Adsorption, Desorption, Resorption #### William V. Loebenstein (July 31, 1963) The complete characterization of batch adsorption from solution, desorption, and rolated phenomena have been interpreted in the light of a general equation. The forward and reverse adsorption-rate constants and the adsorptive capacity comprise the only parameters. Where adsorption alone is of importance and the desorption-rate constant can be neglected, a simplified form of the theory results in a special equation which may suffice for most adsorption purposes. In either case, the characteristic parameters are determinable from the data and serve as criteria for comparing similar systems. The theory has been confirmed by the data of various investigators taken from the literature. The parameters derived from column adsorption are in agreement with the corresponding batch-derived parameters. The limitations as well as the capabilities of the theory are presented; but even where deviations from the assumed model exist, the results are useful. #### 1. Introduction In earlier publications [1, 2]1 the basis was established for characterizing adsorption from solution in terms of just two parameters, namely; the adsorptive capacity per gram of adsorbent, q_0 , and the specific adsorption-rate constant, k_1 . The values of corresponding parameters derived from batch and from column adsorption were shown to be in substantial agreement with one another, respectively. The two-parameter equations are based on the assumptions that the adsorption step is monomolecular, irreversible, and rate controlling, Furthermore, the assumption of a uniform surface is implicit in the theoretical treatment, since the differential equations used in the derivations are essentially of the Langmuir type. Although these requirements may not be completely applicable in any given instance, the equations are still useful insofar as they provide an approximation of the characteristic parameters which may not be obtainable by other means. The present paper deals, to a considerable extent, with the treatment of data which fall in this In the more general case where reversibility must be reckoned with, but otherwise subject to the same limitations mentioned, a three-parameter batch adsorption equation has been derived [2] which includes the desorption rate constant k_2 . For the first time a means is afforded for predicting desorption into solvent as well as adsorption from solution with equal facility. Perhaps even more interesting is the phenomenon of resumed sorption or "resorption" following the interruption of an initial adsorption or desorption step. Should an initial adsorption process, for example, be interrupted and the resumption preceded by a deliberate and sufficient lowering of the concentration, the theory predicts a change to desorption in agreement with experience. I Figures in brackets indicate the literature references at the end of this paper. ## 2. Two-Parameter Batch Equation The two-parameter batch adsorption equation previously derived by integrating the irreversible rate equation was shown to be: $$\frac{q}{q_0} = \frac{1 - e^{-\left(\frac{Wq_0}{Vq_0} - 1\right)c_0k_1t}}{\frac{Wq_0}{Vq_0} - e^{-\left(\frac{Wq_0}{Vq_0} - 1\right)c_0k_1t}} \tag{1}$$ where: q=the amount of solute adsorbed per gram of the adsorbent at any time, t; q_o = the maximum value q would have if all of the adsorption sites were filled; c=the instantaneous solute concentration whose initial value is co; W = the weight of the adsorbent; V= the volume of the solution; and k_1 = the specific adsorption-rate constant. Methods are available for obtaining values of the parameters q_0 and k_1 which give an optimum fit of eq (1) to the experimental data in the general case where W, V, c_0 , and t may all vary from point to point. At best, however, they are cumbersome, and shortcut methods will certainly be preferred wherever they can be used. One such method was worked out [2] for the special case where both W/V and c_0 are held constant. Under these conditions g values, g_1 and g_2 , are determined corresponding to times t_1 and t_2 , respectively, such that $t_2=2t_1$. It was then shown that: $$q_{0} = \frac{q_{1}^{2} \left[q_{2} \left(\frac{W}{V c_{0}} \right) - 1 \right]}{q_{1}^{2} \left(\frac{W}{V c_{0}} \right) + 2q_{1} + q_{2}}$$ (2) and $$k_{i} = \frac{\ln \left[\frac{q_{0} - q_{i} \left(\frac{Wq_{0}}{Vc_{0}} \right)}{\frac{q_{0} - q_{1}}{c_{0}t_{1} \left(1 - \frac{Wq_{0}}{Vc_{0}} \right)} \right]}.$$ (3) Use was made of eqs (2) and (3) in an example taken from published data of Dryden and Kay [3] for the adsorption of aqueous acetic acid on a steamactivated coconut carbon. Good agreement was obtained from three independent determinations of q_0 and k_1 . This agreement would not have resulted if the neglected desorption rate constant had been appreciable. Another special case whose derivation and solution are very similar to the aforementioned method occurs when t is constant providing that a second condition is satisfied. This is the requirement that two values of q can be found, say, $q_1[(W/V)_1, (c_0)_1]$ and $q_2[(W/V)_2, (c_0)_2]$ such that $(W/V)_2=2(W/V)_1$ and $(c_0)_2=2(c_0)_1$. Under these conditions the recurring quantity $\frac{Wq_0}{Vc_0}$ which appears so prominently in eq.