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The second virial, adighatic Joule-Thomaon, viacosity, and diffusion coafhcients predicted for a

number of polentials are compared with those predicted for the (12, 6) poteniial,

A quantitative

picture, as a function of temperature, is obtained of the ability of each property to acl as a probe of the

potential (unction,

The wwansport properties ave found 1o be the most sensitive probes. 1he Jouole-

Thomaen coefficisnt next, and the second virial coefficient least, the lasi propeny being essentially
useless in the range 2.0 < T* < B0 on the (12, 6) reduced lemparalure acale.
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1. Introduction

Statistical mechanics providez a molecular [eunda-
tion for thermodynamics. This resultz in the exprea-
gion of thermodynamic properties as funmctionals of
the intermolecular potential functions of the conalit-
went molecoles. In prineiple, given the potential
function appropriate ¢ a given system one can cal-
culate all of the thermedynamic properties of that
system merely by iurning the computational crank.
In practice, matters are not so simple both because the
relationships to be evaluated are enormously compli-
cated and because the potential function= are not
known with sufficient accuracy.

The most accurate of the statistical mechanical
expressions  contain  N-body  potential {unctions
(N ~ 10" which are impossibly difficult to calcolate.
Simplifying assumptions can be made which often,
ag in the virlal expansion, result in a power series in
some parameter (e.g., the density) whose coeflicients
depend on lower order N-body potentials (N=2,
3,. . .. Since even the three-body potential is ex-
ceedingly difficult to calculate, the assumption of
pairwise potential additivity musi generally be included.
With this assumplion, the thermodynamic properties,
io the statistical mechanical expressions, can be made
to depend on only the pair potential function. Moasl
theories for the Further simplification of the compli-
cated expressions proceed from this point on the as-
sumption that the pair potential function is known.
Theze theoriez result in simpler. but generally still
complicated, relationships between the thermody-
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namic properties and the potential function. The
evaluation of soeh theories can be a formidable task.
All too often their final evaluation is obscured [1]1
considerably by the fact that pair potential functions
are, in practice, only imperfectly known.

The intermolecutar potential fonction together
with a sufficiently accorate theory can be used 1o
extrapolate far bevond the bounds of available experi-
mental data [2], something which is not possible using
completely empirical methods. Such extrapolations
are very strongly dependent on the potential function
and can be considerably in error when the wreng po-
tential function is used.

Clearly the determination of accurate intermolecu-
lar patential functions is of some importance. In
this work we have sought to understand some of the
methods generally used e determine such functions,
particalarly with respect to the question of Lthe unique-
nesz of the potentials obtained. A lack of yniqueness
exists when a set of experimental data for & given
property ¢an be correlated equally well using the ap-
propriate theory and any of two or more potential
functions. Where a lack of uniqueness exists, it
becomes necessary to attempt to determine if there
is a lack of sensitivity inherent in the theoretical
quantity itself or if it is lack of experimental precision
which makes it possible to fit the data equally well
with two or more theoretical curves. These are
equivalent to the following two questions. First,
how well can the property of interest, in principle,
distingeish among potential Tanctions and, second,
how well can it distinguish among such functions at
the present time, given preseat day experimental
precision. The answer to the frst question i3 a perma.

' Figures in bratkong jnbiale the lierature reBeeenees ac the #nd of this papee.
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nent one while the answer to the second one changes:

as experimental technique is refined, approaching
the first answer in the limit of zero experimental
error. We have restricted ourselves to the first
question and discuss the second one only in passing
mainly to place sur resalts in a practical light. The
answer 1o the first queation is of considerable practical
importance since it points out where refined experi-
mental techniques will not produce more information
about the potential function.

In principle the pair potential functions can be cal-

culated in an a priori fashion wsing quantum mechan-
ics by caleulating the potential energy of twa molecules
as a funciion of nuclear spearation.  Since one needs
to consider all the electrons in each moleculz, this
is alzo an intraciable N-body problem, N now being
the total number of electrons involved. This leaves
one no alternative but to ten the problem around
and determine the potential, in some manner, from
experiment. In practice, the procedure is reduced
to a semiempirical one. A functional form is assumed
for the potential whose choice is based, in part, on
theoretical arguments. In this form are included
paramelers whose values f(and hence the detailed
potential} are to be determined from experiment.
The parameter determination is made by substi-
tuting the potential into statistical mechanical expres-
sions for some macroscopic property and comparing
the result with experiment [3]. Best results are to
be expected when the theory iz one whoze depend-
ence on the pair potential is strongly based as is the
caze, for example, in the low density limit of certain
theories.

