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This paper considers the reaclution limita of those analyzers send oscillalory syatcms
whose performance may be repressoted by w seeond-order differential eguation. The
“ajgnal uncertainty’" produet af af {3 shown to be controlled by the ability of a systom to
indinate changes in energy content.  The discussion refers the functioning of the gyatem o
a signal space whose coordinates sre shetgy, froguency, and time.  In thia signal space,
the product of the resolution Wmits, U={.ﬁ..n'£'IE.,'J (afife) (alfTe) 18 the volume of s reglon
within which ne change of state in the system may be observed.  Wherseas the arcs clement
Afead db freely deforinable, ho operatioha upon either af o A can further the reduction of
the cnergy resolution Kmit. Thue ¥ is irreducibly fixed by the limiting value of AE[E,.
By considering tho effecta of noise upon AESE, and thuy upon I7, the papor demonstrates
the rike of atatistical faztured as signal-to-noise ratios decnzade. )

Functional relationships derived from AE/E, pod F are tabulated. Thesa equations
facilitats compitetion of the Lmits of obsarvable changes of state 16 a Bypetern, snid they
provida guidance For the dealgn of experimenta to apportion the uneertaintios of measuroment

of trangient phenomens se adveniagecusly as posmible. A reference bibliography and
appeadives giving somewhst detailed proofs are fneluded.

The basis of this paper is the consideration that
the indication of most inetruments used in measure-
ment representa cither the storage of energy or the
flow of power. The lesast changes that ;ﬁe instru-
manis can indicate, therefors, are controlled by the
smalest discernible change in energy storaze or
powear Sow, '

_ The subject of the resclution limits of moasuring
instruments in terma of the least amounts of fre-
quency change and the least times interval in which
a thange imay be detected have been treated by
geveral authors, among whom one may cite na
examples Gabor, - Kherkevwich, and Brillouin—and,
while this paper wea being revised, Pinonow.! The
resent author has also diecmssed this relationship
or scanning analyzers, and indicated that there
were circumetances in which limitations were intro-
duced by the presenee of a least discernible incre-
ment of power or en .2 These papers {ref. 2)
are quoted, in nddition to the prier work, by
Fimonow.

Gabor pointed aut, by anelogy to quantum theory,
that there was & “quantum” of information that
could be described by the product of differentials
ropresenting the least diserimioeble inerement of
frequency that eould be observed 1o an incretnent of
time. This relation arcse from the application of
the Yourier transform to relate an increment of time
to its corresponding ingreinent in the [requency
domsain. The product

AfAfe=]

was definad by Gabor as the “Logon.” The [act
that, as he says, the product s ‘“of the order of

L T (isber, Theor v of communieation, T. Inst,, Eleno. Eng. #8, Part 111 {156),

e 428-467; A_ 4. Khsrkevioh, %wmn. amid Amlgu]:la. ‘Tranglated sod published by
Cins ork 15 Jfr il

witante Burapu, Mew il ouln, Aesenes s Informatlon
Theory, 2d editlem, published by the Academle Frepr, New '(u:n'k’F i Lo
Fimwiw. Vibratons 0 Rigiowe Transltee, Duned, Parle {1%62),  {T'his boak
hess B weTy Bxtenstes bibllegraphy.)
t Limttations on repld sigoal snslysis, J. Wesh, Acad, Bed, 4b, J60=300 {1955;
Trsaslenta in sl sﬂalﬁm J, Wash. Acad, 5o, M 206307 (1088); Tnikorm
tranalent error, 3. Rosesreh MEG B, 25-30 {1955 H P26,

unity'’ is a consequence of the particolar normaliza-
tion he uzed in vomputing the Fourier transform
for (taussian pulses. A similar relation was presented
by Brillouin, but as he computed At in terms of tha
half-powers of brief, symmetrical pulses, he found
a somewhat different normalization factor, and
obtained
1
AfAd i
Kharkevich adopted a somewhat more general
expreasion for this equation, alao in terma of a
normalized Fourier transformn, by first writing

Afat=4

and mmc{mt.ing A for pulses of various forms. He
remarked that A might differ If other eriteria were
chosen, but relatad 4 only to the form of the signal.
Further, he pointed out that .4 is independent of tha
dam&ng of the system.

The studies by Gabor., Kherkevich, and Brillowin
wers all carriad out for sssentially noiseless sy=tems.
Thiz paper, on the other hand, does not normalize
for ynit energy, but considers the energy storage
and ﬂlsﬂlﬂ&t-lﬂn in systems whose performance may
be deseribed by & lineerdifferential aquation of the
gsecond order. Thoz, by desling with the enerpry
stored &5 well as with the time and frequency we are
abie to study the res.gp]:;:msa of a =ystemn to signals
other than variously shaped pulses of unit energy,
and to signals in neisa a3 well as to noiseless systems.

We can also consider, in this way, the case which
hes been omitted froin the previous worlk: the
response of the syatem which may in itself have a
“lesst vount™ ® or inherent internal noise.

3 The term “leadt pikinl” 14 shooety e By anoky ta g [arm desccbiog tha
Uaeflalion ig g oseba oy systerm the legsl Ineresoent Lbat ewn b oesd oo the
Bhler,
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We introduce the means for taking into aceount
the preeence of noise with & sipnal internsl noisa in
an mnelyzer, or the least diseernible indication of
the snalyzer {which may be & step limitation—such
as & digital step, or a reading limit) by diseussing
the limitz of the analyzer’s performance as being
fixed by the lesat change in energy storage, AE, that
can be resolved under the circumstances of analysia.
Several conditops may combine t¢ fix the value of
AE. For example, an anal having apprecisble
gelf-noiee may used to detect 2 signal mn noise.
As a role, the internal and externsl noise scurces in
that case would be incoharent, snd the sum of the
noiee energies atored in the analyzer from thoze
goprces would fix the value of A,

The system for which thie discussion is carried
oul is & sist.am whose working may be described by
8 linear differential equation of the second order.
This behavior is common to many physical systems
oceurring in nature, and to many instruments u=ed
to observe natural phenomena, All of these systama
share the sama properties, because they are properties
inherent in the differential equation that deseribes
them. By virtue of the second-order term, they
may be seen to Le capable of storing oecillatory
anerpy revergsibly. They will respond with a eino-
soidal output after excitation by shock or noise.
Under sinusocidal excitation, they will respond
gelectively to excitation of various frequencies.