(1) remains unchanged and it follows that $$q_{0} = \frac{q_{1}^{2} \left[q_{2} \left(\frac{W}{V c_{0}} \right)_{1} - 1 \right]}{q_{1}^{2} \left(\frac{W}{V c_{0}} \right)_{1} - 2q_{1} + q_{2}}$$ $$(4)$$ and $$k_{1} = \frac{\ln \left[\frac{q_{0} - q_{1} \left(\frac{Wq_{0}}{Vc_{0}} \right)_{1}}{q_{0} - q_{1}} \right]}{(c_{0})_{1} t \left(1 - \frac{Wq_{0}}{Vc_{0}} \right)_{1}}$$ (5) ## 3. Three-Parameter Equation for Batch Adsorption It has also been shown [2] that where it is desired to retain the desorption rate constant, k_2 , in batch adsorption, the integrated equation takes the form: $$\frac{(M-N)-q}{(M+N)-q} = \frac{M-N}{M+N} e^{-2} \left(\frac{W}{V}\right)^{Nkd}$$ (6) where M and N are defined as: $$M = \frac{V}{2W} \left[\frac{k_2}{k_1} + c_0 \left(1 + \frac{Wq_0}{Vc_0} \right) \right] \tag{7}$$ $$M^2 - N^2 = q_a \left(\frac{Vc_0}{W}\right)$$ (8) Here again the parameters q_0 , k_1 , and k_2 can be readily estimated from a single batch adsorption experiment in the special case where q is determined as a function of t. The solution concentration is measured when t takes on the values²: i, 2i, j, and 2j. By using the same type of reasoning which led to eqs (2) and (3) from eq (1), it is possible to show from eq (6) that $$2q_i^2M - (2q_i - q_{2i})(M^2 - N^2) = q_i^2q_{2i}. (9)$$ Equation (10) can be written by inspection, $$2q_1^2M - (2q_1 - q_{2i})(M^2 - N^2) = q_1^2q_{2i}$$ (10) since it differs from eq (9) only in the subscripts. Equations (9) and (10) constitute a set of simultaneous equations in two unknowns, M and (M^2-N^2) , for which the solution is easily obtained. Once these quantities have been found, (M+N) and (M-N) can readily be solved for use in eq (6). Back substitution of one experimental point is sufficient for the determination of k_1 . Equation (6) can then be used to predict q for all values of t. In the event that only the value of q_0 is desired In the event that only the value of q_0 is desired in a given instance, it is only necessary to determine (M^2-N^2) from eqs (9) and (10) for use in eq (8). The quantity (M^2-N^2) is given (according to Cramer's rule) by the ratio: Consider the example (Dryden and Kay's Run #201) already cited for the two-parameter equation for purposes of illustration and comparison. The amounts of acetic acid adsorbed per gram of charcoal are repeated in table 1 corresponding to the measured solution concentrations. If, arbitrarily, i and j are taken as 10 min and 15 min, respectively, it follows that $$q_i = 0.3533$$ $q_j = 0.4033$ $q_{2i} = 0.4667$ $q_{2j} = 0.5033$. 2 Substitution of these values in eqs (9) and (10) results in $M^2-N^2=0.63965$ so from eq (8), $$a_0 = 0.627 \text{ meg} \cdot \text{g}^{-1}$$. To continue with the illustration, M=0.848. Thus, M-N=0.566 and M+N=1.130. By substituting q_0 and M back into eq. (7), it can be verified that $k_2/k_1=0.00147$. This confirms that the desorption rate constant is, indeed, very small compared with k_1 . One of the adsorption points, say, q=0.3533 for t=10 may now be substituted back in eq. (6) to solve for k_1 . The two rate constants are $$k_1=3.57 \text{ ml·meq}^{-1}\cdot\text{min}^{-1}$$ $k_2=0.00524 \text{ min}^{-1}$ ^{&#}x27;Since the three independent parameters must be evaluated from the experimental points, no less than three points are required. The use of four points affords a degree of flexibility in the choice of deta. The only restriction is that $i\neq j$, although it is parmissible for 2i-j. In the latter instance, the minimum of three points would, of course, result. and eq (6), in this particular instance, reduces to: $$\frac{0.566-q}{1.130-q} = 0.501 e^{-0.0604t}.$$ TABLE 1. Data of batch adsorption Run #201 (Dryden and Eay) Acette acid: V=100 ml c:=0,0306 meq·mi-1 Cocoput charcoal: H=2.0 g Sieve plat: (5 on 10) | Temperature; 30 °C | | |------------------------|--| | Stirring rate: 400 spm | | | ŧ | , | 4 | | | | |--|--|---|--|--|--| | 70.0
15.0
20.0
30.0
45.0
60.0 | meq-mt-1
0,0200
0185
0166
0155
0147
0140 | 0. 9588
. 4033
. 4887
. 5033
. 5300
. 5533 | | | | It should be pointed out that the value of 0.627 obtained here for q_0 is about 10 percent higher than the corresponding value previously cited [2] for the simpler case where irreversibility was assumed. This (present) value is, moreover, consistent with independent q_0 determinations of 0.666 and 0.641 for combinations of
i=15 with j=2i=30 and for i=10 with j=30, respectively. The value of 3.57 for k_1 compares well with the corresponding value from the two-parameter equation. ## 4. Application of Batch Adsorption Theory for Different Values of co A 1944 publication by W. G. Burgers [4] afforded the opportunity to test the applicability of eq (1) and/or eq (6) to the case where the initial concentration differed from batch to batch. Acetic acid was adsorbed on pulverized "Norit" charcoal at 25 °C with continuous agitation for periods of 2 hr. The volume of solution was held constant at 50 cm3 while the weight of the carbon and the initial concentration of acid were varied in accordance with table 2 which also lists the corresponding values for the amounts of acetic acid adsorbed per gram. The experimental data of table 2 are reproduced directly from the first two columns of Burgers' Tableau I, Tableau II, et Tableau III. In the estimation of q₀ and k₁ through the appli- cation of eqs (4) and (5), the value of 2.024 mM·g⁻¹ was selected for q_1 corresponding to $(W/V)_2 = 0.04$ g·cm⁻³ (i.e., $W_2 = 2.0$ g) and the corresponding value of $(c_0)_1$ was, consequently, 0.3779 mM·cm⁻³. No measurement was available for q_1 corresponding to 0.1890 mM·cm⁻³ for $(c_0)_1$ and $(W/V)_1 = 0.02$ g·cm⁻³. However, a conventional plot of the data by Burgers showed very little scatter of the points, hones on showed very little scatter of the points, hence an interpolation was made between the close neighboring values resulting in $q_1 \approx 1.688 \text{ mM} \cdot \text{g}^{-1}$. Table 2. Batch adsorption data for acetic acid on "Norit" (W. G. Burgers) Each determination was earried out at 20 °C with V-30 cm² and t-2.0 hr, but with initial concentrations and adsorbent weights as indicated. | | | € foten | | |-----------------------------|------------------------------|----------------------------|------------------| | . | W=1.0 g | W=2.0 g | 77′=3.0 ≵ | | mM-cm=² | mM-g-1 | mM·g=' | #M-e⁻¹ | | 0, 0106
