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The Solution to a Nonlinear Lamm Equation in the Faxen
Approximation
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An exact solution in the Faxen approximation is given for the Lamm equation in which the sedi-
mentation coefficient is related to concentration as s = so(l — kc). It is shown that the solution in this
case can be expressed in terms of the solution to the linear case (&=0) with a modified argument.
The boundary sharpening phenomenon expresses itself very clearly in the solution presented here.
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Solutions of the Lamm equation for constant diffusion and sedimentation coefficients have
found wide application in the analysis of data from the ultracentrifuge [I].1 It is known that both
the sedimentation and the diffusion coefficients depend on concentration, and in particular, the
sedimentation coefficient can be approximated by

(1)

where s0 is the sedimentation coefficient at infinite dilution and A: is a constant which is a measure
of nonlinearity. Fujita has shown that if the relation of eq (1) is replaced by

s = so{l-kc) (2)

while the diffusion coefficient remains independent of concentration, the resulting Lamm equation
can be linearized rigorously [2]. Fujita solved this Lamm equation in the Faxen regime by an
approximation technique. It is the purpose of this paper to show that an exact solution of the
Lamm equation is possible in the Faxen regime, and that the solution for the nonlinear case can be
written entirely in terms of the solution to the linear problem. The technique exploited in this
paper was originally suggested in a preliminary note [3] although the result given there contains
an error. Our solution then enables one to derive an expansion in powers of the time variable
to as high a degree as desired, whereas Fujita's original solution was limited in this respect. The
Lamm equation can also be solved with the ansatz of eq (2) in the rectangular approximation [4],
and an Archibald solution which takes account of boundary conditions can be written [5]. A de-
tailed comparison between solutions of the Lamm equation with the two forms of sedimentation
coefficient given by eqs (1) and (2) will be presented elsewhere [6].
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1 Figures in brackets indicate the literature references at the end of this paper.

17

792-867 O-66-2



The Lamm equation will be written

in terms of the solute concentration c, the diffusion coefficient D, sedimentation coefficient so, and
angular frequency co. Let r0 be the radial position of the meniscus, and c0 be the initial concen-
tration. Then the transformations

0 = c/co, e = 2DI(s0o)2ri) x = (r/ro)\ T = 2a>2s0t a = kco (4)

convert eq (3) into

This equation can be linearized by introducing a new dependent variable u(x, r) by

0(x, T) = - — In M(*, T). (6)

It proves convenient to also define new independent variables by

z = 2(xe-Ty'2, £ = l - e - T (7)

which, together with eqs (5) and (6) implies that u satisfies

1 du _ d2u 1 du /g\

~e~di~~d?~~zTz

which is to be solved with the initial condition

u(a, 0 )= l , 0^o r^2=-exp^ (c r 2 -4 ) , cr > 2. (9)

We can solve eq (8) by a separation of variables. A general solution for which du/dz remains
finite at x = 0 is

Jo
(10)

where A and B are constants, and g(\) is to be determined from initial conditions. Notice that the
first two terms are solutions to the homogeneous equation obtained by setting du/d£ = 0. Initially
we have

u(z, 0)-A-Bz2 = z I"" g(\)Jl (kz)dk (11)
Jo

where g(k) can be calculated by regarding the right-hand side as a Hankel transform [6]. In this
way we find

g(X) = X f °° /i(A<r)[tt(o-, 0)-A-B<T2]d<r. (12)
Jo
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Hence u(z, Q *s given by [7]

f°° [u(o-,0)-A-B(r2]d(T f°°
Jo Jo

~ £ ° e~ h ( j^ ) [u(<r9 0) - A - Bcr2]da (13)

where II(/JL) is a Bessel function of the first kind, with imaginary argument.

