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Weak coupling of internal degrees of freedom of molecules to the translational degrees of freedom
of a fluid results in additional modes of motion for density fluctuations. These new modes affect the
spectral distribution of light scattered by density fluctuations so that the Landau-Placzek ratio is not
satisfied. The case of thermal relaxation with a single relaxation time is worked out in detail. For-
mulas for the spectral distribution of the scattered light, for the ratio of the intensities of the central
(Rayleigh) to the Brillouin components and for the phonon velocity are derived and applied to carbon
disulfide and carbon tetrachloride. The data for carbon tetrachloride are shown to be inconsistent
with the single relaxation time model for thermal relaxation.
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1. Introduction

In this paper we are concerned with density fluctuations in a fluid in which internal degrees
of freedom of the molecules are weakly coupled to the translational degrees of freedom of the fluid.
Thermal relaxation is an example of the type of processes we have in mind. Problems of this
type are of interest because it is now possible to experimentally probe the frequency spectrum of
density fluctuations with light scattering experiments using a laser as the light source [I].1

The coupling of internal degrees of freedom to the translational motion means that the decay of
density fluctuations will proceed by more ways than the three "normal modes" usually considered.
This is reflected in the spectral distribution of light scattered by density fluctuations. In this
paper we investigate a relatively simple case involving thermal relaxation with a single relaxation
time. The existence of the additional mode is shown and the effect of this mode on the spectrum
of the scattered light is examined in detail.

Light scattering experiments provide a Fourier analysis of the density variations in a fluid.
The variation of the intensity of the scattered light with the scattering angle 0 (and therefore with
the change in the wave vector of the scattered light) Fourier decompose the spatial dependence
of the fluctuations while the shifts in the frequency of the scattered light decompose the time
dependence of the fluctuations [2]. Such experiments enable us to study collective motions in
the fluid without seriously disturbing the fluid. On the other hand, it is also possible to use light
scattering measurements in conjunction with a model for the fluctuations to measure several of
the bulk properties of the fluid. For example, the sound velocity and the sound absorption co-
efficient can be obtained by measuring the shift in frequency and the width of the Brillouin lines.

In some circumstances it is possible to obtain from light scattering experiments information
about the structure of the correlation functions whose time integrals are the transport coefficients
[3]. An example of this type provides the basis for the calculations we present.

This paper consists of three parts. In the first part we review the relationship between density
fluctuations and light scattering. The phenomenological approach of Einstein and Smoluchow-

1 Figures in brackets indicate the literature references at the end of this paper.
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ski [4] is discussed and compared with the formulation of scattering problems of Van Hove [5].
The generalized structure factor S(k, (o) is introduced and some of its properties are described.

The second part of the paper consists of a detailed analysis of the frequency spectrum of
density fluctuations in a fluid in which thermal relaxation of vibrational degrees of freedom can
occur. Particular emphasis is placed on single relaxation time processes. The results for
single relaxation time processes are summarized at the end so that readers not wishing to go
through the details of the calculation will not lose heart.

The third part of the paper consists of a comparison of available experimental data with
the analysis of the density fluctuations. The primary example is concerned with CS2, a substance
whose internal degrees of freedom relax with a single relaxation time. We also demonstrate
that the data for CC14 are not in agreement with the predictions for a single relaxation time.

2. Light Scattering Formalism

2.1. Phenomenological Theory of Einstein-Smoluchowski

The random thermal motion of molecules in a fluid produces fluctuations in the density and
also in the orientation of molecules in volumes small compared to the wavelength of the incident
light. These fluctuations result in local variations in the dielectric constant and therefore scatter
light. We are concerned in this paper only with fluctuations in the density. Orientation fluc-
tuations result in the depolarization of the scattered light making it possible to experimentally
separate the scattering by density fluctuations, which is fully polarized, from the scattering by
orientation fluctuations [6].

