Crystal Structure of $\mathrm{BaGe}\left[\mathrm{Ge}_{3} \mathrm{O}_{\text {}}\right]$ and Its Relation to Benitoite

C. Robbins, A. Perloff, and 5. Block
Institute for Materials Research, Notional Bureau of Standards, Washington, D.C. 20234

(May 29, 1966)
$\mathrm{BaGe}_{\mathrm{a}}\left[\mathrm{Ges}_{s} \mathrm{O}_{\mathrm{y}}\right]$ is trigonal, space group P_{1}, with latice conetante $\mathrm{a}=11.61, c=4.74 \AA$, and $Z=3$.
The atructure was eatabliohed by three-dimensional Patterson and electron density syntheses. Three-dimensionai leasl-squares refinement resulted in a final \mathbf{R} value of 6.8 percenl (observed data only).

The previoasly proposed structural relationship of this compound with benitoite, BeTiS ${ }_{3} \mathrm{O}_{4}$ has baen monfinmed. The atructure can be considered as compoged of Gefo rings, in which the Ge is tetrahedrally coordinated. linked through oetahedrally coordinated Ge atome 10 form a three-dimenslonal Ged network. All Ge polyhedra are linked by corner sharing. The Be ions occupy positions in channels of the network.

Key Words: Burium tetragermanate, structure, benitoite, crystal, x-ray,

1. Introduction

The synthesis of three germanates of formula type $\mathrm{MeGe}_{4} \mathrm{O}_{9}\left(\mathrm{Me}=\mathrm{Sr}_{4} \mathrm{~Pb}, \mathrm{Ba}\right)$ was reported by Robbins and Levin [1].' A comparison of indexed powder patterns suggested that the compounds were isostructural. This was later confirmed by Eulenberger, Witman, and Nowotay [2]. In addition, they reported the synthesis of two forms of $\mathrm{CaCe}_{4} \mathrm{O}_{9}$ designated α and β, and found the α form was isostructural with ($\mathrm{Sr}, \mathrm{Pb}, \mathrm{Ba}$) $\mathrm{Ge}_{4} \mathrm{O}_{\mathrm{g}}$

Crystal chemical considerations (Robbins and Levin [1]) suggested a structural relationship with the mineral benitoite, $\mathrm{BaTiSi}_{3} \mathrm{O}_{2}$, whose structure was determined by Zachariasen [3]. Comparison of patterns of 1:4 germanates with indexed benitoite powder data supported this view. From these observations and a consideration of unit cell dimensions, a trial structure for the tetragermanates was obtained (Robbins and Levin [1]). To test the validity of the proposed model, the structure of $\mathrm{BaO} \cdot 4 \mathrm{GeO}_{2}$ was determined.

2. Experimental Data

Single crystals in the form of needles elongated along [001] were obtained by slowly cooling a melt of composition $\mathrm{BaGe}_{4} \mathrm{O}_{\text {, }}$ from slightly above the congruent melting point of $1392 \pm 5^{\circ} \mathrm{C}$.

Unit cell dimensions, density measurements, and optical data for this compound were reported by

[^0]Robbins and Levin [1]. Their data plus the space group information are:

$$
\begin{aligned}
a & =11.61 \mathrm{~A} \\
c & =4.74 \AA \\
S . G & =P 3 \\
Z & =3
\end{aligned}
$$

$$
\begin{aligned}
\omega & =1.797 \pm 0.003 \\
\epsilon & =1.783 \pm 0.003 \\
\rho(\mathrm{obs}) & =5.1 \mathrm{gcm}^{-3} \\
\rho(\mathrm{calc}) & =5.12 \mathrm{gcm}^{-3}
\end{aligned}
$$

No systematic absences were observed. Precession films were consistent with space groups P3ml or P3 ml No atisfactory structure could be derived in these space groups. The possible space groups P3 or P $\overline{3}$ were then considered. The centrosymmetric choice could be eliminated on the basis of packing considerations because of the short c dimension. The assumption that the space group is P3 was confirmed by the final structure.

