Infrared Spectra of the Hydrated Borates

C. E. Weir

Institute for Materials Research, National Bureau of Standards, Washington, D.C.

(November 4, 1965)

Infrared absorption spectra of 42 different hydrated borates were obtained in the 2000-300 cm⁻¹ range. A few spectra were obtained between 4000 and 2000 cm⁻¹. Most spectra are complex and cannot be interpreted satisfactorily except in the case of the simplest anions. Many correlations between spectra are possible, however, and possible anion types have been deduced. Differentiation between triangular and tetrahedral boron is possible on the basis of the spectra but is less certain than in the case of the anhydrous borates.

Key Words: Hydrated borates, infrared spectra, absorption spectra, borates, boron coordination, horate anions

1. Introduction

A comprehensive survey of the infrared spectra of the crystalline anhydrous inorganic borates was reported recently [1].³ The spectra were correlated with known structures and predictions of unknown structures were made on the basis of the observed spectra. Two of the predicted anion structures have been verified by subsequent x-ray crystallographic studies [2, 3]. The obvious extension of the studies to include the hydrated borates is the subject of this report.

The hydrated borates have been subjected to a more systematic study than the anhydrous materials, largely as a consequence of their mineralogical occurrence. Miller and Wilkins [4] reported data on eight hydrated borates obtained by the mull technique. Several years later, Takeuchi [5] studied the spectra of 17 borates of which 12 were hydrated. Takeuchi also used the mull technique of sample preparation. Moenke and his coworkers, in a series of papers, [6-13] have presented spectra obtained on approximately 17 hydrated borates using the KBr pellet technique. Akhamanova [14] has reported on seven hydrated borates and Plyusning and Kharitonov [15] have studied six, with spectra in both cases being obtained using films deposited from isopropyl alcohol on alkali halide plates. The early work by Miller and Wilkins [4] and that of Takeuchi [5] had a lower frequency limit of about 600 cm⁻¹ which is too high to obtain some of the known fundamental vibrations of the borate anion. All the more recent studies, however, extend as far as 400 cm⁻¹.

In the present study, infrared spectra were obtained for 42 different hydrated borates. Most specimens were natural minerals but in many instances synthetic materials were also available. Approximately 63 different specimens were studied so that it was possible to determine the reproducibility of the spectra for materials of different origin—a question of importance for natural minerals which may contain infrared active impurities.

2. Experimental Method and Apparatus

Experimental techniques and equipment were similar to those described previously for the anhydrous borates [1]. A double-beam grating spectrometer was used to cover the range 4000-200 cm⁻¹. This range was covered in two steps, 4000-400 cm⁻¹ and 2000-200 cm⁻¹. In each case the lower frequency limit imposed by the available energy was higher than the limits given. Most spectra were obtained only in the range 2000-300 cm⁻¹ because the fundamentals of the borate anions were known to occur in this range. For these studies powdered films deposited on CsBr plates from a volatile liquid were used. A few spectra in the higher frequency range were obtained to locate the OH fundamental stretching modes. For these studies the spectra were obtained using a mull with perfluorokerosene as the suspending medium. In both cases a blank cell was placed in the reference beam of the spectrometer. The possibility of dehydrating the specimens precluded using dry air in the instrument and considerable care was exercised in the 500-300 cm⁻¹, region. In this range only those bands were considered to originate in the specimen which were not obtained on a comparison spectrum run with no specimen in the beam.

^{*} Figures in brackets indicate the literature references at the end of this paper.

Material	Empirical formula	Origin of specimen *		
Humbergite Bondylite Toepleite Pinsolte	48+0 · 8+0 · 1+0 CuO · CuCle · 8+0 · •41+0 Ne+0 · 2N+Cl · 8+0 · •41+0 MeO · 8+0 - 31+0	C 4744 109459. 109798. C 4488: synthesic		
loyolte	\$CaO - 3B ₂ O ₂ - 13H ₂ O	Mgo · B ₁ O ₅ · 3H6O(K. C. End). 114260; Paelfic Coast Borns		
Mayazhoffente	2C#O - 3B3Ox - 7H+O	open pit, Boron. Calif. 90072: Gower Gulch. Death		
Colemanite	2CeO · 3BrOx · 5HrO	Valley Nat. Monument. 96445; Pacific Coast Borax		
Indenite	2MgO · SB±O3 · ISH±O	open pit, Boron, Calif. 11462: Pacific Coast Boros		
Kumakoaite	2MgO - 3BgO, - 15HgO	open pit, Boron, Calif. R 13023; Pucific Const		
Inderbonie Hydroboracite	MgO · CaO · 38,0, · 11H±O MgO · CaO · 38,0, · 6H±O	Borax open pit, Boron, Calif. Inder region, USSR. Inder region, USSR (R. C.		
Synthetic	25r0 · 38 ₂ O ₃ · 5H ₂ O	Erd via H. B. Masoni. Synthetic strontium cole- manite (R. C. Erd vis C. R.		
Tunellite	$SrO \cdot 38_{f}O_{F} \cdot 4H_{2}O$	Parkerron). Pacific Coast Borez open pit, Boron, Calific synthetic		
Nobleite	C#O - 3B ₁ O ₃ - 4H ₁ O	taneliste (R. C. End). 115278: N. of DeBely mines. Death Valley Nat. Monument.		
Gomerine	CaO - 3840a - 3840	Death Valley National Control		
Vestchite	$SrO + 3B_tO_x + 2H_xO$	117214; synthetic vestchite		
Synthetic	CaO - 3B,Ox - 2H ₂ O	Synthetic calcium veatchite		
Synthetic	$M_{III}O + 3B_{II}O_{2} + 7 H_{II}O$	Synthetic macallisterite		
Synthetic	MgO · 3B ₂ O ₁ · 5H ₂ O	(i): C. Erd), Synthetic akanite (H. A. Laborato di R. C. Colt.		
Synthetic	5rO · 3840s - 4HzO?	Synthesic (C. R. Parkerson via R. C. Ecd), possibly a di- march of unallise but deames of		
Ginorite	2C#O · 78#Ox · 8H#O	hydration necertain. 112766: synthetic ginorite (B. C. Erd).		
Strontian Ginorite Syntheric	2SrO 7BrO, 8HrO 2SrO 7BrO, 8HrO	Natural mineral via R. C. Erd. Synthetic volkovite [?]		
Priceite	4CaO + 5B ₂ O + + 7H ₂ O	(R. C. Erd). Death Valley Nat. Monu- ment (J. F. McAllister via.		
Pandermite	4CaO • 5B ₂ O ₈ • 7H ₂ O	Panderma, Asia Minor (W. T. Panderma, Asia Minor (W. T.		
Tertschite	4CaO · 5B ₄ O ₈ · 20H ₄ O(?)	Kurtpinari mine, Bigadie diatriet, Tarkey IH. Meiner via		
Preobrashenekite	3MgO - 5ByO1 - 42 HeO[7]	Inder region, USSR (M. E.		
Ulesite	Na ₂ O · 2CaO · 5 8,O ₃ · 16H ₂ O	96994: Pacific Count Buras open pit, Borus, Calif.: Mudd		
Probertite	Na ₂ O · 2CaO · 5B ₂ O ₄ - 10H ₂ O	Mine, Boron, Call. 96077: Mudd mine, Bacon. Callf.; Haraway Boros, Works, Coalt Volton Mar. Marchanter, Works,		
Kaliborine Resolutionation	K ₂ O - 4MgO - 11B ₂ O ₂ - 9H ₂ O	R 5844.		
гатоондасынс Көтрде	NerO 28-05 4H-0	95737: Mudd mine, Borow, Cal.		
Tinesteonite Synthetic	Na ₂ O 2B ₂ O ₂ - 5B ₂ O Na ₂ O - 2B ₁ O ₂ - 10H ₂ O	107897. Synthetic buras, reagant		
Synthetic Synthetic	K4O · 2B4O4 · 4H4O Na4O · SB4O4 · 10H4O	grade. Reagent grade. Synthetic (V. Morgan via		
Lardorelline	NH 38-0 4H-0	R. C. Exd), C 4481,		
Amounioborite	NH, 58,0, 5V,H,O	R 6167.		
nacemene Synthetic	2:3630 - 5840a - 7840 2Na40 - 5840a - 78440	Lincaloya, Argentina, N. P. Nies via B. C. Red		
Synthetic	ZNa O SBOS SHO	N. P. Nies via R. C. Erd.		
Synthetic Sectoria	2Na ₂ O · 5R ₂ O ₂ · 4B ₂ O	C. Cipriant via R. C. End.		
Sumerine	2MAO - B-O3 - H-O	C 4456.		
Synthetic	N=BO ₃ 4H ₂ O	Sodium perborate.		