In this paper we shall discuss the use of the zeto-
density viscosity, diffusion, and adiabatic Jouole-
Thomson ceefficients and the second virial coefficient
as ways of obtaining the potential parameters. For
each of these, the pair polential appears in the inte-
grand of an expression Lor the macroscopic property.
This suggests that, given enough experimental data
of sufficient accuracy, one might be able to inveri
the thearetical expressions and determine the po-
tentizl as a unique functional of the experimental
data. For the second virial coefficient, however, Le
Fevre and Keller and Zumine [4] have shown that the
potential is not determined vniquely by the data, even
in principle. 1n this work we demonstrate this lack
of uniqueness quantitatively for particular potentiala.
We ahow there exists a lack of unigqueness for each
of the macroscopic properties considered, although
it is somewhat less proncunced for the transport
properties than for the equilibrium properties. For
each property, the lack of unigueness is found to be
more progounced in one temperalure raoge Lhan in
another. Strong positive statements can then be
made about the temperatures at which experiments
designed largely to determine potential functions
should not be performed for paticular substances.
We are also able to show the simultanesus fit of cer-
tain of these properties 1o be sensitive to differences
in the potential function.

2. Computational Method

Becatse of its relative simplicity, we shall yae the
second vinal coefficient to illusirate the details of
the computation. The other properties are handled
in essentially the same manner. We shall restrict
the discussion to two parameler potentials. This is
no real restriction since a lhree-parameter potential
can be treated as a family of two parameter poten-
tials one for each value of the third parameter.

_The second virial coefficient is related to the poten-
tial function, y, by the relation [3]

B(T)=baB " (T*)=— bnf: [Exp (—fy) - l]r*’dr*
(1)

2;-1'1"0-3: T*=kTle, w*=swfe, and *=rfax
Here, as vaual, o 15 a characteristie length related to
¢ and € is the depth of the potential well. N is
Avogadra's number. For a given potential, a given
T, and in the lefi-hand side, a given expenmental value
of B at that T,{1) cantains only the two unknowns o and
€. Ir this work, in place of experimental B(T} values,
we supply to the left-hand member of (1) the second
virial eoeficient for a potential function other than the
one appeating in the right-hand side. Thus, if the
subscripts 1 and 2 refer to the two potentials, (1)
becomes

where b=

BN =(5h BHTT= (b8 ;{T;]

nr

BITM) =% i [exp (— %?] - 1};**::;*

Now TF=ikTies

and T'¥ =kT/e; hence, for a2 given T, T} =E% Tt so that

BHTY =% j i {exP (— ﬁ%) - l}r""-:fr"‘. (2

where B¥T ¥ is a functional of o¥r").

This i= an equation containing two unknowns, namely,
the ratios efe; and {fojefife)i. These rativs are com-
pletely determined, given another equation connecting
some other functional of the potential far the two poten-
tials, We have taken, for this second funectional, the
first derivative of B with respect to the logarithm of T
[5]. We thus determine, at each temperature, that
pair of ratios, e:fe; and (b)ef{Bg); which results in the
equality, for the two potentials, of both the second
virial coefficient and its first derivative with respect to
the logarithm of the temperature. Ordinarily, the
rativs are different at different temperatores, hence
we shall actually determine their temperature depend-
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ence. By dividing the equation which represents the
requirement of equality of the first derivatives by that
representing the equality of the second virial coeffi-
cients themselves, one obtainz a single equation for
the equality of the logarithmic derivatives. The work-
ing equation becomes

dln BHTH _dln BHTYH
dln T? din T3

. (3

This is a single implicit equation in the ratio &/e, the
dependence on (folf(boh being removed in the procezs
of differentiating the logarithm.

On the substitution of the set of values BHTE) in
the lefi-hand member, (2} becomes a family of curves
for the ratic esfe,, as a function of the catio (okfbol,
one curve fur each value of TF [7]. These can also
be used for obtaining information abuvut the potential
function [8], although the results so obtained cannot
be easily presented in a manmer suitable for vur pur-
poses. We have therefore used a different approach.
We have computed, for each of a namber of potentials,

W T dB*
B* and B T ( 4T
_T*dB* _B'* dlnB*
TBY*dT* B* dln T

) and from these

S

These are used to solve {3} in the following way. Esach
value of T has asscciated with #t a value 5;. Using
inverse interpolation, the value of T is found for which
5, =258;. The ratios &:fe; and (balefiboh are then com.
puted simply from

& T o bk BHTY)
a T7 lhah  BETTY

This procedure can be illustrated graphically with the
help of Agures 1 and 2. These contain plots of 5
for the second virial coefficient [9] versus the loga-
rithm of the reduced temperature for several rep-
resentative potenlial functions, Temperalures below
the Boyle temperalure appear in figure 1, thuse above
that temperatire in Agure 2. Nate that the 5 values
for each potential are ploHed against the logarithm
of the reduced remperature for that potentinl. Equa-
tion (3) is solved graphically al each Tt by measunng
the horizontal distance between the ordinate associ-
ated with T on carve 1 and the same ordinate on

curve 2, This distance is then just
log T¥—log TF =log (THTM =log (€/e:).

It should be noted that where there are values of S
greater than the maximum 8, value, solution of (3) i=
impossible. This occors {zee fig. 1) for the (9.6) polen-
tial compered to the (12,6).