Integrating Weissenberg films of levels $h \hbar l$ with $t=0,1,2,3,4$ were taken with Zr -filtered MoK α radiation ($\lambda=0.7107 \AA$) using the multiple film technique. Intensities were measured with a densitometer comparator. Very weak reflections were estimated visually. The intensity data were obtained from a crystal approximately rectangular in cross section with dimensions of $0.043 \mathrm{~mm}, 0.066 \mathrm{~mm}$, and a length of 0.189 mtn . The linear absorption coefficient for molybdenum radiation is $222.41 \mathrm{~cm}^{-1}$.

Lorentz and polarization factor corrections were applied. Since the main objective of the study was the determination of positional parameters, no corrections for absorption errors were made. The latter would be expected to affect, primarily, the thermal parameters. The data consisted of 327 observed and 435 unobserved independent reflections.

Table 1. Final atomic parameters"

	\%	m	r'	ar'	\pm	매신	B	어일
Ba	$0.334]$	0.0004	0.3834	0.0005	0.0		1.0365	0.0638
Cexl)	. 0		0		-0,020	0.0004	0.3508	. 2021
Ge(2)	. 6666		2933		. 00022	. 00381	5501	17 ${ }^{\text {哭 }}$
Get	3 3331		.66t ${ }^{\text {c }}$.10\%	,0031	. 2158	.1997
Ces ${ }^{\text {d }}$	8148	. 0007	8850	. 0006	.413	0005	8859	. 1570
C45)	. 6574	0008	. 5131	0006	.5031	. 0034	. 1402	, 1294
Ge(6)	. 5160	00006	4719	. 00007	.5989	0025	56\%0	.27
Oil	,6409	00032	. 9288	. 0095	. 1188	. 0075	-.4341	4851
0 O	.589\%	. 0046	4074	. 0047	2150	.0106	1.1598	. 7527
O4,	. 7846	. 00033	. 6524	. 0059	. 3101	.0078	-0.199\%	5040
(0)	$\bigcirc 500$.0035	. 3561	. 00095	.0963	.0000	. 0665	.5479
$0 \cdot 5$	-4745	. 00656	. 7850	.0058	.8978	. 012 T	2.2502	,936]
O06	. 92354	.0038	. $\mathbf{6} \mathbf{4} 28$.0060	. 6430	. 00002	0.0008	.59\%6
0	. 6650	. 00689	808]	. 010668	. 412 l	. 0175	3.00792	1.2002
Opar	4069	0043	. 3860	. 0411	33274	.0091	1.0006	0.6438
CM,	. $75 \% 5$.0049	4844	. 0046	. 7472	. 01.103	1.1328	. 70.7

3. Structure Determination

Similarities in the x-ray powder patterns and unit cell dimensions of benitoite ($\mathrm{BaTiSi}_{3} \mathrm{O}_{9}$) and $\mathrm{BaO} \cdot 4 \mathrm{GeO}_{2}$ led Robbins and Levin [1] to suggest that barium germanate probably exists as $\mathrm{BaGeGe} \mathrm{O}_{9}$ in a structural arrangement closely related to that found for beaitoite by Zachariasen [3]. The large number of unobserved reflections obtained in the present study was consistent with the proposed relationship provided the Ba and Ge atoms had x and y parameters near $1 / 3$ and $1 / 3$ and z parameters near 0 or $1 / 2$ in the germanate cell. In benitoite Ba, Ti, and the $\mathrm{Si}_{3} \mathrm{O}_{9}$ rings all are on, or around threefold axes. The lower symmetry of the germanate permits, at most, only one of the corresponding atoms or groups to be on a threefold axis.