 Number of speciment studied is equal to the number of intings for each material separated by semicologs. Numerals represent catalog numbers in the mineral collection of the Smithumian Institution.

3. Samples

The samples studied are listed in table 1. Column 1 of this table lists the mineral or chemical name. column 2, the empirical formula, and column 3, the source of the material. Throughout this paper, samples will be referred to by the mineral names and synthetic samples will be designated by their composition unless it is known that the synthetic and natural minerals are equivalent. In the latter case the mineral name will be used. Samples were obtained generally from two sources, the mineralogical collection of the Smithsonian Institution and the U.S. Geological Survey. In column 3, designations denoted by numbers correspond to catalog numbers in the Smithsonian collection. Origins of specimens obtained from the U.S. Geological Survey are listed in column 3. The total number of samples of each mineral type studied is indicated by the number of listings in column 3 separated by semicolons. The order in which the samples are listed in table 1 corresponds to the order followed in the discussion.

4. Results and Discussion

4.1. Presentation of Data

Data will be presented here as in the previous report [1]. Compounds are grouped according to the anion type expected based on the ideas presented by Christ [16]. For each compound, observed bands are tabulated with the type of band designated by the usual abbreviations.² Typical spectra are shown only for a few of the materials and only for the range 1800 cm⁻¹ to approximately 300 cm⁻¹.

4.2. Borates With Simple Anions

In order to assess the extent to which analyses of the spectra of the hydrated borates can be pursued, it is instructive to consider first the spectra of hambergite, bandvlite, teepleite, and pinnoite. These materials have known structures with relatively simple anions. Hambergite contains unhydrated planar BO-3 groups [17, 18] and the formula Be₂(OH)BO₃ represents the structure. Both bandylite and teepleite contain isolated B(OH)₄⁻¹ groups and their structures may be represented by the formulas CuB(OH)₄Cl and Na₂B(OH)₄Cl respectively [19, 20, 21]. Pinnoite contains anions of the form [B(OH)3OB(OH)3]-2 which can be considered as resulting from condensing two $B(OH)_{1}^{-1}$ groups with the elimination of $H_{2}O$ [22]. It is of interest to compare the spectra of these substances with those obtained in previous studies of the anhydrous borates [1] where it was found that boron in

^{*}s = strong, v = very, b = broad, m = medium, w = weak, ah = shoulder,

three-fold coordination could be differentiated by the strong absorption derived from ν_3 of the isolated ions which generally persisted in the complex anion. It was found that triangular boron even in complex anions exhibited broad strong absorption in the region 1100-1300 cm⁻¹ and tetrahedral boron in the region 800-1100 cm⁻¹. The ν_2 and ν_4 region (600-800 cm⁻¹) of the isolated ions also was found useful for differentiating these anion types provided isotope substitution was possible (see ref. 1; figs. 1, 2, 19, and p. 486).

The validity of these conclusions with respect to the hydrated borates can be evaluated by considering the spectra of the hydrates with simple anions shown in figure 1 and the absorption bands listed in table 2. In hambergite the strong band at 1300 cm⁻¹ can be ascribed to ν_3 and the strong broad band centered at 750 cm⁻¹ probably arises from Be-O vibrations. The 600 and 650 cm⁻¹ bands superimposed on the Be-O band are probably the two components of ν_4 , and ν_2 is probably obscured by the Be-O band. The 1155 cm⁻¹ band is unexpected. It does not seem strong enough for a ν_5 band and it is tentatively considered to be a bending mode involving BeOH.

In teepleite and bandylite the ν_3 bands are ascribed to the strong bands between 900 and 950 cm⁻¹. The somewhat weaker band at 845 cm⁻¹ in teepleite may arise from a second component of ν_0 or from ν_1 . In both materials the strong bands at lower frequencies may be due to ve or to an OH torsional mode. In teepleite the bands at 1170 and 1302 cm⁻¹ are guite strong and might be erroneously considered to be ν_3 fundamentals of triangular borate ions. In this spectrum they are weaker than the ν_3 for the tetrahedral borate group and there is no danger of misinterpretation. These bands may represent either combinations or B-OH bending modes. In bandylite the 1255 cm⁻¹ band is no weaker than the ν_3 band and misinterpretation is possible. From spectral studies on orthoboric acid, however, it seems that this band most probably arises from an OH distortion vibration [23].

In the pinnoite spectrum the strong broad bands in the 800-1000 cm⁻¹ range are the most prominent features of the spectrum and presumably are derived from the antisymmetrical vibration, ν_8 , of the tetrahedral units. The complex series of bands below 800 cm⁻¹ are probably derived from the original ν_2 and ν_4 vibrations. The region above 1100 cm⁻¹ contains three broad strong bands which are somewhat weaker than the antisymmetrical bands and are probably the result of B-OH distortion modes. These bands might easily be assumed to arise from triangular boron in a material with an unknown anion and show that interpretations must be made with great caution.

On the basis of these spectra it must be concluded that hydration of the borate anions produces spectra which cannot be interpreted readily from a knowledge of the spectra of the corresponding anhydrous anion. Hydration appears to produce absorption bands, some of which are very strong, throughout the spectra range

FIGURE 1. Infrared absorption spectra of hydrated borates containing simple anions.

TABLE 2. Infrared absorption spectra of borates with simple anions

Hambergite	Pinnnite	Teepleite	Bandylite
	3560 1	3520 5	34800 a
l	3400 eb	3400-2500 sh	3440 abala
	3140 svb	450 myb	2400 ab
1450 mh	2930 -1	1302 61	1255 anb
1300 yeyb	1295 Ab	1170 .	1060 mmb
	1215 mb	935 veb	1025 mvb
1155 •]]150 eb	845 VA	906 anb
1025 w	1050 syb	670 sh	640 w
1012 w	945 evb	595 avb	587 🖬
	895 msh		
825 sb	- de 006	522 w	500 svb
792 e	795 Ab	450 w	460 evb
770 s		í	370 m
740 8			309 w
715 . 1	610 web j	1	
645 m)	585 mb 🕴		
600 m	505 w 🛉		
448 m	465-an ‡		
440 m	435 mb		
1	400-ma		
1	335 m		
	510-ma		

studied. Bands apparently derived from ν_3 modes of the anhydrous BO₃⁻³ and BO₄⁻⁵ groups still appear in the spectra of the hydrated anions. These bands are very strong and occur in the expected positions, i.e., 800-1100 cm⁻¹ for tetrahedral boron and above 1100 cm⁻¹ for triangular boron. However, strong bands apparently originating from B – OH distortion modes complicate the spectra, particularly in the region 1100-1400 cm⁻¹.