Systetns to be discussed in this paper are those in
which the storage of anergy occurs 1n the coordinates
describing the system: these gyatems are described
by & second-order differential equation with constant
voeficienta; i.e, the szystem porametars ara not
affected by the energy storage process. By invoking
the Boltzmamn-Ehrenfest adiabatic principle* it 1=
also possibls to apply many of these equetions to
gy=tems in which energy is stored by a change of
parameters, However, this matter bas not been
investizated in detail.

Ml;hﬂlggh most of the gystems to which the second-
arder differential equation s applicable take part in
time-varying phenomens, there 1s nothing inherent
that restricts the equativn to funetions of time.
Certein spatial distributions alse may be described
by the equation—such a& the mapnetizalion on
magnetic tape, some types of [;]jt.icﬂ.l inages, and
some diffraction effects. Thus, although this paper
will deal with application of the afuation to time-
varying phenomens, its conclusions are also appli-
cable, with a judicious choice of variables, to spatial
distributiona.

For the aske of a eoherent. structura upon which to
base this paper, we choose n Inechanical system of
inertia, M]: cﬁsslpatiun {proportional to x'eluc;iti} D,
and cosfficient of restitntion, . This eystern has a
single degree of freedom, along the coordinate x, and
its foreefree hehavior )2 given by solutions of the
homogeneous equation:

M+ Dt kx=0.

+ M. Gresnapan, FHmopls derlrallan of the Boleemann-Bhesnfat adiabatic
peinclple, J. Acoast, Boe, Am R¥, 335 {1855). Tha sdiabath principk atatbes
that for 6 Frotem exclbed by a chabhge I Towarelsrs, the reth of fnerDy totant
Lo rear@ANL Inequency 15 b colalant,

When energy is stored in the system, it i3 dissi-
pated at a mean rate which hears a constant rela-
tiocnship to the amount of energy stored. This
constant is & funetion of the parameters of the system.
In terms of dissipation, the constant is frequently
expreased by the relative damping, ¥, the ratie of
the damping of the system to the eritical dsinping
for no oscillation. A reciprocel quantity, the “figure
of merit," is commonly used in communication
problema. Thesa two constants are related through
the equation:

Y= 2@’

Beeauss we are more eoncerned here with storage
than with dissipation, the quantity ¢ will ha used In
the discuasion.

The conventional definition for £ applies when the
systerm js driven at its rescnance frequency ; at ather
frequenciea the ratio of the storage of energy to the
tote of dissipation depends upon the driving fre-
guency. When the system is free of excitation, the
conventional definition of ¢ agnin applies. This
value of Q will be denoted asng.,, to distinpuoizh it
from the more general definition of @ to be applied
in the sppendix. Defining as the natyrel frequency
of the system the quantity f, which is the natural |
fraquency of the gystem in the absence of damping,

1 &

7 M

Ji= g
anid
Q= Peak en stored at the natural frequency

"~ Energy dissipated per cycle at the natural period

In terms of the parsmeters of the systam, this defini-
tion of §; is equivalent to the retio:

o 2EIM_ & _FM
LB 7 B i R 7

The differential equations for the iransient and
driven response of the system can be expressed in
terms of @, D, and #,. For ihe force-fres equation:

I x
H-I_ Q;-+2#f.,z={]

nnd, for tha Jriven response of the eystem fo e
sinuscidal force of amplitude 4 and frequency f:

£ L2 L en
2#5+Qg+2rf°x Q,nﬂﬂ .

Letting the ratio of the driving frequency to the
natural undamped frequency be represented by

d={fh

we can write down the phase relation between the
driving force and the resulting motion. The phase
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angle, #, when the steady-stats condition has becn
attained is given by

- +
f—tan-! ¥
Xy
and the energy atored in the steady-state condition
is given by
E=2X G 1
2D 2xfy QA1) +4°

The spplication of the Fourier transform can bo
considered to he tantamount to referring the behavior
of the system to one or the olher of iwo mutually
perpendicular planes: The stesdy-state condition is
described by the representation of the state of the
systern in the en veraus frequeney plane and it
of necessity deals with the steady state because the
varigble, time, 13 not involved. The transient
behavior of the systan: is vepressnted in the snergy
versus iime plane. It is easier to understand that
this iz orthogonal te the frequency representation if
wo onlit the normelization often used, of choosing the
mit of time in terma of the natursl period of tha
systermn.  Neverthelese, it is more convenient to
sxprezs the bahavior of & g¥stem in terms relative to
it natural parameters, and for the sake of aimplicity
of equationa, much of the discussien will be reluted
to the natural preperties of the system.

Three properties serve to specily the hehavior of
an snelyzer described by a second-order differentinl
equation: its undamped natursl frequency, f,, its
figure of merit, Qy, and its “least count,” A, the
least emer cflangu thet ¢en be resclved by the
syetenn. e changes in ana:ﬁncuntent of the gya-
tem may be thm:lfﬁg of Ba t ¢ place within the
gignal space bounded by the energy-time and snergy-
frequency Ip-la.mas, nng the representation of the
behavior of the syetem as a funetion of time or of
frequency may be considered as projections upon the
prin{;ipdy lanes. Hince the actusl use of the system
as an analyzer 18 never wholly sieady-stata or com-

lotely broadband, the actual process of analysis may
g-e considered as tal:'u:ug tace in zome plane within
the signal spaca boun by the principal planes.
Depending upon the informetion sought, the plans
of the analyzer will be close to one or the other of
the principal planes.

Ordinarily, an sapalyzer indicates » ruoning time
average over the energy, £, stored in it. For steady-
state sipnals the indication becomes proporiional to
the input power; for signale of very bref duration
the analyzer responds ballistically and thus gives an
indirect indication of enrergy. Tha linut of resolotion
is fixed by the least change in energy storage, AE,
that can be resolved under the eircumstances of
analysis. In this discussion we shall be dealing with
incremental ratioz.  As the differentisl will aloeays ba
coneidered jointly with tha total an stored over
the same time interval, it will he possible in general
to dismiss ratios of incrementul power, AW, to mput
power, W, or incremental energy, 4K, to energy
atored, &, interchangeshly.

