# The Configurations $4 d^{n}+4 d^{n-1} 5 s$ in Doubly-lonized Atoms of the Palladium Group* 

Yehuda Shadmi

The Hebraw University of Jerusalem, Jerusalam, Israel

(June 17, 1966)


#### Abstract

Four hundred and eighty-three energy levela belonging to the low even canfigurations of the third speetra of the pulladiam graup swe predicted by the tase of interpolation formulas for the interaction parameters.


Key Words: Configurations $4 d^{4}+4 d^{n-1} 5 s$, energy levels, interaction parameters, palladium group, theoretical, third spectra.

## 1. Introduction

In the present paper we deseribe a systematic treatment of the low even configurations of the sequence ' of the third spectra of the palladium group. This treatment is analogous to the treatments of the second spectra of the iron group [1],? the second spectra of the palladium group [2], and the third spectra of the iron group [3] described in three previous papers.
The approximation used in this work is, as in the the previous papers, the Slater approximation with several improvements. We have included the interaction between the configurations $4 d^{m}, 4 d^{n-1} 5 s$, we have taken different values for the corresponding parameters B, C and $\alpha$ of the two configurations, we have considered the $\mathrm{L}(\mathrm{L}+1)$ correction as well as the spin-orbit interaction.
The main stages of this treatment are the following:
(a) The Slater approximation, improved by the above mentioned corrections, is used to calculate the energy levels of each specirum. After diagonalizing ("Diag.") the energy matrices, the interactionparameters are considered as free parameters and the best fit to the experimental material is achieved by least-squares calculations, ("L.S."). We call this stage "the separate treatment."
(b) The corresponding interaction-parameters of all the spectra of the sequence are expressed as linear functions (in some cases, with a small quadratic correction) of the atomic number. Only the coefficients of these interpolation formulas ("general parameters") retain the role of free parameters. Thus, the whole sequence, containing several hundreds of energy levels, is treated as a single problem ("general reatment") with quite a amall number of free parameters.

[^0]In the sequence from Y II to $\mathrm{Cd}^{-} \mathrm{III}$, theory predicts, for the configurations $4 d^{2}+4 d^{n-1} 5 s, 209$ terms which split into 483 levels. Unfortunately, the experimental material is rather scarce. Only 56 terms splitting into 130 levels were found reliable and could be fitted with the calculated levels. In most spectra the number of known terms does not exceed the number of electrostatic-interaction parameters; thus, a separate treatment of one spectrum loses a great deal of its significance. Such separate treatments were performed only as an introduction to the interpolative treatment, which is rather reliable even in this case, since the number of parameters ts redaced by the use of interpolation formulas for them.

In the following, we shall firgt give an account of the situation and the separate calculations in the various spectra, and then describe the general treatment.
Most of the experimental material used in this paper was taken from More's Atomic Energy Levels, [4] later referred to as AEL. Unless other sources are explicitly mentioned, it means that the experimental matter was taken from AEL.

## 2. Notations

The symbols for the parameters are the usual ones. The parameters $\mathrm{A}, \mathrm{B}, \mathrm{C}, \zeta$ refer to the configuration $d^{n}$, while $A^{\prime}, \mathrm{B}^{\prime}, \mathrm{C}^{\prime}, \xi^{\prime}$ refer to the configuration $d^{n-1}$ s.

In the actual calculations of the separate treatment $\mathrm{A}^{\prime}$ was replaced by $\mathrm{S}^{\prime}=\mathrm{A}^{\prime}-\mathrm{A}$. In the general treatment $A$ and $A^{\prime}$ were replaced by the centers of gravity of the configurations, M and $\mathrm{M}^{\boldsymbol{y}}$, and the difference $\mathrm{D}^{\prime}=\mathrm{M}^{\prime}-\mathrm{M}$ was expressed by an interpolation formula like the interaction parameters.

The parameter $G=G_{4}(d s)$ measures the exchange interaction between $d$ and $s$ electrons, $H=\mathrm{R}^{2}(d d, d s) / 35$ is the parameter of the interaction between the configurations $d^{7}$ and $d^{m-1} s$, and $\alpha$ is the parameter of the $\mathrm{L}(\mathrm{L}+1)$-correction.
"Diag." is an abbreviation for "diagonalization," "L.S." is an abbreviation for "least-squares calculation."

## 3. The Mean Error

Two kinds of mean-error are used in this paper. The "level-mean-error," $\Delta$, is defined by the formula

$$
\begin{equation*}
\Delta=\sqrt{\Sigma \Delta_{i}^{2} f(n-m)} \tag{1}
\end{equation*}
$$

where the $\Delta_{1}$ are the differences between the observed levels and the calculated levels fitted to them, $n$ is the number of observed levels, and $m$ is the number of free parameters. The "term-mean-error," $\Delta$ ', the term, "mean error" as defined in this paper is identical to the concept, "residual standard deviation" used in statistical analysis) is defined by the formula

$$
\begin{equation*}
\Delta^{\prime}=\sqrt{\Sigma \Delta_{\mathrm{T}}^{2} /\left(n_{\mathrm{T}}-m_{\mathrm{E}}\right)} \tag{2}
\end{equation*}
$$

where the $\Delta_{T}$ are the differences between the ubserved terms and calculated terms fitted to them, $n_{T}$ is the number of observed terms, and $m_{\mathrm{E}}$ is the number of the free electrostatic parameters.

The calculation of $\Delta$ is easier, since our least-8quares program furnishes $\Sigma \Delta_{i}^{2}$; the abbreviation "meanerror" means the level-mean-error.

In fact. $\Delta^{\prime}$ is a more serious criterion of the precision of our approximations, as the levels belonging to the same term are strongly correlated, while in the definition of $\Delta$ they are considered independent.

## 4. Survey of the Various Spectra

## Y III- $(4,1+5 s)$

This spectrum consists of two terms and needs for its description two electrostatic parameters, so that a separate treatment is meaningless. On the other hand in the general treatment it supplies reliable points for the interpolation formulae of $\mathrm{D}^{\prime}$ and $\zeta$.

The observed and calculated levels are given in table 7.
$\operatorname{Zr}[1]-\left(4 d^{2}+4 d 5 s\right)$
These configurations consist of 7 terms which split into 13 levels. In AEL 6 experimental terms, splitting into 12 levels, are reported; only the 'S of $d^{2}$ is unknown.

Here, ton, a separate treatment is not fully signif. cant, since 6 electrostatic parameters are necessary. Nevertheless, a separate treatment was performed in order to get some preliminary information about the more stable parameters: $\mathrm{D}^{\prime}, \mathrm{B}, \mathrm{G}, \zeta, \zeta^{\prime}$.

Initial values for the parameters were taken from Zr If [2] In L.S. 1 , the parameter H was frozen and the mean error was 4 because the number of free electrostatic parameters is equal to the number of known terms.

The parameters of the various stages of the calculation are given in table 1 , the observed and calculated energy levels in table 8 .
$\mathrm{Nb} 11 \mathrm{I}-\left(4 \mathrm{~d}^{3}+4 d^{2} 5 s\right)$
In these configurations theory predicts 15 terms which split into 35 levels. In a paper of L. Iglesias [5] 1] experimental terms, splitting into 28 levels are reported.
Parameters for Diag. 1 were prepared by comparison with the parameters of NBil and ZriI [2]. In turned out that the level assigned by Iglesias as ${ }^{2} \mathrm{D}_{3 / 2}$ is actually the ${ }^{2} \mathrm{P}_{3 / 2}$ of $d^{3}$.

In I.S.S. we got a mean error of 34 .
The estimates of parameters of the various stages of the calculation are given in table 2, the energy levels in table 9.
Mo $111-\left(4 d^{4}+4 d^{\$ 5} 5\right)$
These configurations consist of 27 terms, which split into 72 levels. In AEL only the level ${ }^{5} \mathrm{D}_{4}$ and the 5 levels belonging to the ${ }^{3} \mathrm{~F}$ of $d^{2}$ s are reported. Since the ground level $d^{4} \mathrm{D}_{0}$ is unknown, Rico and Catalan estimated the value of the ${ }^{3} \mathrm{D}_{4}$ to be $1500 \mathrm{~cm}^{-1}$, and added to all the known levels an unknown additive constant $x$. (Note, there is no connection between the unknown numerical constant " $x$ ", introduced by Rico and Catalan, and the variable $x=n-6$ defined in eq (5a) in the section on the interpolative treatment.)
Because of these circumstances we did not even include Mo III in the General Least Squares (G.L.S.) calculation, but, using the improved coefficients of the interpolation formulae achieved in the G.L.S., we calculated the interaction parameters of Mom. Then the matrices of $d^{4}+d^{3} s$ were diagonalized with the use of the interpolated parameters, and thus, we obtained predictions for the levels of MoIII.
Using the calculated values of the ( $\left.{ }^{4} \mathrm{~F}\right)^{3} \mathrm{~F}$ one gets for $x$ the value 340 . For ${ }^{8} \mathrm{D}_{1}$ we got the value 1807 $\mathrm{cm}^{-1}$ and this gives $x=307$. We suppose that the uncertainty of $\boldsymbol{x}$ is of the order of magnitude of the term-mean-error of the G.L.S. which is $91 \mathrm{~cm}^{-1}$.

The predicted levels of Mo lit are given in table 10. Tc uL- $\left(4 d^{6}+4 d^{4} 5 s\right)$

In these configurations theory predicts 40 terms which split into 100 levels. Unfortunately, no level was observed. Using the results of the G.L.S. the interaction parameters of Tcill were interpolated, and then the energy matrices of these configurations were diagonalized. In this way the energy levels could be calculated.
The predicted levels of $\mathbf{T c}$ ill are given in table 11 . $\underline{\mathrm{Ru}} \mathrm{III}-\left(4 d^{3}+4 d^{5} 5 \mathrm{~s}\right)$

These configurations consist of 48 terms, which split into 108 levels. In AEL only 7 levels are reported: The ${ }^{3} \mathrm{D}$ of $d^{5}$, and the ${ }^{7} S$ and the ${ }^{3} S$ of $d^{5} 5$.

Obviously, no separate treatment was performed, but in the G.L.S. these few data furnished more points for $D^{\prime}, G$, and $\zeta$. Of course, the main role of the G.L.S. in this case was to calculate all the levels of Rutir.

The observed and calculated energy levels are given in table 12.

## Rh III $-\left(4 d^{7}+4 d^{B 5} 5\right)$

In these configurations theory predicts 33 terms, which split into 82 levels. In AEL all these levels are reported. Only the $b^{2} S$ of $d^{b} s$ is considered doubtful.