Data on teepleite have been obtained by Plyusnina and Kharitonov [15]. In gross features the spectra agree reasonably well but there are significant differences. For example, they do not report the 1450 or 430 cm⁻¹ bands at all and band positions vary up to 21 cm⁻¹ for the 845 cm⁻¹ band which they found at 866 cm⁻¹. The spectrum of pinnoite has been reported by Takeuchi [5] with considerable disagreement in the data. Comparison of the various spectra shows that there are considerable discrepancies in numbers of bands, band locations, and band contours. hofferite are very similar with the predominant features being a strong complex absorption band near 1400 cm⁻¹ and a similar band below 1200 cm⁻¹. The former band probably is the counterpart of the antisymmetric mode for the triangular boron atoms and the latter band for the tetrahedral boron groups.

5. Divalent Metal Borates

5.1. The MeO 3B₂O_{3 * x}H₂O Compounds

The family of divalent metal borates of general formula 2MeO 3B, O₃ xH₂O comprise the minerals invoite, meverhofferite, colemanite, fabianite, inderite, kurnakovite, inderborite, and hydroboracite. Except for fabianite $(2 \cdot 3 \cdot 1)$ all of these minerals, as well as a synthetic strontium $(2 \cdot 3 \cdot 5)$ analog of colemanite were examined during the present study. The infrared spectrum for fabianite has been reported by Kuhn and Moenke [13]. Among the other $2 \cdot 3 \cdot x$ compounds crystal structures have been determined for the following: Inyoite [25], meyerhofferite [26], colemanite [27], inderite [28, 29], and hydroboracite [30]. These borates all contain similar anions built up from sixmembered rings formed from alternate horon and oxygen atoms by corner sharing among two BO4 tetrahedra and one BO3 triangle. The oxygen atoms not shared by two boron atoms attach a hydrogen to form hydroxyl groups [16]. Isolated anions, [B₂O₃ (OH)₅]-2 are found in inyoite, meyerhofferite and inderite. In colemanite and hydroboracite, similar anions polymerize into chains having the formula $[B_2O_4(OH)_2]_{\pi^{2n}}$.

Typical spectra for some of these materials are shown in figure 2 and the observed absorption bands are listed in table 3. As seen in figure 2, the spectra are very complex and more than a cursory interpretation is not possible. The spectra of inyoite and meyer-

TABLE 3. Infrared absorption spectra of 2MeO 3BrO₃ XH₂O compounds

Inyoite	Karaakovite	Inderite	Inderborite
530 .	3550 m		
40.	5450 .		
deev 00	3200 next		
		1680 mb	
aanaa t	1650 mmb	1640 mb	1660 mah
minak [1450 mah	1449 mah	1460 mah
20.	1400 ab		1410 sh
. I	1390 4	1390 sh	1390 mah
30 - I	1947 -	1200 ak	1940 - L
· ·	1987 -	1978	1900 mah
an mak	1215	1750	1200 -b
10 JIBH	1160 -	1200 mb	1160 mot
ne i	1090 mah		1045
50 A		1040 -	1000
244.6	1010 -L	040.5	TOTO MON
	1010 10	000	040 -1
DOPEDI DC_L	987 eD	960 69D 980	900 40
	BOD EVD	865 016	6 44 A
N SD		000 60	000 40
սո ի		790 m	
	755 m	/34 m	700 m
	710 -		TIS myp
5 meh	650 mb	650 mvb	650 mbet
0 * . I			
5 min	I	560 m	
50 w [520 m.b		530 m/b
0 a l			
0 meh		485 m	
19 e 19	460 s	450 m	635 m
5 m.	1	427 .	
90 w 🛛		325 mb	

TABLE	3.	Infrared	absorption	spectra	of	2McO · 3B _t O ₃	• XH _t O
			compounds	- Contin	ued		

FIGURE 2. Infrared absorption spectra of 2MeO · 3B₂O₂ · XH₂O compounds.

Colemanite	Sr Colemanite	Hydrohorneite	Meyerhofferite
3590 .			3600 h
3510 b			3470
···· 1			3420 ab
[3000 eb
3130 svb			3020 AVÞ
1455 meh	1450 meh		1445 mah
1360 ab	1350 ab	1365 sb	1400 sb
1320 ab	1900 eb	1300 s	1360 b
1275 eb	1260 въ	1280 =	1
1225	1190 mb	1 188 +	
1160 mb	1150 m b	L130 mb	1155 eb
1125 արհ 🕴	1060 muh	1080 sh	1085 b
1042 e 1	1030 mb	1050 mb	1020 eb
1		985 mbala	960 mb
930 svb	925 b	950 sb	940 b
875 svb	865 46	662 *	890 mb
BIO mala		855 +	840 mb
790 mab	790 meh	dem 008	790 eb
755 🛛	750 🖬 🔰	760 s	720
730 e	730 m		675 m
670 w	710 mah		615 w
580 m	575 m	550 m	580 🗰
550 m	545 w	560 w	
515 m	510 -	530 v	527 m
490 w	490 w	505 m	494 w
		470 m	468
	435 w	436 w	427 m
415 sb		425 w	1
		410 🛥	390 ⊷
			362 🖬
	330 sb	310 ab	330 .

Aside from the gross similarity it is not possible to correlate the spectra band for band because there appear to be noticeable shifts of bands between the two spectra. These shifts are probably to be attributed to differences in hydrogen bonding largely produced by water molecules in the two structures, the formula of invoite having 4H2O whereas that of meyerhofferite has only one H_2O (table 1). The noticeable effects throughout the spectral range produced by this water are the main deterrent to a more detailed analysis of these spectra. The effect of polymerization on the isolated anions to form the chains in colemanite and hydroboracite can be determined by comparing their spectra with those of invoite and meyerhofferite. The bands in colemanite and hydroboracite are broader and apparently more complex. In addition, there is a considerable apparent shifting of bands as might be expected from loss of hydrogen bonding water and coupling of the anions. The spectrum of colemanite gives a clear indication that the stretching vibrations involving the triangular boron atoms are represented by the band complex near 1300 cm⁻¹. In the spectra of invoite and meyerbofferite the strong bands, just below 1200 cm⁻¹ might have been considered part of the antisymmetric stretch of the triangular borons. The fact that these bands become much weaker in colemanite which contains fewer **B-OH** bonds implies that these bands may arise from B-OH bending modes which might be expected in this frequency range [23]. It should be noted, however, that the spectrum of fabianite reported by Kühn and Moenke [13] appears to contradict the present conclusions, because it exhibits a strong band near 1142 cm⁻¹.

Inderite and kurnakovite are polymorphs and their spectra correspond very closely as shown by the tabulated bands. Inderborite, a mixed calciummagnesium compound, also shows a spectrum similar to both the magnesium and the calcium compounds. The gross features of the spectra of the various magnesium and calcium compounds are also similar, but there are many differences in band positions and intensities.