A three-dimensional Patterson function was computed and peaks corresponding to $\mathrm{Ba}-\mathrm{Ba}$ and $\mathrm{Ge}-\mathrm{Ge}$ vectors were identified and related to the proposed model. On the basis of the trial structure and space group P3, three shoices of origin were possible i.e., at the center of a $\mathrm{Ce}_{3} \mathrm{O}_{5}$ group, at a Ba alom or at an octahedrally coordinated Ge atom. Using coordinates of Ba and Ge from the model, three cycles of Fourier refinement were calculated for each choice of origin. Only the model with a Ge atom at the origin on a threefold axis refined satisfactorily. Using phases based on Ba and Ge positions from the Fourier refinement, a 3 -dimensional electron density map was calculated which yielded the oxygen coordinates.

The structure was refined by a full-matrix leastsquares analysis of the 327 observed and 435 unobserved reflections. The final conventional R value based on the 327 observed independent reflections was 0.068 . The total number of parameters varied was 62 which included x, y, and z, an isotropic temperature factor for each atom and a scale factor for each level. The final parameters from this refinement are listed in table 1. The temperature factors are not considered meaningful, primarily because of absorption. The correlation matrix from this refinement indicated that many of the variables were correlated to a moderate degree (correlation coefficients on the order of 0.5 to 0.6). The possibility that this was the source of the
unrealistic temperature factors was considered. A second least-rquares refinement was made in which, alternately, scale and position parameters were varied for 2 cyeles with fixed temperature factors and then temperature factors were varied for 2 cycles with fixed scale and position parameters. This was repeated for a total of eight cycles. The result was identical with the first refinement to within one standard deviation. Therefore, only the parameters from the first refinement are given in this paper. Observed and calculated structure factors are reported in table 2.

Atomic scattering factors for neutral Ge and 0^{-1} were taken from International Tables for X-ray Crystallography (1962). Values for Ba^{+2} were taken from Thomas and Umeda [4]. The barium and germanium form factors were corrected for dispersion (International Tables for X-ray Cryatallography, 1962).

4. Structure Description

A projection of the structure of $\mathrm{BaO} \cdot 4 \mathrm{GeO}_{2}$ along [001] is shown in figure 1 . Numbering of the atoms of the asymmetric unit is consistent with table 1. The structure is made up of rings of three GeO_{4} tetrahedra linked together by GeO_{6} octabedra. Barium atoms are located in channels of the network. Germanium atoms 1, 2, and 3 are octahedrally co. ordinated and lie on threefold axes. Germanium atoms 4, 5, and 6, in tetrahedral coordination, make up the Ges O_{9} ring. Six rings are linked through a germanium octahedron to form the germanium-oxygen network. The two nonring oxygens of each of three equivalent GeO_{4} tetrahedra are bonded to germanium atoms above and below the ring to form GeO_{6} groups. Every germanium polyhedron shares all of its corners: GeO 4 tetrahedra share only corners with other polyhedra with the exception of Ge (6), which shares one edge with a barium polyhedron; each germanium octahedron shares three edges with three different barium polyhedra.

The $\mathrm{Ges}_{3} \mathrm{O}$ ging, projected along [001], is shown in figure 2. Interatomic distances, angles and standard deviations for the three germanium atoms in tetra-

FIGURE 1. [001$]$ Projection of the $\mathrm{BaCe}\left[\mathrm{Ges}_{4}\right]$ stracture. The nambering in thet of table 1 .

Ficure 2. [001] Projection of the GesO_{4} ring. The wimbers idenilis woulte in table I. Bood disumices are in λ.