The intensity of the scattered light is

r NM 1
/(R, w) = Io [ j ^ \ si"2 <p( [<k, <o)Y). (1)

In eq (1) incident plane polarized light of intensity IQ and wave vector k* is scattered at the origin
and is observed at R. There are TV molecules in the scattering volume. The angle between the
electric vector of the incident wave and R is <p; e(k, (o) is the Fourier component of the fluctuation
in the dielectric constant. The shift in the angular frequency of the scattered light is co and the
change in the wave vector in the medium of the scattered light is k; since only the direction of
k changes

k = 2nk sin 0/2. (2)

The index of refraction of the scattering fluid is n and the scattering angle is 0. The angular
brackets ( . . . ) indicate an ensemble average over the initial states of the system.

Direct calculation of e(k, co) is avoided by assuming that fluctuations in the dielectric constant
are due to fluctuations in the density and the temperature;

Ae = (deldp)T/!ip + (d6ldT)pAT. (3)

The contribution of the temperature fluctuations is ignored; we assume that (deldp)r^>(deldT)p.
Equation (1) is now reduced to

/(R, o>) = /0 [ j ^ i j sin2 *Oe/ap)?< [p(k, a,)p> <4)

where p(k, o>) is a Fourier component of the density fluctuation. The problem is now one of
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calculating p(k, co) from the appropriate kinetic model of the fluid. For dense fluids the appro-
priate model is described by the linearized hydrodynamic equations of irreversible thermodynamics.

We should note that (de/dp)T has been assumed to be independent of the shift in the frequency
of the scattered light, co. If this is not the case it is probably also true that the separation of
Ae into a thermodynamic derivative times a fluctuation term is not a meaningful procedure. Of
course the value of (de/dp)r may vary somewhat as the frequency of the incident light changes,
reflecting the frequency dependence of the dielectric constant.

2.2. Molecular Theory

Before we undertake the calculation of p(k, ai) we review the light scattering formalism ob-
tained by adapting Van Hove's neutron scattering paper [5] to light scattering. Komarov and
Fisher [7] have shown that the intensity of light scattered from a fluid of N molecules of effective
polarizability a is

/(R, a>) = /o [ - ^ J sin* <p S(k, o). (5)

The important change from eq (4) is to replace the mean square fluctuation ([p(k, co)]2) by the
generalized structure factor S(k, co) which is the space and time Fourier transform of the two-body
correlation function. The correlation function is defined by Van Hove to be

Qr, t) = N~i ( T f d r '8 [ r+r ( (0) - r ' ]8 [ r ' - r ,« ]Y (6)

For long times and sufficiently large r, G(r, t) reduces to the autocorrelated density

G(r, t) = N~1j dr'<p[r'-r(0), O]p(r', «)>• (7)

Equation (7) is appropriate to light scattering in fluids [8]. Care must be taken to use

S(k, co)= I dv I dte*-re-ia*G(r, t) (8)

only to describe the fully polarized part of the scattered light. The inclusion of angular correla-
tions, which result in depolarization, is a more complicated problem than the one we consider
here [9].

In this paper we are concerned with S(k, co) as defined by eqs (7) and (8);

S(k,G))=(p(k,a>)p(-k)). (9)

Thus eqs (4) and (5) predict the same frequency distribution for light scattered by density fluctua-
tions. A useful property of S(k, co) is the sum rule

o>)=(p(k)p(-k)). (10)

S(k) is the ordinary structure factor. Finally, we note that £(k, (o) is an even function of co at high
temperatures; that is %a)lknT <^ 1 where ks is Boltzman's constant and T is the absolute tempera-
ture. In this paper we assume that the inequality is satisfied.
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3. Density Fluctuations When the Internal Modes Decay With a Single Relaxation
Time

We are concerned with the calculation of S(k, co) for a fluid whose molecules possess internal
degrees of freedom which are weakly coupled to the translational modes of the fluid. Further
we shall suppose that the transfer of energy from the internal degrees to the translational degrees
of freedom is described by a single relaxation time process [10, 11],

The procedure to be used is to solve the linearized hydrodynamic equations for p(k, a)) in
terms of an initial fluctuation p(k) [5]. The use of initial values facilitates calculation of the aver-
age over initial states indicated by (. . .).

