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This paper considers the resolution limits of those analyzers and oscillatory systems 
whose performance may be represented by a second-order differential equation. The 
"signal unce r t a in ty" product Af-At is shown to be controlled by the ability of a system to 
indicate changes in energy content . The discussion refers the functioning of the system to 
a signal space whose coordinates are energy, frequency, and t ime. In this signal space, 
the product of t he resolution limits, U=(AE/Eo) (A///O) (At/T0) is the volume of a region 
within which no change of s ta te in the system may be observed. Whereas the area element 
Af-At is freely deformable, no operations upon either A/ or At can further the reduction of 
the energy resolution limit. Thus U is irreducibly fixed by the limiting value of AE/E0^ 
By considering the effects of noise upon AE/E0, and thus upon U, t he paper demonstra tes 
t he rise of statist ical features as signal-to-noise ratios decrease. 

Funct ional relationships derived from AE/E0 and U are tabula ted . These equations 
facilitate computat ion of the limits of observable changes of s ta te in a system, and they 
provide guidance for t he design of experiments to apport ion the uncertainties of measurement 
of t ransient phenomena as advantageously as possible. A reference bibliography a n d 
appendices giving somewhat detailed proofs are included. 

The oasis of this paper is the consideration that 
the indication of most instruments used in measure-

u ment represents either the storage of energy or the 
flow of power. The least changes that the instru-

/ , ments can indicate, therefore, are controlled by the 
smallest discernible change in energy storage or 

v power flow. 
The subject of the resolution limits of measuring 

instruments in terms of the least amounts of fre
quency change and the least time interval in which 
a change may be detected have been treated by 
several authors, among whom one may cite as 
examples Gabor, Kharkevich, and Brillouin—and, 
while this paper was being revised, Pimonow.1 The 
present author has also discussed this relationship 

;-- for scanning analyzers, and indicated that there 
were circumstances in which limitations were intro
duced by the presence of a least discernible incre
ment of power or energy.2 These papers (ref. 2) 

''-' are quoted, in addition to the prior work, by 
Pimonow. 

"~ Gabor pointed out, by analogy to quantum theory, 
, that there was a "quantum" of information that 

could be described by the product of differentials 
representing the least discriminable increment of 
frequency that could be observed in an increment of 
time. This relation arose from the application of 
the Fourier transform to relate an increment of time 

- to its corresponding increment in the frequency 
domain. The product 

was defined by Gabor as the "Logon." The fact 
that, as he says, the product is "of the order of 

i D. Gabor, Theory of communication, J. Inst., Elec. Eng. 93, Part III (1946), 
429-457; A. A. Kharkevich, Spectra and Analysis, Translated and published by 
Consultants Bureau, New York (1960); L. Brillouin, Science and Information 
Theory, 2d edition, published by the Academic Press, New York (1962); L. 
Pimonow, Vibrations en Regime Transitoire, Dunod, Paris (1962). (This book 
has a very extensive bibliography.) 

2 Limitations on rapid signal analysis, J. Wash. Acad. Sci. 45, 359-360 (1955); 
Transients in signal analysis, J. Wash. Acad. Sci. 46, 305-307 (1956); Uniform 
transient error, J. Research NBS 61, 25-30 (1958) RP2879. 

unity" is a consequence of the particular normaliza
tion he used in computing the Fourier transform 
for Gaussian pulses. A similar relation was presented 
by Brillouin, but as he computed At in terms of the 
half-powers of brief, symmetrical pulses, he found 
a somewhat different normalization factor, and 
obtained 

Kharkevich adopted a somewhat more general 
expression for this equation, also in terms of a 
normalized Fourier transform, by first writing 

Af-M=A 

and computing A for pulses of various forms. He 
remarked that A might differ if other criteria were 
chosen, but related A only to the form of the signal. 
Further, he pointed out that A is independent of tha 
damping of the system. 

The studies by Gabor. Kharkevich, and Brillouin 
were all carried out for essentially noiseless systems. 
This paper, on the other hand, does not normalize 
for unit energy, but considers the energy storage 
and dissipation in systems whose performance may 
be described by a linear differential equation of the 
second order. Thus, by dealing with the energy 
stored as well as with the time and frequency we are 
able to study the response of a system to signals 
other than variously shaped pulses of unit energy, 
and to signals in noise as well as to noiseless systems. 

We can also consider, in this way, the case which 
has been omitted from the previous work: the 
response of the system which may in itself have a 
"least-count"3 or inherent internal noise. 

3 The term "least count" is chosen here by analogy to a term describing the 
limitation in a metering system: the least increment that can be read on the 
meter. 
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We introduce the means for taking into account 
the presence of noise with a signal, internal noise in 
an analyzer, or the least discernible indication of 
the analyzer (which may be a step limitation—such 
as a digital step, or a reading limit) by discussing 
the limits of the analyzer's performance as being 
fixed by the least change in energy storage, AE, that 
can be resolved under the circumstances of analysis. 
Several conditons may combine to fix the value of 
AE. For example, an analyzer having appreciable 
self-noise may be used to detect a signal in noise. 
As a rule, the internal and external noise sources in 
that case would be incoherent, and the sum of the 
noise energies stored in the analyzer from those 
sources would fix the value of AE. 

The system for which this discussion is carried 
out is a system whose working may be described by 
a linear differential equation of the second order. 
This behavior is common to many physical systems 
occurring in nature, and to many instruments used 
to observe natural phenomena. All of these systems 
share the same properties, because they are properties 
inherent in the differential equation that describes 
them. By virtue of the second-order term, they 
may be seen to be capable of storing oscillatory 
energy reversibly. They will respond with a sinu
soidal output after excitation by shock or noise. 
Under sinusoidal excitation, they will respond 
selectively to excitation of various frequencies. 

Systems to be discussed in this paper are those in 
which the storage of energy occurs in the coordinates 
describing the system: these systems are described 
by a second-order differential equation with constant 
coefficients; i.e., the system parameters are not 
affected by the energy storage process. By invoking 
the Boltzmann-Ehrenfest adiabatic principle,4 it is 
also possible to apply many of these equations to 
systems in which energy is stored by a change of 
parameters. However, this matter has not been 
investigated in detail. 