．	10NOMNO	$\mathrm{l}_{0}^{11000000}$	ハーエーロ	－－ー＊	－0可可		Б万気ゅ		Opaneme		coctuche	$\operatorname{lomoxim}^{1}$	いいいいート	ワーナー¢	7
				－ 40004		+ ㅗㅗㄴonw	－¢－140\％		$\stackrel{1}{\text { oastint }}$			必ざだら	س	或もあくび	$=$
－	$\cdots \sim$	ートートゥ	ーーーーー	－ーートロ	¢	0	980．0	－0000	＊ロヵも	ө日もあも	өージロ	日ももめロ	－0ッ00	00000	
	気或会安守		3 $\mathbf{3}^{\text {¢ }}$		気产気気家		苞突和を淕		8首要家						5
		297管					可如突容8								管
	＊れがい	1－1－1	ーーー	\dagger	$\frac{1}{6} \frac{1}{5}=\overline{0}$	500．0	$\Delta \infty$			$\underline{1} \operatorname{cosen}$ enter	$m+1$	a	－女tas	$\begin{aligned} & 1 \\ & 1 \\ & 0 \end{aligned}$	\＄
－40ヶ\％	\because－	H0encta	＋\％ーニッ	あれゃめN	costum	－－¢ann	1－3的的	－\％			O6चひリ	－¢ ¢－－	－स¢0\％	$\begin{gathered} \text { In } \\ \text { atann } \end{gathered}$	＊
＊＊NNHNN	rancoush	＋NHNTN	＊＊＊NがN	Nintuanmon			ートワーロ				ャーーーツ	ャーーーー		ロットローワ	＊
	家过考告\％		思8第をる			旬㤩罗军客	三容和宮多								4
发\％㠰乐気		今含䆜宓各			気気嵒䆑离	年比运畧名	肯或家家家	出宥氟兌ぶ							5
－－	－6＊＊5	ぶ的だ	ニーニ゙ッド	¢ \quad ¢\％	$\frac{1}{5}$	$\omega *$－	64～44	Hoxpor	momoses	ensenener	vatas	－4tomo		cosomion	7
$0+\infty$		$\underbrace{5}_{0 \times 0}$	ャー－		1－－		－satwto	－sionet	4 ¢	WHEN－1	－400t	－0．040	$\frac{1}{100}$	－0300	－
w		cobs 心han	Notoraroren	ONANNN	No Nanemots	N60tioto	TONATONTO	H20NON	N＊いたい		NOHNONT	N＊NN＊SN	NHW NON	130730＊＊	4
直守媱乐息				世公的名灰	約祘要名		勾を気或							家家安安家	9
亚要8家			8582484		四乐乐争只		후궁훙			お気社安名					$\stackrel{\text { 策 }}{ }$

Table 2．Comparison of observed and calculated structure factors $S(h k 0=1.97+S(h k])=2.68, \mathbf{S}(\mathrm{hk} 2)$ $=3.09, \mathrm{~S}(\mathrm{hk} 3)=3.25, \mathrm{~S}(\mathrm{hk} 4)=4.44-$ Continued