Data on all of these materials, except the synthetic compound, have been reported by one or more of the earlier workers [5, 7, 8, 9, 14, 15]. In place of comparing the previous data for each material, it is useful to consider reported results on colemanite which has been studied by all these investigators. The frequency range considered is from 650 to 1350 cm⁻¹ since this was the range used by Takeuchi [5]. In general appearance, of all five spectra for colemanite are very similar, but the similarity holds only for the gross features. Between 650 and 1350 cm⁻¹ Takeuchi [5] and Moenke [7] report twelve absorption bands; Plynsnina and Kharitonov [15], fourteen; Akhamanova [14], nine; and the present work, thirteen. Thus the most probable number of bands would seem to be between twelve and fourteen. However, the totals are obtained quite differently by the several workers. Consider, for example, the 1042 cm⁻¹ band of figure 2 which appears to be distinct and well separated from neighboring bands. Akhamanova [14] reports a band at 1050 cm⁻¹, Plyusnina and Kharitonov [15] a strong band at 1048 cm⁻¹ plus two additional bands at 1002 and 1062 cm⁻¹, Moenke [7] a strong band at 1046 cm⁻¹ and Takeuchi's [5] spectra indicate a band at about 1030 cm⁻¹. In addition to these uncertainties in band numbers and locations there are considerable differences in relative intensities and band contours for many of the bands throughout the spectrum. The same considerations apply to comparisons between the present and previous data on the other members of the 2:3:x borates. Possible explanations and implications of these facts will be discussed later.

5.2. The MeO 38₂O₃ XH₂O Compounds

Compounds studied with the empirical formula MeO 3B₂O₃ · XH₂O are tunellite, nobleite, gowerite, synthetic aksaite, veatchite, synthetic calciumveatchite [32], synthetic macallisterite [33], and a synthetic 1:3:4? strontium borate. Of these materials, the structure is known only for nobleite and tunellite [34] which are isomorphous. The anion consists of three six-membered rings forming a [B₀O₀(OH)₂]⁻² unit. The six-membered rings are the same as those found in the $2MeO \cdot 3B_2O_3 \cdot XH_2O$ compounds and each contains two tetrahedral and one triangular boron. The [B₆O₈(OH)₂]⁻² ion contains three triangular and three tetrahedral boron groups and is unique in that one oxygen atom is common to all three rings. The ions are linked in sheets through certain of the offring oxygen atoms. The structures of the anions in the other members of this series are not yet known. but it might be expected to be similar, probably linked with differing degrees of hydration and/or polymerization [16].

Data obtained on these materials are given in table 4 and typical spectra are shown in figure 3. It would be expected that these spectra should show some similarities with those of figure 2, since the anions are built of similar units and indeed there are many similarities in band positions in the two sets of spectra. However, it was surmised that the coupling between rings in tuneilite would be strong enough to produce considerable broadening and band overlap. The reverse situation actually occurs, many bands being clearly resolved and relatively sharp. From the similarities of the spectra (see data of table 4), it is clear that nobleite, tunellite, and the synthetic 1:3:4? synthetic strontium borate have similar anions. Examination of figure 3, shows that it is probable that gowerite has the same anion on the basis of the similarity of the spectra. In gowerite the bands are sharper and appear to be resolved better, a result to be expected if depolymerization of the anion occurs with increased water content. It also appears that veatchite possesses the same anion as tunellite with band broadening and loss of resolution accompanying

FIGURE 3. Infrared absorption spectra of MeO · 3B₂O₃ · XH₂O compounds.

the dehydration and polymerization. From the tabular data (table 4), it is clear that the spectra of veatchite and synthetic calcium-veatchite are very similar and the materials probably contain the same anion. The conclusions with respect to the two magnesium compounds, synthetic aksaite, and synthetic macallisterite, are made with much less certainty; but again it seems probable that these materials also may contain the same anion with differing degrees of hydration and polymeriztion. On the basis of the infrared spectra alone, therefore, it is concluded that all the MeO $\cdot 3B_2O_3 \cdot XH_2O$ compounds probably contain similar anions. These spectra do not appear to have been reported previously.

TABLE 4. Infrared absorption spectra of MeO · 3B₂O₃ · XH₂O compounds

Nobleite	Tunellite	Synthetic SrO · 3B ₇ O ₃ · 4H ₂ O?	
3540 mb		[
3380 evb			
3200 avb			
2900 svb			
1675 myb	1675 milu		
	[440 mah	1460 mb	
1385 sibeb	1555 mb	1375 e-b	
322 eb	1345 eb	1325 seb	
1300 mah		•	
1180 mb	1177 mb	: 1160 sło	
1160 mb	1155 mb	i	
IL25 mb		1125 sb	
1307 m	1100 🗰	L100 w	
1033 meh	1035 mah	1010 нь	
965 sb	1000 ab	96Z e+b	
930 msh	965 m sh	927 mb	
880 sh	660 ab	875 ab	
827 m	827 meh	i .	
806 sto	810 .	810 ab	
737 m.	732 MA	135 m	
705 m .	700 w		
670 mb	677 m	670 mb	
602 m	598 m	1	
570 w	577 📼	•	
	528 w	1	
460 wb		1	
625 w	420 m	1	

TABLE 4. Infrared absorption spectra of MeO · 3B₂O₃ · XH₂O compounds - Continued

Veatchite	Synthetic Co-Ventchite
3420-2900 b	Ì
1665 -	1665 w
1510 mh	
1360 eb	1 390 s b
1270 sb	1265 web
1235 mah	1240 sb
1210 wab	
1160 m	1180 mah
1095 mb	1130 m
1065 mb	1075 mb
975 sb	975 sb
ASD RP	A10 6P
88U 20	870 0
550 W	032 m
515 m	
760 m 760 m	745
700	700
A75 mab	100 ₩
640 -	650 w
625 m	610 m
605 m	600 wsh
570 w	S72 web
520 w	535 wb
510 w	-
490 w	495 w
470 m	1
455 m	[
430 meh	1
395 mb	F

TABLE 4. Infrared absorption spectra of MeO · 3B₂O₃ · XH₂O compounds – Continued

Governe	Synthetic Akaside	Synthetic MacAllisterite		
	3600 s	ł		
1405	3450-2400 15			
1035 WD	1052 mb	1470		
1480 man				
	1423 50	1950		
1.330 8 1.930	12-95 - 6	1220 10		
1050 men	1323 30	1940 -		
1200.6	1210	1200 1		
1119 .	hist mb	1150 mb		
1112.0	1005 -1	1129		
1040 ach	1053 50	1060 ab		
1010	1020 ab	1005 mah		
1010	1020 10	000		
Q47 mah		965 m		
051	950 ak	Ref meh		
004 mb	808 mb			
950 mb	850 mb	855 .		
830 m	000 010	812		
759 m	BOO als			
700 w	775 -	A469 wis		
675	375 mb	670 m		
656 m	655 w			
630 w				
602 w	1	1		
567 W	525 w	560 wb		
495 w	455 **	I		
475 w		1		
452 **	1	1		
410 -	410 w	440 -		
		1		

5.3. The 2MeO 7B₂O₃ 8H₂O Compounds

Three members of this series were studied, the data are given in table 5 and spectra are shown in figure 4. The marked similarity of the spectra and the compounds makes it almost certain that the anions are identical. The structures of the anions are not known and the spectra are too complex to attempt to predict the anion on this basis alone. There is no doubt that the anion contains both three-fold and fourfold coordinated boron as shown by the strong bands

FIGURE 4. Infrared absorption spectra of 2MeO · 7B₂O₃ · 8H₂O compounds.