Although most of the systems to which the second-
order differential equation is applicable take part in 
time-varying phenomena, there is nothing inherent 
that restricts the equation to functions of time. 
Certain spatial distributions also may be described 
by the equation—such as the magnetization on 
magnetic tape, some types of optical images, and 
some diffraction effects. Thus, although this paper 
will deal with application of the equation to time-
varying phenomena, its conclusions are also appli
cable, with a judicious choice of variables, to spatial 
distributions. 

For the sake of a coherent structure upon which to 
base this paper, we choose a mechanical system of 
inertia, M, dissipation (proportional to velocity) D, 
and coefficient of restitution, k. This system has a 
single degree of freedom, along the coordinate x, and 
its force-free behavior is given by solutions of the 
homogeneous equation: 

Mx+Dx+kx=0. 
4 M. Greenspan, Simple derivation of the Boltzmann-Ehrenfest adiabatic 

principle, J. Acoust. Soc. Am. 27 , 34-35 (1955). The adiabatic principle states 
that for a system excited by a change in parameters, the ratio of energy content 
to resonant frequency is a constant. 

When energy is stored in the system, it is dissi
pated at a mean rate which bears a constant rela
tionship to the amount of energy stored. This 
constant is a function of the parameters of the system. 
In terms of dissipation, the constant is frequently 
expressed by the relative damping, 7, the ratio of 
the damping of the system to the critical damping 
for no oscillation. A reciprocal quantity, the "figure 
of mer i t / ' Q, is commonly used in communication 
problems. These two constants are related through 
the equation: 

7~2Q 

Because we are more concerned here with storage 
than with dissipation, the quantity Q will be used in 
the discussion. 

The conventional definition for Q applies when the 
system is driven at its resonance frequency; at other 
frequencies the ratio of the storage of energy to the 
rate of dissipation depends upon the driving fre
quency. When the system is free of excitation, the 
conventional definition of Q again applies. This 
value of Q will be denoted as Q0, to distinguish it 
from the more general definition of Q to be applied 
in the appendix. Defining as the natural frequency 
of the system the quantity f0, which is the natural 
frequency of the system in the absence of damping, 

and 

z_J_ /A 

Qo = 
Peak energy stored at the natural frequency 
Energy dissipated per cycle at the natural period 

In terms of the parameters of the system, this defini
tion of Q0 is equivalent to the ratio: 

Q 
_2wf0M_ k kM 

D 2-wjJ) D 

The differential equations for the transient and 
driven response of the system can be expressed in 
terms of Q0, D, and /0. For the force-free equation: 

and, for the driven response of the system to a 
sinusoidal force of amplitude A and frequency/: 

2rf0 Qo 
+ £-+2TTJ0X--

QoD 
pftTft 

Letting the ratio of the driving frequency to the 
natural undamped frequency be represented by 

<*>=///<, 

we can write down the phase relation between the 
driving force and the resulting motion. The phase 
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angle, 6, when the steady-state condition has been 
attained is given by 

and the energy stored in the steady-state condition 
is given by: 

A* _Q«_ 1 
rJs 2D 2 T / 0 " Q S ( 1 -4>2)2+4>2' 

The application of the Fourier transform can be 
v considered to be tantamount to referring the behavior 

of the system to one or the other of two mutually 
perpendicular planes: The steady-state condition is 
described by the representation of the state of the 
system in the energy versus frequency plane and it 
of necessity deals with the steady state because the 
variable, time, is not involved. The transient 
behavior of the system is represented in the energy 
versus time plane. I t is easier to understand that 
this is orthogonal to the frequency representation if 
we omit the normalization often used, of choosing the 
unit of time in terms of the natural period of the 

t system. Nevertheless, it is more convenient to 
express the behavior of a system in terms relative to 

./_ its natural parameters, and for the sake of simplicity 
~ of equations, much of the discussion will be related 
^ to the natural properties of the system. 

Three properties serve to specify the behavior of 
an analyzer described by a second-order differential 
equation: its undamped natural frequency, /0 , its 
figure of merit, Q0, and its "least count / ' AE, the 
least energy change that can be resolved by the 
system. The changes in energy content of the sys
tem may be thought of as taking place within the 
signal space bounded by the energy-time and energy-

.̂  frequency planes, and the representation of the 
behavior of the system as a function of time or of 
frequency may be considered as projections upon the 
principal planes. Since the actual use of the system 
as an analyzer is never wholly steady-state or com
pletely broadband, the actual process of analysis may 

"~ be considered as taking place in some plane within 
the signal space bounded by the principal planes. 

* Depending upon the information sought, the plane 
of the analyzer will be close to one or the other of 
the principal planes. 

Ordinarily, an analyzer indicates a running time 
average over the energy, Es, stored in it. For steady-
state signals the indication becomes proportional to 
the input power; for signals of very brief duration 
the analyzer responds ballistically and thus gives an 
indirect indication of energy. The limit of resolution 
is fixed by the least change in energy storage, AE, 
that can be resolved under the circumstances of 
analysis. In this discussion we shall be dealing with 
incremental ratios. As the differential will always be 
considered jointly with the total energy stored over 
the same time interval, it will be possible in general 
to discuss ratios of incremental power, AW, to input 
power, Wo, or incremental energy, AE, to energy 
stored, Es, interchangeably. 

As a function of time, the building up and decay of 
the energy stored within the system are exponential 
processes. Therefore it proves convenient to describe 
the behavior of the system in terms of an exponential 
variable. Thus, to express the changes in energy 
storage, we choose an exponential coefficient, a. 
The energy resolution limit, AE/E0, may be expressed 
in terms of a through the following definition: If the 
initial amount of energy stored in the analyzer is 
E0, and the minimum change of energy that can be 
discerned is AE, then in terms of the exponential 
variable a the equivalent statement is that the energy 
content must decrease to an amount (e~a) times its 
original value for the change to be at least equal to 
the minimum change discernible. Expressed as an 
equation, this limit is given by AE=(l—e~a)EQ for 
energy, and in the many cases in which we are dealing 
with energy flow through the system, alternatively 
as AW=(l—e~a)W0 for power. From the definition 
of a in terms of AE and E0, it is evident that: 

However, it is not along the time axis alone that a 
proves such a convenient function. Because of the 
close relation between exponential and angle func
tions, it also yields simple equations for the behavior 
of the system as a function of frequency. For the 
foregoing reasons, we shall describe the manner in 
which the independent variable, the energy increment 
AE, influences the resolution limits in frequency and 
time in terms of the variable a, and we will then 
return to consideration of what the equations de
scribing these resolution limits mean in terms of AE. 
We will also discuss special types of noise conditions 
that may give rise to the irreducible increment that 
AE represents. 