Note that both the value and slope of B are fit by B.f
at ¥, It follows, therefore, that BF will actually pro-
duce a relatively good it to B in a small neighborhood
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8 for the second virinl coefficient of several potentiols,
T* fess than the Bovle temperarure.

FIGURE 1.
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FIGURE 2. 5 fer the secord viriaf cocficient of seperal potentiods,
T* greater than the Boyle temperature,

atound T¥ for the parameter ratio ohiained by solving
{3) at T¥. Furnthermore, when this ratio is found to be
independent of T over & range of values of T}, B2
provides an excellent fit to BY over that range.

In this calculation, the Bovle temperature serves as
a natural dividing peint between two temperature
ranges. Since B is zero at that temperature, the deriv-
atives in {3} are not defined. Furthermore, since B

changes sign while % does nat, 8 also changes sign.

Hence, values of 5 taken from temperatures above the
Boyle temperature for one potential cannot possibly be
made to fit those taken from below it for the other
potentigl. Therefore, we have treated these two
ranges separately coming as close to the Boyle tempera
ture as desired from either side.

As mentioned in the introdoction, the zerc density
adiakbatic Joule-Thomson, viscosity, and diffuaion
coefficients are also considered here. These are alzo
treated as outlined above. The equation {3) for each



of these ia replaced in turn by the requirement that the

o
quantities % for the adiabatic Joule-Thomson
iz
coefficient, dln nf >-4 for the viscosity, and
" dln ™
*
dn dﬁTT* ] for the diffusion coefficient be eqgnal for

dﬂ*
Now [3] p*CE=T* T —B*
=B'*—B* go that the conmection between this quan-
tity and the potentia! function is essenbally the same
as between the second virial coeficient and the poten-
tial. From this last,

the two potentials.

d a1 ¥ ar
T kCP1= 8™  and b s
d:B" .
where B**=7T%* a7 Here, as with the second

virial coefficient, there is a temperature which divides
the caleulation into two parta. Now, however, the
zero density inversion temperature {defined by
B'* = B*) plays the role previously played by the Boyle
Lemperature.

The connection between the viseosity and diffusion
coefficients and the intermolecular potential func-
tion it contained in the so-called colligion integrals

(2]

. 2
AR vy
Ii g~ g*tzaw:lqn* [g*}d'g"
1]
where
Q"J*[g"}=~+{_” If: (1—cos! x)b* db*

=537

with the intermolecular potential function being con-
tained in the equation for the scattering angle

= dr*fr*
LAY L]
X by=m—2b I’:\fl—b*’fr*ﬂ—cb{r*}fg*i

r being the distance between a pair of molecnles at
the time of closest approach.

In terms of these, the zero density viscosity and
diffusion coefficients can be written [3]
L
Ty AT ¥yt

, grran. — Cb___

.,?;r'*—l.'z ﬂ“-”*[ T"']

where €, and C» are constants whose precise values
are of no particolar interest here. It can be easily
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shewn that
o o S0 Qg+
a7 U g — U2
From this it follows that, for the viscosity, eq {3) is
(2,3]%
replaced by the requirement that 4%!.27-4 he equal
for the two potentials. Far the diffusion coefficient,
Qs

.on the other hand, the guantity SW—S must be

equal for the potentiale. Since n and Z are each
nonzers, there iz no dividing lemperatore analogouis
ta the Boyle temperature for these propetties. The
5 values corresponding to these properties are plotted
in figures 3 and 4.

1,

-k 1 ] | 1 1 1
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T

FIGURE 3. 5 for the viscosity coefficieni of severaf potentiols.
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FIGURE 4. 5 for the diffsion coefficient of several potentiols.



The macroscopic properties of most experimental
syslems have been correlated using the (12,6} poten-
tial function [10]. As a result e/ values for thal po-
tential can be found in the literature for just ahout
all passible systems of interest. Furthermore, it
has bean shown that, for very many substances, a
very simple relationship exists between the €k value
for the (12,6) potential and the temperatures {or the
eritical and normal hboiling points for that substance
[3.10, 11]. As a result, good first guesses for the
ek values for the (12,60 potential can be made for
any system for which either the eritical remperature
or pnormal boiling point is known. For these reasons
we have chosen to compare each potenlizl with the
(12,6} function using the reduced temperatore for the
larter as the reference temperature 7. The conver-
sion to real expetimental temperatures for any system
merely requires moltiplication by the {generally avail-
able) e/k value of the (12,6) potential for that system.

3. Resulis

The Second Virial Coefficiens. Our results for the
second virlal coefficient are given in figures 5 1w 8
as plots of the ratios €x/e; versus the Lennard-Jones
(12,6) redoced temperature. Figure 11 contains plots
of the ratio (b)afids),. The potential functions con-
stdered are the following;

The {m, n)x
g =20 =[ ]

L

(1)

where r* =rior, o i= that value of r for which ¢*=10.
The Kihara:

lﬁlt{r*) == g .’,.t

=4 [ (r"‘ 1 ?"‘)m_(r"if‘)ﬂ]’ e

{2}
where r¥f= and y* = 2a ., a being the core
radins. o—2a r—og
The Exp-6:

1 [6 114E
woy=—=[Sepei-m-(5)] ®
1-2
o

where r*=rfr, rw being that value of r for which
p¥=—1.
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The Square Well:
M=, rF ]
¥ =—1, 1= = g+
N =0, = R* LY

where F##=rfer.