An equivalent procedure is the hydrodynamic fluctuation theory of Landau and Lifshitz [12].
This method has been used by Rytov to discuss fluctuations in a viscoelastic medium [13].

The linearized hydrodynamic equations for the system are the continuity equation

dpi/a£ + po div v = 0, (11)

the longitudinal part of the Navier-Stokes equation (suitably modified to allow for a frequency
dependent bulk viscosity)

Tr~\^)grad Pl" ( T V g x

(|T?S + T?i;) g r a d d W v + | V ( ' - 0 grad div v {t')dt\ (12)

and the energy transport equation.

poCvQTJdt) - [cv(y-1)1 fi] (dpjdt) ~ XV27\ = 0. (13)

Here p = po + pi is the number density, T=T0+Ti is the temperature; p0 and To being the equi-
librium values. The shear viscosity is r)s, the bulk or volume viscosity consists of a frequency
independent part rjv and frequency dependent part which is the Fourier transform of r)f{t). The
low frequency (adiabatic) sound speed is c0, the thermal expansion coefficient is j8, the thermal
conductivity is X and the ratio of the specific heat at constant pressure cp to the specific heat at
constant volume cv is denoted by y.

The analysis proceeds as in reference 8. First the Fourier (space) and Laplace (time) trans-
forms are taken of eqs (11), (12), and (13). Then we solve for

p(/c, s)=\ dre-** \ dte-stpi(r, t) (14)
Jv Jo

in terms of the initial value

p(k)=\ dre~*r p(r, 0) (15)

The result is

p(k,s)_F(s)
P(k) -G(s)
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where

F(S) = s2 4- s[ak2 + M 2 4- b'(s)k2] 4- a W 4 + afc'W*4 4- c2k2(l - 1/y) (17)

and

C(s) = 53 + s2[aA5 4- 60A:2 4- b'(s)k2] 4- 5 [cgA;2 4- a60A:4 + a&'fs)*4] 4- c2aA:4/y. (18)

The quantities

a = klpocv

b = (4l3ris + yn)lpo (19)

b'(s) = - fV-VW*
Po Jo

have been introduced to simplify the notation. Equation 19 for b'(s) applies to any frequency
dependent bulk viscosity. We will be concerned with b'(s) for a single relaxation time process;

(20)

where r is the relaxation time.
The dispersion equation is

G(s) = 0 (21)

and is used in ultrasonics with 5 replaced by ico. It is known from ultrasonics [10] that

b, = {cl-ci)r (22)

where c^ is the infinite frequency sound speed. In thermal relaxation [11]

, \{cP — cv)cj\
\_{cv-ci)cp\

where c/ is the specific heat of the vibrational degrees of freedom.
To compute S{k, o>) we first observe that

Jo
fc, t) (23)

where p(k, t) is the inverse Laplace transform of p(k, s). It follows that

S(k, a>)=(p(k)p(-k)) {2 Re F{i
(24)

An exact expression for cr(/c, o>) may be readily obtained by replacing s by ico in eq (16) and taking
twice the real part. The resulting expression is quite involved; direct substitution leads to

, co) = 2 [NtDt + N2D2]I [D2 + D\\ (25)
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K = 8.608xl04cm-'
V(K)= 1.240* IO3m/sec

1.080

cu, 10 rod/sec

FIGURE 1. The central component of oik, co) for scattering FIGURE 2. The phonon component of cr(k, o>) for scattering
in CS2 at 20 °C as a function of to. in CS2 at 20 °C as a function ofo).