The conditions under which a sets the resolution 
limit along the time axis are derived from considering 
the system to contain an amount of energy E0 at 
time t=0, and at that instant and for some time 
subsequent to that, to be free of any driving force. 
The resolution limit along the time axis is fixed by 
the least time interval, At, during which the system 
is capable of changing its energy storage by the factor, 
e~a. This corresponds to dissipating at least the 
discernible energy increment, AE, during the time 
At. The resolution limit stated in terms of the 
natural period of the system, T0, is thus given by 
At/T0. 

When a system of this sort is used as an analyzer, 
the time interval over which the observation takes 
place must be of sufficient length for some change to 
be indicated. Thus the observation interval, AT, 
must equal or exceed the least time interval At. 
(In the previous papers cited in reference 2, the 
observation interval AT was used in place of the 
least time increment At. Use of the least time 
increment converts several previously found in
equalities to equations.) 

I t is a very close approximation (see appendix 1) 
to consider only the exponential factor in the decay 
of energy in the system. The oscillatory terms 



arising from the sinusoidal nature of the dissipation 
process are always relatively minor. Thus, regard
less of the precise initial conditions, 

E0 
= e 

(t = At) 
-exp 

/ 2TT At\ 
\ Qo'ToJ 

and, therefore, the resolution limit along the time 
axis, expressed in terms of the natural undamped 
period of the system is 

A* 
To ' 2TT* 

From this equation one can see that the ratio of 
a to At is twice the real coordinate of the poles of 
the system on a Nyquist diagram. 

The system is selective with respect to the sinu
soidal frequency of the driving force which acts as a 
source for the energy it stores. This makes it suit
able for the detection of sinusoidal frequencies falling 
within its range of response, or a group of similar 
systems with different/o's may be used in the analysis 
of the components of complex signals. For this 
purpose, the observation takes place in a plane 
approximating the energy-frequency plane. Along 
the frequency axis, one may speak of a frequency 
resolution limit in this sense: If one knows the 
natural frequency fQ to which an analyzer is 
tuned, then a maximum indication of energy storage 
for a steady-state sinusoidal signal corresponds to a 
signal in the vicinity of f0. Until the energy storage 
has changed by an amount in excess of AE or, when 
expressed as a relative proportion, a factor in excess 
of AE/E0, the departure from maximum indication 
is not observable. The change in frequency required 
to produce this effect, A/, corresponds to the fre
quency resolution limit A///0. 

As one can see from the equation for the energy 
stored in the steady-state condition, the response of 
the system to a sinusoidal frequency other than its 
natural undamped frequency is diminished to a 
fraction, F, of the maximum energy that would be 
stored at the natural frequency. Expressed in terms 
of the ratio of the frequency of the driving force to 
the natural undamped frequency of the system 
(f/fo=4>), the fraction is 

F= 
4>2+$(l-tf>2)2 

The frequency limits for the region A/ surrounding 
/o are found by solving for the condition e~a=F. 
Solving for the upper and lower frequency limits, 
fb and/ a , for which the energy stored in the resonating 
system is a fraction e~a of the peak response yields 
the expression: 

n-j\ n '~Qo V («"-!) + ±Ql 

And to a very close approximation, the frequency 
resolution limit comes out as: 

A/_V(6»-1) 
Jo Qo 

when A/ is defined as (/&—/„). 
The foregoing discussion may now be summarized 

in geometrical form by reference to a three-dimen
sional figure in signal space. The limits of resolution 
of an analyzer may be represented by an irreducible 
region in a three-dimensional space that must be 
exceeded before any information about a signal can 
be found. This space is shown in figure 1. As one 
can see from the equations, the figure of merit, Q0, 
enters into the resolution limits for time and fre
quency in a complementary way. Thus, it deter
mines the relative proportions between the resolu
tion limits Af/fo and At/T0. One may therefore 
apportion the relative uncertainties in frequency 
and time to suit the requirements of an experiment 
whenever one can control the Q of a system. This 
process is discussed more fully in "Uniform Transient 
Error" (see footnote 2). But the product of the 
resolution limits, the "uncertainty equation" de
pends in irreducible fashion upon a. 

AE 
E° s 

At 
To 

1 

1 
y-

ySL\ 
fo 

FREQUENCY,f 

F I G U R E 1. Resolution limits making up the indication limit, U. 
To is the period corresponding to jfo, the natural undamped frequency of the 

system. Eo is the maximum sinusoidal energy stored. 

Thus the signal uncertainty equation, expressed in 
terms of a, turns out to be 

1 
A/.A*=^V(«a -1) 

where a is related to AE through the definition of the 
least change AE that may be observed in the total 
stored energy E0. 

The basic form of the resolution equations results 
from substitution for the exponential coefficient, a, 
in the equations already derived: 

At 
T; 

Qo 0 *H'-£) 
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W: AE 
Eo 'V-

= 1 
AE 

'Eo 

1 

> 
AE 

'Eo 

Af-AU 

The volume corresponding to the irreducible limits 
in signal space, a quantity here defined as the 
<'indication limit," can be computed from the signal 
uncertainty equation. I t is defined by the triple 
product of the resolution limits along the three axes, 

TT AE At A/ 
E0 T0 jo 

and it is just the volume of the elementary figure 
shown in figure 1. I ts computation might at first 
glance appear to be somewhat redundant to the 
signal uncertainty equation. In fact, its functional 
form permits factoring the expression for U into 
components that have an interesting connotation in 
physical measurements. 

Thus, since: 

Afi A/ A^_AFP A/ A* 
U~Eo' fo'To~Wo* jo'To 

the magnitude of U expressed in terms of the variable, 
a, is 

U=^Z1 (6«-l)3/2 

and U is given in terms of the energv resolution 
limit, AE/EQj by: 

u ^ -

• AE • 

EQ 

AE 
Eo) 

3/2 

•C-O-fM'-f)] 
I t should be noted that the indication limit U and 

the signal uncertainty relation Af-At depend only 
upon the energy resolution limit. The energy 
resolution limit is an independent variable and 
cannot be reduced by operations altering the function 
of the system along the / and t axes: for instance, 
changing the Q0 of the system. 