－	\downarrow	t	F_{0}	－FE	W	\boldsymbol{k}	J	$F \mathrm{~F}$	Efe	A	t	\boldsymbol{r}	Fo	＊Ft
1	－	5	93	87	8	－1	3	8	80	4	－3	4	90	W
1	\boldsymbol{T}	3	6	\％	8	－2	3	79	82	4	4	4	64	68
－1	B	3	等	82	8	－ 6	3	41	47	5	1	4	151	128
2	0	\＄	17	\％	9	0	3	93	87	3	－2	4	起	35
2	－I	3	112	197	8	－I	3	122	22.	5	4	4	74	14
2	1	3	I明	172	\％	3	3	49	6	5	－4	d	90	84
2	2	5	55：	51	0	－	3	100	105	8	5	4	13	69
2	5	3	93	90	9	－9	3	78	62	7	1	4	67	55
2	3	8	257	144	10	］	3	7	67	3	3	4	68	64
2	-7	3	79	79	10	8	3	98	的	7	4	4	45	56
－2	1	3	96	89	10	－3	3	100	105	7	－5	4	65	61
－2	9	8	141	143	10	－5	3	85	77	7	－8	4	67	73
5	0	3	99	姐	11	－1	3	80	69	8	1	4	93	76
3	-1	8	136	175	11	－4	3	41	48	8	-1	4	67	59
3	2	3	18	115	1］	－5	3	75	67	8	－4	4	52	6
	5	3	108	108	11	-7	3	80	71	9	－1	4	72	68
3	5	3	103	104	12	－3	3	82	70	9	－6	4	49	54
3	－7	3	167	159	12	－4	3	8%	名	9	－7	4	88	90
－3	a	3	103	165	0	8	4	57	54	10	－2	4	44	52
－3	9	3	B0	76		3	4	H	81	10	-3	4	J4	65
3	－9	3	90	93		5	4	158	159	10	－3	4	T	It
4	］	3	125	125		6	4	54	64	10	－6	4	96	85
4	－2	3	51	4＊		0	4	67	69					
1	－3	3	160	145 48	4	0	4	80	B3					
4	4	3	81	48	6	0	4	42	54					
4	9	3	121	108	3	0	4	83	75					
5	－1	3	129	123	9	d	4	68	69					
5	－2	3	124	117	l	1	4	101	95					
5	－4	3	91	98	1	3	4	97 90	94					
5	5	3	80	77		4	4	90	79					
－6	2	3	57	$\$ 5$	1	6	4	95	BS					
6	2	t	76	BI	－	$?$	4	84	81					
6	－3	3	108	106	1	7	4	91	20					
6	－4	\％	50	51	－1	8	4	808	T2					
6	5	3	64	61	2	1	4	品	时					
7	1	8	83	78	2	2	4	59	66					
7	－2	8	76	71	3	2	4	45	5.					
7	5	3	112	98	3	6	4	45	53					
7	-3	8	164	$15]$	3	-6	4	59	68					
B	1	3	120	119	4	1	4	99	88					

hedral coordination are given in table $3(\mathrm{~A})$ ．The germanium－oxygen distances range from 1.617 ± 0.044 to $1.895 \pm 0,048 \AA^{2}$ ，with an average value of $1.74_{0} \mathrm{~A}$ ． This agrees well with the average value of 1.74 ， A recorded for $\mathrm{Na}_{4} \mathrm{Ge}_{8} \mathrm{O}_{21}$（Ingri and Lundgren［5］）and with individual independent values of $1.737 \pm 0.003 \mathrm{~A}$ and $1.741 \pm 0.002 \mathrm{~A}$ ohtained by Smith and Isaacs［6］ from a study of the a－quartz form of germanium dioxide．The $\mathrm{O}-\mathrm{Ge} . \mathrm{O}$ angles vary from $94.0 \pm 3.1^{\circ}$ to $124.9 \pm 2.1^{\circ}$ with an average value of 109.3° ．

A GeO_{6} group is shown in figure 3，［001］projection． Bond distances and angles for the three independent germanitum atoms in sixfold coordination are presented in table 3（B）．The mean Ge－O distance is $1.8 B \mathrm{~A}$ ． This is in agreement with the value of 1.89 A given by Ondik and Smith［7］for octahedrally coordinated germapium．It is apparent that both tetrahedra and octahedra are somewhat irregular．

[^1]Germanium－germanium distances are listed in table 3（C）．The average value of 3.15 ，A is in good agreement with the value of $\mathbf{3 . 1 5 3}$ \＆\AA obtained by Smith and Isaacs［6］．

The oxygen polybedron about the barium ion is show in figure 4 ［ 001 ］projection．Barium is coordi－ nated to ten oxygen atoms with hond lengths ranging from $2.663 \pm 0.029 \AA$ to $3.277 \pm 0.087 \AA$ ．Bond dis－ tances and standard deviations are listed in table 4. The barium ions lie in channels in the germanate net－ work as shown in figure 1.