Even at the preliminary stage of estimating parameters for the first diagonalization we had serious doubts as to the reliability of the experimental material. It is well known that the difference between two terms of $d^{3} s$ having the same parent term of $d^{d}$ is determined by the parameter $G=G_{s}(4 d 5 s)$. This parameter is very stable for all spectra of the transition elements and also does not change considerably for all spectra of the same sequence. In the present spectram we could get for the parameter G values which were different from each other by about $1000 \mathrm{~cm}^{-3}$, depending upon the choice of the parent term. Only the difference between ( $\left.{ }^{(5 D}\right)^{4} \mathrm{D}$ and $\left({ }^{5} \mathrm{D}\right)^{5} \mathrm{D}$ was consistent with the interpolated value of $\mathbf{G}$.
Since the experimental levels did not seem reliable we decided to perform Diag. 1 with interpolated parameters and to use its results for a more detaiked critique of the observed levels. We got a very bad fit. The deviations between the calculated levels and those reported in AEL were frequently more than 10000 $\mathrm{cm}^{-1}$. In order to check if there exists any set of parameters which will give calculated values close to the observed ones we included in the first leastequares calculation ("L.S. la") 81 levels. Only the $b^{2} \mathrm{~S}$ which is reported as doubtful was excluded. We got a mean error of $3094 \mathrm{~cm}^{-1}$. In L.S. lb only 33 levels were included. We did not include 42 levels belonging to $4 d^{95} \mathrm{~s}$. The terms $b^{2} \mathrm{D}, a^{2} \mathrm{~F}, a^{2} \mathrm{H}$ of $4 d^{7}$ were also included. The mean error reduced to 273 , but $\mathrm{B}^{\prime}$ and $\mathrm{C}^{\prime}$ assumed nonreasonable values. In L.S. lc from the configuration $d^{8} s$ only the levels of
 $C^{\prime}$ were frozen and we got a mean error of 235. It should be noted that in L.S. lc we used 6 free electrostatic parameters and 2 frozen ones for the description of only 7 observed terms. Thus, the separate treatment lost its physical significance and we could not use it for further critique of the remaining reported levels.

In the G.L.S. calculations, it iurned out that also the other doublets of $4 d^{7}$ were doubtful. Finally, only 16 levels were included in the calculation: the


After these calculations had been finished, we had the opprotunity to discuss the results with A. G. Shenstone and he told us that he had reached similar conclusions by comparing the spectrum of Rh ift to the isoelectronic spectrum of Ru Ji, which he analyzed later.

We hope that the predictions of the G.L.S. will hetp to revise the analysis of this spectrum.

The parameters of the various stages of the calculation are given in table 3, the levels are given in table 13.
PdII $-\left(4 r^{3}+4 r^{7} 5 s\right)$
In these configurations theory predicts 21 terms which split into 47 levels. In AEL 19 terms, splitting into 45 levels, are reported. Only the ${ }^{1} \mathrm{~S}$ of $4 d^{8}$ and the high ' $D$ of $4 d 5$ were not observed. The level assigned as $b^{3} \mathrm{D}_{1}$ is reported in AEL as doubtful. It also deviates by about $700 \mathrm{~cm}^{-1}$ from its calculated value, thus we did not include this level in the calculations.

In L.S. 1 the mean error was 157 and in L.S. 2 it reduced to 110. Because of the big distance bewween the configurations $4 d^{7} 5 s$ and $4 d^{8}$ and the weak interaction between them the parameter $H$ is not stable. Pd III is the only spectrum in the sequence in which the number of experimental levels is suffcient to make also the results of the separate treatment quite reliable.

The estimater of parameters of the various stages of the calculation are given in table 4. The observed and calculated levels are given in table 14.
Ag III- $\left.\left(4 d^{9}+4 d^{85}\right)_{s}\right)$
These configurations consist of 8 terms which split into 18 levels. In AEL only the ${ }^{2} S$ of $d^{\mathbf{d}_{s}}$ is not reported, and the ${ }^{4} P_{t / z}$ of $d^{\text {i }}$ s is doubtful. Since also the deviation of this level from its calculated value is rather big, we excluded it from the calculations.

After performing Diag. 1 we saw that the level ${ }^{2} \mathbf{P}_{2 / 3}$ deviates by more than $1000 \mathrm{~cm}^{-1}$ from its calculated value. In L.S. la, where it was included, the mean error was 461. In L.S. IB, from which it was excluded, the mean error reduced to 112 . Hence, we did not include this level in the general least squares.

Not having a sufficient amount of experimental material the parameter H was frozen in L.S. la and 1 b . After having an interpolation formula for the parameter $H$ we could see that we forced $H$ to assume a value which was much bigger than the correct one. Since in the configuration $d^{3} s$ the parameters $H$ and $\alpha$ can compensate each other, this also caused an unjustified increase of $\alpha$.

The estimates of parameters of the various stages of the calculation are reported in table 5, the energy levels-in table 15.
Cd $\mathrm{C}=\left(4 d^{d^{19}}+4 d^{2} 5 s\right)$
These confgurations include only three terms which split into 5 levels. All are experimentally known.

There is no sense to perform any separate calcula. tion of this spectrum. By including it in the G.L.S. we got an additional value for each of the parameters $\mathrm{D}^{\prime}, \mathrm{G}, \zeta^{\prime}$.

The observed and calculated levels are given in table 16.

## 5. The Interpolative Treatment of the Whale Sequence

### 5.1. General Description of the Pracedure

In the general (interpolative) treatment the whole sequence is considered as one system, and the coefficients of the interpolation formulas are given the role of free parameters. We call these coefficients "General P合ameters."

The parameters $\mathrm{B}, \mathrm{B}^{\prime}, \mathrm{C}, \mathrm{C}^{\prime}, \mathrm{C}, \mathrm{H}$, and $\alpha$ are represented by linear expressions of the form

$$
\begin{equation*}
\mathrm{P}(n)=\overline{\mathrm{P}}+\Delta \mathrm{P} \cdot \boldsymbol{x} \tag{3}
\end{equation*}
$$

and the parameters $\mathrm{D}^{\prime}, \zeta, \zeta^{\prime}$ by quadratic expressions of the form

$$
\begin{equation*}
\mathbf{P}(n)=\overline{\mathbf{P}}+\Delta \mathbf{P} \cdot x+\Delta_{2} \mathbf{P} \cdot y, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
x=n-6^{\prime} \tag{5a}
\end{equation*}
$$

and

$$
\begin{equation*}
y=x^{2}-10 \tag{5b}
\end{equation*}
$$

Here $n$ is the total number of electrons in the states $4 d$ and 5. . We consider only the cwefticients $\overline{\mathrm{P}}, \Delta \mathrm{P}$, and $\Delta_{z} P$ as independent parameters (the "general parameters"). The substitution of $x$ and $y$ for $n$ and $n^{2}$ is used in order to get fairly orthogonal parameters.

By fitting the interpolation-formulas to the parameters of the separate treatmente we obtain a set of initial general parameters. Using these parameters, we diagonalized the matrices of all spectra of the sequences; this is the "General Diagonalization" ("G. Diag.").

In the "General Least-Squares" ("G.L.S.") the known levels of all the spectra are compared with the results of the General Diagonalization. In this unified least-squares calculation only the general parameters specified in table 6 and the normalization parameters $\mathrm{M}\left(d^{\pi}\right)$ are considered as free parameters.

### 5.2. The Actual Colculetions

As a consequence of the separate treatment which was described in the previous chapter we had for the general treatment only 56 reliable observed terms which split into 130 levels. Because of the relatively small amount of experimental material we were forced to use also the results of Zr III and Ag iII (which are not quite reliable) for the calculation of the initial interpolation formulas. For the formulas of $\mathbf{D}^{\prime}, \zeta$, and $\zeta^{t}$ even the information from Y III or CdIII was used.

In the G.L.S. we had 30 free parameters: 22 general parameters and 8 additive parameters $\mathrm{M}\left(d^{2}\right)$. 25 of them are electrostatic interaction parameters and 5 are spin-orbit interaction parameters.

A total of 483 levels, belonging to 209 terms, were calculated. The level mean error of the G.L.S. is

$$
\Delta_{\text {c.L. } \mathrm{s} .}=77 \mathrm{~cm}^{-1}
$$

and the term-mean-error is

$$
\Delta_{0, \mathrm{~L}, \mathrm{~s}:}^{\prime}=91 \mathrm{~cm}^{-1}
$$

The general parameters of the G. Diag, and the improved general parametery which ${ }^{-}$were obtained in the G.L.S. are given in table 6.

## 6. Conclusions

We shall use the resulta in order to evaluate the relative importance of the various improvements to the Slater approximation used in the present paper. Generally speaking an interaction (or a correctionterm) is important if, relative to other sequences of the transition elements [1-3] the parameter representing it has a large value and a small relative statistical uncertainty.

We see that the spin-orbit interaction is quite important, and it is certainly the most important correction in the right-hand side of the period. This fact can be seen also from the very mixed assignments given to the levels in tables 7 through 16.

The differences $\left(\mathrm{B}^{\prime}-\mathrm{B}\right),\left(\mathrm{C}^{\prime}-\mathrm{C}\right)$, and $\left(\zeta^{\prime}-\vartheta\right)$ are much bigger than the uncertainties of these parameters. This means that it is important to allow these parameters to assume different values for the config. urations $4 d^{n}$ and $4 d^{n-1} s s$.

The estimates of the parameter $\alpha$ is considerably smaller than in the iron group, but its standard error is much smaller than its value. This means that it is still necessary in order to improve the fit between the theoretical and experimental levels.

Contrary to the results in the first [6] and second [2] spectra of the palladium group, the interaction between the configurations $4 d^{m}$ and $4 d^{n-1} 5 s$ is rather unimportant in the right hand side of the present sequence. This fact manifests itself in the large standard errors of H and the small values it assumes.

Out of 10 spectra of the sequence there are 8 in which the amount of experimental material is not sufficient for a reliable separate treatment. Thus, in this sequence the interpolative method is not only the more reliable one - practically it is the only method which enables us to predict the energy-levels for all the third spectra of the palladium group. We hope that these predictions will help in their experimental observation.