FAANRETER RATID FOR THE SEc0m0 WAL COEFF KGIEWT

14 T T T T T T T T T T T T T
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LU L1
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Ficure 5. The parameter rafios €e for the second virlal cooff-
cients of the {m5) and square well pofentials with reapeet {o the

[12,6] potentinl.
Mol purtscubarly thee Taneye of che curees for the mb) prbendinls.
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Ficuae 6. The povumeler rarios €fe; for hoth the secand viriad
erd viscosity coefficienis of the expf potential with respect o
the (126) potentiai,
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KIHARA FOTENTIAL FUNGTION
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Ficuge 7. The purameter ravios e, for ol four properties for
the Kifinre pocentiol with respect fo the (12.6) potantied.

Mise the abmence o any vinghe ratio fur which both (ke equilibdum and transpuort prop-
erlien are Bat.

Figure 5 contains resulis for the (m.6} and square
well potentials, while resulls for the exp-6 and Kihara
potentials are contained in figures & and 7. Results
for the (12,7 appear in figure 8. Each curve repre-
sents the comparison between a potential and the (12,6}
potential, the subscript 2 always referring v the for-
mer potential. For each curve there is a smooth
transition through the Boyle temperature indicating
that the singularity in S at that temperature presents
no problem. There exists, for each potential, a tem-
perature range around the Boyle point such that in that
range €fe; is essentially independent of . This

means that, for temperatures in that range, the {126}
and the potemial with which it is compared are equiva-
lent [12].  In fact, each curve is flat to such an extent
in this range that a choice cannot be made between
the {126} potential and the one with which it is com-
pared based on experimental second virial coeflicient
dala taken entirely within the range, even when these
data are cobtained with an impussibly high precision.
What iz particularly striking is that there i= a single
temperature range in which all the curves are flat.
This range bacomes exceedingly large if one does not
inclide the square well potential in the comparizons.
Obviously, there is a reduced temperature regime in
which the secand virial coefficient is particularly use-
less as a probe of the potential function. What these
results show specifically is that the second virial co-
efficient cannot be used in this range 1o distinguish
among any of the membets of the (m6), exp-6, Kihara,
{12,n} and sqoare well families of potentialsa. The
list would presumably have been broadened had we
considered other classes ol funetions.

OFf considerable interest are the resulis oblained
when the {12,n) potentials are compared with the (12.6).
The curves obtained for these are essentially the same
as lhose for the (m6) emphasizing the fact that the
second vinal coefhicient cannot be psed lo determins
the exponent of the attractive part of the potential.
The requirement that the attractive exponent be 6 is,
rather, a restriction placed on the poiential based on
a priori information, at least for the second virial
coefhcient. Thus, we =zee that the second virial
coefficient is determined by the general shape of the
potential and not necessarily by its details. Thia
has previously been demonstrated formally by Le

Fevre [4] and by Keller and Zumino [4).  They showed
T T T T T T T T T
— KALE - THEREAN
— == SEGIHE VIRIAL
1141 1
: ) K
113,84
- _ﬂ!!i]
':,r"':’{:__ ]
]
1 | [ ] | 1 | 1 | |
1 HA1] [ 1] L] [.T] 108

Ttz Al

FicuRE 8. The parameter ration efe for both the second virdal
and foule-Thomson cocfictents for the (1200 poicatiol with e

spect to the (1260 porential.

Maie that lor lemperatures abave e Boyle pint all curves sre Rl moking © impussilde

1o edect & valwe of B 1 suh temperasares.
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that all potentials for which the sum of a certain pair
of integrals, one over the repuisive part and one over
the attractive part, were equal yielded the same second
virial coefficient. A special case of their resalt is
that all potentials with the same repulsive part and
whoze attractive parts have the same width as a fune-
tian of depth {i.e., bzt whose bowls are possibly dis-
placed laterally) vield the same second vicial coefficient.

At lemperatures outside the Aat portion, the ralio
exfe; is no longer constanl. Below T*=2.0 a par-
ticularly rapid variation is indicated. The origin of
this rapid varigtion can be seen in figure 1 to be due 10
large diferences in the slopes of the corresponding
& curves for equal values of the ordinate.  According
to fgura 1, there are also potentials for which there
is a temperature range in which there are § values
larger than the maximum S value of the (12, 6} potential.
The (96) function iz an example. [n such cases,
solution of (3} i= impossible.  In other words, ne ratio
€z/€) exists hy means of which one can obtain simul-

taneouz equality of both B and T % for the twn

pentials.