For a system operating at its optimum, the 
irreducible energy or power increment for the 
system would be set by the noise energy stored in 
the system. This noise energy may be due to 
Brownian motion in the system, for example. Noise 
of external origin may be present with the driving 
signal. In the general case the intrinsic and extrinsic 
noise powers will not be coherent, and the total 
noise energy stored in the system may usually be 
considered as the sum of contributions. 

The prior papers relating the resolution limits to 
the relative amounts of signal and noise present (see 
footnote 2) were based upon a derivation subject to 
the restriction that the signal-to-noise ratio be high. 
In those papers, the relationship found was 

A / A r > 
(S/N) - 3 / 2 

2TT 

where S and N were signal and noise powers, re
spectively, and where the use of the observation 
interval AT rather than the limiting time increment At 
made the relation an inequality. 

Such a restriction was, in fact, not required. A 
tractable and useful expression for the product 
Af-At can be derived, valid for all values of S/N. 

In the case where both signal and noise energy 
are stored, the total energy present in the system is 
E0=S+ N. An increment in the signal energy stored 
(or in the input signal power) can be detected only 
if it equals or exceeds the minimum energy increment 
the system is capable of indicating. From this 
definition and the definition of the exponential 
factor, a: 

_AS_>^E=AW 
S+N-Eo Wo u e )-

And, where the least energy increment is controlled 
by the noise energy stored; AE-^-N: or, very nearly 

AE N 
E0 S+N 

Thus, where the limit of detection is set by the noise 
energy: 

N+8 
x=ln' 

S 

from which the signal uncertainty becomes: 

A/-A<= 
2x f'K1+f)' 

For high values of S/N, this expression approaches 
the limit (1/2AT) (S/iV)~3/2, a result found previously 
(see footnote 2). 

An especially interesting interpretation can be 
made from the form of the expression for the indica
tion limit, U, when it is written in terms of the 
signal-to-noise ratio. 

U= 
(S/NY •3/2 

2TT d -S/N S/N \ 
+S/N 1+S/Nj 

The first factor can be recognized to be the ex
pression for the signal uncertainty, Aj-At, when the 
signal-to-noise ratio is high. The term in paren
theses also has a recognizable functional form, and in 
fact it is possible to relate it to the limiting probabil
ity of information transfer. 

To facilitate discussion, the factor N may be 
cleared from the fractions in the term, giving it the 
form: -S/(S+N) In S/(S+N). As one can see 
from the series expansion for the natural logarithm, 
this product approaches the value N[S for large 
values of S relative to N, and the indication limit 
then is merely the trivial product of the reciprocal 
of the signal-to-noise ratio multiplied by the signal 
uncertainty function. I t is quite another matter as 
S/N->0. Then the indication limit may be con-
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sidered to consist of two meaningful terms: one is the 
same signal uncertainty function that has already 
been derived for high signal-to-noise ratios (see 
footnote 2) (i.e., for AE small re EQ); the other is a 
modulating function that we will now proceed to 
relate to statistical matters. 

Where one is dealing with the statistical presence 
of noise and signal, the long-time average signal-to-
noise ratio may be described in terms of expected 
values. The following definition of expected value 
is taken from a textbook on statistics.5 "The 
expected value of a random variable or any function 
of a random variable is obtained by finding the 
average value of the function over all possible values 
of the variable . . . . This is the expected value, or 
mean value of x. I t is clear that the same result 
would have been obtained had we merely multiplied 
all possible values of x by their probabilities and 
added the results . . . we might reasonably ex
pect the average value of a; in a great number of 
trials to be somewhere near the expected value of x." 

A special case that is quite common experimentally 
is one in which the level distributions of signal and 
noise are precisely the same. If one has either a 
signal or noise, the probability of the signal being P , 
then it follows that the probability of the noise is 
(1-P) . If the signal and noise have the same level 
distribution, Gf the modulating term 

S 7 S PG 7 P-G 
N+S LnN+S^P'G+(l-P)-GinP-G+(1-P).G 

and thus the term that modulates the signal un
certainty function can be seen to reduce to the 
form —PlnP, where P is the probability of signal 
occurrence. From very simple considerations, there
fore, the limit of detection is shown to be related 
directly here to a limiting probability of information 
transfer—a quantity usually derived in information 
theory by considering signals and noise to be made 
up of equal-sized unit impulses. 

I t is interesting that this point was arrived at in 
the reverse direction by Woodward and Da vies.6 

They started with the PlnP term from Shannon's 
information function and demonstrated from con
sidering the signals and noise in radar detection 
tha t the quantity P was related to the signal-to-noise 
ratio for radar signals. 

However, the modulating term in its original form, 
in terms of S and N, may be seen to represent a 
generalization of the function defined in information 
theory as the channel capacity, H. This form is 
more closely related to the ordinary formulation 
describing the entropy of a system in terms of the 
probability distribution of energy states within it.7 

* A. M. Mood, Introduction to the Theory of Statistics, p. 91. (McGraw-
Hill Book Co., New York, N.Y., 1950). 

e P . M. Woodward and I. L. Davies, A theory of radar information, Phil. Mag. 
Series 7, 41,1001-1017 (1950). 

7 Max Born, Natural Philosophy of Cause and Chance, The Clarendon Press, 
Oxford (1949), cf, especially the discussions of probability and entropy; Claude 
Shannon and Warren Weaver, The Mathematical Theory of Communication, 
University of Illinois Press. Urbana, 111. (1949). 

The question of whether a signal is detected in 
the presence of noise depends upon what the in
vestigator chooses to consider a reasonable limiting 
probability in deciding whether a signal has been 
detected. A preponderance of only 1 percent above 
random distribution would correspond to a much 
smaller signal-to-noise ratio than would 90 percent. 
In fact, the common definition that gives the limit 
of detection as a signal-to-noise ratio of unity 
corresponds directly to setting the criterion for the 
limiting probability of detection at 50 percent. 

For the case N=S, the "—PlnP" term becomes 
—\ In \ and the indication limit becomes: 

TT 1 / 1 . 1\ ln2 

for which the signal uncertainty function is: 

These are the limiting forms also where signals 
and noise are transmitted as "bits." 