. 0323
. 0489 | 0. 354
725
908 | 0, 224
. 551
. 787 | | | . 0546
. 0648
. 0981 | 1. 080
1. 19 0 | .876 | 0.885 | | . 0917
. 1091
. 1796 | 1, 240
1, 654 | 1. 194
1. 514 | 1, 056
1, 896 | | . 2189
. 2689
. 3146 | 1. 777
1, 869
1, 957 | 1, 646
1, 780
1, 896 | 1.671 | | -3779 | 3.082 | 2.024 | 1.950 | Equation (4) yielded $q_0 \approx 2.1$ and this was retained for use with the three-parameter equation. While a somewhat lower value than 6.0 was obtained from eq (5) for k_1 , this value was tested along with an estimate for k_2 such that $k_2/k_1 \approx 0.02$. Although lengthy optimizing techniques are available for obtaining a "best" fit of the parameters in eqs (6-8), no improvement was sought in this application. The purpose was to show that the agreement is reasonably close between calculated and experimental values of q despite the use of these rounded off first estimates of q_0 , k_1 , and k_2 . This comparison is shown in the last two columns of table 3. The first two columns identify the points, while the intermediate columns list the values computed for the component parts of eqs (6-8) for each determination. Table 3. Adsorption calculations from the data of table 2 Estimated values of 2.1, 6.0, and 0.02 for the parameters q_0 , k_1 , and k_2k_1 , respectively, were used in the fitting of eq. (6). | | | | | ~ | | | | | |---------|-------------|----------|---------|---------|----------------------|--------------------------------|----------|-------------| | ej | ₩ /V | M'-N2 | М | M-N | M+N | $2\left(\frac{W}{V}\right)Nks$ | (finata) | (feps) | | mM-cm-¹ | g-cm-1 | | | | _ | | ահազանագ | mM·g−! | | 0, 2588 | 0.060 | 9, 0673 | 9, 5889 | 1, 8230 | 4. P 4 06 | 2, 237 | 1.60 | 1. 871 | | . 1790 | .080 | 6,286 | 2,715 | 1, 677 | 3, 749 | 1,492 | 1.45 | 1.396 | | . 8779 | .060 | 13, 2258 | 4, 3648 | 1.961 | 6, 777 | 3, 476 | 1.91 | 1.850 | | .0648 | .040 | 8, 8768 | 2, 108 | 1.079 | 3, 127 | 0.983 | 0.78 | 0.876 | | 8146 | .040 | 16, 617 | 5, 232 | 1.937 | 8, 527 | 8,168 | 1.67 | 1.898 | | . 2188 | ,010 | 11, 487 | 4, 035 | 1.843 | B. 225 | 2, 102 | 1.66 | 1.646 | | .0489 | . 020 | 6.1346 | 2,773 | 1. 175 | 4.871 | 0. 787 | 0.72 | 0.908 | | . 2188 | .020 | 22, 074 | 7.490 | 1.891 | 12, 149 | 3.482 | 1. 75 | 1.777 | | . 0881 | . 0/20 | 9.251 | 3,752 | 1.534 | 6.950 | L 055 | 1.11 | 1.199 | | | l | 1 1 | | | | I | | l | # 5. Analysis and Comparison of Parameters from Column and Batch Adsorption An example has already been given in an earlier paper [2] of the application of the present adsorption theory to a batch adsorption run described by Dryden and Kay [3]. That run was part of a wealth of experimental data contained in the Ph.D. Thesis of C. E. Dryden [5]. An interpretation of the results of that data in the light of the present theory can now be readily made. Dryden's experiments consisted of some 20-odd column adsorptions (static bed experiments), a somewhat shorter series of column desorptions, nearly 20 batch adsorptions, and 7 batch desorptions. All runs were carried out at 30 °C using acctic acid together with a steam-activated coconut carbon. In the column adsorption experiments, a 4-fold variation in column height was used from run to run. Extreme values of volume-flow rate varied over a 20-fold range. Four U.S. Standard sieve sizes of charcoal were used ranging from (8 on 10) to (40 on 60). Two levels of initial acetic acid concentration were employed; namely, 0.10 N and 0.31 N. In the batch adsorption experiments, the rate of agitation was varied from 0 to 400 rpm of magnetic stirring. The sieve fractions range from (8 on 10) to (80 on 100) in five steps. Water-wetted charcoal was compared with the customary initially dry material. The two levels of initial acetic acid concentration used were 0.03 N and 0.10 N. #### 5.1 Parameters Derived from Column Adsorption Runs For each of the column adsorption experiments a semilogarithmic plot of $(c_0/c)-1$ against throughput, y, was made in order to determine the characteristic parameters, q_0 and k_1 . This is in accordance with the equation $$\ln\left(\frac{c_0}{c}-1\right) = \frac{k_1q_0x}{\dot{V}} - \frac{k_1c_0y}{\dot{V}} \tag{11}$$ which had been derived and tested in earlier work [1]. In eq (11), \dot{V} is the volume-velocity; x is the mass of adsorbent upstream from the point at which effluent is collected; and y is the throughput or cumulative volume of solution which has passed that point since the start. The initial (low throughput) points of the curves were not used in fitting to the linear requirement of eq (11). The substitution of solution for the water used to settle the columns is not, strictly speaking, a piston-displacement-like process. Consequently, the early values of c should be abnormally low resulting in initially high values for $(c_0/c)-1$. This phenomenon has been observed in other work [2], as well. The values of the parameters q_0 and k_1 consequently determined from the final points of each plot are shown in table 4 along with the conditions applicable to each run. Table 4. Characteristic parameters determined from column adsorption experiments Results are based on the static-bed data (C. E. Dryden) for acotic acid on coconut, charcoal at 30 °C fitted to eq (11). | Run
No. | Sie ve
sité | G | Ŷ. | I | ga . | tı | |----------------------------|--|--|---|--|--|---| | 18
19
20
21
38 | (8–10)
(8–10)
(8–10)
(8–10)
(8–10) | 18eq·ml ⁻¹
0. 10
. 10
. 10
. 10
. 10 | ##-141#-1
21.8
55.0
8.99
3.32
4.88 | 9
59. 8
59. 2
18. 8
18. 9
59. 4 | 3429-9-1
0. 850
. 676
. 908
1. 176
