough
on by the singularity of its kernel, does not seem to be
removed. The integral equation for the new function
Fiz) still possesses a similar singularity. However,
the integral eguation for Fiz) (eq (20)) is conziderably
simpler than the original integral equation for f(x) if
Kiu, yI=constant. The same procedures which
were used lo remove the singularity in the kenel of .
eq {14 lead to a straight-forward solution for K{z) by
reducing it tv a Volterra-type equation of the second
kind. Equaticn {2{) is rewritten as

Wbt BN = =P _
.[- e s

ar

s P =)
y  @oam TR

with s%= 2 —u?,
Both sides of eq (24) are then maultiplied by -~

(24)

e — 38 1V2 and integrated over s from o to &, The
following equation is obtained:
J‘" J" sEWFj(E =2 deds |, [ sds -
o Jo [(s2—zT{u?—sh" o {u*—s5%)1 1'!5]
': -

We again interchange the order of integration in the
Lh.s of eq {25), using the Dirichlet formula to obtain

sH[(2—ds _
[ ponte [} A

Next we subtract and add Fiz=s=®Fi0) and inte-
grate eq (26) to oblain

(26)

% wi) f_" F{z}dz—J: FiMin, dz=2u, 2D

Mia, z}=J'ﬂ {0 — Wlis*—22p4]} i

[ e & &7
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After differentiating {27) with respect to & we obiain

. the following Volterra-type equation of the second kind

o 2 (vdMu, 2)
) F =t aPo h  du 04 @8
since Miu, x)=0.
-« Equation (28} can alsc be further simplified. If we
_ set Fil)=1 and A=m/2, then
_1. 2 [*dMu, 2)
ﬂm—1+w£ 2 P 29)
Equation (273} is integrated by parts,
. Mg, =3 [1— Wl —291]
u s — e
+[ S e [ (5]
Therefore,
" dMiu, 2) J’ ol (Fald G |
Y v
_ Integral eq (29 assumes the following form
Fla)= 1—% f: FlaK, 2dz, @1

with
_u A P dy
e T M e

'_The kernel of eq (31} is finite for all values of z, includ-
ing z=u.

Equations (12-12a} follow directly by exchanging
variahles, u being replaced by y.
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