TABLE 5. Infrared absorption spectra of 2MeO 7B₂O₂ · 8H₂O compounds

Generice	Stronitan Cinorite	2SrO - 7B ₂ O ₃ - 8H ₂ O Synthetic	
1940b			
660	1660 meh	1650 wah	
149E m-1	1480 mbeb		
405	biddl mbab	1d45 mbab	
1330	1360 avb	1365	
1976 -	1500 -6	1320	
1746 0	1250 m		
1249 6	1930 mb	1220 mb	
1.070 0	175 avb	185	
1160 .	1125 math	1125 m	
1025	1045 m	1040	
005 -L	1070 -6	1005 at	
903 00	975 avh	965 m	
880	940 -	945 mah	
Stamah	270 4	885 .	
RIS mak	0100	835 m	
Ant .	200 ab	810	
••••	000 00	780 mah	
740 -	795 •	735 .	
675 B	655 ab	690 m	
405 m	605 m	675 m	
		660 m	
	435 m	615 1	
	375 meh	535 w	
	044 MITD	"	

FIGURE 5. Infrared absorption spectra of miscellaneous hydrated divalent metal borates.

TABLE 6. Infrared absorption spectra of miscellaneous divalent metal borate compounds

Priceite	Tertechite	Preobraakonsking	
650 au+b	1650 mb	1540 myb	
120 m	1445 m		
970 o	1365 6	1370 sb	
850 r	4مد 35ها]320 s	
305 e			
285 m.h.	1265 w		
190 minh	1225 m	1215 sb	
lå5 menah [1125 mab	
360 շե	1040 sh	1075 sb	
00 mb	1015 mah	1000 avb	
AS HIL	965 - 6	940 mb	
#5#rb	915 sb	900 m	
	B75 male		
780 sk	825 m	860 myb	
110 m	715 m	810 m	
555 mb		790 m	
		735 w	
i70 m		700 b	
15 m	52°0 m	665 min	
170 m.		615 m	
1		600 w	
85 m j		575 w	
i		550 mb	
165 m		435 m+b	
55 ¥		375 m	
25 m		340 m	
		325 0	

near 1400 and 1000 cm⁻¹ respectively. In addition the spectra show a strong resemblance to the previous spectra for compounds containing six-membered rings of alternate boron and oxygen atoms, with one triangular and two tetrahedral boron atoms. Consequently, it appears likely that these rings may exist in the anions. The relative weakness of lower frequency vibrations (i.e., below 600 cm^{-1}) in these spectra, however, is an indication that the anions are not coupled six-membered rings and it is very unlikely that the anions are so small that no low frequency vibrations exist. It is probable that the symmetry of the anions is sufficiently high that lower frequency modes are much weaker than in the previous compounds. Again there do not appear to be any previous reports of spectra of these materials.

5.4. Miscellaneous Divalent Metal Borates

Data on the $4CaO \cdot 5B_2O_3 \cdot XH_2O$ compounds are given in table 6 together with those for preobrazhens-

kite $-3MgO \cdot 5B_2O_3 \cdot 4\frac{1}{2}H_2O_1^{(2)}$ [35]. The spectra are shown in figure 5. The three materials show evidence of both triangular and tetrahedral boron in the strong bands in the 1300–1400 cm⁻¹ and 800–1000 cm⁻¹ region respectively. The spectra of priceite and tertschite are very similar and these materials may contain similar anions. The spectrum of preobrazhenskite is indicative of a large anion with considerable interaction between the anion structural units.

From the data obtained here the spectra of pandermite and priceite are considered to be identical. The sample of priceite yielded much the better spectrum of the two specimens, that for pandermite being less well resolved. However, for each band found in the spectrum of pandermite a corresponding band is observed in the priceite with frequencies differing at most by ± 1 cm⁻¹. In addition, the same relative intensity relationships are shown by the bands in the two materials. It seems possible to conclude that these materials are most probably identical [36].

The spectrum of priceite (pandermite) has been reported by other workers [5, 7, 14, 15] and that of tertschite by Meixner and Moenke [12]. Comparison of the present and previous results leads to the same conclusions mentioned earlier. The spectra for a given material are in superficial agreement. There are many discrepancies when details are examined.

Data obtained on other divalent metal borates are given in table 7 with spectra for ulexite and kaliborite shown in figure 6. The anions of probertite and ulexite are known to be a ring structure containing three tetrahedra and two triangles with one tetrahedron being common to both rings [37, 38]. From the tabulated data it is clear that the infrared spectra corrohorate the similarity of the anions in these materials probertite and ulexite. The spectrum of kaliborite is very poorly resolved in the v_3 region for tetrahedral borate groups, but is otherwise similar to the spectra of ulexite. The parahilgardite yielded a very poor spectrum and it is suspected that this material was contaminated with $CaCO_3$ as the 875 and 725 cm⁻¹ bands strongly resemble the ν_2 and ν_4 bands of calcite.

6. Monovalent Metal Borates

6.1. The Me-O · 2B-O: · XH-O Compounds

Several borates of the type Me₂O · 2B₂O₂ · XH₂O were studied and the data are tabulated in table 8. Typical spectra for tincalconite and potassium tetraborate tetrahydrate are shown in figure 7. Morimoto [39] has determined the structure of borax and found that the anion consists of isolated [B₄O₆(OH)₄]⁻² rings. Marezio et al., [40] have found the same anion in potassium tetraborate tetrahydrate. The rings contain two triangular and two tetrahedral borate groups joined at common oxygen atoms. The two tetrahedral groups are further linked by means of an oxygen bridge across the ring. All off-ring oxygen atoms are hydrated in horax.

As noted in the previous study the alkali borates vield very poorly resolved spectra under the conditions used here. From the tabulated absorption hands it is noted that all the materials show similar spectra and probably all contain the basic [B₄O₅(OH)₄)⁻² anion

TABLE 7. Infrared absorption spectra of miscellaneous borate comnounds

TABLE	8.	Infrared	absorption	spectra	of	Me ₂ O 2B ₂ O ₃ XH ₂ O
			comp	ounds	-	

KyO · 2ByOg · 4H yO synthetic

1625 m+b

1395 avb 1320 yerb

1220 s 1160 m 1060 sb

N050 -----

970 sb 905 b 805 avb

45 ₩ 710 . 665 mb

600

550 m-b 400 460 mb

422 mvb 300

					-	
Wearie	Probertite	Kaliborite	Parabilgardite	Kemin	Tincalconite	Borax
3562 .	3620 s					
3400 ab	3550 .				5500 -h	3500-
3000 TSYD	3350 vavb				1340 ush	2000 reals
1650 mb	1650 mmb				5000	
1620 mb					3400 mb	9000 m/h
1470	1470 m			1200 mmh	1690 mah	1620 muh
1415 sb				1450	katt mak	1450 meh
1390	1425 mab	1410 msh	1425 wwb	1407 m 1405 mah	1405 mail	1900 mil
1355 #	1375 H	1350 ab	1350 - 1000 yearb	1940	k det u sub	1390 000
1315	1323			1340 4640	100	1975
1205	1210 -	1185 and		1160 -	1250 10411	1155
1090 mb	1130 each	1000000		1100 m	100 80	1122
1050 J	1090 -	1090 -b		1077	123 40	1120
00	1040	1000-750 Aub		10/5 00	UIS IND	1040 MID
67 I	Dels mate	1000 100 100		1010 940	IU25 IVD	
040 mb	325				969 60	980 90
of the second	0.00			450 060B	440 35	955 10
254 a	200		875 all'aCO_25	B63 svb		000
POC			200 -	620 svb	00.210	BUU IYD
740	200		170 M		750 m+b	750 6VD
190 m	130 m	207 -	110 701 - 40-00 Ph			
	673 M	105 K	725 N (C.BC.057)	685 m t	665 m+b	605 MYD
m 000	525 W	655				
aan u	en éré	620 I			600 mvb	595 wb
		570 W		550 e	520 movb	505 mah
640 mb	440 m	445 VAD	•	495 mb	425 mvb	420 eb
350 m	389 m.		395 YDY8	455 mb	! !	<i>8</i> 95 a
	1			- 425 cavb	i i	

FIGURE 6. Infrared absorption spectra of hydrated borates containing both mono- and divalent metal ions.