5．Reletion to Benitrite

The structural relationship between $\mathrm{BaGe}\left[\mathrm{Ce}_{3} \mathrm{O}_{9}\right]$ and $\mathrm{BaTiSi}_{9} \mathrm{O}_{9}$ proposed by Robbink and Levin［1］is essentially correct．In figure 1，the dashed outline of the $\mathrm{BaTiSi}_{3} \mathrm{O}_{9}$ cell［3］is shown on the［001］projec－ tion of the germanate cell．Within the dashed lines， Ge（3）in six－fold coordination corresponds to titanium

Table 3. Germaniun-oxygen hond lengths and angles *

Dinkera			Atmbs		
	A	$0, \lambda$			${ }^{\boldsymbol{r}}$
	1.785	0.039	$\mathrm{O}(12-\mathrm{Co}(6)-\mathrm{O} 4$	113.9	1.8
	1893	.040	O1t	128.3	18
	1.617	.044	VCl_{1}	94.0	3.1
	1.319	.088	0 O5	¢6. ${ }^{6}$	2.1
			0 0ts 0	155.4	2.6
			O9\% 0	129.6	3.2
Centi-Oxt	1.790	040	O(2)-Ge45)-0.95	97.0	20
	1.734	. 018	0 Cz	109.6	2.2
O(\%)	120.5	. 104	O(2) 010	128.9	21
	1,653	, 06	O(3) 0(4)	108.5	1.9
			O(a) 0 Op	109.6	26
			O(4) OM	107.5	2.8
(Ex(6)-0(9)	1,649	-040	O(4)-Cech-O ${ }^{(3)}$	106.6	28
	1.805	. 069	0 O) OTJ	108,0	3.5
Ofid	1.714 1.720	. 012	O45) O(b)	1000 1018	2.8 3.3
	1.780		O以 O_{51}	101.8 12.9	3.3
Averame	1.740		017 O 0 (0)	116.2	3.1
			Arevar	109.3	
			$\mathrm{Cos}(4)-\mathrm{O}, 27-\mathrm{Ce}(6)$	15.5	5.4
			$\mathrm{Ge}(\mathrm{d})-\mathrm{O}(3)=\mathrm{Ge} \mathrm{c}^{(5)}$	1225	2.4
			$\mathrm{Ge}(5)-\mathrm{OH} 4)-\mathrm{Ge}(6)$	124.1	2.1
O11-039	3.022	. 1086			
O(1)-046	2.998 2582	. 080			
0 O 31006	2.566	0.68			
O(3)-64]	2818	. 107			
O4, -077	2.943	0%			
O21-051	26.5	. 060			
O2-O4	5.000	. 071			
$0 \mathrm{O} 2 \mathrm{~F}=\mathrm{CD}$	2.80	-169			
Ofs-G4)	2.916	. 052			
O(3)-O(9)	2.760	.066			
$\mathrm{O}(\mathrm{O}-\mathrm{O}(9)$	2805	.068			
O(4)-0.6)	2801	091			
O(4)-O7)	2715	.681			
O(4)-048)	2.516	. 068			
(13)-048)	3.00\%	. 6.54			
$0 \mathrm{O}_{2} \mathrm{l}-\mathrm{OH}$	2916	. 070			

