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Slit shaped apertures are usually used in small-angle x-ray scattering measurements in order to
obtain easily measured intensities of scattered radiation. As a result, the scattering intensity at a
given angle determined by the camera, the center of the sample, and the central incident x-ray beam
is not simply related to the scattering from the sample only at that angle. The experimentally deter-
mined intensities I(x) are related to the true scattering intensities by the following integral equation:

This integral equation has been previously solved only for certain simplified functifcnal forms for W{t)
and I(x). In this paper, a formal procedure is developed for calculating I(x) from the observed angular
measurements, which does not necessitate making any a priori assumption about the form of W(t)
and /(*).

Key words: Distribution of intensity, integral equation, scattering cross section, slit correction,
small-angle x-ray scattering.

1. Introduction

Narrow slits are often used in small-angle x-ray
scattering measurements to collimate the incident
beam sufficiently to allow scattering measurements
extremely close to the incident beam. Compared to
a pinhole of diameter approximately equal to the slit
width, the slit system increases the available scatter-
ing energy. However, the scattered radiation meas-
ured in a given solid angle can no longer be simply
described as the scattering coming from a point source.
Instead, the actual angular scattering measurements,
which are summations of the scattering contributed by
each scattering center along the height of the sample
slit, must be resolved to give the scattering of an infi-

nitely small area at the center of the sample slit. In
this paper, a formal procedure is described for calculat-
ing the true scattering cross sections from the observed
angular measurements when long but very narrow-
width slits are used for collimation.

A diagram for the slit system of a small angle x-ray
system is given in figure 1. This is a modification
of the diagram given by Shull and Roess [I].1 The
plane of the quadrangle txyr is perpendicular to the
camera axis which is in the vertical plane containing
the collimating slit and the sample slit. The col-
limating slit nearest the x-ray tube has length 2/i, the
effective length of the slit at the sample is 2/2, and the

1 Figures in brackets indicate the literature references at the end of this paper.
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scanning slit at the detector is of length 2y0. The
scanning slit and sample slit are shown in figure 1 to
be in a plane making an angle 6 with the plane con-
taining the camera axis and the collimating slit. Let
us consider a ray which makes an angle i) with the
camera axis and after it hits the sample is scattered
by an angle € with its original direction. Since the
angles e, 0, and rj are in practice small, they can be
replaced by the following ratios:

e=r/L9

6=x/L, (1)

and r) = (t — s)/L.
Since r2 = x2 + (t — y)2, it follows that

€* = (2)

Let 1(6) be the intensity striking the scanning slit cen-
tered at 0, and let I(e)drj represent the increment in
intensity of scattering in an element drj. The fol-
lowing equation defines 1(6) by averaging I(e) over the
entire scanning area.

1(0) = —I dy\ ds\ I(e)dV. (3) ~ r - A

double integrals of the general form

I I g(yi—si—yi)dsidyu

with the ranges of integration being determined by
the parameters of the system. In other words, W(t\)
in eq (4) results from the projections of the variables
5i and j \ onto the plane of registration, corrected for
a possible nonuniformity in the distribution of intensity
of scattered ratiation along t\\. The only restrictions
imposed are on the variables si, 171, and yi. These
angles must be sufficiently small to justify their re-
placements by ratios of coordinates (eq (1)).

In the process of determining the formal solution of
the integral eq (4), one has to calculate derivatives of
W(t), and for this reason, it would be more advan-
tageous to start with a continuous expression for this
function. This difficulty is eliminated if one starts
with the experimentally determined W(t) or by using
the smoothed curve obtained from the calculated
segments.

Starting with eq (3), but omitting the slit coordinate
171, we have the following equation, with w(t) repre-
senting the intensity distribution in the t direction

(5)

Equation (3) is the one obtained by Shull and Roess [1],
The triple integral in eq (3) can be reduced to a

single integral. One way to do it is by the method
employed by Schmidt [2]. By changing y, 5, and 7)
into the dimensionless variables

Interchanging the order of integration and making use
of the fact that W(t) = W(— t), we obtain

(x) = 2 f°
Jo

with

the limits of the integrations are replaced by constants
which are descriptive of the geometrical parameters
of the slit system. One can then integrate the re-
sulting expression over Si and yu After substituting

h—-r" for 1714-5i, the resulting integral equation is
LJ

W(t) w(t — y)dy.