Thus far we have discussed noise from the stand
point of the noise energy stored in the system. This 
energy is, so far as the actual storage in the system 
is concerned, not distinguishable from energy stored 
that might be derived from purely sinusoidal excita
tion. If all excitation were withdrawn, and the 
system left in the force-free state, the energy in it 
would be dissipated in the usual exponential decay, 
and the oscillations during the decay would be 
essentially of frequency f0, providing the system 
had moderate energy storage capacity (Qb>l). 

Therefore, unless we have some other means for 
distinguishing among the sources of the energy stored 
in the system—such as, for example, knowledge of 
the spectral character of pulsed signals applied to 
the system—or knowledge of the amount of energy 
found present in the system when it is considered to 
be free of any known source, we are left to regard 
as signal that part of the energy stored in the system 
that was produced by a sinusoidal signal of power Si. 
The remaining driving sources, of more or less broad 
spectral distribution, would in general be classified 
as noise. 

If the system is being driven at its natural fre
quency, its output signal will be QQ/2w times its 
input, for QQ is 2T times the ratio of the energy 
stored to the energy dissipated during the cycle. At 
any other driving frequency, the energy stored will 
be weighted by the response, p, which relates the 
energy stored to the power supplied to the system. 

= QO/2T/Q 
9 fifo+Qi{i-finy 

Suppose the noise within the system arises from a 
source whose spectral distribution is given by the 
power density function, Nf. The system will store 
energy with a weighting factor of p. 

The total energy stored in the system due to ex-
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citation by noise will then be found from the integral: 

N= Nfpdu. 

Although we have discussed the behavior of the 
system in terms of cycles per second, the quantity 
we have designated as Q0 is defined directly in terms 
of the ratio of the energy stored to the energy dis
sipated per radian. As the parameter of the func
tion we are integrating is Q0, we must choose the 
dimensionally similar variable in order to carry out 
the integration correctly. Thus we must integrate 
with respect to co rather t h a n / . This point is given 
in detail because it is an instance of the dimension
ality of angles recently pointed out by C. H. Page.8 

This integral may be evaluated easily for noise of 
constant energy per unit bandwidth in cycles per 
second; the result is then 9 

N--
_irNf 

and it is independent of Q0 because the energy stor
age capacity of the system and its bandpass for 
noise are affected in a complementary fashion by 
changes in the figure of merit. 

For several other types of noise, an approximate 
equivalent white noise coefficient, nfj can be defined, 
for which the foregoing equations remain applicable. 
Given a noise whose spectral distribution is v(J), 
a mean value "equivalent' ' white noise per unit 
bandwidth may be computed from the equation: 

Obviously if v(J) equals a constant, then nf is the 
familiar "White Noise" coefficient. However, for 
several other types of noise the mean-value integra
tion yields an equivalent nf, which may be treated 
as a constant, with rather low residual error result
ing from this approach. This can be seen from the 
fact that the system is selective with respect to the 
frequency components of the power sources from 
which it stores energy. Thus the restriction is only 
that the spectral distribution be changing slowly in 
the frequency region immediately surrounding j 0 . 
For the following noise distributions, the residual 
terms discarded amount, in the worst case, to no 
more than 12% percent of the approximate value: 

For the noise distributions shown in the left-hand 
column, the respective mean values are shown in the 
right-hand column: 

k 
" ( / ) = * • / nf=2 (fb+fa) 

8 C. H. Page, Physical entities and mathematical representation, J. Research 
NBS 65B (Math, and Math. Phys.) No. 4, 227-235 (1961). 

9 D. Bierens de Haan, Nouvelles Tables D'Integrales DSfinies, eq (6)- p. 47 
(Edition 1867, reprinted 1939). 

y(f)=W 7hf= 
klnfjfa 

(constant energy/octave) ' 0W«) 

where, for this purpose, fb and fa are taken as the 
upper and lower half-energy limits of the response 
weighting function, p. 

One can use the foregoing to predict the ratio of 
energy stored from the sinusoidal excitation to the 
energy stored from the source of noise. Thus the 
effective signal-to-noise ratio in terms of energy 
stored in the system is given by: 

S/N= 
2SiP 

-n-riffo 

The signal-to-noise ratio will be a maximum if the 
frequency of the sinusoidal excitation is just equal 
to the natural undamped frequency of the system. 
(For this condition, P=Q0/2T.) The maximum 
ratio is: 

S0IN= _ SJQO T 

The foregoing derivation has meaning also with 
respect to any system described by a second-order 
differential equation in which some event of brief 
duration occurs. A quantity directly analogous to 
the indication limit may be computed. In this 
instance, the expressions relate the resolution limits 
that bound the occurrence of the event, specifying 
the least increments of energy, frequency and time 
within which the event can take place. 

Further, the limiting energy increment, AE, need 
not be formed by noise. For example, in a pulse-
height system it would correspond to the smallest 
step in pulse height that might be indicated. As 
another example, an atomic system described by a 
second-order differential equation might have AE 
subject to quantum limitations. 

Summary 

The incremental limits, resolution limits, and in
dication limit for the performance of any system that 
is described by a second-order differential equation 
may be computed from considering the manner in 
which the system stores and dissipates energy, sub
ject only to the restriction that the system be cap
able of storing oscillatory energy reversibly. As 
these limits are inherent in the mathematical prop
erties of second-order differential equations, they are 
applicable to other types of systems by analogy. 

The results of the discussion presented here are 
summarized in table 1. The relations tabulated 
apply to conditions that may be observed so long as 
the observation interval exceeds ){-K times the natural 
period of the system. The first line of table 1 
summarizes the equations in terms of the basic 
energy resolution limit, AE/E0. The second line 
gives the same results expressed as functions of the 
exponential quantity a, and its inherent advantage 
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Basic Variables: Resolution Limits: 

AE 
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* 2 n f f 0 
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- *n(l - f) 
o 

a 

. S /N + i 

ln « + - S ! Q 7 > 

S/N 

. AE 

AE 
E o 

1 

e - 1 
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S i Q o 
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^ f / f o 

/ ~ Z E — 
i / EG 

7 i-£ 
« / e a - 1 

Qo 

1 

Qo^sTN 

1 / r 2 n f f 0 

Q o / s i Q 0 

Qo 
2 K 

Qo 

Qo 

2jf 

At/T o 

*n(l - f ) 
E o 

a Q o 
2« 

„ S /N + l 

J t 2 nf f 0 

ln (1 + "W> 

Uncertainty ReJjation: Indication Limit: 