## 7. Tables of Results* Part A: Parameters

Tabie 1. Parameters of $\mathrm{Zr}_{\mathrm{r}} \mathrm{HI}-\left(4 \mathrm{~d}^{\mathbf{3}}+4 \mathrm{~d} 5 \mathrm{~s}\right)$

|  | Diag. 1 | L.3. $1^{*}$ | G.LS. |
| :---: | :---: | :---: | :---: |
| A | 4840 | $4907 \pm 3$ | 4741 |
| S | 16560 | $16481 \pm 3$ | 16598 |
| B | 530 | $525 \pm 0.3$ | 532 |
| C | 1600 | $1829 \pm 2$ | 1757 |
| G | - 3000 | $2350 \pm 3$ | 2454 |
| H | 400 | fixed | 376 |
| $\alpha$ | 25 | $23 \pm 0.4$ | 34 |
| $\zeta$ | 450 | $410 \div 1.4$ | 411 |
| 6 | 450 | $454 \pm 2.4$ | 461 |
| 4 | , | 4 | ........." |

 estimase.


|  | Diag． 1 | L．S． 1 | G．L．S． |
| :---: | :---: | :---: | :---: |
| $A$ $S^{\prime}$ $\mathbf{B}$ $\mathbf{B}$ $C$ $\mathbf{C}^{\prime}$ $\mathbf{G}$ $\mathbf{H}$ $\alpha$ $\zeta$ $\zeta$ | $\begin{array}{r} 9260 \\ 25650 \\ 5500 \\ 550 \\ 2200 \\ 2200 \\ 2400 \\ 400 \\ 0 \\ 560 \\ 560 \end{array}$ | $\begin{gathered} 9308 \pm 26 \\ 26330 \pm 52 \\ 564 \pm 2 \\ 593 \pm 2 \\ 2054 \pm 10 \\ 2186 \pm 16 \\ 2386 \pm 19 \\ 383 \pm 7 \\ 30 \pm 1 \\ 544 \pm 11 \\ 569 \pm 11 \end{gathered}$ | 9224 26485 $\$ 59$ 592 2018 2210 2424 334 33 535 597 |
| $\Delta$ | ．．．．．．．．．． | 34 | ．．．．．．．．．． |



|  | Diag． 1 | L．S．1a | L．S．lb | L．S．le | G．L．S． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | 11650 | 12717 $=1790$ | 11792 | 11621 146 | 11895 |
| S | 56750 | $62083 \pm 2454$ | $70184 \pm 1570$ | $57185 \pm 222$ | 56964 |
| B | 669 | $801 \pm 104$ | $651 \pm 14$ | $647 \pm 21$ | 667 |
| B | 713 | $9880 \pm 52$ | $1336 \pm 74$ | fixed | 716 |
| C | 3068 | $3616 \pm 547$ | $37898 \pm 57$ | $3293 \pm 56$ | 3062 |
| C | 3194 | 3844 | 2926土76 | fixed | 3178 |
| G | 2296 | $2316 \pm 297$ | $2276 \pm 35$ | $29.64 \pm 33$ | 2304 |
| H | 28 | ．．．．．．．．．．．．．．．． | ．．．．．．．．．．．．．．．． | …．．．．．．．．．． | 166 |
| $\stackrel{\alpha}{k}$ | 28 1324 | fixed $1110 \pm 677$ | fixed | $24 \pm 17$ $[14]$ | 29 1291 |
| 6 | 1450 | $1673 \pm 490$ | $1395 \pm 78$ | $1381 \pm 102$ | 1401 |
| $n$ | $\ldots$ | 81 | 33 | 22 | 16 |
| $\Delta$ |  | 3094 | 273 | 235 | $\ldots$ |

n＝number of levels included in the L．S．calculations．

TABLE 4．Parameters of $\left.\mathrm{Pd} \mathrm{III}-(4 \mathrm{~d}+5)^{\circ}\right)^{\circ}$

|  | Diag． 1 － | L．S．I | Diag 2 | L．S． 2 | G．L．S． |
| :---: | :---: | :---: | :---: | :---: | :---: |
| A | － 8100 | $7613 \pm 105$ | 7600 | $7602 \pm 90$ | 7663 |
| S＇ | 65100 | $65836 \pm 159$ | 65836 | 65827土 121 | 65818 |
| B | 800 | $699 \pm 13$ | 699 | $605 \pm 9$ | 694 |
| B | 000 | $747 \pm 5$ | 747 | $744 \pm 3$ | 747 |
| C | 2500 | $3221 \pm 92$ | 3221 | $3322 \pm 67$ | 3328 |
| C＇ | 3100 | $3429 \pm 25$ | 3429 | $3445 \pm 18$ | 3420 |
| G | 2270 | $2277 \pm 24$ | 2277 | $2274 \pm 18$ | 2274 |
| H | 385 | 146土56 | 235 | $30 \pm 70$ | 124 |
| $\underline{\alpha}$ | 40 | $31 \pm 4$ | 31 | 20 | 28 |
| 6 | 1300 | $1664 \pm 72$ | 1664 | $1519 \pm 43$ | 1545 |
| 6 | 1530 | $1681 \pm 26$ | 16.81 | 1666 18 | 1667 |
| $\Delta$ | ．．．．．．． | 157 | ．．．．．．． | 110 | ．－．．．．． |


|  | Diag． 1 | L．S．1a | L．S．1b | C．L．S． |
| :---: | :---: | :---: | :---: | :---: |
| A | 1840 | 1595 $\pm 400$ | $1669 \pm 93$ | 16.5 |
| 5 | 75240 | $75465 \pm 480$ | $75037 \pm 115$ | 75125 |
| B＇ | 770 | $841 \pm 33$ | $804 \pm 8$ | 778 |
| $\mathrm{C}^{\prime}$ | 3210 | $3063 \pm 319$ | $3377 \pm 78$ | 3662 |
| G | 2270 | $2413 \pm 127$ | $2236 \pm 33$ | 2244 |
| H | 400 | fiked | fixed | 日2 |
| $\alpha$ | 20 | $68 \pm 37$ | $50 \pm 9$ | 27 |
| 5 | 1730 | 1846土261 | $1846 \pm 61$ | 1825 |
| $\%^{\prime}$ | 1730 | $2031 \pm 162$ | $1978 \pm 38$ | 1959 |
| $\Delta$ |  | 461 | 112 |  |

Thble 6．Generar parameters in the chicd spectra of the palladiam－group
 malamg

|  | C．Diag． | G．L．S． |
| :---: | :---: | :---: |
|  | 48792 8657 85 640 28 691 34 2756.9 232.4 2939.9 250.7 2318 -24 250 -469 30 0 1190 221 1293 232 15.5 | $\begin{gathered} 48746 \pm 34 \\ 6606 \pm 10 \\ 98 \pm 5 \\ 640 \pm 4 \\ 27 \pm 1 \\ 685 \pm 2 \\ 31 \pm 1 \\ 2803 \pm 23 \\ 262 \pm 8 \\ 2939 \pm 14 \\ 243 \pm 6 \\ 2334 \pm 10 \\ -31 \pm 6 \\ 208 \pm 24 \\ -42 \pm 6 \\ 31 \pm 2 \\ -0.9 \pm 0.7 \\ 1193 \pm 16 \\ 215 \pm 6 \\ 1291 \pm 12 \\ 227 \pm 4 \\ 13 \pm 2 \end{gathered}$ |
| Level mean error |  | 77 |
| Term mean error |  | 91 |

Table 8. Observed and catesilated tevels of $\mathrm{Z}_{\mathrm{y}} \mathrm{HI}$

| Conf. | Term | $J$ | Observed | G.L.S. |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | O-C |
| $d^{2}$ | $a^{3}{ }^{\text {P }}$ | 3 | 0.00 691.0 | -1 | -1 |
| $\frac{d^{2}}{d^{2}}$ | $a^{4} \mathrm{D}$ | 4 | 1496.4 | 1489 | -2 |
|  |  | 2 | 5741.55 | 5725 | 16 |
|  |  | 0 | 8062.07 | 8045 | 17 |
|  |  | 1 | 8325.65 | 8312 | 13 |
| $\stackrel{d}{d s}$ |  | 2 | 8838.21 | 8833 | 5 |
|  |  | 4 | 11048.70 | 11067 | -18 |
|  |  | 1 | 18398.87 | 18382 | 17 |
|  |  | 2 | 18802.79 | 18796 | 7 |
| $d^{2}$$d$ |  | 3 | 19533.35 | 19532 | 1 |
|  | ${ }^{15}$ | 0 | (13832.0?) | 24518 |  |
|  | $\left({ }^{2} \mathrm{D}\right){ }^{1} \mathrm{D}^{\text {D }}$ | 2 | 25066.25 | 25122 | $-56$ |

Table 9. Observed and cafculated levels of Nb III

| Iglesias | Conf. | Term | $J$ | Observed | G.L.S. |  | Cale. E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Calc. | $\mathrm{O}-\mathrm{C}$ |  |
| $a^{2} \mathbf{D}$ | ${ }^{(1)}$ | $a^{4} \mathbf{F}$ | $3 / 2$ | 0.0 | 63 | -6.3 | 0.403 |
|  |  |  | $5 / 2$ | 515.8 | 565 | -49 | 1.029 |
|  |  |  | 712 | 1176.6 | 1208 | -32 | 1.237 |
|  |  |  | 912 | 1989.0. | 1949 | -10 | 1.331 |
|  | $\alpha^{n}$ | ${ }^{4} \mathrm{P}$ | $1 / 2$ | 8664.3 | 8614 | 50 | 2.430 |
|  |  |  | $3 / 2$ | ${ }^{8607.5}$ | 8562 | 45 | 1.629 |
|  |  |  | 512 | 9593.7 | 9486 | 108 | 1.596 |
|  | ${ }^{2}$ | $a^{2} \mathrm{C}$ | 782 | 9236.1 | 9215 | 21 | 0.890 |
|  | $d^{3}$ |  | 912 | 9804.5 | 9761 | 44 | 1.t99 |
|  |  | ${ }^{1} \mathrm{P}$ | $1{ }^{12}$ |  | 10753 |  | 0.904 |
|  |  | $\underline{2} \underline{P}+{ }^{4} \mathrm{P}+{ }^{2} \mathrm{D}$ | $3{ }^{3} 2$ | 10912.2 | 10959 | -46 | 1.307 |
|  | $4^{4}$ | $u^{*} \mathrm{H}$ | 912 | 12916.4 | 12856 | 60 | 0.925 |
|  |  |  | 11/2 | 13263.8 | 13183 | 81 | 1.09] |
|  | $d^{4}$ | ${ }^{2} \mathrm{I}+{ }^{2} \mathrm{P}$ | 312 |  | 12894 |  | 0.928 |
|  |  | ${ }^{2} \mathrm{D}$ | $5 / 2$ | 13094.0 | 13041 | 53 | 1.203 |
|  | $d^{4}$ | $a^{2} \mathbf{F}$ | 712 | 19861.0 | 19907 | -46 | 1.142 |
|  |  |  | 512 | 19975.0 | 20061 | -86 | 0.857 |
|  | $d^{*}$ | ${ }^{(5)}{ }^{4} \mathbf{F}$ | 352 | 25520.2 | 25248 | -29 | 0.403 |
|  |  |  | 512 | 25735.2 | 25759 | -23 | 1.029 |
|  |  |  | 72 | 26463.7 | 26481 | - 18 | 1.238 |
|  | $d^{3}$ |  | 972 | 27375.5 | 27382 | -9 | 1.333 |
|  |  | ${ }^{2}$ | 512 |  | 31463 |  | 1.197 |
|  |  |  | $3{ }^{3} 2$ |  | 31785 |  | 0.800 |
|  | $d^{*}$ | ${ }_{(9 \mathrm{~F}}{ }^{\text {b }}{ }^{2} \mathrm{~F}$ | 5/2 | 33658.0 | 33650 | 8 | 0.894 |
|  |  |  | $7 / 2$ | 35079.2 | 35060 | 19 | 1.141 |
|  | $d^{\text {a }}$ | ${ }^{3} \mathrm{P}$ ) $\mathrm{S}^{4} \mathrm{P}$ | 1/2 | 34514.5 | 34500 | 15 | 2.664 |
|  |  |  | $3 / 2$ | 34807.2 | 34797 | 10 | 1.704 |
|  | $d^{2} 5$ | ${ }^{4} \mathrm{P}+{ }^{2} \mathrm{D}$ | $5 / 2$ | 34989.8 | 34943 | 7 | 1.507 |
|  |  | (1D) ${ }^{\text {a }}$ D | $3 / 2$ | 36535.7 | 36577 | -42 | 0.832 |
|  |  | ${ }^{1} \mathrm{D}+{ }^{\mathbf{4}}$ | $5 / 2$ | 37114.7 | 37105 | 10 | 1.258 |
|  | $\mathrm{c}^{3} 5$ | (19) $b^{2} \mathrm{C}$ | 912 | 40875.2 | 40939 | -64 | 1.112 |
|  |  |  | $7 / 2$ | 40943.9 | 40959 | -15 | 0.891 |
|  | $d^{1}$ | ${ }_{(3)}{ }^{(1) P}$ | 1/2 |  | 43004 |  | 0.672 |
|  |  |  | $3 / 2$ |  | 43729 |  | 1.328 |
|  | $d^{*} s$ | (3) ${ }^{2}$ S | 1/2 |  | 57154 |  | 1.997 |