When a He-Ne laser is the source, / =8.608 X 104 cm-' corresponds to scat- When a He-Ne laser is the source A = 8.608 X 104 c m 1 corresponds to scat-
tering at 30° tering at 30°

where

fft = - tf + ab0k
4 + c2

ok
2(l - 1/y) + (ab^ + 6hA:2co2T)/(l + coV),

7V2 = co [ak2 + b0k
2 + (bt k2 - abik*r)H\ + co2r2)] ,

Di=- co2(ak2 + bok
2) + cga^ /y + (abi&apT - O)2bxk

2)l{\ + w2r2)

and

D2 = co [ - co2 + cgA:2 + ab0k
4 + (&! A:2a>2T + ab.k4)!^ + co2r2)].

(26)

(27)

Now we have an exact expression for the frequency distribution of the scattered light. If
we wish to be able to interpret this in terms of the properties of the material, we must develop
a way to pick out the significant portions of cr{k, co) for different values of co. We have evaluated
cr(k, co) for a representative set of material parameters and k = 8.608 X 104; the results are shown
in figure 1 and figure 2. This corresponds to 0 = 30° for scattering in CS2 using a He-Ne laser.
To obtain as much useful information as possible from such a pattern it is necessary to write eq
(25) as a sum of terms which are individually important only over a restricted range of frequencies
co. The denominator does not obviously factor so an indirect approach is needed. One method
is to pick out the important terms, say for small co and to discard the rest. Another approach,
one used profitably in reference 8, is to approximately compute the inverse Laplace transform
of p(k, s) and then to compute p{k, co) by means of eq (23). The virtue of this method is that alge-
braic expressions for the modes of motion of the density fluctuations are obtained. The difficulty
of course is to obtain good approximate solutions to the dispersion equation, eq (21). We shall
make use of both approaches to investigate the properties of cr(/r, co).

4. Properties of cr(k, co)

In this section we are concerned with the construction of a good approximation to <r(k, co)
which will permit interpretation of spectral distribution curves in terms of the properties of the
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scattering fluid. The results of this section are contained in eqs (43), (45), and (46), and are listed,
for convenience, in subsection 4.6.

4.1 . Approximate Solution of the Dispersion Equation

When b'(s) is given by eq (20), the transform for the density, eq (16), is

p{k) Gi(s)

where

Fi(5) = (1 + ST)S2 + 5 [(1+ sT)(ak2 + b0k
2) + btk

2] + (1 + sr) [ab0k
4 + c2

ok
2(l - 1/y)] + abxk

4 (28)

and

Giis) = rs4 + s3 [1-f r(ak2 + 6A:2)] + s2 [ak2 + 60A:2 -f bx k
2 + r(c\k2 + a60

+ 5 [cg/c2 + ab0k
4 + «6iA:4 + T^cgaA /̂y)] + cgaA^/y. (29)

The first step in computing p(k, t) is to obtain approximate roots of

into eq (30) with the result

DY4 + F3[l + D(a -h j8o)] + Y\a + j80 + j8i + D{\ + aj30)] + JT1 + OL/30

It is convenient to introduce the dimensionless quantities

Y=slcok

a = ak2/cok

k (31)

(32)

For interesting values of the change in the wave vector, k,

while

a < ^ l , 0 o ^ l .
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First we look for solutions of eq (31) which are of order unity. The relevant parts of eq (31) are

DY* + F3 + (D + £i)F2 + Y - 0; (33)

we have neglected terms of order a and a2. One root of eq (33) is zero so we also must examine
eq (32) for solutions of order a. The dominant terms are then

F + a / y - 0 . (34)

Here terms of order a2 and smaller have been dropped. The solution to eq (34) is

.Y=-aly (35)

or

s = — kk2lpocp

which also appears in classical theory.
When the F = 0 term is removed from eq (33) we have

P + Y*ID + p ^ 1 ] F + j ) = °" (36)

The formal factoring of eq (36) is

) 0. (37)

Two solutions are

Y=-B/2 ± iO'll-BytC]112 (38)

which correspond to the phonon modes. The third solution,

Y=-A

yields a second nonpropagating mode. In order that damping occur, it is necessary that A > 0
be satisfied. For phonons to exist it is necessary that B2/4>C < 1 so

(38')

Comparison of eqs (36) and (37) shows that

AC=l/D

therefore

Y=-\ICD. (39')

Now multiply eqs (38') and (39') by cok to obtain

s = rB±ivk; vk = c0kC1'2

(40)
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and

The lifetime of the phonons is (F^)"1 and their speed is v. These are as yet unspecified quantities
to be extracted from the exact expression of a(k, co). Before we do this we shall obtain an approxi-
mate formula for a(k, co).

