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I t is assumed t h a t the symmet ry elements possessed by a strained crystal will be those 
common to the unstrained crystal and to the macroscopic s ta te of strain. This principle 
has been applied to show all of the possible subgroups to which a given space group can be 
lowered by homogeneous strain for all of the 230 crystallographic space groups. 

1. Introduction 

The symmetry of strained crystals is important in 
the following considerations: 

(1) The presence or absence of internal friction 
resulting from the motion of point defects in a crystal 
can depend upon whether or not the initially equiva
lent sites accessible to the defect are inequivalent in 
the strained crystal [1, 2, 3, 4]>l An isolated point 
defect, such as a vacancy, will occupy any one of a 
set of atomic sites extending throughout the crystal 
with equal probability in the absence of strain; if 
the set splits into inequivalent subsets under strain, 
internal friction will occur when the frequency of an 
alternating strain is approximately equal to the 
jump frequency for the point defect. 

(2) Any tensor property of a crystal, such as 
piezoelectricity, depends primarily upon the sym
metry of the unstrained crystal, but additional 
tensor components may be introduced by straining 
the crystal in such a way as to change its symmetry. 

(3) A classification of the types of polymorphism 
of crystals has been proposed by M. J. Buerger [6]; 
in some categories no bonds are broken but only a 
symmetry change takes place. Some structural 
changes can be induced by homogeneous strain. 

(4) Introduction into crystals of impurity atoms 
is accompanied by strain which may lower the 
symmetry. Such symmetry inversions are well 
known and properly regarded as phase transforma
tions. At the same time it is tempting to broaden 
the use of the term solid solution to include inversions 
in which some crystallographic parameter measuring 
the departure from higher symmetry is a continuous 
and increasing function of impurity concentration 
(in a range including zero concentration). If this 
function is linear to first approximation the behavior 
would be a simple extension of Vegard's Law. In 
any event this phenomenon would be limited to 
symmetry inversions in conformity with strict postu
lates applying to continuous transformations by 
strain, that is second-order transformations in the 
strict sense used by Landau and Lifshitz as discussed 
by Dimmock [6], 

i Italicized figures in brackets indicate the literature references at the end of 
this paper. 

(5) Large strain fields exist near dislocations and 
accompanying symmetry changes may be associated 
with large local variations in physical properties such 
as enhanced diffusion near a dislocation. 

(6) Strain-induced alteration of symmetry may 
cause change in electron-spin resonance [7] or infrared 
absorption [8]; measurement of these changes may 
give information on the type of site occupied by a 
given point defect. 

(7) The lowering of the symmetry of a crystal of 
doubtful point group may make a more definitive 
test available for determining the class of the un
strained crystal. 

There are probably other effects associated with 
strain-induced lowering of symmetry, but the aim 
of the present paper is confined to the solution of 
the formal problem of the possible lowering of space-
group symmetry by homogeneous strain. 

The usual concept of homogeneous strain can be 
extended downward in scale to describe accurately 
the change of shape of the unit cell, but it will not 
in general describe the atomic movements within 
the cell. However, the present considerations in
volve only the symmetry of the crystal structure. 
The atoms within the unit cell need not move as 
if they were suspended in a continuous medium 
undergoing homogeneous strain. I t is only required 
that their movements be consistent with the sym
metry of the macroscopic strain. 

2. Scope of Present Paper 

In general, a crystal may be subjected to a stress 
that causes a strain which need not be homogeneous 
and which may have a special amplitude. This 
paper is, however, restricted to the consideration of 
homogeneous strain of arbitrary amplitude. 

I t may seem more natural to consider an applied 
stress as an imposed condition rather than a state 
of strain. I t makes no difference to the present 
argument which is taken as the imposed condition 
because only the symmetry elements are significant. 
We defer discussion of this point until Curie's prin
ciple is taken up in the next section. 