| Conf. | Term | $J$ | Observed | G.L.S. |  | $\begin{gathered} \text { Calc. } \\ g \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | $\mathrm{O}-\mathrm{C}$ |  |
| $d^{\text {N }}$ | 5 | 0 | (0.00) | 40 | (-40) |  |
|  |  | 1 | (243.10) | 275 | (-32) | 1.500 |
|  |  | 2 | (669.60) | 688 | (-18) | 1.499 |
|  |  | 3 | (1225.20) | 1224 | (1) | 1.448 |
|  |  | 4 | (1873.80) |  | (27) |  |
| $d^{\text {a }}$ | ${ }^{3} \mathbf{P}$ | ${ }^{0}$ | (11271.30) | 11328 | (-57) |  |
|  |  | 1 | (12509.80) | 12554 | (-44) | 1.493 |
|  |  | 2 | (14357.30) | 14373 |  | 1.491 |
| ${ }^{4}$ | ${ }^{3} \mathrm{H}$ | 4 | (12630.31) | 12634 | (-4) | 0.843 |
|  |  | 5 | (13201.34) | 13201 | (0) | 1.043 |
|  |  | 6 | (13741.54) | 13701 | (41) |  |
| $\mathrm{d}^{4}$ | 3 F | 2 | (13927.76) | 13923 | (5) | 0.675 |
|  | ${ }^{5}+{ }^{+5}$ | 3 | (13947.40) | 13924 | (23) | 1.015 |
|  | ${ }^{2}+{ }^{*} \mathbf{G}+3 \mathrm{H}$ | 4 | (14295.85) | 14233 | (68) | 1.185 |
| $d^{4}$ | ${ }^{3} \mathbf{C}+3 \mathrm{~F}$ | 3 | (15672.25) | 15835 | (-164) | 0.822 |
|  |  | 4 | (16143.15) | 16224 | (-8) | 1.067 |
|  | 3 C | 5 | (16763.14) | 16629 | (134) | 1.190 |
| $d^{4}$ | ${ }^{\text {s }}$ D | 3 | (193900.90) | 19391 | (0) | 1.329 |
|  |  | 2 | 19783.28 | 19493 | 290 | 1.160 |
|  |  | 1 | (19995.50) | 19806 | (190) | 0.509 |
| ${ }^{4}$ | 1] | 0 |  | 19754 |  | 1.003 |
| $d^{4}$ | ${ }^{\prime} \mathrm{G}$ | 4 |  | 20377 |  | 1,008 |
| $d^{4}$ | 'S | 0 |  | 22555 |  |  |
| ${ }^{4}$ | ${ }^{1}$ | 2 |  | 23221 |  | $1.01]$ |
| ${ }^{\mu}$ | ${ }^{\prime} \mathrm{F}$ | 3 |  | 26903 |  | 1.005 |
| $d^{N}$ | ${ }^{9} \mathrm{P}$ | 2 | (30992.50) | 31096 | (-93) | 1.495 |
|  |  | 1 | (32292.70) | 32323 | (-30) | 1.493 |
|  |  | 0 | (32887.80) | 32976 | (-88) |  |
| $d^{4}$ | ${ }^{3} \mathrm{~F}$ |  | (31982.50) | 31970 |  |  |
|  |  | 3 2 | $(32142.80)$ $(32126.50)$ | 32252 | $(-109)$ | 0 |
| $d^{4} 9$ | (F) ${ }^{5}$ | 1 | (32419.44) | 32439 | (-20) | 0,010 |
|  |  | 2 | (32844.04) | 32854 | (-10) | 1.000 |
|  |  | 3 | (33453.10) | 33459 | (-6) | 1.249 |
|  |  | 4 | ( 342226.01 ) | 34227 | (-1) | 1.349 |
|  |  | 5 | (35130.10) | 35122 | (8) | 1.398 |
| $d^{4}$ | ${ }^{1} \mathrm{G}$ | 4. |  | 360033 |  | 1.005 |
| $\boldsymbol{a}^{3}$ | $\left.{ }^{4 P}\right)^{4} \mathrm{P}$ | 1 | (42405.50) | 42389 | (17) | 2.473 |
|  | ${ }^{5} \underline{\text { P }}$ = $=$ | 2 | (42665.90) | 42652 | (14) | 1.378 |
|  | SP | 3 | (43462.69) | 48420 | (43) | 1.596 |
| $d^{13}$ | (4F) ${ }^{2} \mathrm{~F}+\mathrm{P}$ | 2 | (42605.84) | 42526 | (80) | 1.112 |
|  |  | 3 | (4356266) | 43557 | (6) | 1.142 |
|  |  | 4 | (44656.23) | 44646 | (10) | 1.231 |
| $4{ }^{\text {a }}$ | $\left.1^{2} \mathrm{G}\right)^{9} \mathrm{G}$ | 3 |  | 46227 |  | 0.763 |
|  |  | 4 | (46557.96) | 46544 | (14) | J.053 |
|  |  | 5 | (46591,03) | 46921 | (-340) | 1.185 |
| $d^{4}$ | ${ }^{1} \mathrm{D}$ | 2 |  | 47541 |  | 1.007 |
| $d^{4} s$ |  |  |  | 48707 |  |  |
|  |  | 1 | (48753.45) | 48636 | (117) | 1.159 |
|  |  | 2 | (49052.05) | 48972 | (10) | 1.383 |
| $d^{\text {P }}$ | ${ }^{2} \mathbf{H}^{\mathbf{P}} \mathbf{H}$ | 4 |  | 49460 |  |  |
|  |  | 5 |  | 50272 50459 |  | 1.048 1.167 |
|  |  |  |  |  |  |  |

Table 10. Observed and calculared levels of Moutl-Continued

| Conf. | Term | $f$ | Observed | G.l.s. |  | Calc. g |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | $0-\mathrm{C}$ |  |
| $4^{4}$ | ${ }^{2} \mathrm{D}+\mathbf{P}+\mathbf{P}$ | 1 |  | 50200 |  | 0.946 |
|  | ${ }^{+} \underline{+}+\mathrm{P}$ | 2 |  | 51289 |  | L. 284 |
|  | * D | 3 |  | 51204 |  | 1.333 |
| $4^{4}$ | $\left.{ }^{2} \mathrm{C}\right)^{1} \mathbf{4}$ | 4 |  | 52519 |  | 0.985 |
| $d^{4} 5$ |  | 0 1 |  | 53062 52528 |  | 1.284 |
|  | ${ }^{-} \cdot{ }^{\text {P }}{ }^{4} \mathrm{P}$ | 2 |  | 53858 |  | 1.487 |
| $4^{18}$ | $\left.4^{2} \boldsymbol{H}\right\rangle^{\prime} \mathrm{Fl}$ | 5 |  | 54931 |  | 1.002 |
| $d^{d_{5}}$ | $\underline{\underline{P}+3}$ | 1 |  | $5 \$ 174$ |  | 1.133 |
| $d^{18}$ | ( $\left.\mathrm{a}^{2} \mathrm{D}\right)^{1} \mathrm{D}$ | 2 |  | 56643 |  | 1.001 |
| $d^{4} 5$ | $\left.\mathbf{t}^{2} \mathrm{~F}\right)^{\mathbf{4}} \mathbf{F}$ | 4 |  | 58811 |  | 1.249 |
|  |  | 3 2 |  | 58960 59121 |  | 1.0894 0.672 |
| $d^{4}$ | 'S | 0 |  | 61910 |  |  |
| $d^{13}$ | ${ }^{(2 F)}{ }^{(1)} \mathbf{F}$ | 3 |  | 64072 |  | 1.004 |
| $d_{5}$ | $\left.\left(b^{2}\right)^{2}\right)^{2}$ | 3 |  | 31896 |  | 1.329 |
|  |  | 2 |  | 71793 |  | 1.165 |
|  |  | I |  | 71940 |  | 0.500 |
| $d^{4}$ | $\left(t^{2}{ }^{2}\right)^{2} \mathrm{D}$ | 2 |  | 76887 |  | 1.000) |

Table 11. Gadoutated tevels of Te in

| Comi. | Term | $J$ | G.L.S. | Cale. $g$ |
| :---: | :---: | :---: | :---: | :---: |
| $d^{5}$ | 05 | 512 | -2 | 1.947 |
| $4^{5}$ | ${ }^{4} \mathrm{C}$ | $5 / 2$ | 19179 | $0.58 \%$ |
|  |  | $3 / 2$ | 19:43 | 0.988 |
|  |  | $9 / 2$ | 19442 | 1.172 |
|  |  | $11 / 2$ | 19308 | 1.27i |
| $d^{5}$ | $\underline{4}+1 \mathrm{D}$ | 512 | 20987 | 1.510 |
|  |  | $3 / 2$ | 21.308 | 1.564 |
|  |  | $1 / 2$ | 21759 | 2.207 |
| * | $\stackrel{4}{4}$ | 712 | 23007 | 1.422 |
|  |  | $5 / 2$ | 23849 | 1.430 |
|  |  | 3/2 | 238550 | 1.3i,4 |
|  |  | 1/2 | 235002 | 0.456 |
| d | $\left.{ }^{2}\right]$ | $11 / 2$ | 28153 | 0.933 |
|  |  | 13/2 | 29521 | 1.077 |
| ${ }^{3}$ | ${ }^{2} \underline{D}+{ }^{2} \mathrm{~F}$ | 5/2 | 29536 | 1.075 |
|  | ${ }^{2} \underline{D}+{ }^{\text {c }}$ | 352 | 30299 | 0.681 |
| ${ }^{*}$ | ${ }^{4} \underline{F}+{ }^{2} \mathbf{C}$ | $9 / 2$ | 31308 | 1.292 |
|  | $\underline{\underline{F}}+{ }^{\text {F }}$ F | 732 | 31291 | 1.182 |
|  | ${ }_{4}^{*} \mathrm{~F}$ | $5 / 2$ | 31746 | $1.015$ |
|  | ${ }^{4} \underline{F}+{ }^{2} \mathrm{D}$ | $3 / 2$ | 32463 | $0.5: 34$ |
| $\alpha^{5}$ | ${ }^{2} \underline{F}+{ }^{4}$ | 712 | 32182 | 1.171 |
|  | ${ }^{2} \mathrm{~F}+{ }^{\text {P }}$ | 52 | 33789 | 1.002 |
| $4^{5}$ | ${ }^{*} \underline{H}+{ }^{2} \mathbf{C}+{ }^{\text {F }}$ | 9/2 | 33612 | 1.128 8 |