1. 333 | mi-meg-1-mfm=1
0.769
- 575
- 677
- 379
- 396 | | 53 | (12-18) | . 10 | 9, 18 | 18. 1 | 1, 259 | 1. 124 | | 55 | (12-18) | . 10 | 3, 49 | 18. 5 | 1, 330 | 0. 967 | | 56 | (12-18) | . 10 | 22, 9 | 18. 4 | 1, 023 | 1. 845 | | 57 | (12-15) | . 10 | 23, 2 | 59. 1 | 1, 363 | 1. 269 | | 58 | (12-18) | . 10 | 64, 2 | 59. 1 | 1, 057 | 2. 259 | | 6L | (12-18) | .\$1 | 3-81 | 17. 9 | 2. 100 | 0.664 | | | (12-18) | .\$1 | 45-4 | 80. 8 | 1. 279 | .690 | | 75 | (24–30) | . 10 | 37. 7 | 56. 8 | 1, 542 | 2. 798 | | 76 | (24–30) | . 10 | 57. 8 | 17. 0 | 1, 838 | 5. 082 | | 77 | (24–30) | . 10 | 25. 2 | 17. 8 | 1, 625 | 3. 069 | | 78 | (24–30) | . 10 | 9. 53 | 16. 9 | 1, 583 | 2. 628 | | 78 | (24–30) | . 10 | 64. 6 | 53. 6 | 1, 368 | 3. 115 | | 83 | (40-40) | . 10 | 13. 9 | 15.4 | 1, 476 | 11, 569 | | 84 | (40-60) | . 10 | 66. 6 | 15.5 | 1, 40 6 | 22, 83 | | 90 | (40-40) | . 10 | 25. 3 | 15.6 | 1, 44 3 | 9, 673 | | 01 | (40-20) | . 31 | 12. 1 | 12.6 | 2, 210 | 3, 842 | | 02 | (40-20) | . 31 | 63, 6 | | 1, 935 | 5, 897 | #### a. Agreement With Theory The most significant result which is immediately evident from table 4 is the degree of agreement among the computed values of q_0 . The spread in sieve sizes corresponds to a range in mean particle diameter from about 360 to nearly 2200 microns. The initial concentration varies over three-fold. The velocity of flow ranges from 3.32 ml·min⁻¹ to 64.6 ml·min⁻¹. The weight of adsorbent varies between about 15.5 g and 60 g. Yet, notwithstanding the interplay of these factors, for the results of the 18 runs at which c_0 =0.10, there yielded a mean q_0 value of 1.264 meq·g⁻¹ with a standard deviation of 0.263. #### b. Anomalous Effects A closer scrutiny of table 4 discloses several interesting facts. The excellent data make it possible to discern "second order" effects which cannot be
interpreted in the light of the present simplified theory. A comparison of Run #55 with #60, of #83 with #91, and of #84 with #92 suggest that the effect of a three-fold increase in the initial concentration, c_0 , other things being equal, resulted in an increase in q_0 of about one-and-one-half-fold. This can readily be explained as a departure from idealized Langmuir behavior. The Langmuir model implies a uniform surface. If this is only approximated, then the number of adsorbing sites (a measure of q_0) which could be capable of participating in the case of a much greater initial concentration of solute would include some portions of the surface requiring higher activation energies. If, moreover, adsorption proceeded more slowly at these latter sites, it would result in a lower overall k_1 value. Flours 1. Dependence of parameters on particle size. The parameters were computed from column adsorption. Each point on both curves represents the average of three to five individual determinations. Runs with essentially the same initial concentrations were used, namely, 0.10 meq-ml $^{-1}$ Another "second order" effect appears to be present in considering flow rates. Other things being equal, an increase in velocity results in a lower value for q_0 and a higher value for k_t as can be seen from table 4. This behavior would be expected based on diffusion considerations which have been entirely neglected in the development of the present simplified theory. The greater the flow rate becomes, the more difficult it is to insure equal access of solute to all of the absorbing sites. Thus, the computed value of q_0 based upon experiments at the higher flow rates would be underestimated. This reasoning is consistent with overestimated values for k_t . The variation in sieve size (particle diameter) has almost a negligible effect upon q_0 although its influence on k_1 is quite pronounced. These comparisons are portrayed quite strikingly in figure 1. Phenomena such as the very small dependence of q_0 on particle size are of particular interest in confirming the physical significance of the derived parameters. Capacity for adsorption, like surface area, is a quantity measurable only at the molecular level. The process of subdividing a highly porous particle creates very little additional surface not already accessible to a molecule. #### 5.2 Parameters Derived From Batch Adsorption Runs The quantities q_0 and k_1 were calculated from the data of each of the batch adsorption runs reported. In general, eqs (2) and (3) were employed for this purpose, the fact having been established that the desorption rate constant k_2 was negligibly small compared with k_1 . As an example to illustrate the procedure, the data and calculations for Batch #221 are typical. These data are given in table 5. The 30 and 60-min points corresponding to 0.245 and 0.258 meq.g⁻¹ for q_1 and q_2 , respectively, were selected for use with eqs. (2) and (3) to determine q_0 and k_1 : $$q_0 = \frac{0.060[0.258(3.268) - 1]}{0.060(3.268) - 0.490 + 0.258} = 0.262 \text{ meq g}^{-1}$$ $$k_1 = \frac{\ln\left[\frac{0.262 - 0.245(0.8562)}{0.262 - 0.245}\right]}{(0.0306)(30)(1 - 0.8562)} = 8.50 \text{ml·meq}^{-1} \cdot \text{min}^{-1}.$$ If one had chosen the 15 and 30-min points instead, the computation for q_0 would have been: $$q_0\!=\!\!\frac{0.0493[0.245(3.268)\!-\!1]}{0.0493(3.268)\!-\!0.444\!+\!0.245}\!\!=\!0.259\;\mathrm{meq\cdot g^{-1}}$$ In general, the greater time intervals were consistently chosen and were considered most reliable. Table 5.—Data of batch adsorption Run #221 (C. E. Dryden) Transperature: 30 °C Acetic acid: V=100 ml $c_1=0.0305$ meq-miCoconut charcosl: W=10.0 g = - = = Bieve size: (8 m 10) | Stirrfu | Stirring rule; 400 run | | | | | | |---|--|--|--|--|--|--| | 4 | Е | 4 | | | | | | min
10, 0
15, 0
20, 0
30, 0
40, 0