FIGURE 7. Infrared absorption spectra of Me₂O · 2B₂O₃ · XH₂O compounds.

in some state of hydration or polymerization. The specimen of $K_2B_4O_7 \cdot 4H_2O$ used was obtained from a commercially available reagent labeled $K_2B_4O_7 \cdot 5H_2O$. The x-ray diffraction pattern of this compound can be indexed readily from the unit cell data of Marezio et al. [40] and it has been tabulated as the tetrahydrate.

The previous data obtained on this group of materials together with the present data exhibit a confusing pattern. The spectra for borax of Miller and Wilkins [4] and of Moenke [7] agree with each other but differ considerably from that of Akhamanova [14] and the present results. Miller and Wilkins [4] reported the spectrum of $K_2B_4O_7 \cdot 5H_2O$ which closely resembles their spectrum of borax but differs considerably from the spectrum of K₂B₄O₇ · 4H₂O obtained here. Takeuchi's [5] results for kernite agree well with the present data but both disagree in many respects with the results of Moenke [7]. The overall lack of agreement between the spectra obtained by different workers appears to be greatest for these materials. This question will be discussed later.

6.2. The Me₂O · 5B₂O₃ · XH₂O Compounds

Data for the minerals ammonium larderellite and ammonioborite [41] and the synthetic 1:5:10 sodium borate are given in table 9. Representative spectra are not shown because there is strong absorption and poor resolution throughout the entire spectral range. The strong absorption is to be expected in the two ammonium compounds because they contain the infrared active NH⁺ ion in addition to water of hydration and a complex borate anion. Christ [16] has predicted that sborgite, larderellite, and ammonioborite have the same anion and the data of table 9 confirm this prediction for the ammonium compounds with little question. The spectrum of the 1:5:10 synthetic sodium borate differs from those of the ammonium borates in many details but not in gross features. Because of the unknown effect of the NH⁺ ion on the spectra, it is possible that all three compounds contains similar anions.

TABLE 9. Infrared absorption spectra of Me₂O · 5B₂O₃ · XH₂O compounds

Na ₂ O-5B ₂ O ₃ : 10H ₂ O symbetic	Ammoniobertie	Larderellite
10 70 mb 10 1375 vavb 11 1300 vavb 11 1395 m 11 1395 m 11 1345 ovb 11 1345 ovb 11 1345 ovb 11 1016 mb 11 1010 ab 11 1010 ab 11 1025 m 11 1030 ab 11 1045 mb 11 1050 ab 11 1050 ab 11 1055 m 12 1050 ab 11 1050 ab 12 1050 ab 14 1050 ab 14 1050 ab 14 1045 ab 14 1050 ab 14	50 mmb 550 mmb 1550 mmb 1550 mmb 1500 mmb 1500 mmb 1550 mmb 1550 mmb 1550 mmb 1550 mmb 1550 mmb 1575 mb 1575 mb 1575 mb 1575 mb 1575 mb 1575 mb 1570 mmb	1425 vsvb 1350 vsvb 1255 mvb 1285 s 1165 m 1065 mvb 1015 mvb 940 mb 950 mvb 830 w 810 mb 775 s 675 mvb 545 s

FIGURE 8. Infrared absorption spectra of $2Na_2O \cdot 5B_2O_2 \cdot 7H_4O$ compounds.

6.3. The 2MesO · 5B2O2 · XH₂O Compounds

Excurrite and the 2:5:X synthetic sodium borates show rather poor spectra characterized by strong absorption throughout the spectral range studied. The absorption bands observed are listed in table 10 and figure 8 shows the spectra for a synthetic and a natural ezcurrite. It is obvious from figure 8 that despite the rather poor resolution that these materials are almost certainly the same insofar as the anions are concerned. In addition, the fact that, band for band the frequencies are the same within experimental error may be interpreted to mean that the materials are chemically and structurally identical. This conclusion is based on previous studies which showed that change of anion or crystal structure generally produces shifting of some bands in the infrared spectrum [42]. The close similarity in the spectra of all three minerals listed in table 10 indicates that the anions are similar.

TABLE 10. Infrared absorption spectra of 2Me₂O 5B₂O₃ XH₂C compounds

·		
Escurrite	2Na ₂ O · 58 ₄ O ₁ · 5H ₄ O Symbolic	2Ne ₂ O • 5B ₂ O ₃ • 4H ₂ O Synthesic
1675 mub 1470 mb 1425 m	1625 myb 1465 mub	1650 mmb 1440 mmb
1400 mbah 1370 web 1240 sh 1195 meh 1195 meh	1400 mb 1350 vevb 1245 evb	1360 mmb 1325 avb 1250 mmb 1230 avb 1150 mm
1075 mb 1020 mb 950 eb 915 m	1045 m×b 1015 svb 945 svb	1070 sh 1030 syl 925 sh
900 w 845 m 825 m 760 m 695 m 670 s	870 m 825 monte 740 monte 695 monte 670 monte	830 avb 830 mvb 740 mvb 675 mvb 652 mb
550 w 455 w 410 mb	630 w 550 mvb 455 arvb 430 mvb	600 myb 550 m 440 mb

6.4. Miscellaneous Borates

Data for three borates not readily classified with the previous groups are given in table 11 and the spectra are shown in figure 9. The data for szaibelyite and

FIGURE 9. Infrared absorption spectra of miscellaneous hydrated borates.

 TABLE 11. Infrared absorption spectra of miscellaneous borate compounds

NeBOs · 4HeO eodium perborare	Szelbelyine	Summar
3590 s 2500-3000 svb 1640 wvb 1225 mob 1065 mvb 1075 mb 975 ob 915 svb 845 sb 845 sb 845 m 775 mb 550 evsb 495 sb 415 sb	3555 w pharp 1425 vs 1425 vs 1270 s 1285 s 1280 s 1065 msh 1010 s 977 s 922 m 825 m 785 w 700 vs 645 6 570 m 538 mi 436 m 349 m	1450 ab 1385 s 1270 s 1250 s 1225 m 995 m 905 m

sussexite agree reasonably well with the results obtained by Takeuchi [5] for camsellite (szaibelyite) and sussexite and with the results of Plyusnina and Kharitonov [15] for ascharite (szaibelyite). From his spectra, Takeuchi [5] concluded that the anion in these compounds was the pyroborate ion while Plyusnina and Kharitonov, apparently being unaware of Takeuchi's earlier work, noted that the spectrum of ascharite was similar to that of LaBO₃ which contains a triangular borate anion. However, the latter workers concluded tentatively that the complexity of the spectrum indicated a more complex ion than the simple triangular ion [15]. Akhamanova independently arrived at the same conclusion [14].