Az & function of time, the building up and decay of
the energy stored within the system are exponential
processes. Therefore it proves convanient to describe
the behavior of the systemn in {erms of an exponsnitial
varighle. Thus, to sxpress the changes in energy
ptoraga, we choose an exponential coefficient, o.
The energy resolution limit, AESE,, may be expressed
in terms of & through the following definition: If the
initial amonnt of energy atored in the analyzer iz
E,, and the minimun change of en thet cen he
discerned iz AF, then in terms of the exponential
rarinble o the equivalent statement is that the ene
content must decregse to an amouni fe=) times its
original value for the change to be at lenst equal to
the minimum ¢hange discernible. Expressed ss an
equafion, this imit is given by AE=(1--¢9FE, for
energy, and in the many cases in which we are denling
with energy flow through the system, altornatively
as AW={1—e )W, {or power. From the definiticn
of & in terma of AE and &, it is evident that:

o=—In (1 —%

However, it is not along the time sxis alone that «
proves such a convenient funetion. Because of the
close relation between exponential and anple fune-
tions, 1t also yields simple equations for the hehavior
of the system s a function of frequency. For the
fora%;)lng raagaona, we eghall describe the manner
which the independent variable, the energy increment
A influences the resolution himits in frequency and
time in terms of the variable x, and we will then
return to consideration of what the equations de-
seribing these resolution himits mean in terms of AE,
We mﬁ also discuse special types of noise conditions
that rnay give rise to the irrﬁucible Inevement that
AR represents.

Tho tonditions under which « sets the resclution
Limit along tha time axia are derived from considering
the gystem to contain an amount of energy £, at
time {=0, and at that instent and for some time
suhsequent to that, to he frea of any driving force.
The resolution limit along the timwe axis i3 fixed by
the lesat time interval, Af, during which the s{yatem
is capable of changing its energy starage by the factor,
e = Thiz ecorresponds to issﬁi\%g.tmg at loast the
dizscernible energy incrernent, , during the tine
at. Tho resolntion limit stated in terms of the
na;%ral period of the system, 77, is thus given by
ATy,

When a system of this sort is used as an analyzer,
tha time interval over which the ohservation takes

lace muoet be of sufficient langth for some change to

Ee indicated. Thus the cbservation interval, Ar,
must equal or exceod the least time interval Af
(In the previoua papers cited in refercnce 2, the
ohservation interval Ar was used in place of tho
least fime increment Af. Use of ihe lesst time
increment converts several previously found in-
equalities to equations.} .

It is 8 vory close spproximalion (see appendix 1)
to consider ooly the exponential factor in the decay
of energy in the system. The oscillatory terms
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arsing from the sinvsoidal nattre of the dissipation
Pme-ass are always relatively minor, Thus, regard-
ess of the pracise initial conditions,

£ g _Iw AY
EDLJ‘-AI}_E a—-lEI[J( Qn Tn

and, therefore, the resolution limit along the time
a.xJB exl;rassed in terms of the natural undamped
penﬂd the system is

Af ch',u
T

From this equation one can see that the ratio of
« to Al is twice ihe real coordinate of the poles of
the system on & Nyquizt AT
ThB system is selective with respect to the siou-
idal frequency of the driving force which acta as a
s.ﬂurce for the energy it storea. Thiz mekes it =uit-
able for the detection of sinuseidal frequencies falling
within its renge of Tesponse, OF & group of similar
gystems with different s tnay be used in the analysis
of the componentas of complex mignals. For this
purpose, the observation takes place in a plane
]Epruxlmatmg the energy-frequency plane. Along
e frequency axis, one may speak of u {frequancy
resolution limit in this scnse: If one knows the
natursl frequency ; to which sn analyzer s
tuned, then & foaximumn indieation of energy storave
for a steady-state smusoidal signul corresponds to »
signal in the vicinity of /5. Until the cnergy storage
haa chan by an amount ino exceas of AF or, when
expressed as a relative proportion, a factor in excess
of ARE(E,, the departure from maximum indication
15 not obeervabla. The change in frequency required
to produce this effeet, Af, corresponds to the fre-
queney resolution Limit Afff.
one can see from the equation for the energy
stored in the steady-state condition, the response of
the systermn to a smusmdal frequency other than its
natural undnm frequency iz diminished to &
fraction, F, of the maximum energy that would be
atored at the nntural frequency. Expressed in terms
of the ratio of the frequency of the driving force to
the natural undamped frequency of the system
{fify=4), the fraction is

1
TG =gt

The frequency limits for the region Af surrounding
fo 1R Iﬂund by solving for the condition e ==F.,
Solving for the upﬁm‘ and lower frequency limits,
Frand 7, for which L stored in the resonating

gyetem is & {raction ¢~ of the peak response yields

@ expression:

F=

{1 2 1
.f&ﬁf =E {gc_lj+4_eg_
And to & very close approximation, the frequency

reeolation Bmit comes out as:

gj;.f {ev—1)
Jo th

when Af is deﬁned as (fa—1.).

The To discoszgion may now be summarized
in gmmet.nc,a.l orm by reference io a three-dimen-
sicnal figure in signal space.  The limits of resolution
of an analyzer may be represented by sn irreducible
region in a three-dimensionsl space that owst be
extéeded befora any jnformation about a signal can
ba found. This space is shown in fizure 1. Aa one
can see from the equations, the re of merit, @y,
enters 1mte the resolution linmis
quency in & complementary way. Thus, it detar-
mines the relative proportions beiwesn the resolu-
tion limite Afff, and AT, One may therefore
:Lp rtion the relative uncertainties in frequency

time to suit the requirements of an experiment
whenever one can control the & of & systemn. This
cesk is diseussed more fully in “TUniform Transient
ror’’ (see footnote 2). Buat the product of the
resolution limits, the “uncertsinty squsation' de-
pends in irreducible fashion upon e.

—1 &1
+
("]
| o
I
AE
| _F1-- £
o - |- ﬂ
&1 Fa
“l 5 T
&
]
LT}
z
hd FREQUENCT 1
TIME , T
Figuke 1, Resolubion Emils moking up the indicelton mi, T,

Ta i5 the perdod comespemding Lo fi, 1he natutel undomgsed Begoéney of the
srelam, By is the buprivuwetn sioosniiiul foe gy atored.

Thus the signal uncertainty equation, expressed in
terms of «, turhs ot to be

of -At=g e 1]

where « is related to AF through the definition of the
least change AF that may be observed in the total
stored energy K.

The basic farm of the resolution equations results
from substitution for the exponential ccafficient, o,
in the equations already derived:

afi__ & _ak
T 21311(1 E,
iE
af_1 Bo
G (1—""‘
E,
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Thea volume corresponding to the irreducible limits
in signal spece, a guantity here defined asz the
“mdicstion linit,™ ean be computed from the signgl
uncertainty equetion, It is defined by the trple
product of the resolution limitas along the thres axes,

o AE st af

snd it i3 just the volume of the elementary figure
shown in Agure 1. Tis comiut.atian might &t ggr]ﬁt
glance appeer to be somewhet redundant to the
signal ancertainty equation. In fact, its functional
form permite factoring the expression for U into
components that have an interesting connotation in
physical maasursments.

hus, since:
AE Af At_AW af &t
E, AT, W, i T
the magnitude of 7 expressed in terme of the variable,
o, 15

r—

and [7 ig given in terms of the energy resolution
bmit, AESE, by:

AFE

1 3

kT
i B | [

1-5

i+

It should ba notad that the indication limit I and
the sipnal uncertainty relation Af-Af depend only
upon the energy tesclution limit. The senergy
vesolution limit i5 an independent vartable and
cannot be reduced by operations altering the funetion
of tha system alou%the f and ¢ axes: for instance,
changing the ¢, of the system.