70, 0 | meq-mi ²⁻³ 0.0100 0094 0075 0061 0063 0068 0044 | met-0-1 1. 206 222 231 245 233 238 202 206 | | | | | While it is possible to utilize eqs (9) and (10) for determining the parameters in accordance with the general adsorption equation as previously illustrated, this practice is only required when the desorption rate constant, k_2 , is appreciable relative to k_1 . The simpler method shown here will be preferred wherever it can be used. In like manner, values for q_0 and k_1 were determined for all of the batch experiments. These results are grouped so as to bring out most effectively the possible influence of each of the factors studied such as rate of stirring, sieve size, etc. #### a. Initially Dry Versus Prowetted Adsorbent A few batch runs were described in Dryden's Thesis [5] in which the adsorbent had been presoaked in water prior to contact with the acetic acid solution. It was hoped to ascertain whether presoaking had any effect upon the adsorption. It now appears clear, in light of the present theory, that the prewetted adsorbent gave rise to q_0 and k_1 values which fell in line with those from the initially dry adsorbent. These results are shown in table 6. The volume of the solutions were 100 ml and the initial concentration of acetic acid was 0.03 meq ml^{-1} . There was a slight dilution effect caused by the water contained in the presonked samples as reflected by the increase in V and decrease in c_0 . However, this was limited to 10 percent in all cases and is seen to have a minor effect at most compared with the influence of changes in W. The values of q_0 and of k_1 , of course, should be constant if the ideal conditions assumed in the derivation of the theory were closely approximated. The observed trend, attributable to the increase in the W/V ratio, is undoubtedly caused by a departure from these conditions. Table 6. Batch comparisons: the consequences of prowetting and the effect of varying the amount of adsorbent Store size: (8 on 19) Etirring rate: 400 rom | | Temperature: 30 °C | | | | | | | | | |--|--|----------------------------|---|--|---|--|--|--|--| | Run
No. | Initial
State | w | v | G1 | Q1 | Řι | | | | | 222
236
201
238
220
221 | dry
wet
dry
wet
dry
dry | 2 48
3.0
4.01
1.0 | ###
100
108
100
107
100
100 | 100 miles
100 mi | ##47-0-1
0, 726
- 594
- 555
- 474
- 421
- 282 | 907-1904.0-1
2. 10
3. 08
3. 74
4. 45
5. 26
8. 60 | | | | #### b. Effect of W/V The effect of W/V is equivalent to the effect of W in this work since V was held constant at 100 ml. (Runs #236 and #238, alone, had slightly higher values because of presoaking.) Tables 6 and 7 show the results of increasing adsorbent weight. The essential distinction between the two tables is the sieve sizes although these differences are not pronounced because the sizes are close together. A more searching comparison of the effect of sieve sizes
is taken up later. The important point here is that the value determined for the parameter q_0 decreases with increasing W. Both tables confirm that a 10-fold change in W results in about a 3-fold change in q_0 . The parameter k_1 is also affected by a change in W. As q_0 decreases, k_1 increases. It is about twice as sensitive as q_0 , moreover, to changes in W. Table 7. Batch comparison: effect of W/V V=100 ml co=0.03 pocq-pol~1 Stirring rute: 400 rpm Bieve sise: (12 on 18) Temperature: 30 °C | Ron No. | W | 40 | k, | |------------------------------|---------------------------------|--|---| | 217-8-9
206
210
218 | \$
1.0
3.0
5.0
10.0 | tated of 1
10, 672
562
462
271 | ## mey 3, min 4
2, 64
4, 77
6, 19
15, 9 | #### c. Effect of Stirring Rates The rate of stirring was varied in three steps from 0 to 400 rpm within each of two sets of experiments. The sets differed from one another in regard to sieve size. The results are shown in tables 8-a and 8-b. Within each set there is no apparent correlation of parameters with stirring rate. The observed spread in values of g_0 are entirely within experimental error. The same is true for k_1 , except perhaps for the unusually high value obtained in Run #209. No reason can be found for this singular anomaly. TABLE 8. Batch comparison: effect of stirring rate | 97 = 100 mt
co=9.03 meq∙π | 17 = 100 mt
c ₀ = 9.03 meq mt=2 | | | og
mature: 30 °C | |------------------------------|---|-------------------------|--|--| | | Run No. | Stirring
rate | Q» | k, | | | | 8jeve s | 8-a
dse: (12 on 1 | <u>'</u> | | | 206
207
206 | 1 pm
0
120
400 | тиру ф ⁻¹
0, 822
, 841
, 662 | m²-may-1-min-1
2,97
6,16
4,77 | | | | | 8-b
sizet (8 on 1) | 0) | | | 203
209
201 | 0
150
400 | 0. 590
- 498
- 365 | 1, 26
14, 8
3, 74 | #### d. Effect of Initial Concentration The influence of c_0 on the results of batch adsorption are strikingly similar to those for column. Although only two batch runs were made at c_0 =0.10, these are sufficient for comparison purposes. Tables 9-a and 9-b compare these batches (Runs #202 and #215) with other batch runs which differed only with respect to initial concentration. The q_0 values of 1.425 and 1.201 meq.g⁻¹ obtained in Runs #202 and #215, respectively, compare well with 1.264 meq.g⁻¹, the average of the 18 column runs previously computed for the same initial concentration. While k_1 seems to be more sensitive to variations in conditions than does q_0 , its magnitude is also consistent with the corresponding column results. It is interesting that a three-fold increase in initial concentration from 0.03 to 0.10 meq.ml⁻¹ (as seen in tables 9-a and 9-b) resulted in nearly a three-fold increase in q_0 . However, at higher initial concentrations the effect was much less pronounced. This can be seen from table 4 by comparing Run #55 with Run #60; Run #83 with Run #91; and Run #84 with Run #92. In each of these comparisons where