Table 11. Calculated Levels of Te III-Continoed

| Conf. | Term | $J$ | G.L.S. | Cale. <br> $g$ |
| :---: | :---: | :---: | :---: | :---: |
| * | ${ }^{2} \mathrm{H}$ | 11/2 | 34954 | 1,083 |
|  | ${ }^{\text {c }}$ | 712 | 34555 | 0.915 |
|  | ${ }^{2} \mathrm{C}+{ }^{2} \mathrm{H}$ | 912 | 3 3 662 | 1.034 |
| $\mathrm{d}^{5}$ | ${ }^{2} \mathrm{~F}$ | 7/2 | 36640 | 1.146 |
|  |  | $5 / 2$ | 36655 | 0.872 |
| ${ }^{\text {d }}$ | 3 | 1/2 | 34605 | 1.997 |
|  | ${ }^{2} 1$ | $3 / 2$ | 44478 | 0.801 |
|  |  | 5/2 | 44797 | 1.693 |
| $\mathrm{d}^{1 / 5}$ | (5D) ${ }^{4} \mathrm{D}$ | $1 / 2$ | 44705 | 3.322 |
|  |  | $3 / 2$ | 45063 | 1.864 |
|  |  | $5 / 2$ | 45607 | 1,656 |
|  |  | $7 / 2$ | 46287 | 1.585 |
|  |  | 912 | 47069 | 1.55.3 |
| ${ }^{\beta}$ | ${ }^{2} \mathrm{G}$ | $9 / 2$ | 49288 | 1.111 |
|  |  | 7/2 | 49405 | 0.891 |
| $\mathrm{d}^{4} \mathrm{~s}$ | (D) 0 | I/2 | 566014 | 0.053 |
|  |  | $3 / 2$ | 57168 | 1.203 |
|  |  | 5/2 | 57459 | 1.367 |
|  |  | $7 / 2$ | 58847 | 1.427 |
| A | ${ }^{2}$ | 3 f 2 | 58680 | 1.317 |
|  |  | $1 / 2$ | 58938 | 0.660 |
| $d^{4}{ }_{5}$ | $\left(4^{2} \mathrm{P}\right)^{4} \mathrm{P}$ | $1 / 2$ | 613149 | 2.613 |
|  |  | $3 / 2$ | 62857 | 1.76 |
|  |  | 512 | 65015 | 1.584 |
| $\mathrm{r}^{4}{ }^{\text {s }}$ | $\left.{ }^{(3)} \mathrm{H}\right)^{4} \mathbf{H}$ | 752 | 61772 | 0.670 |
|  |  | 9/2 | 62063 | 1.001 |
|  |  | 112 | 62:579 | 1.14] |
|  |  | 13/2 | 63139 | 1.228 |
| $d^{*} s$ |  | 312 | 637388 | 0.419 |
|  | $4 x^{3}+245+4$ | 512 | 636009 | 0.928 |
|  |  | $7 / 2$ | 6,3908 | 1.156 |
|  |  | $9 / 2$ | 64055 | 1.278 |
| $山^{8}$ | ${ }^{2} \mathrm{D}$ | 512 | 64334 | 1.195 |
|  |  | 312 | 645225 | 0.805 |
| $d^{4} 5$ | (0)49+4F | 512 | 653888 | 0.692 |
|  |  | $7 / 2$ | 640937 | 1.141 |
|  |  | $9 / 2$ | 66416 | 1.158 |
|  | $\left.{ }^{(3)} \mathrm{C}\right)^{4} \mathrm{C}$ | 11/2 | 666569 | 1.259 |
| $d^{4} s$ | $\left(d^{4} \mathbf{P}\right)^{1} \mathbf{P}+{ }^{4} \mathbf{D}$ | 1/2 | 688826 | 0.564 |
|  | $\left\{a^{3 P}\right\}^{2} P$ | $3 / 2$ | 71968 | 1.309 |
| $d^{\prime \prime}$ | ( $\left.{ }^{(2} \mathrm{H}\right)^{2} \mathrm{H}$ | 912 | 69062 | 0.933 |
|  | $\left.{ }^{2} \underline{\mathbf{H}}+{ }^{2}\right]$ | 11/2 | 69934 | 1.071 |
| $4^{4}$ | $\left({ }^{3} \mathrm{D}^{4}{ }^{4} \mathrm{D}\right.$ | 712 | 69731 | 1.420 |
|  |  | 512 | 69916 | 1.356 |
|  |  | 3/2 | 69973 | 1.206 |
|  | $\underline{-1}+{ }^{2} \mathbf{P}$ | 1/2 | 70649 | 0.170 |
| $\begin{aligned} & d^{4} s \\ & d^{4} s \end{aligned}$ |  | 712 | 70791 | 1.066 |
|  |  | 512 | 71320 | 0.8892 |
|  |  | $13 / 2$ | 72399 | 1.079 |
|  | ${ }^{2} \underline{\underline{1}}+{ }^{3} \mathrm{H}$ | 11/2 | 72703 | 0.949 |
| ${ }^{4}{ }^{4}$ | $\left.{ }^{5} \mathrm{C}\right)^{4}$ | 712 | 725013 | 0.899 |
|  | $\left.\left({ }^{3} \mathrm{C}\right)^{2} \mathrm{C}+1^{2} G\right)^{2} \mathrm{C}$ | 912 | 73239 | 1,112 |
| dts | $\left.(4))^{2} C+1^{2} C\right)^{2} C$ | 912 | 74267 | 1.098 |
|  | ${ }^{3} \mathrm{C}+{ }^{2} \mathrm{~F}$ | 752 | 74648 | 0.966 |
| $d^{4}{ }^{4} 5$ | (a) $\left.{ }^{1}\right)^{\text {S }}$ | 1/2 | 76572 | 1.966 |
|  | $\left({ }^{1} \mathrm{D}\right)^{2} \mathrm{D}$ D $\left.+(3 \mathrm{D})^{2} \mathrm{D}\right)$ | $3 / 2$ | 76633 | 0.8077 |
|  |  | 512 | 77879 | 1.197 |
| $\mathrm{d}^{4} \mathrm{~s}$ | $(\mathrm{D})^{2} \mathrm{D}+\left({ }^{\text {d }} \mathrm{D}\right)^{2} \mathrm{D}$ | $5 / 2$ | 77018 | 1.187 |
|  |  | $3 / 2$ | 78766 | 0.8159 |
| $d^{\prime}$ | ( $\left.{ }^{\text {F }}\right)^{\prime} \mathrm{F}$ | 712 | 81046 | 1.153 |
|  |  | 5/2 | 81264 | 0.891 |

Table 11. Calculated leuels of Tc in -Continued

| Conf. | Term | $J$ | G.L.S. | $\underset{\text { Calc. }}{\text { Con }}$ |
| :---: | :---: | :---: | :---: | :---: |
| $d{ }^{\prime \prime}$ | $(6) \mathrm{P})^{4} \mathrm{P}$ | 5/2 | 83340 | 1.585 |
|  |  | $3 / 2$ | 84675 | 1.697 |
|  |  | 1/2 | 85616 | 2.650 |
| $d^{+\prime}$ | $(6)$ | $9 / 2$ | 84019 | 1.330 |
|  |  | 712 | 84506 | 1.227 |
|  |  | 5/2 | 84501 | 1.019 |
|  |  | 3/2 | 84305 | 0.44;2 |
| $d^{4}$ | $\underline{\left(b^{2}\right)^{2} 5}{ }^{ \pm} \mathrm{F}$ | 7/2 | 908827 | 1.039 |
|  |  | 512 | 91454 | 0.860 |
| d's | $6^{3} \mathrm{P}^{2} \mathrm{P}$ | $3 / 2$ | 91036 | 1.334 |
|  |  | $1 / 2$ | 92733 | 0.678 |
| $\mathrm{d}^{4} \mathrm{~s}$ | $\begin{aligned} & \left.(b)^{\prime}\right)^{2} \mathrm{G} \\ & { }^{\mathbf{G}} \mathrm{G}+{ }^{-} \mathrm{F} \end{aligned}$ | 9.12 | 91658 | 1.113 |
|  |  | 7/2 | 92142 | 0.993 |
| dis | ( $\left.b^{\prime} \mathrm{D}\right)^{2} \mathrm{D}$ | $3 / 2$ | 104753 |  |
|  |  | 5/2 | 104764 | 1.200 |
| $d^{4} 5$ | (bs) ${ }^{\text {d }}$ | $1 / 2$ | 120665 | 1.999 |