Strain gradients may be important in some 
processes, such as Nabarro-Herring creep [9, 10] but 
the effect of a strain gradient must be superimposed 
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on the effect of the average value of the strain in the 
region in which the physical process under con
sideration takes place. Creep involves transport 
of matter over macroscopic distances and may be 
associated with a strain gradient even though the 
average strain is zero. The properties listed in the 
introduction are, however, more likely to depend 
on average strain over an appropriate volume than 
on strain gradient because the smallest volume of 
crystal which can be used for discussion of these 
properties is comparable to the unit cell of the crystal. 
Accordingly, attention is restricted to homogeneous 
strain in this paper although it is recognized that 
symmetry changes caused by strain gradients may 
be significant for some physical properties. 

One may specialize a strain with respect to orien
tation or with respect to magnitude, but the former 
is of more general interest. Thus one might apply 
a tensile stress to a tetragonal crystal in such a way 
as to lower it to orthorhombic symmetry and then 
look for effects on physical properties. Such an 
experiment would require only a knowledge of 
crystal orientation. Alternatively, one might apply 
a tensile stress along the unique axis of a tetragonal 
crystal and choose its amplitude such that this 
axis is made equal to the other two thus imposing a 
pseudocubic character on the crystal. Such an 
experiment requires a knowledge not only of crystal 
orientation but also of lattice parameters and elastic 
constants. This second type of experiment seems 
of limited interest and we restrict consideration in 
this paper to strain which may be specialized with 
respect to orientation, but not with respect to 
magnitude. 

A strained crystal may undergo a phase change 
and the space group of the new polymorph need not 
necessarily be symmetry related to the starting 
crystal. We therefore specifically exempt phase 
changes from these considerations except those 
introduced by a continuous process such as those 
noted in the introduction. 

3. Working Principle and Uniqueness of 
Symmetry Reduction 

The components of homogeneous macroscopic 
strain form a tensor of second rank conveniently 
represented by a triaxial ellipsoid of symmetry point 
group mmm. When any two of its major axes are 
equal the ellipsoid acquires rotational symmetry 
about the third major axis. When all three major 
ellipsoid axes are equal it becomes a sphere. In our 
study of symmetry of strained crystals it is necessary 
to consider all kinds of possible orientations of the 
strain ellipsoid relative to the crystal symmetry 
elements. 

We assume that homogeneously strained crystals 
will have all the symmetry elements common to the 
unstrained crystal and to the macroscopic strain, but 
will possess no other symmetry elements. I t is an 
extension of Curie's principle [11] to include space-
group as well as point-group operations. Curie's 
principle has been discussed by Shubnikov [12] and 
Koptsik [18]. 

Homogeneous strain possesses all possible transla
tion al symmetry elements and therefore preserves 
all lattice translations, all glide planes parallel to 
mirror planes of the strain, and screw axes parallel 
to rotation axes of equal or higher order. 

In applying this principle to specific groups it is 
convenient to characterize strain by its point group. 
A situation sometimes arises in which the strain has a 
mirror plane parallel to a glide plane in the space 
group of the unstrained crystal. We assume the glide 
plane remains in the strained crystal. The same as
sumption is made regarding the retention of an re
fold screw axis in the crystal when it is parallel to an 
n-fold rotation axis in the strain. The process of 
taking symmetry operations common to the macro
scopic strain and to the unstrained crystal must be 
understood to have this meaning. This situation is a 
consequence of the well known fact that a crystal may 
have glide planes and screw axes corresponding to the 
mirror planes and rotation axes of its point group. 

The process of finding the space group of a homo
geneously strained crystal can then be carried out in 
either of two ways. First, the elements strictly 
common to the point group of the unstrained crystal 
and to the point group of the strain can be found to 
give the point group of the strained crystal. There 
will in general be several space groups corresponding 
to this final point group. The correct space group 
will be the one which not only belongs to the final 
point group but which is also a subgroup of the initial 
space group. The subgroups of the space groups are 
listed in the Internationale Tabellen zur Bestim-
mung von Kristallstrukturen [14]- Second, one can 
bypass consideration of the point group of the crystal 
and work directly with its space group, taking its 
elements in common with the point group of the 
strain in the sense explained in the last paragraph. 
The writers have used both methods as a check and a 
few misprints in the Internationale Tabellen were 
found. 

One can now see that it makes no difference to the 
present work whether stress or strain is used as the 
imposed condition because in either case only the 
point-group symmetry is involved. 