4.2. Calculation of cr(k, co)

We take d(s) to be

d(s) = T(S + ak2ly) (s + rB - ivk) (s + TB + ivk) (s + C%\V2T). (41)

Combining eqs (28) and (41) it is a straight forward process to obtain the inverse Laplace trans-
form of p(k, s). Ignoring small terms, we obtain

e-

Next we apply the operation indicated in eqs (23) and (24) to obtain

\{d - 4)k2 - (v2/c2
0

L
I" [1 - cg/i;2(l - 1/y)] [i;2^2 + cg/i;2r2] - (cj - c2)k2]

L ^ 4 2 + 2A2 J

r rB rBx r 2 , ( 7Ti+ I- (43)
Llfi + (co — vk)1 lB + (co + vk^2 '

The prime means that cr' is an approximation to cr(k, co), which is given by eq (25).
The first term in eq (43) corresponds to decay of a fluctuation by a thermal diffusion process.

We refer to it as the thermal mode. The second term also represents a nonpropagating type of
decay which is coupled to the internal degrees of freedom of the molecules. The last term rep-
resents the phonon modes. Equation (43) is derived on the assumption that {ak2ly)r is much
less than one. If this is not the case, eq (43) is a poor representation of the nonpropagating modes.

4.3. Determination of v(k) and TB

Thus far the phonon speed v and width TB are undetermined quantities. In this subsection
we remedy this by comparing the phonon terms of eq (43) with the significant parts of cr(k, o>),
eq (25), when co ~ vk.
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FIGURE 3. The phonon velocity v(k) as a function of the
wave vector kfor CS2 at 20°C.

The experimental point (x) is taken from reference 18. Equation (45) and
parameters from table 1 were used to construct this curve.

The direct evaluation of cr(k, co) shows that the phonon peak coincides with the vanishing of
the imaginary part of the dispersion relation,

Dzico) = 0. (44)

The positive root of eq (44) determines the phonon frequency v(k)k. Neglecting the term involving
the thermal diffusivity, a, eq (44) is

- a>2 + cgA:2 + 6IA;WT/(1 + coV) = 0.

The solution is

((DT)2 = (v(k)kr)2 = 1/2 [(c (45)

cx. The variation of v(k) withFrom eq (45) we see that as &—» 0, v(k) —>c0 and as &—> o
k is indicated in figure 3

The width TB is obtained by observing that if D2(v(k)k) = 0, DMk)k) = -2[v{k)kfVB. The
minus sign is necessary so that TB > 0 be satisfied. Direct substitution in eq (26) yields

2YB = - ($) (f) + y (46)

It should be noted that the width due to the relaxation is not simply added to the classical absorp-
tion term ak2(l — l/y) + bok2. In practice this difference may not be significant, although for
CS2 it amounts to about 5 percent of IV

The method used to obtain v(k) and TB should be applicable to more complicated situations
although it would be advisable to examine Z)i(co) and Z)2(co) numerically and to verify that D2(v(k)k)=0
for each new situation.

4.4. Comparison With the Exact Expression

The approximate frequency distribution contained in eq (43) has been compared numerically
with the exact expression, eq (25). This is illustrated in figure 4 where the percent deviation of the
approximate expression from the exact one is shown as a function of frequency. The parameters
are the ones used to obtain figure 1. The deviation in the central components is probably due to
a small error in the width of the thermal diffusion mode. A decrease of 1 percent in that width
would eliminate most of the difference between cr(k, w) and cr'(k, co). The deviation in the phonon
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CU, lOr rod/sec

FIGURE 4. The percent deviation [(cr —cr')/cr] 100 of the
approximate frequency distribution, cr'(k, w), from the
exact distribution, cr(k, <w), is shown as a function of fre-
quency a).