factors other than c_0 were essentially constant, the initial concentration increased from 0.10 to 0.31 meq.ml⁻¹; yet the increase in q_0 was limited to about 50 percent. TABLE 9. Batch comparison: effect of c. V=100 mt Temperature: 30 °C Run No. | co | g* | k_1 W=3.0 g | Sleve size: (8 on 10) 201 | 0.03 | 0.57 | 3.74 210 | 0.03 | 0.462 | 5.19 210 | 0.03 | 0.462 | 5.19 215 | .10 | 1.201 | 0.505 The influence of particle size on the parameters derived from the batch adsorption experiments confirms the findings of the column runs. Very little, if any, change in q_0 is evident from table 10-b, although the sieve size ranges in five steps from (8 on 10) through (80 on 100), other factors being constant. At the same time, however, the accompanying value of k_1 increased markedly with decreasing particle size. Tables 10-a, 10-c, and 10-d show the same lack of dependency of q_0 although only two runs were available for comparison in each case. two runs were available for comparison in each case. In a preceding paper [2], the adsorbent involved was a service bone char which had been subjected to numerous cycles of adsorption, partial desorption, drying, and kilning. Its prior history may have been reflected in its dependence of q_0 on sieve size in contrast with the present study. This very point was discussed in some detail at that time. Table 10.—Batch comparison: effect of particle size 4=0.09 meq. ml⁻¹ Stirring rele: 400 ppot | Temperature: 20°C | | | | | | | |---------------------------------|--|--|--|--|--|--| | Run No. | Siero stac | , & | #L | | | | | | 10- 6 | W=1.0 | 5 | | | | | | } | mey. g−1 | ու]. ապ-ե. ամա-ե | | | | | 222
217-8-9 | ((8 on 10)
(12 on 16) | 0.72fl
.672 | 2.19
2.64 | | | | | | 10-1> | W=3.0 | <u> </u> | | | | | 201
206
212
213
214 | (S on 10)
(12 on 16)
(24 on 30)
(40 on 60)
(80 on 100) | 0. 585
. 582
. 608
. 587
. 863 | 3.74
4.77
15.22
71.5
110.5 | | | | | | 10-e | W=5.0 | 2 | | | | | 220
210 | (8 on 10)
(12 on 16) | 0, 421
, 482 | 5, 26
5, 19 | | | | | | 10-d | W=10.0 | Ę. | | | | | 921
216 | (8 on 10)
(12 on 16) | 0, 262
, 271 | 8.30
13.9 | | | | ## 6. Adsorption—Desorption—Resorption Much has been written in the preceding sections of this paper regarding the limitations of the present theory. Examples have been given and comparisons made showing the extent of departure from ideal conformity with the model assumed, although plausible explanations were offered for most of the observed discrepancies. Despite these shortcomings, the theory has much to recommend it including applications which have not heretofore been discussed. One such application is in desorption. It is clear, of course, that the simplified two-parameter equation cannot be used in this application, since it neglects entirely the desorption rate constant, k_2 . Furthermore, it would be extremely desirable to be able to use only one equation for both adsorption and desorption. The difference between the two processes should be reflected only in the boundary conditions. In the derivation of the adsorption equation the initial conditions required all of the adsorbable species to be in the solution phase. Conversely, for desorption the adsorbable species initially would be entirely in the adsorbed phase. To proceed one step further, it might be stipulated that both adsorption and desorption should be considered, from this point of view, as special cases of an initial condition where some of the adsorbable species may exist in solution while the remainder is adsorbed. The process which would subsequently take place might either be adsorption or desorption, depending upon the levels of the interrelated variables. These various concepts may be reconciled by use of the term "resorption" to define this resumed sorption process. In the original derivation of eq (6), the quantity c_0 was defined as the concentration of the adsorbable solute before any adsorption had taken place. For the general case (applicable as well in the origina) case), c_0 should be redefined as follows: c₀=the concentration that would exist at any time if all of the adsorbable species were assumed to be in the solution phase. Two new symbols can now be defined as c_1 and q_1 to correspond to the concentration and the amount adsorbed per gram, respectively, which exist at the onset of a sorption process. Since the conservation equation holds under all conditions, it follows here that $$c_0 = \frac{W}{V} q_1 + c_1 \tag{12}$$ and the general form of the integrated equation becomes $$\frac{(M-N)-q}{(M+N)-q} = \frac{(M-N)-q_{\rm I}}{(M+N)-q_{\rm I}} e^{-2\left(\frac{W}{V}\right)Nk_{\rm I}t} \qquad (13)$$ while M and M^2-N^2 retain their definitions as given by eqs (7) and (8), respectively. It is seen that the only difference between eq (13) and eq (6) is the appearance of q_1 in numerator and denominator of the coefficient of c. Reference to eq (12) confirms that for an adsorption process $q_1=0$ and $c_0=c_1$. Under these conditions eq (13) reduces to eq (6) as a special case. For a desorption process where the adsorbent containing adsorbate is added to pure solvent, c_1 vanishes and eq (12) shows that $Vc_0/W=q_1$. Obviously, in any case, it is always true that $q^0 \ge q_1$. Since q_1 is different from zero in this instance (desorption), eq (13) would apply. #### 6.1. Description The consequence of subtracting q_i from the numerator and denominator of the coefficient of ϵ in eq (13) can impart a negative value to this factor which immediately identifies the process as one of desorption. It is instructive to consider the batch desorption data of table 11 as an example of the use of eq (13) in this capacity. The table contains the data collected by Dryden in Run #224. Amount of acetic acid preadsorbed on the char- $$q_1 = \frac{7.26}{5.221} = 1.391 \text{ meq} \cdot \text{g}^{-1}; c_0 = \frac{7.26}{102.82}$$ $=0.07061 \text{ meq} \cdot \text{ml}^{-1}$. While it is possible, analytically, to solve the desorption equation using a method based on the same principles as in the case of adsorption, it is considerably more involved. It is extremely sensitive both to the accuracy of each of the three or four measured points used, as well as to the slightest departure from the assumed model. For these reasons the usefulness of this method for determining the parameters is purely academic. Table 11. Data of batch desorption Run #224 (C. E. Dryden) Acetic sold:
Stirring rate: 400 spm. Coconut charcos): Sieve size: (8 og 10) | Tel | Temperature: 80 °C | | | | | |---|--|--|--|--|--| | t | c | ý | | | | | #+0000050000000000000000000000000000000 | Mag - m]-1
 0 付付
 0 付付
 0 付
 | may or 1
1, 190
1, 145
1, 058
1, 059
0, 989
984
987
849
849
841
802 | | | | For the example used in this illustration, a reasonably fair agreement with the desorption data can be obtained using the approximate values: > $q_0 = 2.0 \,\mathrm{meg \cdot g^{-1}}$ $k_1 = 1.0 \,\mathrm{ml \cdot meg^{-1} \cdot min^{-1}}$ $k_2 = 0.045 \, \text{min}^{-1}$ It is noteworthy that the magnitude of each of these parameters is consistent with corresponding values derived from adsorption. Equation (13) can now be evaluated. It is first determined by eq (7) that M=2.138 under the conditions of the experiment. Next, it is ascertained by use of eq (8) that N=1.338. The coefficient of t in the exponent of eq (13) can now be determined as well as the factor: $$\frac{(M-N)-q_I}{(M+N)-q_I}.$$ Accordingly, the desorption equation reduces to: $$\frac{0.800 - q}{3.476 - q} = -0.283 \ e^{-0.186t}.$$ It can be seen that as t becomes large, the right side of the equation approaches zero. Therefore, the limiting value of q must be 0.800 in agreement with table 11. At the other extreme the value of q predicted for 1 min is 1.33 compared with 1.190 as seen from the table. The remaining desorption experiments reported by Dryden [5] yield results in substantial agreement with the example given here. #### 6.2. Resorption A. The remarkable versatility of eq. (13) cannot be fully appreciated until some examples of resorption are considered. Fortunately, it is not necessary to redesign additional experiments to illustrate these applications. For the first example, consider desorption Run #224 just discussed. The desorption equation predicts q=0.81 meq g^{-1} for t=30 min. Suppose that after desorption had progressed for 10 min, the process were halted by physically separating the adsorbent from solution for an indefinite period of time. Ultimately, adsorbent and solution could be recombined, thus permitting the desorption process to be resumed. Reference to table 11 discloses that when t=10 min, 0.912 meq g^{-1} is the observed value of q which, consequently, would become the new value for q_1 in the resorption process. Neither M nor N would change, since the weight, volume, concentration, etc., were not altered. The new coefficient of the exponential in eq (13) would be: $$\frac{0.800 - 0.912}{3.476 - 0.912} = -0.0437$$ while the only change in the exponent, itself, would be the substitution of (t-10) for t. Almost by inspection, therefore, the new resorption equation could be written: $$\frac{0.800-q}{3.476-q} = -0.0437 \ e^{-0.135(t-10)}.$$ The 30 min point is again calculated to be 0.81 meq·g⁻¹, in agreement with the original desorption equation. The same treatment can be applied to interrupted adsorption. Consider the illustration given earlier in connection with table 1. If the adsorption had been interrupted after having been allowed to proceed for, say, 20 min, and the amount adsorbed per gram at that time were considered the new initial conditions; what would the resultant resorption equation become? Again, M and N would be unchanged, but now q_t (instead of being zero as at the beginning of the original experiment) would take on the new value of 0.4667. Immediately, the resorption equation in that instance could be written: $$\frac{0.566-q}{1.130-q} = +0.150 \ e^{-0.0604(t-20)}$$ where the coefficient +0.150 is determined from $$\frac{0.568 - q_1}{1.130 - q_1}$$ according to eq (13). The fact that the coefficient 0.150 remains greater than zero shows that the resorption in this case is an adsorption process. If after 20 min in this same illustration, the solution had been diluted by adding water until its volume, V, became, say, 500 ml the situation would have changed considerably. While q_1 would still be 0.4667, the initial concentration c_1 would now become (0.0166)/5 or 0.00323 meq·ml⁻¹. The new value of c_0 according to eq (12) would be 0.00613. It would now be possible to recompute M from eq (7) and then to redetermine N from eq (8). The new values would be M=0.947; N=0.506. The resorption equation would then reduce to $$\frac{0.441 - q}{1.453 - q} = -0.0264e^{-0.0217(t-20)}$$ and since the coefficient is now negative, the resumed process would have changed from adsorption to desorption. Clearly, if the degree of dilution had been but slight, the resorption would have continued as an adsorption process but to a diminished extent. It is instructive to select the final illustration from an experiment cited by Burgers [4] in referring to a paper by Freundlich [6] published nearly 60 years ago. Freundlich compared two batch adsorption runs using 1g of blood charcoal as the adsorbent in each run and acetic acid as the adsorbate. The second run used twice the initial concentration, but only half of the volume. However, after a reasonably long period of time, the second batch was diluted with an equal volume