(6)

(7)

I(6)=A r
Jo

(4)

However, W(h) is a complicated function of the geo-
metrical parameters of the system. In general, W(h)
is a quadratic function of tu represented by different
functions for different intervals of t\. Also, W(t\)
must be premultiplied by a unit step function which
becomes zero when

t>

The advantage of starting with eq (3) is that L37/1 is
the coordinate of the length of the slit nearest to the
x-ray tube. Thus, in the more general case when the
intensity along 171 is not uniform, but is given by a
general distribution function g(r)i), eq (4) will still be
obtained. However, W(h) will be represented by

W(t) can be determined by measuring the intensity
in the plane of registration. This is done by taking
various intervals equal to 2yo along the t axis. These
intervals are equal to the length of the scanning slit.
The finite length of the scanning slit restricts the range
of the variable y in eq (7). Therefore, a unit step
function h(y) has to be introduced, with h(y) = 0 for
y > k and h(y) — 1 for 0 < y < k. This process will
modify W(t) into a convolution integral of w(t) and h(t),

(8)W(t)= uiy)h{t-y)dy.

The only known solutions of the integral eq (6) were
obtained for certain special forms of W(i) and of
I(x). Guinier [3], Fournet [4], and DuMond [5] have
solved this integral equation for slits of infinite height
(W(t) = 1). Their method was extended by Kratky,
Porod, and Kahovec [6], and by Gerold [7] to finite
beams where W(t) could be represented by a step
function, or a Gaussian distribution, or a particular
trapezoidal distribution. Shull and Roess [1] have
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presented a solution for an arbitrary W(t) if the scat-
tering curve I(x) can be resolved into a packet of Gaus-
sian functions. The earlier attempts to solve eq (6)
have been recently reviewed by Beeman, Kaesberg,
Anderegg, and Webb [8], and by Kratky, Porod, and
Skala[9].

In the following section a formal solution to eq (6)
is presented which does not require any a priori as-
sumptions about the particular forms of I(x) and of
W{t).

2. Solution of the Integral Equation

2.1. General Considerations and Discussions

Equation (6) is rewritten as

(9)

Explicit Solution:

To solve this integral equation in one of the standard
forms it is essential to remove its singularity, since
the kernel of the equation is infinite at y = x. The
transformation of this equation, which removes this
singularity follows the method employed in connection
with the celebrated Abel's integral equation. A new
variable in a suitable form is introduced, and both
sides of the resulting integral equation are integrated
over the variable x between the value of the new vari-
able and infinity. This, combined with the inter-
change in the order of integration of the right-hand
side of the resulting integral equation, through the
use of the Dirichlet formula, has the effect of remov-
ing the singularity. The new kernel is finite every-
where, but it is replaced by a bounded integral whose
integrand involves the original distribution function

The solution thus obtained is an implicit one, since
the left-hand side of the integral equation involves
the integrated form of the experimental function I(x).
In order to obtain an explicit form for the integral
equation, two additional steps are required: (1) Solution
of a subsidiary integral equation for another function,
which essentially compensates for the slit weighting
function W, (see following section), and (2) differentia-
tion of the experimental intensity function I(x) with
respect to x. The details of the solution are given in
the following section. Here we give the two solutions,
the implicit and the explicit one in their final forms:
Implicit Solution:

I*
Jo Ju

(10)

F(y)dy. (11)

The function F satisfies the following Volterra equa-
tion of the second kind:

F(y} = i - i . f " FizMif - z2yl*]dz, (12)
TT JO

K(v) «Jo ( 1 -
{vx)dx

x2)1'2 ' (12a)

The kernels of the implicit and explicit solutions, eqs
(10a) and (12a), are similar in their general forms,
except that the first one involves the slit correction
function W, and the second one involves its derivative.
The implicit solution is suitable only with the use of
a digital computer. Both sides of eq (10) are solved
simultaneously as a set of simultaneous linear equa-
tions through a matrix inversion method. This method
can be employed also in order to obtain F(u) from
eq (12). However, the latter equation can be solved
by expansion of F(u) in a Liouville-Neumann series.
These series will converge rapidly, if a good initial
assumption is made about the approximate form of
the function F(u).

Summarizing, one can demonstrate that the solu-
tion to the problem of slit correction always leads to
a single integral equation provided that all angular
variables of the x-ray camera-slit system are small.
The solution of this integral equation invariably leads
to a solution of the Volterra equation of the second
kind which has for its inhomogeneous part a constant
term, and whose kernel involves an integrated expres-
sion of the derivative of the experimentally determin-
able slit correction function.

At the present time a computer program for the
numerical solution of the eqs (10-12) is being
developed.