For a eystem operating &t its optimom, the
mreducibla ehergy or power Inerement for the
system would be set by the noise energ%estﬂred in

o system. This noize energy may dua to
Brownian motion in the system, for example. Noise
of external origin may be present with the driving
signel. In the genersl cose the intrinsic snd extrinsic
noise powers will not be coherent, and the total
noise enerzy sztored in the system may usually be
conzidered ms the sum of coontributions.

The prier papers relating the resclution Lmits to
the relstive armounts of signel and roise pressnt (see
footnote 2) were based wpon a derivation subject to
the restriction thet the signal-to-noizo ratio be high.
In those papers, the relationship found was

afars ST ‘?"'22 ~F

where & and N were aignel and noize powers, re-
spectively, and where the nss of the observation
interval Ar rather than the limiting time increment, A
made the relation an inequality.

Sueh a restriction was, in fact, not required. A
tructable and useful reesion for the product
Af-af can be derived, valid for all values of S{N.

In the case where both signal and noise ansrgy
are stored, the total energy present in the system 13
FEy=85+N. Anincrement in the signal energy stored
{or in the input signal power) can be datected only
if it equals or exceeds the minimum energy increment
the =ystem iz capsble of indieating, From this
definition and the definition of the axponential
{nctor, a:

AS AR AW _ .
STNCE, W, o=

And, where the least energy increment is controlled

by the noise energy stored; AF—=N: or, very nearly
AE_ N
Ey S+

Thus, where the limit of detection is sat by the noise
BOECZY:
. NS

&

from, which the siznal uncertainty hacomes:

af-sit=§1; \/g-m (H%}

For high values of S/N, this expression approachas
the limit (1/2x) {(S/N}42, a vesult found previously
{zon footnote 2). o ]

An especially interesting interpretation ¢an be
made fromm the form of the ression for the indica-
tion lmit, U7, when it iz written in terms of the
signal-ta-noise Tabio.

e T 1 Siv
V== (1 ar sy 1-|—S..fﬁ.f)'

The first factor can he nized to be the ex-
pression for the signal uncertainty, Af-Af, when the
signal-to-noise ratio i3 high. The term in paren-
theses also has u recognizable functional form, snd in
fact it 15 possible to relate it to the bmiting probahil-
ity of information transfer.

To facilitate diecossion, the factor N may he
cleared from the fraciions 1o the term, giving it the
form: —SHS+N) In SHS+N}. A=z one can see
fromt tha series axpansion for the natural logarithm,
this product approsches the value NJS for large
values of § ralative to N, and the indication limit
then is merely the friviel produet of the reciproeal
of the signal-to-noise ratio multiplied by the signal
uncertainty function. It is quite another matter as
SfN-+0. Then the indication limit meay ba con-
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sidered to consist of two mesningful texms: one is the
same signal uncertainty funetion that hee already
been derived for high signal-to-noize ratios (=ee
footnote 2) (i.e., for AE small re Ey); the other 15 a
modulating funetion that we will now proceed to
relate to statistical matters.

Where one is dealing with the statistical presence
of nolse and signal, the long-time average signal-to-
nojsa ratio may be deseribed in terms of expectad
wvilues. The following definition of expected wvalue
ig taken from & texthook on statisties ““The
expected valua of a random variable or any function
of a randem variable ia obtained by finding the
average value of the function over all possible values
of the varighle . . . . This s the expecied value, or
mean tafve of 2. It is clear that the same result
would have besn obtainad had we merely multiplied
pll possible values of z by their probabilities and
added the results . . . we might reasonably ex-
pect the average valua of 2 in a great number of
trisls to be somewhere near the expected velue of .

A specinl ease that is quite common experimentall
is one in which the level distributions of signal an
noise ara precisely the same. If one has either a
gignal or noise, the probability of the sienal being P,
then it follows that the probability of the noise iz
é}E—Pj. If the signal snd noisc have the same level

istribution, @, the modulating term

= In oy . B.gF 7 .
N8 " N8 P era-—P@ " P e+ (i-DP@

and thus the term that modulates the signal un-
eertainty funection cen ha seen to reduce to the
form —PinP, where P ig the probability of signal
ocourrence.  From very simple considerntions, there-
fora, the limit of detection iz shown to be related
directly bere to & limiting probability of information
transfar—a quantity u derived in information
theory by considering =ignals and noise to be made
up of equal-sized unit impulses.

It is interesting that this point was arrived at in
the reversa dirsetion by Woodwsrd and Davies.t
They started with the PlaP term from Shannon’s
information funetion and demonstrated from con-
eidering ihe signals and noise in radar detection
that the quantiiy P waa relatad to the sipnal-to-noise
retio for radar sipnals.

However, the modulating term in its originel form,
in terms of & and N, may be seen to represent n
neralization of the function defined in information
oory a3 the channel capacity, . This form i=
more closely related to the ordinary formawlation
dezcribing the entropy of & system in terms of the
probebility distribution of energy states within it.’

A M. Maod, Inibwduetiom to Lhe Theoy ol StatisHes, p. 9. {MoGraw-
Hll Buak T, New Yack, B,¥,, 18],

1P b, Woodward and I. L Draviez, & theary of mulnc inbciasdlon, PhIL, Wex,

Partea 7, 41, 1001-1017 (1860}

! Wpx Born, Blgliyra] Phllesophy of Uausas apd Chence, The Clarendon Preas,
Oxfar (1%, of, wpecially Lhe dircuaplons of probabilty and soteepy; Clande
Bhannnn an Worren Weaer, Tl Mathematical Theory of Comminbos o,
Unbréryty of MMipnds Prega, 1 rbans, L. (146
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The question of whether a signal iz detected in
the presenca of noise depends upon what the in-
veatipator chooses to congider a rensonable limiting
probability in deciding whether s signal hes been
detected. A %repondaramm of only 1 percent above
random distribution would correspond to & much
smallor signal-to-noise ratio than would 90 percent.
In fact, the common definition that gives the limit
of detection as a aignal-to-noise ratio of unity
rorresponds directly to setting the criterion for the
limiting probability of detection at 50 percent.