The structure of this anion has been reported to be a singly hydrated pyroborate group, with some uncertainty as to the exact structure [43] caused by translation. It is not clear that both borons are coordinated with three oxygen atoms. However, the spectrum clearly indicates that there is no tetrahedral boron present in the structure. From the earlier work on the pyroborates [1] it appears that the spectrum of anhydrous magnesium pyroborate becomes considerably less complex in the ν_2 region on hydration but more complicated in the ν_2 region. Tentative assignments are possible for many of the bands in the spectrum of szaibelyite on the basis of the spectrum of anhydrous magnesium pyroborate and the known spectrum of triangular borate groups. These are obvious and need not be specified here.

In sodium perborate the anion has been reported [44] to consist of two partly hydrated tetrahedral borate groups connected through peroxide linkages and to

have the structure
$$\begin{bmatrix} OH \\ OH \end{bmatrix} = \begin{bmatrix} O-O \\ OH \end{bmatrix} = \begin{bmatrix} OH \\ OH \end{bmatrix} = \begin{bmatrix} O-O \\ OH \end{bmatrix} = \begin{bmatrix} OH \\$$

structural formula of sodium perborate may be written Na₂[BO₂(OH)₂], 6H₂O. This anion is unlike any previously encountered here and its spectrum is likewise unique as shown in figure 9. In this spectrum the 3590 cm⁻¹ band indicates some nonhydrogen bonded OH and the broad strong band between 3500 and 3000 cm⁻¹ shows that much of the OH is hydrogen bonded. The weak 1640 cm⁻¹ band is attributed to the bending mode of H-O-H, and the medium broad bands at 1225 and 1165 cm⁻¹ to the B-OH bending modes plus overtones and combinations. The strong absorptions at 915 and 845 cm⁻¹ are derived from the v_3 tetrahedral modes and the doublet is indicative of tetrahedral coupling as noted earlier. The strong broad band at low frequencies probably contains modes derived from ν_2 and ν_4 of tetrahedral units plus OH torsional modes. The complexity of the band indicates the presence of several overlapping bands. The spectrum for this material has been reported by Miller and Wilkins [4] with reasonably good agreement between the data.

7. Reliability of Infrared Spectra of Hydrated Borates

In comparing the spectra of different workers it has been noted that the agreement was not satisfactory. It is to be expected that on a given material, the same infrared bands having similar relative intensities should be obtained. Some latitude in the exact frequencies reported (i.e., a few cm^{-1}) and perhaps in the detection of weak bands might be expected. For the hydrated borates it is clear that data do not agree to this extent and it is desirable to examine possible reasons for the discrepancies.

The discordance in the data must be traced to one or more of three sources; first, the materials themselves; second, the preparation techniques used to prepare the materials for study; and third, the actual measurements. Of these three sources the third can probably be dismissed as a real source of error. There is no evidence that any appreciable errors in band positions exist between the results obtained on different spectrometers. In fact the evidence is that the spectrometers agree within experimental error because many strong bands can be identified in spectra of various workers which agree within the frequency limits expected. It is believed, therefore, that the real causes for the discrepancies are to be attributed to variation in the materials or differences arising from techniques of preparation.

Insofar as the identity of the materials investigated is concerned, the previous reports give little information. Miller and Wilkins used chemical reagents in their studies [4]. Takeuchi [5] reports that his substances were carefully selected and were well-developed crystals of highest purity. Plyuspina and Kharitonov [15] used single crystals, but Akhamanova [14] and Moenke [7] give no details of the method used for selection of their specimens. In the present study most of the materials were of the highest purity presently available as judged by microscopic examination and x-ray powder diffraction. It must be noted, however, that neither these methods nor that of selecting natural single crystals ensures that the specimens are free of contaminants. If the contaminants should consist of other borates (all of which are strongly active in the infrared) even in small quantity, it is clear that some differences in the spectra may result. In addition to the question of purity, there remains a problem associated with the degree of crystallinity of the specimen. Most of the borates yield complex spectra containing many broad, obviously complex bands, containing unresolved structural details. Experience in this laboratory has indicated that two specimens of identical composition but differing either in degree of crystallinity or perhaps in perfection of crystallites can vield spectra which are very similar in gross appearance but remarkably different in detail. Broad featureless bands frequently show many resolvable details when the degree of crystallinity of the specimen is apparently improved. It appears most probable that discrepancies in the spectra of various workers consisting of differences in numbers of bands reported is to be attributed either to actual contamination of the specimens by other borates (or other spectrally active chemical species) or to differences in the crystallinity of the specimens.

Insofar as the specimen preparation techniques are concerned, the problem of purity is also involved but in a different manner. Here the concern is with the actual identity of the materials studied because of changes in degree of hydration or of interaction with the alkali halide windows used. The various workers used the following techniques of sample study: Miller and Wilkins and Takeuchi – mulls with hydrocarbon or fluorocarbon liquids using salt (NaCl?) plates [4, 5]; Moenke – pressed pellet technique using vacuum formation of KBr pellets [7]; Akhamanova – film deposited on KBr plates by evaporation of isobutyl alcohol dispersing medium [14]; Plyusnina and Kharitonov – films deposited on KCl or NaCl plates by evaporation of isopropyl alcohol [15]; present work-films deposited on CsBr plates by evaporation of CCL. It is well known that solids (and in particular hydrates) interact with the alkali halides and that the interaction produces changes in the spectra. Of the methods used, it would appear that the mull technique is the most preferable from the viewpoint of lessening such interactions, the film method next, and the KBr pellet the most objectionable. In addition to the increased probability of interaction in KBr cellets must be added the undesirable procedure of subjecting the hydrated borates to vacuum in the pellet forming process. Reduction in pressure might affect the state of hydration of the small quantity of hydrate present. It seems very probable that differences in positions of bands observed by different workers may be caused by shifts due to interaction with the alkali halide windows used.

In addition to the question of interaction with the alkali halide there is some uncertainty introduced by the mechanical and thermal effects of the fine grinding required to produce particles sufficiently small for infrared study. As noted earlier, the spectra for borax, a chemically pure reagent, obtained by different workers differ radically. C. J. Bowser [45] has obtained evidence showing that in KBr pellets, borax produces the spectrum of tincalconite, a lower hydrate. Thus the spectra for borax of Miller and Wilkins [4] and Moenke [7] which agree very well actually appear to represent tincalconite. Dehydration of borax can be understood in the KBr pelleting process but is hard to visualize in the null technique. unless it occurs during grinding. Therefore, it is necessary to include the fine grinding technique among the details which might produce differences in the spectra.

It is concluded that the infrared spectra of the hydrated borates, at present, are not of acceptable reliability. The lack of reproducibility is most probably to be attributed to differences in chemical composition and degree of crystallinity and to varying interactions between the hydrated borates and the alkali halide windows. Production of definitive spectra will require systematic study of the effect of these disturbances.

8. Identification of Borate Minerals by Infrared Spectroscopy

H. Moenke has studied the infrared spectra of several hydrated borate minerals in a series of papers generally oriented toward differentiating among various borates [6-13]. As a result of his study he concluded that the spectral method could be used to identify hydrated borate minerals and has pointed out identifying features in the spectra of various minerals.