The parameters are those of CS2 at 20 °C and k = 8.608 X 104 cm-1.

1.060 1.070 1.080
0U, 10 l0 rad/sec

component indicates that the maxima of the exact and approximate expressions do not quite coin-
cide. This results in the oscillating deviation shown in figure 4. Deviations greater than 1 per-
cent occur when the magnitude of cr'(k, (o) has fallen to less than 1 percent of its maximum value
or'(k, 0). The sum rule, eq (10), is satisfied by the approximate expression cr'(k, co) to within 1
percent using this set of parameters.

It is, of course, possible to improve the accuracy of cr\k, co) by obtaining more accurate solu-
tions to the dispersion equation. This would involve using the solutions we have found, eqs (35)
and (40), as the starting point of an iteration of the dispersion equation. The resulting formula
for <r'(k, (o) would be much more complicated than eq (43).

4.5. Intensity Ratio

The ratio of the intensity of the unshifted (central) components of the scattered light to the
intensity of the Brillouin components is a quantity which is readily obtained experimentally.
This ratio, ^ = /C/2/B, is easily obtained from eq (43) by integrating the individual terms:

(1-1/7)+ (cj - d)k

[1 - dlv\\ - 1/y)] [vV + cl/v2r2] - (c* - c$)k*
(47)

At low phonon frequencies vkr < 1 this reduces to the Landau-Placzek result

At large phonon frequencies (vkr > 1) a more involved expression than eq (48) is obtained;

(48)

(49)

The high frequency limit, eq (49) was obtained earlier by Rytov [13].
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The ratio of intensities J ,̂ given by eq (47) agrees within 1 percent of J> obtained by numerical
integration of the exact expression for or(k, o>). From an experimental point of view, eq (47) should
be taken to be an upper bound on J*. This is because it may be difficult to detect all of the light
scattered by the second nonpropagating mode; the difficulty arises from the large width of this
component.

4.6. Summary of the Properties of <r(k, co)

In the previous paragraphs we have shown that <r(k, co), the frequency distribution function,
may be approximately represented as a sum of four Lorentzian curves;

Re2 -c2,)k2 ~(v2l4~ 1) (cS/uV + clkHl - 1/y))] F 2c2
0lv

2r
L i l * 2 + 2k2 J l

LB L. Eg 1
a>-vkr n+(o>+vkr\x

where the phonon speed v(k) satisfies

[v(k)kr]2 = 1/2 [{c^kr)2-1] + 1/2 [(1 -dk 2 T 2 ) 2 + 4cgA:2T2]"2 (45)

and the phonon width is

(g)(f) ( ^ ; ) - a ^ ) . (46)

The ratio of the central components to that of the Brillouin lines is, in the high frequency limit
(v(k)^cx)

sj = (y - 1)[1 + {yl(y - 1)} {(d - c2
0)/c

2
0}]. (49)

5. Comparison With Experiment

5.1. CS2

In the previous sections, various points have been illustrated by using parameters appropriate
to carbon disurfide (CS2). For example, Figures 1, 2, and 3 show a (k,(o) and v (k) for CS2 as
predicted by egs (25) and (45). Comparison with experiment is limited to the phonon speed and
to */", the ratio of the intensities of the central and Brillouin components.