of water and stirring was continued for an additional hour-presumably long enough to re-establish equilibrum. Both runs ended under comparable conditions, yet the final solution concentration was slightly lower in the second experiment than in the first. Freundlich ignored the difference and used the illustration to prove the reversible nature of adsorption. It should be possible in light of the present theory to re-examine the data quantitatively in an attempt to account for the observed discrepancy. Freundlich's measurements are shown in table 12. For his first batch, the initial value of c was also c_0 , since all of the acetic acid was in solution. The final condition corresponded to a q value of 0.802 meq·g⁻¹ as indicated in the last column of table 12. In his second batch before dilution, c_0 was 0.1376 meq.ml⁻¹ while after dilution, it reverted back to 0.06880 meq·ml⁻¹. The final concentration of the second batch after dilution corresponded to q=0.816 meq·g⁻¹. If the present theory applies to Freundlich's experiment, it ought to be possible to assign reasonable values to the three parameters, q_0 , k_1 , and k_2 , consistent with results already discussed for similar systems under substantially the same conditions. If it is estimated that $$q_0 = 1.07 \text{ meq} \cdot \text{g}^{-1}$$. $k_1 = 30.0 \text{ ml·meq}^{-1} \cdot \text{hr}^{-1} (0.5 \text{ ml·meq}^{-1} \cdot \text{min}^{-1})$ $\frac{k_2}{k_1} = 0.02 \text{ meq·ml}^{-1}$, the sorption equations applicable to both batches are determined as follows: TABLE 12. Freundlich's experiment | | w. | v | t l | c | e e |
---|----------------------|---------------------------|----------------------|-------------------|----------------| | | σ | XII. | Adr | 38.49.19 € | meq.g-1 | | First baten
Initial state
Final state | 1. 0
1. 0 | 100, 0
100, 0 | 0
20.5 | 0,06880
.06078 | 0
0.802 | | Second batch
Before dilution:
Initial state | 1.0 | 50.0 | 0 | . 1376 | | | Final state After dilution: Initial state Final state | I. 0
1. 0
1. 0 | 50, 0
100, 0
100, 0 | 21.0
21.0
22.0 | , 0064 | ()
(0,616 | For the first batch: $$M \!\!=\!\! \frac{100}{2} \! \left[0.02 \! + \! 0.06880 \left(1.000 \! + \! \frac{1.00 \! \times \! 1.07}{100 \! \times \! 0.06880} \right) \right] \!\! = \! 4.975$$ and $$M^2-N^2=(1.07)(6.880)=7.362$$ so, $N=4.170$ hence. $$\frac{M-N}{M+N} = +0.0880.$$ Finally, the adsorption equation takes the form: $$\frac{0.805 - q}{9.145 - q} = 0.0880e^{-2.5026}$$ which may be solved for q when t=20.5 hr to give q=0.805 meq.g⁻¹ compared with 0.802 in table 12. For the second batch—before dilution: $$M = \frac{50}{2} \left[0.02 + 0.1376 \left(1.000 + \frac{1.00 \times 1.07}{50 \times 0.1376} \right) \right] = 4.475$$ $M^2 = N^2 = (1.07)(6.880) = 7.362$, as before; but now N = 3.559 so in this instance $\frac{M-N}{M+N}$ =0.1140. Therefore, the adsorption equation applicable to this case becomes: $$\frac{0.916-q}{8.034-q}\!\!=\!\!0.1140e^{-4.271t},$$ This would require that at the time of dilution: namely, when t=21.0 hr, the value of q would have been 0.916 meq.g⁻¹ (although it was not actually measured). For the second batch—after dilution: The addition of 50 ml of water would have the effect on M and Nof causing them to revert back to the values 4.975 and 4.170, respectively, which applied to the first batch. This is evident from the definitions of M and of M^2-N^2 in eqs (7) and (8). The only difference is that q_1 would now be 0.916 meq.g⁻¹ where originally it was zero. Therefore, the coefficient of the exponential becomes: $$\frac{0.805 - 0.916}{9.145 - 0.916} = -0.0135$$ which, being negative, means desorption. The final resorption equation can therefore be written by inspection: $$\frac{0.805 - q}{9.145 - q} = -0.0135e^{-2.502i}.$$ The final condition after dilution and resorption was reached 1 hr later. By substitution of t=1.0 in this equation, it is found that q=0.814 meq. g^{-1} which is in good agreement with 0.816 in table 12. ## 7. Summary Batch adsorption from solution can be characterized and interpreted in terms of the parameters q_0 , k_1 , and k_2 whose values best fit the general adsorption equation, eq (6). In the special case where the desorption rate constant can be neglected, a simplified two-parameter equation is adequate for adsorption. Short-cut methods have been found for evaluating the parameters from the data: (a) when the adsorption is a function of time (b) when the adsorption is a function of both W/V and c_0 . Values of the parameters can also be determined for the general case where the adsorption data are time dependent. The characteristic parameters determined from batch adsorption are in agreement with corresponding values determined from column adsorption. Some deviations in the results have been observed in certain instances and can be explained in terms of a slight departure from the theoretical model. Even the general adsorption equation, eq. (6), can be considered as a special case of eq (13) which, differing only in initial conditions but utilizing the same set of parameters, will, in fact, predict with equal facility desorption, interrupted sorption, and sequential combinations of adsorption and desorption as the case may be. ## References - [1] W. V. Loebenstein, Proc. of Fifth Tech. Sess. on Bone - Char, 253 (1957). [2] W. V. Locboustein, J. Res. NBS 66A (Phys. and Chem.) - No. 6, 503 (1962). [3] C. E. Dryden and W. B. Kay, Ind. Eng. Chem. 48, 2294 - (1954). (1954). (1954). (2) W. G. Burgers, Rec. Trav. Chim. **63**, 46 (1944). (3) C. E. Dryden, Ph.D. thesis: The kinetics of sorption of chim. The Chim. State. acetic acid in water-carbon systems (The Ohio State University, 1951). [6] H. Freundlich, Z. Physik, Chem. **57**, 385 (1907). (Paper 67A6-248)