Table 12. Observed and catcutated levels of Ru ill

| Conf. | Term | $J$ | Observed | G.L.S. |  | $\begin{gathered} \text { Calc. } \\ g \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Cale. | O-C |  |
| $4^{4}$ | $4^{501}$ | 4 | 0.0 | -35 | 35 | 1.496 |
|  |  | 3 | 1159.8 | 1139 | 20 | 1.498 |
|  |  | 2 | 1826.3 | 1827 | -1 | 1.498 |
|  |  | 1 | 2266.3 | 2279 | -12 |  |
|  |  |  |  |  |  |  |
| ${ }^{4}$ | ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{~F}+{ }^{\text {a }} \mathrm{C}$ | 4 |  | 15028 |  | 0.994 |
|  | ${ }^{3} \underline{H}+{ }^{+} \mathrm{G}$ | 5 |  | 15320 |  | 1.066 |
|  | ${ }^{4} \mathrm{H}$ | 6 |  | 15081 |  | 1.162 |
| 4 | ${ }^{3} \mathrm{P}$ | 2 |  | 15092 |  | 1.486 |
|  |  | 1 |  | 18412 19048 |  | 1,454 |
| $d^{*}$ | ${ }^{2} \mathrm{~F}+{ }^{\text {H }}$ | 4 |  | 16024 |  | 1.043 |
|  | ${ }^{3} \underline{F}+3 \mathrm{G}$ | 3 |  | 16857 |  | 1.025 |
|  | ${ }^{7} \mathrm{~F}$ | 2 |  | 17357 |  | 0.677 |
| $d^{x}$ | ${ }^{2} \underline{\underline{G}}+3 \mathrm{H}$ | 5 |  | 18612 |  | 1.367 |
|  | ${ }^{3} \underline{\underline{G}}+{ }^{3} \mathbf{F}$ | 4 |  | 19611 |  | 1.062 |
|  |  | 3 |  | 19878 |  | 0.814 |
| $d^{*}$ | 3 ${ }^{\text {d }}$ | 1 |  | 22495 |  | 0.550 |
|  |  | 2 |  | 22319 |  | 1.171 |
|  |  | 3 |  | 22644 |  | 1.328 |
| $\frac{4}{4}$ | ${ }^{1}$ | 6 |  | 23239 |  | 1.004 |
|  | 16 | 4 |  | 24503 |  | 1.006 |
| ${ }^{\text {d }}$ | $\left({ }^{(S)} a^{7} \mathrm{~S}\right.$ | 3 | 27162.8 | 27177 | -14 | 1.997 |
|  | is | 0 |  | 27242 |  |  |
| ${ }^{\text {d }}$ | '1F | 2 |  | 28412 |  | $\xrightarrow{1.008}$ |
| $\frac{d^{a}}{d^{x}}$ | ${ }^{1 /}$ | 3 0 0 |  | 31296 34942 |  | 1.007 |
|  |  | 1 |  | 35818 |  | 1.498 |
|  |  | 2 |  | 38006 |  | 1.491 |
| ${ }^{*}$ | ${ }^{2} \mathrm{~F}$ |  |  |  |  |  |
|  |  | 3 |  | 37559 |  | 1.079 |
|  |  | 2 |  | 37008 |  | 0.671 |

Table 12. Observed and calculated lerels of Rum-Continued

| Conf. | Term | $J$ | Ohaerved | G.L.S. |  | Calc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | $0-\mathrm{C}$ |  |
| $\begin{aligned} & d^{\omega_{5}^{5}} \\ & d^{5} \\ & d^{b^{b_{5}}} \end{aligned}$ | ${ }^{(5 S)} a^{\circ S}$ | 2 | 41111.7 | 4)121 | -9 | 1.992 |
|  | 'G | 4 |  | 42394 |  | 1.004 |
|  | $\left.{ }^{4} \mathrm{C}\right)^{5} \mathrm{C}$ | 2 |  | 51433 |  | 0.345 |
|  |  | 3 |  | 51551 |  | 0.924 |
|  |  | 4 |  | 51674 |  | 1,152 |
|  |  | S |  | 51743 51703 |  | 1.266 1.332 |
| $d^{5}$ | $4 \mathrm{PrP}+\mathrm{D}$ | 3 |  | 53614 |  | 1.600 |
|  |  | 2 |  | 53937 |  | 1.701 |
|  |  | 1 |  | 54432 |  | 2.257 |
| $d^{8}$ | ${ }^{1} \mathrm{D}$ | 2 |  | 54879 |  | 1.013 |
| $d^{\text {b }}$ | (4D) ${ }^{\text {b }}$ D | 4 |  | 559\%5 |  | 1.493 |
|  | ${ }^{3} \underline{D}+$ P | 3 |  | 57107 |  | 1.542 |
|  |  | 2 |  | 57152 |  | 1.600 |
|  | 3 D | 1 |  | 56727 56198 |  | 1.726 |
| $d^{*}$ | $\left.{ }^{4} \mathrm{C}\right)^{4} \mathrm{C}$ | 3 |  | 60682 |  | 0.771 |
|  |  | 4 |  | 600980 |  | 1.054 |
|  |  | 5 |  | 60957 |  | 1.195 |
| (1) |  | 2 |  | 62624 |  | 1.323 |
|  | sP | 1 |  | 623453 64541 |  | 1,033 |
| $d s$ | (13) ${ }^{3}$ | 5 |  | 6400] |  | 0.847 |
|  |  | 6 |  | 64093 |  | 1.030 |
|  |  | 7 |  | 64422 |  | 1,143 |
| ${ }_{4}{ }^{\text {s }}$ |  | 3 |  | 65012 |  | 1.294 |
|  | $\stackrel{5}{5}$ | 2 |  | 66051 |  | 1.152 0.669 |
|  |  | 1 |  | 66262 65273 |  | 0.669 0.316 |
| $d s$ | ${ }^{3} \mathrm{~F}$ | 2 |  | 65408 |  | 1.054 |
|  | ${ }^{3} \mathrm{~F}+{ }^{*} \mathrm{D}$ | 3 |  | 65724 |  | 1.275 |
|  | ${ }^{5}$ | 4 |  | 65554 |  | 1.336 |
|  |  | 5 |  | 65454 |  | 1.392 |
| $d{ }^{\text {cs }}$ | ${ }^{3} \mathrm{P}+3 \mathrm{~F}+3 \mathrm{~F}$ | 3 |  | 66565 |  | 1216 |
|  | ${ }^{\mathbf{T}} \mathbf{D}+\mathbf{F} \mathbf{F}+\mathbf{D}$ | 2 |  | 69516 |  | 1.006 |
|  | D $\mathrm{P}+\mathrm{F}+3 \mathrm{P}$ | 1 |  | 68811 |  | 0.497 |
| $d^{\text {s }}$ | $\mathrm{F}^{\mathrm{F}}+3 \mathrm{C}+3 \mathrm{P}$ | 2 |  | 67522 |  | 0.984 |
|  | ${ }^{3} F+{ }_{4 F}^{3}+{ }^{3}$ | 3 |  | 70165 |  | $1,040$ |
|  | ${ }^{\prime}$ F | 4 |  | 68919 |  | $1.241$ |
| $4^{185}$ | $\left.\left.{ }^{2} 1\right\}^{1} 1\right]+3 \mathrm{H}$ | 6 |  | 68535 |  | 1.002 |
| $d^{0} 5$ | ${ }^{3} \underline{H}+{ }_{5}$ | 4 |  | 70311 |  | 0.923 |
|  |  | 5 |  | 72693 |  | 1.110 |
|  | * $\mathrm{H}+1$ | 6 |  | 72408 |  | 1.139 |
| ds | ${ }^{9} 6+{ }^{4} \mathrm{H}$ | 5 |  | 70511 |  | 1.126 |
|  |  | 4 |  | 72228 |  | 0.965 |
|  | ${ }^{3} \mathrm{C}+3 \mathrm{~F}$ | 3 |  | 71472 |  | 0.908 |
| 4 | 's | 0 |  | 71104 |  |  |
| $\begin{aligned} & d_{s}{ }_{3} \\ & d_{5} \end{aligned}$ |  |  |  |  |  |  |
|  | ( $\left.{ }^{(15}\right)^{3}$ F | 2 |  | 73625 |  | 0.705 |
|  | ${ }^{\underline{F}}+{ }^{+} \mathrm{F}$ | 3 |  | 73412 |  | 1.059 |
|  |  | 4 |  | 73715 |  | 1.227 |

Table 12. Obserped and catcalated levels of RuIU-Continued

| Conf. | Term | $J$ | Observed | G.1.c. |  | Calc. E |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Cale. | $0-\mathrm{C}$ |  |
| $d^{*}$ | (4F) ${ }^{\text {P }}$ | 4 |  | 74832 |  | 1.184 |
|  | ${ }^{\mathbf{3} \underline{F}+\mathbf{F}}$ | 3 |  | 74904 |  | 1.063 |
|  | F | 2 |  | 76138 |  | 0.738 |
| ${ }^{\text {d }}$ | $\left.{ }^{(2 \mathrm{~F}}\right)^{\prime} \mathrm{F}^{\mathbf{F}}+{ }^{3} \mathrm{~F}$ | 3 |  | 75145 |  | 1.050 |
| $4^{\text {s }}$ | $\left.{ }^{\boldsymbol{2}} \mathbf{H}\right)^{\prime} \cdot \mathbf{H}$ | 5 |  | 76539 |  | 1.008 |
| $45^{5} 5$ | $\left.\left.{ }^{4} \mathrm{C}\right)^{2} \mathrm{C}\right)^{3} \mathrm{~F}$ | 4 |  | 77177 |  | 1.071 |
| $d^{5}$ | ${ }^{\text {aSj*5 }}$ | 1 |  | 77522 |  | 1.997 |
| ${ }^{d_{s}}$ | ${ }^{\text {P F F }}$ | 3 |  | 78799 |  | 1.027 |
| ds |  | 1 1 |  | ${ }_{82910}^{82821}$ |  | 0.502 |
|  | (\%) | 2 |  | ${ }_{83073} 82910$ |  | 1.161 |
|  |  | 3 |  | 83477 |  | 1.311 |
| $d^{4}$ |  | 2 |  | 87969 |  | 0.999 |
| $d_{s}$ | $\left.{ }^{(2} \mathrm{G}\right)^{3} \mathrm{G}$ | 5 |  | 88207 |  | 1.200 |
|  |  | 4 |  | 88335 |  | 1.051 0.754 |
|  |  | 3 |  | 88434 |  | 0.754 |
| $4^{a_{s}}$ | $\left.{ }^{2} \mathrm{G}\right) 4$ | 4 |  | 92963 |  | 1.001 |
| ds | $\left({ }^{2} \mathrm{P}\right)^{3} \mathrm{P}$ | 2 |  | 99093 |  | 1.490 |
|  |  | 1 |  | 99316 99513 |  | 1.486 |
| ${ }^{5} 5$ | $\left.{ }^{( }{ }^{(P)}\right)^{1} \mathbf{P}+2 \mathrm{D}$ | 1 |  | 103479 |  | 0.923 |
| $d s$ | (c3 ${ }^{\text {P }}{ }^{\text {P }}$ | 3 |  | 1155494 |  | 1.333 |
|  |  | 2 |  | 105701 |  | 1.172 |
|  |  | 1 |  | 106119 |  | 0.595 |
| $d^{8} s$ | $\left(c^{2} \mathrm{D}\right)^{1 \mathrm{D}}$ | 2 |  | 110249 |  | 1.003 |