For the casa N=5, the “—FPhP" termm becomes
—% = } and the indication lunit becotnes:

1 1, 1% a2
Uiz (=3 in 3 )=r
for which the signzl oneertuinty function is:

fn2
Af-dt=

Thesa are the limiting forms also where signale
and noise sre transmitted as “hita.”

Thus far we have discossed noise from the stand-
point of the noise energy stored in the systemn, This
enargy i3, 8o far a3 the actual storage in the system
iz concerned, not distinguishable from energy storad
that might ba derived from purely sinusoidal excita-
tion. If all excitetion wern withdrawn, and the
system left in the force-free state, the e.nerf;y in i
would be dissipated in the usual exponential decay,
and the oscillations during the decay would
esgankially of frequency #,, providing the avstem
had rooderate energy storage capacity (@1},

Therefors, unless we have soms other means for
distingrizshing among the sources of the enerpy stored
in the system—such as, for example, knowledge of
the spectral character of pulsed signels applied to
the system—or knowledge of the amount of energy
found present in the system when it is considered to
be fres of any known source, we are left to regard
as signal that part of the energy stored in the system
that was produced by & sinnsoidal signal of power &,
The remaining driming sources, of more or less broad
spectral distribution, would in general be classified
A3 TS,

Ii the eystem is being driven at its natural fre-
quency, its ocutput signal will be ./3» times its
input, for Q iz 2x times the ratio of the ener
stored to the enerpy dissipated during the eyele. At
any other driving frequency, the energy stored will
be weighted by the response, p, which relates the
energy stored to the power aupplied to the system.

QP
PRI~

Suppose the noise within the system srises {rom a
gouree whose sipectrnl distribution iz given by the
power density function, ;. The system will store
energy with a weighting facter of p.

The total energy storsd in the system duve to ex-




citation by noise will then be found from the integral:
N— J' " Npdeo.

Although we have discussed the hehavior of the
gystem in terma of cycles per second, the guantity
we have designated as 6), is defined directly in terins
of tha ratio of the encrgy stored to the energy dis-
gipated per redian. As the parsmeter of the fune-
tion we are inteprating is £),, we must choose the
dimensionally similar variable in order to carry out
the integration correctly. Thus we mnst integrate
with respect to « rether than . This point ia given
in detail becauss it is sn instance of the dimension-
ality of angles recently pointed out by C. H. Page.®

his integral may be evaluated casily for noise of
constant energy per unit bandwidth i oycles per
second; the resolt i= (hen &

_rN,
N= 2

and it ia independent of £, because the energy stor-
age cepacity of the aystem and e bandpass for
noise are affected in a complementary fashion by
changes in the figure of merit.

For saveral cther types of noise, an a]ipmximatﬁ
equivalent white nojse coefficiant, ny, can be defined,
for which the foregoing equatigns remnin applicable.
(Hiven & noise whose spectral distributien is »(f),
& mean value “equivalent” whita noise per unit
bandwidth may be computed from the eguution:

fo
P (.Fidf

Ohvionsly i »(f} equalz a constant, then w1, is the
iliar ““White Nolee” coefficient. However, for
several other types of noize the mean-value intapra-
tion yields an equivalent n,, which may be treated
28 & constant, with rether low residual error result-
ing from this approach, Thia can be seen from the
fact thet the system iz selective with respect to the
uency components of the power sources from
which it stores energy. Thus the restriction is only
that the spectral distributicr be changing sfowdy io
the frequency region immediately surrounding .
For the following poise distributions, the residual
terms discarded siocuni, in the worst case, to no
more than 12% percent of the approximate value:
Far the noise distributions shown in the left-hand
column, the respective mean values are shown in the
right-haud colurmm:

WP=k-f s (it
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* I%. Blerens d4e ITeao, Mourvelles Tebles D-Ioitereles Didfioles, oq M) o 47
{Baitlon 1887, reprinted 1948

" _En flf,
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whers, for thiz purpose, f; and 7, are teker as the
upper and lower half-energy limits of the response
weighting function, a.

Upe can use the foregoing to predict the ratio of
energy stored froin the sinusoidal excitation to the
energy stored from the source of neise. Thus tha
offective signal-to-noise ratio in terms of energy
gtored in the system ia given by:

b(F)=k{

{emhstant ¢ 0WEY,

SYN=Z3E,

el

The signasl-to-noise ratio will be a maximam if the
frequency of the sinusoidal excitation is just aqual
to the natural undamped frequency of the system.
(For this condition, »=@y2x.) The maximum
rabio 18:

_ Sl
SulN=— e

The forepoing denvation has meaning also with
Ei?ect to any system described by 2 second-order

ifferential equation in which some event of brief
duration oecors. A quantity directly analogous to
the indication limit mey be computed. In this
instance, the axpressions ralate the resolution limita
that bound the ocewrrence of the avent, specifying
the least increments of enerpy, frequency and thna
within which the event can teke place.

Further, the limiting energy incrament, AK, need
not be formed by noise. For axample, in 8 pulse-
height system it would correspond to the smallest
gtep in pulsa height that might be indicated. As
another example, an atomic system describad by s
second-order differential equation might have AK
eubject to quantum imitations.

Summary

The incremental limits, resolution imits, and in-
dication imit for the periormance of any system that
is described by a second-order differential equation
may be computed from considering the manner in
which the ayatern stores and dissiﬁates & , siib-
ject only io the restmction that the system he ca
sble of storing oscillatory energy reversibly, X;
these limits are inherant in the mathematical prop-
arties of second-order dilferential equations, they are
applicable to other types of systems by anslogy.

The results of the disecussion presented here are
surnmarized in table 1. The relations tabulated
wpply to conditions that may be observed so long as

e observation interval exceeds ¥r times the natural
period of the system. The first linc of tabla 1
syminarizes the equations in terma of the basic
energy resolution limit, AFEfE, The second line
gives the same results expressed as funttions of tha
exponential quantity o, and its inhersnt advantage

4B¥




Pasic Yariables:

Basclucion Limicae:

QF
E @ b‘tﬁu
o
£5 -l - 25 - g—" (1 - 25
En !u " Eu
- & G
1 - i [+ 2“':'
1 E/H + 1 Qg 5R+1
S+ 1 S 2 Y T S/N
2 lngs, 54Q Inif Q alngf
xtle, 4 1+ ﬂsnéf ) e 711: o Ze tn (0 ¥ T9)
810, + wnf LA Fongf iNe i~
Fam,
Tacertainty Ralacion: Indication Limit:
Af AE H
1‘@ —1 . 1 ; 88 af2 AE s
= " n o
YE, J1-& "Ny TTE & -2 4e -5
E. Eo T [ o
a
-
2T TRPE NG
i 8/ + 1 s fiy -3/
to ‘%r aa |- e _si
iy 5 2 S+ 1 SN + 1
£ 2ngf 1 [x¥net, /2 3,9 5,0
iﬂ s:q::m“"'“sié{:} E[snéo 1-5 1o th = 1*a
140 x "ffa + 5,0, " I.'Iffﬂ + siqn
Tanue 1. Resojulinn [Nmils of analyrers and sscillefory syefema expregend {n peveynl afiernafie sariabios,

as & means of expressing AFEJF, can be seen from the
Freatar simplicity of the equations in «. The third
me pummarizes the equations for the condition that
AFE({E), is limited by the noise en stored with the
signal. ‘The last line ie tha formulation of tha noise-
limited case in terms of the input powers of sinusoidal
signal and noise, wherse the noizse power can be
expressed a3 noise energy per cycla.