The existence ol a rapid variation of esfe; with T*
at low temperatures would seem to indicate a very
strong sensitivity, at such temperatures, o differences
in the potential functions. Inability te solve (3}
indicates an even atronger sensitivity to such dif.
ferences. However, the sensitivity indicated apples
strictly to exact dara and the exact simultaneouns ft

of B and Tﬁ-—g- Az the requirement on the exactness

of the fit is relaxed, the sharpness of the variation of
efe; with T* is reduced. The introdwcticn of these
uncertainties in efect replaces each § curve of figure
1 by an area buunded by two § curves.  One has then
to compiare two broadly defined $ areas rather than
two sharply defined § curves. This can make an
overlap of ordinates possible near the maximum of
the {12, 6} corve and hence make solution of (3) pussible
where it previoualy was not.  Forthermore, in com-
paring the two 5 areas ane has the possibility of choos-
ing the two § corves, one within each area, whose
slopes are most nearly alike, This could result in
a reduction in the rapid variation of efe, with T
at low temperatures. For application to inherently
imprecize experimental dala, the low temperature
region therefore hecomes a much less sensitive probe
of the potential than is ndicated m figure 5. That
is, an approximate fit 10 an accuracy compatible with
experimental error might be possible where an exaci
fit, as indicated by figures 1 and 5, is impossible or,
at best, difficul:.

There is another, more fundamental reason why the
rapid variation of &fe with T™ at low temperatures
does not necessarily mean a sensitivity to differences
in the pmential functions. In this caleulation, we
have required the equality of both the second virial
coefhcient and its slope for the two potentials. This
applies a much more stringent condilion on the func-
tions than is required in the correlarion of experi-
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menmial data.  In the latter rase, it iz asked only that
the thecretical valuez of B{T) come as close as possible
to the experimental ones. Nothing is asked of the
slope of the second virial coefBecient. Clearly iwo
functions may each fit the data within experimenial
precision, yel their slopes may disagree by con-
siderably more than the precisien of the present
calculation,

On the ather hand, the fact that we place such strong
conditions on the potential enables us 1o make strong

_ stalemenls where the second virials and their first

derivatives for the polentials are essentially indis-
tinguishahle from each oiher. Obviously where our
calculations cannot distinguish between potentials,
a correlation whichk makes use of experimental data
will be able 1o distingoish between them to & much
lesser extent. Clearly, therefore, experiments de-
signed to measore the second virial coufhcieat for
purpases of learning something about 1the potenlial
function should never be carried owr above T =20
on Lhe (12,6} seale.  In fact, existing data in that range
should not ke included in a determination of potential
parameters since such data will supply experimental
error without supplying any discrimination and so
will reduce, for example, the ratios of the standard
deviations obtuined ftom Ats of different potentials.
This reduced temperature is easily converted to real
temperatures for a particolar substance given the
efk value for the (12,6) patential for that substance.
For example, lor argon, the data must have been taken
at T < 240 °K while for xenon, the corresponding re-
quirement is T < 450 "K.

It is clear from figures 5 and 6 that in each class
{i.e., square well, exp-6, etc.) there exists a potential
for which the ratio fe iz essentially independent of
T* even at low temperatures. For the exp-6 ihis oc-
curs for e slightly larger than 13, For the sgquare well,
it oecurs for K% approximalely eqoal to 182, One
expects this alse 10 be 1tue for other classes of three
parameter potential classea of which the (12.6) is not
a member, That iz, there will exist a member of each
such class which is eguivalent 10 the (12,6} in pre.
dicting the second virial coefficient over a large tem-
peraiure range inciuding low temperatures. Since
the {12.6) potential function was chosen as the refer.
ence potential in an entirely arbitrary fashion, there
is no need 1o restrict this result 1o it.  Thus, one can
actually state that given any potential function, it is
passible to fimd in every three parameter family of
functions of which it is not a member, a potential
function with which one can oblain a classical second
virial coefficient whose value and slope differ from
those calecolated with the given potential by an amount
much less than the best available experimental pre-
cision over a temperature range slarting at extremely
low temperalures and extending ¢ temperaturas
well above experimental conditions for almost ali
aobstances. In short, the second wvirial coefhicient
is seen to be at best a three parameter quantity with
regard 1o the potential function and any attempt to
uze functions with more parameters necessarily leads



to redundancies. This is presumahly what is behind
the inability to obtain unique parameters in recent
attempts to determine the potential function from
gsecond viriel coefficient data vsing many parameter
potential functions.

As expected, deviations from this can cccur al high
temperatures, That is, where the repulsive pards
of the potentials differ sufficiently in character, the
high temperature region can be used to chooze among
different classes. Thus a choice can he made between
the extremely differem (12,6) and square well poten-
tials if the data covers a range sbove TF = 7.0 on the
{12,6) temperature scale. A choice between the seme-
what less different exp-6 and (12,6) potentials, on the
other hand, requires data at 7" = 10.0 on the same
scale. These are very high temperatures for most
substances, For argon this latter requirement js
T = 1200 °K while for xenon it is T > 2250 °K.