Table 13. Observed and catcalated levels of Rh in

| Conf. | Term | $j$ | Ohserved | G.L.S. |  | Calc. 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | O-C |  |
| $d^{\prime \prime}$ | $a^{4} \mathrm{~F}$ | 9/2 | 0.0 | -25 | 25 | 1.327 |
|  |  | $7 / 2$ | 2147.8 | 2124 | 24 | 1.236 |
|  |  | 512 | 3485.7 | 3476 | 9 | 1.031 |
|  |  | 312 | 43222.0 | 4328 | -6 | 0.414 |
| $d^{T}-$ | ${ }^{4} \mathrm{P}$ | 512 | 11062.3 | 11060 | 2 | 1.592 |
|  | $\underline{\underline{P}+{ }^{2} \mathbf{P}}$ | $3 / 2$ | 10997.1 | 11085 | -88 | 1.642 |
| $d^{7}$ |  | 1/2 | 12469.8 | 12519 | -50 | 2.507 |
|  | \%G | 912 |  | 13092 |  | 1.093 |
|  |  | $7 / 2$ |  | 15229 |  | 0:893 |
| $d^{F}$ | $\left\lvert\, \begin{gathered} { }^{2} \mathrm{P}+{ }^{2} \mathrm{D}+{ }^{4} \mathrm{P} \\ \underline{\mathrm{P}}+{ }^{4} \mathrm{P} \end{gathered}\right.$ | 372 |  | 16334 |  | 1.250 |
|  |  | 1/2 |  | 18451 |  | 0.827 |
| $d^{7}$ | ${ }^{2} \mathrm{H}$ |  |  |  |  |  |
|  |  | 952 |  | 19500 |  | 0.931 |
| $4^{\prime}$ | $\begin{gathered} { }^{2} \mathrm{D}+{ }^{2} \mathrm{P} \end{gathered}$ | 512 |  | 18436 |  | 1.209 |
|  |  | $3 / 2$ |  | 21873 |  | 0.960 |
| $d^{7}$ | ${ }^{9} \mathrm{~F}$ | 5/2 |  | 26798 |  | 0.863 |
|  |  | $7 / 2$ |  | 27889 |  | 1.140 |
| $d^{7}$ | ${ }^{7} \mathrm{D}$ | $3 / 2$ |  | 42251 |  | 0.800 |
|  |  | 52 |  | 4.3173 |  | 1.196 |
| $d^{*}$ | ( ${ }^{\text {D }}$ ) $\omega^{\text {b }} \mathrm{D}$ ) | $9 / 2$ | 43022.0 | \$3010 | 12 | 1.552 |
|  |  | 782 | 44394.4 | 44385 | 9 | 1.584 |
|  |  | 512 | 45278.2 | 45274 | 4 | 1.654 |
|  |  | 342 | 45876.6 | 45876 | 1 | 1.862 |
|  |  | 1/2 | 46227.1 | 46230 | -3 | 3,317 |

Table 13. Observed and calcslated levels of Rh III-Continued

| Conf. | Term | $J$ | Ohaerved | G.L.S. |  | Calc. 5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Cale. | O-C |  |
| $d^{*}$ | (5D) $a^{1} \mathrm{D}$ | 7/2 | 54632.2 | 54576 | 56 | 1.418 |
|  |  | $5 / 2$ | 56125.7 | 56109 | 17 | 1.370 |
|  |  | 3/2 | 57012.5 | 57013 | 0 | 1.200 |
|  |  | $1 / 2$ | 57531.3 | 57545 | -14 | 0.023 |
| $d^{\text {d }}$ | $\left.{ }^{\mathbf{a}} \mathrm{H}^{4}\right)^{4} \mathrm{H}$ | $13 / 2$ |  | 62412 |  | 1.227 |
|  | ${ }^{+} \underline{H}+{ }^{+} \mathrm{G}$ | 11/2 |  | 62573 |  | 1.159 |
|  |  | $9 / 2$ |  | 62416 |  | 1.091 |
|  |  | $7 / 2$ |  | 62857 |  | 0.795 |
| $d^{4}$ | $\left(n^{3} \mathbf{F}\right) \mathbf{P}$ | $5 / 2$ |  | 62555 |  | 1.585 |
|  |  | $3 / 2$ |  | 65466 |  | 1.574 |
|  |  | 1/2 |  | 67426 |  | 2.523 |
| $\mathrm{da}^{83}$ | ${ }^{-} \mathbf{F}+{ }^{4} \mathrm{H}$ | $9 / 2$ |  | 64224 |  | $1.19]$ |
|  |  | $7 / 2$ |  | 64732 |  | 1.081 |
|  | ${ }^{4} \underline{F}+{ }^{4} \mathrm{G}$ | $5 / 2$ |  | 64864 |  | 0.957 |
|  | $\mathrm{PF}^{\text {P }}$ ) F | 32 |  | 6.5663 |  | 0.492 |
| ds | $\mathrm{E}_{5}+4$ | 11/2 |  | 66126 |  | 1.236 |
|  | $5+4$ | 912 |  | 67620 |  | 1.175 |
|  |  | 712 |  | 68041 |  | 1.020 |
|  |  | 5/2 |  | 67796 |  | 0.668 |
| $d^{4}$ | ${ }^{(3)}{ }^{(1)} \mathbf{H}$ | 11/2 |  | 69678 |  | 1.091 |
|  | ${ }^{4} \mathrm{H}+{ }^{4} \mathrm{G}$ | 912 |  | 69710 |  | 0.964 |
| $d^{8}$ | ${ }^{2} \mathrm{~F}+{ }^{2} \mathrm{C}+4 \mathrm{D}$ | $7 / 2$ |  | 70567 |  | 1.123 |
|  | ${ }^{(9 F)}{ }^{\text {Pr }}$ | 512 |  | 72351 |  | 0.871 |
| $d \mathrm{~s}$ | ${ }^{\mathbf{P}}+{ }^{+1} \mathbf{D}+{ }^{\text {a }}$ P | 312 |  | 70583 |  | 1.345 |
|  |  | 1/2 |  | 73950 |  | 0.842 |
| ds | ( $\left.{ }^{\text {D }}\right)^{4} \mathrm{D}$ | 1/2 |  | 70819 |  | 0.159 |
|  | ${ }^{4} \underline{D}+3 \mathrm{P}$ | $3 / 2$ |  | 71264 |  | 1.236 |
|  | ${ }^{4} \mathrm{D}$ | $5 / 2$ |  | 70984 |  | 1.361 |
|  |  | $7 / 2$ |  | 71445 |  | 1.363 |
| $\mathrm{d}^{\mathrm{H}_{3}}$ | $\left.{ }^{3} \mathrm{C}\right)^{\text {P }} \mathrm{C}$ | 912 |  | 73708 |  | 1.089 |
|  |  | $7 / 2$ |  | 74718 |  | 0.909 |
| $\mathrm{das}_{5}$ | (1) ${ }^{1}$ | $13 ¢ 2$ |  | 74064 |  | 1.080 |
|  |  | H1/2 |  | 74354 |  | 0.939 |
| $00^{6}$ | ${ }_{2}^{\left.\left(a^{1}\right)^{2}\right)^{2} \mathrm{G}}$ | 912 $7 / 2$ |  | 76094 76404 |  | 1.096 0.945 |
|  | ${ }^{2} \mathrm{G}+{ }^{2} \mathrm{~F}$ | $7 / 2$ |  | 76404 |  | 0.945 |
| $d^{8}$ | (3D) ${ }^{\text {D }}$ | $3 / 2$ |  | 77596 |  | 0.821 |
|  |  | 512 |  | 77834 |  | 1.191 |
| $\frac{d_{s}^{b_{s}}}{d^{d_{s}}}$ | ${ }^{2} \mathrm{~S}+\mathrm{P}+4 \mathrm{P}$ | 1/2 |  | 79502 |  | 1.847 |
|  | ${ }^{-}\left(a^{1} \mathrm{D}\right)^{2} \mathrm{D}$ | 512 |  | 808313 |  | 1.204 |
|  |  | $3 / 2$ |  | 80449 |  | 0.810 |
| ds | $\left.{ }^{(15}\right)^{\prime} \mathbf{F}$ | 7/2 |  | 82964 |  | 1.157 |
|  | (ba) ${ }^{\text {P4P }}$ | $5 / 2$ $1 / 2$ |  | 83130 85311 |  | 0.886 2.601 |
| $d^{4 s}$ |  | 3/2 |  | 86279 |  | 1.718 |
|  |  | $5 / 2$ |  | 88927 |  | 1.579 |
| $d{ }^{0}$ | $\left(6^{2} \mathrm{~F}\right)^{+} \mathrm{F}$ | $9 / 2$ |  | 67320 |  | 1.328 |
|  |  | 712 |  | 882864 |  | 1.221 |
|  |  | $5{ }^{512}$ |  | 88099 |  | 1.013 |
|  |  | $3 / 2$ |  | 87453 |  | 0.412 |
| $d^{4} 5$ | $\left(d^{\mathbf{P}} \mathbf{P}^{\mathbf{4}} \mathbf{P}\right.$ | $1 / 2$ |  | 92424 |  | 0.687 |
|  |  | $3 / 2$ |  | 95313 |  | 1.330 |
| $d^{\text {P/ }}$ | ${ }^{\mathbf{1}} \underline{\mathrm{F}}+\mathbf{C}_{6}$ | 712 |  | 94021 |  | 1.093 |
|  | ( $\left.6^{3} \mathrm{~F}\right)^{2} \mathrm{~F}$ | 512 |  | 94542 |  | 0.862 |
| $d^{*}$ | $\left(6^{16}\right)^{2} 9$ | $9 / 2$ |  | 95741 |  | 1.114 |
|  | ${ }^{\mathbf{4}} \underline{\underline{W}}+$ | $7 / 2$ |  | 96104 |  | 0.940 |
| 0 | (b1D) ${ }^{\text {d }}$ | $5 / 2$ |  | 110016 |  | 1.200 |
|  |  | $3 / 2$ |  | 110018 |  | 0.801 |
| $d^{6}$ | (b15)2 ${ }^{3}$ | 1/2 |  | 128531 |  | 1.999 |