Af A t 

a >/7rT7 
2n 

1 S/N + 1 

1 /« nffp , ., ^ rt£nf£ox 

"3V"W ( "TST* 

-d - f) *n (1 - f) 
o o 

a e 
2* 

(S/N) 
-3/2 

2 * 

2* 

r*2«*f >3/2 

3t nf-^o I ' 

- (.« - 1)V2 
* 
_ s/N

 S/N 
S/N + 1 S/N + 1 

« 2 n f f 0 > 3 

SiQo J 

SiQo 
en 

S.Q 

K2nffo + SlQo «2nffo + S.Q 
o) 

T A B L E 1. Resolution limits of analyzers and oscillatory systems expressed in several alternative variables. 

as a means of expressing AE/E0 can be seen from the 
greater simplicity of the equations in a. The third 
line summarizes the equations for the condition that 
AE/EQ is limited by the noise energy stored with the 
signal. The last line is the formulation of the noise-
limited case in terms of the input powers of sinusoidal 
signal and noise, where the noise power can be 
expressed as noise energy per cycle. 

The derivations sketched in the text are pre
sented in detail in a series of appendices for those 
cases where it is felt this presentation will prove 
informative. 

I t is not feasible to relate each idea in this paper 
to a specific item in the literature. However, there 
are numerous papers that bear some relation to the 
material in this paper. A classified bibliography of 
some of these papers is therefore included at the end 
of this paper for the convenience of persons working 

on related problems. (The reader may also wish to 
consult the bibliography in Pimonow's book, see 
footnote 1.) 

In this work I have benefited greatly by numerous 
discussions with Chester H. Page and Richard K. 
Cook. For several very enlightening remarks I am 
grateful to William H. Huggins and C. G. M. Fant . 
For a very helpful discussion on the dimensional 
properties of Q, and for painstaking checking of 
derivations, I should like to acknowledge the help 
of my colleague, Joseph Tant Priestley. To a 
number of my colleagues, friends, and visitors who 
have sat patiently discussing this problem with me 
while I was working it out, I should like to take this 
opportunity of extending my thanks. 

This work was sponsored by the Office of Naval 
Research and also supported in part by the National 
Bureau of Standards. 

468 



Appendix 1. Energy Storage and Dissipation 

For a system whose properties are described by a 
second-order diflFerential eqyation, subjected to a 
driving force of amplitude ^4,^^Jifferential equation 

•._ becomes: 

M x+D x+kx=A ej(at. 

The equation may be rewritten in terms of param
eters related to the undamped natural frequency 
and figure of merit of the system. The relative 
frequency, <j>, replaces the quantities / and co by 
4>f0 and 0a>o respectively. The equation resulting 

^ from this substitution is 

& x+x+c0Q0x=~ e>* V , 
co0 U 

where, of course, the ratio Jc/M is co0
2. 

The system responds to the force by motion of 
- amplitude i?, whose phase relative to A is given by 

the angle 9. 

e = t a n _ 1 ( ? o ( l - * ) s • 
/ 

and the absolute value of the square of the amplitude 
v is 

1 B*\ =^D2' <2o2(l-4>2)2+4>2' 

The conventional definition for the quantity we 
represent here by Q0 is given in terms of the natural 
undamped period of the system. For a sinusoidal 
driving force, one may have more use for the energy 
dissipated per cycle of the driving force, and in 

^ general the exciting force will not necessarily be 
alternating at the natural frequency of the system. 

: We wish to extend the definition of Q for a system 
when it is being excited at frequencies other than its 

" natural frequency. There are several alternative 
definitions ordinarily given for the quantity we 

" designate here as Q0. 

n _ Peak energy stored 
^° Mean energy dissipated per radian fraction of 

the natural period 

_ Peak energy stored 
Energy dissipated per cycle of the natural period 

_ Peak energy stored 
°Mean rate of power dissipation 

The second definition is commonly given because 
. , the amount of energy dissipated in a single cycle 

can be computed without finding a mean value. 
For our purposes, the third alternative gives the most 
direct approach to a generalized definition of Q. 

The peak energy stored in the system under 
steady-state excitation is given by: 

and the mean rate of power dissipation is 

w = ^ 4>2 

WD 2D'Q0
2(l-<t>2)2+<l>2' 

The term co0 in the third alternative of the definition 
for Qo may be rewritten as 2T/T0, where T0 is the 
natural period of the system. 

Let us denote by Qf the ratio of peak energy 
stored to the energy dissipated during one cycle 
of the driving frequency. The period of the driving 
frequency is T=TQ/<t> and the resultant equation 
for Qf becomes 

Qf=Qo/<t>-

However, when a system is subjected to excitation 
by a complex group of driving forces, the only 
consistent period over which to compute the energy 
dissipated is the natural period of the system. For 
one frequency component of the complex signal, 
whose frequency is <£ times the natural frequency 
of the system, the system stores and dissipates 
energy during excitation as though it had a Q given 
by: 

Note that either of these more general definitions 
of Q reverts to QQ for excitation at the natural 
frequency of the system. These expressions show 
that the ratio of energy stored by the system to the 
energy dissipated is a rather smooth function of 
frequency. The familiar frequency-selective action 
of the system is in fact shown by the amount of 
energy stored in the system under excitation by a 
sinusoidal force of a given amplitude, and is a con
sequence of the material lowering of impedance in 
the vicinity of the resonant frequency of the system. 

The exponential decay of the energy stored in the 
system after cessation of the driving force takes 
place at a frequency very near to the natural un
damped frequency of the system. Owing to the 
dissipation, the frequency is lowered by the factor 

Thus the time scale of the decay is most closely 
expressed by the figure of merit, Q0. 