The rativ (bg)ef{bsh for the second virial coefh-
cient behaves in essentially the same way as does
ez/e;. There is, therefore, no need to discoss its
behavior separately.

Attempts to select, from several funclions, a po-
tential function For a particular system have scimelimes
been based on fits to second wirial coefhicient data
which lie almost entirely within the fAat portiens of
figures 5 10 8. Examples are the correlations of
Whalley and Schoeider [13] and of Maszon and Rice
[14]. In table 1 we have reproduced the standard devi-
ations obtained by Whalley and Schneider for several
potential funetions. Note that only in the case of
xenon, where half of the points Lie ouotside the flat
portions of fgures 5 to 8, is there a strong discrimina-
tion among the potential functions, For the krypton
data, one certainly has no basis for the selection of
one potential over another while for argon the choice
is, at best, a marginal ane.

TaBLE 1. Standard deviations obtained by Fhoiley and Schaeider v
Tural Mumber of
gek | 28k | 2=12| a=18 jo=td | ¥=15 | nomber uf | insberma
ieurhernas - dn
12m
Argin L% ] [:F ] 053 15 1
Kryplon ) 36 [+ ] 047 LY ] Az L T
Xenon 1.m - B il . 12 i

*E. Wholler and W. . Schneider, J. Chem. Phys. 23, Didd (1955).

From our results one can also see the Fotility of
basing the choice of a pateatial function on the basis
of the best fit of experimental data to a single two
parameter function. To demonstrate this, let us
take as an experimental system that system whose
intermolecular potential function is exactly the (12.6)
function. Figure 6 then represents an attempt to
fit the “experimeotal” second virial coefficients to
those predicted for the exp-6 potential. The best
fit is obtained for that potential which gives the most
nearly dat curve in figure & According 1o that figure,
this best fit occurs for a value of o slightly greater
than 13. The potential function defined by that value
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of o and the pair of parameters which give this hest
fit can then be assoeiated with our “experimental”
system amdl possibly used as such in other theories.
Suppase now that instead of doing hts for a series of
values of & we had just done the fit for a single value
of c. Cleatly, for every value of @, a pair of param-
eters exists which gives the best fit o the “experi-
mental” data for that value of a. However, the
potential represented by that value of a and this
pair of parameters could not in general, be associated
with the experimental system unless the application
i5 to a theory only weakly dependent on the potential,
gince the second virial coefficienl associated with
that function does not properly represent the low
temperature second virial coefficient data. It 1a elear
from figure 6, therefore, that one must take the best
fit of experimental data to a seties of two parameter
potentials (here the family of functions generated
by varying the third parameter, o) before assigning
a particalar potential to the experimental system.
Unfortunately, the literature is full of fts of data 1o
gingle potential functiona, particularly to the {126)
potential.  Quite often the resulting potential has been
used as the intermolecular potential functions for
particular systems in evaluations of theories [15]
According to our results one must be suspicious
of conclusions as to the relation between the par.
ticular theory and experiment, based on such work,
unless the theory is known 1o depend only weakly
on the potentizal function.

4. Zero Density Adiobatic Joule-Thomson
Coefficient

Thia quantity is obtained directly as the zere density
limit of experimental free expanzion data. To ob-
tain the second wirial coefficient, on the other hand,
one must first, in some manner, differentiate the ex-
perimental P-¥.T data with respect to the density
and then take the zero density himit. As a resuit,
given the same experimental precision, one obtains
the latter with much less precision than the former.
This is not a real advantage for the free expansion
data at the present time, however, since such dara
can be obtained only with a precision orders of mag-
nitude below that possible in P-V-T work, particu-
larly at low densities.

The adiabatic Jouls-Thomson coefficient depends
both on the second virial coefficiem and ira frst de-
rivative. Clearly, where iwo second witial coefh-
cients, one for each of two potentials, are indistinguish-
able over an extended temperature range, their frst
derivatives are also indistinguishable, at least for
temperatures near the center of this range. Further-
more, this will be true for exactly the same parameter
ratios. Differences which occur for the second virial
coefficients near the edge of this temperature range
necessarily appear as larger differences in their de-
rivatives. Thus, one expects the range of equivalence
for two potentials to be smaller for the zero density
Joule-Thomson coefficient than it is for the second



virial coefficient. Resuolts for this quantity are con-
tained in figures 7 and 8. As expected, the range of
equivalence of the potentials is shorter. It should
be remembered that, since our method involves
equating a property and its frst derivative, equiva-
lence here includes the second derivative of the second
virial coefficient.

5. Zero Density Viscosity and Diffysion
Coefficients

The &€, ratios for the zero density viscosity and
diffusion coefficienis are contained in figures 6, 7, 9,
and 19. The ratios (Byefibey for several potentials
are presented in figure 11.  In Agure 7, for the Kihara
potential, there is no curve for either of these proper-
ties which approaches that of the second virial coef:
fcient in Balness. The ratio ede;, can be called
independent of T™* only in a very narrow tempetaiure
region about the maximum of the curve. Figure 9
iwhich 1= drawn to a different scale) does indicate
an increaging degree of Hatness with increasing v.