The derivations sketched in the text are tﬂjm
sented in detail in & series of sppendices for those
cazez where it iz felt this presentation will prove
informative.

It 13 not feasible 4o relate each idep in this paper
e b specific item io the literature. However, there
are mimerous papers that bear some relation to the
material in thi= paper. A elussified bibliography of
pomea of thase papers is therefors included at the end
of this paper for the convenicnce of persons working

on related problems.  {The reader may also wish to
conguli the hibliography in FPimeoow’s book, see
footnote 1.}

In this work I have henefited grestly by numerous
dizcuszionz with Cheater H. Page and Richard K.
Cook. For seversl vargleulighbemn ramarks [ am

teful to William H. Huggos and C. G. M. Fant.
or a very helpful diseussion on the dimensionat
properties of @, and for painsiaking checking of
derivations, ] should like to ankno‘W_e«d'i.‘e tha help
of my coﬂ&&gue, Jogeph Tant Friestlay. To a
number of my colleagues, friends, and visitorz who
have sat patiently disﬂﬂﬁﬁiﬂlg this preblem with ma
whila I was working it onut, i should like to take this
opporiunity of extending my thanks.

This work was sponsored by the Office of Naval
Rosearch and also supported in part by the Natiouns)
Burcuy of Standards,
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Appendix 1. Energy Storage and Dissipation

For a system whose propertiss are described by &

sanund—ﬂri:r differential ag. ation, subjected to »

%riv’mg foree of amplitude A, gs_differentisl equation
ecOmes:

M i4+D 2+hr=A .

The equation may be rewritten in terms of param-
etors related to the undoemped netural frequency
and figure ol merit of the system. The ralative
requency, ¢, replaces the guantities § and « by
ofy and duwy respectively, The equuntion resulting
from this substitution is

Qo i
- :z-l—ﬁ-i-m:Quz—D FE

where, of course, the ratio kfM 18 o

The ::ivatam responds to the force l:}ly motion of
smplitude B, whose phase relative to A is given by
the angla 0.

=t.an'1 'i'
St g a—ep
and the absolute value of the square of the amplitude
E .
(B = o
w1 —gF) g

The conventional definition for the quentity we
represent here by ¢ is given in terme of the natoral
undamped period of the system. For a sinusoidal
driving force, one may have more use for the ener
diesipated per cyvele of tha driving foree, and in
general the exciting force will not necessarily be
alterpating at the natural frequency of the system.

W wish to extend the definition of § for a system
when it 18 being exeited at frequencies other than its
pnaturel frequency. There are several alternative
definitions ordinarily given for tha quantity wa
designate bere ns @

Peak energy atorad
dissipated per redian iraction of
the natural period

Q’“'_Meun EGETEY

o Peuk energy stored
~ 7 Energy dissipated per cyele of the natural period

_ Peak encrgy stored
“"Wean rate of power dissipation

The zecond definition iz commonly given beecause
diszipated in a single cycle
can be eomputed without finding & mean valua
For our purposes, the third alternative gives the most
direct approach to a peneralized definition of £.

The peak energy stored in the system under
sleady-atate excitation is given by:

A M
20 D GH1—8 4t

and the mean rate of power disipation is

W _ﬁ#
oD Qi1 —¢ft e

The terin w,;in the third alternativa of the definition
for ¢« may be rewritten ms 2z/T,, whera Ty iz the
natural period of the system.

Let ue denote by €, the ratio of pesk en
stored to the emergy tiissipnt&i during one cycle
of the driving frequency. The period of the driving
frequency is T=7Ty¢ and the resultant eguation
for @y becomes

Qr="u/e"

Howavar, when a system is subjected to axcitation
by a epmplex up of drivieg forees, the only
consistent period over which to compute the ener
dissipated 1s the natural period of the system. For
ona frequeney component of the complex signal,
whose frequency is ¢ times the naturel fraqueney
of the system, the system stores and dissipates
anergy during excitation as though it had a § given

by:

E,

Naota that either of these more general definitions
of { reverts to ¢, for excitation at ths natoral
frequency of the system. These expressions show
that the ratio of energy stored by the system to the
energy dissipated is 8 rather smooth function of
frequency. The famibar frequency-selective netion
of the system 18 In fuct shown by the amount of
energy stored in the aystem under excitation by a
sinuscidal foree of & piven emplitude, and is & con-
saquanas of the matarial lowering of impedance in
the vicinity of the resonant frequency of the system.

The exponential decay of the energy stored in the
systeimn after cessation of the drving force takes
place at & frequency very near to the natural un-
damped frequency of the system. ﬂwinﬁ to the
dissipation, the frequency is lowered by the factor

—J1—-L.
a—\/l TR

Thus tha time scale of the decay in most closaly
expressed by the fipure of marit, £

he exponential factor « has been defined from
the exponential envelope of the decay of the energy
storad in the aystem after the driving force was
withdrawn. This iz an approxmation in that ne
account is taken of the instantaneous phaze of tha
energy stered in the system at the instant when the
driving force cesnsed. In faet, this s no B
approximation, s one can s=e by inspecticn of the
equation that describea the process. Letting z,
and z, represent the smplitudes of the sine and cosine
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termiz representing the coordinates of the = dlem

at i=0: o

Ix ¢t 2 —ad .
E,J‘%ﬂ.e %7 {{zﬁ+m‘;}+ 4—:2- S ‘“‘”‘r‘*"]
L1
drid

L [ Za7s T P A
ﬂ+r&,[ u-l—-tﬁ{xi Iﬁ}] BN To}

As the first term is the square of the modulus of
the system coordinate at t=0, it is independent of
time. The remaining terms, which form the modulue
of o double-frequency component, represcnt minor
variations from exponential deeny of the energy
stored in the sysfem. The nain term 15 a swn of
equares, whereas the modulus of the double-lrequency
component eanteing the difference of «f and f and
the product z,z, Neither the difference nor the
product can excesd the sum of the squares, and they
are further diminished by a factor of 1/¢} or smaller,
depending upon the initial conditions. The magni-
tudes of the double-frequency torme depend wvpon
the conditions at =0, but they are always fairly
unimportant. The situation is shown graphically

in ﬁEure 2.
The diseussion can be carried one step further:

As the snergy in & forcefres systsm can only he
disgipated, Wt i3 not itive during any part
of the deesy. Therefore, g:f slope of the modulated

exponential curve iz never greater than zero.

a 0.2 o8 0.8 o8
2Tty

Fravee 8, Devay of the sm;};y}éﬂ an ascillatory syatem for O
1

11 |8 Theestm iy aF warlmklom s thet s bk Ty Warkng qn]g With bl #xpeopenlind
Ay, TIJ.E",'pI nbh T Ilnor to repiresnl it wabpes of 50 dxeeas of &,

Appendix 2. Noise

Noize ean be ¢onsidered ne the result of & number
of minuscidal componentas acting simullanecusly.
The steady-staie stor of noise energy in the
gystem can be computed because the energy dissi-
pated will be equal to the energy supplied.

Usually, when we speaik of noise of constant power
per unit bandwidth, we imply that the driving force

amplitede ie deacribed by the equation:

z

A
E= H_Ir'f.

Sinca tha power dissipation in the system ai ifs
resonant fre uﬁnﬁﬁ is given hy Wpo=Ai2D, the
paraimeter ., & dimenzions of energy per cycle.

At the frequency of resonance for the systein, the
energy stored is

En=% ' 'il‘l_rfm

For a drivinglj'orm of & given magnitude, the peak
energy stored by the systein at any fre?uanc_v 1=
related to the peak energy stored at the frequency
of its natural resonance by the fraction, &

1
UA—V e

The total noise energy stored ia found hy inte-

pfing over this function. The parameter @ s
efined for enercy dissipated per radien, Therefore
the weighting for the noise energy stored ia

r EFdu.
I

Tha integration may be stated in terms of the vari-
able, & by malang the substitution duw=add
=2xfyis. Xftﬁr goma regrrangement of terms, the
noise anarey atorad in the system is given hy:

1 ¢
val, 1+2(%:~1)¢F+¢-4

U'nder circumstances for which 7 inay be retmoved
from the intepration, the remainder of the inta%'&l
becomnes merely (rfhy}/2, o that N={rn,/2. For
& sinusoidal input sipuel of averaga power W, at
the resonanee frequency of the syetemn, the maximom
ratio of algnsl energy stored to noiac cnergy stored
is given by:

F

-
SIN= 7

In general, #, would ba some function of freguency
#(f), Bod the evaluabion of the nolse weightiog
integral would be more difficult. However, since
the syateme we are desling with are somewhat
gelective, there are some other noise distributions
for which a useful Heguivelent white noise coeffi-
cient” can ba approximated. Wa have defined an
equivalent white noise coefficient as the mean value
of the noise function over the passhand of the
sysbem,

For the type of noise that may be described by
v =R&F the mesn-valoe intepration gives:
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R=s Ur ).

The range of vulues of »{f) iz k(f;—:lj.} whereae the
“aquivalent” n, is (#/2) {fe1+7f.). The ratio of the
range of values for »{f) to the computed value for
ry represents an extremne estimate for the error made
in waing . [t represents the situation for a flat
weighting of the noise components, whorens the

1

Appendiz 3. Distribution of Energy Versua
Frequency, and the Meize Integral

By patierning the integration upon the polynoimial
uzed in equations 6 snd 7 on page 47 in the tabies of
Bierens de Haun, we can compule the fraction of the
totel noize power tuken up by the system between
any pair of fractional-power points in the frequency
range, and the fraction of the total noise enargy that

syatem is actually selective and gzives most weightw;ed within the frequency range bounded by any
pair o

to components in the wicinity of . Tz extreine
estimate yields the ratio: ’

2(f)—r(f) _2(fhlfe—1)
iy th'rfﬂ'i'lj

For systetns with a € of 3 or higher, the response of
the system falls away rapudly from the pesk response
and the ratio f./7, ia vary pearly unity when Ffu: an
{‘b are taken as the one-Lalf tﬁowm‘ points. For the

alf-power pointa at (=3 thiz error estituufe rep-
rezents the gomtiun 1/3, but half the totsl integrated
enetgy sfored 1n the aystem ig stored within the
range of frequencies befween f, and fi; the other hall
arises from the remainder of the frequency range
batwesn zero and infinity.

{See appendix 3 for derivation of the energy stored
within restricted ranges of frequency.)

For (=%}, the aquivalent white noisc concen-
tration, n,, is piven by:

ot b Pl
! fh_fa

I is nacessary here o apply I'Hépital’s Rule to sce
that this equetion iz valid even for high values of
i} because as fy—f,, it simply approaches the limit
#y=rk(f,, Thus, aa it should, the mean valus, n,,
approaches the value »(#), as the range over which
the mean value iz cornputed decreases.

¥or low values of £, the guestion of the ercor
introduced by substituting the mean value for the
aetnal fynetion is agein limited st worst to the ratio
that the range of values of »{f} bears to the mean
value 5y  Thus, for the function v(f)=k/f.

W) —rlf) _ (hlh—1)t
Her ﬁ In I
Ja  Ja

Becuuse of the relatively slow chan%s of the Jogarithm
aa & function of its argument, this range always
represents a fairly amall error.

l?‘:as , wo have shown that an eguivalent
whita noise figure ¢an be derived from the mean value
of severe] noise functions, and that substifution of
an ny derived from the mean value of »(f) in place of
the white noise conetant does not lend to sericus
error.  ‘Thus the relations derived in this paper for
ordinary white noise ars aﬂpﬁcabla te¢ 5 number of
other noase fuhetions s well,

i fractionsl cnergy poinis. o
For the gystemn, the mean rate of power dissipation
13 given by

A!