The exponential factor a has been defined from 
the exponential envelope of the decay of the energy 
stored in the system after the driving force was 
withdrawn. This is an approximation in that no 
account is taken of the instantaneous phase of the 
energy stored in the system at the instant when the 
driving force ceased. In fact, this is no gross 
approximation, as one can see by inspection of the 
equation that describes the process. Letting xa 
and xb represent the amplitudes of the sine and cosine 
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terms representing the coordinates of thp system 
aU=0: **f 

E.-m-e^ K«+*+4P£ 
Xf, 

-4Sxaxb 
To " " " v . ' " 8 " * " ' 4 Q o L Qo """""J 

cos 
4TT<5£ 

As the first term is the square of the modulus of 
the system coordinate at t=Q, it is independent of 
time. The remaining terms, which form the modulus 
of a double-frequency component, represent minor 
variations from exponential decay of the energy 
stored in the system. The main term is a sum of 
squares, whereas the modulus of the double-frequency 
component contains the difference of xl and xl and 
the product xaxb. Neither the difference nor the 
product can exceed the sum of the squares, and they 
are further diminished by a factor of 1/Q0 or smaller, 
depending upon the initial conditions. The magni
tudes of the double-frequency terms depend upon 
the conditions at t=Q, but they are always fairly 
unimportant. The situation is shown graphically 
in figure 2.-

The discussion can be carried one step further: 
As the energy in a force-free system can only be 
dissipated, dEJdt is not positive during any part 
of the decay. Therefore, the slope of the modulated 
exponential curve is never greater than zero. 

0.8 h 

0.6 

0.4 

0.2 \-

F I G U B E 2. Decay of the energy in an oscillatory system for Q 
of IX 

It is these minor variations that we omit by working only with the exponential 
decay. They are too minor to represent for values of Q in excess of 2. 

Appendix 2. Noise 

Noise can be considered as the result of a number 
of sinusoidal components acting simultaneously. 
The steady-state storage of noise energy in the 
system can be computed because the energy dissi
pated will be equal to the energy supplied. 

Usually, when we speak of noise of constant power 
per unit bandwidth, we imply that the driving force 

amplitude is described by the equation: 

-4* 
2£>= 

Tnrj. 

Since the power dissipation in the system at its 
resonant frequency is given by WD=Al/2D, the 
parameter nf has the dimensions of energy per cycle. 

At the frequency of resonance for the system, the 
energy stored is 

For a driving force of a given magnitude, the peak 
energy stored by the system at any frequency is 
related to the peak energy stored at the frequency 
of its natural resonance by the fraction, F: 

F= 1 
<&>2(l-*2)2+*2 

The total noise energy stored is found by inte
grating over this function. The parameter Q0 is 
defined for energy dissipated per radian. Therefore 
the weighting for the noise energy stored is 

r E-Fdu. 

The integration may be stated in terms of the vari
able, </>, by making the substitution doo=o)0d<l) 
—2Trj0d<t>. After some rearrangement of terms, the 
noise energy stored in the system is given by: 

Hif nfd(j> 

1+2 Wo V 0
2 + 04 

Under circumstances for which 71/inay be removed 
from the integration, the remainder of the integral 
becomes merely (TQ0)/2, SO that N=(imf)/2. For 
a sinusoidal input signal of average power Ws, at 
the resonance frequency of the system, the maximum 
ratio of signal energy stored to noise energy stored 
is given by: 

S/N= 
_QoWs 

In general, nf would be some function of frequency 
v(j), and the evaluation of the noise weighting 
integral would be more difficult. However, since 
the systems we are dealing with are somewhat 
selective, there are some other noise distributions 
for which a useful " equivalent white noise coeffi
cient" can be approximated. We have defined an 
equivalent white noise coefficient as the mean value 
of t*he noise function over the passband of the 
system. 

For the type of noise that may be described by 
v(f)=kf the mean-value integration gives: 
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%=2 ^ 6 + ^ -

The range of values of v(j) is k(Jh—ja) whereas the 
"equivalent" nf is (k/2) (Jb+Ja)- The ratio of the 
range of values for v(1) to the computed value for 
ns represents an extreme estimate for the error made 
in using nf. I t represents the situation for a flat 
weighting of the noise components, whereas the 

Appendix 3. Distribution of Energy Versus 
Frequency, and the Noise Integral 

By patterning the integration upon the polynomial 
used in equations 6 and 7 on page 47 in the tables of 
Bierens de Haan, we can compute the fraction of the 
total noise power taken up by the system between 
any pair of fractional-power points in the frequency 
range, and the fraction of the total noise energy that 

system is actually selective and gives most weight%>^-§fored within the frequency range bounded by any 
to components in the vicinity of fQ 
estimate yields the ratio : 

This extreme £f 

n, 
2 (,/>//„-!) 

" CA//.+D' 

For systems with a Q of 3 or higher, the response of 
the system falls away rapidly from the peak response, 
and the ratio fb/fa is very nearly unity when j a and 
jb are taken as the one-half power points. For the 
half-power points at Q=3 this error estimate rep
resents the fraction 1/3, but half the total integrated 
energy stored in the system is stored within the 
range of frequencies between j a a n d / 6 ; the other half 
arises from the remainder of the frequency range 
between zero and infinity. 

(See appendix 3 for derivation of the energy stored 
within restricted ranges of frequency.) 

For v(f)=k/f, the equivalent white noise concen
tration, nf} is given by: 

_f t ln /» / / g 

I t is necessary here to apply l'Hopital's Rule to see 
that this equation is valid even for high values of 
Q because as /&—>/a, it simply approaches the limit 
nf—k/Ja' Thus, as it should, the mean value, nf, 
approaches the value v(f0), as the range over which 
the mean value is computed decreases. 

For low values of Q, the question of the error 
introduced by substituting the mean value for the 
actual function is again limited at worst to the ratio 
that the range of values of v(f) bears to the mean 
value nf. Thus, for the function v(J)=k/f. 

K/»)-K/«)_(/»//«-i)8 

nf Jb Yn fb 
Ja Ja 

Because of the relatively slow change of the logarithm 
as a function of its argument, this range always 
represents a fairly small error. 