Since

^ (14)

we see that the terms containing B cancel. The constant A can be determined by requiring that
the limiting solution for a —> 0 agree with the known Faxen solution for constant 5 and D. It can
easily be verified that this is equivalent to setting A = l. Hence an expression for u(z, Q is

It will prove convenient for later purposes to perform an integration by parts, noting that h(y)
= dlo(y)ldy. This leads to the expression

u(z, C)=l+2^/2^e-£5r/o(g) [(l-aQe^°>-»-l]d<T. (16)

Differentiation according to eq (6) together with an integration by parts leads to an expression"
for 6{z, 0,

When a = 0 this relation reduces to the known Faxen solution, which will be denoted by 0o(z, £):

We now notice that all of the integrals appearing in the expression for 0(z, £) have the same general
form of an exponential of a quadratic in o% multiplied by the common factor

cr exp L
Hence all of the integrals are expressible in terms of 60 provided that the arguments are properly
chosen. After some algebra it is found that
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where

Simple properties of the solution follow immediately from the representation of eq (19). The
parameter ale which appears in the expression of eq (19) is commonly greater than 10 for values of
D, 5, and co2 (which validate the approximation of eq (2)) and the Faxen approximation. Hence
the exponential terms in eq (19) predominate when

is positive by an order of magnitude greater than el a. When this is the case we have

«)eT]-1 (22)

which defines the behavior of the plateau region. This can also be verified directly from eq (5).
When the quantity of eq (21) is negative by an order of magnitude greater than el a, d(z, £) is effec-
tively equal to zero. The transition region occurs from values of r for which

<23>

Thus, in the limit e = 0 the transition region (from essentially zero to a plateau value) is very sharp,
and for fixed e and increasing a the transition region also becomes sharper, as indeed is well known.
If the gradients are denoted by G(z, Q a n d £o(z, £)» i-e->

then we can write for G(z, £):

F\z, z*,

[ U £ ) + G( n G( °\ (25)

where

F(z, z*9 £9 n= 1 + 1 l^+\)c e-li1-*^]^**, D - ^ ^ o U , Q. (26)

It is possible now to derive successive approximations to 0(z, Q by expanding it in powers of
(e£)1/2. That this is the natural parameter for the expansion will be seen later. Since 0(z, {)
depends only on 0o(z, £) we must first consider the expansion of the latter function for small £.

For small £ the Bessel function 70 [TTZ) has the asymptotic expansion [7]
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(ztr

where

(27)

(28)

Therefore 0o(z, £) n a s t n e expansion

dor
-W-l/2

3ju) I
\ *! / J 2-2

(29)

We now consider the integrals which appear in this series and expand them in powers of (e£)1/2.
To carry out this expansion we write, for fixed u and small £

r(2eQr'2 z-J-rur(2eQr

This can be further transformed by noting the identity

(30)

,31,

Finally, combining eqs (29), (30), and (31) we find that the complete asymptotic expansion of the
Faxen solution can be written as

7-3/2
2 - z

where the Ur(y) are defined by

J y
du.

In particular, the first two terms of eq (32) yield the usual Faxen approximation

' 2 - z N

7= Wo I
V2^ I \

+~ — e
/ 2 \ 2

(32)

(33)

(34)

in which Uo(y) can be expressed in terms of an error function. A complete asymptotic expansion
for 0(z, 0 can now be obtained by combining eqs (19) and (32). Similarly, 30/d(r/ro) is expressible
in terms of 6o(z, 0 and its derivative, Go(z, Q, which has the expansion

Vm/2

f m (2-z\

The lowest order Faxen approximation to 6(z, Q is

(35)

1 -
l - <

(36)
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where OP{Q is the normalized plateau concentration (eq (22)) and </>(/£) = (2 TT)~1/2 I exp (—x2l2)

dx is the complementary error function. To this approximation, the gradient is

d(r/r0)

(37)

where

When a is set equal to 0 eq (37) reduces to the known Faxen solution.
Fujita [2] showed that in his approximation the position of the maximum is given by

rmax = roe
T [1 - a(l - e~% (39)

The result of eq (19) implies that this is modified to

rmax = roe
T[l - a(l - e~T)] [1 + / ] . (40)

The factor / is generally of the order of 0.1 or less and therefore Fujita's result for the position of
the maximum gradient is sufficient for all practical purposes. It also follows that Fujita's calcula-
tions for the height-area ratio are sufficiently good for practical purposes.
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