It is clear from the immediately preceding discussion and the comparisons between spectra made throughout this report that the present conclusions must disagree with the idea of identification by infrared methods. The fact that there is a disturbing amount of disagreement between the spectra of various workers at the present time would appear to invalidate the use of spectroscopy as a method of identification. Moreover, the spectra of most borates are so complex that it seems imperative to obtain at least a degree of understanding of the origin of the spectral bands before identification of minerals of this type is attempted on the basis of their spectra. In the case of the simpler spectra, i.e., sussexite, hambergite, etc., identification by means of infrared spectroscopy is believed to be possible. However, if such minerals were contaminated with other borates (as for example sussexite contaminated with szaibelvite) identification would be almost impossible.

9. Conclusions

The infrared spectra of the hydrated borates are considerably more complex than the spectra of the anhydrous analogues. The increased complexity arises from the effects of the hydration of the borate anions and hydrogen bonding between anions. The effect of the hydrogen bonding appears to produce noticeable changes in most of the borate anion fundamentals and results in complicating the spectrum throughout the frequency range 400-4000 cm⁻¹ studied here. Thus the effects are by no means restricted to the region commonly considered to be diagnostic for OH.

As a result of the increased number of bands the spectra are frequently poorly resolved and detailed interpretation appears to be remote. It is unlikely that any hydrated borate anion can be identified solely from its infrared spectrum. However, the previous conclusions concerning identification of three-fold and four-fold coordinated boron appear to be equally valid in the hydrated and anhydrous borates. For the hy-Brated compounds the conclusions are more uncertain because strong bands near 1200 cm⁻¹ apparently arising from B-OH bending modes fall into the region previously considered as indicative of trigonal borate groups. Any serious attempt to understand the spectra of the hydrated borates will probably require deuteration as well as boron isotope substitution.

At the present time agreement between spectra obtained by different investigators is not considered to be satisfactory. The probable causes of the disagreement are believed to originate in differences in the materials themselves or from varying degrees of interaction with the alkali halide cells used. As a result of the lack of agreement between various workers as well as the inherent complexity of the spectra it is considered that borate minerals cannot be identified at this time on the basis of their infrared spectra alone.

The author is indebted to E. R. Lippincott and R. A. Schroeder for many discussions concerning the infrared data and to G. Switzer of the Smithsonian Institution and R. C. Erd of the U.S. Geological Survey who furnished the samples which made this study possible. The very helpful comments of J. R. Clark and R. C. Erd of the U.S. Geological Survey on the structure and properties of the borate minerals were invaluable.

10. References

- [1] C. E. Weir and R. A. Schroeder, J. Res. NBS 68A (Phys. and Chem.) No. 465 (1964).
- A. Perloff and S. Block, submitted to Acta Cryst.
- A. Mighell, A. Perloff, and S. Block, submitted to Acta Cryst.
 F. A. Miller and C. H. Wilkins, Anal. Chem. 24, 1253 (1952).
 Y. Takeuchi, Min. J. (Japan) 2, 245 (1958). [3]
- 141
- lsj
- H. Moenke, Jenser Jahrbuch 1959 (II) 361. តែរំ
- H. Moenke, Jenser Jahrbuch 1960 (I) 191. H. Moenke, Jenser Jahrbuch 1961 (I) 239. Ì7Ĵ
- 8
- [9] H. Moenke, Naturwiss, 49, 7 (1962).
- [10] H. Moenke, Spectralanalyse von Mineralien und Gesteinen (Geest and Portig, Leipzig, 1962).
 [11] H. Moenke, Fortschr. Min. 40, 76 (1962).
- [12] H. Meixner and H. Mocnke, Kali u. Steinsalz 3, 228 (1961)

- [13] R. Kühn and H. Moenke, Kali u. Steinsalz 12, 229 (1963).
 [14] M. V. Akhamanova, Zh. Strukt. Khim. 3, 24 (1962).
 [15] J. J. Plyusnina and Yu A. Kharitonov, Zh. Strukt. Khim. 4, 506-(1963),
- [16] C. L. Christ, Am. Min. 45, 334 (1960).
 [17] W. H. Zachariasen, Z. Krist. 76, 289 (1931).
- [18] W. H. Zachariasen, H. A. Plettinger, and M. Marezio, Acta Cryst. 16, 1144 (1963).
- [19] M. Fornaseri, Period. Min. (Rome) 18, 103 (1949); 19, 159 (1950).
- R. L. Collin, Acta Cryst. 4, 204 (1951). [201
- V. Ross and J. O. Edwards, Am. Min. 44, 875 (1959) [21]
- [22] F. Paton and S. G. McDonald, Acta Cryst. 10, 653 (1957).
- [23] D. F. Hornig and R. C. Plumb, J. Chem. Phys. 26, 637 (1957). [24] C. R. Parkerson, Naval Ordnance Laboratory, Corona, Rept.
- 585 (1963b). [25] I. R. Clark, Acta Cryst. 12, 162 (1959).
- C. L. Christ and J. R. Clark, Z. Krist. 114, 21 (1960). 261
- [27] C. L. Christ, J. R. Clark, and H. T. Evans, Acta Cryst. 11, 761 (1958).
- [28] A. Ashirov, J. M. Rumanova, and N. V. Belov, Dokl. Akad. Nauk SSR 143, 331 (1962).
- [29] I. M. Rumanova and A. Ashirov, Kristallografiya, 8, 517 (1963).
- 301 I. M. Rumanova and A. Ashirov, Kristallografiya, 8, 828 (1963).
- [31] J. R. Clark, D. E. Appleman, and C. L. Christ, J. Inorg. Nucl. Chem. 26, 73 (1964).
- [32] C. R. Parkerson, Naval Ordnance Laboratory, Corona, Rept. 583 (1963a). [33] W. T. Schaller, A. C. Vlisidis, and M. E. Mrose, Am. Min. 50,
- 629 (1965).
- [14]
- J. R. Clark, Am. Min. 49, 1549 (1964). V. V. Kondrat'eva, Zap. Vses. Min. Obshch. 58, 330 (1959).
- [36] See Dana's System of Mineralogy, C. Palache, H. Berman, and C. Frondel, Vol. II. p. 343 (John Wiley & Sons, Inc., New York, N.Y. 1951).
- [37] H. M. Kurbanov, I. M. Rumanova, and N. V. Belov, Dokl. Akad. Nauk. SSR 152, 1100 (1963).
- J. R. Clark and D. E. Appleman, Sci. 145, 1295 (1964).
- [39] N. Morimoto, Min. J. (Japan) 2, 1 (1956).
 [40] M. Marezio, A. A. Plettinger, and W. H. Zachariasen, Acta Cryst. 16, 975 (1963).
- [41] J. R. Clark, Am. Min. 45, 1087 (1960); J. R. Clark and C. L. Christ, Am. Min. 44, 1150 (1959).
- [42] C. E. Weir and E. R. Lippincott, J. Res. NBS 65A (Phys. and
- Chem.) No. 3, 173 (1961). [43] C. P'eng, C. Y. Su, and P. H. Chang, Sci. Sinica (Peking) 12, 1761 (1963).
- [44] A. Hansson, Acta. Chem. Scan. 15, 934 (1961).
- [45] C. J. Bowser, submitted to Am. Min.

(Paper 70A2-391)