2.2. Derivation of Equations (10-12)

In Abel's integral equation, the kernel K(x, y) is of

the form ; —, with 0 < a < 1 and x > y. For
(x-yf

a =1/2, the singularity of the kernel is removed by
multiplication of both sides of the integral equation by

dx
77jz and integrating with respect to x. This is

(u — x)1'2

done to make use of the fact that

with f
Jy

dx
(13)[(x-y)(u-x)yi2

l = f-u2. (10a) W i t h WKf-x^^Ux, y), eq (6) is written in
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Abeban form:

yI(y)K(x, y)
(f-x2)1'2 dy. (14)

For this particular equation, the transformation which
removes the singularity is based not on eq (13), but
on an equivalent form: Use is made of the fact, that

Ju

x dx 77

2"' (15)

We need a function F(z), (z2 = x2 — a2), which leads to
K2(u9 y) = X, independent of u and y. If K\{x, y) is
constant, F(z) then would be a constant also, equal
to 2/TT. We would then have an Abel-related integral
quation with a well-known solution for I(x). With
Kz(u, y) — ^, the solution of eq (21) is readily obtained:

or

since eq (15) can be shown to reduce to eq (13). We
therefore multiply both sides of eq (14) by

xdx

-F(z)dz. (23)

and integrate over x from u to °°, obtaining

--x2y'2dydxf» xl(x)dx _o f « f *
Ju (x2 - u2Y'2 Z Ju Jx - x2) (x2 - a2)?'2

= 2 , (16)

with

Equation (23) was obtained by Kratky, Porod, and
Kahovec [6], using a different method of derivation.

At first glance, the difficulty we encountered in
solving the original integral eq (14), which is brought
on by the singularity of its kernel, does not seem to be
removed. The integral equation for the new function
F(z) still possesses a similar singularity. However,
the integral equation for F{z) (eq (20)) is considerably
simpler than the original integral equation for I(x) if
K2(u, y) = constant. The same procedures which
were used to remove the singularity in the kernel of
eq (14) lead to a straight-forward solution for F(z) by
reducing it to a Volterra-type equation of the second
kind. Equation (20) is rewritten as

In obtaining eq (16) and (17), the order of integration
was exchanged using the following Dirichlet formula:

f °° dx f °° G(y, x)dy= f °° dy f " C(y, x)dx. (18)
Ju Jx Ju Ju

or

The implicit solution (eq (10-10a)) is obtained from
(16) and (17) in a straightforward way: we replace
y2 — x2 by t2. The kernel (17) simplifies to

» W{t)dt

fsF(z)W[(s2-z2yl2]
Jo (s2_z2yl2 dz-k, (24)

Both sides of eq (24) are then multiplied by
(\Q\ s(u2 — s2)~1/2 and integrated over 5 from o to u. The

following equation is obtained:

and eq (10-10a) follow directly. To obtain the ex- f« p sF(z)W[(s2 -z2fl2]dzds fu sds _
plicit solution of eq (14), we multiply the integrands of I I r(52_22\^2_52\ii/2 M /^2_52\i/2 Ku-
both sides of eq (16) by F[(x2 - a2)1'2]. F(z) is an un- J° J° LV A ;J

 (25)
known function to be determined subsequently. In
the right-hand side of eq (16) K2(u, y) replaces Kx(u, v) We again interchange the order of integration in the
and is given by eq (20): l.h.s of eq (25), using the Dirichlet formula to obtain

K2(u
f» xF[(x2 - u2)1'2] W [(y3 - x

,y)=\
Ju (20)

fU fu cI£Tf«2 72X
F(z)dz r

 LV ;

Jo Jz 1(S2 — Z2)(U2 —
= ku. (26)

r> 1 . 1 r 1 1 • /nz:\ j-rr Next we subtract and add W(z = s)=W(0) and inte-
Both sides of the resulting eq (16) are now differ- ( 2 6 ) t Q o b t a i n ^ ^
entiated with respect to zx:

{
duju

™xI(x)F[(x2-u2y'2]
dx

F(z)dz - (U

Jo

= - 2uI(u)K2{u, u) + 2 | J yl(y) ^ ^ y) dy. (21)

F(z)M(u, z)dz = \u, (27)

<fo. (27a)[(s2-z2)(«2-s2)]1/2

470



After differentiating (27) with respect to u we obtain
the following Volterra-type equation of the second kind

with

2X 2 fudM(u,z)
du

z, (28)

since M(u, u) = 0.
Equation (28) can also be further simplified. If we

set JF(O) = 1 and k = TT/2, then

(29)

Equation (27a) is integrated by parts,

-f

Therefore,

dM(u, z)

• sin

.

Integrcd eq (29) assumes the following form

F(u) = 1 - - f " F(z)K(u, z)dz, (31)
77 Jo

u p
' 'Z )~>2-z2)J0 (u2_z2_y2)]ll2 (32)

The kernel of eq (31) is finite for all values of 2, includ-
ing z = u.

Equations (12-12a) follow directly by exchanging
variables, u being replaced by y.
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