The reduction of the symmetry of a given crystal 
by a given strain with specified orientation is unique. 
The second process, described above, for finding the 
final space group from the initial space group and 
the strain is clearly unique. A given symmetry 
operation in the point group of the strain either does 
or does not have a corresponding operation in the 
space group of the unstrained crystal; the number of 
operations in this point group is finite and small so 
that every one can be examined to give a definite, 
unique answer for the final space group. The associ
ation of crystal with space group might be questioned 
but this is also unique. In particular, it will be 
possible to find a general position (characterized by 
point symmetry 1 and by a specific arrangement of 
the atoms around the position) which is acted on by 
every element of the space group so that in every 
primitive cell there are a number N, equal to the 
order of the point group, of identical, distinct po
sitions. Application of the strain cannot raise the 
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point symmetry, but can only remove some of the 
symmetry operations originally relating the N 
positions. Thus, the original set of N positions splits 
into an integral number, N/n, of subsets each con
taining n equivalent general positions in the strained 
crystal where n is the order of the point group of a 
strained crystal. A set of general positions defines a 
space group so the association of the strained crystal 
with a space group is unique. 

An alternate approach to the lowering of crystal 
symmetry using matrix representation of the sym
metry operations has been discussed by Ordway [15]. 

4. Results 
The reduction scheme for crystallographic point 

groups is shown in figure 1. This result has been 
given before and the rules for its construction have 
been discussed [1, 3]. I t is shown here for complete
ness and to illustrate the important fact, not pre
viously discussed, that some of the point-group re
ductions can be made in two or more crystallograph-
ically equivalent ways. Thus, the reduction from 
4/mmm can be made either by retaining the (100), 
(010), and (001) mirror planes or by retaining the 
(110), (110), and (001) mirror planes depending on 
the orientation of the strain. Thus, two or more 
space-group reductions, corresponding to two or 
more strain orientations, can be associated with a 
given point-group reduction. 

A given strain orientation (relative to the crystal) 
that is not represented by a single tieline can be 
considered as an equivalent sum of strains succes
sively lowering the symmetry along two or more 
tielines. 

The Bravais-lattice reduction scheme for homo
geneous strain is shown in figure 2. Here a given 
11 Centrosymmetric Classes Order 

21 Non-Centrosymmetric Classes 

Hexagonal-Tr igonal 

32 6 6 3rd 

F I G U R E 1. Reduction of point groups to subgroups by homo
geneous strain. 

It is a nee ssary condition that a subgroup belong to a different crystal system 
than the corresponding supergroup. The point group designations are those 
of the International Tables [t6]. 

starting lattice must go to a lattice with a larger 
number of parameters so that only transitions down
ward along the tielines shown are possible under 
homogeneous strain. 

The results in figure 2 can be combined with the 
results for centrosymmetric point groups in figure 1 
to give the reduction scheme for the combined 
centrosymmetric point groups—Bravais lattices 
shown in figure 3. This chart shows that certain 
possibilities are ruled out by the Bravais-lattice re-

F I G U R E 2. Reduction of Bravais-lattice symmetry by homo
geneous strain. 

It is a necessary condition that a lattice go to one with a larger number of pa
rameters. P means primitive, R stands for the compound hexagonal lattice 
derivable from the primitive thombohedral, C means centered on the C face, 
I means body centered, and F means centered on all faces. 

IT IS A NECESSARY CONDITION THAT A 
| LOWER LATTICE BELONG TO A DIFFERENT 
CRYSTAL SYSTEM THAN THE CORRESPONDING 
HIGHER LATTICE 

F I G U R E 3. Reduction of point-group—Bravais-lattice combi
nation by homogeneous strain for centrosymmetric point 
groups. 
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duction scheme. Thus, a space group associated 
with point group m3m and with a face-centered 
lattice can go to a space group associated with point 
group 4/mmm but only to one with a body-centered 
lattice, not to one with a primitive lattice. These 
restrictions are automatically obeyed when either of 
the two processes described earlier is used to obtain 
a reduced space group. The relations in figure 3 do 
provide afuseful partial check on such results. The 
writers have constructed a chart similar to figure 3 
for the noncentrosymmetric point groups combined 
with the Bravais lattices. The construction is easy, 
but slightly tedious, and the results do not warrant 

publication as a step in the process of checking the 
final product, the space-group charts. 