B. Octabedrally cowrionted germumba

Distancer			Anstes		
	\pm	\%			
$\mathrm{Ge}(1)-\mathrm{O}(1)$	18040	0.06	O(1)- $\mathrm{Cu}=1 \mathrm{l}-\mathrm{O}(6)$	890	1.5
$046]$	2.017	. 049	0 (1) O 0 (1)	93.7	1.6
			04610	85.5	1.8
			O(1) O(6)	93.1	1.7
C-12-042]	18.81	. 068		4.1	2.5
0	1. 857	. 061	O\%	84	24
			O2r O\%	94.0	20
			O(2)	80,9	2.4
Ce(3)-050	1.717	.0988	O(5)-Gel3)-0isy	912	28
Oti	1858	.056	Ofir ${ }^{\text {Of }}$	90.3	2.2
				89.4	23
Average	1.177		G6F) Oish	99,4	2\%
O11-006	2.688	069			
O(t)-O(1)	2689	. 039			
045]-0469	2.740	. 060			
O(1)-046)	2010	. 052			
0,23-0, ${ }^{2}$	2.75	.067			
O9\%-091	2.640	. 089			
O421-019	2.793	.080			
O21-Or ${ }^{(1)}$	2.808	.069			
O(5)-0631	2.455	.06\%			
O487-0084	26.54	1000			
O181-OM	2.516	. 004			
Orap-OS5	2.516	074			

C. Dtanncet between germarivan atomb

Figure 3. [001] Projection of a Ge0 ${ }_{s}$ group.

Ficure 4. Nearest neighbor barium ion coardination,
[00I] projection.

Table 4. Bond ditances of the bariant coordination polyhedron*

	${ }_{2} 1$	$\underset{\sim}{\sim}$
Ex-0¢1)	2.665	0.06
O,4	3,008	H65
643	2.989	549
079		. 068
O4\%	2. 300	. 659
044	2.987	敞姩
9\%3	3.063	. 047
O45	2.802	. 019
$0{ }^{4} 17$	3.277	687
0×7	5.227	. ${ }^{8}$

- Tha chadard devjationa ure donturd frop the dingpanl tern: of that lendequmen matiix.

Table 5. Crystal data for $\mathrm{BaGe}^{2}\left(\mathrm{Ge}_{2} \mathrm{O}_{\mathrm{a}}\right]$ and $\mathrm{BaTiS} 1_{3} \mathrm{O}_{\mathrm{a}}$

Compourd	$\boldsymbol{a}, \boldsymbol{\lambda}$	c, λ	Space Mrole	Calc. demeith, zcman^{-4}	\boldsymbol{z}
En[-dGes, O_{3}]	11.61 ± 0.02	4.76 ± 0.01	P3	5.12	8
BaTSis_{4} "	6.60 ± 0.01	9.71 ± 0.01	P6̈cz	4.33	2

- Darta frars Zacharlesten [3]

Computations were performed utilizing the x-ray 63 system of crystallographic programs developed at the University of Washington and the University of Maryland [8].

6. References

[1] C. R. Robbins and E. M. Levin, Tetragermanates of strontium, lead and barium of formula type $\mathrm{AB}_{8} \mathrm{O}_{9}$ J. Res. NBS 65A (Fhys. and Chem.) No. 2, 127-131 (1961).
[2] G. Eulenberger, A. Wittmanh and H. Nowotay, Über wasserfrele germanate mit 2 weiwertigen metallion, Monatsh 93 , 123-128 (1962).
[3] W. H. Zachariasen. The crystal structure of beniloite, BaTiSisOs, Z. Krist. 74. 139-146 (1950).
[4] L. H. Thomas and K. Umeda, Alomic prattering factors calculated from the TFD atomic model, J. Chem. Phym. 26, 293-303 (1957).
[5] N. Ingri and G. Lunderen, The crygtal stracture of $\mathrm{N}_{4} \mathrm{GeO}_{40}$, Acta Chem. Scaind. 17,617-633 (1963),
[6] G. S. Smith and P. B. lasace, The crystal suructure of quartzlike Ge \mathbf{O}_{2}, Acta Cryst. 17, 842-846 (1964).
[7] H. Ondik and D. Smilh, Interatomic diatancee in inorganic compounds, Intemational Tables for X-rey Crystallopraphy Yol. III, 257-274(1962).
[8] University of Maryland, Computer Science Center, Technical Report TR-64-6 (1964).

[^0]: ' Figuran Ip breckore indivate the literatere references an the end af thin paper.

[^1]: ${ }^{5}$ Suanderd devirloen．