KR PITERT (AL FUBCTIDN

FicUuBE 9. The parameter ratios e, for the diffusion gnd wis-
cosity coefficients for the Kitora potenticl function with respeci
1o the (12.0), ) )
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Ficure 10, The parameter ratios ede, for the diffusion and oo
cosity coefficients for the sxp-6 potenifal with raspect io the (12,6)
patential,
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exp potentials with respect to ple (12,8),

This occurs for celatively high temperature, 7> T,
however. This demonstrates the strong role played
by the bowl of the potential function in determining
ithe trangport properties. For any given potential
function, there is a temperature above which the
transport properties are entively dependent on the
repulsive part of the potential function. Now, fur
the Kihara potential function, the position of the hard
sphere cutoff moves to larger vﬁues of r as ¥ in-
creases. Therefore, the temperature at which the
propetties for the Kibara potential become those for
a hard sphere should decrease with increasing .
According to figure 9, this is compensated for by the
changes produced by the modification of the bowl with
increasing ¥. The net result iz a set of properties
{e.g., for y=0.6) more nearly like thosze for the ¥=0,
(l.e., (12,6)) potential at the highest temperatures of
figure 9. Further proof of the strong effect produced
by the bowl can be seen in the behavior at low tempera-
tures. At such temperatures, the tepulsive part has
a very minor effect on the properties. Therefare,
the rapid variation in the dependence of efe,, with
T* gs a function of ¥ at low temperatures is an indica-
tion of the marked eHect of the bowl on these

properties.

The carves in figure 10 are most flat for T approxi-
mately equal 10 2.0 It is interesting to note that
there is a value of o for which the curve is guite Hat
at low temperatures as well. This occurs for a
slightly larger than 13 for both properties. It should
be noted that the correspending ratio is very close
to unity. Fuorthermore, for essentially the same value
of &, a fAat curve with eszentially the same ordinate
obtained down to low temperatures for the second
vinal coefficient. Note thal, unlike the case of the
second virial coefficient, for these properties the



curve for that value of & is not flat to very high tem.
peratures. For these properties, a significant depar-
ture from unity eceurs al T =5.0, not an impossibly
high temperature for many systems. There iz a
tendency for the curves to flatten out at high tempera-
tores for a valoe of @ larger than 15 under which con-
ditions the curves show a marked deviation from
flatness at quite low temperatures. This behavior
shows that it may be possible to distinguish balween
the (12,6) potential and all members of the family
of expf [functions given experimental transport
data of sufficient accuracy which includes both the
temperature ranges I* <240 and ™ >50 on the
{1260 scale. - For argon this requirea that there be
data for T <240 °K and T > 600 K while for xenon
T<450 K and T > 1225 ° K. These conditivns are
met for argon but not for xenon, at the present time.

It is clear from these results thar the diffusion and
visgozity coefficients are polentally more sensitive
probes of the potential function than either the second
virtal or Joule-Thomson coefficients given experi-
mental data covering a sufficiently large temperature
range. One might not have expected this since the
larter properties are more simply related to the po-
tenna! funciion than are the former. One might
have expected a quantity like the second virial co.
efficient which is related to the potential function
through a single integration 10 be much more sensi-
tive o diflerences in that function than one like the
transpotl properties which are connected by three
integrations, particularly when the functional depend-
ence in the integrand is also more indirect for the
latter than il is for the former.

It must be remembered that the requirement here
has heen that both the value and slope of the prop-
erties be equal for Lhe two potentials. 1L is pozsibie
that some of the apparent sensitivity found for the
transport properties comes from the requirement
on the zslope. Whether or not this disappears when
one azks only for a match to the property, as is done
in a correlation, bears further study. Again one can
state that a lack of uniqueness found in this calcula-
tion will not disappear on the application to experi-
mental data. Therefore, one muost have data present
in the temperature ranges mentioned if one is even
to have a chance to discriminate between potential
ftinctions.

The slope of the efe, vetsus T curve, for a given
polential, i essentially the same for both the viacosity
and diffusion coefficients.  On this hasis, the two quan-
tities are equally effective when used individually.
As we shall see in the next section, however, there
is a difference between them in sensitivity to changes
in the potential function, That difference makes
the simultaneous At of the two properties potentially
a zensilive tool for inding 1he potential Function.

The ratios (fyksfily) for these properties are less
dependeat on temperature than are the ratios efe,.
A discogsion of them would therefore not contribute
anything new with regard to the sensitivity of these
properties as probes of the potential funetion.