In summary, we have shown that an equivalent 
white noise figure can be derived from the mean value 
of several noise functions, and that substitution of 
an nf derived from the mean value of v(J) in place of 
the white noise constant does not lead to serious 
error. Thus the relations derived in this paper for 
ordinary white noise are applicable to a number of 
other noise functions as well. 

pair of fractional energy points. 
For the system, the mean rate of power dissipation 

is given by: 

, 4 > 2 

The energy stored is given by: 

£ , 
2D 2TT/O 

~Ql(l-4>2Y+<f 

At the natural resonance frequency of the system, 
<£2=1, and thus, when expressed as a fraction of the 
response at the natural frequency, the relative power 
and relative energy functions become independent of 
the driving force. Choosing for convenience to 
express the fractional response as a reciprocal (e.g., 
2 for the one-half power, etc.) for fractional energy, 

FE=Q2
0(l-tf)

2+<t>2 

and, for fractional power, 

__Ql(i-^y+<t>2 

tw~ ^ 

One can then solve these equations to find at what 
relative frequency limits the system has a given 
fractional response. This procedure yields, for the 
frequency range between the fractional energy 
points, the approximate result: 

fb-fa^FE-l + l/AQ2
0 

Jo Qo 

and, for the frequency range between the fractional 
power points, the exact solution: 

j2—fi__-\Fw—l 
Jo Qo 

The approximation needed in solving for the 
fractional energy points arises from the fact that 
the system has finite energy storage capacity at 
zero frequency, whereas it has zero energy storage 
capacity at infinite frequency. The power dissipa
tion capacity of the system is, however, zero at 
both extremes of the frequency range, and the func-
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tion of power dissipation versus the logarithm of the 
frequency is symmetrical. Except for systems of 
low energy-storage capacity, the asymmetry of the 
energy storage function is negligible. (Its influence 
on A///o is discussed in appendix 4.) 

Within the frequency range between any two 
fractional energy limits, the noise energy stored is 
given by: 

nf *-5 
H=hlf0 d<t> 

0J<t>a=fJfo 1+2 \2Q2
0 V <t>2+<t>' 

This integral can be divided into partial fractions, 
and the separated integrals give angle functions, 
from which the combined result is 

N-=I%^-- -2V*W + l/4Qg 
(FE-lUl-FE/Q2

0 

The radical in the denominator becomes imaginary 
for the condition in which the energy storage at 
zero frequency exceeds the value of FE chosen for the 
frequency limit. 

The power taken up by the system between the 
frequency limits representing various fractional 
power points is given by the integral: 

_Vo <f>2d<f> 

jm>tfo 
" Qo ' 

tan - i 2^FW—1 
2—Fw 

where <j>i and <t>2 are the limits of relative frequency 
corresponding to the fractional powers whose 
reciprocal is Fw. This equation requires no approx
imation. 
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FIGURE 3, Fraction of total energy stored for various relative 
response limits. 

The graphical result of this integration is shown in 
figure 3. The stored energy derived from noise 
power between the frequency limits representing 
various fractional power points is presented as a frac
tion of the total storage for the complete spectrum. 

These integrals between finite limits may also be 
applied to evaluating the storage and dissipation of 
energy derived from band-limited sources. 

Appendix 4. Frequency Resolution Limit 

The approximation that leads to computation of 
Af/fo has interesting connotations in physical prob
lems. One of the terms discarded represents an 
asymmetry in the function describing the energy 
response of the system as a function of frequency. 
This term becomes appreciable only for systems of 
low energy-storage capacity (Q >|), but its com
putation permits a quantitative estimate to be made 
as to the limits within which the equations derived 
in this paper are applicable. 

The boundaries of the frequency resolution limit, 
A///o, are those for which the energy storage is less 
than the maximum steady-state storage by the 
limiting energy increment, AE. This condition may 
be found from solutions of the equation:-

1 
6 ®(l-*a)a+*a ' 

A convenient method is to rewrite the equation as: 

fa2-1)2+ (</>2- 1)/Q2
0- (e«-1)/<28=0 

and to solve for the quantity (<t>2— 1). The two 
roots can be written as 

d1=(tf-i)=(m-iKUfo+i) 
d2= (<&-1)=(f2/f0-1) (f2/fo+i) 

Let 

A/i=/o—/i ; A/ a =/ 2 —/o-

Then the limiting frequency increment is given by: 

A/^AA+A/2-

The asymmetry between the limits j x and j 2 relative 
to/o may be defined as: 

A,=-
A/i-Afr 

2/o 

From these definitions: 

A /_ d2—d\ 
/o " 2 ( 1 - 4 . ) ' 

The solution for the quantity (<t>2— 1) yields, as 
the roots: 

472 



-1 1 

By|"applying the definitions for A/i, A/2 and ^4S to 
the roots dx and d2, the value of As is found to be 

No approximation has been used to this point. 
However, the second and third terms under the 
radical are much smaller than the first. When they 
are removed from the radical, by approximation: 

Now, in the expression for A///0 the term (1—AS) 
appears in the denominator. As is composed of 
terms that are quite small relative to unity, so that 
a series approximation of one term is sufficient, and 
we may place it in the numerator, obtaining: 

|SW«°~ 1+45I(1+^ 
Inspection of this expression shows that a further 
simplifying approximation may be made in Asy for 
it is clear that the term {ea— 1) is also rather small. 
Clearly the term in As that contains the square of 
A///o will in general be less than half as large as 
l/4()o2- Thus, the major term in As is just the quan
tity 1/4 Q0\ We have discarded this quantity from 
the equations shown in the text. 

In order to find the limitations that bound the 
application of the equations given in the text, we 
must find the conditions under which the term 1/4 QQ

2 

is indeed small. 
When $o is taken as large as permitted by the least 

time interval in which an observation may take place, 
the relation between the resolution limit along the 
time axis and the energy resolution limit is 

A* 
To 

and, thus, in the limit: 

" 2TT 

c?Tl 
4QJ 16ir*At2 

The approximation for A//jf0 will be poorest for the 
condition under which the discarded term is largest 
re (ea— 1). From this limiting condition, we can 
find the bounds imposed upon the least time interval 
for which these derivations are applicable. Let 

PL l p -(ea-l)=M 
(ea-l) 

where M represents the terms that do not contain a. 
Differentiating the right-hand term with respect to a 
and setting it equal to zero, one finds two solutions, 
the trivial one of a = 0 , and the equation 

0-2) e«+2=0. 

A graphical solution gives as the most unfavorable 
condition, a = 1.6. 

This solution represents a condition in which 
AE/E0 would be very large; in fact, where noise is the 
limitation, the condition implies a signal-to-noise 
ratio of approximately 0.2. For this limit: 

( e«—l^e 1 - 6 —1=4. 

Thus, for a precision limit of about 12K percent, we 
require only that the product a 2 M < 0 , or: 

2-56-®2-i^<L 

For times of observation comparable to one full 
period and even less, and in almost any condition in 
which Q 0 >1 , the term under the radical sign that we 
have discarded is in fact negligible. 
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