277 ¢
a1 —¢*) ¢
The energy storad iz given by:

A @,
B 2D oxf,
Bl —e gt

At the natural resonance frequeney of the systern,
#*=1, and thus, when expressed as a Fraction of the
respanse at the naturel frequency, the relative power
and relative snergy functions become independent of
the driving force. Choosing lor eonvenience to
ex ihe fractionsl response as a reciprocal (e.g,
2 for the ons-hall power, ete.) for fraciional energy,

FE=Q§'|:1—‘¢::'!+¢!
and, for {ractional power, '

Qa1 —o#) 2 +¢*
Fy pe

{One can then aolve these equations to find at what
relative {requency limits the system has a given
fractionsl responze. This procedure yields, for he
frequency range between the fractional enerpy
pointa, the approrimale result:

Wp=

fitbe T 1T 13
kA e

and, for the frequency range between the fractzonal
power points, the ezast solution:

fi—fi_+F—1

Jo L

The alppmxinmtiun neaded in solving for the
fractional energy points arices frorn the fact that
the syatem hae finite ene storage capacity at
zoro irequency, whereas it has zero energy storage
capacity at infinite frequency. The power dissipa-
tion capacity of the system is, however, zere at
both extremes of the frequency rangs, and the fune-
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tion of power dissipation versus the logarithm of the
frequency is symmetrical. Except for svstems of
low energy-storage capacity, the asymmetry of the
energy storege funetion iz negligible. (Lte influence
on “ﬂffffu is discussed in appangix 4.)

ithin the frequency range between any two
fractional energy hmite, the noise energy stored is
given by:

Nx=%ﬂ:“:ff 142 ( 2_%3 i) et

Thi= integral can be divided into partisl Iractions,
and the separatsd ipl;:ﬁmls ive angle functions,
from: which the combined result iz

Nt G =2V F—1F1AG
2 (Fym L1 Fgf B

The radical in the denominator becomes imaginary
for the condition io which the energy storage at
zero fraquancy excesds the vaiue of Fg chozen for the
fra‘%u&ucy limit.

he power taken up by the system between the
froquency [imits representing various fractional
powey points is given by the integral:

w;=2"""—@;=‘fu b ( wqﬁ)
feaito 142 (21 ) ¢ttt
203

e 1 2 Fe—1
- s fAnTEENL R TR
th . 2 Fe

where ¢, and ¢, are the limits of relative frequeney
corrssponding to  the fractionsal wers  whasa
reciprocal ia Fe. This equation requires no approx-
imation.

1.0 1 1 I I

- ] ]

8.0 7.0
Fu

Froume 3. Frosion of tolal energy stored for sorimea reloftie
response Higele,

3.0
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The graphicsl result of this integration is shown i
figura 3. The stored energy derived frem noisa
power boetween the frequeney limits representing
various fractions] power points is presented as s frac-
tion of the total etorage for the complete spectrum.

These integrals hetween finite limite may also be
applied to evalualjﬂ%’the storage and dismpation of
eneryy derived froin band-limited sources,

Appendix 4. Frequency Resolution Limit

The approzimation that leads to computation of
Aflf; has interesting connotations in physical prob-
lems. Ome of the terms di represenia an -
ssymmeiry in the function describing the energy
response of the system ae a function of frequency.
This term becomes appreciable ooly for systems of
low energy-storege ¢apacity (——4), but its com-
putation permits 2 quantitative eatimate fo ba made
as to the limits within which the equations derived
in thiz paper are applicable.

The houndaries of the frequency resolution limit,
ﬁg{‘fg, are those for which the enerpy storage is less
t the maxitoum steady-state storage by the
limiting energy increment, AKX, Thig condition may
be found from solutions of the equation:-

- 1
¢ T @I+

A convenient method is to rewrite the equation as:
{#— 1>+ — 1/ — (" — 1)/ =0
The two

and to solve for the quantity (¢*—1).
roots cen be wrnitien as

I'-f1=':¢i_1}= {f:.'rfn‘_l}t.fl.{ﬁ'i‘l}
da=(ga— 1= (AHA—1) (hlfet+1}
Lat

Ah=f—h; Afe=T,—for
Then the limiting frequency inerement is given by:
Af=Af+Afr

The seymmetry batween the limits #; and 7, relative
10 f, may bo defined Bs: PER

_Afi—Af
Aa'_' gfﬂ 2

From these definitions:

o _di—idy
S 20—4)

The solution for the gquantity (#*—1) vields, as
the roots:




-1 1
s~ g VoD TG

—1 1
di:ﬁ—'_ﬁ yier—1 14k

ByTapplying the definitions for A7, Af; and A, te
the roota 4; and oy, the value of A, :i};jfnuxgld to be

1 FAafh? 1
e e
i\7, /) o
Mo approximaticn has been used io this point.
However, the second and third terns under the

radical are much smaller than the first. When they
are removed from the radical, hy approximation:

IWZ AR
a=3(3) @
Now, in the expression for Aflf, the term {1-A,)
appears in the denominator. A, is composed of
terms that axe quite small relative to unity, so that

4 series n,]iprmgin}atiun of ene term 15 sufficient, and
we may place it in the numerator, ohtaining:

dy=

%{ % \/eﬂ—1+zﬁﬁ(1+da}.

inspection of this expression shows that a further
simplifying approximation may be made in A,, for
it is clear that the term {¢°—1} is alzo rather small.
Clearly the term in A, that contains the sguore of
Afffy will in general be less than half as large as
1/4¢4E.  Thus, tha major term in A, ia just the quan-
tity 1/40,%. Wa have discarded thi=s quantity from
the equations shown in the text.

In order to find the limitations that bound the
application of the eguationa given in the text, we
must And the conditions under which the term 1}4@:.’
iz indead smali.

When @4 is taken ag larga aa permitted by the laast
time interval in which an observation may take place,
the relation between the resolution hmit slong the
time axiz aod the energy resclution limit is

Al oy

T, 2

and, thus, m the limit;

1 _ 2T
2@ 1600

The approximation for Af7; will be poorast for the
condition under which the discarded term is larzest
re {z»—13. From this limiting condition, we ean
e loast time interval

find the hounds im upon
for which theee derivations ave applicable. Let
a’Tﬁ e _ ot
oeae V=M gy

where M reprosents the terms that do net contain a.
Diiferentiating the right-hand term with respect to o
and setting it equal to zero, one finda two solutions,
the triviol cne of a=0, and the equation

(=2 g Z==0.

A graphical solution gives as the mest unfavorable
condition, a=1.6.

Thiz solution represents & condition in which
aE/E, would be very large; in fact, where noise 1s the
limitation, the eondition im}[_:.lies & zignal-to-noisa
ratio of approximately 0.2. ¥or this Limit:

fer— =gt —1=4,

Thus, for & precigion limit of about 12¥ percent, we
require only that the produet oM <71, or:

Toyd 1
w0 (5 s

For times of observation comparakle to one full
period and even less, and in almosi any condition in
which ¢;>>1, the term under the radical sien that we
have discarded is in fact negligible.
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