6. The Simultanegus Fit to More Than One
Property

Figures 6, 7, 9, and 10 comtain plots of the ratio
&le; for more than one property. With the help of
these one can examine the effect the requirement
of a simultaneows fit to two or more properties and
their fArst derivatives has on the lack of uniqueness
in the potential function. Figure 9 is particolarly
informative in this regard. Note that in that dia-
gram, the curves for both the viscosity and diffusion
coefficients for v=0 would be straight lines paralle!
to the abscizsa at exfe; = 1.00  As ¥ deviates from zero,
however, ezch curve hegina 1o deviate from a straight
line, particularly at low temperatures. Furthermore,
the curves for the diffusion coefhcient separate from
those for the viscosity until, by ¥y=04, the curves
are quite widely separated. The lack of uniqueness
associated with the flainess of the curves {or the
separate properties would be extended to the simul-
taneous ht to the pair of properiies and their deriva.
lives were Lhe two curves essentially flat gi the same
value of the ordinnte. However, the increase in the
separation of the cuwrves with ¥ {i.e., with increased
deviation from the (12,6) reference polential) dem-
onstrates 8 strong seonsitivity of the simmltanecus
fit to changes in the potential function. This sen-
gitivity 18 much stronger than that of the individua!
properties in the range T™ > 4.0, Whether or not
it s more sensitive than the behavior for T = 4.0
would require an examination of detailed fts to data.

Figuore 10 containg the same kind of information
for the exp function. Here the changes that eccur
at low and intermediate temperatures are much smaller
while those at high temperatures are much more
pronounced. There appears ta be a value of & for
which the curves both have a flat tange and are es-
sentially superimposed at high temperatures. How-
ever, for that valoe of &, the low 1emperatore data
still serves as a discoominaat. In this case ihe
simultaneous vse of both properties and their deriva-
tives does not appear to add any discrimination be-
yond that available with either property by itself.
Nete that the corves for the two properties exchange
relative positions when one goes from =12 to a=17.
Increasing o beyond 17 would presumably result in
lurther separation.

Figure 7 contains plots for all of the properties for
the Kihara potential. These curves necessarily each
form a straight line parallel to the abscissa with ordi-
nate 1.0 for y=0. Increasing ¥ causes them o
separate as in hgure 9 for the two transport propetties.
It is interesting to ncle that the change in separalion
hetween the curves for diffusion and second wirlal
coefficients at imermediate temperatures iz not uni-
form. Thuos, for ™ =340, the diffusion curve for
y=0.1 lies above that {for the second virial coefhcient,
for ¥=0.3 they are superimposed in a small region
around ™ =3.0, while for ¥=0.4 the diffusion curve
lica below. Thos, as ¥ is increased from O, to 0.1,
the second virial curve “moves” more rapidly while
for % == 0.1 the reverse is true.
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7. Canclusions

We have investigated the wse of the second virial
coefhcient as well as the zero density Joule-Thomsor,
viscosity, and diffusion coefficients as probes for the
intermolecular potential functien. We have found
the second virial coefficient to be particularly poor
in this regard in the temperature range 2.0 <. T™* < 7.0
on the Lennard-Jones (126 reduced remperature
scale. The Joule-Thomson coefficient has been
found to he somewhat better parlicularly in the lower
part of this range. Considerably better wers the
wransport coefficients, i.e., the viscosity and diffusion
coefficients. It is clear from our results that these
last coeflicients can be sensitive probes of the poten-
tial function given experimental data covering a suf-
ficiently large temperaiure range.

Further comparisons of this kind between the
transport coefficients for the (12,6) potential function
and those for other potential functions are clearly
called for, particularly for classes of potentisls of
which the (12,6) is not a member. In particular,
one would like to find such classes of functions as
exist which contain a memher whose transport prop-
erlies can be fit to those of the (12,6) over an extensive
temperature range. This will require the calculation
of collision integrals for these wvarious functions.
In some cases tables do exist [16, 17] which, unfortu-
nately, contain too few points in the temperature
region of interest. It is hoped that these will be ex-
tended shortly.

These caleulations will be extended 10 incluode the
thermal diffusion ratic and, possibly, the gquantum
corrections to certain of these properiies.

As regards the relationship between our results
and experiment with present day precision, the fact
that our results apply precisely to expediment omnly
in the limit of very high precision actually strengthens
our conclusions in regard 1o lack of unigueness while
conclugions regarding uoniqueness are weakened.
That is, where we did not find it possible to use a
macroscopic property to distinguish between poten-
tial functions under our conditions, it certainly would
not be possible 1o use this property for this purpose
under less precise experimental conditions. On the
other hand, our ability in other circumstances to dis-
tinguish among potentials {e.g., uaing second virial
coefficient data for T* (12,6, < 2.0) may be due in part,
to the fact that we have required a precise fit, some-
thing not possible with experimental data. It may
likewise be due to the inclusion here of a requirement
that the first derivative of the property be equal for

the two potentials. More precise statements in this
latter case awail the resolt of fits 10 aciual data,

Early portions of this wortk were completed at the
Weizmann Instituate, Rehovoth, Israel. The author
wizhea particularly 10 thank the computer ataff for
their cooperation in the wuse of theivr CDC-1604
compuler,
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