The final results are shown in figure 4, for centro-
symmetric space groups, and figure 5 for noncentro
symmetric space groups. This division into two 
charts is possible because homogeneous strain is 
centrosymmetric and cannot change the space-group 
property of being centrosymmetric or noncentro
symmetric. 

As in the scheme shown in figure 1 a plane of sym
metry on strain transformation is preserved only if it 
is perpendicular to one of the principal axes of the 
strain ellipsoid for any permissible choice of prin-
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F I G U R E 4. Reduction of centrosymmetric space groups by homogeneous strain. 

Thejiotation of the International Tables [16] is used. Space groups associated with a single point group are enclosed in 
boxes. • Arrows are drawn from starting space group to subgroup reached by homogeneous strain. A space group 
having no entering arrow cannot be obtained by homogeneous strain from a higher symmetry space group. 
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F I G U R E 5. Reduction of noncentrosymmetric space groups by homogeneous strain. 

The vertical column, consisting of space groups associated with point groups 6, ~, 3m, 32 mm2, and 222, has been repeated on page 400 to 
provide sufficient space for entry and exit of arrows. The space groups associated with point groups m and 2 have been shown twice on 
the left hand page for the same reason. The text gives ail example of the use of this chart. 
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FIGURE 5. Reduction of noncentrosymmetric space groups by homogeneous strain.—Continued.
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cipal axes. A symmetry axis can be retained only 
if it is parallel to one of these principal axes of the 
ellipsoid. An axis of order higher than two can be 
retained only if it is perpendicular to the circular 
section of an ellipsoid of revolution. A plane of 
symmetry parallel or a two-fold axis perpendicular 
to an axis of order higher than two cannot be re
moved without simultaneous loss of the higher-order 
axis. 

To illustrate the use of these charts, we discuss the 
reduction of group P4mm associated with point 
group 4mm. Figure 1 shows that 4mm goes directly 
to mm2 but the latter can occur in two crystallo-
graphically different orientations depending on 
whether the mirror planes (100) and (010) are_re-
tained or alternatively the planes (110) and (110). 
We thus expect to obtain two space groups associ
ated with mm2 from P4mm and figure 5 shows that 
these are Pmm2 and Cmm2. The former corre
sponds to retention of (100) and (010) mirror planes 
and of the original coordinate axes. The latter 
corresponds to retention of (110) and (110) mirror 
planes and to a change of cell to a C-face-centered 
cell of twice the volume with its [100] axis along 
[110] of the original cell. Pmm2 can go to Pm with 
point group m in two ways and then to P i , the final 
space group with no symmetry to which all non-
centrosymmetric space groups must ultimately re
duce. Pmm2 can alternatively go to P2 and then 
to P i . Returning to the other branch coming from 
P4mm, we see that Cmm2 can go either to Cm and 
then to P i , or to P2 and then P i . 

The behavior of a set of Wyckoff positions under 
homogeneous strain is important in determining 
whether internal friction can occur [3] and may be 
relevant to the subjects mentioned in the intro
duction. We have noted in the previous section 
that the set of N general positions of an initial space 
group always map onto N/n sets of general positions 
in the lower space group. The mapping of a set of 
special positions of the starting space group onto sets 
of special and/or general positions of the lower 
space group is more complicated. In particular 
it should be noted that splitting into unequal sub
sets is possible for some special orientations of the 
strain ellipsoid relative to symmetry elements of 
the point group [3]. For_example the oxygen ions 
in corundum (a-Al203, R3c) occupy a set of posi
tions designated " e " by Wyckoff and located on 
diad axes. The other symmetry operations gen
erate a set of six equivalent e-type positions per 
primitive cell. Tensile strain parallel to an a-axis 
retains the centers of symmetry, the diad axes 
parallel to, and the glide planes perpendicular to 
the direction of the tensile strain. The set of six 

initially equivalent oxygen positions then splits into 
one subset of four and another of two equivalent 
positions. A table of the mapping of special posi
tions onto positions of subgroups has not yet been 
completed. 

The authors thank Dr. J. D. H. Donnay for helpful 
discussions. This work was partially supported by 
the Advanced Research Projects Agency. 
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