Table 14. Obsenved and cafcalated levels of Pd III

| AEL | Conf. | Term | $j$ | Observed | G.L.S. |  | Calc. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | Calc. | O-C |  |
| $a^{2} \mathrm{D}$ | $d^{4}$ | $a^{3}{ }^{\text {F }}$ | 4 | 0.0 | 2 | -2 | 1.248 |
|  |  |  | 3 | 3229.7 | 3227 | 3 | 1.083 |
|  |  |  | 2 | 4687.3 | 4728 | 40 | 0.714 |
|  | $d^{N}$ | $\frac{a^{3} \mathrm{P}}{}{ }^{\text {a }}$ | 2 | 10230.5 | 10330 | $\rightarrow 9$ | 1.284 |
|  |  |  | 1 | 13470.3 | 13394 | 76 | 1.500 |
|  |  |  | 0 | 13699.1 | 13636 | 63 |  |
| $a^{3} P_{7}$ | $d^{8}$ | $\underline{\mathbf{a}^{4} \mathbf{D}+3 \mathbf{P}}$ | 2 | 14634.3 | 14768 | $-133$ | 1.168 |
|  | ${ }^{\text {a }}$ | $a^{1} \mathrm{G}$ | 4 | 178800.4 | 17824 | 56 | 1.002 |
|  | $d^{+}$ | 15 | 0 |  | 41196 |  |  |
|  | $d^{7 s}$ |  | 4 | 52915.9 55068.8 | 52885 55040 | 43 | 1.395 1.344 |
|  |  |  | 3 | 56741.5 | 56697 | 44 | 1.248 |
|  |  |  | 2 | 57846.0 | 57806 | 39 | 1.002 |
|  |  | $(4 \mathrm{~F})^{6}{ }^{2} \mathrm{~F}$ | 1 | 58527.3 | 58492 | 36 | 0.017 |
|  | $d^{7} s$ |  | 4 | 62560.9 | 62397 | 163 | 1.242 |
|  |  |  | 3 | 65235.4 | 65181 | 74 | 1.151 |
|  |  |  | 2 | 67079.4 | 66986 | 94 | 0.694 |
|  | $d^{\prime}$ |  | 3 | 657080 | 656189 | 19 | 1.595 |
|  |  |  | 2 | 65788.3 | 65817 | -29 | 1.754 |
|  | $d^{7}$ | (2G) $0^{3} \mathrm{C}$ | 1 5 | 67151.4 69085.8 | 67195 70034 | $-44$ | 2.403 1.185 |
|  |  | ${ }^{\mathbf{C}}+{ }^{3} \mathrm{H}$ | 4 | 71047.2 | 71027 | 20 | 1.022 |
|  |  | ${ }^{5} \mathrm{C}$ | 3 | 72786.1 | 72791 | -4 | 0.759 |
|  | $d^{\prime} s$ | $\left.{ }^{(2 \mathrm{P}}\right)^{\text {¢ }} \mathbf{P}$ | 2 | 72745.0 | 72859 | -113 | 1.381 |
|  |  | $\cdots{ }^{\text {P }}+1 \mathrm{P}+3 \mathrm{D}$ | 1 | 73002.6 | 73096 | $-93$ | 1.259 |
|  |  |  | 0 | 74281.1 | 74320 | -38 |  |
|  | d's | $\left.{ }_{(2}{ }^{2} \mathrm{H}\right) a^{2} \mathrm{H}$ | 6 | 74673.3 | 74741 | 467 | 1.167 |
|  |  |  | 5 | 75967.6 | 75971 | -4 | 1.040 |
|  |  | ${ }^{3} \mathrm{H}+{ }^{4} \mathrm{C}$ | 4 | 78581.1 | 78525 | 56 | 0,890 |
|  | $\begin{aligned} & d^{\top} s \\ & d^{\top} s \end{aligned}$ | ${ }^{1} \mathrm{C}+{ }^{8} \mathrm{H}+3 \mathrm{G}$ | 4 | 75403.0 | 75336 | 67 | 0.957 |
|  |  | (4P) $c^{*} \mathrm{P}$ | 2 | 75455.0 | 75447 | 8 | 1.430] |
|  |  |  | 1 | 76055.8 | 76193 | -137 | 1.346 |
|  |  | $\frac{(4 \mathbf{P})^{3} \mathbf{P}+}{\left({ }^{2} P\right)^{\prime} \mathbf{P}+}$ | 0 | 78732.5 | 78682 | 50 |  |
|  | $d^{2} s$ | ( $\left.\omega^{ \pm} \mathrm{D}\right) \mathrm{c}^{3} \mathrm{D}$ | 3 | 76231.4 | 76235 | -4 | 1.331 |
|  |  | ${ }^{3} \mathrm{D}+\mathrm{D}+{ }^{3} \mathrm{P}$ | 2 | 78169.8 | 78125 | 45 | 1.176 |
|  |  | ${ }^{5} \mathrm{D}+\mathrm{P}+{ }^{\text {P }}$ P | 1 | 78120.0 | 78210 | $-90$ | 1.049 |
|  | $d^{\prime}{ }^{\prime}$ | $\left.{ }^{2} \mathrm{H}\right) \mathrm{A}^{4} \mathrm{H}$ | 5 | B0805. 1 | 80802 | 3 | 1.012 |
|  | d's | $\underline{1}$ | 1 | 82620.3 | 82809 | -189 | 0.925 |
|  | d's | $\begin{gathered} \left(a^{2} \mathrm{D} k^{1} \mathrm{D}+\right. \\ \mathrm{aP}+{ }^{2} \mathrm{D}+ \end{gathered}$ | 2 | 83204.3 | 82113 | $9]$ | 1.074 |
|  | $\mathrm{er}^{1 / 5}$ | ( $\mathrm{F}_{\text {) }}{ }^{2} \mathrm{~F}$ | 2 | 85420.7 | 85494 | -74 | 0.678 |
|  |  |  | 3 | 85890.4 | 85940 | $-110$ | 1.084 |
|  |  |  | 4 | 86795.2 | 86937 | -142 | 1.246 |
|  | $\begin{aligned} & d^{T^{\prime}}{ }^{d_{s}} \end{aligned}$ | $\begin{gathered} \left({ }^{2} \mathrm{~F}\right) a^{1} \mathrm{~F} \\ \left(b^{2} \mathrm{D}\right) b^{*} \mathrm{D} \end{gathered}$ | 3 | 90694, 3 | 90857 | $-173$ | 1.004 |
|  |  |  | 1 | (103529.4?) | 102858 |  | 0.501 |
|  |  |  | 2 | 103549.6 | 103296 | 254 | 1.160 |
|  |  |  | 3 | 104419.1 | 104124 | 295 | 1.327 |
| - | dit | $\left(b^{2} \mathbf{D}\right)^{1} \mathbf{D}$ | 2 |  | 109183 |  | 1.002 |

Table 15. Observed and calculated levels of Ag in

| Conf. | Term | $J$ | Observed | G.L.S. |  | Calc. $g$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | O-C |  |
| $d^{N}$ | $a^{3} \mathrm{D}$ | 5/2 |  |  | $-23$ | 1.200 |
|  |  | $3 / 2$ | 4607 | 4587 | 20 | 0.800 |
| $d_{5}$ | ${ }^{(3 F)}{ }^{4} \mathbf{4}$ | $9 / 2$ | 63250 | 63283 | -33 | 1.332 |
|  |  | 712 | 65764 | 65744 | 20 | 1.226 |
|  |  | 512 | 69145 69351 | 68146 693640 | $-1$ | 1.031 $\mathbf{0} 440$ |
| $d^{4}$ | ${ }^{(3)}{ }^{\text {a }}$ F | $7 / 2$ | 71691 | 71579 | 113 | 1.151 |
|  |  | 5/2 | 73934 | 73955 | -21 | 1.135 |
| $d^{\text {P }}$ | $\stackrel{+}{\underline{P}}+{ }^{+} \mathbf{F}$ | $5 / 2$ | 76406 | 76415 | $-9$ | 1.284 |
|  | ${ }^{\underline{p}}+{ }^{+}{ }^{\text {a }} \mathrm{D}$ | $3 / 2$ | 77413 | 77476 | $-63$ | 1.426 |
|  | ${ }^{4} \mathrm{P}$ | 1/2 | (79326?) | 78938 |  | 2.656 |
| $d_{s}$ | $2 \mathrm{D}+{ }^{4} \mathrm{P}+{ }^{2} \mathrm{P}$ | 312 | 80131 | 80213 | $\underset{-182}{-82}$ | 1.189 |
|  | $\underline{d}+\mathbf{P}$ | $5 / 2$ | 82231 | 82363 | -132 | 1.236 |
| $d^{*}$ | ${ }^{2} \underline{P}+{ }^{2} \mathrm{D}$ | 32 | 85182 | 85216 | -34 | 1.212 |
|  |  | 1/2 | (87477) | 85512 |  | 0.682 |
| $\mathrm{r}^{\text {N }}$ | $\left.{ }^{4} \mathrm{G}\right) a^{2} \mathrm{C}$ |  |  | 85703 | -104 | 1.113 |
|  |  | $7 / 2$ | 85727 | 85760 | -33 | 0.893 |
| $d^{\text {m }}$ s | (S) ${ }^{\text {a }}$ S | $1 / 2$ |  | 111864 |  | 1.994 |

Table 16. Observed and calcalated level's of Cd III

| Conf: | Term | J | Observed | G.L.S. |  | Calc. 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Calc. | O-C |  |
| $d^{d / 4}$ | ${ }_{\left({ }^{(1)}{ }^{(1)} a^{2} \mathrm{D} \mathrm{D}\right.}$ | 0 | 0.0 | -72 | 72 |  |
|  |  | 3 | 80454.3 | 80540 | -86 |  |
|  |  | 2 | 82354.6 | \$2301 | -6 | 1.125 |
|  |  | 1 | 96219.5 | 86237 | -18 | 0.500 |
| ${ }^{2}$ | ( $\left.{ }^{2} \mathrm{D}\right) \mathrm{a}^{1} \mathrm{D}$ | 2 | 88871.8 | 88834 | 38 | 1.042 |

An Additional Remark. The calculations reported in the present paper had been completed about five years ago and then the results were sent to several spectroscopy groups. Some weeks ago, after the stencils for the preprints of this paper had already been typed, we received from Rico a reprint of his paper [7] on the spectrum of MoIII. In table 1 of his paper he compares his observed levels with our theoretical calculations and the fit is quite good. Checking these results we found out, that by adding to all the calcu-
lated levels of Mo III $80 \mathrm{~cm}^{-1}$ the fit is very much improved and we get a-mean error of $95 \mathrm{~cm}^{-1}$ with M( $d^{4}$ ) being the only free parameter. In tahle 10 we have added the observed levels of Mo $1 I I$ enclosed in brackels in order to indicate that they were not included in the G.L.S.

The author also was informed by L. Iglesias that now she is making a new analysis of Rh ril. Hence, we slready know that the calculations reported in the present paper actually help in the further analysis of the third spectra of the Pd group.

The author is grateful to the late G. Racah for his invaluable advice during all the stages of the present work.

The author is thankful to Prof. A. G. Shenstone for the thorough commom discussion of the spectra of Pd in and Rh jII .

## 8. References

[1] G. Resah and Y. Shadmi, Bull Res. Connc. af Iarael BF, 1 (1959).
[2] Y. Shadmi, Bull. Ree. Comnc, of Igrael, 9F, 4 (1901),
[5] Y. Shadmi, Bull. Ree. Codanc. of lsrael, 10F, 3 (1962).
[4] C. E. Moore, Atomic Energy Levels, NBS Circalar 467, Vol, II (1952) and Vol. III (1958).
[5] L. Iglesita, J. OpI. Soc. Am. 45, 855 (1955).
6) Y. Shudmi (not yet published).
[7] F. R. Fico, Anales Real Soe. Espanola Fisica Quimica, 1XI (A)* 103 (1965).
(Paper 70A5-415)


[^0]:    *ha jovited papar. This paper war partinlly aupponed by the Nomional Berean of Standurds. Whangton. D.C.
     of fortwion.
    