The parameters for CS2 at approximately 20 °C are listed in table 1. Several measurements
of the phonon speed are listed in table 2. To within the precision with which r and k are known,
eq (45) predicts that v (k) lies within the experimental uncertainty in each case.
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TABLE 1. Material parameters: CS2 at 20 °C TABLE 2. Phonon velocity and intensity ratio; CS2

Parameter

a
bo
6,
C()
T

n
po
y

Value

1.95 X 10"3 cm2/sec
3.84 X 10-3 cm2/sec
4.76 cm2/sec
1.142 X105 cm/sec
2.04 X 10-9 sec
1.675
1.262 gm/cm3

1.55

Reference

6
14
10
10
10

6
6

10

Reference

15
16
17

6
18 '

Experimental

Velocity

m/sec
1235
1241
1250
1265
1223

—
0.77

.71

.93
—

Calcul

Velocity

m/sec
1241
1241
1241
1241
1212

ated

0.83
.83
.83
.83
.69

The experimental velocities have been reduced to 20 °C using dv/dT = — 3.2 m/sec-
deg [6]. The velocities were calculated using eq (45). J values were calculated using
eq (47). The material parameters were taken from table 1 and k , the wave vector, was
determined from information in the references.

Three of the references contain measurements of $. Here the agreement is not as close.
The value of J^ predicted by eq (49) is 0.83. That the agreement with the phonon velocity is better
than the agreement with J> is not surprising. The limited sensitivity of the detectors used in these
measurements makes it difficult to obtain accurate determinations of J>. The presence of the
"second" nonpropagating mode aggravates the situation; unless the detector is quite sensitive,
much of the light in that mode would be lost in the noise of the detector.

5.2. CCI4

Sufficient data exist for carbon tetrachloride (CCI4) to warrant comparison with the prediction
of the single relaxation time theory. This comparison indicates that only a part of the energy of
the internal degrees of freedom relaxes with a time on the order of 10~10— 10~n sec. Presumably
the remainder of the energy relaxes more rapidly than can be detected by light scattering
experiments.

The parameters for CC14 at approximately 20 °C are listed in table 3. Four measurements
of the phonon speed obtained from Brillouin scattering measurements and one acoustic measure-
ment of the speed of sound in CC14 are listed in table 4. The calculated velocities in table 4 are
based on the assumption that only 75 percent of the internal specific heat is involved in the relaxa-
tion process and that r = 5.12 X 10~n sec. This value for r is consistent with the acoustic measure-
ment. The agreement between the measured and calculated values of J> is poor. This is not
unexpected if another relaxation time exists for CCI4. This would imply the existence of another
nonpropagating mode which would make Ĵ  larger than the prediction of eq (47).

Also, for CCI4, there is a measurement of the width of the Brillouin line. Experimentally
F# ~ 4 X 109 rad/sec while eq (46) predicts F# ~ 5 X 109 rad/sec if 3/4 of the internal specific heat
is involved in the relaxation process.

TABLE 4. Phonon velocity and intensity ratio; CCI4

TABLE 3. Material parameters: CC14 at 20 °C

Parameter

a
bo
bt

Co
T

n
Po
y

Value

1.78xlO-3cm2/sec
5.98 X 10-3 cm2/sec
3.59 X lO-2 cm2/sec
9.20 X 104 cm/sec
5.12 X 10-11 sec
1.472
1.594 gm/cm2

1.46

Reference

6
14
10
10

6
6

10

Reference

6
16
17
20
19

Experimental

Velocity

m/sec
1040

988
1000
1002

9 7 2 -

1.10
0.75

.72
—

Calculated

Velocity

mlsec
1024

990
990
990

acoustic
measurement

0.77
.62
.62
.62

The relaxation time T was estimated from acoustic measurements [19]. The experimental velocities have been reduced to 20 °C using dv\dT = — Z.\ m/sec —deg
[6]. The velocities were calculated using eq (45). ^ values were calculated using eq
(47). The material parameters were taken from table 3 and k, the wave vector, was
determined from information in the references.
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In a previous publication [21] we stated that more than one relaxation time exists in CCI4
and therefore the single relaxation time theory did not apply. Although the available data are
insufficient to fully verify this statement, the phonon speed comparison suggests that this state-
ment is correct.
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